WO2015123955A1 - 一种蓄电池汇流排的铸焊模具 - Google Patents

一种蓄电池汇流排的铸焊模具 Download PDF

Info

Publication number
WO2015123955A1
WO2015123955A1 PCT/CN2014/081111 CN2014081111W WO2015123955A1 WO 2015123955 A1 WO2015123955 A1 WO 2015123955A1 CN 2014081111 W CN2014081111 W CN 2014081111W WO 2015123955 A1 WO2015123955 A1 WO 2015123955A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
main template
casting mold
bus bar
battery
Prior art date
Application number
PCT/CN2014/081111
Other languages
English (en)
French (fr)
Inventor
林雁斌
陈义忠
张建章
周富成
Original Assignee
浙江海悦自动化机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江海悦自动化机械股份有限公司 filed Critical 浙江海悦自动化机械股份有限公司
Publication of WO2015123955A1 publication Critical patent/WO2015123955A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/04Casting metal electric battery plates or the like

Definitions

  • the present invention relates to a casting mold, particularly a casting mold for a battery bus.
  • a battery is one of the batteries. Its function is to store limited electric energy and use it in a suitable place.
  • lead-acid batteries have been widely used in power generation, lighting, transportation and the like.
  • the forming process of the battery bus bar is as follows: First, the battery cells are loaded into the fixture for fixing, and the bus bar is formed on the tabs of the battery cells by using a casting die, and then the positive cells between the adjacent battery cells are manually The bus bar and the negative bus bar are connected, and in the prior art, automatic casting is realized by an automatic bus bar casting machine.
  • the casting mold in the existing bus bar casting machine comprises an upper template and a lower template, the surface of the upper template is provided with a casting recess, and the opposite surface of the upper template and the lower template is provided with a corresponding groove, and the upper template is connected to the lower template.
  • the corresponding groove combination forms a cooling passage, and cool water or cold air is passed to the cooling passage to accelerate the cooling forming of the lead liquid in the casting groove, but the volume of the casting mold under the structure is large, resulting in processing and assembly costs. More time.
  • a casting die of a battery bus bar comprising a main template, wherein the main template surface is sequentially distributed with a plurality of forming units for casting the bus bar, the forming unit It is composed of a positive electrode groove and a negative electrode groove, and the positive electrode groove and the negative electrode groove position of the adjacent molding unit are mutually staggered, and the main template surface is provided with a side stress groove, and the side stress groove is along the positive electrode groove and/or Or a partial outer contour of the negative electrode groove is disposed, and the main template is provided with a cooling passage disposed along a distribution direction of each molding unit.
  • the casting mold of the battery bus bar of the present invention comprises a main template, and the cooling passage is formed in the main template, instead of forming a cooling passage by combining two templates in the prior art, thereby reducing the casting boring.
  • the structure and volume of the mold reduce the time required for the casting mold.
  • side stress grooves are arranged on the main template along the outer contours of the positive and negative negative grooves, and the lateral stress grooves effectively reduce the stress concentration in the production process and improve the processing quality.
  • FIG. 1 is a front view of the present invention
  • FIG. 3 is a plan view of the present invention
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a casting die for a battery bus bar, comprising a main template, the main template surface is sequentially distributed with a plurality of forming units for casting the bus bar, and the forming unit is composed of a positive electrode groove and a negative electrode groove.
  • the positions of the positive and negative grooves of the adjacent molding unit are interlaced, and the surface of the main template is provided with a side stress groove, and the side stress groove is disposed along a portion of the outer contour of the positive electrode and/or the negative electrode, in the main template.
  • a cooling passage is provided along the distribution direction of each molding unit.
  • a groove is arranged on the opposite side of the upper template and the lower template, and then the upper template and the lower template are assembled, and the opposite two grooves are combined.
  • the runner mold of the present invention has only the main template, and directly forms a cooling passage on the main template, thereby simplifying the structure of the casting mold and making the processing easier.
  • the side stress groove is provided to reduce the stress concentration phenomenon.
  • a casting mold of a battery bus bar includes a main template 1 , and a plurality of forming units 2 for casting a bus bar are sequentially arranged on the surface of the main template 1 , and the molding unit 2 is formed.
  • the positive electrode recess 21 and the negative electrode recess 22 are formed, and the positions of the positive electrode recess 21 and the negative electrode recess 22 of the adjacent molding unit are mutually staggered, and the surface of the main template 1 is provided with a side stress groove 5, and the side stress groove 5 is along the positive electrode.
  • a portion of the outer contour of the recess 21 and/or the negative electrode 22 is disposed, and the main template 1 is provided with a cooling passage 3 disposed along the direction in which the molding units 2 are distributed.
  • the lead liquid is limited to the pouring molding unit 2, and the lead liquid attached to the upper surface of the main template 1 is scraped off by a doctor blade, and the poles of the pole group are inserted into the molding unit 2
  • cooling or cold water is then introduced into the cooling passage 3 to accelerate the solidification of the lead liquid, and finally the pole group is pulled upward, and the solidified lead liquid forms a bus bar on the pole group.
  • the temperature in the lead liquid pool is high, but when the cooling passage passes cold air or cold water, the temperature of the main template is rapidly lowered.
  • the rapid temperature change easily causes stress concentration of the main template, so the main template is set.
  • the side stress groove 5 a new stress concentration point is formed at the side stress groove, and the stress that is originally concentrated is shared, which reduces and avoids the damage and deformation caused by the excessively concentrated stress, thereby improving Processing quality.
  • the bottom surface of the side stress groove 5 is lower than the upper surface of the main template 1, so that the surface area of the upper surface of the main template is reduced, and the lead surface attached to the surface can be conveniently cleaned compared with the larger surface of the main template 1 in the prior art. .
  • the side stress groove 5 may correspond to a side profile of a portion of the positive electrode channel 21, or may be a side profile of a corresponding partial negative electrode channel 22. Most preferably, the side stress groove corresponds to both the positive and negative negative grooves. between.
  • the positive electrode well 21 in the molding unit 2 communicates with the adjacent negative electrode recess 22 through the bridge tunnel 23.
  • the bridge ditch 23 can be formed to directly form a bridge on the bus bar to reduce the bridge splicing process after the bus bar is formed.
  • the side stress grooves 5 are arranged along the outer contour of the bridge channel 23.
  • the side stress groove corresponds to the side outer contour of each component in the forming unit, thus uniformly alleviating the stress generated by each part, and fully reducing the stress
  • the deformation caused by the concentration of light stress ensures the quality of processing.
  • a central stress groove 4 is provided on the upper surface of the main template 1, and the middle stress groove 4 is located between the adjacent cooling channels 3.
  • the depth of the central stress groove 4 is set to be large, which can effectively reduce the stress concentration phenomenon, and the central stress groove can be arranged to accelerate the cooling and dissipating speed of the main template.
  • the cooling passage 3 used in the present invention is an elliptical through hole, and the elliptical through hole is disposed directly below each molding unit 2.
  • the cooling passage is an elliptical through hole.
  • the elliptical center is wide and narrow on both sides. Therefore, compared with the circular through hole, the elliptical through hole can extend a larger distance to both sides, covering a larger width and a larger cooling area.
  • the elliptical through hole has a better cooling effect on the casting groove.
  • the present invention also provides a drain hole 6 at both side edges of the main die plate 1, the drain hole 6 is disposed on the bottom surface of the side stress groove 5, and the lead liquid collected in the side stress groove can be discharged from the drain hole 6.
  • the bottom surface of the side stress groove 5 may be inclined at an angle to accelerate the discharge of the lead liquid deposited in the side stress groove; and after the drainage hole is provided, the resistance of the casting mold into the lead liquid pool is reduced; The holes reduce the overall weight of the casting mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种蓄电池汇流排的铸焊模具,包括主模板(1),主模板表面依次分布有若干组用于浇注汇流排的成型单元(2),成型单元由正极凹道(21)与负极凹道(22)构成,相邻成型单元的正极凹道与负极凹道位置相互交错,主模板表面设有侧部应力槽(5),侧部应力槽沿正极凹道和/或负极凹道的部分外轮廓设置,主模板内设有沿各成型单元分布方向设置的冷却通道(3)。该铸焊模具结构简单,且侧部应力槽能减轻生产过程中的应力集中。

Description

一种蓄电池汇流排的铸焊模具
【技术领域】 本发明涉及一种铸悍模具, 尤其是蓄电池汇流排的铸悍模具。 【背景技术】 蓄电池是电池中的一种, 它的作用是能把有限的电能储存起来, 在合适的 地方使用, 特别是铅酸蓄电池已在发电、 照明、 交通等领域广泛应用。 在蓄电 池内部有多个单独工作的电池单体, 多个电池单体之间需要通过悍接连接形成 一个完整的电池群。 一般蓄电池汇流排的成型工艺流程为: 先将电池单体装入 夹具进行固定, 使用铸悍模在电池单体的极耳上形成汇流排, 再通过人工将相 邻电池单体之间的正汇流排和负汇流排进行悍接, 现有技术中通过自动汇流排 铸悍机实现自动铸悍。 现有汇流排铸悍机中的铸悍模具包括上模板和下模板, 上模板的表面设有浇铸凹道, 上模板和下模板的相对面上设有对应的凹槽, 上 模板连接下模板后, 对应的凹槽组合形成了冷却通道, 向冷却通道中通冷水或 是冷气, 以加快浇铸凹道中铅液的冷却成型, 但是该结构下铸悍模具的体积较 大, 导致加工和组装耗费的时间多。
【发明内容】 本发明提供一种蓄电池汇流排的铸悍模具, 结构简单, 减少加工的时间和 成本。 为解决上述技术问题, 本发明采用如下技术方案: 一种蓄电池汇流排的铸悍模具, 包括主模板, 所述主模板表面依次分布有 若干组用于浇铸汇流排的成型单元, 所述成型单元由正极凹道与负极凹道构成, 相邻成型单元的正极凹道与负极凹道位置相互交错, 所述主模板表面设有侧部 应力槽, 所述侧部应力槽沿正极凹道和 /或负极凹道的部分外轮廓设置, 所述主 模板内设有沿各成型单元分布方向设置的冷却通道。 进一歩的, 所述成型单元中的正极凹道与相邻的负极凹道之间通过过桥凹 道相连通。 进一歩的, 所述侧部应力槽沿过桥凹道的外轮廓设置。 进一歩的, 所述主模板上还设有中间应力槽, 所述中间应力槽位于相邻冷 却通道之间。 进一歩的, 所述侧部应力槽的底面设有供铅液流出的排流孔。 进一歩的, 所述冷却通道为椭圆形通孔。 本发明的有益效果: 本发明的蓄电池汇流排的铸悍模具, 包括主模板, 冷却通道成型于主模板 内, 取代现有技术中由两块模板组合而形成冷却通道, 因此可减小铸悍模具的 结构与体积, 减少铸悍模具加工所需的时间。 并且在主模板上沿正极凹道和负 极凹道的部分外轮廓设置有侧部应力槽, 侧部应力槽有效减轻生产过程产生应 力集中, 提高加工质量。 本发明的这些特点和优点将会在下面的具体实施方式、 附图中详细的揭露。
【附图说明】 下面结合附图对本发明做进一歩的说明: 图 1为本发明的结构示意图; 图 2为本发明的主视图; 图 3为本发明的俯视图。 【具体实施方式】 本发明提供一种蓄电池汇流排的铸悍模具, 包括主模板, 主模板表面依次 分布有若干组用于浇铸汇流排的成型单元, 成型单元由正极凹道与负极凹道构 成, 相邻成型单元的正极凹道与负极凹道位置相互交错, 主模板表面设有侧部 应力槽, 侧部应力槽沿正极凹道和 /或负极凹道的部分外轮廓设置, 主模板内设 有沿各成型单元分布方向设置的冷却通道。 相比现有技术中, 在上模板和下模 板的相对面设置凹槽, 然后再组装上模板和下模版, 由相对的两凹槽组合形成 流道; 本发明的铸悍模具只有主模板, 直接在主模板上开孔形成冷却通道, 因 此将铸悍模具的结构简化, 加工更加容易。 并且设置侧部应力槽可减轻应力集 中现象。 下面结合本发明实施例的附图对本发明实施例的技术方案进行解释和说 明, 但下述实施例仅仅为本发明的优选实施例, 并非全部。 基于实施方式中的 实施例, 本领域技术人员在没有做出创造性劳动的前提下所获得其它实施例, 都属于本发明的保护范围。 参考图 1、 图 2和图 3, 所示的一种蓄电池汇流排的铸悍模具, 包括主模板 1, 主模板 1表面依次分布有若干组用于浇铸汇流排的成型单元 2, 成型单元 2 由正极凹道 21与负极凹道 22构成,相邻成型单元的正极凹道 21与负极凹道 22 位置相互交错, 并且主模板 1表面设有侧部应力槽 5, 侧部应力槽 5沿正极凹道 21和 /或负极凹道 22的部分外轮廓设置, 主模板 1 内设有沿各成型单元 2分布 方向设置的冷却通道 3。 工作过程中, 铸悍模具抬升出铅液池后, 铅液被限于浇 成型单元 2之中, 采用刮刀刮除主模板 1上表面附着的铅液后, 将极群的极耳 插入成型单元 2的铅液内, 之后冷却通道 3 内通入冷却或是冷水, 加速铅液的 凝固, 最后再将极群向上拔出, 凝固的铅液在极群上形成汇流排。 铅液池中的温度较高, 但是在冷却通道中通冷气或是冷水时, 又会迅速的 降低主模板的温度, 温度的迅速变化容易导致主模板产生应力集中, 因此在主 模板上设置了侧部应力槽 5, 在设置侧部应力槽处会形成新的应力集中点, 将原 来过于集中的应力分担开来, 会减少和避免原来过于集中的应力带来的破坏和 变形, 因此可提高加工质量。 并且侧部应力槽 5的底面要低于主模板 1 的上表 面, 因此减小主模板上表面的表面积, 相对现有技术中主模板 1 较大的表面, 可方便清理其表面附着的铅液。 其中侧部应力槽 5可对应部分正极凹道 21的侧 部轮廓, 也可以是对应部分负极凹道 22的侧部轮廓, 最优选的, 侧部应力槽同 时对应在正极凹道和负极凹道之间。 成型单元 2中的正极凹道 21与相邻的负极凹道 22之间通过过桥凹道 23相 连通。 设置过桥凹道 23可直接在汇流排上形成过桥, 减少在汇流排成型后的过 桥悍接工序。 同时, 侧部应力槽 5沿过桥凹道 23的外轮廓设置。 侧部应力槽对应成型单 元中各组成部分的侧部外轮廓, 因此均匀缓解各部分产生的应力, 充分有效减 轻应力集中所产生的变形, 保证加工质量。 并且还在主模板 1的上表面设置了中部应力槽 4,中部应力槽 4位于相邻冷 却通道 3之间。 设置中部应力槽 4深度较大, 可有效的减小应力集中现象, 并 且设置该中部应力槽能加快主模板的冷却散热速度。 本发明采用的冷却通道 3 为椭圆形通孔, 椭圆形通孔对应设置在各成型单 元 2 的正下方。 冷却通道为椭圆形通孔, 椭圆形中部宽、 两边窄, 因此相比圆 形通孔, 椭圆形通孔能够向两侧延伸更大的距离, 覆盖更大的宽度, 冷却的面 积大, 因此椭圆形通孔对浇铸凹道的冷却效果更优良。 本发明还在主模板 1的两侧边缘设置了排流孔 6,排流孔 6设置在侧部应力 槽 5的底面上, 汇集在侧部应力槽中的铅液可从排流孔 6排出, 并可设置侧部 应力槽 5 的底面倾斜一定角度, 加速排出沉积在侧部应力槽内的铅液; 而且设 置排流孔后, 铸悍模具进入铅液池时的阻力减小; 排流孔减轻铸悍模具的整体 重量。 通过上述实施例, 本发明的目的已经被完全有效的达到了。 熟悉该项技术 的人士应该明白本发明包括但不限于附图和上面具体实施方式中描述的内容。 任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。

Claims

权 利 要 求 书
1、 一种蓄电池汇流排的铸悍模具, 包括主模板, 所述主模板表面依次分布 有若干组用于浇铸汇流排的成型单元, 所述成型单元由正极凹道与负极凹道构 成, 相邻成型单元的正极凹道与负极凹道位置相互交错, 其特征在于: 所述主 模板表面设有侧部应力槽, 所述侧部应力槽沿正极凹道和 /或负极凹道的部分外 轮廓设置, 所述主模板内设有沿各成型单元分布方向设置的冷却通道。
2、 根据权利要求 1所述的一种蓄电池汇流排的铸悍模具, 其特征在于: 所 述成型单元中的正极凹道与相邻的负极凹道之间通过过桥凹道相连通。
3、 根据权利要求 2所述的一种蓄电池汇流排的铸悍模具, 其特征在于: 所 述侧部应力槽沿过桥凹道的外轮廓设置。
4、 根据权利要求 1或 2或 3所述的一种蓄电池汇流排的铸悍模具, 其特征 在于: 所述主模板上还设有中间应力槽, 所述中间应力槽位于相邻冷却通道之 间。
5、 根据权利要求 1或 2或 3所述的一种蓄电池汇流排的铸悍模具, 其特征 在于: 所述侧部应力槽的底面设有供铅液流出的排流孔。
6、 根据权利要求 1或 2或 3所述的一种蓄电池汇流排的铸悍模具, 其特征 在于: 所述冷却通道为椭圆形通孔。
PCT/CN2014/081111 2014-02-21 2014-06-30 一种蓄电池汇流排的铸焊模具 WO2015123955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410060283.9A CN103817311B (zh) 2014-02-21 2014-02-21 一种蓄电池汇流排的铸焊模具
CN201410060283.9 2014-02-21

Publications (1)

Publication Number Publication Date
WO2015123955A1 true WO2015123955A1 (zh) 2015-08-27

Family

ID=50752761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081111 WO2015123955A1 (zh) 2014-02-21 2014-06-30 一种蓄电池汇流排的铸焊模具

Country Status (2)

Country Link
CN (1) CN103817311B (zh)
WO (1) WO2015123955A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759567A (zh) * 2019-02-28 2019-05-17 福建亚亨机械股份有限公司 一种蓄电池组自动化铸焊机
CN109860625A (zh) * 2018-12-27 2019-06-07 安徽理士电源技术有限公司 电池极群组铸焊工艺过程控制方法及其装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103817311B (zh) * 2014-02-21 2017-01-18 浙江海悦自动化机械股份有限公司 一种蓄电池汇流排的铸焊模具
CN104043807B (zh) * 2014-07-05 2015-12-23 福建省建阳亚亨机械制造有限公司 蓄电池极群铸焊用直柱式免人工过桥模具
GB2531533B (en) 2014-10-20 2018-10-10 Tbs Eng Ltd Apparatus for moulding battery components
CN104907538A (zh) * 2015-06-03 2015-09-16 浙江海悦自动化机械股份有限公司 一种蓄电池汇流排的铸焊模具
CN105397069B (zh) * 2015-11-16 2017-07-18 江苏欧力特能源科技有限公司 双腔自动铸焊模具及模具的供铅系统
CN106583694B (zh) * 2017-01-24 2018-11-23 浙江海悦自动化机械股份有限公司 一种汇流排模具的冷却结构
CN109759564B (zh) * 2019-03-14 2023-09-05 福建亚亨机械股份有限公司 一种方便维护加热快的汇流排铸焊模具
CN111590055B (zh) * 2020-05-26 2021-09-28 天能电池(芜湖)有限公司 一种基于多位置加速散热的单管水冷铸焊模具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200998765Y (zh) * 2007-06-25 2008-01-02 陈义忠 电脑全自动铸焊机
JP2009166098A (ja) * 2008-01-17 2009-07-30 Furukawa Battery Co Ltd:The Cos鋳造鋳型
CN201791951U (zh) * 2010-08-31 2011-04-13 金健 一种蓄电池极群铸焊模具
CN202155509U (zh) * 2011-07-18 2012-03-07 长兴新源机械设备科技有限公司 改进型铸焊模具
CN202174232U (zh) * 2011-05-17 2012-03-28 浙江天能电池(江苏)有限公司 一种铅酸蓄电池一体成型铸焊底模
CN202199761U (zh) * 2011-08-08 2012-04-25 长兴新源机械设备科技有限公司 一种改进型铸焊模具
CN103817311A (zh) * 2014-02-21 2014-05-28 浙江海悦自动化机械股份有限公司 一种蓄电池汇流排的铸焊模具
CN203679238U (zh) * 2014-02-21 2014-07-02 浙江海悦自动化机械股份有限公司 一种蓄电池汇流排的铸焊模具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115059A (ja) * 1987-10-29 1989-05-08 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の極板群溶接装置
JPH01195662A (ja) * 1988-01-29 1989-08-07 Shin Kobe Electric Mach Co Ltd 鉛畜電池の極板群溶接装置
JP2001351599A (ja) * 2000-06-06 2001-12-21 Japan Storage Battery Co Ltd 鉛蓄電池製造装置および製造方法
CN202207792U (zh) * 2011-09-16 2012-05-02 浙江海悦自动化机械设备有限公司 一种蓄电池铸焊模具
CN202517031U (zh) * 2012-01-19 2012-11-07 曲志程 用于连接铅酸蓄电池极板的模具
CN202639297U (zh) * 2012-06-18 2013-01-02 江苏理士电池有限公司 用于铸焊模具的自动循环冷却装置
CN203156021U (zh) * 2013-04-06 2013-08-28 山东圣阳电源科技有限公司 一种蓄电池过桥一次成型模具
CN203390187U (zh) * 2013-08-02 2014-01-15 天能电池集团有限公司 一种自动铸焊机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200998765Y (zh) * 2007-06-25 2008-01-02 陈义忠 电脑全自动铸焊机
JP2009166098A (ja) * 2008-01-17 2009-07-30 Furukawa Battery Co Ltd:The Cos鋳造鋳型
CN201791951U (zh) * 2010-08-31 2011-04-13 金健 一种蓄电池极群铸焊模具
CN202174232U (zh) * 2011-05-17 2012-03-28 浙江天能电池(江苏)有限公司 一种铅酸蓄电池一体成型铸焊底模
CN202155509U (zh) * 2011-07-18 2012-03-07 长兴新源机械设备科技有限公司 改进型铸焊模具
CN202199761U (zh) * 2011-08-08 2012-04-25 长兴新源机械设备科技有限公司 一种改进型铸焊模具
CN103817311A (zh) * 2014-02-21 2014-05-28 浙江海悦自动化机械股份有限公司 一种蓄电池汇流排的铸焊模具
CN203679238U (zh) * 2014-02-21 2014-07-02 浙江海悦自动化机械股份有限公司 一种蓄电池汇流排的铸焊模具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860625A (zh) * 2018-12-27 2019-06-07 安徽理士电源技术有限公司 电池极群组铸焊工艺过程控制方法及其装置
CN109860625B (zh) * 2018-12-27 2024-03-29 安徽理士电源技术有限公司 电池极群组铸焊工艺过程控制方法及其装置
CN109759567A (zh) * 2019-02-28 2019-05-17 福建亚亨机械股份有限公司 一种蓄电池组自动化铸焊机
CN109759567B (zh) * 2019-02-28 2023-09-22 福建亚亨机械股份有限公司 一种蓄电池组自动化铸焊机

Also Published As

Publication number Publication date
CN103817311B (zh) 2017-01-18
CN103817311A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2015123955A1 (zh) 一种蓄电池汇流排的铸焊模具
KR101454481B1 (ko) 배터리용 캐스트 온 스트랩 몰드의 순환식 냉각 구조
CN203679238U (zh) 一种蓄电池汇流排的铸焊模具
CN204148488U (zh) 一种铅蓄电池铸焊机冷却装置
CN106077589A (zh) 一种铸铁件冷却装置
CN206474663U (zh) 一种铅蓄电池铸焊底模
CN210880825U (zh) 一种湿法锂电池隔膜铸片辅助冷却系统
CN104907538A (zh) 一种蓄电池汇流排的铸焊模具
CN105363819A (zh) 一种4g基站铝合金散热器型材挤压模具
CN102629689A (zh) 铅酸蓄电池铅包铜板栅生产方法及专用组合模具
CN207154756U (zh) 铅蓄电池铸焊机冷却装置
CN208116733U (zh) 一种新型铸焊模具
WO2019149138A1 (zh) 一种连铸结晶器
CN206194861U (zh) 一种新型牵引管式铅酸蓄电池用板栅
CN204639098U (zh) 一种蓄电池汇流排的铸焊模具
CN205660148U (zh) 一种新型蓄电池汇流排成型模具
CN203541115U (zh) 铜管拉伸机可调模具架
CN207938598U (zh) 一种适用Pin-Fin功率半导体模块的冷却水道结构
CN202284219U (zh) 一种电渣重熔用底水箱
CN202683991U (zh) 结晶器导热装置
CN203218036U (zh) 电缆生产设备冷却系统
CN206961978U (zh) 一种石墨烯电池组散热装置
CN104889370A (zh) 一种蓄电池汇流排铸焊模具
CN201766121U (zh) 铅酸蓄电池的板栅
CN206134369U (zh) 一种电缆生产中的冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883479

Country of ref document: EP

Kind code of ref document: A1