WO2015122114A1 - 半導体用ダイアタッチペーストおよび半導体パッケージ - Google Patents

半導体用ダイアタッチペーストおよび半導体パッケージ Download PDF

Info

Publication number
WO2015122114A1
WO2015122114A1 PCT/JP2015/000117 JP2015000117W WO2015122114A1 WO 2015122114 A1 WO2015122114 A1 WO 2015122114A1 JP 2015000117 W JP2015000117 W JP 2015000117W WO 2015122114 A1 WO2015122114 A1 WO 2015122114A1
Authority
WO
WIPO (PCT)
Prior art keywords
die attach
meth
attach paste
ring structure
acryloyl group
Prior art date
Application number
PCT/JP2015/000117
Other languages
English (en)
French (fr)
Inventor
寛人 江夏
ゆい 小澤
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015562712A priority Critical patent/JPWO2015122114A1/ja
Publication of WO2015122114A1 publication Critical patent/WO2015122114A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4261Macromolecular compounds obtained by reactions involving only unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • H01L2224/29391The principal constituent being an elastomer, e.g. silicones, isoprene, neoprene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83874Ultraviolet [UV] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector

Definitions

  • the present invention relates to a die attach paste for semiconductor and a semiconductor package manufactured using the die attach paste for semiconductor.
  • a bonding material for manufacturing a semiconductor package by bonding a semiconductor chip such as an IC or LSI and a support member such as a lead frame or an insulating support substrate to manufacture a semiconductor package
  • Si eutectic alloys and solder, pastes, films, and the like that are mainly made of resin are conventionally known.
  • the Au—Si eutectic alloy has high heat resistance and high moisture resistance, but has a large elastic modulus, and therefore is easily cracked by the stress of expansion and contraction of other members due to thermal history, and is expensive.
  • Solder is inexpensive, but does not have sufficient heat resistance, has a high elastic modulus, and is easily cracked.
  • die attach paste made mainly of resin
  • film hereinafter referred to as “die attach film”
  • die attach film has sufficient heat resistance, moisture resistance, elastic modulus, and expansion due to thermal history. It is widely used because it can relieve the stress of shrinkage.
  • the die attach paste tends to spread out when the viscosity is set in consideration of the coating property, and in the case of a package in which a plurality of dies are mounted on the same package (hereinafter referred to as “multi-chip package”), it is necessary to keep a distance between the dies. Therefore, there is a drawback that it is difficult to cope with high integration of multichip packages.
  • the die attach film needs to be devised in terms of its usage, such as how to cut it to a size corresponding to the size of the die and how to apply it so as not to bite bubbles.
  • the margin generated at the time of cutting is discarded, which is disadvantageous in terms of cost.
  • thermocompression bonding is required during the bonding step between the die and the support member (hereinafter referred to as “die bonding”), there is a drawback in that the thermal history is given to the die and the reliability of the semiconductor package is lowered.
  • B-stage conversion has been proposed as a method for solving the drawbacks of such die attach paste and die attach film.
  • B-stage is to increase the viscosity or impart thixotropy of the die-attach paste after application by a method such as volatilizing the solvent contained in the die-attach paste or curing only a part of the curing component, or This is a process of preventing the spread of wetness after applying the die attach paste by making the solid solid that can retain its shape.
  • Patent Documents 1 and 2 propose a method in which a die attach paste is applied to a certain thickness and then semi-cured by irradiating ultraviolet rays.
  • the techniques proposed in Patent Documents 1 and 2 correspond to the operation of making the die attach paste a solid solid that can hold the shape, that is, the applied die attach paste is made into a B stage to form a die attach film. It is a technology. According to these technologies, it is possible to eliminate the disadvantages of air bubble biting when attaching the die attach film and discarding blank space when cutting out, but the thermal history is given to the die by thermocompression bonding, thereby improving the reliability of the semiconductor package. There has been a problem that the disadvantage of lowering is not solved.
  • the present invention has been made in view of the above-described problems of the prior art, and it is possible to suppress the spread of wetting after coating by making a B stage while maintaining the coating property, and without heating during die bonding.
  • a (meth) acryloyl group-containing compound, a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, a maleic anhydride-modified polyolefin, and photopolymerization Die attach paste for semiconductor containing initiator can suppress wet spread after application by B-stage while maintaining applicability, and can provide sufficient adhesion without heating during die bonding As a result, the present invention has been completed.
  • a die attach paste for semiconductors comprising:
  • the compounding amount of the (meth) acryloyl group-containing compound (1) is 5% by mass or more and 80% by mass or less based on the total curing component, and contains a ring structure containing the oxirane ring structure or oxetane ring structure.
  • the compounding amount of the compound (2) is such that the ratio of the total number of oxirane ring structures or oxetane ring structures to the total number of carboxylic anhydride structures derived from maleic anhydride of the maleic anhydride-modified polyolefin (3) is 2.8 to 0.
  • the blending amount of the maleic anhydride-modified polyolefin (3) is 20% by weight or more and 80% by weight or less based on the total curing component, and the blending amount of the photopolymerization initiator (4). Is from 0.01 parts by weight to 5 parts by weight with respect to 100 parts by weight of the (meth) acryloyl group-containing compound (1).
  • the amount of the thermal radical generator (5) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the (meth) acryloyl group-containing compound (1).
  • At least a part of the (meth) acryloyl group-containing compound (1) is a polyfunctional (meth) acryloyl group-containing compound containing a plurality of (meth) acryloyl groups.
  • the photopolymerization initiator (4) is at least one of an alkylphenone photopolymerization initiator and an acylphosphine oxide photopolymerization initiator.
  • [15] A semiconductor package manufactured using the die attach paste for semiconductor according to any one of [1] to [14].
  • the die attach paste for semiconductors of the present invention can suppress the spread of wetness after application by B-stage while maintaining the applicability, so that high integration of multi-chip packages is possible, and it is not heated during die bonding. However, there is an effect that sufficient adhesiveness can be obtained.
  • the semiconductor die attach paste of the present invention is used, a highly reliable and highly integrated semiconductor package can be manufactured. Therefore, the semiconductor package of the present invention has high reliability and high integration. Is possible.
  • the die attach paste for semiconductor of the present invention includes a (meth) acryloyl group-containing compound (1), a ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure, a maleic anhydride-modified polyolefin (3), and light.
  • a polymerization initiator (4) is included.
  • the (meth) acryloyl group-containing compound (1) will be described.
  • This component is a curing component that undergoes radical polymerization and cures, and is not particularly limited as long as it is a compound containing a (meth) acryloyl group.
  • the (meth) acryloyl group-containing compound (1) excludes those having a (meth) acryloyl group among the silane coupling agents (9) described later.
  • the die attach paste for semiconductor of the present invention contains a silane coupling agent (9)
  • the silane coupling agent (9) contains a (meth) acryloyl group
  • the silane coupling agent having an acryloyl group is included in the silane coupling agent (9) and is not included in the (meth) acryloyl group-containing compound (1).
  • Examples of the (meth) acryloyl group-containing compound (1) include polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, (meth) acrylate monomer, and the like.
  • Polyol poly (meth) acrylate is an ester compound of polyol and acrylic acid or methacrylic acid. The polyol selected here is not particularly limited.
  • chain hydrogenated dimer diol 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, Neopentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butyl-1,
  • chain aliphatic polyols such as 3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,10-decanediol, 1,12-dodecanediol, polyolefin polyol, and hydrogenated polyolefin polyol.
  • the polyol further includes hydrogenated dimer diol having an alicyclic structure, hydrogenated bisphenol A olefin oxide adduct, hydrogenated bisphenol F olefin oxide adduct, hydrogenated biphenol olefin oxide adduct, 1,4-cyclohexanedimethanol.
  • polyols having an alicyclic structure such as 1,3-cyclohexanedimethanol, tricyclo [5.2.1.02,6] decandimethanol, 2-methylcyclohexane-1,1-dimethanol and the like.
  • polyols further include polyols having an aromatic ring such as trimer triol, p-xylylene glycol, bisphenol A olefin oxide adduct, bisphenol F olefin oxide adduct, and biphenol olefin oxide adduct.
  • polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like, and polyester polyols such as polyhexamethylene adipate, polyhexamethylene succinate, and polycaprolactone are also included.
  • polyester polyols having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol can be mentioned. These polyols may be used alone or in combination of two or more.
  • a polyol having an alicyclic structure a polyol having an aromatic ring, (poly) carbonate diol, and a polyester polyol are preferred. More preferred is a polyol having an aromatic ring.
  • examples of commercially available polyol poly (meth) acrylates derived from polyols having an aromatic ring include M-208 (manufactured by Toa Gosei Co., Ltd.), M-211B (manufactured by Toa Gosei Co., Ltd.), FA-321A (Hitachi).
  • Epoxy (meth) acrylate is a compound obtained by adding acrylic acid or methacrylic acid to the terminal epoxy group of an epoxy resin.
  • an epoxy resin selected in this case.
  • examples thereof include an epoxy resin, a biphenyl type epoxy resin, and a hydrogenated biphenyl type epoxy resin. These may be used alone or in appropriate combination of two or more.
  • Examples of commercially available products of epoxy (meth) acrylate include epoxy ester 3000A (manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL600 (manufactured by Daicel-Cytec Co., Ltd.), EBECRYL6040 (manufactured by Daicel-Cytech Co., Ltd.) and the like.
  • Urethane (meth) acrylate is a compound obtained by reacting polyol, polyisocyanate and hydroxyl group-containing (meth) acrylate, or reacting polyol and isocyanato group-containing (meth) acrylate.
  • polyol, polyisocyanate, hydroxyl group-containing (meth) acrylate, and isocyanato group-containing (meth) acrylate selected at this time.
  • the polyol is the same as the polyol used in the polyol poly (meth) acrylate.
  • the polyisocyanate include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane
  • hydroxyl group-containing (meth) acrylate examples include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate 2-hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl Methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, 2-hydroxy-3- (o-phenylphenoxy) pro Methacrylate, and the like.
  • isocyanato group-containing (meth) acrylate examples include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate. These may be used alone or in appropriate combination of two or more.
  • Urethane (meth) acrylate is a polyol and a polyisocyanate and a hydroxyl group-containing (meth) acrylate, or a polyol and an isocyanate group in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate or dioctyltin dilaurate.
  • the synthesis can be performed by reacting the contained (meth) acrylate, but the reaction in the presence of a catalyst is preferable in terms of shortening the reaction time.
  • die attach paste for semiconductors is used as a cured film in the final actual use, but if too much catalyst is used, the physical properties of the cured film may be adversely affected.
  • the total amount of polyol, polyisocyanate and hydroxyl group-containing (meth) acrylate or polyol and isocyanato group-containing (meth) acrylate is preferably 0.001 to 1 part by mass.
  • the urethanization catalyst catalyzes a hydrolysis reaction of an alkoxysilyl group when the die attach paste for semiconductor of the present invention contains an alkoxysilyl group.
  • a support member for example, a lead frame or a substrate.
  • It is preferably 0.003 to 0.2 parts by mass with respect to 100 parts by mass of the total amount of polyisocyanate and hydroxyl group-containing (meth) acrylate, or polyol and isocyanato group-containing (meth) acrylate, and 0.005 to 0 More preferably, it is 15 parts by mass. If the amount of catalyst is 0.001 part by mass or more, the effect of addition of the catalyst is suitably expressed, and if it is 1 part by mass or less, the physical properties at the end of actual use as a cured product as described above. Good value.
  • the (meth) acrylate monomer in this specification is a compound obtained by removing the polyol poly (meth) acrylate, the epoxy (meth) acrylate, and the urethane (meth) acrylate from the (meth) acryloyl group-containing compound (1). It is.
  • Examples of (meth) acrylate monomers include (meth) acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate, tetrahydrofurfuryl acrylate, glycidyl methacrylate, and tetrahydrofurfuryl methacrylate, cyclohexyl acrylate, isobornyl acrylate, and dicyclopentenyl.
  • the monofunctional (meth) acryloyl group-containing compound means a (meth) acryloyl group-containing compound containing one (meth) acryloyl group, and the polyfunctional (meth) acryloyl group-containing compound is a plurality of The (meth) acryloyl group containing compound of (meth) acryloyl group of this is meant.
  • the amount of the (meth) acryloyl group-containing compound (1) used in the die attach paste for semiconductors of the present invention is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, based on the total cured components. More preferably, it is 15 to 50% by mass.
  • the amount of the (meth) acryloyl group-containing compound (1) used is 80% by mass or less based on the total curing component, the adhesion of the cured product of the die attach paste for semiconductor to the support member will be good. .
  • the usage-amount of a (meth) acryloyl-group containing compound (1) is 5 mass% or more with respect to all the hardening components, the viscosity of the die attach paste for semiconductors will become favorable, and handling will become easy.
  • the “curing component” described in the present specification means a compound that can be polymerized by radical polymerization and / or a ring structure-containing compound (2) containing an oxirane ring structure or oxetane ring structure and / or an oxirane ring structure or oxetane. It means a compound that can react with a ring structure, and “total curing component” means the total amount of the curing component.
  • the (meth) acryloyl group-containing compound (1), the ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure, and the maleic anhydride-modified polyolefin (3) described later are all included in the curing component.
  • a silane coupling agent having a polymerizable unsaturated group is also included in the curing component.
  • the (meth) acryloyl group-containing compound (1) used in the present invention is a (meth) acryloyl group-containing compound (8) containing both a (meth) acryloyl group and an oxirane ring structure or oxetane ring structure in the same molecule. ) Is preferably included.
  • the (meth) acryloyl group-containing compound (8) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is composed of the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure. If it is a compound which contains both in the same molecule, there will be no restriction
  • the (meth) acryloyl group-containing compound (8) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is a ring containing an oxirane ring structure or oxetane ring structure described later. It is not included in the structure-containing compound (2). That is, when the die attach paste for semiconductor of the present invention contains a (meth) acryloyl group-containing compound (8) containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule.
  • the (meth) acryloyl group-containing compound (8) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is included in the (meth) acryloyl group-containing compound (1) And not included in the ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure.
  • the (meth) acryloyl group-containing compound (8) containing both a (meth) acryloyl group and an oxirane ring structure or oxetane ring structure in the same molecule is the above-mentioned polyol poly (meth) acrylate or epoxy (meth) acrylate. , Urethane (meth) acrylate, (meth) acrylate monomers, oxirane ring structure or oxetane ring structure-containing material.
  • a polyol poly (meth) acrylate or urethane (meth) acrylate derived from a polyol containing an oxirane ring structure or oxetane ring structure, or an epoxy derived from an epoxy resin containing an oxirane ring structure or oxetane ring structure (meta ) Acrylate and the like.
  • Examples of (meth) acrylate monomers containing an oxirane ring structure or an oxetane ring structure include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, and the like.
  • the amount of the (meth) acryloyl group-containing compound (8) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule in the die attach paste for semiconductor of the present invention is It is preferable to set it as 10 mass parts or more with respect to 100 mass parts of (meth) acryloyl group containing compound (1), More preferably, it is 20 mass parts or more, More preferably, it is 30 mass parts or more.
  • the amount of the (meth) acryloyl group-containing compound (8) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is the total amount of the (meth) acryloyl group-containing compound (1) 100. If it is 10 mass parts or more with respect to a mass part, the elasticity modulus of the hardened
  • the ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure will be described.
  • the ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure is not particularly limited as long as it is a compound containing an oxirane ring structure or an oxetane ring structure.
  • Examples of the compound containing an oxirane ring structure or an oxetane ring structure include epichlorohydrin adducts such as alcohols, amines, and carboxylic acids, olefin oxides, cycloadditions of ketones and olefins, oxetane alcohol derivatives, and the like.
  • Examples thereof include epoxy resins used in the above-mentioned epoxy (meth) acrylate, 2-ethylhexyl oxetane, xylylene bisoxetane, and oxetane resins.
  • the ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure is preferably bifunctional or more, and an epoxy resin is particularly preferable.
  • the amount of the ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure in the die attach paste for semiconductor of the present invention is the total number of oxirane ring structures or oxetane ring structures, which will be described later.
  • the ratio of (3) to the total number of carboxylic anhydride structures derived from maleic anhydride is preferably 2.8 to 0.4, more preferably 2.0 to 1.2. preferable.
  • the elastic modulus of the cured product of the die attach paste for semiconductor of the present invention Will be good.
  • the maleic anhydride-modified polyolefin (3) is obtained, for example, by copolymerization of maleic anhydride and an unsaturated hydrocarbon.
  • unsaturated hydrocarbons include olefins such as ⁇ -olefins and diolefins.
  • ⁇ -olefins include ethylene, propylene, and 1-butene.
  • diolefins include butadiene and isoprene. Can do.
  • the maleic anhydride-modified polyolefin (3) can also be produced by copolymerizing at least one unsaturated hydrocarbon previously polymerized or copolymerized with maleic anhydride.
  • the unsaturated hydrocarbon copolymerized with maleic anhydride is preferably a compound having a conjugated double bond from the viewpoint of stress relaxation of the cured product of the die attach paste for semiconductor, and further prepolymerized with butadiene or isoprene. Or what copolymerized butadiene and isoprene previously is preferable.
  • the maleic anhydride-modified polyolefin (3) preferably has an unsaturated divalent hydrocarbon group. And this maleic anhydride modified polyolefin (3) contains the compound which grafted maleic anhydride to what prepolymerized butadiene or isoprene, or what copolymerized butadiene and isoprene beforehand.
  • the number average molecular weight of the maleic anhydride-modified polyolefin (3) is preferably more than 2000 and 20000 or less, and more preferably more than 5000 and 10,000 or less. If the number average molecular weight of maleic anhydride-modified polyolefin (3) is larger than 2000, the elastic modulus and stress relaxation property of the cured product of the die attach paste for semiconductor of the present invention will be good. Further, when the number average molecular weight of the maleic anhydride-modified polyolefin is 20000 or less, the viscosity of the die attach paste for semiconductor becomes good and handling becomes easy.
  • the number average molecular weight can be measured by a polystyrene conversion method by gel permeation chromatography (GPC).
  • the acid anhydride equivalent of the maleic anhydride-modified polyolefin (3) is preferably 300 or more and 1200 or less. If the acid anhydride equivalent of the maleic anhydride-modified polyolefin (3) is 300 or more, the viscosity of the die attach paste for semiconductors of the present invention will be good, and handling will be easy. Moreover, if the acid anhydride equivalent of maleic anhydride modified polyolefin (3) is 1200 or less, the elastic modulus of the hardened
  • the amount of the maleic anhydride-modified polyolefin (3) used in the die attach paste for semiconductors of the present invention is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the total cured components. .
  • the amount of the maleic anhydride-modified polyolefin (3) used is 20% by mass or more based on the total amount of the cured components, the elastic modulus and stress relaxation property of the cured product of the die attach paste for semiconductors will be good.
  • the usage-amount of maleic anhydride modified polyolefin (3) is 80 mass% or less with respect to all the hardening components, the viscosity of the die attach paste for semiconductors will become favorable, and handling will become easy.
  • the photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays.
  • a metallocene compound can also be used as a photopolymerization initiator.
  • the metallocene compound a compound whose central metal is a transition element represented by Fe, Ti, V, Cr, Mn, Co, Ni, Mo, Ru, Rh, Lu, Ta, W, Os, Ir, or the like is used. Examples thereof include bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis [2,6-difluoro-3- (pyrrol-1-yl) phenyl] titanium.
  • photopolymerization initiator used in the present invention are alkylphenone photopolymerization initiators and acylphosphine oxide photopolymerization initiators. These photopolymerization initiators may be used alone. Alternatively, two or more kinds may be used in appropriate combination.
  • Alkylphenone photopolymerization initiators include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1,2-hydroxy-2-methyl-1-phenylpropane-1 -One, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropanone, 2-hydroxy-2-methyl-1- (4-isopropylphenyl) propanone, 2-hydroxy-2-methyl- 1- (4-dodecylphenyl) propanone, 2-hydroxy-2-methyl-1-[(2-hydroxyethoxy) phenyl] propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1 -Butanone, 2- (dimethylamino) -2- (4-Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1
  • ⁇ -aminoalkylphenone photopolymerization initiators are more preferred.
  • ⁇ -Aminoalkylphenone photopolymerization initiators include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-[(4-methylphenyl) ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, and the like. These may be used alone or in appropriate combination of two or more.
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6 -Trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, Bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -4-propylphenylphosphine Oxide, bis- (2,6-dichlorobenzoyl) -1-n
  • acylphosphine oxide photopolymerization initiators particularly preferable examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide.
  • Monoacylphosphine oxide photopolymerization such as 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide Initiators are mentioned.
  • the monoacylphosphine oxide photopolymerization initiator is particularly preferable than the ⁇ -aminoalkylphenone photopolymerization initiator, Of the phosphine oxide photopolymerization initiators, 2,4,6-trimethylbenzoyldiphenylphosphine oxide is most preferable.
  • Examples of commercially available ⁇ -aminoalkylphenone photopolymerization initiators include Irgacure 907, Irgacure 369, Irgacure 379EG (both manufactured by BASF) and the like, and monoacylphosphine oxide photopolymerization initiators include Lucilin. Examples include TPO, DAROCUR TPO (both manufactured by BASF), and Micro TPO (manufactured by MIWON).
  • the amount of the photopolymerization initiator (4) used in the die attach paste for semiconductor of the present invention is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the total (meth) acryloyl group-containing compound (1).
  • the usage-amount of a photoinitiator (4) is 0.01 mass part or more with respect to 100 mass parts of all (meth) acryloyl group containing compounds (1), it is B stage of the die attach paste for semiconductors of this invention Suppression of wetting and spreading due to crystallization is suitably expressed. Moreover, if the usage-amount of a photoinitiator (4) is 5 mass parts or less with respect to 100 mass parts of all the (meth) acryloyl group containing compounds (1), B of the die-attach paste for semiconductors of this invention will be shown. The hardness of the staged product becomes good, and thermocompression bonding is not required for die bonding.
  • the thermal radical generator (5) is not particularly limited as long as it is a compound that generates a radical that contributes to initiation of radical polymerization by heating.
  • Examples of the thermal radical generator (5) include azo compounds and organic peroxides, with organic peroxides being preferred.
  • the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester.
  • the one-minute half-life temperature is preferably 120 ° C. or higher and 200 ° C. or lower. More preferred are dialkyl peroxides and peroxyesters having a half-life temperature of 120 ° C.
  • dialkyl peroxides and peroxyesters having a half-life temperature of 120 ° C. to 200 ° C. for 1 minute include Perocta O (manufactured by NOF Corporation), Perbutyl O (manufactured by NOF Corporation), and Perhexa 25Z. (Manufactured by NOF Corporation), Park Mill D (manufactured by NOF Corporation) and the like.
  • the usage-amount of the thermal radical generating agent (5) in the die-attach paste for semiconductors of this invention is 0.1 mass part or more and 10 mass parts or less with respect to 100 mass parts of all (meth) acryloyl group containing compounds (1).
  • the range is preferably 0.5 to 6 parts by mass, more preferably 1 to 3 parts by mass. If the usage-amount of a thermal radical generating agent (5) is 0.1 mass part or more with respect to 100 mass parts of all (meth) acryloyl group containing compounds (1), the hardened
  • thermosetting of the die attach paste for semiconductors of this invention will be carried out. Outgas is less likely to occur at times and during the semiconductor package manufacturing process.
  • thermosetting accelerator (6) is not particularly limited as long as it is a compound that promotes the reaction between the oxirane ring structure or the oxetane ring structure and a compound capable of reacting with them.
  • examples of the thermosetting accelerator (6) include alkyl phosphine compounds, imidazole compounds, aliphatic amines, alicyclic amines, cyclic amidines, block compounds such as tetraphenylborate salts, compounds having phenolic hydroxyl groups, and polyamides. Carboxylic acid anhydride, dicyandiamide, organic acid dihydrazide and the like.
  • an imidazole compound, a block compound thereof, and a block compound of cyclic amidine are preferred.
  • these commercially available products include Curazole 2E4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole 2PZ-PW (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole 2P4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole C11Z-CNS (Shikoku Kasei Kogyo Co., Ltd.), U-CAT SA102 (San Apro Co., Ltd.), U-CAT SA506 (San Apro Co., Ltd.), U-CAT 5002 (San Apro Co., Ltd.), and the like.
  • the use amount of the thermosetting accelerator (6) in the die attach paste for semiconductor of the present invention is such that the ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure, and a (meth) acryloyl group and an oxirane ring.
  • a range of 0.5 parts by mass or more and 10 parts by mass or less is preferable with respect to 100 parts by mass in total of the (meth) acryloyl group-containing compound (8) containing both the structure and the oxetane ring structure in the same molecule, More preferably, it is 1 to 6 parts by mass.
  • thermosetting accelerator (6) used is the same for both the oxirane ring structure or the oxetane ring structure and the ring structure-containing compound (2) and the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure. If it is 0.5 part by mass or more with respect to 100 parts by mass of the total of the (meth) acryloyl group-containing compound (8) contained in the molecule, the elastic modulus of the cured product of the die attach paste for semiconductor of the present invention is It will be good.
  • the amount of the thermosetting accelerator (6) used is that the oxirane ring structure or the oxetane ring structure is contained in the ring structure-containing compound (2), and both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure
  • the thermosetting of the die attach paste for semiconductors of the present invention or the semiconductor package is performed if the amount is 10 parts by mass or less with respect to 100 parts by mass of the total of the (meth) acryloyl group-containing compound (8) in the same molecule Outgas is unlikely to occur during the manufacturing process.
  • the filler (7) is, for example, a metal filler such as silver powder, gold powder, copper powder, nickel powder, alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide,
  • a metal filler such as silver powder, gold powder, copper powder, nickel powder, alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide
  • inorganic fillers such as magnesium oxide, aluminum oxide, aluminum nitride, crystalline silica, amorphous silica, boron nitride, titania, glass, iron oxide, and ceramics
  • organic fillers such as carbon and rubber fillers.
  • fillers can be used properly according to the purpose.
  • metal fillers are added mainly for the purpose of imparting conductivity to semiconductor die attach pastes
  • inorganic fillers are added mainly for the purpose of imparting low thermal expansion to semiconductor die attach pastes
  • organic fillers are for semiconductors. It is added mainly for the purpose of imparting stress relaxation properties to the die attach paste, and other types of fillers such as thermal conductivity, low hygroscopicity, and insulating properties can be added depending on the purpose.
  • the filler (7) preferably has an average particle size of 20 ⁇ m or less and a maximum particle size of 60 ⁇ m or less, more preferably an average particle size of 10 ⁇ m or less and a maximum particle size of 30 ⁇ m or less.
  • the average particle size is 20 ⁇ m or less and the maximum particle size is 60 ⁇ m or less, the storage stability and the coating property of the die attach paste for semiconductor of the present invention are good.
  • the compounding quantity of a filler (7) is 5 to 80 mass parts with respect to 100 mass parts of all the hardening components in the die-attach paste for semiconductors.
  • the blending amount of the filler (7) is 5 parts by mass or more, the elastic modulus of the cured product of the die attach paste for semiconductor is good, and the control of the thermal expansion / contraction rate is easy.
  • the compounding amount of the filler (7) is 80 parts by mass or less, the viscosity of the die attach paste for semiconductor is appropriate.
  • a polymerization inhibitor may be added.
  • the polymerization inhibitor is not particularly limited.
  • the die attach paste for semiconductors of the present invention can further contain a silane coupling agent (9) for the purpose of imparting adhesion to the support member.
  • the silane coupling agent (9) is an organosilicon compound having both a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule. As shown.
  • Y is a functional group that reacts with an organic material, and representative examples thereof include a vinyl group, an epoxy group, an amino group, a substituted amino group, a (meth) acryloyl group, and a mercapto group.
  • X is a functional group that reacts with the inorganic material and is hydrolyzed by water or moisture to produce silanol, which reacts with the inorganic material. Representative examples of X include an alkoxy group, an acetoxy group, a chloro atom, and the like.
  • R 1 is a divalent organic group, and R 2 represents an alkyl group.
  • i represents an integer of 1 to 3
  • j represents an integer of 0 to 2. However, the sum of i and j is 3.
  • silane coupling agents (9) preferred are those in which Y contains a (meth) acryloyl group-containing compound (1) and / or a ring structure-containing compound (2) containing an oxirane ring structure or an oxetane ring structure.
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl which are easily incorporated into the cured product during the heat curing reaction.
  • the amount of the silane coupling agent (9) is preferably in the range of 0.01% by mass or more and 8% by mass or less, more preferably 0% with respect to all the curing components in the die attach paste for semiconductor of the present invention.
  • the range is from 1% by mass to 5% by mass. If it is 0.01 mass% or more with respect to all the hardening components in the die-attach paste for semiconductors of this invention, the adhesiveness to a support member will fully express. Moreover, if it is 8 mass% or less with respect to all the hardening components in the die-attach paste for semiconductors of this invention, storage stability will become favorable irrespective of the kind of silane coupling agent to be used.
  • the semiconductor die attach paste of the present invention preferably has a viscosity at 25 ° C. of 50000 mPa ⁇ s or less. More preferably, the viscosity at 25 ° C. is 25000 mPa ⁇ s or less. When the viscosity at 25 ° C. is 50000 mPa ⁇ s or less, it becomes easy to apply the die attach paste for a semiconductor with good quantitativeness according to the size of the die.
  • the shear viscosity of the semiconductor die attach paste was measured using a viscoelasticity measuring device.
  • the typical conditions when performing viscosity measurement using a viscoelasticity measuring device will be described.
  • a sample of a die attach paste for semiconductor was loaded into a viscoelasticity measuring device (manufactured by Anton-Paar, model: MCR301) and sheared using a cone plate spindle of model number CP-25 at a temperature of 25.0 ° C.
  • the shear viscosity is measured at a speed of 10 s- 1 .
  • ⁇ Semiconductor package manufacturing method> A method of manufacturing a semiconductor package using the semiconductor die attach paste of the present invention will be described. First, the die attach paste for semiconductor of the present invention is applied to a die or a support member, and then, for example, ultraviolet light is irradiated to the application portion of the die attach paste for semiconductor to photopolymerize the (meth) acryloyl group-containing compound (1) and the like. Then, the semiconductor die attach paste is made into B stage.
  • thermosetting thermopolymerization of the (meth) acryloyl group-containing compound (1) and the ring structure-containing compound (2) containing the oxirane ring structure or oxetane ring structure
  • die bonding and thermosetting thermal polymerization of the (meth) acryloyl group-containing compound (1) and the ring structure-containing compound (2) containing the oxirane ring structure or oxetane ring structure
  • the coating method of the die attach paste for semiconductor is not particularly limited, and examples thereof include dipping method, brush coating method, spray method, drawing method, stamping method, printing method, jet dispensing method, and ink jet method.
  • the method of irradiating the application part of the semiconductor die attach paste with light such as ultraviolet rays is not particularly limited, but the method of irradiating the application part of the semiconductor die attach paste by holding and operating the flexible light guide tube by hand or machine, And a method of placing a die or a support member coated with a die attach paste for semiconductor on a conveyor and passing through a region irradiated with light such as ultraviolet rays.
  • thermosetting after die bonding is performed after the die attach paste for semiconductor is made into a B stage is not particularly limited, but is a method of putting into an oven, placing the components after die bonding on a conveyor, and a predetermined temperature. And a method of passing through a heated area.
  • the die shear strength is evaluated according to standards such as MIL-STD-883G, IEC-60749-22, and EIAJ-ED-4703.
  • Dage-4000 shear adhesive strength tester, manufactured by Dage
  • the side of the bonded die is pushed with a jig with a sensor, and the bond between the die and the support member is broken. Measure the force required.
  • the die shear strength is preferably 58.8 N or more when the square chip of 2 mm square and the support member are joined. If the bonding material or bonding method is 58.8 N or more, the reliability of the semiconductor package is good.
  • An aspect of the present invention also includes a semiconductor package manufactured using the die attach paste for semiconductor of the present invention.
  • Semiconductor packages include DO insertion (Pin insertion type) DO package (Diode Outline), TO package (Transistor Outline), DIP (Dual Inline Package), SIP (Single Inline Package), ZIP (Zigzag Inline Package).
  • the die attach paste for semiconductor of the present invention is applied to a die or a support member, and then the application portion of the die attach paste for semiconductor is irradiated with, for example, ultraviolet rays to form a B stage. It can be produced by curing and further sealing.
  • the semiconductor package of the present invention thus manufactured has high reliability.
  • Example 1 10.3 g of bisphenol A olefin oxide adduct diacrylate (BP-4EAL, compound name is 2,2′-bis [4- (acryloxypolyethoxy) phenyl] propane manufactured by Kyoeisha Chemical Co., Ltd.), maleic anhydride 41.4 g of modified polybutadiene (RICON131MA17 manufactured by CRAYVALLEY, number average molecular weight 5400, acid anhydride equivalent 583), 6.9 g of glycidyl methacrylate (Blenmer GH manufactured by NOF Corporation), hydrogenated bisphenol A type epoxy resin (Mitsubishi Chemical) YX-8000 (manufactured by Co., Ltd.) 10.3 g, 0.14 g of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (DAROCUR TPO manufactured by BASF), and 0 of dicumy
  • BP-4EAL bisphenol A olefin oxide adduct diacrylate
  • SR-349 is ethoxylated bisphenol A diacrylate manufactured by Sartomer
  • FA-512M is dicyclopentenyloxyethyl methacrylate manufactured by Hitachi Chemical Co., Ltd.
  • Ricon131MA10 is maleic anhydride manufactured by CRAYVALLEY. It is a modified polybutadiene (number average molecular weight 5000, acid anhydride equivalent 981)
  • CTBN-1300X8 is a carboxy-terminated acrylonitrile butadiene copolymer manufactured by Ube Industries, Ltd.
  • EXA-4850-150 is Dainippon Ink & Chemicals, Inc.
  • Epoxy resin (epoxy equivalent 450), PB-4700 is an epoxidized polybutadiene manufactured by Daicel Chemical Industries, Ltd., and Irgacure (registered trademark) 369 is 2-benzyl-2-dimethylamino manufactured by BASF -1- (4-morpholinophenyl) -butanone-1, DICY is dicyandiamide, KBM-403 is 3-glycidoxypropyltrimethoxysilane manufactured by Shin-Etsu Silicone Co., Ltd., AEROSIL R972 is Nippon Aerosil Corporation Hydrophobic silica filler surface-treated with dimethyldichlorosilane manufactured by company.
  • the suppression of wetting and spreading of the die attach paste was evaluated by the following method.
  • the die attach paste was applied on a silicon substrate in a circular shape having a thickness of 200 ⁇ m and a diameter of 2 mm, and ultraviolet rays were irradiated at 1000 mJ / cm 2 to form a B stage, thereby obtaining a test piece. Thereafter, the test piece was put into an oven, heated to 170 ° C. at a heating rate of 4 ° C./min, and allowed to cure for 1 hour.
  • the die attach paste on the cured test piece was observed with a microscope, the diameter was measured, the increase rate of the diameter from the time of application was calculated, and the wetting spread suppression was evaluated by the increase rate of the diameter.
  • the results are shown in Table 1.
  • the increase rate of the diameter was less than 5%, it was evaluated that the wetting and spreading suppression was very good. Further, when the rate of increase in diameter was 5% or more and less than 10%, it was evaluated that the wetting and spreading suppression was good. Further, when the rate of increase in diameter was 10% or more, it was evaluated that the suppression of wetting and spreading was bad, and in Table 1, it was indicated by x.
  • the die shear strength was evaluated by the following method.
  • a die attach paste was applied in a square shape (thickness of 80 ⁇ m) with a side of 2 mm on a square PPF lead frame with a side of 5 mm (three layers plated in the order of Ni, Pd, and Au on a Cu substrate), Ultraviolet rays were irradiated at 1000 mJ / cm 2 to make a B stage.
  • the storage stability of the die attach paste was evaluated by the following method.
  • the die attach paste was left at a temperature of 25 ° C. for 3 days.
  • the shear viscosity of the die attach paste in the initial stage and after 3 days was measured under the conditions of a temperature of 25 ° C. and a shear rate of 10 s ⁇ 1 using the rotation mode of the viscoelasticity measuring apparatus.
  • the viscosity increase rate was calculated from the shear viscosity at the initial stage of standing after 3 days of standing, and the storage stability of the die attach paste was evaluated based on this thickening rate.
  • Table 1 When the thickening rate was less than 40%, it was evaluated that the storage stability of the die attach paste was very good. Moreover, when the viscosity increase rate was 40% or more and less than 100%, it was evaluated that the storage stability was good. Furthermore, when the viscosity increase rate was 100% or more, it was evaluated that the storage stability of the die attach paste was poor.
  • Examples 1 to 3 which are die attach pastes for semiconductors of the present invention, have high die shear strength while suppressing wetting and spreading due to the B-stage. Further, Example 1 using an acylphosphine oxide photopolymerization initiator (DAROCUR TPO) is more stable than Examples 2 and 3 using an alkylphenone photopolymerization initiator (Irgacure (registered trademark) 369). Was good. On the other hand, it can be seen that Comparative Example 1, which is a conventional die attach paste for semiconductors, is not bonded to the support member when die-bonded at 25 ° C., so that the die shear strength is inferior.
  • DAROCUR TPO acylphosphine oxide photopolymerization initiator
  • Irgacure alkylphenone photopolymerization initiator
  • Comparative Example 3 does not contain maleic anhydride-modified polyolefin, so that the hardness of the cured product is inferior and the die shear strength is inferior. That is, it was found that the die attach paste for semiconductors of the present invention can be die-bonded without heating while suppressing wetting and spreading by using a B-stage and has a high die shear strength, compared to conventional die attach pastes for semiconductors. .
  • the die attach paste for semiconductors of the present invention can suppress wet spread after application by B-stage while maintaining applicability, multi-chip packages can be highly integrated.
  • the semiconductor package die-bonded using the die attach paste for semiconductors of the present invention is highly integrated and highly reliable. Useful for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 塗布性を維持しつつBステージ化により塗布後の濡れ広がりの抑制が可能で、しかもダイボンディングの際に加熱しなくても十分な接着性が得られ、信頼性の高い半導体パッケージの製造が可能な半導体用ダイアタッチペーストおよび半導体パッケージを提供する。半導体用ダイアタッチペーストは、(メタ)アクリロイル基含有化合物(1)と、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)と、無水マレイン酸変性ポリオレフィン(3)と、光重合開始剤(4)とを含む。また、この半導体用ダイアタッチペーストを支持部材またはダイに塗布後、紫外線照射によりBステージ化した後にダイボンディングすることにより、信頼性が高く高集積化された半導体パッケージを製造することができる。

Description

半導体用ダイアタッチペーストおよび半導体パッケージ
 本発明は、半導体用ダイアタッチペースト、および、該半導体用ダイアタッチペーストを用いて製造された半導体パッケージに関する。
 IC、LSI等の半導体チップ(以下「ダイ」と記す)と、リードフレームや絶縁性支持基板等の支持部材とを接合し、封止して半導体パッケージを製造する際の接合材料として、Au-Si共晶合金、半田の他、樹脂を主な原料とするペースト、フィルム等が従来から知られている。
 Au-Si共晶合金は耐熱性および耐湿性は高いが、弾性率が大きいため、熱履歴による他部材の膨張、収縮の応力で割れ易く、また高価である。半田は安価であるが、耐熱性が十分ではなく、弾性率も高く同様に割れ易い。
 樹脂を主な原料とするペースト(以下「ダイアタッチペースト」と記す)、フィルム(以下「ダイアタッチフィルム」と記す)は、十分な耐熱性と耐湿性、弾性率を備えつつ、熱履歴による膨張、収縮の応力を緩和できることで、広く用いられている。しかし、ダイアタッチペーストは塗布性を考慮した粘度にすると濡れ広がり易く、同一パッケージに複数のダイを実装するパッケージ(以下「マルチチップパッケージ」と記す)の場合はダイ同士の距離をとる必要があるため、マルチチップパッケージの高集積化に対応しにくいという欠点がある。
 また、ダイアタッチフィルムも、ダイの大きさに対応したサイズへの切り出し方や気泡を噛み込まないような貼り付け方等、使用方法に工夫が必要である。それに加えて、切り出し時に発生した余白を破棄することとなるため、コスト的にも不利である。さらに、ダイと支持部材の接合工程(以下「ダイボンディング」と記す)の際に熱圧着が必要であるため、ダイに熱履歴を与えて半導体パッケージの信頼性を低下させるという欠点がある。
 このようなダイアタッチペーストやダイアタッチフィルムの持つ欠点を解決する方法として、Bステージ化が提案されている。Bステージ化とは、ダイアタッチペーストに含まれる溶剤を揮発させる、硬化成分の一部だけを硬化させるなどの方法により、塗布後のダイアタッチペーストの増粘もしくはチクソ性付与を行うか、または、形状保持可能な硬さの固体にすることによって、ダイアタッチペースト塗布後の濡れ広がりを防止するプロセスである。
 ダイアタッチペーストのBステージ化としては、ダイアタッチペーストを一定の厚みに塗布した後、紫外線を照射して半硬化を行う方法が、特許文献1,2に提案されている。特許文献1,2に提案されている技術は、ダイアタッチペーストを形状保持可能な硬さの固体にするという操作に相当し、すなわち、塗布したダイアタッチペーストをBステージ化してダイアタッチフィルムにするという技術である。これらの技術によれば、ダイアタッチフィルムの貼り付け時の気泡噛み込みや、切り出し時の余白廃棄という欠点を無くすことが出来るが、熱圧着によりダイに熱履歴を与え、半導体パッケージの信頼性を低下させる欠点は解決されないという問題があった。
特開2007-258425号公報 特開2007-270130号公報
 本発明は、上記の従来技術の有する課題を鑑みてなされたものであり、塗布性を維持しつつBステージ化により塗布後の濡れ広がりの抑制が可能で、しかもダイボンディングの際に加熱しなくても十分な接着性が得られ、信頼性の高い半導体パッケージの製造が可能な、半導体用ダイアタッチペーストおよび半導体パッケージを提供することを目的とする。
 本発明者らは、上記課題を解決すべく研究を重ねた結果、(メタ)アクリロイル基含有化合物、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物、無水マレイン酸変性ポリオレフィン、および光重合開始剤を含む半導体用ダイアタッチペーストは、塗布性を維持しつつBステージ化により塗布後の濡れ広がりの抑制が可能で、ダイボンディングの際に加熱しなくても十分な接着性が得られることを見出し、本発明を完成するに至った。
 即ち本発明の態様は、以下の[1]~[15]の通りである。
[1] (メタ)アクリロイル基含有化合物(1)、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)、無水マレイン酸変性ポリオレフィン(3)、および光重合開始剤(4)を含むことを特徴とする半導体用ダイアタッチペースト。
[2] 前記(メタ)アクリロイル基含有化合物(1)の配合量は、全硬化成分に対して5質量%以上80質量%以下であり、前記オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)の配合量は、オキシラン環構造またはオキセタン環構造の総数の、前記無水マレイン酸変性ポリオレフィン(3)の無水マレイン酸由来のカルボン酸無水物構造の総数に対する比が2.8~0.4となる量であり、前記無水マレイン酸変性ポリオレフィン(3)の配合量は、全硬化成分に対して20質量%以上80質量%以下であり、前記光重合開始剤(4)の配合量は、前記(メタ)アクリロイル基含有化合物(1)100質量部に対して0.01質量部以上5質量部以下であることを特徴とする[1]に記載の半導体用ダイアタッチペースト。
[3] さらに、熱ラジカル発生剤(5)を含むことを特徴とする[1]または[2]に記載の半導体用ダイアタッチペースト。
[4] 前記熱ラジカル発生剤(5)の配合量は、前記(メタ)アクリロイル基含有化合物(1)100質量部に対して、0.1質量部以上10質量部以下であることを特徴とする[3]に記載の半導体用ダイアタッチペースト。
[5] 前記熱ラジカル発生剤(5)が有機過酸化物であることを特徴とする[3]または[4]に記載の半導体用ダイアタッチペースト。
[6] 前記熱ラジカル発生剤(5)がジアルキルパーオキサイドまたはパーオキシエステルであることを特徴とする[5]に記載の半導体用ダイアタッチペースト。
[7] 前記熱ラジカル発生剤(5)の1分間半減期温度が120℃以上200℃以下であることを特徴とする[3]~[6]のいずれか一項に記載の半導体用ダイアタッチペースト。
[8] さらに、熱硬化促進剤(6)を含むことを特徴とする[1]~[7]のいずれか一項に記載の半導体用ダイアタッチペースト。
[9] さらに、フィラー(7)を含むことを特徴とする[1]~[8]のいずれか一項に記載の半導体用ダイアタッチペースト。
[10] 前記(メタ)アクリロイル基含有化合物(1)の少なくとも一部が、複数の(メタ)アクリロイル基を含有する多官能(メタ)アクリロイル基含有化合物であることを特徴とする[1]~[9]のいずれか一項に記載の半導体用ダイアタッチペースト。
[11] 前記(メタ)アクリロイル基含有化合物(1)の少なくとも一部が、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)であることを特徴とする[1]~[10]のいずれか一項に記載の半導体用ダイアタッチペースト。
[12] 前記無水マレイン酸変性ポリオレフィン(3)が、ジオレフィンを予め重合したものと、無水マレイン酸とを共重合したものであることを特徴とする[1]~[11]のいずれか一項に記載の半導体用ダイアタッチペースト。
[13] 前記無水マレイン酸変性ポリオレフィン(3)の数平均分子量が5000よりも大きいことを特徴とする[1]~[12]のいずれか一項に記載の半導体用ダイアタッチペースト。
[14] 前記光重合開始剤(4)がアルキルフェノン系光重合開始剤およびアシルホスフィンオキサイド系光重合開始剤の少なくとも一方であることを特徴とする[1]~[13]のいずれか一項に記載の半導体用ダイアタッチペースト。
[15] [1]~[14]のいずれか一項に記載の半導体用ダイアタッチペーストを用いて製造された半導体パッケージ。
 本発明の半導体用ダイアタッチペーストは、塗布性を維持しつつBステージ化により塗布後の濡れ広がりを抑制できるため、マルチチップパッケージの高集積化が可能で、しかもダイボンディングの際に加熱しなくても十分な接着性が得られるという効果を有する。
 また、本発明の半導体用ダイアタッチペーストを使用すれば、信頼性が高く高集積化された半導体パッケージを製造することができるので、本発明の半導体パッケージは、信頼性が高く且つ高集積化が可能である。
 以下、本発明の実施の形態を詳細に説明する。なお、本発明においては、「(メタ)アクリロイル基」とは、アクリロイル基および/またはメタクリロイル基を意味する。
<半導体用ダイアタッチペースト>
 本発明の半導体用ダイアタッチペーストは、(メタ)アクリロイル基含有化合物(1)、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)、無水マレイン酸変性ポリオレフィン(3)、および光重合開始剤(4)を含む。
 まず、(メタ)アクリロイル基含有化合物(1)について説明する。
 この成分は、ラジカル重合し硬化する硬化成分であり、(メタ)アクリロイル基を含有する化合物であれば、特に制限はない。ただし、(メタ)アクリロイル基含有化合物(1)は、後述するシランカップリング剤(9)のうち(メタ)アクリロイル基を有するものを除く。すなわち、本発明の半導体用ダイアタッチペーストがシランカップリング剤(9)を含む場合において、シランカップリング剤(9)の中に(メタ)アクリロイル基を有するものが含まれる時は、(メタ)アクリロイル基を有するシランカップリング剤は、シランカップリング剤(9)に含まれるものとし、(メタ)アクリロイル基含有化合物(1)には含まれないものとする。
 (メタ)アクリロイル基含有化合物(1)の例としては、ポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、(メタ)アクリレートモノマー等が挙げられる。
 ポリオールポリ(メタ)アクリレートとは、ポリオールと、アクリル酸またはメタクリル酸とのエステル化合物である。ここで選ばれるポリオールに特に制限はないが、例えば、鎖状の水添ダイマージオール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ポリオレフィンポリオール、水添ポリオレフィンポリオール等の鎖状脂肪族ポリオールが挙げられる。
 ポリオールとしては、さらには、脂環構造を有する水添ダイマージオール、水添ビスフェノールAオレフィンオキサイド付加物、水添ビスフェノールFオレフィンオキサイド付加物、水添ビフェノールオレフィンオキサイド付加物、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、トリシクロ[5.2.1.02,6]デカンジメタノール、2-メチルシクロヘキサン-1,1-ジメタノール等の脂環構造を有するポリオールが挙げられる。
 ポリオールとしては、さらには、トリマートリオール、p-キシリレングリコール、ビスフェノールAオレフィンオキサイド付加物、ビスフェノールFオレフィンオキサイド付加物、ビフェノールオレフィンオキサイド付加物等の芳香環を有するポリオールが挙げられる。さらには、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールが挙げられ、さらには、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオールが挙げられる。
 ポリオールとしては、さらには、α,ω-ポリ(1,6-ヘキシレンカーボネート)ジオール、α,ω-ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、α,ω-ポリ[(1,6-ヘキシレン:3-メチル-ペンタメチレン)カーボネート]ジオール、α,ω-ポリ[(1,9-ノニレン:2-メチル-1,8-オクチレン)カーボネート]ジオール等の(ポリ)カーボネートジオールが挙げられ、さらには、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールが挙げられる。これらのポリオールは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 また、主に硬化後の弾性率確保の観点から、脂環構造を有するポリオール、芳香環を有するポリオール、(ポリ)カーボネートジオール、ポリエステルポリオールが好ましい。更に好ましくは、芳香環を有するポリオールである。芳香環を有するポリオールから誘導されるポリオールポリ(メタ)アクリレートの市販品としては、例えば、M-208(東亜合成株式会社製)、M-211B(東亜合成株式会社製)、FA-321A(日立化成株式会社製)、FA-324A(日立化成株式会社製)、ライトアクリレートBP-4EAL(共栄社化学株式会社製)、ライトアクリレートBP-4PA(共栄社化学株式会社製)等が挙げられる。
 また、エポキシ(メタ)アクリレートとは、エポキシ樹脂の末端エポキシ基にアクリル酸またはメタクリル酸を付加させることで得られる化合物である。この際に選ばれるエポキシ樹脂に、特に制限は無い。具体的には、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂、水添ビフェニル型エポキシ樹脂等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 エポキシ(メタ)アクリレートの市販品としては、例えば、エポキシエステル3000A(共栄社化学株式会社製)、EBECRYL600(ダイセル・サイテック株式会社製)、EBECRYL6040(ダイセル・サイテック株式会社製)等が挙げられる。
 ウレタン(メタ)アクリレートとは、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートを反応させるか、またはポリオールとイソシアナト基含有(メタ)アクリレートを反応させることで得られる化合物である。この際に選ばれるポリオール、ポリイソシアネート、水酸基含有(メタ)アクリレート、およびイソシアナト基含有(メタ)アクリレートに特に制限は無い。
 ポリオールは、ポリオールポリ(メタ)アクリレートにおいて使用されるポリオールと同様である。ポリイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、リシントリイソシアネート、リシンジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンメチレンジイソシアネートおよびノルボルナンジイソシアネート等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 水酸基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルアクリレート、2-ヒドロキシエチルアクリルアミド、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルメタクリレート等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 イソシアナト基含有(メタ)アクリレートとしては、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 ウレタン(メタ)アクリレートは、ジブチル錫ジラウレート、ジオクチル錫ジラウレートのような公知のウレタン化触媒の存在下または非存在下で、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートを、または、ポリオールとイソシアナト基含有(メタ)アクリレートを反応させることにより合成ができるが、触媒の存在下で反応させたほうが、反応時間を短縮する意味では好ましい。ただし、半導体用ダイアタッチペーストは最終的な実使用時には硬化膜として使用されるが、触媒を多く使用しすぎると、硬化膜の物性値に悪影響を及ぼす可能性があるので、触媒の使用量は、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレート、または、ポリオールとイソシアナト基含有(メタ)アクリレートの総量100質量部に対して0.001~1質量部であることが好ましい。
 また、前記ウレタン化触媒は、本発明の半導体用ダイアタッチペースト中にアルコキシシリル基を含む場合には、アルコキシシリル基の加水分解反応を触媒する。そのような場合には、本発明の半導体用ダイアタッチペーストの経時安定性と支持部材(例えばリードフレームや基板)への密着性のバランスを考慮する必要があり、その際の使用量は、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレート、または、ポリオールとイソシアナト基含有(メタ)アクリレートの総量100質量部に対して0.003~0.2質量部であることが好ましく、0.005~0.15質量部であることがより好ましい。触媒量が0.001質量部以上であれば、触媒の添加効果が好適に発現され、1質量部以下であれば、先にも述べたように最終的に硬化物としての実使用時の物性値が良好なものとなる。
 本明細書における(メタ)アクリレートモノマーは、前記の(メタ)アクリロイル基含有化合物(1)から、前記ポリオールポリ(メタ)アクリレート、前記エポキシ(メタ)アクリレートおよび前記ウレタン(メタ)アクリレートを除いた化合物である。
 (メタ)アクリレートモノマーとしては、例えば、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート等の環状エーテル基を有する(メタ)アクリロイル含有化合物、シクロヘキシルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルエチルアクリレート、4-tert-ブチルシクロヘキシルアクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルエチルメタクリレート、4-tert-ブチルシクロヘキシルメタクリレート等の環状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物、ラウリルアクリレート、イソノニルアクリレート、2-エチルヘキシルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、イソオクチルアクリレート、イソアミルアクリレート、ラウリルメタクリレート、イソノニルメタクリレート、2-エチルヘキシルメタクリレート、イソブチルメタクリレート、tert-ブチルメタクリレート、イソオクチルメタクリレート、イソアミルメタクリレート等の鎖状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物、ベンジルアクリレート、フェノキシエチルアクリレート、ベンジルメタクリレート、フェノキシエチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート等の芳香環を有する単官能(メタ)アクリロイル基含有化合物、ポリエチレングリコールジアクリレート、デカンジオールジアクリレート、ノナンジオールジアクリレート、ヘキサンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能(メタ)アクリロイル基含有化合物を挙げることができる。なお、上記単官能(メタ)アクリロイル基含有化合物とは、1つの(メタ)アクリロイル基を含有する(メタ)アクリロイル基含有化合物を意味し、上記多官能(メタ)アクリロイル基含有化合物とは、複数の(メタ)アクリロイル基を含有する(メタ)アクリロイル基含有化合物を意味する。
 本発明の半導体用ダイアタッチペースト中の(メタ)アクリロイル基含有化合物(1)の使用量は、全硬化成分に対して5~80質量%とすることが好ましく、より好ましくは10~60質量%であり、さらに好ましくは15~50質量%である。(メタ)アクリロイル基含有化合物(1)の使用量が、全硬化成分に対して80質量%以下であれば、半導体用ダイアタッチペーストの硬化物の支持部材への密着性が良好なものとなる。また、(メタ)アクリロイル基含有化合物(1)の使用量が、全硬化成分に対して5質量%以上であれば、半導体用ダイアタッチペーストの粘度が良好なものとなり、ハンドリングが容易となる。
 なお、本明細書に記載の「硬化成分」とは、ラジカル重合により重合可能な化合物および/またはオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)および/またはオキシラン環構造またはオキセタン環構造と反応し得る化合物を意味し、「全硬化成分」とは硬化成分の総量を意味する。(メタ)アクリロイル基含有化合物(1)、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)、後述する無水マレイン酸変性ポリオレフィン(3)は、すべて硬化成分に含まれる。
 後述のシランカップリング剤(9)中のp-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシランのラジカル重合性不飽和基を有するシランカップリング剤も硬化成分に含まれる。
 本発明に使用される(メタ)アクリロイル基含有化合物(1)は、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)を含むことが好ましい。(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)は、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する化合物であれば特に制限はない。
 ただし、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)は、後述するオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)には含まれない。すなわち、本発明の半導体用ダイアタッチペーストに、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)が含まれる時は、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)は、(メタ)アクリロイル基含有化合物(1)に含まれるものとし、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)には含まれないものとする。
 (メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)とは、前述のポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、(メタ)アクリレートモノマーの内、オキシラン環構造またはオキセタン環構造を含有する物等が挙げられる。
 例えば、オキシラン環構造またはオキセタン環構造を含有するポリオールから誘導されるポリオールポリ(メタ)アクリレートまたはウレタン(メタ)アクリレートや、オキシラン環構造またはオキセタン環構造を含有するエポキシ樹脂から誘導されるエポキシ(メタ)アクリレート等が挙げられる。これらは例えば、含有するオキシラン環構造またはオキセタン環構造の総数の、反応させるアクリル酸またはメタクリル酸の総数に対する比を1より大きくすることで得ることができる。また例えば、オキシラン環構造またはオキセタン環構造を含有する(メタ)アクリレートモノマーとしては、グリシジルアクリレート、グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられる。
 本発明の半導体用ダイアタッチペースト中の、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)の使用量は、全(メタ)アクリロイル基含有化合物(1)100質量部に対して、10質量部以上とすることが好ましく、より好ましくは20質量部以上であり、さらに好ましくは30質量部以上である。(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)の使用量が、全(メタ)アクリロイル基含有化合物(1)100質量部に対して10質量部以上であれば、本発明の半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。
 次に、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)について説明する。オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)は、オキシラン環構造またはオキセタン環構造を含有する化合物であれば、特に制限はない。
 オキシラン環構造またはオキセタン環構造を含有する化合物としては、アルコール、アミン、カルボン酸等のエピクロルヒドリン付加物、オレフィンオキサイド、ケトンとオレフィンの環状付加物、オキセタンアルコール誘導体等が挙げられ、具体的には、前述のエポキシ(メタ)アクリレートに使用されるエポキシ樹脂や、2-エチルヘキシルオキセタン、キシリレンビスオキセタン、オキセタン樹脂が挙げられる。本発明の半導体用ダイアタッチペースト硬化物の架橋密度の観点から、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)は2官能以上であることが好ましく、中でもエポキシ樹脂が好ましい。
 本発明の半導体用ダイアタッチペースト中のオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)の使用量は、オキシラン環構造またはオキセタン環構造の総数の、後述する無水マレイン酸変性ポリオレフィン(3)の無水マレイン酸由来のカルボン酸無水物構造の総数に対する比が2.8~0.4となる量であることが好ましく、2.0~1.2となる量であることがより好ましい。オキシラン環構造またはオキセタン環構造の総数の無水マレイン酸由来のカルボン酸無水物構造の総数に対する比が2.8~0.4であれば、本発明の半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。
 次に、無水マレイン酸変性ポリオレフィン(3)について説明する。
 無水マレイン酸変性ポリオレフィン(3)は、例えば、無水マレイン酸と不飽和炭化水素の共重合によって得られる。不飽和炭化水素としては、α-オレフィンやジオレフィンなどのオレフィンを挙げることができ、α-オレフィンとしてはエチレン、プロピレン、1-ブテンを挙げることができ、ジオレフィンとしてはブタジエン、イソプレンを挙げることができる。また、無水マレイン酸変性ポリオレフィン(3)は、前記不飽和炭化水素の少なくとも1種を予め重合または共重合したものと、無水マレイン酸とを共重合して製造することもできる。
 無水マレイン酸と共重合する不飽和炭化水素は、半導体用ダイアタッチペーストの硬化物の応力緩和性の観点から、共役二重結合を持つ化合物が好ましく、さらにはブタジエンまたはイソプレンを予め重合したもの、または、ブタジエンとイソプレンを予め共重合したものが好ましい。また、この無水マレイン酸変性ポリオレフィン(3)は、不飽和の2価炭化水素基を有するものが好ましい。そして、この無水マレイン酸変性ポリオレフィン(3)は、ブタジエンまたはイソプレンを予め重合したもの、または、ブタジエンとイソプレンを予め共重合したものに、無水マレイン酸をグラフトさせた化合物を含む。
 無水マレイン酸変性ポリオレフィンの市販品としては、ダイヤカルナ(三菱化学株式会社製)、M-1000-80(日本石油化学株式会社製)、Ricon MA(CRAYVALLEY社製)等が挙げられる。
 無水マレイン酸変性ポリオレフィン(3)の数平均分子量は、2000より大きく20000以下であることが好ましく、5000より大きく10000以下であることがより好ましい。無水マレイン酸変性ポリオレフィン(3)の数平均分子量が2000よりも大きければ、本発明の半導体用ダイアタッチペーストの硬化物の弾性率および応力緩和性が良好なものとなる。また、無水マレイン酸変性ポリオレフィンの数平均分子量が20000以下であれば、半導体用ダイアタッチペーストの粘度が良好なものとなり、ハンドリングが容易となる。
 なお、数平均分子量は、ゲル浸透クロマトグラフ分析(GPC)によるポリスチレン換算法等により測定することができる。
 無水マレイン酸変性ポリオレフィン(3)の酸無水物当量は、300以上1200以下であることが好ましい。無水マレイン酸変性ポリオレフィン(3)の酸無水物当量が300以上であれば、本発明の半導体用ダイアタッチペーストの粘度が良好なものとなり、ハンドリングが容易となる。また、無水マレイン酸変性ポリオレフィン(3)の酸無水物当量が1200以下であれば、半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。
 本発明の半導体用ダイアタッチペースト中の無水マレイン酸変性ポリオレフィン(3)の使用量は、全硬化成分に対して20~80質量%とすることが好ましく、より好ましくは30~70質量%である。無水マレイン酸変性ポリオレフィン(3)の使用量が、全硬化成分に対して20質量%以上であれば、半導体用ダイアタッチペーストの硬化物の弾性率と応力緩和性が良好なものとなる。また、無水マレイン酸変性ポリオレフィン(3)の使用量が、全硬化成分に対して80質量%以下であれば、半導体用ダイアタッチペーストの粘度が良好なものとなり、ハンドリングが容易となる。
 次に、光重合開始剤(4)について説明する。
 光重合開始剤は、近赤外線、可視光線、紫外線等の光の照射により、ラジカル重合の開始に寄与するラジカルを発生する化合物であれば、特に制限はない。
 また、光重合開始剤として、メタロセン化合物を使用することもできる。メタロセン化合物としては、中心金属がFe、Ti、V、Cr、Mn、Co、Ni、Mo、Ru、Rh、Lu、Ta、W、Os、Irなどに代表される遷移元素であるものを用いることができ、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(ピロール-1-イル)フェニル]チタニウムを挙げることができる。
 本発明に使用される光重合開始剤としてより好ましいものは、アルキルフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤であり、これらの光重合開始剤は単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 アルキルフェノン系光重合開始剤としては、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1,2-ヒドロオキシ-2-メチル-1-フェニルプロパン-1-オン、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパノン、2-ヒドロキシ-2-メチル-1-(4-イソプロピルフェニル)プロパノン、2-ヒドロキシ-2-メチル-1-(4-ドデシルフェニル)プロパノン、2-ヒドロキシ-2-メチル-1-[(2-ヒドロキシエトキシ)フェニル]プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、ベンゾイン、ベンゾインエーテル類(例えばベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)等が挙げられる。
 アルキルフェノン系光重合開始剤の中では、α-アミノアルキルフェノン系光重合開始剤がより好ましい。α-アミノアルキルフェノン系光重合開始剤としては、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 また、アシルホスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等が挙げられる。
 アシルホスフィンオキサイド系光重合開始剤の中で特に好ましいものとしては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイド等のモノアシルホスフィンオキサイド系光重合開始剤が挙げられる。
 そして、本発明の半導体用ダイアタッチペーストの保存安定性を考慮する場合には、特にモノアシルホスフィンオキサイド系光重合開始剤の方がα-アミノアルキルフェノン系光重合開始剤よりも好ましく、モノアシルフォスフィンオキサイド系光重合開始剤の中で最も好ましいものは2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドである。
 α-アミノアルキルフェノン系光重合開始剤の市販品としては、例えば、Irgacure 907、Irgacure 369、Irgacure 379EG(共にBASF社製)等が挙げられ、モノアシルホスフィンオキサイド系光重合開始剤としては、Lucilin TPO、DAROCUR TPO(共にBASF社製)、Micure TPO(MIWON社製)等が挙げられる。
 本発明の半導体用ダイアタッチペースト中の光重合開始剤(4)の使用量は、全(メタ)アクリロイル基含有化合物(1)100質量部に対して0.01~5質量部の範囲が好ましく、より好ましくは0.05~3質量部であり、さらに好ましくは0.1~1質量部である。光重合開始剤(4)の使用量が、全(メタ)アクリロイル基含有化合物(1)100質量部に対して0.01質量部以上であれば、本発明の半導体用ダイアタッチペーストのBステージ化による濡れ広がり抑制が好適に発現される。また、光重合開始剤(4)の使用量が、全(メタ)アクリロイル基含有化合物(1)100質量部に対して、5質量部以下であれば、本発明の半導体用ダイアタッチペーストのBステージ化物の硬さが良好なものとなり、ダイボンディングに熱圧着を必要としない。
 次に、熱ラジカル発生剤(5)について説明する。熱ラジカル発生剤(5)は、ラジカル重合の開始に寄与するラジカルを加熱により発生する化合物であれば、特に制限はない。
 熱ラジカル発生剤(5)としては、例えば、アゾ系化合物、有機過酸化物が挙げられ、有機過酸化物が好ましい。有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル等が挙げられる。これらの中でも、1分間半減期温度が120℃以上200℃以下の物が好ましい。さらに好ましくは、1分間半減期温度が120℃以上200℃以下のジアルキルパーオキサイド、パーオキシエステルである。
 1分間半減期温度が120℃以上200℃以下のジアルキルパーオキサイド、パーオキシエステルの市販品としては、例えば、パーオクタO(日油株式会社製)、パーブチルO(日油株式会社製)、パーヘキサ25Z(日油株式会社製)、パークミルD(日油株式会社製)等が挙げられる。
 本発明の半導体用ダイアタッチペースト中の熱ラジカル発生剤(5)の使用量は、全(メタ)アクリロイル基含有化合物(1)100質量部に対して、0.1質量部以上10質量部以下の範囲が好ましく、より好ましくは0.5質量部以上6質量部以下であり、さらに好ましくは1質量部以上3質量部以下である。熱ラジカル発生剤(5)の使用量が、全(メタ)アクリロイル基含有化合物(1)100質量部に対して0.1質量部以上であれば、本発明の半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。また、熱ラジカル発生剤(5)の使用量が、全(メタ)アクリロイル基含有化合物(1)100質量部に対して10質量部以下であれば、本発明の半導体用ダイアタッチペーストの熱硬化時や半導体パッケージ製造工程の中でアウトガスが発生しにくい。
 次に、熱硬化促進剤(6)について説明する。熱硬化促進剤(6)は、オキシラン環構造またはオキセタン環構造と、それらと反応し得る化合物との反応を促進する化合物であれば、特に制限はない。
 熱硬化促進剤(6)としては、例えば、アルキルホスフィン化合物、イミダゾール化合物、脂肪族アミン、脂環族アミン、環状アミジン、これらのテトラフェニルボレート塩等のブロック化合物、フェノール性水酸基を有する化合物、ポリアミド、カルボン酸無水物、ジシアンジアミド、有機酸ジヒドラジド等が挙げられる。
 硬化性と保存安定性のバランスの観点から、イミダゾール化合物およびそのブロック化合物、環状アミジンのブロック化合物が好ましい。これらの市販品の例としては、キュアゾール2E4MZ(四国化成工業株式会社製)、キュアゾール2PZ-PW(四国化成工業株式会社製)、キュアゾール2P4MZ(四国化成工業株式会社製)、キュアゾールC11Z-CNS(四国化成工業株式会社製)、U-CAT SA102(サンアプロ株式会社製)、U-CAT SA506(サンアプロ株式会社製)、U-CAT 5002(サンアプロ株式会社製)等が挙げられる。
 本発明の半導体用ダイアタッチペースト中の熱硬化促進剤(6)の使用量は、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)、および、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)の合計の100質量部に対して、0.5質量部以上10質量部以下の範囲が好ましく、より好ましくは1質量部以上6質量部以下である。
 熱硬化促進剤(6)の使用量が、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)、および、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)の合計の100質量部に対して、0.5質量部以上であれば、本発明の半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。また、熱硬化促進剤(6)の使用量が、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)、および、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)の合計の100質量部に対して、10質量部以下であれば、本発明の半導体用ダイアタッチペーストの熱硬化時や半導体パッケージ製造工程の中でアウトガスが発生しにくい。
 次に、フィラー(7)について説明する。
 フィラー(7)は、例えば、銀粉、金粉、銅粉、ニッケル粉等の金属フィラーや、アルミナ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、結晶性シリカ、非晶性シリカ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等の無機フィラーや、カーボン、ゴム系フィラー等の有機フィラー等が挙げられ、種類、形状等も含めて特に制限はない。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 これらのフィラーは、目的に応じて使い分けることができる。例えば、金属フィラーは半導体用ダイアタッチペーストに主に導電性を付与する目的で添加され、無機フィラーは半導体用ダイアタッチペーストに主に低熱膨張性を付与する目的で添加され、有機フィラーは半導体用ダイアタッチペーストに主に応力緩和性を付与する目的で添加され、またそれ以外に熱伝導性、低吸湿性、絶縁性等、目的毎に異なる種類のフィラーの添加を行うことができる。
 フィラー(7)は、平均粒子径が20μm以下かつ最大粒子径が60μm以下であることが好ましく、より好ましくは平均粒子径が10μm以下かつ最大粒子径が30μm以下である。平均粒子径が20μm以下かつ最大粒子径が60μm以下であれば、本発明の半導体用ダイアタッチペーストの保存安定性および塗布性が良好なものとなる。
 フィラー(7)の配合量は、半導体用ダイアタッチペースト中の全硬化成分100質量部に対して、5質量部以上80質量部以下であることが好ましい。フィラー(7)の配合量が5質量部以上であると、半導体用ダイアタッチペーストの硬化物の弾性率が良好であり、熱膨張・収縮率の制御も容易である。一方、フィラー(7)の配合量が80質量部以下であると、半導体用ダイアタッチペーストの粘度が適当である。
 本発明の半導体用ダイアタッチペーストには、保存安定性を増すために重合禁止剤を添加することが好ましいため、重合禁止剤が添加されることがある。この重合禁止剤としては、特に限定されるものではないが、例えば、ヒドロキノン、p-メトキシフェノール、p-ベンゾキノン、ナフトキノン、フェナンスラキノン、トルキノン、2,5-ジアセトキシ-p-ベンゾキノン、2,5-ジカプロキシ-p-ベンゾキノン、2,5-アシロキシ-p-ベンゾキノン、p-tert-ブチルカテコール、2,5-ジ-tert-ブチルヒドロキノン、p-tert-ブチルカテコール、モノ-tert-ブチルヒドロキノン、2,5-ジ-tert-アミルヒドロキノン、ジ-tert-ブチル-p-クレゾールヒドロキノンモノメチルエーテルおよびフェノチアジンが好適に用いられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 通常、この重合禁止剤は、全(メタ)アクリロイル基含有化合物(1)100質量部に対し、0.01~10質量部添加することが好ましい。
 本発明の半導体用ダイアタッチペーストには、支持部材への密着性を付与する目的で、さらに、シランカップリング剤(9)を含むことが可能である。
 シランカップリング剤(9)は、有機材料と反応結合する官能基、および無機材料と反応結合する官能基との両方を分子内に有する有機ケイ素化合物で、一般的にその構造は下記式1のように示される。
Figure JPOXMLDOC01-appb-C000001
 ここで、Yは有機材料と反応結合する官能基であり、ビニル基、エポキシ基、アミノ基、置換アミノ基、(メタ)アクリロイル基、メルカプト基等がその代表例として挙げられる。また、Xは無機材料と反応する官能基であり、水あるいは湿気により加水分解を受けてシラノールを生成し、このシラノールが無機材料と反応結合する。Xの代表例としては、アルコキシ基、アセトキシ基、クロル原子などを挙げることができる。Rは、2価の有機基であり、Rはアルキル基を表す。iは1~3の整数を表し、jは0~2の整数を表す。ただし、iとjの和は3である。
 このようなシランカップリング剤(9)の中で、好ましいものは、Yが(メタ)アクリロイル基含有化合物(1)および/またはオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)および/または無水マレイン酸変性ポリオレフィン(3)と反応性を有する化合物であり、その中でも、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが好ましい。
 さらに好ましくは、熱硬化反応の際に硬化物中に容易に取り込まれる2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが好ましい。
 本発明の半導体用ダイアタッチペースト中の全硬化成分に対してシランカップリング剤(9)の量は、0.01質量%以上8質量%以下の範囲であることが好ましく、さらに好ましくは、0.1質量%以上5質量%以下の範囲である。本発明の半導体用ダイアタッチペースト中の全硬化成分に対して0.01質量%以上であれば、支持部材への密着性が十分に発現される。また、本発明の半導体用ダイアタッチペースト中の全硬化成分に対して8質量%以下であれば、使用するシランカップリング剤の種類によらず保存安定性が良好なものとなる。
 本発明の半導体用ダイアタッチペーストは、25℃での粘度が50000mPa・s以下であることが好ましい。さらに好ましくは、25℃での粘度が25000mPa・s以下である。25℃での粘度が50000mPa・s以下であれば、半導体用ダイアタッチペーストをダイのサイズに合わせて定量性良く塗布することが容易となる。
 本発明においては、粘弾性測定装置を用いて半導体用ダイアタッチペーストのせん断粘度を測定した。粘弾性測定装置を用いて粘度測定を行う際の代表的な条件を説明する。半導体用ダイアタッチペーストの試料を、粘弾性測定装置(Anton-Paar社製、型式:MCR301)に装入し、型番CP-25のコーンプレート型スピンドルを使用して、温度25.0℃、せん断速度10s-1の条件でせん断粘度を測定する。
<半導体パッケージの製造方法>
 本発明の半導体用ダイアタッチペーストを使用して半導体パッケージを製造する方法について説明する。まず本発明の半導体用ダイアタッチペーストをダイまたは支持部材に塗布し、次いで半導体用ダイアタッチペーストの塗布部に例えば紫外線を照射して、(メタ)アクリロイル基含有化合物(1)等を光重合させ、半導体用ダイアタッチペーストをBステージ化する。しかる後にダイボンディングと熱硬化((メタ)アクリロイル基含有化合物(1)やオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)の熱重合)を行い、さらに封止を行うことにより、信頼性が高く高集積化された半導体パッケージを得ることができる。なお、熱硬化と封止を同時に行ってもよい。
 半導体用ダイアタッチペーストの塗布方法は、特に限定されないが、浸漬法、ハケ塗り法、スプレー法、線引き塗布法、スタンピング法、印刷法、ジェットディスペンス法、インクジェット法等が挙げられる。半導体用ダイアタッチペーストの塗布部への紫外線等の光の照射方法は特に限定されないが、フレキシブル導光管を手または機械で保持・操作して半導体用ダイアタッチペーストの塗布部に照射する方法や、コンベアに半導体用ダイアタッチペーストを塗布したダイまたは支持部材を乗せ、紫外線等の光が照射される領域を通過させて照射する方法等が挙げられる。半導体用ダイアタッチペーストのBステージ化後、ダイボンディングを行ってからの熱硬化の方法は、特に限定されないが、オーブンに投入する方法、コンベアにダイボンディングを行った後の部品を乗せ、所定温度に加熱された領域を通過させる方法等が挙げられる。
 本発明の半導体パッケージの製造方法に準じてダイボンディングおよび熱硬化を行った時の、ダイシェア強度の評価方法について説明する。ダイシェア強度の評価は、例えば、MIL-STD-883G、IEC-60749-22、EIAJ-ED-4703等の規格に従って行われる。具体的な例としては、Dage-4000(せん断接着力試験機、Dage社製)を用いて、接合されたダイの側面をセンサー付き治具で押し、ダイと支持部材の接合が破壊されるのに要する力を計測する。なおダイシェア強度は、2mm角の正方形のチップと支持部材が接合している場合において、58.8N以上であることが好ましい。58.8N以上となるような接合材料または接合法であれば、半導体パッケージの信頼性が良好なものとなる。
<半導体パッケージ>
 本発明の態様には、本発明の半導体用ダイアタッチペーストを用いて製造された半導体パッケージもある。半導体パッケージとしては、挿入形(Pin insertion type)であるDOパッケージ(Diode Outline)、TOパッケージ(Transistor Outline)、DIP(Dual Inline Package)、SIP(Single Inline Package)、ZIP(Zigzag Inline Package)、PGA(Pin Grid Array)、表面実装形であるSOP(Small Outline Package)、SOJ(Small Outline J-leaded)、CFP(Ceramic Flat Package)、SOT(Small Outline Transistor)、QFP(Quad Flat Package)、PLCC(Plastic Leaded Chip Carrier)、BGA(Ball Grid Array)、LGA(Land Grid Array)、LLCC(LeadLess Chip Carrier)、TCP(Tape Carrier Package)、LLP(Leadless Leadframe Package)、DFN(Dual Flatpack No-leaded)、COB(Chip On Board)等が挙げられる。
 本発明の半導体パッケージは、本発明の半導体用ダイアタッチペーストをダイまたは支持部材に塗布し、次いで半導体用ダイアタッチペーストの塗布部に例えば紫外線を照射してBステージ化し、しかる後にダイボンディングと熱硬化を行い、さらに封止を行うことによって製造することができる。このようにして製造された本発明の半導体パッケージは、信頼性が高い。
 以下、実施例により、本発明を更に具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。
(実施例1)
 ビスフェノールAオレフィンオキサイド付加物ジアクリレート(共栄社化学株式会社製BP-4EAL、化合物名称は2,2’-ビス[4-(アクリロキシポリエトキシ)フェニル]プロパンである)を10.3g、無水マレイン酸変性ポリブタジエン(CRAYVALLEY社製Ricon131MA17、数平均分子量5400、酸無水物当量583)を41.4g、グリシジルメタクリレート(日油株式会社製ブレンマーGH)を6.9g、水添ビスフェノールA型エポキシ樹脂(三菱化学株式会社製YX-8000)を10.3g、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(BASF社製DAROCUR TPO)を0.1g、ジクミルパーオキサイド(日油株式会社製パークミルD)を0.3g、ジアザビシクロウンデセン-テトラフェニルボレート塩(サンアプロ株式会社製U-CAT5002)を0.7g、球状シリカゲル(三菱レイヨン株式会社製QS-2)を29.5g、自転・公転ミキサー(株式会社シンキー製あわとり練太郎ARE-310)に投入し混合して、ダイアタッチペーストを得た。
(実施例2、3及び比較例1~3)
 各成分の種類および量を表1に示すように変更する以外は実施例1と同様の操作を行って、ダイアタッチペーストを得た。
Figure JPOXMLDOC01-appb-T000001
 表1中、SR-349はサートマー社製のエトキシ化ビスフェノールAジアクリレートであり、FA-512Mは日立化成工業株式会社製のジシクロペンテニルオキシエチルメタクリレートであり、Ricon131MA10はCRAYVALLEY社製の無水マレイン酸変性ポリブタジエン(数平均分子量5000、酸無水物当量981)であり、CTBN-1300X8は宇部興産株式会社製のカルボキシ末端アクリロニトリルブタジエン共重合体であり、EXA-4850-150は大日本インキ化学工業株式会社製のエポキシ樹脂(エポキシ当量450)であり、PB-4700はダイセル化学株式会社製のエポキシ化ポリブタジエンであり、Irgacure(登録商標)369はBASF社製2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1であり、DICYはジシアンジアミドであり、KBM-403は信越シリコーン株式会社製の3-グリシドキシプロピルトリメトキシシランであり、AEROSIL R972は日本アエロジル株式会社製のジメチルジクロロシランで表面処理した疎水性シリカフィラーである。
<濡れ広がり抑制の評価>
 ダイアタッチペーストの濡れ広がり抑制は以下の方法により評価した。
 ダイアタッチペーストをシリコン基板上に厚み200μm、直径2mmの大きさの円状に塗布し、紫外線を1000mJ/cm照射してBステージ化させ、試験片を得た。その後、試験片をオーブンに投入し、昇温速度4℃/分で170℃まで昇温し、そのまま1時間硬化させた。
 硬化後の試験片上のダイアタッチペーストを顕微鏡にて観察して直径を測定し、塗布時からの直径の増加率を算出し、直径の増加率によって濡れ広がり抑制を評価した。結果を表1に示す。直径の増加率が5%未満の場合は、濡れ広がり抑制が非常に良好と評価し、表1においては◎印で示した。また、直径の増加率が5%以上10%未満の場合は、濡れ広がり抑制が良好と評価し、表1においては○印で示した。さらに、直径の増加率が10%以上の場合は、濡れ広がり抑制が不良と評価し、表1においては×印で示した。
<ダイシェア強度の評価>
 ダイシェア強度は以下の方法により評価した。
 一辺5mmの正方形状のPPFリードフレーム(Cu基板上にNi,Pd,Auの順に3層メッキを施したもの)上に、ダイアタッチペーストを一辺2mmの正方形状(厚さ80μm)に塗布し、紫外線を1000mJ/cm照射してBステージ化させた。そして、ダイボンダーMD-P200(パナソニック株式会社製)を用い、ダイアタッチペースト上に一辺2mmの正方形状のシリコンチップ(厚さ0.7mm)を、温度25℃、荷重10N、時間1秒の条件でボンディングした。その後、170℃のオーブンで1時間硬化させた。
 このようにして得られたものの温度25℃におけるせん断強さ(N/チップ)を、せん断接着力試験機Series4000(Dage社製)を用いて測定した。結果を表1に示す。せん断強さの測定値が58.8N/チップ以上の場合は、ダイシェア強度が良好と評価し、表1においては○印で示した。また、せん断強さの測定値が58.8N/チップ未満の場合は、ダイシェア強度が不良と評価し、表1においては×印で示した。
<保存安定性の評価>
 ダイアタッチペーストの保存安定性を、以下の方法により評価した。ダイアタッチペーストを温度25℃で3日間静置した。そして、静置初期及び3日後のダイアタッチペーストのせん断粘度を、粘弾性測定装置の回転モードを用いて温度25℃、せん断速度10s-1の条件で測定した。静置3日後のせん断粘度の静置初期のせん断粘度からの増粘率を算出し、この増粘率によってダイアタッチペーストの保存安定性を評価した。結果を表1に示す。
 増粘率が40%未満の場合は、ダイアタッチペーストの保存安定性が非常に良好と評価し、表1においては◎印で示した。また、増粘率が40%以上100%未満の場合は、保存安定性が良好と評価し、表1においては○印で示した。さらに、増粘率が100%以上の場合は、ダイアタッチペーストの保存安定性が不良と評価し、表1においては×印で示した。
 表1より、本発明の半導体用ダイアタッチペーストである実施例1~3は、Bステージ化により濡れ広がりが抑制されつつ高いダイシェア強度を有することが判る。また、アシルホスフィンオキサイド系光重合開始剤(DAROCUR TPO)を使用した実施例1は、アルキルフェノン系光重合開始剤(Irgacure(登録商標)369)を使用した実施例2、3よりも保存安定性が良好であった。
 一方、従来技術の半導体用ダイアタッチペーストである比較例1は、25℃でダイボンディングすると支持部材に接合しないため、ダイシェア強度が劣ることが判る。また、比較例2は、光重合開始剤を含まずBステージ化されないため、濡れ広がりが抑制されないことが判る。さらに、比較例3は、無水マレイン酸変性ポリオレフィンを含まないため硬化物の硬さが劣り、ダイシェア強度が劣ることが判る。すなわち、本発明の半導体用ダイアタッチペーストは、従来の半導体用ダイアタッチペーストに比べて、Bステージ化で濡れ広がりを抑制しつつ加熱無しでダイボンディングでき、かつ高いダイシェア強度を有することが判った。
 本発明の半導体用ダイアタッチペーストは、塗布性を維持しつつBステージ化により塗布後の濡れ広がりを抑制できるため、マルチチップパッケージの高集積化が可能である。また、ダイボンディングの際に加熱しなくても十分な接着性が得られるため、本発明の半導体用ダイアタッチペーストを用いてダイボンディングされた半導体パッケージは、高集積かつ信頼性が高く、各種デバイスに有用である。

Claims (15)

  1.  (メタ)アクリロイル基含有化合物(1)、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)、無水マレイン酸変性ポリオレフィン(3)、および光重合開始剤(4)を含むことを特徴とする半導体用ダイアタッチペースト。
  2.  前記(メタ)アクリロイル基含有化合物(1)の配合量は、全硬化成分に対して5質量%以上80質量%以下であり、前記オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物(2)の配合量は、オキシラン環構造またはオキセタン環構造の総数の、前記無水マレイン酸変性ポリオレフィン(3)の無水マレイン酸由来のカルボン酸無水物構造の総数に対する比が2.8~0.4となる量であり、前記無水マレイン酸変性ポリオレフィン(3)の配合量は、全硬化成分に対して20質量%以上80質量%以下であり、前記光重合開始剤(4)の配合量は、前記(メタ)アクリロイル基含有化合物(1)100質量部に対して0.01質量部以上5質量部以下であることを特徴とする請求項1に記載の半導体用ダイアタッチペースト。
  3.  さらに、熱ラジカル発生剤(5)を含むことを特徴とする請求項1または請求項2に記載の半導体用ダイアタッチペースト。
  4.  前記熱ラジカル発生剤(5)の配合量は、前記(メタ)アクリロイル基含有化合物(1)100質量部に対して、0.1質量部以上10質量部以下であることを特徴とする請求項3に記載の半導体用ダイアタッチペースト。
  5.  前記熱ラジカル発生剤(5)が有機過酸化物であることを特徴とする請求項3または請求項4に記載の半導体用ダイアタッチペースト。
  6.  前記熱ラジカル発生剤(5)がジアルキルパーオキサイドまたはパーオキシエステルであることを特徴とする請求項5に記載の半導体用ダイアタッチペースト。
  7.  前記熱ラジカル発生剤(5)の1分間半減期温度が120℃以上200℃以下であることを特徴とする請求項3~6のいずれか一項に記載の半導体用ダイアタッチペースト。
  8.  さらに、熱硬化促進剤(6)を含むことを特徴とする請求項1~7のいずれか一項に記載の半導体用ダイアタッチペースト。
  9.  さらに、フィラー(7)を含むことを特徴とする請求項1~8のいずれか一項に記載の半導体用ダイアタッチペースト。
  10.  前記(メタ)アクリロイル基含有化合物(1)の少なくとも一部が、複数の(メタ)アクリロイル基を含有する多官能(メタ)アクリロイル基含有化合物であることを特徴とする請求項1~9のいずれか一項に記載の半導体用ダイアタッチペースト。
  11.  前記(メタ)アクリロイル基含有化合物(1)の少なくとも一部が、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(8)であることを特徴とする請求項1~10のいずれか一項に記載の半導体用ダイアタッチペースト。
  12.  前記無水マレイン酸変性ポリオレフィン(3)が、ジオレフィンを予め重合したものと、無水マレイン酸とを共重合したものであることを特徴とする請求項1~11のいずれか一項に記載の半導体用ダイアタッチペースト。
  13.  前記無水マレイン酸変性ポリオレフィン(3)の数平均分子量が5000よりも大きいことを特徴とする請求項1~12のいずれか一項に記載の半導体用ダイアタッチペースト。
  14.  前記光重合開始剤(4)がアルキルフェノン系光重合開始剤およびアシルホスフィンオキサイド系光重合開始剤の少なくとも一方であることを特徴とする請求項1~13のいずれか一項に記載の半導体用ダイアタッチペースト。
  15.  請求項1~14のいずれか一項に記載の半導体用ダイアタッチペーストを用いて製造された半導体パッケージ。
PCT/JP2015/000117 2014-02-12 2015-01-13 半導体用ダイアタッチペーストおよび半導体パッケージ WO2015122114A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562712A JPWO2015122114A1 (ja) 2014-02-12 2015-01-13 半導体用ダイアタッチペーストおよび半導体パッケージ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014024678 2014-02-12
JP2014-024678 2014-02-12

Publications (1)

Publication Number Publication Date
WO2015122114A1 true WO2015122114A1 (ja) 2015-08-20

Family

ID=53799868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000117 WO2015122114A1 (ja) 2014-02-12 2015-01-13 半導体用ダイアタッチペーストおよび半導体パッケージ

Country Status (3)

Country Link
JP (1) JPWO2015122114A1 (ja)
TW (1) TW201543584A (ja)
WO (1) WO2015122114A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101770505B1 (ko) * 2016-03-03 2017-08-22 주식회사 케이씨씨 다이 본딩용 에폭시 수지 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228925A (ja) * 1998-02-09 1999-08-24 Toshiba Chem Corp 導電性接着剤
JP2006335861A (ja) * 2005-06-01 2006-12-14 Nippon Zeon Co Ltd 接着剤、接着剤フィルム、半導体部品パッケージ、および半導体部品パッケージの製造方法
JP2010223992A (ja) * 2009-03-19 2010-10-07 Hitachi Chem Co Ltd 感光性接着剤組成物、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ及び半導体装置
JP2010263041A (ja) * 2009-05-01 2010-11-18 Nitto Denko Corp ダイアタッチフィルム付きダイシングテープおよび半導体装置の製造方法
JP2012188463A (ja) * 2011-03-08 2012-10-04 Hitachi Chemical Co Ltd 半導体用接着剤組成物、半導体装置及び半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228925A (ja) * 1998-02-09 1999-08-24 Toshiba Chem Corp 導電性接着剤
JP2006335861A (ja) * 2005-06-01 2006-12-14 Nippon Zeon Co Ltd 接着剤、接着剤フィルム、半導体部品パッケージ、および半導体部品パッケージの製造方法
JP2010223992A (ja) * 2009-03-19 2010-10-07 Hitachi Chem Co Ltd 感光性接着剤組成物、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ及び半導体装置
JP2010263041A (ja) * 2009-05-01 2010-11-18 Nitto Denko Corp ダイアタッチフィルム付きダイシングテープおよび半導体装置の製造方法
JP2012188463A (ja) * 2011-03-08 2012-10-04 Hitachi Chemical Co Ltd 半導体用接着剤組成物、半導体装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
TW201543584A (zh) 2015-11-16
JPWO2015122114A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP4541599B2 (ja) アリル基またはビニル基を有するエポキシ樹脂を含有するダイ結合性接着剤
JP5917215B2 (ja) 接着剤組成物、接着シートおよび半導体装置の製造方法
JP5419318B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP2016149393A (ja) 半導体用接着剤並びに半導体装置及びその製造方法
JP2011037981A (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
US20140243453A1 (en) Conductive resin composition and cured product thereof
WO2017090659A1 (ja) 回路接続用接着剤組成物及び構造体
JP5032740B2 (ja) 半導体部材の製造方法
WO2015122114A1 (ja) 半導体用ダイアタッチペーストおよび半導体パッケージ
JP5476839B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP3912076B2 (ja) 接着シートならびに半導体装置およびその製造方法
WO2015122115A1 (ja) 半導体パッケージの製造方法
JP7124936B2 (ja) 接着剤組成物及び構造体
JP5482077B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP2001257220A (ja) ダイアタッチペースト及び半導体装置
JP5589337B2 (ja) 積層構造体の製造方法
JP5604828B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JPH11269452A (ja) ダイアタッチペースト
JPH11293213A (ja) ダイアタッチペーストの製造方法
JP5140929B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP3705529B2 (ja) 絶縁性ダイアタッチペースト
JP3473944B2 (ja) ダイアタッチペースト及び半導体装置
JP3473943B2 (ja) ダイアタッチペースト及び半導体装置
EP2624287A1 (en) Liquid resin composition and semiconductor device
JP3209961B2 (ja) ダイアタッチペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749692

Country of ref document: EP

Kind code of ref document: A1