WO2015122053A1 - 二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置 - Google Patents

二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置 Download PDF

Info

Publication number
WO2015122053A1
WO2015122053A1 PCT/JP2014/077440 JP2014077440W WO2015122053A1 WO 2015122053 A1 WO2015122053 A1 WO 2015122053A1 JP 2014077440 W JP2014077440 W JP 2014077440W WO 2015122053 A1 WO2015122053 A1 WO 2015122053A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
reaction vessel
capturing material
gas
mol
Prior art date
Application number
PCT/JP2014/077440
Other languages
English (en)
French (fr)
Inventor
晃平 吉川
佐藤 大樹
金枝 雅人
中村 英博
敏明 白坂
健悦 北村
和宏 榎本
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US14/914,497 priority Critical patent/US20160199808A1/en
Priority to CN201480046978.XA priority patent/CN105473220B/zh
Priority to CA2922458A priority patent/CA2922458A1/en
Priority to EP14882666.2A priority patent/EP3106218A4/en
Publication of WO2015122053A1 publication Critical patent/WO2015122053A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/401Further details for adsorption processes and devices using a single bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide capturing material and a carbon dioxide recovery device using the same.
  • the CO 2 separation and recovery system using the CO 2 capturing material introducing CO 2 containing gas to the capturing material container filled with CO 2 capturing material, capture and removal of CO 2 by contacting the CO 2 capturing material and gas To do. Then, the captured CO 2 is desorbed and recovered by heating the capture material or reducing the pressure in the capture material container. CO 2 capturing material the CO 2 desorbed, is used again CO 2 containing gas After cooling to capture and removal of the supplied CO 2.
  • Patent Document 1 focuses on the average pore diameter and is an oxide containing Ce and an element selected from K, Mg, Al, and Pr for the purpose of efficiently capturing carbon dioxide,
  • a carbon dioxide scavenger is described that contains elements selected from K, Mg, Al, and Pr in total and in a molar ratio of 0.01 to 1.00 in terms of metal with respect to Ce.
  • the carbon dioxide capturing material described in Patent Document 1 has an initial specific surface area of 100 m 2 / g or more, but when calcined at 500 ° C., the specific surface area is about 80 m 2 / g. I understood. That is, this carbon dioxide capturing material has a large decrease in specific surface area due to firing, and there is room for improvement in terms of heat resistance. Generally, the larger the specific surface area, the greater the amount of carbon dioxide trapped.
  • An object of the present invention is to provide a carbon dioxide scavenging material having a high heat resistance and a large amount of carbon dioxide scavenging, and a small decrease in the amount of carbon dioxide scavenging due to firing.
  • the carbon dioxide capturing material of the present invention is for separating and recovering carbon dioxide from a carbon dioxide-containing gas, is an oxide containing Ce and Al, and has the highest content among the metal elements contained Is Ce, and the content of Al is 0.01 mol% or more and 40 mol% or less.
  • CO 2 Al in capturing material is a graph showing Fe, Cu, a correlation between the content and the CO 2 capture of V and Mo.
  • Fe of CO 2 in the capturing material is a graph showing the correlation between the amount of decrease in the content and CO 2 capture amount of Cu, V and Mo.
  • the present invention relates to a carbon dioxide capturing material (hereinafter also referred to as “CO 2 capturing material”) for separating and recovering CO 2 from a CO 2 containing gas (carbon dioxide containing gas) such as combustion exhaust gas, and more particularly to capture CO 2 .
  • CO 2 capturing material for separating and recovering CO 2 from a CO 2 containing gas (carbon dioxide containing gas) such as combustion exhaust gas, and more particularly to capture CO 2 .
  • the carbon dioxide-containing gas is assumed to be combustion exhaust gas having a carbon dioxide concentration of 3 to 18% by volume, but is not limited to this, and exhaust gas from a chemical plant that handles solid reactions such as calcium carbonate. Can also be a target.
  • the carbon dioxide concentration can be 18% by volume or more. Further, the higher the carbon dioxide concentration, the easier the recovery.
  • the carbon dioxide concentration of the carbon dioxide-containing gas is not limited to 3% by volume or more, and even a gas having a lower carbon dioxide concentration can be a target.
  • the CO 2 capturing material of the present invention is an oxide containing Ce and Al, the element having the largest content among the contained metal elements is Ce, and the Al content is 0.01 mol% or more and 40 mol. % Or less (0.01 to 40 mol%). It was confirmed that the CO 2 capturing material having this configuration can increase the CO 2 capturing amount.
  • the reason why the effect can be obtained is that (1) Ce and Al form a complex oxide to form a site that easily captures CO 2 , and (2) the specific surface area of the capturing material increases. It is done. In the case where the Al content exceeds 40 mol%, or when only the Al oxide is used, the CO 2 trapping amount is reduced as compared with the case where only the Ce oxide is used. Even in the case where the Al content is 40 mol%, in order for the element having the highest content among the metal elements to be Ce, it is sufficient that Ce is contained at least 40 mol% or more. Here, there may be two types of “elements with the highest content”.
  • mol% which is a unit of the content of the metal element, indicates a ratio when the total amount of the metal element contained in the CO 2 capturing material is 100 mol%. That is, the ratio obtained by using the contents of all metal elements contained in the CO 2 trapping material as the denominator and the contents of each metal element as the numerator is expressed on a molar basis.
  • the more desirable Al content is 0.01 mol% or more and 30 mol% or less (0.01 to 30 mol%), and the particularly desirable Al content is 5 mol% or more and 20 mol% or less (5 to 20 mol%). is there.
  • the CO 2 capturing material may be an oxide containing 0.01 mol% or more of at least one metal element of Fe, Cu, V and Mo in addition to Ce and Al.
  • the CO 2 capture amount if the content is increased in these metal elements decreases, but the increase in CO 2 capture amount of Al contained, it can increase the CO 2 capturing amount as compared with the case of Ce oxide only.
  • the Fe content is 10 mol% or less
  • the Cu content is 7 mol% or less
  • the V content is 3 mol% or less
  • the Mo content is 3 mol% or less.
  • the composition satisfies the following formula (1) obtained by weighting from the correlation between the content ratio of each element and the reduction amount of the CO 2 capture amount.
  • the advantage by using the CO 2 capturing material of the present invention is that a raw material with low purity can be used, and a purification process for removing impurities can be reduced. As a result, raw material and equipment costs can be reduced.
  • Compounds used as raw materials for synthesizing the CO 2 capturing material of the present invention include oxides, nitrates, chlorides, sulfates, carbonates, phosphates, hydroxides, oxalates, acetates, formic acid Examples include salt.
  • the raw material of Ce may be a mineral such as monazite or bastonesite.
  • Minerals may include lanthanides other than Ce (La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu).
  • Oxides containing Ce and these lanthanide elements increase the amount of CO 2 trapped compared to Ce-only oxides, so it is necessary to refine them to reduce the content of lanthanide elements other than Ce. There is no.
  • a desirable content of these lanthanides is 0.01 mol% or more and 50 mol% or less in total, and more preferably 0.01 mol% or more and 30 mol% or less. When such a raw material is used, the purification cost can be reduced and the amount of captured CO 2 can be increased.
  • Examples of the method for synthesizing the CO 2 capturing material of the present invention include chemical preparation methods such as impregnation method, kneading method, coprecipitation method and sol-gel method, and physical preparation methods such as vapor deposition method.
  • chemical preparation methods such as impregnation method, kneading method, coprecipitation method and sol-gel method
  • physical preparation methods such as vapor deposition method.
  • a basic compound such as aqueous ammonia, sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 )
  • Ce and Al may be coprecipitated.
  • aluminum hydroxide (Al (OH) 3 ) forms aggregates (floc), thereby increasing the sedimentation rate of the synthesized product and shortening the time required for synthesis.
  • the specific surface area is 130 m 2 / g even after firing at 600 ° C. Therefore, it is considered that the decrease in the carbon dioxide capture amount is small.
  • the above firing temperature is higher than the actual regeneration temperature, it is high as an accelerated test for early determination as to whether or not the carbon dioxide capture material deteriorates during repeated adsorption and regeneration of the carbon dioxide capture material.
  • a firing test at a temperature was performed. Actually, even when the use temperature is about 200 ° C., the deterioration gradually proceeds with long-term use.
  • Firing at 600 ° C. is much more severe than firing at 500 ° C.
  • the specific surface area after firing at 600 ° C. is larger than the specific surface area after firing at 500 ° C. It shows that it is excellent. This also indicates that it is strong against repeated use over a long period of time.
  • the carbon dioxide capturing material of the present invention has higher heat resistance than the carbon dioxide capturing material described in Patent Document 1. This effect is considered to be due to the oxide containing Al in addition to Ce.
  • the constituent elements of the CO 2 recovery device using the CO 2 capturing material of the present invention include a reaction vessel filled with the capturing material, a pipe for introducing a CO 2 -containing gas or a heating gas into the reaction vessel, and a gas from the reaction vessel. Pipe for discharging, heating device for heating the reaction vessel, equipment for pressurizing and depressurizing the inside of the reaction vessel, a condenser for condensing water vapor in the gas, a vessel for collecting condensed water in the reaction vessel, CO 2 A compressor for compressing the contained gas.
  • the CO 2 capturing material of the present invention is supported by, for example, silica, alumina, titania, zirconia, zeolite, polymer material, activated carbon, MOF (Molecular Organic Framework), ZIF (Zeolytic Immediate Framework), or the like.
  • a high specific surface area material in a mixed form may be used, and the minimum unit of the structure may be a granular, granular aggregate, or composite.
  • the carbon dioxide capturing material is formed as a member, it is preferable to have a shape having air permeability so as to reduce pressure loss, for example, a porous body having a high porosity or a honeycomb shape may be used. It is good.
  • the outer shape of the carbon dioxide capturing material may be bulk, plate-like, or the like. It should be noted at this time that the porosity should be reduced when increasing the purity of CO 2 in the recovered gas. That is, in the case of granularity and a small porosity, there is a disadvantage that the pressure loss increases, but the amount of gas other than CO 2 remaining in the voids decreases, so that the purity of CO 2 in the recovered gas can be increased. There are advantages.
  • the recovery method by temperature swing recovery process by pressure swing, and recovery methods are exemplified by the pressure and temperature swing. These recovery methods may be determined in consideration of the pressure of the CO 2 -containing gas, the CO 2 partial pressure, and the temperature.
  • the CO 2 was captured and removed from the CO 2 containing gas at about 50 ° C., after which the CO 2 capturing material 0.99 ° C. ⁇
  • a method of recovering CO 2 with increased purity by desorbing CO 2 by heating to 200 ° C. can be mentioned.
  • a method for heating the CO 2 capture material a method in which a heating medium such as a heated gas or liquid is brought into direct contact with the CO 2 capture material, a heating medium such as a heated gas or liquid is passed through a heat transfer tube, etc. Examples thereof include a method of heating by heat conduction from the surface, a method of heating the CO 2 capturing material by electric heat generation from an electric furnace or the like.
  • Examples of a method for reducing the ambient atmosphere of the CO 2 capturing material include a method for reducing the pressure mechanically with a pump or a compressor, a method for condensing water vapor in the atmosphere by cooling, and the like.
  • a method for reducing the CO 2 partial pressure in the ambient atmosphere of the CO 2 capturing material in addition to the above, a method of flowing a gas other than CO 2 can be used.
  • the gas used at this time is preferably a gas that can be easily separated from CO 2, and in particular, a method using water vapor from the viewpoint of being easily condensed by cooling.
  • Examples of a method of pressurizing the ambient atmosphere of the CO 2 capturing material include a method of mechanically pressurizing with a pump or a compressor, or a method of introducing a gas having a pressure higher than that of the ambient atmosphere.
  • the CO 2 capturing amount may be reduced. Therefore, from the viewpoint of maintaining the performance of the CO 2 capturing material, it is preferable to reduce the concentrations of SOx, NOx and dust.
  • a CO 2 recovery apparatus using the CO 2 capturing material downstream of the desulfurization apparatus and dedusted device.
  • Comparative Example 2 The same as in the synthesis method described in Comparative Example 1, except that 13.03 g of cerium nitrate hexahydrate and 11.25 g of aluminum nitrate nonahydrate were used instead of 26.05 g of cerium nitrate hexahydrate.
  • the oxide synthesized by the above method was used as the CO 2 capturing material.
  • Comparative Example 4 In the synthesis method described in Comparative Example 1, 23.45 g of cerium nitrate hexahydrate and 2.42 g of iron (III) nitrate nonahydrate were used instead of 26.05 g of cerium nitrate hexahydrate. Except for the above, an oxide synthesized by the same method was used as the CO 2 capturing material.
  • Comparative Example 5 In the synthesis method described in Comparative Example 1, 23.45 g of cerium nitrate hexahydrate and 1.45 g of copper (II) nitrate trihydrate were used instead of 26.05 g of cerium nitrate hexahydrate. Except for the above, an oxide synthesized by the same method was used as the CO 2 capturing material.
  • Comparative Example 6 In the synthesis method described in Comparative Example 1, the same method was used except that 23.45 g of cerium nitrate hexahydrate and 0.70 g of ammonium vanadate were used instead of 26.05 g of cerium nitrate hexahydrate. The synthesized oxide was used as a CO 2 capturing material.
  • Comparative Example 7 In the synthesis method described in Comparative Example 1, the same method was used except that 23.45 g of cerium nitrate hexahydrate and 1.06 g of ammonium molybdate were used instead of 26.05 g of cerium nitrate hexahydrate. The synthesized oxide was used as a CO 2 capturing material.
  • the CO 2 capturing material was pelletized at 200 kgf with a press using a mold having a diameter of 40 mm, crushed, and then sized to 0.5 to 1.0 mm using a sieve. Thereafter, 1.0 ml was measured using a graduated cylinder and fixed in a quartz glass reaction tube.
  • the reaction tube was put into an electric furnace, and the temperature of the CO 2 capturing material was raised to 400 ° C. while flowing He at 150 ml / min, and held for 1 hour to remove impurities and gas adsorbed on the capturing material.
  • CO 2 trapping amount by CO 2 pulse capture test was measured CO 2 trapping amount by CO 2 pulse capture test while maintaining the sample temperature at 50 ° C. in an electric furnace.
  • a sample gas 10 ml of a mixed gas composed of 12% by volume CO 2 and 88% by volume He was introduced in a pulsed manner every 4 minutes for 2 minutes, and the CO 2 concentration at the outlet of the reaction tube was measured by gas chromatography. The pulse introduction was performed until CO 2 measured at the outlet of the reaction tube was saturated. He was used as a carrier gas.
  • FIG. 1 is a graph showing the correlation between the CO 2 capture amount and the Al content for the CO 2 capture materials of Examples and Comparative Examples.
  • Figure 2 is a graph showing Fe, Cu, and CO 2 capture of CO 2 capturing material containing any of V and Mo, the correlation between the content of each metal element.
  • the amount of decrease in the amount of captured CO 2 by adding an element of Fe, Cu, V or Mo is greater than the amount of increase in the amount of captured CO 2 due to Al content. Is also considered to be small.
  • FIG. 3 is a graph showing the correlation between the decrease in the amount of captured CO 2 and the element content due to containing any of Fe, Cu, V, and Mo.
  • the amount of decrease in the CO 2 trapping amount shown in this figure was calculated using the following formula (2).
  • Reduction of CO 2 capture amount if considered to be proportional to the element content, reduce the amount of CO 2 capture amount when each element containing 1 mol% is, Fe in 9mmol / L ⁇ mol% -Fe, at Cu 14 mmol / L ⁇ mol% -Cu, V is 31 mmol / L ⁇ mol% -V, and Mo is 31 mmol / L ⁇ mol% -Mo. From this value, since the amount of captured CO 2 was larger than that of Comparative Example 1, the content of a preferable element was estimated. The results are as follows.
  • the total reduction amount of the above-mentioned CO 2 trapping amount may be 90 mmol / L or less. Specifically, the composition satisfies the above formula (1). Good.
  • FIG. 4 shows an example of a CO 2 recovery device using the CO 2 capturing material of the present invention.
  • a carbon dioxide recovery device 401 (CO 2 recovery device) includes a pipe 2 and a valve 3 for introducing a CO 2 -containing gas, a reaction vessel 1 filled with the CO 2 capturing material of the present invention, and a reaction.
  • the CO 2 -containing gas When capturing and removing CO 2 from the CO 2 -containing gas, the CO 2 -containing gas is introduced into the reaction vessel 1 and the gas after CO 2 removal is released to the atmosphere.
  • CO 2 in the case of leaving the captured CO 2 to the capture material, the CO 2 by heating the CO 2 capturing material by introducing steam into the heat transfer tube 6 desorbed condense water vapor in the desorbed gas After removing with the vessel 10, it is introduced into the compressor 13 to be pressurized and liquefied, and then the liquefied CO 2 is recovered.
  • a carbon dioxide capture material and high temperature gas are made to contact.
  • the high temperature gas include gas obtained from the atmosphere, inert gas such as nitrogen, CO 2 , and water vapor.
  • inert gas such as nitrogen, CO 2
  • water vapor When the recovered gas CO 2 concentration may be low, air, nitrogen, or the like may be used. It may be used CO 2 when it is necessary to improve the CO 2 concentration. In order to separate from the desorbed gas, water vapor having a low condensation temperature may be used.
  • FIG. 5 shows another example of the CO 2 recovery device using the CO 2 capturing material of the present invention.
  • a carbon dioxide recovery device 501 includes a pipe 2 and a valve 3 for introducing a CO 2 -containing gas, a reaction vessel 1 filled with a CO 2 capturing material of the present invention, and a gas discharged from the reaction vessel 1.
  • a pipe and valve 12 for introducing gas from the condenser 10 to the compressor 13 and a pipe and valve 14 for recovering liquefied CO 2 are provided.
  • the CO 2 -containing gas When capturing and removing CO 2 from the CO 2 -containing gas, the CO 2 -containing gas is introduced into the reaction vessel 1 and the gas after CO 2 removal is released to the atmosphere.
  • the gas after CO 2 removal When desorption of CO 2 was trapped in CO 2 capturing material is CO 2 from CO 2 capturing material by reducing the pressure of the reaction vessel 1 by a pressure reducer 51 desorbed, a condenser 10 to water vapor in the desorbed gas Then, it is introduced into the compressor 13 and pressurized and liquefied, and then the liquefied CO 2 is recovered.
  • a pressurizing unit (such as a compressor) for pressurizing the inside of the reaction vessel 1 may be provided on the upstream side (pipe 2) of the reaction vessel 1.
  • a pressurizing unit such as a compressor
  • Higher CO 2 partial pressure in the contained gas can promote CO 2 adsorption. Therefore, depending on the concentration and temperature range, it may be preferable to circulate the introduced gas in a pressurized state by the pressurizing unit.
  • reaction vessel 2
  • 4 piping, 3, 5, 8, 9, 11, 12, 14: valve
  • 6 heat transfer tube
  • 10 condenser
  • 13 compressor
  • 51 decompressor
  • 401 501 Carbon dioxide recovery device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

二酸化炭素捕捉量が多く、かつ、焼成による二酸化炭素捕捉量の低下が小さい、耐熱性が高い二酸化炭素捕捉材を提供する。二酸化炭素含有ガスから二酸化炭素を分離回収するための二酸化炭素捕捉材において、Ce及びAlを含有する酸化物を用い、含有する金属元素のうち含有量が最も多い元素はCeとし、かつ、Alの含有量は0.01mol%以上40mol%以下とする。

Description

二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置
 本発明は、二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置に関する。
 温室効果ガスの排出による地球温暖化が世界的な問題となっている。温室効果ガスには二酸化炭素(CO)、メタン(CH)、フロン類(CFCs)等がある。これらの中で影響が最も大きいものはCOであり、その排出量の削減が緊急の課題となっている。
上記課題の解決策としては、化学吸収法、物理吸収法、膜分離法、吸着分離法、深冷分離法などがある。その中に、固体のCO捕捉材を用いたCO分離回収法が挙げられる。
 CO捕捉材を用いたCO分離回収システムでは、CO捕捉材を充填した捕捉材容器にCO含有ガスを導入し、CO捕捉材とガスとを接触させることでCOを捕捉除去する。その後、捕捉材を加熱し、もしくは捕捉材容器内を減圧することで捕捉したCOを脱離し、回収する。COを脱離したCO捕捉材は、冷却した後に再度CO含有ガスを供給してCOの捕捉除去に使用される。
 特許文献1には、平均細孔径に着目し、二酸化炭素を効率よく捕捉することを目的として、Ceと、K、Mg、Al及びPrから選ばれた元素とを含有する酸化物であって、K、Mg、Al及びPrから選ばれた元素を合計で、金属換算でCeに対してモル比で0.01以上1.00以下含有する二酸化炭素捕捉材が記載されている。
特開2013-59703号公報
 実験的検討の結果、特許文献1に記載の二酸化炭素捕捉材は、当初の比表面積は100m/g以上であるが、500℃で焼成した場合に比表面積が80m/g程度となることがわかった。すなわち、この二酸化炭素捕捉材は、焼成による比表面積の減少が大きく、耐熱性の点で改善の余地がある。一般に、比表面積が大きいほど二酸化炭素捕捉量は多くなる傾向がある。
 本発明は、二酸化炭素捕捉量が多く、かつ、焼成による二酸化炭素捕捉量の低下が小さい、耐熱性が高い二酸化炭素捕捉材を提供することを目的とする。
 本発明の二酸化炭素捕捉材は、二酸化炭素含有ガスから二酸化炭素を分離回収するためのものであって、Ce及びAlを含有する酸化物であり、含有する金属元素のうち含有量が最も多い元素は、Ceであり、かつ、Alの含有量は、0.01mol%以上40mol%以下であることを特徴とする。
 本発明によれば、二酸化炭素捕捉量が多く、かつ、焼成による二酸化炭素捕捉量の低下が小さい、耐熱性が高い二酸化炭素捕捉材を提供することができる。
CO捕捉材中のAl含有量とCO捕捉量との相関を示すグラフである。 CO捕捉材中のAl、Fe、Cu、V及びMoの含有量とCO捕捉量との相関を示すグラフである。 CO捕捉材中のFe、Cu、V及びMoの含有量とCO捕捉量の低下量との相関を示すグラフである。 本発明のCO捕捉材を使用し、伝熱管に水蒸気を通じて加熱する機構を備えたCO回収装置の例を示す概略構成図である。 本発明のCO捕捉材を使用し、反応容器内を減圧する機構を備えたCO回収装置の例を示す概略構成図である。
 本発明は、燃焼排ガスなどのCO含有ガス(二酸化炭素含有ガス)からCOを分離回収するための二酸化炭素捕捉材(以下、「CO捕捉材」ともいう。)に関し、特にCO捕捉量を増加させる技術に関する。ここで、二酸化炭素含有ガスは、二酸化炭素濃度が3~18体積%の燃焼排ガスを想定しているが、これに限定されるものではなく、炭酸カルシウム等の固体反応を扱う化学プラントの排ガスなども対象となり得る。この場合、二酸化炭素濃度は18体積%以上となり得る。また、二酸化炭素濃度は高いほど回収が容易となる。なお、二酸化炭素含有ガスの二酸化炭素濃度は、3体積%以上に限定されるものではなく、これよりも二酸化炭素濃度が低いガスであっても対象となり得る。
 以下、本発明を実施するための形態について説明する。なお、本発明の範囲は下記に挙げる例に限定されるものではない。
 本発明のCO捕捉材は、CeとAlとを含む酸化物であり、含有する金属元素のうち含有量が最も多い元素がCeであり、かつ、Alの含有量が0.01mol%以上40mol%以下(0.01~40mol%)である。この構成のCO捕捉材は、CO捕捉量を増加できることを確認した。
 効果が得られる理由としては、(1)Ce及びAlが複合酸化物を形成し、COを捕捉しやすいサイトを形成すること、及び、(2)捕捉材の比表面積が増加することが考えられる。なお、Al含有量が40mol%を超えている場合や、Alの酸化物のみの場合には、Ceの酸化物のみの場合と比較してCO捕捉量が低下する。なお、Al含有量が40mol%の場合においても、金属元素のうち含有量が最も多い元素がCeであるためには、Ceが少なくとも40mol%以上含まれていればよい。ここで、「含有量が最も多い元素」が2種類あっても構わない。
 本明細書においては、金属元素の含有量の単位である「mol%」は、CO捕捉材に含まれる金属元素の総量を100mol%とした場合の割合を示すものである。すなわち、CO捕捉材に含まれるすべての金属元素の含有量を分母とし、各金属元素の含有量を分子として求めた割合をモル基準で表したものである。
 なお、更に望ましいAlの含有量は、0.01mol%以上30mol%以下(0.01~30mol%)であり、特に望ましいAlの含有量は、5mol%以上20mol%以下(5~20mol%)である。
 CO捕捉材は、Ce及びAlに加え、更にFe、Cu、V及びMoのうち少なくとも1種類の金属元素を0.01mol%以上含む酸化物でもよい。これらの金属元素の含有量が増加するとCO捕捉量は低下するが、Al含有によるCO捕捉量の増加により、Ce酸化物のみの場合と比較してCO捕捉量を増加できる。
 Feの含有量は10mol%以下、Cuの含有量は7mol%以下、Vの含有量は3mol%以下、Moの含有量は3mol%以下であることが好ましい。これらの金属元素を2種類以上含む場合には、各元素の含有割合とCO捕捉量の低減量との相関から重み付けして得た下記式(1)を満たす組成とすることが好ましい。
 (Fe含有量)×1.0+(Cu含有量)×1.3+(V含有量)×3.3+(Mo含有量)×3.3≦10   …(1)
 ここで、式中の単位はmol%である。
 本発明のCO捕捉材を用いることによる利点は、純度の低い原料を使用できること、及び、不純物を除去するための精製工程を低減できることであり、結果として、原料及び機器コストを低減できる。
 本発明のCO捕捉材を合成するために原料として使用する化合物としては、酸化物、硝酸塩、塩化物、硫酸塩、炭酸塩、リン酸塩、水酸化物、シュウ酸塩、酢酸塩、ギ酸塩などが挙げられる。
 また、Ceの原料は、モナザイト、バストネサイトなどの鉱物であっても良い。鉱物は、Ce以外のランタニド(La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu)を含む場合がある。Ceとこれらのランタニド元素とを含有する酸化物は、Ceのみの酸化物と比較してCO捕捉量が増加するため、必ずしもCe以外のランタニド元素の含有量を低減するための精製をする必要はない。これらのランタニドの望ましい含有量は、合計で0.01mol%以上50mol%以下、より好ましくは0.01mol%以上30mol%以下である。このような原料を用いた場合には、精製コストを低減でき、かつ、CO捕捉量を増加できる。
 本発明のCO捕捉材を合成する方法としては、含浸法、混練法、共沈法、ゾルゲル法などの化学的調製方法や、蒸着法などの物理的調製方法が挙げられる。例えば、Ce及びAlの硝酸塩を含んだ溶液に、アンモニア水、水酸化ナトリウム(NaOH)、水酸化カルシウム(Ca(OH))などの塩基性の化合物を加えることでpHを7~10に調整し、CeとAlとを共沈させてもよい。この場合、水酸化アルミニウム(Al(OH))が凝集体(フロック)を形成することで、合成物の沈降速度を上昇させ、合成に要する時間を短縮できる。
 さらに、本発明の二酸化炭素捕捉材(後述の実施例1)の場合、600℃で焼成した後であっても、比表面積が130m/gである。よって、二酸化炭素捕捉量の低下が小さいと考えられる。
 これに対して、特許文献1の実施例5に記載の二酸化炭素捕捉材の場合は、500℃で焼成すると、比表面積が80m/g程度に低下する。よって、二酸化炭素捕捉量の低下も大きいと考えられる。
 ここで、上記の焼成温度は、実際の再生温度よりも高いが、二酸化炭素捕捉材の吸着・再生の繰り返しにおいて二酸化炭素捕捉材が劣化するか否かについて早期に判定するための加速試験として高温度における焼成試験を行ったものである。実際には、使用温度が200℃程度でも長期間の使用により徐々に劣化が進む。
 600℃における焼成は、500℃における焼成に比べてはるかに苛酷であり、600℃における焼成後の比表面積が、500℃における焼成後の比表面積より大きいということは、劣化が生じにくく、耐熱性に優れていることを示している。また、このことは、長期間の繰り返し使用にも強いことを示している。
 したがって、本発明の二酸化炭素捕捉材は、特許文献1に記載の二酸化炭素捕捉材よりも耐熱性が高いことは明らかである。この効果は、Ceに加えAlをも含む酸化物であることによるものと考えられる。
 本発明のCO捕捉材を使用したCO回収装置の構成要素は、本捕捉材を充填した反応容器、反応容器にCO含有ガスや加熱用ガスなどを導入する配管、反応容器からガスを排出する配管、反応容器を加熱するための加熱装置、反応容器内を加圧、減圧する機器、ガス中の水蒸気を凝縮させる凝縮器、反応容器内の凝縮水を回収するための容器、CO含有ガスを圧縮するための圧縮機などである。
 本発明のCO捕捉材は、セリアのほか、例えば、シリカ、アルミナ、チタニア、ジルコニア、ゼオライト、高分子材料、活性炭、MOF(Molecular Organic Framework)、ZIF(Zeolitic Imidazolate Framework)等に担持した形態又は混合した形態の高比表面積材料であってもよいし、その構成の最小単位が粒状、粒状の集合体、複合体であってもよい。また、二酸化炭素捕捉材が部材として形成される場合には、圧損が少なくなるように通気性を有するような形状とすることが好ましく、例えば、空隙率が高い多孔体としてもよいし、ハニカム形状としてもよい。また、二酸化炭素捕捉材の外形は、バルク、板状等でもよい。このとき留意すべき点は、空隙率については、回収ガス中のCO純度を高める場合には空隙率を小さくすればよい。すなわち、粒状で空隙率が小さい場合には、圧力損失が大きくなるという欠点があるが、空隙内に残留するCO以外のガス量が少なくなるため、回収ガス中のCO純度を高められるという利点がある。
 本発明のCO回収装置を用いたCOの回収方法としては、温度スイングによる回収法、圧力スイングによる回収法、及び圧力・温度スイングによる回収法が挙げられる。これらの回収方法は、CO含有ガスの圧力、CO分圧及び温度を勘案して決定すればよい。具体例としては、石炭火力発電所などの燃焼排ガスからCOを回収する場合には、約50℃でCO含有ガスからCOを捕捉・除去し、その後、CO捕捉材を150℃~200℃に加熱することにより、COを脱離し、純度を高めたCOを回収する方法が挙げられる。
 CO捕捉材の加熱方法としては、加熱されたガスや液体などの熱媒を直接CO捕捉材に接触させる方法、伝熱管などに加熱されたガスや液体などの熱媒を流し、伝熱面からの熱伝導により加熱する方法、電気炉などの電気的な発熱によりCO捕捉材を加熱する方法などが挙げられる。
 CO捕捉材の周辺雰囲気を減圧する方法は、ポンプやコンプレッサーなどにより機械的に減圧する方法や、雰囲気中の水蒸気を冷却により凝縮させる方法などが挙げられる。
CO捕捉材の周辺雰囲気のCO分圧を減圧する方法は、上記に加えCO以外のガスを流す方法が挙げられる。この際に使用するガスとしては、COと容易に分離できるガスが好ましく、特に冷却により容易に凝縮するという観点から水蒸気を使用する方法が挙げられる。
 CO捕捉材の周辺雰囲気を加圧する方法は、ポンプやコンプレッサーなどにより機械的に加圧する方法や、周辺雰囲気よりも圧力が高いガスを導入する方法が挙げられる。
 CO捕捉材にSOx、NOx、煤塵などが吸着した場合、CO捕捉量が低減する可能性がある。従って、CO捕捉材の性能保持の観点からは、SOx、NOx及び煤塵の濃度を低減することが好ましい。例えば、石炭火力発電所の排ガスからCOを回収する場合には、脱硝装置、脱硫装置及び脱塵装置の下流にCO捕捉材を用いたCO回収装置を設置することが考えられる。
 以下、本発明の実施例を詳細に説明する。
 なお、硝酸セリウム六水和物(Ce(NO・6HO)、硝酸アルミニウム九水和物(Al(NO・9HO)、硝酸鉄(III)九水和物(Fe(NO・9HO)、硝酸銅(II)三水和物(Cu(NO・3HO)、バナジン酸アンモニウム(NHVO)、モリブデン酸アンモニウム((NHMo24・4HO)、及び28重量%アンモニア水については、いずれも和光純薬工業製、試薬特級のものを使用した。
 (比較例1)
 精製水1080gに硝酸セリウム六水和物26.05gを室温で激しく撹拌しながら溶解した。この水溶液を撹拌しながら28重量%のアンモニア水溶液を滴下してpHを9.0とした。8時間撹拌した後、1時間静置し、沈殿物を洗浄ろ過により収集した。その後、沈殿物を乾燥炉にて120℃で乾燥し、大気雰囲気下の電気炉にて400℃で1時間焼成し、得られたセリウム酸化物をCO捕捉材とした。
 比較例1に記載の合成法において、硝酸セリウム六水和物26.05gの代わりに、硝酸セリウム六水和物23.45gと硝酸アルミニウム九水和物2.25gとを用いたこと以外は同様の方法で合成した酸化物をCO捕捉材とした。
 比較例1に記載の合成法において、硝酸セリウム六水和物26.05gの代わりに、硝酸セリウム六水和物20.84gと硝酸アルミニウム九水和物4.50gとを用いたこと以外は同様の方法で合成した酸化物をCO捕捉材とした。
 (比較例2)
 比較例1に記載の合成法において、硝酸セリウム六水和物26.05gの代わりに、硝酸セリウム六水和物13.03gと硝酸アルミニウム九水和物11.25gとを用いたこと以外は同様の方法で合成した酸化物をCO捕捉材とした。
 (比較例3)
 ベーマイト(Condea製、Pural-SB1)5gを電気炉において大気下400℃で1時間焼成して調製したアルミニウム酸化物をCO捕捉材とした。
 (比較例4)
 比較例1に記載の合成法において、硝酸セリウム六水和物26.05gの代わりに、硝酸セリウム六水和物23.45gと硝酸鉄(III)九水和物2.42gとを用いたこと以外は同様の方法で合成した酸化物をCO捕捉材とした。
 (比較例5)
 比較例1に記載の合成法において、硝酸セリウム六水和物26.05gの代わりに、硝酸セリウム六水和物23.45gと硝酸銅(II)三水和物1.45gとを用いたこと以外は同様の方法で合成した酸化物をCO捕捉材とした。
 (比較例6)
 比較例1に記載の合成法において、硝酸セリウム六水和物26.05gの代わりに、硝酸セリウム六水和物23.45gとバナジン酸アンモニウム0.70gとを用いたこと以外は同様の方法で合成した酸化物をCO捕捉材とした。
 (比較例7)
 比較例1に記載の合成法において、硝酸セリウム六水和物26.05gの代わりに、硝酸セリウム六水和物23.45gとモリブデン酸アンモニウム1.06gとを用いたこと以外は同様の方法で合成した酸化物をCO捕捉材とした。
 (CO捕捉量の測定方法)
 CO捕捉材は、直径40mmの金型を使用して、プレス機により200kgfでペレット化し、これを破砕した後、篩を用いて0.5~1.0mmの粒状に整粒した。その後、メスシリンダーを用いて1.0mlを測り、石英ガラス製反応管中に固定した。
 この反応管を電気炉に入れ、150ml/分でHeを流しながらCO捕捉材の温度を400℃に上昇させ、1時間保持して、不純物及び捕捉材に吸着したガスを除去した。
 その後、冷却してCO捕捉材温度を50℃まで下げ、電気炉で試料温度を50℃に保ちながらCOパルス捕捉試験によりCO捕捉量を測定した。サンプルガスとして12体積%のCOと88体積%のHeからなる混合ガス10mlをパルス状で4分おきに2分間導入し、反応管出口のCO濃度をガスクロマトグラフィにより測定した。パルス導入は反応管出口で測定されるCOが飽和するまで実施した。また、キャリアガスとしてHeを使用した。
 図1は、実施例及び比較例のCO捕捉材についてCO捕捉量とAl含有量との相関を示すグラフである。
 本図から、Ceのみの酸化物である比較例1よりもCO捕捉量が増加するAlは、0.01mol%以上40mol%以下と考えられる。
 図2は、Fe、Cu、V及びMoのいずれかを含むCO捕捉材のCO捕捉量と、各金属元素の含有量との相関を示すグラフである。
 本図から、Ceのみの酸化物である比較例1よりも、Fe、Cu、V又はMoを含む場合、CO捕捉量が低下する。
 比較例1よりもCO捕捉量を多くするためには、Fe、Cu、V又はMoの元素を添加することによるCO捕捉量の低下量が、Al含有によるCO捕捉量の増加量よりも小さければ良いと考えられる。
 図3は、Fe、Cu、V及びMoのいずれかを含むことによるCO捕捉量の低下量と元素含有量との相関を示すグラフである。本図に示すCO捕捉量の低下量は、下記式(2)を用いて算出した。
 (CO捕捉量の低下量)=(比較例1のCO捕捉量)
               -(各比較例のCO捕捉量)  …(2)
 本図においては、Alを10%含有した場合(実施例1)を基準として表すため、比較例1に対する実施例1の増加量を破線で示している。すなわち、実施例1のCO捕捉量は、比較例1に対して90mmol/L増加する。
 CO捕捉量の低下が、元素含有量に比例すると考えた場合、各元素を1mol%含む場合のCO捕捉量の低減量は、Feで9mmol/L・mol%-Fe、Cuで14mmol/L・mol%-Cu、Vで31mmol/L・mol%-V、Moで31mmol/L・mol%-Moである。この値から、CO捕捉量が比較例1よりも多くなるために好ましい元素の含有量を推定した。その結果は、次のとおりである。
 Feは10mol%以下、Cuは7mol%以下、Vは3mol%以下、Moは3mol%以下である。これらの金属元素を2種類以上含む場合には、上述のCO捕捉量の低減量の合計が90mmol/L以下となれば良く、具体的には、上記式(1)を満たす組成とすればよい。
 以下、CO回収装置の構成について説明する。
 図4は、本発明のCO捕捉材を使用したCO回収装置の例を示したものである。
 本図において、二酸化炭素回収装置401(CO回収装置)には、CO含有ガスを導入するための配管2及び弁3と、本発明のCO捕捉材を充填した反応容器1と、反応容器1からガスを排出するための配管7と、前記ガスを大気へ放出するための配管及び弁8と、反応容器1内に伝熱面を有する伝熱管6(熱交換部)と、伝熱管6に水蒸気を導入するための配管4及び弁5と、伝熱管6から排出される凝縮水を回収するための配管と、ガス中の水蒸気を凝縮させるための凝縮器10と、前記ガスを凝縮器10へ導入するための配管及び弁9と、凝縮水を回収するための配管及び弁11と、COを液化・圧縮するための圧縮機13(CO圧縮機)と、凝縮器10から圧縮機13へガスを導入する為の配管及び弁12と、液化したCOを回収するための配管及び弁14を備えている。
 CO含有ガスからCOを捕捉・除去する際は、CO含有ガスを反応容器1内に導入し、CO除去後のガスを大気へ放出する。CO捕捉材に捕捉したCOを脱離する場合には、伝熱管6内に水蒸気を導入することによりCO捕捉材を加熱してCOを脱離し、脱離ガス内の水蒸気を凝縮器10で除去したのち、圧縮機13へ導入して加圧・液化し、その後、液化したCOを回収する。
 なお、高温度のガスを反応容器に導入することにより、二酸化炭素捕捉材と高温度のガスとを接触させ、二酸化炭素捕捉材を加熱する構成としてもよい。高温ガスの種類としては、大気から得たガス、窒素などの不活性ガス、CO、水蒸気などが挙げられる。回収ガスCO濃度が低くても良い場合には、大気や窒素などを用いても良い。CO濃度を向上させる必要がある場合にはCOを用いればよい。脱離ガスと分離させたい場合には凝縮温度の低い水蒸気を用いればよい。
 図5は、本発明のCO捕捉材を使用したCO回収装置の他の例を示したものである。
 本図において、二酸化炭素回収装置501には、CO含有ガスを導入するための配管2及び弁3と、本発明のCO捕捉材を充填した反応容器1と、反応容器1からガスを排出するための配管7と、前記ガスを大気へ放出するための配管及び弁8と、反応容器1内を減圧するための減圧器51と、ガス中の水蒸気を凝縮させるための凝縮器10と、減圧器51から排出されたガスを凝縮器10へ導入するための配管及び弁9と、凝縮水を回収するための配管及び弁11と、COを液化・圧縮するための圧縮機13と、凝縮器10から圧縮機13へガスを導入する為の配管及び弁12と、液化したCOを回収するための配管及び弁14を備えている。
 CO含有ガスからCOを捕捉・除去する際は、CO含有ガスを反応容器1内に導入し、CO除去後のガスを大気へ放出する。CO捕捉材に捕捉したCOを脱離する場合には、減圧器51により反応容器1を減圧することによりCO捕捉材からCOを脱離し、脱離ガス内の水蒸気を凝縮器10で除去したのち、圧縮機13へ導入して加圧・液化し、その後、液化したCOを回収する。
 なお、図には示していないが、反応容器1の上流側(配管2)に反応容器1内を加圧するための加圧部(圧縮機等)を設けてもよい。含有ガス中のCO分圧が高い方がCO吸着を促進できる。したがって、濃度や温度域によっては加圧部により導入ガスを加圧した状態で流通させることが好ましい場合がある。
 1:反応容器、2、4、7:配管、3、5、8、9、11、12、14:弁、6:伝熱管、10:凝縮器、13:圧縮機、51:減圧器、401、501:二酸化炭素回収装置。

Claims (14)

  1.  二酸化炭素含有ガスから二酸化炭素を分離回収するための二酸化炭素捕捉材であって、Ce及びAlを含有する酸化物であり、含有する金属元素のうち含有量が最も多い元素は、Ceであり、かつ、Alの含有量は、0.01mol%以上40mol%以下であることを特徴とする二酸化炭素捕捉材。
  2.  Ceの含有量は、40mol%以上であることを特徴とする請求項1記載の二酸化炭素捕捉材。
  3.  さらに、Fe、Cu、V及びMoからなる群から選ばれる少なくとも1種類の元素を0.01mol%以上含むことを特徴とする請求項1又は2に記載の二酸化炭素捕捉材。
  4.  Fe、Cu、V及びMoの含有量は、下記式(1)を満たすことを特徴とする請求項3記載の二酸化炭素捕捉材。
     (Fe含有量)×1.0+(Cu含有量)×1.3+(V含有量)×3.3+(Mo含有量)×3.3≦10   …(1)
    (式中の単位はmol%である。)
  5.  さらに、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuを合計で0.01~50mol%含むことを特徴とする請求項1~4のいずれか一項に記載の二酸化炭素捕捉材。
  6.  請求項1~5のいずれか一項に記載の二酸化炭素捕捉材を用いることを特徴とする二酸化炭素回収装置。
  7.  請求項1~5のいずれか一項に記載の二酸化炭素捕捉材を充填した反応容器と、この反応容器に前記二酸化炭素含有ガスを導入するための配管と、前記反応容器から前記二酸化炭素含有ガスを排出するための配管と、前記反応容器を加熱するための加熱部と、前記二酸化炭素含有ガス中の水蒸気を凝縮させるための凝縮器とを備えたことを特徴とする二酸化炭素回収装置。
  8.  請求項1~5のいずれか一項に記載の二酸化炭素捕捉材を充填した反応容器と、この反応容器に前記二酸化炭素含有ガスを導入するための配管と、前記反応容器から前記二酸化炭素含有ガスを排出するための配管と、前記反応容器内を減圧するための減圧部と、前記二酸化炭素含有ガス中の水蒸気を凝縮させるための凝縮器とを備えたことを特徴とする二酸化炭素回収装置。
  9.  請求項1~5のいずれか一項に記載の二酸化炭素捕捉材を充填した反応容器と、この反応容器に前記二酸化炭素含有ガスを導入するための配管と、前記反応容器から前記二酸化炭素含有ガスを排出するための配管と、前記反応容器内を加圧するための加圧部と、前記二酸化炭素含有ガス中の水蒸気を凝縮させるための凝縮器とを備えたことを特徴とする二酸化炭素回収装置。
  10.  前記凝縮器の下流側には、前記二酸化炭素含有ガスを圧縮するための圧縮機を設けたことを特徴とする請求項7~9のいずれか一項に記載の二酸化炭素回収装置。
  11.  前記加熱部は、高温度のガスを前記反応容器に導入するものであり、前記二酸化炭素捕捉材と前記高温度のガスとを接触させるものであることを特徴とする請求項7記載の二酸化炭素回収装置。
  12.  前記加熱部は、前記反応容器に設けた熱交換部であり、この熱交換部内に熱媒を流すことにより前記二酸化炭素捕捉材を加熱することを特徴とする請求項7記載の二酸化炭素回収装置。
  13.  前記反応容器内の二酸化炭素の分圧を低下させるためのガスを導入する構成を有することを特徴とする請求項7~12のいずれか一項に記載の二酸化炭素回収装置。
  14.  前記二酸化炭素の分圧を低下させるためのガスは、水蒸気であることを特徴とする請求項13記載の二酸化炭素回収装置。
PCT/JP2014/077440 2014-02-14 2014-10-15 二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置 WO2015122053A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/914,497 US20160199808A1 (en) 2014-02-14 2014-10-15 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using same
CN201480046978.XA CN105473220B (zh) 2014-02-14 2014-10-15 二氧化碳捕捉材料及使用其的二氧化碳回收装置
CA2922458A CA2922458A1 (en) 2014-02-14 2014-10-15 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using same
EP14882666.2A EP3106218A4 (en) 2014-02-14 2014-10-15 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-026237 2014-02-14
JP2014026237A JP2015150500A (ja) 2014-02-14 2014-02-14 二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置

Publications (1)

Publication Number Publication Date
WO2015122053A1 true WO2015122053A1 (ja) 2015-08-20

Family

ID=53799809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077440 WO2015122053A1 (ja) 2014-02-14 2014-10-15 二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置

Country Status (6)

Country Link
US (1) US20160199808A1 (ja)
EP (1) EP3106218A4 (ja)
JP (1) JP2015150500A (ja)
CN (1) CN105473220B (ja)
CA (1) CA2922458A1 (ja)
WO (1) WO2015122053A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195699A (zh) * 2016-05-16 2019-01-11 日立化成株式会社 吸附剂、二氧化碳的除去方法、二氧化碳除去器以及空调装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3352885B1 (en) * 2015-09-25 2022-11-02 ExxonMobil Technology and Engineering Company Cyclic thermal swing adsorption with direct heat transfer using a heat transfer fluid
CA3024074A1 (en) * 2016-05-16 2017-11-23 Hitachi Chemical Company, Ltd. Adsorbent, method for removing carbon dioxide, device for removing carbon dioxide, and system for removing carbon dioxide
US20190217242A1 (en) * 2016-05-16 2019-07-18 Hitachi Chemical Company, Ltd. Adsorbent, method for producing same, method for removing carbon dioxide, device for removing carbon dioxide, and air conditioner
CN109153003A (zh) * 2016-05-16 2019-01-04 日立化成株式会社 空调装置、空调系统、二氧化碳的除去方法、吸附剂以及二氧化碳除去器
JPWO2018003323A1 (ja) * 2016-06-29 2019-04-25 日立化成株式会社 吸着剤及びその製造方法、二酸化炭素の除去方法、二酸化炭素除去器、並びに、空調装置
US10537823B2 (en) * 2017-02-15 2020-01-21 Hall Labs Llc Method for removal of carbon dioxide from a carrier liquid
JPWO2018179089A1 (ja) * 2017-03-28 2020-01-30 日立化成株式会社 吸着剤、反応容器、二酸化炭素除去装置及び二酸化炭素除去システム
JP7123749B2 (ja) * 2018-10-30 2022-08-23 川崎重工業株式会社 二酸化炭素分離回収システム及び方法
JP2022093075A (ja) * 2020-12-11 2022-06-23 大陽日酸株式会社 Co2回収装置及びco2回収方法
CN113042003B (zh) * 2021-03-17 2023-01-13 太原科技大学 一种锆基金属-有机骨架材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272336A (ja) * 1997-03-31 1998-10-13 Nissan Motor Co Ltd 二酸化炭素吸収材および排ガス中の二酸化炭素の分離回収方法
JP2001046878A (ja) * 1999-06-04 2001-02-20 Ne Chemcat Corp ガス処理剤及びその製造方法並びにガス精製方法、ガス精製器及びガス精製装置
JP2002011326A (ja) * 2000-06-30 2002-01-15 Toshiba Corp 二酸化炭素回収装置
JP2003019435A (ja) * 2001-07-10 2003-01-21 Daikin Ind Ltd 二酸化炭素吸着剤及び二酸化炭素除去装置
JP2011522692A (ja) * 2008-05-28 2011-08-04 ロデイア・オペラシヨン 二酸化炭素含有量を低減するためのガスの処理方法
JP2011173059A (ja) * 2010-02-24 2011-09-08 Hitachi Ltd 二酸化炭素吸着材及びこれを用いた二酸化炭素回収装置
JP2012110874A (ja) * 2010-11-29 2012-06-14 Hitachi Ltd 二酸化炭素捕捉材
JP2013059703A (ja) * 2011-09-12 2013-04-04 Hitachi Ltd 二酸化炭素捕捉材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914033B2 (en) * 2002-08-13 2005-07-05 Conocophillips Company Desulfurization and novel compositions for same
JP2013129554A (ja) * 2011-12-21 2013-07-04 Rhodia Operations 複合酸化物、その製造法及び排ガス浄化用触媒
JP5864281B2 (ja) * 2012-01-20 2016-02-17 株式会社日立製作所 Co2分離回収装置
JP6107695B2 (ja) * 2014-02-10 2017-04-05 日立化成株式会社 二酸化炭素回収装置及び二酸化炭素回収方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272336A (ja) * 1997-03-31 1998-10-13 Nissan Motor Co Ltd 二酸化炭素吸収材および排ガス中の二酸化炭素の分離回収方法
JP2001046878A (ja) * 1999-06-04 2001-02-20 Ne Chemcat Corp ガス処理剤及びその製造方法並びにガス精製方法、ガス精製器及びガス精製装置
JP2002011326A (ja) * 2000-06-30 2002-01-15 Toshiba Corp 二酸化炭素回収装置
JP2003019435A (ja) * 2001-07-10 2003-01-21 Daikin Ind Ltd 二酸化炭素吸着剤及び二酸化炭素除去装置
JP2011522692A (ja) * 2008-05-28 2011-08-04 ロデイア・オペラシヨン 二酸化炭素含有量を低減するためのガスの処理方法
JP2011173059A (ja) * 2010-02-24 2011-09-08 Hitachi Ltd 二酸化炭素吸着材及びこれを用いた二酸化炭素回収装置
JP2012110874A (ja) * 2010-11-29 2012-06-14 Hitachi Ltd 二酸化炭素捕捉材
JP2013059703A (ja) * 2011-09-12 2013-04-04 Hitachi Ltd 二酸化炭素捕捉材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3106218A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195699A (zh) * 2016-05-16 2019-01-11 日立化成株式会社 吸附剂、二氧化碳的除去方法、二氧化碳除去器以及空调装置
EP3459628A4 (en) * 2016-05-16 2020-01-29 Hitachi Chemical Company, Ltd. ADSORPTION AGENT, METHOD FOR REMOVING CARBON DIOXIDE, CARBON DIOXIDE REMOVAL AND AIR CONDITIONING

Also Published As

Publication number Publication date
CN105473220B (zh) 2018-09-04
CA2922458A1 (en) 2015-08-20
US20160199808A1 (en) 2016-07-14
JP2015150500A (ja) 2015-08-24
EP3106218A1 (en) 2016-12-21
EP3106218A4 (en) 2017-09-06
CN105473220A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2015122053A1 (ja) 二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置
JP5589996B2 (ja) 二酸化炭素捕捉材
WO2016006620A1 (ja) Co2除去装置
JP2006298707A (ja) 二酸化炭素の分離回収方法および二酸化炭素の分離回収装置
EP2814592B1 (en) Process for removing co2
WO2018179351A1 (ja) 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法
JP6642590B2 (ja) 二酸化炭素分離回収装置、これを用いた燃焼システム及び火力発電システム並びに二酸化炭素の分離回収方法
CN111375274B (zh) 一种含so2气体的处理方法及装置
CA2833983C (en) Co2 capturing material and co2 separation and recovery device
JP2020028847A (ja) 複合体、構造体、吸着剤、二酸化炭素分離装置、二酸化炭素濃度制御システム、及び複合体の製造方法
CN111375270B (zh) 一种含so2烟气的处理方法及装置
KR20220067591A (ko) 이산화탄소 포집용 이온-교환된 재생촉매
WO2010113173A2 (en) A barium and potassium exchanged zeolite-x adsorbents for co2 removal from a gas mixture and preparation thereof
JP5681460B2 (ja) 二酸化炭素捕捉材
JP6721020B2 (ja) Co2除去装置
Yang et al. A new method of processing CO2 and magnesite slag simultaneously
JP2014083488A (ja) 二酸化炭素吸着剤及びこれを用いた二酸化炭素回収装置
JP6721019B2 (ja) Co2除去装置
辻本 et al. Studies on Novel Catalysts for Direct
TW201023969A (en) Adsorbent, regenerative cycle operation of the same and apparatus of regeneration the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046978.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2922458

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014882666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14914497

Country of ref document: US

Ref document number: 2014882666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE