WO2015121956A1 - 電子機器及び駆動制御方法 - Google Patents

電子機器及び駆動制御方法 Download PDF

Info

Publication number
WO2015121956A1
WO2015121956A1 PCT/JP2014/053402 JP2014053402W WO2015121956A1 WO 2015121956 A1 WO2015121956 A1 WO 2015121956A1 JP 2014053402 W JP2014053402 W JP 2014053402W WO 2015121956 A1 WO2015121956 A1 WO 2015121956A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
drive control
electronic device
operation input
touch panel
Prior art date
Application number
PCT/JP2014/053402
Other languages
English (en)
French (fr)
Inventor
谷中 聖志
裕一 鎌田
宮本 晶規
遠藤 康浩
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2014/053402 priority Critical patent/WO2015121956A1/ja
Priority to JP2015562630A priority patent/JP6183476B2/ja
Publication of WO2015121956A1 publication Critical patent/WO2015121956A1/ja
Priority to US15/213,880 priority patent/US10031585B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0483Interaction with page-structured environments, e.g. book metaphor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/169Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes
    • G06F1/1692Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes the I/O peripheral being a secondary touch screen used as control interface, e.g. virtual buttons or sliders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/014Force feedback applied to GUI
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface

Definitions

  • the present invention relates to an electronic device and a drive control method.
  • display means Conventionally, display means, contact detection means for detecting a contact state of a user's operation part to the display means, and tactile vibration that gives a predetermined tactile sensation to the operation part in contact with the display means.
  • tactile sensation providing device including tactile sensation vibration generating means to be generated (for example, see Patent Document 1).
  • the tactile sensation providing apparatus further includes vibration waveform data generation means for generating waveform data for generating the tactile vibration based on the detection result by the contact detection means.
  • the tactile sensation providing apparatus further performs a modulation process on the waveform data generated by the vibration waveform data generation unit using an ultrasonic wave as a carrier wave, and converts the ultrasonic modulation signal generated by the modulation process into the tactile sensation.
  • Ultrasonic modulation means for outputting to the tactile sensation vibration generating means as a signal for generating vibration.
  • the ultrasonic modulation means performs either frequency modulation or phase modulation.
  • the ultrasonic modulation means further performs amplitude modulation.
  • the ultrasonic frequency of the conventional tactile sensation presenting device may be a frequency (approximately 20 kHz or higher) higher than the audible band, and the ultrasonic frequency itself is not particularly devised, so that a good tactile sensation may not be provided. There is.
  • an object is to provide an electronic device and a drive control method that can provide a good tactile sensation.
  • An electronic apparatus is disposed along a display panel, a rectangular touch panel disposed on a display surface side of the display panel, and one side of the touch panel.
  • a plurality of first vibration elements that generate vibrations on an operation surface that performs operation input on the touch panel, and a vibration that is provided along an opposite side of the one side of the touch panel and that performs operation input on the touch panel.
  • a plurality of second vibration elements that generate the noise, the coordinates of the divided areas obtained by dividing the operation surface into a plurality of areas, and the identifiers of the first vibration elements or the second vibration elements that are driven in the divided areas.
  • a drive for generating the natural vibration of the ultrasonic band on the operation surface.
  • Signal and a drive control unit for driving any one of said plurality of first transducer elements and said plurality of second transducer elements.
  • FIG. 3 is a diagram showing a cross section taken along the line AA of the electronic device 100 shown in FIG. 2. It is a figure which shows the wave front formed in parallel with the short side of the top panel 120 among the standing waves produced in the top panel 120 by the natural vibration of an ultrasonic band. It is a figure explaining a mode that the dynamic friction force applied to the fingertip which performs operation input changes with the natural vibration of the ultrasonic band produced in the top panel 120 of the electronic device. It is a figure which shows the structure of the electronic device 100 of embodiment.
  • FIG. 4 is a diagram showing first data and second data stored in a memory 250.
  • FIG. It is a flowchart which shows the process which the drive control part 240 of the drive control apparatus 300 of the electronic device 100 of embodiment performs. It is a figure which shows the operation example of the electronic device 100 of embodiment. It is a figure which shows the operation example of the electronic device 100 of embodiment.
  • FIG. 1 is a perspective view showing an electronic device 100 according to an embodiment.
  • the electronic device 100 is, for example, a smartphone terminal or a tablet computer using a touch panel as an input operation unit. Since the electronic device 100 only needs to be a device having a touch panel as an input operation unit, the electronic device 100 is a device that is installed and used in a specific place such as a portable information terminal or an ATM (Automatic Teller Machine). May be.
  • a smartphone terminal or a tablet computer using a touch panel as an input operation unit. Since the electronic device 100 only needs to be a device having a touch panel as an input operation unit, the electronic device 100 is a device that is installed and used in a specific place such as a portable information terminal or an ATM (Automatic Teller Machine). May be.
  • ATM Automatic Teller Machine
  • the input operation unit 101 of the electronic device 100 is provided with a display panel below the touch panel.
  • Various buttons 102A or sliders 102B or the like (hereinafter referred to as GUI operation unit 102) using a GUI (Graphic User Interface) are provided on the display panel. Is displayed).
  • the user of the electronic device 100 usually touches the input operation unit 101 with a fingertip in order to operate the GUI operation unit 102.
  • FIG. 2 is a plan view showing the electronic device 100 according to the embodiment
  • FIG. 3 is a view showing a cross section taken along line AA of the electronic device 100 shown in FIG. 2 and 3, an XYZ coordinate system that is an orthogonal coordinate system is defined as shown.
  • the electronic device 100 includes a housing 110, a top panel 120, a double-sided tape 130, vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, 140B3, a touch panel 150, a display panel 160, and a substrate 170.
  • the housing 110 is made of, for example, resin, and as shown in FIG. 3, the substrate 170, the display panel 160, and the touch panel 150 are disposed in the recess 110 ⁇ / b> A, and the top panel 120 is bonded by the double-sided tape 130. .
  • the top panel 120 is a thin flat plate member that is rectangular in plan view, and is made of transparent glass or reinforced plastic such as polycarbonate.
  • the surface of the top panel 120 (the surface on the Z-axis positive direction side) is an example of an operation surface on which the user of the electronic device 100 performs operation input.
  • the top panel 120 has vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 bonded to the surface in the negative Z-axis direction, and four sides in a plan view are bonded to the housing 110 with a double-sided tape 130.
  • the double-sided tape 130 only needs to be able to bond the four sides of the top panel 120 to the housing 110, and does not have to be a rectangular ring as shown in FIG.
  • the touch panel 150 is disposed on the Z-axis negative direction side of the top panel 120.
  • the top panel 120 is provided to protect the surface of the touch panel 150. Further, another panel or a protective film may be provided on the surface of the top panel 120.
  • the top panel 120 is driven with the vibration elements 140A1, 140A2, 140A3, 140A3, 140B1, 140B2, and 140B3 in a state where the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are bonded to the surface in the negative Z-axis direction. It vibrates by.
  • the top panel 120 is vibrated at the natural vibration frequency of the top panel 120 to generate a standing wave in the top panel 120.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are bonded to the top panel 120, the weight of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 is actually considered.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are bonded to the surface of the top panel 120 on the Z axis negative direction side. Note that the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are simply referred to as the vibration elements 140 unless otherwise distinguished.
  • the vibration elements 140A1, 140A2, and 140A3 are arranged in this order from the X-axis negative direction side to the X-axis positive direction side along the short side extending in the X-axis direction on the Y-axis negative direction side.
  • the vibration elements 140A1, 140A2, and 140A3 are examples of a plurality of first vibration elements.
  • the vibration elements 140B1, 140B2, and 140B3 are arranged in this order from the X-axis negative direction side to the X-axis positive direction side along the short side extending in the X-axis direction on the Y-axis positive direction side.
  • the vibration elements 140B1, 140B2, and 140B3 are examples of a plurality of second vibration elements.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 may be elements that can generate vibrations in an ultrasonic band.
  • elements including a piezoelectric element such as a piezoelectric element can be used.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven by a drive signal output from a drive control unit described later.
  • the amplitude (intensity) and frequency of vibration generated by the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are set by the drive signal.
  • On / off of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 is controlled by a drive signal.
  • an ultrasonic band means a frequency band about 20 kHz or more, for example.
  • the frequency at which vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 vibrate is equal to the frequency of top panel 120. Therefore, the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven by the drive signal so as to vibrate at the natural frequency of the top panel 120.
  • the touch panel 150 is disposed on the display panel 160 (Z-axis positive direction side) and below the top panel 120 (Z-axis negative direction side).
  • the touch panel 150 is an example of a coordinate detection unit that detects a position where the user of the electronic device 100 touches the top panel 120 (hereinafter referred to as an operation input position).
  • GUI operation unit On the display panel 160 below the touch panel 150, various buttons and the like (hereinafter referred to as GUI operation unit) by GUI are displayed. For this reason, the user of the electronic device 100 usually touches the top panel 120 with a fingertip in order to operate the GUI operation unit.
  • the touch panel 150 may be a coordinate detection unit that can detect the position of an operation input to the user's top panel 120, and may be, for example, a capacitance type or resistance film type coordinate detection unit.
  • a mode in which the touch panel 150 is a capacitive coordinate detection unit will be described. Even if there is a gap between the touch panel 150 and the top panel 120, the capacitive touch panel 150 can detect an operation input to the top panel 120.
  • the top panel 120 may be integrated with the touch panel 150.
  • the surface of the touch panel 150 becomes the surface of the top panel 120 shown in FIGS. 2 and 3, and an operation surface is constructed.
  • the structure which excluded the top panel 120 shown in FIG.2 and FIG.3 may be sufficient.
  • the surface of the touch panel 150 constructs the operation surface.
  • the member having the operation surface may be vibrated by the natural vibration of the member.
  • the touch panel 150 when the touch panel 150 is a capacitance type, the touch panel 150 may be disposed on the top panel 120. Also in this case, the surface of the touch panel 150 constructs the operation surface. Moreover, when the touch panel 150 is a capacitance type, the structure which excluded the top panel 120 shown in FIG.2 and FIG.3 may be sufficient. Also in this case, the surface of the touch panel 150 constructs the operation surface. In this case, the member having the operation surface may be vibrated by the natural vibration of the member.
  • the display panel 160 may be a display unit that can display an image, such as a liquid crystal display panel or an organic EL (Electroluminescence) panel.
  • the display panel 160 is installed on the substrate 170 (Z-axis positive direction side) by a holder or the like (not shown) inside the recess 110A of the housing 110.
  • the display panel 160 is driven and controlled by a driver IC (Integrated Circuit), which will be described later, and displays a GUI operation unit, images, characters, symbols, graphics, and the like according to the operation status of the electronic device 100.
  • driver IC Integrated Circuit
  • the substrate 170 is disposed inside the recess 110 ⁇ / b> A of the housing 110.
  • a display panel 160 and a touch panel 150 are disposed on the substrate 170.
  • the display panel 160 and the touch panel 150 are fixed to the substrate 170 and the housing 110 by a holder or the like (not shown).
  • the drive control unit mounted on the substrate 170 has the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2 and 140B3 are driven, and the top panel 120 is vibrated at the frequency of the ultrasonic band.
  • the frequency of this ultrasonic band is a resonance frequency of a resonance system including the top panel 120 and the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3, and causes the top panel 120 to generate a standing wave.
  • the electronic device 100 provides tactile sensation to the user through the top panel 120 by generating a standing wave in the ultrasonic band.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 When driving the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3, when the number of periods k is an integer, the vibration elements 140A1, 140A2, and 140A3 and the vibration elements 140B1, 140B2, and 140B3 are in the same phase. It can be driven by. Further, when the number of periods k is an odd number, it may be driven in the opposite phase.
  • the standing wave generated in the top panel 120 will be described with reference to FIG.
  • at least one of vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 is driven in accordance with the position of an operation input to top panel 120.
  • a standing wave generated in the top panel 120 when all of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven will be described.
  • FIG. 4 is a diagram showing a wave front formed in parallel to the short side of the top panel 120 among standing waves generated in the top panel 120 due to the natural vibration of the ultrasonic band
  • FIG. 4A is a side view.
  • (B) is a perspective view.
  • 4A and 4B XYZ coordinates similar to those in FIGS. 2 and 3 are defined.
  • the amplitude of the standing wave is exaggerated for ease of understanding.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are omitted.
  • 4A and 4B are waveforms when the number of periods k is 10, as an example.
  • the period number k is 10.
  • the natural frequency f is 33.5 [kHz].
  • a drive signal having a frequency of 33.5 [kHz] may be used.
  • the top panel 120 is a flat member, but when the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 (see FIGS. 2 and 3) are driven to generate the natural vibration of the ultrasonic band, FIG. As shown in (A) and (B) of No. 4, a standing wave is generated on the surface.
  • the vibration elements 140A1, 140A2, and 140A3 are arranged along the short side extending in the X-axis direction on the Y-axis negative direction side.
  • 140B1, 140B2, and 140B3 will be described in the form of being arranged along the short side extending in the X-axis direction on the Y-axis positive direction side.
  • the number of vibration elements arranged along the pair of short sides of the top panel 120 may be any number as long as it is plural. However, the number of vibration elements arranged along each short side is equal, and the elements are arranged symmetrically about a straight line parallel to the X axis passing through the midpoint of the top panel 120 in the Y axis direction. That's fine.
  • a plurality of vibration elements may be provided along the pair of long sides of the top panel 120, respectively.
  • FIG. 5 is a diagram illustrating a state in which the dynamic friction force applied to the fingertip that performs the operation input changes due to the natural vibration of the ultrasonic band generated in the top panel 120 of the electronic device 100.
  • the user performs an operation input to move the finger along the arrow from the back side of the top panel 120 to the near side while touching the top panel 120 with the fingertip.
  • the vibration is turned on / off by turning on / off the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 (see FIGS. 2 and 3).
  • the natural vibration of the ultrasonic band occurs in the entire top panel 120 as shown in FIG. 4, but in FIGS. 5A and 5B, the user's finger is on the front side from the back side of the top panel 120.
  • the operation pattern which switches on / off of a vibration during moving to is shown.
  • the vibration is off when the user's finger is on the back side of the top panel 120, and the vibration is on in the middle of moving the finger to the near side.
  • the vibration is turned on when the user's finger is on the back side of the top panel 120, and the vibration is turned off in the middle of moving the finger to the near side. Yes.
  • the dynamic frictional force applied to the fingertip is large in the range indicated in gray on the back side of the top panel 120, and the dynamic frictional force applied to the fingertip is small in the range indicated in white on the near side of the top panel 120.
  • the user who performs an operation input to the top panel 120 senses a decrease in the dynamic friction force applied to the fingertip and perceives the ease of slipping of the fingertip when the vibration is turned on. It will be. At this time, the user feels that a concave portion exists on the surface of the top panel 120 when the dynamic friction force decreases due to the surface of the top panel 120 becoming smoother.
  • the dynamic friction force applied to the fingertip is small in the range shown in white on the front side of the top panel 120, and the dynamic friction force applied to the fingertip is large in the range shown in gray on the front side of the top panel 120.
  • the user who performs an operation input to the top panel 120 senses an increase in the dynamic friction force applied to the fingertip when the vibration is turned off, You will perceive the feeling of being caught. And when a dynamic friction force becomes high because it becomes difficult to slip a fingertip, it will feel like a convex part exists in the surface of the top panel 120.
  • FIG. 6 is a diagram illustrating a configuration of the electronic device 100 according to the embodiment.
  • the electronic device 100 includes vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, 140B3, an amplifier 141, a touch panel 150, a driver IC (Integrated Circuit) 151, a display panel 160, a driver IC 161, a control unit 200, a sine wave generator 310, And an amplitude modulator 320.
  • a driver IC Integrated Circuit
  • the control unit 200 includes an application processor 220, a communication processor 230, a drive control unit 240, and a memory 250.
  • the control unit 200 is realized by an IC chip, for example.
  • the drive control unit 240, the sine wave generator 310, and the amplitude modulator 320 constitute the drive control device 300.
  • the application processor 220, the communication processor 230, the drive control unit 240, and the memory 250 are realized by one control unit 200.
  • the drive control unit 240 is provided outside the control unit 200. It may be provided as an IC chip or a processor.
  • data necessary for drive control of the drive control unit 240 is stored in a memory different from the memory 250 and provided in the drive control device 300. That's fine.
  • the casing 110, the top panel 120, the double-sided tape 130, and the substrate 170 are omitted.
  • the amplifier 141, the driver IC 151, the driver IC 161, the drive control unit 240, the memory 250, the sine wave generator 310, and the amplitude modulator 320 will be described.
  • the amplifier 141 is disposed between the drive control device 300 and the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3.
  • the amplifier 141 amplifies the drive signal output from the drive control device 300 to generate the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven.
  • the driver IC 151 is connected to the touch panel 150, detects position data indicating a position where an operation input to the touch panel 150 has been performed, and outputs the position data to the control unit 200. As a result, the position data is input to the application processor 220 and the drive control unit 240. Note that inputting position data to the drive control unit 240 is equivalent to inputting position data to the drive control apparatus 300.
  • the driver IC 161 is connected to the display panel 160, inputs drawing data output from the drive control device 300 to the display panel 160, and causes the display panel 160 to display an image based on the drawing data. As a result, a GUI operation unit or an image based on the drawing data is displayed on the display panel 160.
  • Application processor 220 performs processing for executing various applications of electronic device 100.
  • the communication processor 230 executes processes necessary for the electronic device 100 to perform communication such as 3G (Generation), 4G (Generation), LTE (Long Term Evolution), and WiFi.
  • the drive control unit 240 performs two types of drive control.
  • the first drive control is drive control that selects and drives at least one of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 according to the position of the operation input to the top panel 120.
  • the second drive control is a drive control that outputs amplitude data to the amplitude modulator 320 when two predetermined conditions are met.
  • FIG. 7 is a diagram showing the amplitude of the standing wave generated in the top panel 120 by the first drive control.
  • FIG. 7A shows a standing wave when the vibration elements 140A2 and 140B2 are driven
  • FIG. 7B shows a standing wave when only the vibration element 140B2 is driven.
  • the portion where the amplitude of the standing wave is large is shown in dark gray, and the portion where the amplitude is small is shown in white.
  • the maximum value of the amplitude is substantially the same as the maximum value of the amplitude of the standing wave obtained when all of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven.
  • the tendency as shown in FIG. 7A is in the long side direction from the symmetry of the arrangement of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 with respect to the rectangular top panel 120 in plan view. The same applies when the two vibrating elements 140 facing each other are driven.
  • the standing wave is only in the center of the short side of the top panel 120 and on the Y axis positive direction side of the center of the long side. It can be seen that a region with a large amplitude is obtained. This indicates that a standing wave having a large amplitude is generated only in the vicinity of the vibration element 140B2.
  • the maximum value of the amplitude is substantially the same as the maximum value of the amplitude of the standing wave obtained when all the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven.
  • the tendency as shown in FIG. 7B is the same when only one of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 is driven.
  • one set of vibrating elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 facing each other in the long side direction, two sets facing each other in the long side direction, and adjacent in the X axis direction, or any one of them By selecting one, a region with a large amplitude can be selectively generated on the top panel 120.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven to vibrate standing waves on the entire surface of the top panel 120 as shown in FIG. Can be reduced to 1/6 at the maximum.
  • the operation input is performed on a part of the surface of the top panel 120, if no problem occurs even if a standing wave is not generated on the entire surface, the power consumption is reduced by the first drive control. This is particularly effective when the electronic device 100 is driven by a battery.
  • the drive control unit 240 selectively drives one of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 according to the position of the operation input.
  • FIG. 8 is a diagram showing a segmented region used in the first drive control. As indicated by a broken line in FIG. 8, the surface of the top panel 120 is divided into three equal parts in the X-axis direction and into three equal parts in the Y-axis direction, so that a total of nine regions are obtained.
  • each region is referred to as a segmented region, and is distinguished as segmented regions 1 to 9 as shown in FIG.
  • the boundaries in the X-axis direction of the divided regions 1 to 9 are two boundaries obtained by dividing the short side into three equal parts, and are located at the positions of the vibration elements 140A1, 140A2, 140A3 and the vibration elements 140B1, 140B2, 140B3. It corresponds.
  • the boundary in the Y-axis direction is two boundaries obtained by dividing the long side into three equal parts.
  • FIG. 9 is a diagram showing a drive pattern by the first drive control.
  • FIG. 9 shows six examples. Further, in FIG. 9, the position of the operation input is indicated by a picture of the fingertip.
  • the position data indicating the position of the operation input is input from the driver IC 151 to the drive control unit 240 as described above.
  • the driver IC 151 also inputs data representing an area where the user's fingertip touches the top panel 120 in the operation input to the drive control unit 240.
  • the drive control unit 240 may determine which of the divided areas 1 to 9 includes the operation input based on the data representing the area where the user's fingertip touches the top panel 120. Note that the segment area data representing the areas of the segment areas 1 to 9 may be stored in the memory 250.
  • FIG. 10 is a flowchart illustrating a first drive control process executed by the drive control unit 240 of the electronic device 100 according to the embodiment.
  • the OS (Operating System) of the electronic device 100 executes control for driving the electronic device 100 every predetermined control cycle. For this reason, the drive control apparatus 300 performs a calculation for every predetermined control period. This also applies to the drive control unit 240, and the drive control unit 240 repeatedly executes the flow shown in FIG. 10 at predetermined control cycles.
  • the drive control unit 240 starts processing when the power of the electronic device 100 is turned on.
  • the drive control unit 240 determines whether or not the position and region of the operation input has been detected based on data representing the region where the fingertip touches the top panel 120, which is input from the driver IC 151 (see FIG. 6) (step S1). ). The process of step S1 is repeatedly executed until the position and range of the operation input are detected.
  • the operation input area is an area touched by the fingertip, and the position of the operation input is represented by the coordinates of the center of gravity of the operation input area.
  • step S2 it is determined in which of the divided areas 1 to 9 (see FIG. 8) the operation input is performed.
  • the operation input area extends over a plurality of divided areas, a plurality of divided areas are detected. If the operation input area is included, the section area is detected as the section area where the operation input is performed.
  • the drive control unit 240 selects and drives the drive element 140 corresponding to the segmented area determined in step S2 (step S3). Selection of the driving element 140 corresponding to the segmented area is performed using segmented area data stored in a memory 250 described later.
  • step S3 Note that the details of the processing in step S3 are realized by steps S31 to S37 described later with reference to FIG.
  • the drive control unit 240 determines whether or not there is an operation input (step S4). Specifically, the drive control unit 240 determines the presence / absence of an operation input based on data that is input from the driver IC 151 (see FIG. 6) and represents a region where the fingertip touches the top panel 120.
  • step S4 If the drive control unit 240 determines that there is an operation input (S4: YES), the flow returns to step S1. When determining that there is no operation input (S4: YES), the drive control unit 240 ends the series of processes (end).
  • the drive element 140 corresponding to the segmented region where the operation input has been performed is selectively driven.
  • step S2 when detecting the segmented area where the operation input is performed in step S2, if the segment includes the operation input area, the segmented area is detected as the segmented area where the operation input is performed. However, when the operation input area includes a certain area or more, the divided area may be detected as the divided area where the operation input is performed. Such settings relating to the detection of the segmented area can be set by various methods.
  • the drive control unit 240 outputs amplitude data to the amplitude modulator 320 when two predetermined conditions are met.
  • the amplitude data is data representing an amplitude value for adjusting the intensity of the drive signal used for driving the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3.
  • the amplitude value is set according to the temporal change degree of the position data.
  • a speed at which the user's fingertip moves along the surface of the top panel 120 is used as the temporal change degree of the position data.
  • the moving speed of the user's fingertip is calculated by the drive control unit 240 based on the temporal change degree of the position data input from the driver IC 151.
  • the drive control apparatus 300 reduces the amplitude value as the moving speed increases, so that the user senses the touch feeling from the fingertip regardless of the moving speed of the fingertip.
  • the first data representing the relationship between the amplitude data representing the amplitude value and the moving speed is stored in the memory 250.
  • A0 is the amplitude reference value
  • V is the moving speed of the fingertip
  • a is a predetermined constant.
  • the drive control device 300 vibrates the top panel 120 in order to change the dynamic friction force applied to the fingertip when the user's fingertip moves along the surface of the top panel 120. Since the dynamic friction force is generated when the fingertip is moving, the drive control unit 240 causes the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 to move when the moving speed exceeds a predetermined threshold speed. Vibrate. It is the first predetermined condition that the moving speed is equal to or higher than a predetermined threshold speed.
  • the amplitude value represented by the amplitude data output by the drive control unit 240 is zero when the moving speed is less than the predetermined threshold speed, and when the moving speed is equal to or higher than the predetermined threshold speed, the amplitude value is determined according to the moving speed. Set to the amplitude value.
  • the moving speed is equal to or higher than a predetermined threshold speed, the higher the moving speed, the smaller the amplitude value is set, and the lower the moving speed is, the larger the amplitude value is set.
  • the drive control apparatus 300 outputs amplitude data to the amplitude modulator 320 when the position of the fingertip that performs the operation input is within a predetermined region where vibration is to be generated.
  • the second predetermined condition is that the position of the fingertip where the operation input is performed is within a predetermined region where vibration is to be generated.
  • Whether or not the position of the fingertip that performs the operation input is within a predetermined region where the vibration is to be generated is based on whether or not the position of the fingertip that performs the operation input is within the predetermined region where the vibration is to be generated. Determined.
  • the position on the display panel 160 such as a GUI operation unit to be displayed on the display panel 160, an area for displaying an image, or an area representing the entire page is specified by area data representing the area.
  • area data representing the area.
  • the area data exists for all GUI operation units displayed on the display panel 160, areas for displaying images, or areas representing the entire page.
  • the application of the electronic device 100 running is determined.
  • the type will be related. This is because the display on the display panel 160 differs depending on the type of application.
  • the type of operation input for moving the fingertip touching the surface of the top panel 120 differs depending on the type of application.
  • a type of operation input for moving the fingertip touching the surface of the top panel 120 for example, when operating the GUI operation unit, there is a so-called flick operation.
  • the flick operation is an operation of moving a fingertip along a surface of the top panel 120 for a relatively short distance so as to be repelled (snapped).
  • a swipe operation is performed.
  • the swipe operation is an operation of moving a fingertip along a relatively long distance so as to sweep along the surface of the top panel 120.
  • the swipe operation is performed, for example, when turning a photo in addition to turning the page.
  • a drag operation for dragging the slider is performed.
  • the operation input for moving the fingertip touching the surface of the top panel 120 such as a flick operation, a swipe operation, and a drag operation given as an example here, is used depending on the type of display by the application. For this reason, when determining whether or not the position of the fingertip for performing the operation input is within a predetermined region where vibration is to be generated, the type of application in which the electronic device 100 is activated is related.
  • the drive control unit 240 determines whether or not the position represented by the position data input from the driver IC 151 is within a predetermined area where vibration is to be generated, using the area data.
  • the drive control unit 240 calculates the change in the position of the fingertip during the required time from when the position data is input to the drive control device 300 from the driver IC 151 until the drive signal is calculated based on the position data. In order to interpolate, the following processing is performed.
  • the drive control device 300 performs calculation every predetermined control cycle. The same applies to the drive control unit 240. For this reason, if the required time from when the position data is input from the driver IC 151 to the drive control device 300 until the drive control unit 240 calculates the drive signal based on the position data is ⁇ t, the required time ⁇ t is the control time. Equal to the period.
  • the moving speed of the fingertip starts from the point (x1, y1) represented by the position data input from the driver IC 151 to the drive control device 300, and the end point (x2, y1) after the required time ⁇ t has elapsed. It can be obtained as the velocity of the vector y2).
  • the drive controller 240 uses the point (x2, y2) represented by the position data input from the driver IC 151 to the drive controller 300 as the start point, and the position of the fingertip after the required time ⁇ t has passed as the end point (x3, y3). By calculating the vector to be used, the coordinates (x3, y3) after the lapse of the required time ⁇ t are estimated.
  • the change in the position of the fingertip during the required time ⁇ t is interpolated by estimating the coordinates after the required time ⁇ t has elapsed as described above.
  • the calculation for estimating the coordinates after the lapse of the required time ⁇ t is performed by the drive control unit 240.
  • the drive control unit 240 determines whether or not the estimated coordinates are inside a predetermined region where vibration is to be generated, and generates vibration if the estimated coordinate is inside the predetermined region where vibration is to be generated. Therefore, the second predetermined condition is that the estimated coordinates are inside a predetermined region where vibration is to be generated.
  • the two predetermined conditions necessary for the drive control unit 240 to output the amplitude data to the amplitude modulator 320 are that the moving speed of the fingertip is equal to or higher than the predetermined threshold speed, and the estimated coordinates generate vibration. It is inside a predetermined area to be made.
  • the drive control unit 240 stores amplitude data representing an amplitude value corresponding to the moving speed when the moving speed of the fingertip is equal to or higher than a predetermined threshold speed and the estimated coordinates are inside a predetermined area where vibration is to be generated.
  • the data is read from 250 and output to the amplitude modulator 320.
  • the memory 250 stores the segment area data.
  • the memory 250 also includes first data representing the relationship between the amplitude data representing the amplitude value and the moving speed, data representing the type of application, area data representing the GUI operation unit where operation input is performed, vibration, and the like. Second data associated with pattern data representing a pattern is stored.
  • the memory 250 stores data and programs necessary for the application processor 220 to execute the application, data and programs necessary for the communication processing by the communication processor 230, and the like.
  • the sine wave generator 310 generates a sine wave necessary for generating a drive signal for vibrating the top panel 120 at a natural frequency. For example, when the top panel 120 is vibrated at a natural frequency f of 33.5 [kHz], the frequency of the sine wave is 33.5 [kHz].
  • the sine wave generator 310 inputs an ultrasonic band sine wave signal to the amplitude modulator 320.
  • the amplitude modulator 320 modulates the amplitude of the sine wave signal input from the sine wave generator 310 using the amplitude data input from the drive control unit 240 to generate a drive signal.
  • the amplitude modulator 320 modulates only the amplitude of the sine wave signal in the ultrasonic band input from the sine wave generator 310, and generates the drive signal without modulating the frequency and phase.
  • the drive signal output by the amplitude modulator 320 is an ultrasonic band sine wave signal obtained by modulating only the amplitude of the ultrasonic band sine wave signal input from the sine wave generator 310. Note that when the amplitude data is zero, the amplitude of the drive signal is zero. This is equivalent to the amplitude modulator 320 not outputting a drive signal.
  • the first data and second data used in the second drive control of the drive control unit 240 and the content of the second drive control will be described with reference to FIGS.
  • the first data and the second data are stored in the memory 250.
  • FIG. 11 is a diagram showing segmented area data, first data, and second data stored in the memory 250.
  • the segment area data includes identifiers (1 to 9) of the segment areas 1 to 9, coordinate data f1 to f9 representing the areas of the segment areas 1 to 9, and each segment area.
  • This is data in which identifiers (vibration element IDs) of the vibration elements to be driven are associated with each other.
  • the coordinate data f1 to f9 represent the coordinates of the divided areas 1 to 9 shown in FIG.
  • the first data is data in which the amplitude data representing the amplitude value is associated with the moving speed.
  • the amplitude value when the movement speed V is 0 or more and less than b1 (0 ⁇ V ⁇ b1), the amplitude value is set to 0, and the movement speed V is more than b1 and less than b2 ( When b1 ⁇ V ⁇ b2), the amplitude value is set to A1, and when the moving speed V is not less than b2 and less than b3 (b2 ⁇ V ⁇ b3), the amplitude value is set to A2.
  • the second data includes data representing the type of application, area data representing the coordinate value of the area where the GUI operation unit or the like where the operation input is performed, and vibration. This is data associated with pattern data representing a pattern.
  • FIG. 11C shows an application ID (Identification) as data representing the type of application. Further, as the area data, equations f11 to f14 representing the coordinate values of the area in which the GUI operation unit or the like where the operation input is performed are displayed are shown. P1 to P4 are shown as pattern data representing the vibration pattern.
  • the application represented by the application ID included in the second data includes all applications that can be used in the smartphone terminal or the tablet computer, and includes an email editing mode.
  • FIG. 12 is a flowchart illustrating processing executed by the drive control unit 240 of the drive control device 300 of the electronic device 100 according to the embodiment.
  • the required time ⁇ t is the control time. Approximately equal to the period.
  • One cycle time of the control cycle is handled as corresponding to a required time ⁇ t from when the position data is input from the driver IC 151 to the drive control device 300 until the drive signal is calculated based on the position data. it can.
  • steps S31 to S37 shown in FIG. 12 is processing performed in step S3 shown in FIG.
  • the drive control unit 240 starts the process of step S31 shown in FIG.
  • the drive control unit 240 acquires region data associated with the vibration pattern for the GUI operation unit on which the current operation input is performed, according to the coordinates represented by the current position data and the type of the current application ( Step S31).
  • the drive control unit 240 determines whether or not the moving speed is equal to or higher than a predetermined threshold speed (step S32).
  • the moving speed may be calculated by vector calculation.
  • the threshold speed may be set as the minimum speed of the fingertip movement speed when performing an operation input while moving the fingertip, such as a so-called flick operation, swipe operation, or drag operation. Such a minimum speed may be set based on experimental results, or may be set according to the resolution of the touch panel 150 or the like.
  • step S32 If it is determined in step S32 that the moving speed is equal to or higher than the predetermined threshold speed, the drive control unit 240 calculates estimated coordinates after ⁇ t time based on the coordinates represented by the current position data and the moving speed ( Step S33).
  • the drive control unit 240 determines whether or not the estimated coordinates after ⁇ t time are in the region St represented by the region data obtained in step S31 (step S34).
  • the drive control unit 240 determines that the estimated coordinates after the time ⁇ t are in the region St represented by the region data obtained in step S31, the drive control unit 240 represents an amplitude representing the amplitude value corresponding to the moving speed obtained in step S32. Data is obtained from the first data (step S35).
  • the drive control unit 240 outputs amplitude data (step S36).
  • the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven.
  • the drive control unit 240 advances the flow to step S4 shown in FIG.
  • step S32 when it is determined in step S32 that the moving speed is not equal to or higher than the predetermined threshold speed (S32: NO), the estimated coordinates after ⁇ t time in step S34 are in the area St represented by the area data obtained in step S31. If it is determined that there is not, the drive control unit 240 sets the amplitude value to zero (step S37).
  • the drive control unit 240 outputs amplitude data having an amplitude value of zero, and the amplitude modulator 320 generates a drive signal in which the amplitude of the sine wave output from the sine wave generator 310 is modulated to zero.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are not driven.
  • step S3 in the flowchart shown in FIG. 10 drives the drive element 140 using a drive signal that generates the natural vibration of the ultrasonic band of the top panel 120, instead of performing the processing of steps S31 to S37 shown in FIG. It may be a process to do.
  • 13 to 18 are diagrams illustrating an operation example of the electronic device 100 according to the embodiment. 13 to 18, the same XYZ coordinates as in FIGS. 2 to 4 are defined.
  • FIG. 13 is a diagram illustrating the top panel 120, the touch panel 150, and the display panel 160 in a plan view.
  • the user of the electronic device 100 touches the page 1 shown in gray with a fingertip and performs a left swipe operation.
  • the page 2 shown in white is being opened. That is, the display of electronic device 100 is about to transition from page 1 to page 2.
  • the drive control unit 240 determines whether or not the operation input is a swipe operation. For example, the drive control unit 240 determines that a swipe operation is being performed when the user's fingertip first moves from the position where the user's fingertip first touched the top panel 120 by ⁇ dmm or more in the X-axis direction. When the fingertip enters, the top panel 120 vibrates. A region indicated by oblique lines is a region St.
  • the top panel 120 is driven by the drive signal output from the amplitude modulator 320 based on the amplitude data output from the drive control unit 240.
  • the horizontal axis represents the time axis
  • the vertical axis represents the amplitude value of the amplitude data.
  • the drive control unit 240 determines that the user's input operation is a swipe operation, and performs driving with a swipe vibration pattern.
  • the operation distance dmm used for the determination of the swipe operation corresponds to the movement distance of the fingertip between times t1 and t2.
  • page transition starts.
  • the vibration pattern for swipe has an amplitude of A11, and is a drive pattern in which vibration continues during the swipe operation.
  • the drive control unit 240 sets the amplitude value to zero. For this reason, the amplitude becomes zero immediately after time t3. Further, the page transition is completed at time t4 after time t3.
  • the drive control unit 240 outputs amplitude data having a constant amplitude (A11) as an example. Therefore, while the user is performing the swipe operation, the dynamic friction force applied to the user's fingertip is reduced, and the user can be provided with a sense that the fingertip slips. Can be detected with the fingertip.
  • FIG. 15 shows an upward flick as shown by an arrow in order to select “l” from the state where the user's fingertip touches the alphabet “j” at the position C11 in the operation mode for editing the e-mail. Indicates the state of operation.
  • FIG. 15 which of “j, k, l, 5 or &” is selected on the Y axis positive direction side of the GUI operation unit for inputting “A, B, C, 2 or #”
  • a circular sub display area 165 is displayed. In the sub display area 165, “l” selected by the flick operation is highlighted.
  • the drive control unit 240 determines whether the operation input is a flick operation.
  • the top panel 120 is vibrated as follows.
  • the display on the GUI operation unit is also updated to a state where “l” is highlighted, and accordingly, the region St is updated to be outside the predetermined region. It is determined that the finger is positioned and the amplitude is set to zero.
  • the amplitude of the top panel 120 becomes zero, the dynamic friction force applied to the fingertip of the user increases, and the user is provided with a sense that the fingertip is caught.
  • the user feels as if the fingertip touches the protrusion by increasing the dynamic frictional force.
  • the user can detect with the fingertip that the operation input for selecting the letter “l” is accepted by the electronic device 100.
  • the GUI operation unit for inputting “j, k, l, 5 or &” as the GUI operation unit is described with reference to FIGS. 15 and 16.
  • vibrations may be generated for each predetermined movement amount.
  • the top panel 120 may be vibrated with an arbitrary vibration pattern in order to make the user perceive the operation of the GUI operation unit of the slider 102B.
  • the numeral “5” is obtained.
  • the top panel 120 is vibrated as follows. Unlike the flick operation, swipe operation, or drag operation, such a movement operation input is performed while a fingertip moves across a plurality of GUI operation sections in a state where a plurality of GUI operation sections are displayed side by side. Operation input to be performed.
  • This vibration B11 is generated when the position of the fingertip goes out of the number “6” region, and instantaneously increases the friction from a low friction state so short that the user's fingertip is not perceived. By making the state, the user feels that the fingertip touches the protrusion.
  • vibration B12 having a small amplitude is generated at a constant time interval in a short time from time t23. This is because the number “5” is located at the center of the numeric keypad, so that the user senses that the user is touching the number “5” only with the fingertips without looking at the top panel 120. It is a vibration generated to make it possible.
  • a vibration B13 having a large amplitude is generated in a short time. This is the same vibration as the vibration B11, and provides the user with a tactile sensation that the fingertip touches the protrusion from a low friction state in a short time so that the user's fingertip is not perceived. This is to make it sense by touch that the fingertip has entered the region “4” from the region “5” of the number.
  • the natural friction of the ultrasonic band of the top panel 120 is generated and the dynamic friction force applied to the user's fingertip is changed, so that a good tactile sensation is provided to the user. Can do.
  • the first drive control selects and drives at least one of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 according to the position of the operation input, power consumption can be reduced.
  • the electronic device 100 of the embodiment generates a drive signal by modulating only the amplitude of the sine wave of the ultrasonic band generated by the sine wave generator 310 by the amplitude modulator 320.
  • the frequency of the sine wave of the ultrasonic band generated by the sine wave generator 310 is equal to the natural frequency of the top panel 120, and this natural frequency is generated by the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, 140B3. Set with consideration.
  • the drive signal is generated by modulating only the amplitude by the amplitude modulator 320 without modulating the frequency or phase of the sine wave of the ultrasonic band generated by the sine wave generator 310.
  • the natural vibration of the ultrasonic band of the top panel 120 can be generated in the top panel 120, and the coefficient of dynamic friction when the surface of the top panel 120 is traced with a finger using the air layer due to the squeeze effect is obtained. It can be reliably lowered. Further, the sticky-band ⁇ ⁇ ⁇ Illusion effect or the Fishbone Tactile Illusion effect can provide the user with a good tactile sensation such that the surface of the top panel 120 is uneven.
  • the vibration is generated. Further, vibration can be generated while the fingertip is touching a predetermined GUI operation unit or the like.
  • the mode in which the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are turned on / off in order to provide the user with a tactile sensation such that the top panel 120 has unevenness has been described.
  • Turning off the vibrating elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 means that the amplitude value represented by the drive signal that drives the vibrating elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 is set to zero.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 do not necessarily have to be turned off.
  • a state in which the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven by reducing the amplitude may be used.
  • the tactile sensation that the top panel 120 has unevenness is the same as when the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are turned off. It may be provided to the user.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are driven by a drive signal that switches vibration intensity of the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3.
  • the strength of the natural vibration generated in the top panel 120 is switched, and it is possible to provide a tactile sensation such that the user's fingertip has unevenness.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are turned off when the vibration is weakened. 140A2, 140A3, 140B1, 140B2, and 140B3 are switched on / off. Switching on / off the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 is intermittently driving the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3.
  • the drive control device 300 As described above, according to the embodiment, it is possible to provide the drive control device 300, the electronic device 100, and the drive control method that can provide a good tactile sensation.
  • vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 are arranged as shown in FIG. 8, but they may be arranged as shown in FIG.
  • FIG. 19 is a diagram illustrating an arrangement of the vibration elements according to the modification of the embodiment.
  • the vibration elements 140C1, 140C2, 140C3, 140C4, 140C5, 140D1, 140D2, 140D3, 140D4, and 140D5 may be disposed along the long side of the top panel 120.
  • the vibration elements 140C3 and 140D3 may be driven.
  • the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3 in addition to the vibration elements 140A1, 140A2, 140A3, 140B1, 140B2, and 140B3, the vibration elements 140C1, 140C2, 140C3, 140C4, 140C5, 140D1, 140D2, 140D3, 140D4, 140D5 may be arranged.
  • the vibration elements 140A2, 140B2, 140C3, and 140D3 may be driven.
  • the vibrating elements 140C1, 140C2, 140C3, 140C4, 140C5, 140D1, 140D2, 140D3, 140D4, and 140D5 are provided. You may arrange.
  • the vibration elements 140E1, 140E2, 140E3, 140E4, 140E5 are arranged along a central axis parallel to the long side passing through the midpoint of the short side of the top panel 120.
  • the vibration elements 140C3 and 140E3 may be driven.
  • FIG. 20 is a diagram illustrating an electronic device 100A according to a modification of the embodiment.
  • the electronic device 100A is a notebook PC (Personal Computer).
  • PC 100A includes a display panel 160A and a touch pad 160B. If the vibration element 140 is provided on the back surface of the touch pad 160B so that the natural vibration of the ultrasonic band is generated on the surface of the touch pad 160B, the operation input to the touch pad 160B can be performed as in the electronic device 100 illustrated in FIG. An operational feeling can be provided to the user's fingertip through a tactile sensation according to the amount of movement.
  • the vibration element 140 is provided on the back surface of the display panel 160A, as with the electronic device 100 shown in FIG. 1, the user's fingertip can be operated through the tactile sensation according to the amount of operation input to the display panel 160A. A feeling can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

 良好な触感を提供できる電子機器及び駆動制御方法を提供することを課題とする。 電子機器は、ディスプレイパネルと、ディスプレイパネルの表示面側に配設される、平面視で矩形状のタッチパネルと、タッチパネルの一つの辺に沿って配設され、タッチパネルに操作入力を行う操作面に振動を発生させる複数の第1振動素子と、タッチパネルの一つの辺の対向辺に沿って配設され、タッチパネルに操作入力を行う操作面に振動を発生させる複数の第2振動素子と、操作面を複数の領域に区分した区分領域の座標と、各区分領域で駆動する第1振動素子又は第2振動素子の識別子とを関連付けた区分領域データを格納するメモリと、タッチパネルへの操作入力の位置と、区分領域データとに基づいて、操作面に超音波帯の固有振動を発生させる駆動信号で、複数の第1振動素子と複数の第2振動素子とのうちのいずれか1つを駆動する駆動制御部とを含む。

Description

電子機器及び駆動制御方法
 本発明は、電子機器及び駆動制御方法に関する。
 従来より、表示手段と、使用者の操作部位の前記表示手段への接触状態を検出する接触検出手段と、前記表示手段に接触している前記操作部位に対し、所定の触感を与える触感振動を発生させる触感振動発生手段とを備える触感呈示装置がある(例えば、特許文献1参照)。
 この触感呈示装置は、さらに、前記接触検出手段による検出結果に基づいて、前記触感振動を発生させるための波形データを生成する振動波形データ生成手段を備える。また、この触感呈示装置は、さらに、前記振動波形データ生成手段により生成された前記波形データに対し超音波を搬送波として変調処理を行い、該変調処理により生成された超音波変調信号を、前記触感振動を発生させるための信号として前記触感振動発生手段に出力する超音波変調手段とを備える。
 また、前記超音波変調手段は、周波数変調又は位相変調のどちらか一方を行う。また、前記超音波変調手段は、更に振幅変調を行う。
特開2010-231609号公報
 ところで、従来の触感呈示装置の超音波の周波数は、可聴帯域より高い周波数(およそ20kHz以上)であればよく、超音波の周波数自体に特に工夫はなされていないため、良好な触感を提供できないおそれがある。
 そこで、良好な触感を提供できる電子機器及び駆動制御方法を提供することを目的とする。
 本発明の実施の形態の電子機器は、ディスプレイパネルと、前記ディスプレイパネルの表示面側に配設される、平面視で矩形状のタッチパネルと、前記タッチパネルの一つの辺に沿って配設され、前記タッチパネルに操作入力を行う操作面に振動を発生させる複数の第1振動素子と、前記タッチパネルの前記一つの辺の対向辺に沿って配設され、前記タッチパネルに操作入力を行う操作面に振動を発生させる複数の第2振動素子と、前記操作面を複数の領域に区分した区分領域の座標と、各区分領域で駆動する前記第1振動素子又は前記第2振動素子の識別子とを関連付けた区分領域データを格納するメモリと、前記タッチパネルへの操作入力の位置と、前記区分領域データとに基づいて、前記操作面に超音波帯の固有振動を発生させる駆動信号で、前記複数の第1振動素子と前記複数の第2振動素子とのうちのいずれか1つを駆動する駆動制御部とを含む。
 良好な触感を提供できる電子機器及び駆動制御方法を提供することができる。
実施の形態の電子機器100を示す斜視図である。 実施の形態の電子機器100を示す平面図である。 図2に示す電子機器100のA-A矢視断面を示す図である。 超音波帯の固有振動によってトップパネル120に生じる定在波のうち、トップパネル120の短辺に平行に形成される波頭を示す図である。 電子機器100のトップパネル120に生じさせる超音波帯の固有振動により、操作入力を行う指先に掛かる動摩擦力が変化する様子を説明する図である。 実施の形態の電子機器100の構成を示す図である。 第1駆動制御によってトップパネル120に生じる定在波の振幅を示す図である。 第1駆動制御で用いる区分領域を示す図である。 第1駆動制御による駆動パターンを示す図である。 実施の形態の電子機器100の駆動制御部240が実行する第1駆動制御の処理を示すフローチャートである。 メモリ250に格納される第1データと第2データを示す図である。 実施の形態の電子機器100の駆動制御装置300の駆動制御部240が実行する処理を示すフローチャートである。 実施の形態の電子機器100の動作例を示す図である。 実施の形態の電子機器100の動作例を示す図である。 実施の形態の電子機器100の動作例を示す図である。 実施の形態の電子機器100の動作例を示す図である。 実施の形態の電子機器100の動作例を示す図である。 実施の形態の電子機器100の動作例を示す図である。 実施の形態の変形例による振動素子の配置を示す図である。 実施の形態の変形例の電子機器100Aを示す図である。
 以下、本発明の電子機器及び駆動制御方法を適用した実施の形態について説明する。
 <実施の形態>
 図1は、実施の形態の電子機器100を示す斜視図である。
 電子機器100は、一例として、タッチパネルを入力操作部とする、スマートフォン端末機、又は、タブレット型コンピュータである。電子機器100は、タッチパネルを入力操作部とする機器であればよいため、例えば、携帯情報端末機、又は、ATM(Automatic Teller Machine)のように特定の場所に設置されて利用される機器であってもよい。
 電子機器100の入力操作部101は、タッチパネルの下にディスプレイパネルが配設されており、ディスプレイパネルにGUI(Graphic User Interface)による様々なボタン102A、又は、スライダー102B等(以下、GUI操作部102と称す)が表示される。
 電子機器100の利用者は、通常、GUI操作部102を操作するために、指先で入力操作部101に触れる。
 次に、図2を用いて、電子機器100の具体的な構成について説明する。
 図2は、実施の形態の電子機器100を示す平面図であり、図3は、図2に示す電子機器100のA-A矢視断面を示す図である。なお、図2及び図3では、図示するように直交座標系であるXYZ座標系を定義する。
 電子機器100は、筐体110、トップパネル120、両面テープ130、振動素子140A1、140A2、140A3、140B1、140B2、140B3、タッチパネル150、ディスプレイパネル160、及び基板170を含む。
 筐体110は、例えば、樹脂製であり、図3に示すように凹部110Aに基板170、ディスプレイパネル160、及びタッチパネル150が配設されるとともに、両面テープ130によってトップパネル120が接着されている。
 トップパネル120は、平面視で長方形の薄い平板状の部材であり、透明なガラス、又は、ポリカーボネートのような強化プラスティックで作製される。トップパネル120の表面(Z軸正方向側の面)は、電子機器100の利用者が操作入力を行う操作面の一例である。
 トップパネル120は、Z軸負方向側の面に振動素子140A1、140A2、140A3、140B1、140B2、140B3が接着され、平面視における四辺が両面テープ130によって筐体110に接着されている。なお、両面テープ130は、トップパネル120の四辺を筐体110に接着できればよく、図3に示すように矩形環状である必要はない。
 トップパネル120のZ軸負方向側にはタッチパネル150が配設される。トップパネル120は、タッチパネル150の表面を保護するために設けられている。なお、トップパネル120の表面に、さらに別なパネル又は保護膜等が設けられていてもよい。
 トップパネル120は、Z軸負方向側の面に振動素子140A1、140A2、140A3、140B1、140B2、140B3が接着された状態で、振動素子140A1、140A2、140A3、140B1、140B2、140B3が駆動されることによって振動する。実施の形態では、トップパネル120の固有振動周波数でトップパネル120を振動させて、トップパネル120に定在波を生じさせる。ただし、トップパネル120には振動素子140A1、140A2、140A3、140B1、140B2、140B3が接着されているため、実際には、振動素子140A1、140A2、140A3、140B1、140B2、140B3の重さ等を考慮した上で、固有振動周波数を決めることが好ましい。
 振動素子140A1、140A2、140A3、140B1、140B2、140B3は、トップパネル120のZ軸負方向側の面に接着されている。なお、振動素子140A1、140A2、140A3、140B1、140B2、140B3を特に区別しない場合には、単に振動素子140と称す。
 振動素子140A1、140A2、140A3は、Y軸負方向側において、X軸方向に伸延する短辺に沿って、X軸負方向側からX軸正方向側にかけて、この順に配列されている。振動素子140A1、140A2、140A3は、複数の第1振動素子の一例である。
 振動素子140B1、140B2、140B3は、Y軸正方向側において、X軸方向に伸延する短辺に沿って、X軸負方向側からX軸正方向側にかけて、この順に配列されている。振動素子140B1、140B2、140B3は、複数の第2振動素子の一例である。
 振動素子140A1、140A2、140A3、140B1、140B2、140B3は、超音波帯の振動を発生できる素子であればよく、例えば、ピエゾ素子のような圧電素子を含むものを用いることができる。
 振動素子140A1、140A2、140A3、140B1、140B2、140B3は、後述する駆動制御部から出力される駆動信号によって駆動される。振動素子140A1、140A2、140A3、140B1、140B2、140B3が発生する振動の振幅(強度)及び周波数は駆動信号によって設定される。また、振動素子140A1、140A2、140A3、140B1、140B2、140B3のオン/オフは駆動信号によって制御される。
 なお、超音波帯とは、例えば、約20kHz以上の周波数帯をいう。実施の形態の電子機器100では、振動素子140A1、140A2、140A3、140B1、140B2、140B3が振動する周波数は、トップパネル120の振動数と等しくなる。このため、振動素子140A1、140A2、140A3、140B1、140B2、140B3は、トップパネル120の固有振動数で振動するように駆動信号によって駆動される。
 タッチパネル150は、ディスプレイパネル160の上(Z軸正方向側)で、トップパネル120の下(Z軸負方向側)に配設されている。タッチパネル150は、電子機器100の利用者がトップパネル120に触れる位置(以下、操作入力の位置と称す)を検出する座標検出部の一例である。
 タッチパネル150の下にあるディスプレイパネル160には、GUIによる様々なボタン等(以下、GUI操作部と称す)が表示される。このため、電子機器100の利用者は、通常、GUI操作部を操作するために、指先でトップパネル120に触れる。
 タッチパネル150は、利用者のトップパネル120への操作入力の位置を検出できる座標検出部であればよく、例えば、静電容量型又は抵抗膜型の座標検出部であればよい。ここでは、タッチパネル150が静電容量型の座標検出部である形態について説明する。タッチパネル150とトップパネル120との間に隙間があっても、静電容量型のタッチパネル150は、トップパネル120への操作入力を検出できる。
 また、ここでは、タッチパネル150の入力面側にトップパネル120が配設される形態について説明するが、トップパネル120はタッチパネル150と一体的であってもよい。この場合、タッチパネル150の表面が図2及び図3に示すトップパネル120の表面になり、操作面を構築する。また、図2及び図3に示すトップパネル120を省いた構成であってもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、この場合には、操作面を有する部材を、当該部材の固有振動で振動させればよい。
 また、タッチパネル150が静電容量型の場合は、トップパネル120の上にタッチパネル150が配設されていてもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、タッチパネル150が静電容量型の場合は、図2及び図3に示すトップパネル120を省いた構成であってもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、この場合には、操作面を有する部材を、当該部材の固有振動で振動させればよい。
 ディスプレイパネル160は、例えば、液晶ディスプレイパネル又は有機EL(Electroluminescence)パネル等の画像を表示できる表示部であればよい。ディスプレイパネル160は、筐体110の凹部110Aの内部で、図示を省略するホルダ等によって基板170の上(Z軸正方向側)に設置される。
 ディスプレイパネル160は、後述するドライバIC(Integrated Circuit)によって駆動制御が行われ、電子機器100の動作状況に応じて、GUI操作部、画像、文字、記号、図形等を表示する。
 基板170は、筐体110の凹部110Aの内部に配設される。基板170の上には、ディスプレイパネル160及びタッチパネル150が配設される。ディスプレイパネル160及びタッチパネル150は、図示を省略するホルダ等によって基板170及び筐体110に固定されている。
 基板170には、後述する駆動制御装置の他に、電子機器100の駆動に必要な種々の回路等が実装される。
 以上のような構成の電子機器100は、トップパネル120に利用者の指が接触し、指先の移動を検出すると、基板170に実装される駆動制御部が振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動し、トップパネル120を超音波帯の周波数で振動させる。この超音波帯の周波数は、トップパネル120と振動素子140A1、140A2、140A3、140B1、140B2、140B3とを含む共振系の共振周波数であり、トップパネル120に定在波を発生させる。
 電子機器100は、超音波帯の定在波を発生させることにより、トップパネル120を通じて利用者に触感を提供する。
 なお、振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動する場合は、周期数kが整数の場合は、振動素子140A1、140A2、140A3と、振動素子140B1、140B2、140B3とを同一位相で駆動すればよい。また、周期数kが奇数の場合は逆位相で駆動すればよい。
 次に、図4を用いて、トップパネル120に発生させる定在波について説明する。実施の形態の電子機器100では、トップパネル120への操作入力の位置に応じて、振動素子140A1、140A2、140A3、140B1、140B2、140B3のうちの少なくとも1つを駆動する。しかしながら、ここでは、振動素子140A1、140A2、140A3、140B1、140B2、140B3のすべてを駆動したときにトップパネル120に生じる定在波について説明する。
 図4は、超音波帯の固有振動によってトップパネル120に生じる定在波のうち、トップパネル120の短辺に平行に形成される波頭を示す図であり、図4の(A)は側面図、(B)は斜視図である。図4の(A)、(B)では、図2及び図3と同様のXYZ座標を定義する。なお、図4の(A)、(B)では、理解しやすさのために、定在波の振幅を誇張して示す。また、図4の(A)、(B)では振動素子140A1、140A2、140A3、140B1、140B2、140B3を省略する。
 トップパネル120のヤング率E、密度ρ、ポアソン比δ、長辺寸法l、厚さtと、長辺方向に存在する定在波の周期数kとを用いると、トップパネル120の固有振動数(共振周波数)fは次式(1)、(2)で表される。定在波は1/2周期単位で同じ波形を有するため、周期数kは、0.5刻みの値を取り、0.5、1、1.5、2・・・となる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)の係数αは、式(1)におけるk以外の係数をまとめて表したものである。
 図4の(A)、(B)に示す定在波は、一例として、周期数kが10の場合の波形である。例えば、トップパネル120として、長辺の長さlが140mm、短辺の長さが80mm、厚さtが0.7mmのGorilla(登録商標)ガラスを用いる場合には、周期数kが10の場合に、固有振動数fは33.5[kHz]となる。この場合は、周波数が33.5[kHz]の駆動信号を用いればよい。
 トップパネル120は、平板状の部材であるが、振動素子140A1、140A2、140A3、140B1、140B2、140B3(図2及び図3参照)を駆動して超音波帯の固有振動を発生させると、図4の(A)、(B)に示すように撓むことにより、表面に定在波が生じる。
 なお、ここでは、トップパネル120のZ軸負方向側の面において、振動素子140A1、140A2、140A3は、Y軸負方向側において、X軸方向に伸延する短辺に沿って配列され、振動素子140B1、140B2、140B3は、Y軸正方向側において、X軸方向に伸延する短辺に沿って配列される形態について説明する。
 すなわち、トップパネル120のZ軸負方向側の面において、Y軸負方向側でX軸方向に伸延する短辺と、Y軸正方向側でX軸方向に伸延する短辺とに、それぞれ、3つの振動素子を配設している。
 しかしながら、トップパネル120の一対の短辺に沿ってそれぞれ配設される振動素子の数は、複数であれば幾つであってもよい。ただし、それぞれの短辺に沿って配設される振動素子の数が等しく、トップパネル120のY軸方向の中点を通るX軸に平行な直線を対称軸として軸対称に配設されていればよい。
 また、トップパネル120の一対の長辺に沿って、それぞれ複数の振動素子を配設してもよい。
 次に、図5を用いて、電子機器100のトップパネル120に生じさせる超音波帯の固有振動について説明する。
 図5は、電子機器100のトップパネル120に生じさせる超音波帯の固有振動により、操作入力を行う指先に掛かる動摩擦力が変化する様子を説明する図である。図5の(A)、(B)では、利用者が指先でトップパネル120に触れながら、指をトップパネル120の奥側から手前側に矢印に沿って移動する操作入力を行っている。なお、振動のオン/オフは、振動素子140A1、140A2、140A3、140B1、140B2、140B3(図2及び図3参照)をオン/オフすることによって行われる。
 また、図5の(A)、(B)では、トップパネル120の奥行き方向において、振動がオフの間に指が触れる範囲をグレーで示し、振動がオンの間に指が触れる範囲を白く示す。
 超音波帯の固有振動は、図4に示すようにトップパネル120の全体に生じるが、図5の(A)、(B)には、利用者の指がトップパネル120の奥側から手前側に移動する間に振動のオン/オフを切り替える動作パターンを示す。
 このため、図5の(A)、(B)では、トップパネル120の奥行き方向において、振動がオフの間に指が触れる範囲をグレーで示し、振動がオンの間に指が触れる範囲を白く示す。
 図5の(A)に示す動作パターンでは、利用者の指がトップパネル120の奥側にあるときに振動がオフであり、指を手前側に移動させる途中で振動がオンになっている。
 一方、図5の(B)に示す動作パターンでは、利用者の指がトップパネル120の奥側にあるときに振動がオンであり、指を手前側に移動させる途中で振動がオフになっている。
 ここで、トップパネル120に超音波帯の固有振動を生じさせると、トップパネル120の表面と指との間にスクイーズ効果による空気層が介在し、指でトップパネル120の表面をなぞったときの動摩擦係数が低下する。
 従って、図5の(A)では、トップパネル120の奥側にグレーで示す範囲では、指先に掛かる動摩擦力は大きく、トップパネル120の手前側に白く示す範囲では、指先に掛かる動摩擦力は小さくなる。
 このため、図5の(A)に示すようにトップパネル120に操作入力を行う利用者は、振動がオンになると、指先に掛かる動摩擦力の低下を感知し、指先の滑り易さを知覚することになる。このとき、利用者はトップパネル120の表面がより滑らかになることにより、動摩擦力が低下するときに、トップパネル120の表面に凹部が存在するように感じる。
 一方、図5の(B)では、トップパネル120の奥前側に白く示す範囲では、指先に掛かる動摩擦力は小さく、トップパネル120の手前側にグレーで示す範囲では、指先に掛かる動摩擦力は大きくなる。
 このため、図5の(B)に示すようにトップパネル120に操作入力を行う利用者は、振動がオフになると、指先に掛かる動摩擦力の増大を感知し、指先の滑り難さ、あるいは、引っ掛かる感じを知覚することになる。そして、指先が滑りにくくなることにより、動摩擦力が高くなるときに、トップパネル120の表面に凸部が存在するように感じる。
 以上より、図5の(A)と(B)の場合は、利用者は指先で凹凸を感じ取ることができる。このように人間が凹凸の知覚することは、例えば、"触感デザインのための印刷物転写法とSticky-band Illusion"(第11回計測自動制御学会システムインテグレーション部門講演会論文集 (SI2010, 仙台)____174-177, 2010-12)に記載されている。また、"Fishbone Tactile Illusion"(日本バーチャルリアリティ学会第10 回大会論文集(2005 年9 月))にも記載されている。
 なお、ここでは、振動のオン/オフを切り替える場合の動摩擦力の変化について説明したが、これは、振動素子140A1、140A2、140A3、140B1、140B2、140B3の振幅(強度)を変化させた場合も同様である。
 次に、図6を用いて、実施の形態の電子機器100の構成について説明する。
 図6は、実施の形態の電子機器100の構成を示す図である。
 電子機器100は、振動素子140A1、140A2、140A3、140B1、140B2、140B3、アンプ141、タッチパネル150、ドライバIC(Integrated Circuit)151、ディスプレイパネル160、ドライバIC161、制御部200、正弦波発生器310、及び振幅変調器320を含む。
 制御部200は、アプリケーションプロセッサ220、通信プロセッサ230、駆動制御部240、及びメモリ250を有する。制御部200は、例えば、ICチップで実現される。
 また、駆動制御部240、正弦波発生器310、及び振幅変調器320は、駆動制御装置300を構築する。なお、ここでは、アプリケーションプロセッサ220、通信プロセッサ230、駆動制御部240、及びメモリ250が1つの制御部200によって実現される形態について説明するが、駆動制御部240は、制御部200の外部に別のICチップ又はプロセッサとして設けられていてもよい。この場合には、メモリ250に格納されているデータのうち、駆動制御部240の駆動制御に必要なデータは、メモリ250とは別のメモリに格納して、駆動制御装置300の内部に設ければよい。
 図6では、筐体110、トップパネル120、両面テープ130、及び基板170(図2参照)は省略する。また、ここでは、アンプ141、ドライバIC151、ドライバIC161、駆動制御部240、メモリ250、正弦波発生器310、及び振幅変調器320について説明する。
 アンプ141は、駆動制御装置300と振動素子140A1、140A2、140A3、140B1、140B2、140B3との間に配設されており、駆動制御装置300から出力される駆動信号を増幅して振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動する。
 なお、アンプ141は6つあり、それぞれ、振動素子140A1、140A2、140A3、140B1、140B2、140B3に接続される。振動素子140A1、140A2、140A3、140B1、140B2、140B3に対しては、駆動制御装置300からそれぞれ別々に駆動信号が入力される。
 ドライバIC151は、タッチパネル150に接続されており、タッチパネル150への操作入力があった位置を表す位置データを検出し、位置データを制御部200に出力する。この結果、位置データは、アプリケーションプロセッサ220と駆動制御部240に入力される。なお、位置データが駆動制御部240に入力されることは、位置データが駆動制御装置300に入力されることと等価である。
 ドライバIC161は、ディスプレイパネル160に接続されており、駆動制御装置300から出力される描画データをディスプレイパネル160に入力し、描画データに基づく画像をディスプレイパネル160に表示させる。これにより、ディスプレイパネル160には、描画データに基づくGUI操作部又は画像等が表示される。
 アプリケーションプロセッサ220は、電子機器100の種々のアプリケーションを実行する処理を行う。
 通信プロセッサ230は、電子機器100が3G(Generation)、4G(Generation)、LTE(Long Term Evolution)、WiFi等の通信を行うために必要な処理を実行する。
 駆動制御部240は、2種類の駆動制御を行う。第1駆動制御は、トップパネル120への操作入力の位置に応じて、振動素子140A1、140A2、140A3、140B1、140B2、140B3のうちの少なくとも1つを選択して駆動する駆動制御である。
 また、第2駆動制御は、2つの所定の条件が揃った場合に、振幅データを振幅変調器320に出力する駆動制御である。
 以下では、駆動制御部240の第1駆動制御と第2駆動制御のそれぞれについて説明するとともに、両者の関係について説明する。なお、メモリ250、正弦波発生器310、及び振幅変調器320については、駆動制御部240の後に説明を行う。
 まず、図7乃至図10を用いて、駆動制御部240の第1駆動制御について説明する。
 図7は、第1駆動制御によってトップパネル120に生じる定在波の振幅を示す図である。図7の(A)には、振動素子140A2及び140B2を駆動した場合の定在波を示し、図7の(B)には、振動素子140B2のみを駆動した場合の定在波を示す。
 なお、定在波の振幅が大きい部分を濃いグレーで示し、振幅が小さくなるほど白く示す。
 図7の(A)に示すように、振動素子140A2及び140B2のみを駆動すると、トップパネル120の短辺の中央部において、長辺方向の全体にわたって定在波の振幅が大きい領域が得られていることが分かる。これは、振動素子140A2と振動素子140B2との間における長辺方向の全体にわたって振幅が大きい定在波が生じていることを表す。
 また、振幅の最大値は、すべての振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動した場合に得られる定在波の振幅の最大値と略同一である。
 また、図7の(A)に示すような傾向は、平面視で矩形状のトップパネル120に対する、振動素子140A1、140A2、140A3、140B1、140B2、140B3の配置の対称性から、長辺方向で向かい合う2つの振動素子140を駆動した場合にも同様である。
 すなわち、振動素子140A1と140B1を駆動すれば、トップパネル120の短辺のX軸負方向側において、長辺方向の全体にわたって定在波の振幅が大きい領域が得られる。また、振動素子140A3と140B3を駆動すれば、トップパネル120の短辺のX軸正方向側において、長辺方向の全体にわたって定在波の振幅が大きい領域が得られる。
 また、振動素子140A1、140A2、140B1、140B2を駆動すれば、トップパネル120の短辺のX軸負方向側と中央部において、長辺方向の全体にわたって定在波の振幅が大きい領域が得られる。
 また、振動素子140A2、140A3、140B2、140B3を駆動すれば、トップパネル120の短辺の中央部とX軸正方向側において、長辺方向の全体にわたって定在波の振幅が大きい領域が得られる。
 また、図7の(B)に示すように、振動素子140B2のみを駆動すると、トップパネル120の短辺の中央部で、かつ、長辺の中央よりもY軸正方向側にのみ定在波の振幅が大きい領域が得られていることが分かる。これは、振動素子140B2の近傍にのみ振幅が大きい定在波が生じていることを表す。
 また、振幅の最大値は、すべての振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動した場合に得られる定在波の振幅の最大値と略同一である。
 また、図7の(B)に示すような傾向は、振動素子140A1、140A2、140A3、140B1、140B2、140B3のいずれか一つのみを駆動した場合にも同様である。
 このように、振動素子140A1、140A2、140A3、140B1、140B2、140B3のうちの長辺方向で向かい合う1組、長辺方向で向かい合い、かつ、X軸方向において隣り合う2組、又は、いずれか1つを選択することにより、トップパネル120に振幅の大きい領域を選択的に発生させることができる。
 これは、例えば、振動素子140A1、140A2、140A3、140B1、140B2、140B3のすべてを駆動して図4に示すようにトップパネル120の表面全体に定在波を振動させる場合に比べると、消費電力を最大で1/6に低減できることを意味する。また、1つの振動素子、又は、長辺方向あるいは短辺方向に対向して配置する2つの振動素子でトップパネル120の全体を振動させる場合に比べて、振動素子140A1、140A2、140A3、140B1、140B2、140B3の各々を小型化できるため、上述のような駆動パターンを用いることにより、消費電力を低減することができる。
 操作入力が行われるのは、トップパネル120の表面の一部であるため、表面の全体に定在波を発生させなくても問題が生じない場合には、第1駆動制御によって消費電力を低減することは、特に電子機器100がバッテリで駆動されるような場合には有効的である。
 従って、第1駆動制御では、駆動制御部240は、操作入力の位置に応じて、振動素子140A1、140A2、140A3、140B1、140B2、140B3のうちのいずれかを選択的に駆動する。
 図8は、第1駆動制御で用いる区分領域を示す図である。図8に破線で示すように、トップパネル120の表面をX軸方向に3等分するとともにY軸方向に3等分することにより、合計で9つの領域に分ける。ここでは、各領域を区分領域と称し、図8に示すように、区分領域1~9として区別する。
 区分領域1~9のX軸方向における境界は、短辺を3等分して得られる2本の境界であり、振動素子140A1、140A2、140A3と、振動素子140B1、140B2、140B3との位置に対応している。また、Y軸方向における境界は、長辺を3等分して得られる2本の境界である。
 図9は、第1駆動制御による駆動パターンを示す図である。図9には、6つの例を示す。また、図9では、操作入力の位置を指先の絵で示す。
 図9の(A)に示すように、操作入力が区分領域5に行われた場合は、振動素子140A2と140B2のみを駆動する。区分領域5のように長辺方向における中央部では、図7の(A)と(B)を比較して分かるように、長辺の両端に位置する振動素子140A2と140B2を駆動する方が、振動素子140A2又は140B2のいずれか一方を駆動する場合よりも振幅の大きい定在波が得られるからである。
 図9の(B)に示すように、操作入力が区分領域6に行われた場合は、振動素子140B2のみを駆動する。図7の(A)と(B)を比較して分かるように、振動素子140B2のみの駆動で区分領域6に振幅の大きい定在波が得られるからである。
 図9の(C)に示すように、操作入力が区分領域2に行われた場合は、振動素子140A1と140B1のみを駆動する。また、図9の(D)に示すように、操作入力が区分領域3に行われた場合は、振動素子140B1のみを駆動する。
 図9の(E)に示すように、操作入力が区分領域2と区分領域5とに跨って行われた場合は、振動素子140A1、140A2、140B1、140B2のみを駆動する。区分領域2と区分領域5の両方で振幅の大きい定在波が発生させるためである。
 図9の(F)に示すように、操作入力が区分領域3と区分領域6とに跨って行われた場合は、振動素子140B1と140B2のみを駆動する。区分領域3と区分領域6の両方で振幅の大きい定在波が発生させるためである。
 なお、操作入力の位置を表す位置データは、上述したように、ドライバIC151から駆動制御部240に入力される。また、ドライバIC151からは、位置データに加えて、操作入力に際して利用者の指先がトップパネル120に触れた領域を表すデータも駆動制御部240に入力される。
 従って、駆動制御部240は、利用者の指先がトップパネル120に触れた領域を表すデータに基づいて、操作入力が区分領域1~9のいずれに含まれるかを判定すればよい。なお、区分領域1~9の領域を表す区分領域データは、メモリ250に格納しておけばよい。
 図10、実施の形態の電子機器100の駆動制御部240が実行する第1駆動制御の処理を示すフローチャートである。
 電子機器100のOS(Operating System)は、所定の制御周期毎に電子機器100を駆動するための制御を実行する。このため、駆動制御装置300は、所定の制御周期毎に演算を行う。これは駆動制御部240も同様であり、駆動制御部240は、図10に示すフローを所定の制御周期毎に繰り返し実行する。
 駆動制御部240は、電子機器100の電源がオンにされることにより、処理をスタートさせる。
 駆動制御部240は、ドライバIC151(図6参照)から入力される、指先がトップパネル120に触れた領域を表すデータに基づき、操作入力の位置と領域を検出したかどうかを判定する(ステップS1)。ステップS1の処理は、操作入力の位置と範囲を検出するまで繰り返し実行される。
 なお、操作入力の領域とは、指先が触れている領域であり、操作入力の位置は、操作入力の領域の重心点の座標で表される。
 駆動制御部240は、操作入力の位置と範囲を検出すると(S1:YES)、操作入力の位置と範囲に基づき、操作入力が行われている区分領域を検出する(ステップS2)。ステップS2により、区分領域1~9(図8参照)のいずれに操作入力が行われているかが判明する。
 なお、ここでは、操作入力の領域が複数の区分領域に跨っている場合には、複数の区分領域が検出される。操作入力の領域を少しでも含んでいれば、その区分領域は、操作入力が行われている区分領域として検出される。
 次いで、駆動制御部240は、ステップS2で判定した区分領域に対応する駆動素子140を選択して駆動する(ステップS3)。区分領域に対応する駆動素子140の選択は、後述するメモリ250に格納される区分領域データを用いて行う。
 なお、ステップS3の処理の詳細は、図12を用いて後述するステップS31~S37によって実現される。
 次いで、駆動制御部240は、操作入力があるかどうかを判定する(ステップS4)。撚り具体的には、駆動制御部240は、ドライバIC151(図6参照)から入力される、指先がトップパネル120に触れた領域を表すデータに基づき、操作入力の有無を判定する。
 駆動制御部240は、操作入力がある(S4:YES)と判定するとフローをステップS1にリターンする。駆動制御部240は、操作入力がない(S4:YES)と判定すると、一連の処理を終了する(エンド)。
 以上のような第1駆動制御の処理により、操作入力の行われた区分領域に対応する駆動素子140が選択的に駆動される。
 なお、ステップS2で操作入力が行われている区分領域を検出する際に、操作入力の領域を少しでも含んでいれば、その区分領域が操作入力が行われている区分領域として検出される形態について説明するが、操作入力の領域のある一定の面積以上を含む場合に、その区分領域を操作入力が行われている区分領域として検出するようにしてもよい。このような区分領域の検出に関する設定は、様々な手法で設定することができる。
 次に、駆動制御部240の第2駆動制御について説明する。
 駆動制御部240は、2つの所定の条件が揃った場合に、振幅データを振幅変調器320に出力する。振幅データは、振動素子140A1、140A2、140A3、140B1、140B2、140B3の駆動に用いる駆動信号の強度を調整するための振幅値を表すデータである。振幅値は、位置データの時間的変化度合に応じて設定される。ここで、位置データの時間的変化度合としては、利用者の指先がトップパネル120の表面に沿って移動する速度を用いる。利用者の指先の移動速度は、ドライバIC151から入力される位置データの時間的な変化度合に基づいて、駆動制御部240が算出する。
 実施の形態の駆動制御装置300は、一例として、指先の移動速度に関わらずに利用者が指先から感知する触感を一定にするために、移動速度が高いほど振幅値を小さくし、移動速度が低いほど振幅値を大きくする。
 このような振幅値を表す振幅データと移動速度との関係を表す第1データは、メモリ250に格納されている。
 なお、ここでは、第1データを用いて移動速度に応じた振幅値を設定する形態について説明するが、次式(3)を用いて振幅値Aを算出してもよい。式(3)で算出される振幅値Aは、移動速度が高いほど小さくなり、移動速度が低いほど大きくなる。
Figure JPOXMLDOC01-appb-M000003
 ここで、A0は振幅の基準値であり、Vは指先の移動速度であり、aは所定の定数である。式(3)を用いて振幅値Aを算出する場合は、式(3)を表すデータと、振幅の基準値A0と所定の定数aを表すデータとをメモリ250に格納しておけばよい。
 また、実施の形態の駆動制御装置300は、利用者の指先がトップパネル120の表面に沿って移動したときに、指先に掛かる動摩擦力を変化させるためにトップパネル120を振動させる。動摩擦力は、指先が移動しているときに発生するため、駆動制御部240は、移動速度が所定の閾値速度以上になったときに、振動素子140A1、140A2、140A3、140B1、140B2、140B3を振動させる。移動速度が所定の閾値速度以上になることは、1つ目の所定の条件である。
 従って、駆動制御部240が出力する振幅データが表す振幅値は、移動速度が所定の閾値速度未満のときはゼロであり、移動速度が所定の閾値速度以上になると、移動速度に応じて所定の振幅値に設定される。移動速度が所定の閾値速度以上のときには、移動速度が高いほど振幅値は小さく設定され、移動速度が低いほど振幅値を大きく設定される。
 また、実施の形態の駆動制御装置300は、操作入力を行う指先の位置が、振動を発生させるべき所定の領域内にある場合に、振幅データを振幅変調器320に出力する。操作入力を行う指先の位置が、振動を発生させるべき所定の領域内にあることは、2つ目の所定条件である。
 操作入力を行う指先の位置が振動を発生させるべき所定の領域内にあるかどうかは、操作入力を行う指先の位置が、振動を発生させるべき所定の領域の内部にあるか否かに基づいて判定される。
 ここで、ディスプレイパネル160に表示するGUI操作部、画像を表示する領域、又は、ページ全体を表す領域等のディスプレイパネル160上における位置は、当該領域を表す領域データによって特定される。領域データは、すべてのアプリケーションにおいて、ディスプレイパネル160に表示されるすべてのGUI操作部、画像を表示する領域、又は、ページ全体を表す領域について存在する。
 このため、2つ目の所定条件として、操作入力を行う指先の位置が、振動を発生させるべき所定の領域内にあるかどうかを判定する際には、電子機器100が起動しているアプリケーションの種類が関係することになる。アプリケーションの種類により、ディスプレイパネル160の表示が異なるからである。
 また、アプリケーションの種類により、トップパネル120の表面に触れた指先を移動させる操作入力の種類が異なるからである。トップパネル120の表面に触れた指先を移動させる操作入力の種類としては、例えば、GUI操作部を操作する際には、所謂フリック操作がある。フリック操作は、指先をトップパネル120の表面に沿って、はじく(スナップする)ように比較的短い距離移動させる操作である。
 また、ページを捲る場合には、例えば、スワイプ操作を行う。スワイプ操作は、指先をトップパネル120の表面に沿って掃くように比較的長い距離移動させる操作である。スワイプ操作は、ページを捲る場合の他に、例えば、写真を捲る場合に行われる。また、GUI操作部によるスライダー(図1のスライダー102B参照)をスライドさせる場合には、スライダーをドラッグするドラッグ操作が行われる。
 ここで一例として挙げるフリック操作、スワイプ操作、及びドラッグ操作のように、トップパネル120の表面に触れた指先を移動させる操作入力は、アプリケーションによる表示の種類によって使い分けられる。このため、操作入力を行う指先の位置が、振動を発生させるべき所定の領域内にあるかどうかを判定する際には、電子機器100が起動しているアプリケーションの種類が関係することになる。
 駆動制御部240は、領域データを用いて、ドライバIC151から入力される位置データが表す位置が、振動を発生させるべき所定の領域の内部にあるか否かを判定する。
 アプリケーションの種類を表すデータと、操作入力が行われるGUI操作部等を表す領域データと、振動パターンを表すパターンデータとを関連付けた第2データは、メモリ250に格納されている。
 また、駆動制御部240は、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動信号が算出されるまでの所要時間の間における指先の位置の変化分を補間するために、次の処理を行う。
 駆動制御装置300は、所定の制御周期毎に演算を行う。これは駆動制御部240も同様である。このため、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動制御部240が駆動信号を算出するまでの所要時間をΔtとすると、所要時間Δtは、制御周期に等しい。
 ここで、指先の移動速度は、ドライバIC151から駆動制御装置300に入力される位置データが表す点(x1、y1)を始点とし、所要時間Δtが経過した後の指先の位置を終点(x2、y2)とするベクトルの速度として求めることができる。
 駆動制御部240は、ドライバIC151から駆動制御装置300に入力される位置データが表す点(x2、y2)を始点とし、所要時間Δtが経過した後の指先の位置を終点(x3、y3)とするベクトルを求めることにより、所要時間Δt経過後の座標(x3、y3)を推定する。
 実施の形態の電子機器100では、上述のようにして所要時間Δt経過後の座標を推定することにより、所要時間Δtの間における指先の位置の変化分を補間する。
 このような所要時間Δt経過後の座標を推定する演算は、駆動制御部240が行う。駆動制御部240は、推定座標が振動を発生させるべき所定の領域の内部にあるか否かを判定し、振動を発生させるべき所定の領域の内部にある場合に振動を発生させる。従って、2つ目の所定の条件は、推定座標が振動を発生させるべき所定の領域の内部にあることである。
 以上より、駆動制御部240が振幅データを振幅変調器320に出力するために必要な2つの所定の条件は、指先の移動速度が所定の閾値速度以上であることと、推定座標が振動を発生させるべき所定の領域の内部にあることである。
 駆動制御部240は、指先の移動速度が所定の閾値速度以上であり、推定座標が振動を発生させるべき所定の領域の内部にある場合に、移動速度に応じた振幅値を表す振幅データをメモリ250から読み出して、振幅変調器320に出力する。
 メモリ250は、区分領域データを格納する。また、メモリ250は、振幅値を表す振幅データと移動速度との関係を表す第1データ、及び、アプリケーションの種類を表すデータと、操作入力が行われるGUI操作部等を表す領域データと、振動パターンを表すパターンデータとを関連付けた第2データを格納する。
 また、メモリ250は、アプリケーションプロセッサ220がアプリケーションの実行に必要とするデータ及びプログラム、及び、通信プロセッサ230が通信処理に必要とするデータ及びプログラム等を格納する。
 正弦波発生器310は、トップパネル120を固有振動数で振動させるための駆動信号を生成するのに必要な正弦波を発生させる。例えば、トップパネル120を33.5[kHz]の固有振動数fで振動させる場合は、正弦波の周波数は、33.5[kHz]となる。正弦波発生器310は、超音波帯の正弦波信号を振幅変調器320に入力する。
 振幅変調器320は、駆動制御部240から入力される振幅データを用いて、正弦波発生器310から入力される正弦波信号の振幅を変調して駆動信号を生成する。振幅変調器320は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調し、周波数及び位相は変調せずに、駆動信号を生成する。
 このため、振幅変調器320が出力する駆動信号は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調した超音波帯の正弦波信号である。なお、振幅データがゼロの場合は、駆動信号の振幅はゼロになる。これは、振幅変調器320が駆動信号を出力しないことと等しい。
 次に、図11及び図12を用いて、駆動制御部240の第2駆動制御で用いる第1データ及び第2データと、第2駆動制御の内容について説明する。なお、第1データ及び第2データは、メモリ250に格納される。
 図11は、メモリ250に格納される区分領域データ、第1データ、及び第2データを示す図である。
 図11の(A)に示すように、区分領域データは、区分領域1~9の識別子(1~9)と、区分領域1~9の領域を表す座標データf1~f9と、各区分領域で駆動する振動素子の識別子(振動素子ID)をそれぞれ関連付けたデータである。座標データf1~f9は、それぞれ、図8に示す区分領域1~9の座標を表す。
 図11の(B)に示すように、第1データは、振幅値を表す振幅データと、移動速度とを関連付けたデータである。図11の(B)に示す第1データによれば、移動速度Vが0以上b1未満(0≦V<b1)のときは振幅値を0に設定し、移動速度Vがb1以上b2未満(b1≦V<b2)のときは振幅値をA1に設定し、移動速度Vがb2以上b3未満(b2≦V<b3)のときは、振幅値をA2に設定することになる。
 また、図11の(C)に示すように、第2データは、アプリケーションの種類を表すデータと、操作入力が行われるGUI操作部等が表示される領域の座標値を表す領域データと、振動パターンを表すパターンデータとを関連付けたデータである。
 図11の(C)では、アプリケーションの種類を表すデータとして、アプリケーションID(Identification)を示す。また、領域データとして、操作入力が行われるGUI操作部等が表示される領域の座標値を表す式f11~f14を示す。また、振動パターンを表すパターンデータとして、P1~P4を示す。
 なお、第2データに含まれるアプリケーションIDで表されるアプリケーションは、スマートフォン端末機、又は、タブレット型コンピュータで利用可能なあらゆるアプリケーションを含み、電子メールの編集モードも含む。
 次に、図12を用いて、実施の形態の電子機器100の駆動制御装置300の駆動制御部240が実行する処理について説明する。図12に示すフローは、図10に示すステップS3の処理の詳細を示すものである。
 図12は、実施の形態の電子機器100の駆動制御装置300の駆動制御部240が実行する処理を示すフローチャートである。
 ここで、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動制御部240が駆動信号を算出するまでの所要時間をΔtとすると、所要時間Δtは、制御周期に略等しい。
 制御周期の1周期の時間は、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動信号が算出されるまでの所要時間Δtに相当するものとして取り扱うことができる。
 図12に示すステップS31~S37の処理は、図10に示すステップS3で行われる処理である。駆動制御部240は、図10に示すステップS2の処理が終了すると、図12に示すステップS31の処理を開始する。
 駆動制御部240は、現在の位置データが表す座標と、現在のアプリケーションの種類とに応じて、現在操作入力が行われているGUI操作部について、振動パターンと関連付けられた領域データを取得する(ステップS31)。
 駆動制御部240は、移動速度が所定の閾値速度以上であるか否かを判定する(ステップS32)。移動速度は、ベクトル演算によって算出すればよい。なお、閾値速度は、所謂フリック操作、スワイプ操作、又はドラッグ操作等のように指先を移動させながら操作入力を行う際における指先の移動速度の最低速度として設定すればよい。このような最低速度は、実験結果に基づいて設定してもよく、タッチパネル150の分解能等に応じて設定してもよい。
 駆動制御部240は、ステップS32で移動速度が所定の閾値速度以上であると判定した場合は、現在の位置データが表す座標と、移動速度とに基づき、Δt時間後の推定座標を演算する(ステップS33)。
 駆動制御部240は、Δt時間後の推定座標が、ステップS31で求めた領域データが表す領域Stの中になるか否かを判定する(ステップS34)。
 駆動制御部240は、Δt時間後の推定座標が、ステップS31で求めた領域データが表す領域Stの中にあると判定する場合は、ステップS32で求めた移動速度に対応する振幅値を表す振幅データを第1データから求める(ステップS35)。
 駆動制御部240は、振幅データ出力する(ステップS36)。これにより、振幅変調器320において、正弦波発生器310から出力される正弦波の振幅が変調されることによって駆動信号が生成され、振動素子140A1、140A2、140A3、140B1、140B2、140B3が駆動される。駆動制御部240は、ステップS36の処理を終了すると、図10に示すステップS4にフロー進める。
 一方、ステップS32で移動速度が所定の閾値速度以上ではないと判定した場合(S32:NO)と、ステップS34でΔt時間後の推定座標が、ステップS31で求めた領域データが表す領域Stの中にないと判定した場合は、駆動制御部240は、振幅値をゼロに設定する(ステップS37)。
 この結果、駆動制御部240は、振幅値がゼロの振幅データが出力され、振幅変調器320において、正弦波発生器310から出力される正弦波の振幅がゼロに変調された駆動信号が生成される。このため、この場合は、振動素子140A1、140A2、140A3、140B1、140B2、140B3は駆動されない。
 なお、ここでは、図10に示すフローチャートのステップS3の内容が図12に示すフローチャートのステップS31~S37である形態について説明した。しかしながら、図10に示すフローチャートのステップS3は、図12に示すステップS31~S37の処理を行う代わりに、トップパネル120の超音波帯の固有振動を発生させる駆動信号を用いて駆動素子140を駆動する処理であってもよい。
 次に、図13乃至図18を用いて、実施の形態の電子機器100の動作例について説明する。
 図13乃至図18は、実施の形態の電子機器100の動作例を示す図である。図13乃至図18では、図2乃至図4と同様のXYZ座標を定義する。
 図13は、トップパネル120、タッチパネル150、及びディスプレイパネル160を平面的に示す図であり、電子機器100の利用者は、グレーで示すページ1に指先で触れて、左方向にスワイプ操作を行うことにより、白く示すページ2を開こうとしている。すなわち、電子機器100の表示は、ページ1からページ2に遷移しようとしている。
 このように、ページを捲る動作が行われる動作モードでは、駆動制御部240は、操作入力がスワイプ操作であるかどうかを判定する。例えば、駆動制御部240は、利用者の指先が最初にトップパネル120に触れた位置からX軸方向に±dmm以上動いたらスワイプ操作が行われていると判定し、斜線で示す領域の内部に指先が入ったときにトップパネル120に振動が発生する。斜線で示す領域は、領域Stである。
 ここで、図14を用いて、図13に示すように操作入力が行われた場合に、駆動制御部240が出力する振幅データに基づいて振幅変調器320から出力される駆動信号によってトップパネル120に生じる振動について説明する。図14において、横軸は時間軸を表し、縦軸は振幅データの振幅値を表す。また、ここでは、利用者がスワイプ操作を行う際の指先の移動速度は略一定であることとする。
 トップパネル120の位置C1に触れた指先を、時刻t1において利用者が左方向に移動し始めたとする。そして、位置C1から距離dmmだけ移動させた時刻t2において、駆動制御部240は、利用者の入力操作がスワイプ操作であると判定し、スワイプ用の振動パターンによる駆動を行う。スワイプ操作の判定に用いる操作距離dmmは、時刻t1~t2の間の指先の移動距離に相当する。また、時刻t2では、ページの遷移が開始する。
 スワイプ用の振動パターンは、振幅がA11であり、スワイプ操作が行われている間は、振動が連続する駆動パターンである。
 時刻t3で利用者が指先をトップパネル120から離してスワイプ操作を終えると、駆動制御部240は、振幅値をゼロに設定する。このため、時刻t3の直後に振幅がゼロになる。また、時刻t3の後の時刻t4においてページの遷移が完了する。
 このように、利用者がページを捲るためにスワイプ操作を行った場合には、駆動制御部240は、一例として、振幅が一定値(A11)の振幅データを出力する。このため、利用者がスワイプ操作を行っている間は、利用者の指先に掛かる動摩擦力は低下し、利用者に指先が滑る感覚を提供することができ、利用者はスワイプ操作が電子機器100に受け付けられていることを指先で感知することができる。
 また、次に、図15及び図16を用いて、所謂フリック操作による操作入力が行われる場合の駆動制御部240の動作について説明する。
 図15には、電子メールを編集する動作モードにおいて、利用者の指先が位置C11にあるアルファベットの"j"を触れた状態から"l"を選択するために、矢印で示すように上向きのフリック操作を行った状態を示す。図15では、"A, B, C, 2 or #"の入力を行うためのGUI操作部のY軸正方向側に、"j, k, l, 5 or &"のいずれを選択したかを示す円形のサブ表示領域165が表示されている。サブ表示領域165では、フリック操作によって選択された"l"がハイライトされている。
 このように、電子メールを編集する動作モードでは、利用者のフリック操作によって文字の入力が行われるため、駆動制御部240は、操作入力がフリック操作であるかどうかを判定する。そして、電子メールを編集する動作モードでは、次のようにトップパネル120の振動が行われる。
 図16に示すように、利用者がアルファベットの"j"の上の位置C11に時刻t11において触れた指先を、時刻t12においてY軸正方向に移動し始めたとする。そして、位置C11から指先を移動させたことを判定した直後に振動が始まり、利用者に指先が滑る感覚を提供する。これにより、利用者は、アルファベットの"j"の上で指先を移動させている操作入力が電子機器100に受け付けられていることを指先で感知することができる。このとき、トップパネル120には固有振動が生じているため、利用者の指先は滑りやすくなっており、フリック動作を行いやすい状態になる。
 そして、時刻t13において、フリック操作により選択文字が"l"に遷移するとGUI操作部の表示も"l"がハイライトされた状態に更新され、それに伴い領域Stを更新し、所定の領域外に指が位置いていると判定して振幅をゼロにする。
 このため、時刻t14ではトップパネル120の振幅がゼロになり、利用者の指先に掛かる動摩擦力が大きくなり、利用者に指先が引っ掛かる感覚を提供する。このように、動摩擦力が大きくなることにより、利用者は指先が突起に触れたように感じる。
 これにより、利用者は、アルファベットの"l"を選択する操作入力が電子機器100に受け付けられたことを指先で感知することができる。
 なお、ここでは、図15及び図16を用いて、GUI操作部としての"j, k, l, 5 or &"の入力を行うためのGUI操作部を操作する場合について説明したが、例えば、図1に示すスライダー102BのGUI操作部を左右に動かす場合には、所定の移動量毎に振動を発生させればよい。また、スライダー102BのGUI操作部の操作を利用者に知覚させるために、任意の振動パターンでトップパネル120を振動させてもよい。
 また、次に、図17及び図18を用いて、計算機のアプリケーションを実行している動作モードにおいて、操作入力が行われる場合の駆動制御部240の動作について説明する。
 図17に示すように、計算機のアプリケーションを実行している動作モードにおいて、利用者の指先が数字の'6'、に触れた状態から、指先を左方向に移動させることにより、数字の'5'、'4'の順番になぞる移動操作入力が行われた場合には、次のようにトップパネル120の振動が行われる。このような移動操作入力は、フリック操作、スワイプ操作、又はドラッグ操作とは異なり、複数のGUI操作部が並べられて表示されている状態で、指先が複数のGUI操作部を跨いで移動しながら行う操作入力である。
 この場合に、図18に示すように、利用者が数字の'6'の上の位置C21(図17参照)に触れた指先を、時刻t21において移動し始めたとする。そして、位置C21から少し指先を移動させて、指先の位置が数字の'6'の領域から外に出て数字の'5'に入る時刻t22に短時間で振幅の大きな振動B11が生じる。
 この振動B11は、指先の位置が数字の'6'の領域から外に出ることによって生成されるものであり、利用者の指先を知覚されないほど短時間の低摩擦状態から、瞬時的に高摩擦状態にすることにより、利用者に指先が突起に触れた触感を提供する。
 また、指先が数字の'5'の内部をさらに左方向に移動すると、時刻t23から短時間で振幅の小さな振動B12が一定の時間間隔で発生する。これは、数字の'5'はテンキーの中心に位置していることから、トップパネル120を目視しなくても利用者が指先の感覚だけで、数字の'5'を触れていることを感知できるようにするために発生させる振動である。
 そして、時刻t24において、指先が数字の'5'の領域から出て'4'の領域に入ると、短時間で振幅の大きな振動B13を発生させる。これは、振動B11と同様の振動であり、利用者の指先を知覚されないほど短時間の低摩擦状態から、瞬時的に高摩擦状態にして、利用者に指先が突起に触れた触感を提供することにより、指先が数字の'5'の領域から'4'の領域に入ったことを触感で感知させるためである。
 これにより、利用者は、数字の'6'、'5'、'4'を順番になぞったことを感知することができる。
 以上、実施の形態の電子機器100によれば、トップパネル120の超音波帯の固有振動を発生させて利用者の指先に掛かる動摩擦力を変化させるので、利用者に良好な触感を提供することができる。
 また、第1駆動制御により、操作入力の位置に応じて振動素子140A1、140A2、140A3、140B1、140B2、140B3のうちの少なくともいずれか1つを選択して駆動するので、消費電力を低減できる。
 また、実施の形態の電子機器100は、正弦波発生器310で発生される超音波帯の正弦波の振幅のみを振幅変調器320で変調することによって駆動信号を生成している。正弦波発生器310で発生される超音波帯の正弦波の周波数は、トップパネル120の固有振動数に等しく、また、この固有振動数は振動素子140A1、140A2、140A3、140B1、140B2、140B3を加味して設定している。
 すなわち、正弦波発生器310で発生される超音波帯の正弦波の周波数又は位相を変調することなく、振幅のみを振幅変調器320で変調することによって駆動信号を生成している。
 従って、トップパネル120の超音波帯の固有振動をトップパネル120に発生させることができ、スクイーズ効果による空気層の介在を利用して、指でトップパネル120の表面をなぞったときの動摩擦係数を確実に低下させることができる。また、Sticky-band Illusion効果、又は、Fishbone Tactile Illusion効果により、トップパネル120の表面に凹凸が存在するような良好な触感を利用者に提供することができる。
 また、制御周期の1周期の時間に相当する所要時間Δtが経過した後の座標を推定して得る推定座標が振動を発生させるべき所定の領域の内部にある場合に振動を発生させるので、実際に指先が所定のGUI操作部等に触れている間に振動を発生させることができる。
 なお、制御周期の1周期の時間に相当する所要時間Δt分の遅れが問題にならない場合は、推定座標の演算を行わなくてもよい。
 また、以上では、トップパネル120に凹凸が存在するような触感を利用者に提供するために、振動素子140A1、140A2、140A3、140B1、140B2、140B3のオン/オフを切り替える形態について説明した。振動素子140A1、140A2、140A3、140B1、140B2、140B3をオフにするとは、振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動する駆動信号が表す振幅値をゼロにすることである。
 しかしながら、このような触感を提供するために、必ずしも振動素子140A1、140A2、140A3、140B1、140B2、140B3をオンからオフにする必要はない。例えば、振動素子140A1、140A2、140A3、140B1、140B2、140B3のオフの状態の代わりに、振幅を小さくして振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動する状態を用いてもよい。例えば、振幅を1/5程度に小さくすることにより、振動素子140A1、140A2、140A3、140B1、140B2、140B3をオンからオフにする場合と同様に、トップパネル120に凹凸が存在するような触感を利用者に提供してもよい。
 この場合は、振動素子140A1、140A2、140A3、140B1、140B2、140B3の振動の強弱を切り替えるような駆動信号で振動素子140A1、140A2、140A3、140B1、140B2、140B3を駆動することになる。この結果、トップパネル120に発生する固有振動の強弱が切り替えられ、利用者の指先に凹凸が存在するような触感を提供することができる。
 振動素子140A1、140A2、140A3、140B1、140B2、140B3の振動の強弱を切り替えるために、振動を弱くする際に振動素子140A1、140A2、140A3、140B1、140B2、140B3をオフにすると、振動素子140A1、140A2、140A3、140B1、140B2、140B3のオン/オフを切り替えることになる。振動素子140A1、140A2、140A3、140B1、140B2、140B3のオン/オフを切り替えることは、振動素子140A1、140A2、140A3、140B1、140B2、140B3を断続的に駆動することである。
 以上、実施の形態によれば、良好な触感を提供できる駆動制御装置300、電子機器100、及び駆動制御方法を提供することができる。
 なお、以上では、振動素子140A1、140A2、140A3、140B1、140B2、140B3を図8に示すように配置する形態について説明したが、図19に示すように配置してもよい。
 図19は、実施の形態の変形例による振動素子の配置を示す図である。
 図19の(A)に示すように、トップパネル120の長辺に沿って、振動素子140C1、140C2、140C3、140C4、140C5、140D1、140D2、140D3、140D4、140D5を配置してもよい。図19の(A)に示すように操作入力が行われた場合は、例えば、振動素子140C3と140D3を駆動すればよい。
 なお、図19の(A)に示すように、長辺に沿って、振動素子140C1~140C5、140D1~140D5を配置する場合は、短辺方向に向かい合うことになる。このため、図8に示すように、振動素子140A1~140A3と140C1~140C3とが長辺方向に向かい合う場合よりも、向かい合う方向における距離が短くなる。従って、図8に示す配置よりも定在波を発生させ易くなる。
 また、図19の(B)に示すように、振動素子140A1、140A2、140A3、140B1、140B2、140B3に加えて、振動素子140C1、140C2、140C3、140C4、140C5、140D1、140D2、140D3、140D4、140D5を配置してもよい。図19の(B)に示すように操作入力が行われた場合は、例えば、振動素子140A2、140B2、140C3、140D3を駆動すればよい。
 また、図19の(C)に示すように、振動素子140C1、140C2、140C3、140C4、140C5、140D1、140D2、140D3、140D4、140D5に加えて、振動素子140E1、140E2、140E3、140E4、140E5を配置してもよい。
 振動素子140E1、140E2、140E3、140E4、140E5は、トップパネル120の短辺の中点を通る長辺に平行な中心軸に沿って配設されている。図19の(C)に示すように操作入力が行われた場合は、例えば、振動素子140C3、140E3を駆動すればよい。
 図20は、実施の形態の変形例の電子機器100Aを示す図である。電子機器100Aは、ノートブック型のPC(Personal Computer:パーソナルコンピュータ)である。
 PC100Aは、ディスプレイパネル160Aとタッチパッド160Bを含む。タッチパッド160Bの表面に超音波帯の固有振動が生じるようにタッチパッド160Bの裏面に振動素子140を設けておけば、図1に示す電子機器100と同様に、タッチパッド160Bへの操作入力の移動量に応じて、利用者の指先に触感を通じて操作感を提供することができる。
 また、ディスプレイパネル160Aの裏面に振動素子140を設けておけば、図1に示す電子機器100と同様に、ディスプレイパネル160Aへの操作入力の移動量に応じて、利用者の指先に触感を通じて操作感を提供することができる。
 以上、本発明の例示的な実施の形態の電子機器及び駆動制御方法について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 100 電子機器
 110 筐体
 120 トップパネル
 130 両面テープ
 140A1、140A2、140A3、140B1、140B2、140B3 振動素子
 150 タッチパネル
 160 ディスプレイパネル
 170 基板
 200 制御部
 220 アプリケーションプロセッサ
 230 通信プロセッサ
 240 駆動制御部
 250 メモリ
 300 駆動制御装置
 310 正弦波発生器
 320 振幅変調器

Claims (9)

  1.  ディスプレイパネルと、
     前記ディスプレイパネルの表示面側に配設される、平面視で矩形状のタッチパネルと、
     前記タッチパネルの一つの辺に沿って配設され、前記タッチパネルに操作入力を行う操作面に振動を発生させる複数の第1振動素子と、
     前記タッチパネルの前記一つの辺の対向辺に沿って配設され、前記タッチパネルに操作入力を行う操作面に振動を発生させる複数の第2振動素子と、
     前記操作面を複数の領域に区分した区分領域の座標と、各区分領域で駆動する前記第1振動素子又は前記第2振動素子の識別子とを関連付けた区分領域データを格納するメモリと、
     前記タッチパネルへの操作入力の位置と、前記区分領域データとに基づいて、前記操作面に超音波帯の固有振動を発生させる駆動信号で、前記複数の第1振動素子と前記複数の第2振動素子とのうちのいずれか1つを駆動する駆動制御部と
     を含む、電子機器。
  2.  前記駆動制御部は、前記操作面への操作入力の位置及び当該位置の時間的変化度合に応じて、前記固有振動の強度が変化するように前記第1振動素子及び前記第2振動素子を駆動する、請求項1記載の電子機器。
  3.  前記駆動制御部は、前記操作入力の位置が、前記ディスプレイパネルに表示されるGUI操作部の境界を跨いで移動するときに、又は、前記GUI操作部を操作しながら移動するときに、前記固有振動の強度を変化させる、請求項2記載の電子機器。
  4.  前記駆動制御部は、前記操作入力の位置が、前記ディスプレイパネルに表示される画像のページを跨いで移動するときに、前記固有振動の強度を変化させる、請求項2又は3記載の電子機器。
  5.  前記駆動制御部は、前記操作入力の位置が、前記ディスプレイパネルに表示される所定のGUI操作部の領域内を移動するときに、前記固有振動の強度を変化させる、請求項2又は3記載の電子機器。
  6.  前記操作面は平面視で長辺と短辺を有する矩形状であり、前記第1振動素子及び前記第2振動素子は、前記短辺に沿って配設されており、
     前記駆動制御部が前記第1振動素子及び前記第2振動素子を振動させることにより、前記操作面の前記長辺の方向に振幅が変化する定在波が生じる、請求項1乃至5のいずれか一項記載の電子機器。
  7.  前記駆動制御部は、所定時間経過後の前記操作入力の位置を当該位置の時間的変化度合に応じて推定し、推定した操作入力の位置に応じて、前記固有振動の強度が変化するように前記第1振動素子及び前記第2振動素子を駆動する、請求項1乃至6のいずれか一項記載の電子機器。
  8.  前記駆動信号は、一定の周波数と一定の位相で前記操作面に超音波帯の固有振動を発生させる駆動信号である、請求項1乃至7のいずれか一項記載の電子機器。
  9.  ディスプレイパネルと、
     前記ディスプレイパネルの表示面側に配設される、平面視で矩形状のタッチパネルと、
     前記タッチパネルの一つの辺に沿って配設され、前記タッチパネルに操作入力を行う操作面に振動を発生させる複数の第1振動素子と、
     前記タッチパネルの前記一つの辺の対向辺に沿って配設され、前記タッチパネルに操作入力を行う操作面に振動を発生させる複数の第2振動素子と
     を含む電子機器の駆動制御方法であって、
     前記操作面に超音波帯の固有振動を発生させる駆動信号で前記第1振動素子及び前記第2振動素子を駆動する、駆動制御方法。
PCT/JP2014/053402 2014-02-14 2014-02-14 電子機器及び駆動制御方法 WO2015121956A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/053402 WO2015121956A1 (ja) 2014-02-14 2014-02-14 電子機器及び駆動制御方法
JP2015562630A JP6183476B2 (ja) 2014-02-14 2014-02-14 電子機器及び駆動制御方法
US15/213,880 US10031585B2 (en) 2014-02-14 2016-07-19 Electronic device, drive controlling method, and drive controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053402 WO2015121956A1 (ja) 2014-02-14 2014-02-14 電子機器及び駆動制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/213,880 Continuation US10031585B2 (en) 2014-02-14 2016-07-19 Electronic device, drive controlling method, and drive controlling apparatus

Publications (1)

Publication Number Publication Date
WO2015121956A1 true WO2015121956A1 (ja) 2015-08-20

Family

ID=53799723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053402 WO2015121956A1 (ja) 2014-02-14 2014-02-14 電子機器及び駆動制御方法

Country Status (3)

Country Link
US (1) US10031585B2 (ja)
JP (1) JP6183476B2 (ja)
WO (1) WO2015121956A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049688A (ja) * 2015-08-31 2017-03-09 富士通テン株式会社 入力装置、表示装置、及びプログラム
JP2018010413A (ja) * 2016-07-12 2018-01-18 株式会社デンソーテン タッチ入力装置、システム及びタッチ入力装置の製造方法
JP2018049432A (ja) * 2016-09-21 2018-03-29 株式会社デンソーテン 表示制御装置、表示制御システム及び表示制御方法
US20190324545A1 (en) * 2017-01-19 2019-10-24 Fujitsu Limited Electronic device
JP2021093118A (ja) * 2019-12-09 2021-06-17 パナソニックIpマネジメント株式会社 入力装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010012B2 (ja) * 2013-12-03 2016-10-19 富士フイルム株式会社 導電シート、静電容量式タッチパネル及び表示装置
JPWO2015121955A1 (ja) * 2014-02-14 2017-03-30 富士通株式会社 電子機器、入力装置、及び駆動制御方法
EP3611597B1 (en) 2014-03-31 2023-06-07 Sony Group Corporation Tactile sense presentation device, signal generating device, tactile sense presentation system, and tactile sense presentation method
US20170060241A1 (en) * 2015-08-26 2017-03-02 Fujitsu Ten Limited Input device, display device, method of controlling input device, and program
KR102655324B1 (ko) * 2016-12-09 2024-04-04 엘지디스플레이 주식회사 표시 장치
FR3066030B1 (fr) 2017-05-02 2019-07-05 Centre National De La Recherche Scientifique Procede et dispositif de generation de motifs tactiles
US10503261B2 (en) * 2017-12-15 2019-12-10 Google Llc Multi-point feedback control for touchpads
US11709550B2 (en) * 2018-06-19 2023-07-25 Sony Corporation Information processing apparatus, method for processing information, and program
US10840905B2 (en) * 2018-09-04 2020-11-17 Tianma Japan, Ltd. Tactile presentation device
KR102564250B1 (ko) * 2018-09-11 2023-08-07 삼성디스플레이 주식회사 표시 장치
CN111596754A (zh) * 2019-02-20 2020-08-28 天马日本株式会社 触觉呈现装置
FR3115617B1 (fr) * 2020-10-26 2023-06-23 Hap2U Dispositif tactile à retour haptique avec textures spatialisées

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516348A (ja) * 2004-10-08 2008-05-15 イマージョン コーポレーション タッチ式入力装置におけるボタンおよびスクロール動作シミュレーション用の触覚フィードバック
JP2012243189A (ja) * 2011-05-23 2012-12-10 Tokai Rika Co Ltd 入力装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949912B2 (ja) * 2000-08-08 2007-07-25 株式会社エヌ・ティ・ティ・ドコモ 携帯型電子機器、電子機器、振動発生器、振動による報知方法および報知制御方法
JP2005085048A (ja) * 2003-09-09 2005-03-31 Canon Inc 触覚提示装置及びその駆動方法
JP2005258666A (ja) * 2004-03-10 2005-09-22 Sony Corp 入力装置および電子機器並びに電子機器の感触フィードバック入力方法
JP4046095B2 (ja) * 2004-03-26 2008-02-13 ソニー株式会社 触覚機能付き入力装置、情報入力方法及び電子機器
US8780053B2 (en) * 2007-03-21 2014-07-15 Northwestern University Vibrating substrate for haptic interface
US9829977B2 (en) * 2008-04-02 2017-11-28 Immersion Corporation Method and apparatus for providing multi-point haptic feedback texture systems
US10289199B2 (en) * 2008-09-29 2019-05-14 Apple Inc. Haptic feedback system
JP5343871B2 (ja) 2009-03-12 2013-11-13 株式会社リコー タッチパネル装置、これを含むタッチパネル付き表示装置、及びタッチパネル装置の制御方法
JP2010231609A (ja) 2009-03-27 2010-10-14 Hitachi Maxell Ltd 触感呈示装置及び方法
JP2012027855A (ja) * 2010-07-27 2012-02-09 Kyocera Corp 触感呈示装置及び触感呈示装置の制御方法
JP5697521B2 (ja) 2011-04-07 2015-04-08 京セラ株式会社 文字入力装置、文字入力制御方法および文字入力プログラム
JP5697525B2 (ja) * 2011-04-18 2015-04-08 京セラ株式会社 通信端末、サーバ、触覚フィードバック生成方法および通信システム
JP6032657B2 (ja) * 2012-04-27 2016-11-30 パナソニックIpマネジメント株式会社 触感呈示装置、触感呈示方法、駆動信号生成装置および駆動信号生成方法
JP5918040B2 (ja) * 2012-06-19 2016-05-18 京セラ株式会社 振動装置、入力装置、表示装置、および電子機器
US9330544B2 (en) * 2012-11-20 2016-05-03 Immersion Corporation System and method for simulated physical interactions with haptic effects
EP3399397A1 (en) 2013-09-26 2018-11-07 Fujitsu Limited Drive controlling apparatus and drive controlling method
JP2015130168A (ja) * 2013-12-31 2015-07-16 イマージョン コーポレーションImmersion Corporation 摩擦拡張制御、及び、タッチコントロールパネルのボタンを摩擦拡張制御部へと変換する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516348A (ja) * 2004-10-08 2008-05-15 イマージョン コーポレーション タッチ式入力装置におけるボタンおよびスクロール動作シミュレーション用の触覚フィードバック
JP2012243189A (ja) * 2011-05-23 2012-12-10 Tokai Rika Co Ltd 入力装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049688A (ja) * 2015-08-31 2017-03-09 富士通テン株式会社 入力装置、表示装置、及びプログラム
JP2018010413A (ja) * 2016-07-12 2018-01-18 株式会社デンソーテン タッチ入力装置、システム及びタッチ入力装置の製造方法
JP2018049432A (ja) * 2016-09-21 2018-03-29 株式会社デンソーテン 表示制御装置、表示制御システム及び表示制御方法
US20190324545A1 (en) * 2017-01-19 2019-10-24 Fujitsu Limited Electronic device
JP2021093118A (ja) * 2019-12-09 2021-06-17 パナソニックIpマネジメント株式会社 入力装置
JP7054794B2 (ja) 2019-12-09 2022-04-15 パナソニックIpマネジメント株式会社 入力装置

Also Published As

Publication number Publication date
US10031585B2 (en) 2018-07-24
US20160328019A1 (en) 2016-11-10
JP6183476B2 (ja) 2017-08-23
JPWO2015121956A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6183476B2 (ja) 電子機器及び駆動制御方法
JP5780368B1 (ja) 駆動制御装置、電子機器、及び駆動制御方法
JP6447719B2 (ja) 電子機器
WO2015121955A1 (ja) 電子機器、入力装置、及び駆動制御方法
CN108292177B (zh) 电子设备
WO2016163000A1 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
JP6406025B2 (ja) 電子機器
JPWO2015121958A1 (ja) 電子機器、入力装置、及び電子機器の駆動制御方法
JP6123850B2 (ja) 駆動制御装置、電子機器、及び駆動制御方法
US11086435B2 (en) Drive control device, electronic device, and drive control method
WO2015121972A1 (ja) 駆動制御装置、電子機器、システム、及び駆動制御方法
WO2016092644A1 (ja) 電子機器及び駆動制御方法
JP6402823B2 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
WO2016178289A1 (ja) 電子機器及び振動制御プログラム
WO2016174760A1 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
AU2015202408B2 (en) Drive controlling apparatus, electronic device and drive controlling method
WO2017029717A1 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
JP2016161953A (ja) 電子機器及び接触座標決定プログラム
JPWO2019130504A1 (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882706

Country of ref document: EP

Kind code of ref document: A1