WO2015119386A1 - 효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법 - Google Patents

효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법 Download PDF

Info

Publication number
WO2015119386A1
WO2015119386A1 PCT/KR2015/000431 KR2015000431W WO2015119386A1 WO 2015119386 A1 WO2015119386 A1 WO 2015119386A1 KR 2015000431 W KR2015000431 W KR 2015000431W WO 2015119386 A1 WO2015119386 A1 WO 2015119386A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic nanoparticles
enzyme
immunochromic
chip
mimicking
Prior art date
Application number
PCT/KR2015/000431
Other languages
English (en)
French (fr)
Inventor
도준상
이진우
김미주
김민수
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US15/113,807 priority Critical patent/US20160349249A1/en
Publication of WO2015119386A1 publication Critical patent/WO2015119386A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention is a method for producing a lateral flow immunochromic chip using protein-enzyme-like catalytic activity of inorganic nanoparticles, more specifically iron oxide (Fe 3 O 4 ) and platinum (Pt, Platinum), graphene oxide, V 2 O
  • the present invention relates to a method for amplifying a color signal by immobilizing an antibody capable of detecting an analyte to inorganic nanoparticles such as 5 , and applying the same to an enzyme-substrate reaction, and a lateral flow immunochromic chip prepared therefrom. It can be applied to the production of biochip that can detect the component material with high sensitivity.
  • Bioassays using latent flow immunoassay chips have been a major part of the diagnostic test market for a long time as a technology for easily and quickly detecting analytes from body fluids.
  • the method of labeling gold nanoparticles with a coloring material is the most widely used, which makes it easy to visually diagnose in the field by using the properties of gold nanoparticles colored in red by intrinsic plasmon phenomenon.
  • the biggest problem with the detection system of the method is that the sensitivity of the analysis is applied to an analyte which is mainly present in excess of body fluid.
  • the disadvantage that the small amount of detection area is limited prevents the expansion of the application area of the current detection system as an initial countermeasure for the disease.
  • Korean Patent Publication No. 2013-0090174 discloses that a reactant capable of binding to a target material and a reactant, a target material or a reactant bound to the target material, in which a first fusion material in which a light absorbing material is bound are present.
  • a biosensor comprising a measuring unit in which a second fusion material in which a detectable substance and a fluorescent material are combined and fixed on a support are present.
  • Korean Patent Publication No. 2010-118550 discloses gold nanoparticles in which a first antibody or a first specific binding agent capable of specifically binding to a first epitope or a first binding site (ligand) of an analyte. Binding the analyte and the conjugate bound to the;
  • this method has a disadvantage in that it is necessary to use a separate measurement device for detecting fluorescent materials or signals in order to improve low analytical properties of gold nanoparticles.
  • the problem to be solved by the present invention is to provide a highly sensitive side flow immunochromic chip using the new inorganic nanoparticles.
  • Another problem to be solved by the present invention is to provide a novel high sensitivity side flow immunochromic chip capable of amplifying a signal.
  • Another object to be solved by the present invention is to combine the target material in the junction of the lateral flow immunochromic chip to move to the reaction part is fixed to display a detection signal, the reaction part reacts with the color substrate to provide a new particle that is amplified signal It is.
  • the lateral flow immunochromic chip according to the present invention is characterized in that the enzyme mimic inorganic nanoparticles containing the detection antibody in the junction.
  • the lateral flow immunochromic chip according to the present invention has an enzyme-inspired inorganic nanoparticle labeled with a detection antibody at the junction, and the protein enzyme inorganic nanoparticle is fixed at the reaction site by binding to a target material. After that, it is characterized by amplifying the detection signal in response to the color substrate.
  • the enzyme-mimicking inorganic nanoparticles according to the present invention are labeled with a detection antibody capable of binding to a target substance on a surface thereof, and is characterized by catalyzing the oxidation reaction of a chromogenic substrate.
  • the present invention provides a method for detecting a target material by using a lateral flow immunochromic chip in which a detection antibody-labeled enzyme-mimicking inorganic nanoparticle is present at a junction. And amplifying the detection signal by using the same.
  • the enzyme-mimicking inorganic nanoparticles bind the detection antibody labeled at the junction with a target material contained in the liquid sample, and move to the reaction part together with the liquid sample, whereby the detection material fixed at a specific position of the reaction part is present.
  • the detection material fixed at a specific position of the reaction part is present.
  • enzyme-mimicking inorganic nanoparticles immobilized on the reaction part oxidize the color substrate to amplify the detection signal.
  • Enzyme-mimicking inorganic nanoparticles improve reaction efficiency in the enzyme-substrate reaction, which is used as a signal amplification method in conventional immunoassays because the reaction surface is exposed as a whole, unlike protein enzymes, where most of the sites can react with substrates. It is much higher and the color development is remarkably improved.
  • protein enzymes are greatly affected by the environment (temperature, pH, etc.) by protein properties, but inorganic nanoparticles can be relatively stable and active for a long time.
  • the lateral flow immunochromic chip refers to a kit that displays a color signal upon detection so that a liquid sample including a target material may be visually identified by reacting with a fixed detection material while moving through a porous medium.
  • the lateral flow immunochromic chip comprises a sample portion into which a sample containing a target substance is introduced, a junction (conjugation pad) in which monodisperse enzyme-mimicking inorganic nanoparticles are labeled with a detection antibody, and an inorganic nanoparticle. It may include a measuring unit fixed to the detection material capable of binding to the target material to which the particles are bound, a control unit for error checking, and an absorption unit capable of absorbing the liquid sample by capillary action.
  • Each of the sample part, the reaction part, the measuring part, the control part, and the absorbing part of the analysis kit of the lateral flow immunochromic chip is connected to each other through a microtubule or to each other by a membrane, and the membrane is a porous material of natural or synthetic material. It may be, and may be nitrocellulose, but is not limited thereto.
  • the enzyme-mimicking inorganic nanoparticles refer to a substance that catalyzes chemical reactions of various substrates similar to proteinases.
  • chromogenic substrate refers to a substance in which the color change of the material before and after the reaction occurs by the catalytic action of the enzyme-mimicking nanoparticles.
  • color change or amplification is understood to mean one or more of expression of color, change in color wavelength, and change in color intensity.
  • target material may be any one selected from the group consisting of an antigen protein, a ligand, a DNA, an environmental hormone, an environmental pollutant, a virus, and the like, but the type is not limited as long as it is a substance capable of binding to a detection antibody.
  • detecting antibody refers to an antibody capable of binding to a target substance, a Fab that is a fragment of the antibody, or a recombinant substance of the antibody.
  • the bond can be both chemical bond and physical bond.
  • detection substance means a substance capable of binding to a target substance or a reactant bound to the target substance.
  • the bond can be both chemical and physical bonds, but a physical bond is preferred in which the bond can be made without a special chemical reaction.
  • the reactant may be an antibody, a Fab or a recombinant scFv, which is a fragment of the antibody, or a receptor or a fragment of the receptor.
  • enzyme-substrate reaction is understood to include not only the reaction of the substrate catalyzed by the enzyme, but also the reaction of the chromogenic substrate catalyzed by the enzyme-mimicking nanoparticles.
  • the nanoparticles refers to any particle of the nano unit having a diameter of less than 1000nm. In some embodiments, the nanoparticles have a diameter less than 300 nm, as defined by the National Science Foundation. In some embodiments, nanoparticles are less than 100 nm in diameter as defined by the National Institutes of Health. In a preferred embodiment of the invention, the nanoparticles have a diameter of 10 ⁇ 90 nm.
  • the inorganic nanoparticle means a nanoparticle including an inorganic component.
  • the inorganic material may be an inorganic material, an oxide of an inorganic material, an inorganic composite, for example, a composite material in which nonmetals, ceramics, plastics, polymers, biological materials, semiconductors, and quantum dots are combined with metals.
  • the inside contains a non-metallic nucleating agent such as a ceramic or a polymer
  • the outside may be particles coated with an inorganic material
  • the surface of the inorganic particles may include a reactive functional group or a molecular sieve.
  • the enzyme-inspired inorganic nanoparticles are inorganic nanoparticles capable of oxidizing color substrates, preferably iron oxide (Fe 3 O 4 ), platinum (Pt, Platinum), graphene oxide, V 2 O 5 And particles made of a mixture or alloys thereof.
  • the chromophore substrate is the color of the enzyme mimic inorganic nanoparticles act as an oxidation catalyst to precipitate and insoluble at the position where the inorganic nanoparticles are present after oxidation, thereby amplifying the detection signal to the naked eye.
  • the coloring substrate may be 3-amino-9-ethylcarbazole (AEC) when the peroxidase mimics inorganic nanoparticles.
  • AEC 3-amino-9-ethylcarbazole
  • functional groups capable of immobilizing the detection antibody may be present on the surface of the inorganic nanoparticle.
  • the functional group present on the surface of the inorganic nanoparticles is preferably a carboxylic acid group (Carboxylic acid group) capable of providing covalent bonds or ionic electrical attraction as a means of fixing the detection antibody.
  • an amine group (-NH 2 , amine group) which is present in abundance in an IgG antibody can be used.
  • Inorganic nanoparticles according to the present invention is preferably monodisperse nanoparticles contained in the liquid phase to be able to move to the junction of the lateral flow immunochromic chip through a capillary diameter of several micrometers.
  • the monodispersity is a measure of uniformity in size and structure of the nanoparticles, and means substantially uniformity.
  • the synthesis of the monodisperse inorganic nanoparticles can be prepared using a synthetic method to improve the monodispersity using a surfactant in an organic solvent.
  • the detection antibody was immobilized on the surface of the inorganic nanoparticles, dispersed in physiological saline containing sucrose and bovine serum albumin, and evenly absorbed and dried at the junction made of glass fibers. Because glass fibers have low affinity for proteins, the dried antibody-inorganic nanoparticles can easily hydrate when they meet the analyte's fluid in the glass fibers and then exit into the test pad.
  • the fluid containing the analyte is flowed into the lateral flow immunochromic chip and an enzyme-substrate reaction using a precipitated insoluble substrate is used to amplify the color signal and successfully increase the detection sensitivity.
  • the highly sensitive lateral flow immunochromic chip provided by the present invention is a signal amplification method through an enzyme-substrate reaction, and the chromogenic substrate which is oxidized to form a precipitate enables the amplified signal to be visually observed in the field.
  • the enzyme mimics inorganic nanoparticles, it can be preserved as a stable detection system compared to enzymes composed of proteins.
  • FIG. 1 illustrates a process of attaching an antibody to inorganic nanoparticles synthesized in an analyte detection method based on the preparation of an lateral flow immunochromic chip containing inorganic nanoparticles and an enzyme-substrate reaction.
  • FIG. 2 shows the preparation of a lateral flow immunochromic chip containing inorganic nanoparticles and the detection of analytes using a lateral flow immunochromic chip in an analyte detection method based on enzyme-substrate reaction and amplification of color signals by enzyme-substrate reaction. It is shown.
  • Figure 3 is a schematic diagram of the side-flow immunoassay using nanoparticles immobilized pure mouse IgG antibody that is not given a function in verifying the analyte detection function of the side-flow immunochromic chip containing inorganic nanoparticles.
  • Figure 4 shows the results of the reaction compatibility test with inorganic nanoparticles using two substrates AEC and DAB in verifying the analyte detection function of the side flow immunochromic chip containing inorganic nanoparticles.
  • Figure 5 shows the color signal image amplified over time by the enzyme-substrate reaction in the detection sensitivity test using hCG.
  • Figure 6 shows the standard curve according to the hCG concentration in the detection sensitivity test using hCG.
  • Figure 7 shows the standard curve according to the value amplified according to the enzyme-substrate reaction time in the detection sensitivity test using hCG.
  • Iron oxide nanoparticles were synthesized using the coprecipitation method.
  • 0.4 g of ferrous chloride and 1.1 g of ferric chloride were added to 20 mL of distilled water and heated up to 80 ° C with argon gas.
  • 5 mL of ammonium hydroxide solution of 28% at 80 °C was added and allowed to react for one hour and then cooled to room temperature. Then, using a magnet was washed five times with ethanol and distilled water.
  • Platinum nanoparticles were synthesized by modifying the existing synthetic method by seed-growth.
  • a brief summary of the main contents is as follows. 18 mL of 0.2% chloroplatinic acid hexahydrate was added to 232 mL of boiling water and after 1 minute 5.5 mL of 1% sodium citrate and 0.05% citric acid were added. After 30 seconds, 2.75 mL of a solution containing 0.08% fresh sodium borohydrate, 1% sodium citrate, and 0.05% citric acid was added. After the reaction was allowed to proceed for 10 minutes, platinum nanoparticles were synthesized using the obtained 5 nm platinum nanoparticle seed.
  • the two materials were mixed in water at a ratio of 1: 1 (final concentration of 0.5 mg / mL). After the two substances were well dispersed in water, a fixed reaction was performed at 4 ° C. for 24 hours. (FIG. 1) After the reaction, the antibodies that did not adhere to the surface of the inorganic nanoparticles were removed using a centrifuge (14,000 rpm, 15 minutes, 4 ° C.), and the inorganic nanoparticles labeled with the detection antibody were stored in saline.
  • Inorganic nanoparticles labeled with the detection antibody completed in Example 1-2 were dried and stored in the junction located next to the sample pad in the lateral flow immunochromic chip.
  • the junction is made of glass fiber, which is incompatible with the protein, so that when the fluid flows from the sample pad, the detection reagent dried in the junction can hydrate and easily exit the test pad. .
  • 10 wt% of sucrose, a sugar component, and 3 wt% of bovine serum albumin to reduce non-specific reactions were detected in a concentration of 1 mg / mL. Dispersed evenly and transferred to a glass pad.
  • a total of 8 ⁇ g of nanoparticles are stored in one chip, and samples are all detected by reacting with it.
  • the glass pad in which the inorganic nanoparticles were stored in solution was sufficiently dried in a vacuum environment, and then placed between the sample pad and the test pad to complete the chip.
  • the test was conducted using an anti-mouse antibody section located in the control unit of the side-flow immunochromic chip.
  • FIG. 3 Fixed to inorganic nanosurface using Example 1-2 method using pure mouse IgG protein with no function, and embedded in the chip by the method of Example 2-1, as shown in step 2 of FIG. 100 ⁇ l of physiological saline was flowed through the sample pad.
  • the signal developed by the mouse IgG was caught by the anti-mouse antibody in the control part was visually detected. Since the antibody-labeled inorganic nanoparticles are held together, the color signal appears in a color unique to the inorganic nanoparticles.
  • the substrate to be applied to the lateral flow immunochromic chip of the present inventors should be one that can react with the enzyme and form a precipitate.
  • Representative substrates that react with peroxidase to precipitate and develop are 3-amino-9-ethylcarbazole (AEC) and 3,3′-Diaminobenzidine (DAB).
  • AEC is a substrate that is yellow before oxidation and then turns red after reaction.
  • DAB is a substrate that has an orange color before oxidation and then turns brown after the reaction.
  • the inorganic nanoparticles were placed in the control unit on the chip by mouse IgG in the method of Example 3-1, and 100 ⁇ l of the two substrates was sequentially processed. As a result, the substrate reacting with the inorganic nanoparticles developed by the present inventors was able to confirm that the control part developed red after the substrate treatment, as shown in FIG. 4 as AEC.
  • the detection sensitivity amplified by the enzyme-substrate reaction of inorganic nanoparticles and AEC was measured using a side flow immunochromic chip for detecting hCG completed in Example 4-1.
  • Commercially available dip-sticks for detection of hCG have a sensitivity of 25 mIU / mL (3.7 ng / mL). With reference to this, the concentration of hCG was set in the range of 11.1 to 0.41 ng / mL, and the detection standard curve was drawn within the range.
  • the identified concentration of hCG was mixed with physiological saline and flowed into the sample pad, and the test pad was flowed for about 10 minutes to be captured by the capture antibody in the detection unit.
  • test pad was thoroughly washed with a pH 4.5 sodium acetate solution to create an environment that could react with the substrate, and 100 ⁇ l of the AEC substrate solution was dropped on the detection and control sides to prevent the enzyme from drying. It made me wake up. As a result, a red signal was observed in the control and test lines as a result of the enzyme-substrate reaction. Under the concentration of 1.23 ng / mL, only the inorganic nanoparticles were not developed before reaction with the substrate, but the color signal was amplified with time after the substrate treatment, and red bands were gradually observed.
  • FIG. 5 is a graph illustrating the color value of the detector by image analysis.
  • the standard curve value according to the hCG concentration was defined as the ratio of the signal value of the detector from each chip divided by the signal value of the controller. 7 shows that the signal intensity of the detection value increases as the substrate and the reaction time increase.
  • the highly sensitive lateral flow immunochromic chip provided by the present invention is a signal amplification method through an enzyme-substrate reaction, and the chromogenic substrate which is oxidized to form a precipitate enables the amplified signal to be visually observed in the field.
  • the enzyme mimics inorganic nanoparticles, it can be preserved as a stable detection system compared to enzymes composed of proteins.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Inorganic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 무기 나노입자의 단백질 효소 유사 촉매활성을 이용하여 측면유동 면역발색칩을 제조하는 방법, 더욱 자세하게는 철산화물 (Fe3O4)과 백금 (Pt, Platinum)의 나노입자에 분석물을 감지할 수 있는 항체를 고정하고, 이를 효소-기질 반응에 적용시켜 발색 시그널을 증폭시키는 방법, 및 이것으로 제조된 측면유동 면역발색칩에 관한 것으로서, 상기 칩을 사용하여 고감도로 성분물질을 검출해 낼 수 있는 바이오칩 제작에 응용될 수 있다. 본 발명에 따른 측면 유동 면역 발색칩은 접합부에 검출 항체가 표지된 효소 모방무기 나노입자가 존재하는 것을 특징으로 한다.

Description

효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법
본 발명은 무기 나노입자의 단백질 효소 유사 촉매활성을 이용하여 측면유동 면역발색칩을 제조하는 방법, 더욱 자세하게는 철산화물 (Fe3O4)과 백금 (Pt, Platinum), graphene oxide, V2O5 등의 무기 나노입자에 분석물을 감지할 수 있는 항체를 고정하고, 이를 효소-기질 반응에 적용시켜 발색 시그널을 증폭시키는 방법, 및 이것으로 제조된 측면유동 면역 발색칩에 관한 것으로서, 상기 칩을 사용하여 고감도로 성분물질을 검출해 낼 수 있는 바이오칩 제작에 응용될 수 있다.
유동 면역발색칩 (Lateral flow immunoassay chip)을 이용한 바이오 에세이는 체액으로부터 간편하고 빠르게 분석물을 검출해낼 수 있는 기술로써 오랜 기간 진단 검사 시장에서 주요한 부분을 차지해 왔다. 발색 물질로 금 나노입자를 표지하는 방법이 가장 널리 쓰이고 있으며, 이는 고유의 플라즈몬 현상에 의해 붉은색으로 발색되는 금 나노입자 특성을 이용하여 현장에서 간편하게 육안으로 진단할 수 있게 한 것이다. 하지만 상기 방법의 검출 시스템이 가진 가장 큰 문제점은 분석 감도가 떨어져 주로 체액에 과량 존재하는 분석물에 적용되고 있는 점이다. 소량 검출 영역이 제한되는 단점이 질병의 초기 대응 수단으로써 현 검출 시스템의 응용영역의 확장을 방해하고 있다.
이에 따라, 대한민국 특허 공개 제2013-0090174호에서는 표적물질에 결합할 수 있는 반응물질과 흡광물질이 결합된 제1 융합물질이 존재하는 반응부, 표적물질 또는 표적물질과 결합된 반응물질과 결합할 수 있는 검출물질과 형광물질이 결합된 제2 융합물질이 지지체 위에 고정되어 존재하는 측정부를 포함하는 바이오 센서를 공개하고 있다.
또한, 대한민국 특허 공개 제2010-118550호에서는 분석물(analyte)의 제1 에피토프 또는 제1 결합부위(리간드)에 특이적으로 결합할 수 있는 제1 항체 또는 제1 특이적 결합물질이 금 나노입자에 결합되어 있는 접합체와 분석물을 결합하는 단계;
상기 접합체가 결합된 분석물과 상기 분석물의 제2 에피토프 또는 제2 결합부위 (리간드)에 특이적으로 결합하는 고정화된 제2 항체 또는 제2 특이적 결합물질을 결합하는 단계; 및 금 이온 및 환원제를 첨가하여 반응시키는 단계를 포함하는 측방유동 (Lateral flow) 분석에서의 신호 증폭 방법을 개시하고 있다.
그러나 이러한 방식은 금 나노입자의 낮은 분석 특성을 향상시키기 위해서 별도의 형광물질이나 시그널 검출용으로 특화된 측정 기기가 필요하다는 단점이 있다.
본 발명에서 해결하고자 하는 과제는 새로운 무기 나노입자를 이용한 고감도의 측면 유동 면역 발색칩을 제공하는 것이다.
본 발명에서 해결하고자 하는 다른 과제는 신호를 증폭할 수 있는 새로운 고감도의 측면 유동 면역 발색칩을 제공하는 것이다.
본 발명에서 해결하고자 하는 또 다른 과제는 측면 유동 면역 발색칩의 접합부에서 표적물질과 결합하여 반응부로 이동하여 고정되어 검출 신호를 나타내고, 반응부에서 발색기질과 반응하여 신호가 증폭되는 새로운 입자를 제공하는 것이다.
상기와 같은 과제를 해결하기 위해서, 본 발명에 따른 측면 유동 면역 발색칩은 접합부에 검출 항체를 포함하는 효소 모방 무기 나노입자가 존재하는 것을 특징으로 한다.
본 발명은 일 측면에서, 본 발명에 따른 측면 유동 면역 발색칩은 접합부에 검출 항체가 표지된 효소 모방 무기 나노입자가 존재하고, 상기 단백질 효소 무기 나노입자는 표적물질과 결합하여 반응부에서 고정된 후, 발색기질과 반응하여 검출 신호를 증폭시키는 것을 특징으로 한다.
본 발명은 다른 일 측면에서, 본 발명에 따른 효소 모방 무기 나노입자는 표면에 표적물질과 결합할 수 있는 검출항체가 표지되어 있으며, 발색 기질의 산화반응을 촉매하는 것을 특징으로 한다.
본 발명은 또 다른 일 측면에서, 접합부에 검출 항체가 표지된 효소 모방 무기 나노입자가 존재하는 측면 유동 면역 발색칩을 이용해서 표적물질을 검출하는 단계;와 효소 모방 무기 나노입자에 의해서 발색 기질을 이용하여 검출 신호를 증폭시키는 단계를 포함하는 것을 특징으로 한다.
이론적으로 한정된 것은 아니지만, 상기 효소 모방 무기 나노입자들은 접합부에서 표지된 검출항체가 액상 시료에 포함된 표적 물질과 결합하고, 액상시료와 함께 반응부로 이동하여, 반응부의 특정 위치에 고정된 검출물질이 표적물질과 결합함으로서 반응부의 특정 위치에 고정되어 검출 신호를 나타내게 되며, 반응부에 고정된 효소 모방 무기나노입자들이 발색기질을 산화시켜 검출 신호를 증폭시키게 된다. 효소 모방 무기 나노입자들은 기존의 면역분석에서 시그널 증폭법으로 사용되는 효소-기질 반응에서, 기질과 반응할 수 있는 장소가 대부분 가려져 있는 단백질 효소와는 달리 반응 표면이 전체적으로 노출돼 있기 때문에 반응 효율을 훨씬 높아 발색 특성이 현저하게 향상된다. 또한 단백질 효소는 단백질 특성에 의해 주변 환경 (온도, pH 등)에 영향을 많이 받지만 무기 나노입자는 상대적으로 매우 안정적으로 활성을 유지하고 오랜 기간 보존될 수 있다.
본 발명에 있어서, 상기 측면 유동 면역 발색칩은 표적 물질을 포함하는 액상 시료가 다공성 매질을 통해 이동하면서 고정된 검출물질과 반응하여 육안으로 식별할 수 있도록 검출시 발색 신호를 나타내는 키트를 의미한다.
본 발명의 실시에 있어서, 상기 측면 유동 면역 발색 칩은 표적물질을 포함하는 시료가 투입되는 샘플부, 검출 항체가 표지된 단분산성 효소 모방 무기 나노입자가 존재하는 접합부(컨쥬게이션 패드), 무기 나노입자가 결합된 표적물질과 결합할 수 있는 검출물질이 고정된 측정부, 오류 확인을 위한 컨트롤부 및 액체 시료를 모세관 현상에 의해 흡수할 수 있는 흡수부를 포함하여 이루어질 수 있다.
상기 측면 유동 면역 발색칩의 분석 키트의 각각 샘플부, 반응부, 측정부, 컨트롤부 및 흡수부는 미세관을 통하여 서로 연결되거나, 또는 멤브레인로 서로 연결되며, 상기 멤브레인은 천연 또는 합성 재료의 다공질 재료일 수 있으며, 니트로셀룰로오스 일 수 있으며, 이에 한정되는 것은 아니다.
상기 효소 모방 무기 나노입자는 단백질효소와 유사하게 다양한 기질의 화학반응을 촉매하는 물질을 의미한다.
상기 용어발색 기질은 상기 효소 모방 나노입자의 촉매 작용에 의해 반응 전 물질과 반응 후 물질의 발색 변화가 일어나는 물질을 의미한다.
상기 용어발색 변화 또는 증폭은 색의 발현, 발색 파장 변화, 및 발색 강도 변화 중 하나 이상을 의미하는 것으로 이해된다.
용어 표적물질은 항원 단백질, 리간드, DNA, 환경 호르몬, 환경오염 물질, 및 바이러스 등으로 이루어진 군에서 선택되는 어느 하나 일 수 있으나, 검출항체와 결합할 수 있는 물질이라면 그 종류는 제한되지 않는다.
상기 용어 "검출항체"란 표적물질과 결합할 수 있는 항체, 항체의 단편인 Fab 또는 항체의 재조합 물질을 의미한다. 결합은 화학적 결합 및 물리적 결합 모두 가능하다.
용어 검출물질은 표적물질, 또는 표적물질과 결합된 반응물질과 결합할 수 있는 물질을 의미한다. 결합은 화학적 결합 및 물리적 결합 모두 가능하나, 특별한 화학 반응 없이 결합이 이루어질 수 있는 물리적 결합이 바람직하다. 상기 반응물질의 예로는 항체, 항체의 단편인 Fab나 재조합 scFv 등 일 수 있으며, 리셉터 또는 리셉터의 단편일 수 있다.
용어효소-기질 반응이란 효소에 의해서 촉매 작용이 이루어지는 기질의 반응 뿐만아니라, 효소 모방 나노입자에 의해서 촉매 작용이 이루어지는 발색 기질의 반응을 포함하는 것으로 이해된다.
본 발명에 있어서, 상기 나노입자(Nanoparticle)는 1000nm 미만의 직경을 가지는 나노 단위의 임의 입자를 말한다. 일부 실시예에 있어서, 상기 나노입자는 National Science Foundation에서 정의한 것에 따르면, 나노 입자는 300nm 미만의 직경을 가진다. 일부 구체예에서, 나노입자는 National Institutes of Health에서 정의한 것에 따르면 직경이 100nm 미만이다. 본 발명의 바람직한 실시에 있어서, 상기 나노입자는 10~90 nm 직경을 가진다.
본 발명에서 무기 나노입자는 무기 성분을 포함하는 나노입자를 의미한다. 상기 무기 물질은 무기, 무기 물질의 산화물, 무기성 복합체, 예를 들어, 금속과 함께 비금속, 세라믹, 플라스틱, 고분자, 생물학적 소재, 반도체, 양자점 들이 복합된 복합 재질일 수 있으며, 상기 복합 재질이라 함은 예를 들어, 내부는 세라믹이나 고분자와 같은 비금속 재질의 핵제가 들어 있으며, 외부는 무기 물질로 코팅된 입자일 수 있으며, 무기 입자의 표면이 반응성 관능기나 분자체 등이 존재할 수 있다.
본 발명에 있어서, 상기 효소 모방 무기 나노입자는 발색기질을 산화시킬 수 있는 무기 나노입자로서, 바람직하게는 철산화물 (Fe3O4), 백금 (Pt, Platinum), graphene oxide, V2O5, 이들의 혼합물 또는 합금 등으로 이루어진 입자이다.
본 발명에 있어서, 발색기질은 효소 모방 무기 나노입자가 산화촉매로 작용하여 산화 후 무기 나노입자가 존재하는 위치에서 침전 및 불용화되면서 발색하여, 검출신호를 육안으로 인식할 수 있을 정도로 증폭시키게 된다.
본 발명의 바람직한 실시예에 있어서, 상기 발색기질은 과산화 효소 모방 무기 나노입자일 경우, 3-amino-9-ethylcarbazole (AEC)일 수 있다.
본 발명에 있어서, 상기 무기 나노입자의 표면에는 검출 항체를 고정시킬 수 있는 기능기들이 존재할 수 있다. 상기 무기 나노입자의 표면에 존재하는 기능기는 검출 항체의 고정 수단으로써 공유결합 또는 이온성의 전기적 인력을 제공할 수 있는 카르복실산기 (Carboxylic acid group)인 것이 바람직하다. 이 경우 IgG 항체에 풍부하게 존재하는 아민기 (-NH2, amine group)를 사용할 수 있다.
본 발명에 따른 무기 나노 입자는 액상에 포함되어 수 마이크로미터 직경의 모세관로를 통해서 측면 유동 면역 발색칩의 접합부로 이동할 수 있도록 단분산된 나노입자인 것이 바람직하다.
상기 단분산성이라 함은 나노입자의 크기와 구조가 균일한 정도를 나타내는 척도로서, 실질적으로 균일한 것을 의미한다.
상기 단분산성 무기 나노입자의 제조 방법은 본 발명에서 전체로 참고문헌으로 도입된 문헌[(J. Am. Chem. Soc., Shouheng Sun 외, 단분산성의 MFe2O4 (M = Fe, Co, Mn) 나노입자 : 2004, Vol.126, 273-279 쪽]을 이용해서 제조할 수 있다.
본 발명의 실시에 있어서, 상기 단분산성 무기 나노입자의 합성은 유기용매 내에서 계면활성제를 이용하여 단분산성을 향상시킨 합성법을 이용하여 제조될 수 있다.
검출 항체를 무기 나노입자 표면에 고정시킨 후 수크로오즈와 소혈청 알부민이 포함된 생리식염수에 분산시켜 유리 섬유로 이루어진 접합부에 고르게 흡수시켜 건조시켰다. 유리섬유는 단백질에 대해서 친화능력이 낮기 때문에 건조된 상태의 항체-무기 나노입자는 유리섬유 속에서 분석물의 유체를 만났을 때 수화된 후 쉽게 테스트 패드로 빠져나갈 수 있다.
분석물의 검출을 위하여 분석물이 함유된 체액을 측면유동 면역발색칩에 흘려주고 침전성의 불용 기질을 사용하여 효소-기질 반응을 보내주면 발색 시그널이 증폭되면서 성공적으로 검출 감도를 향상시킬 수 있다.
본 발명에서 제공하는 고감도의 측면유동 면역 발색칩은 효소-기질 반응을 통한 시그널 증폭법이 적용된 것이며, 산화되어 침전을 형성하는 발색 기질은 증폭된 시그널을 간편하게 현장에서 육안으로 관찰 가능하게 한다.
또한 효소 모방 무기 나노입자를 사용했기 때문에 이는 기존에 사용되어온 단백질로 구성된 효소에 비해 안정적인 검출 시스템으로 보존될 수 있다. 상기 특징들은 고감도로 체액으로부터 소량의 분석물을 검출해낼 수 있게 함으로써 급성발병질환이나 암질환의 조기 진단과 초기 대응을 가능하게 하고, 안정적으로 검출시스템이 보존되기 때문에 내전지역이나 재난지역에 구호물품으로 제공될 진단 도구에 적용될 수 있다.
도 1은 무기 나노입자를 함유한 측면유동 면역 발색칩의 제조 및 효소-기질 반응을 기반으로 한 분석물 검출법에서 합성된 무기 나노입자에 항체가 부착되는 과정을 나타낸 것이다.
도 2는 무기 나노입자를 함유한 측면유동 면역 발색칩의 제조 및 효소-기질 반응을 기반으로 한 분석물 검출법에서 측면유동 면역 발색칩을 사용한 분석물의 검출 및 효소-기질 반응에 의한 발색 시그널 증폭법을 나타낸 것이다.
도 3은 무기 나노입자를 함유한 측면유동 면역발색칩의 분석물 검출 기능 검증에서 기능이 부여되지 않은 순수한 마우스 IgG 항체가 고정된 나노입자를 이용한 측면유동 면역발색 에세이 모식도이다.
도 4는 무기 나노입자를 함유한 측면유동 면역발색칩의 분석물 검출 기능 검증에서 AEC와 DAB 두 가지 기질을 사용한 무기 나노입자와의 반응 적합성 테스트 결과를 나타낸 것이다.
도 5는 hCG를 사용한 검출 감도 테스트에서 효소-기질 반응으로 시간에 따라 증폭되는 발색 시그널 이미지를 나타낸 것이다.
도 6은 hCG를 사용한 검출 감도 테스트에서 hCG 농도에 따른 표준 곡선을 나타낸 것이다.
도 7은 hCG를 사용한 검출 감도 테스트에서 효소-기질 반응 시간에 따라 증폭되는 값에 따른 표준 곡선을 나타낸 것이다.
이하, 실시예를 통해서 본 발명을 상세하게 설명한다. 하기 실시예는 발명을 예시하기 위한 것이며, 어떤 경우에도 발명을 한정하기 위한 것으로 해석되지 않아야 한다.
실시예
실시예 1. 무기 나노입자 합성과 표면 항체 고정법
1-1 무기 나노입자의 합성
철 산화물 나노입자는 공침방법을 이용해 합성하였다. 합성 방법을 요약하면, 0.4 g의 ferrous chloride와 1.1 g의 ferric chloride를 20 mL의 증류수에 넣고, 아르곤 가스를 흘려주며 80℃까지 올려주었다. 80℃에서 28%의 ammonium hydroxide solution을 5 mL 넣고 한 시간 반응시킨 후 상온으로 식혀주었다. 그 후, 자석을 이용해 에탄올과 증류수로 5회 깨끗이 씻어 주었다.
백금 나노입자는 기존의 시드-성장에 의한 합성방법을 수정하여 합성하였다. 주요 내용을 간략히 요약하면 다음과 같다. 0.2%의 chloroplatinic acid hexahydrate 18 mL를 232 mL의 끓는 물에 넣고 1분 후에 1%의 sodium citrate와 0.05%의 citric acid를 5.5 mL 넣었다. 30초 후에, 0.08%의 신선한 sodium borohydrate 와 1%의 sodium citrate, 0.05%의 citric acid가 포함된 용액 2.75 mL를 넣어주었다. 반응을 10분 진행시킨 후, 얻어진 5 nm의 백금 나노입자시드를 이용해 백금 나노입자를 합성하였다. 위의 시드용액 10 mL와 증류수 90 mL를 섞은 후 0.4 M chloroplatinic acid hexahydrate 0.05 mL (30 nm 는 0.5 mL를 넣어줌)와 sodium citrate 1%, L-ascorbic acid 1.25%의 0.5 mL를 넣어 10℃/분으로 끓는점까지 올리고 30분 동안 유지하고 식힌 후, 원심분리기로 20분 동안 입자를 가라앉힌 후 (8000 rpm) 에탄올과 증류수로 3회 깨끗이 씻어 주었다.
1-2 무기 나노입자의 검출 항체 표지법
수계로 옮겨온 단분산성의 무기 나노입자에 검출 항체를 고정시키기 위해서 두 재료를 1:1의 비율 (최종 0.5 mg/mL의 농도)로 물에서 섞어주었다. 두 물질이 물에서 잘 분산돼 있도록 해준 뒤 24시간 4℃에서 고정반응을 실시하였다. (도 1) 반응 후 무기 나노입자 표면에 붙지 못한 항체들을 원심분리기 (14,000 rpm, 15 분, 4℃)를 사용하여 제거해 준 뒤 생리식염수에 검출항체가 표지된 무기 나노입자를 보관하였다.
실시예 2. 측면유동 면역발색칩의 조립
2-1 검출 항체가 표지된 무기 나노입자의 저장 및 조립
측면유동 면역발색칩에서 샘플 패드 다음에 위치하고 있는 접합부에 실시예 1-2를 통해 완성된 검출 항체가 표지된 무기 나노입자를 건조 및 저장 하였다. (도 2 step 1) 접합부는 유리섬유로 이루어져 있는데, 이는 단백질과 호환성이 좋지 않기 때문에 샘플 패드로부터 유체가 흘러들어왔을 때 접합부 내에서 건조돼 있던 검출 시약은 수화되면서 쉽게 테스트 패드 쪽으로 빠져나갈 수 있다. 수화 능력을 향상시키기 위해 당성분인 수크로오스를 10 wt% 첨가하고 비특이적 반응을 줄이기 위한 소혈청 알부민이 3 wt% 포함된 생리식염수 용액에 검출 항체가 표지된 무기 나노입자를 1 mg/mL의 농도로 고르게 분산시켜 유리패드로 옮겨주었다. 총 8 μg 의 나노입자가 하나의 칩 속에 저장되며, 샘플은 이것과 모두 반응하여 검출된다. 무기 나노입자를 용액형태로 저장한 유리패드를 진공 환경에서 충분히 건조 시켜준 뒤, 이를 샘플 패드와 테스트 패드 사이에 위치시켜 칩을 완성하였다.
실시예 3. 무기 나노입자를 함유한 측면유동 면역발색칩의 분석물 검출 기능 검증
3-1 항 마우스 항체 구간을 이용한 검출 항체의 고정 상태 확인
무기 나노입자 표면의 카르복실기와 반응하여 고정됐을 검출 항체의 상태를 확인하기 위해서 측면유동 면역발색칩의 컨트롤부에 위치해 있는 항 마우스 항체 구간을 이용해 테스트를 진행했다. (도 3) 기능이 부여되지 않은 순수 마우스 IgG 단백질을 사용해서 무기 나노표면에 실시예 1-2 방법으로 고정시키고, 실시예 2-1의 방법으로 칩에 내장시킨 뒤 도 2의 step 2 와 같이 100㎕의 생리 식염수를 샘플 패드를 통해 흘려주었다. 그 결과 도 4에서 기질 처리 전의 이미지가 보여주는 것과 같이 컨트롤부에서 항 마우스 항체에 마우스 IgG가 잡혀서 발색된 시그널이 육안으로 검출되는 것을 확인할 수 있었다. 항체가 표지된 무기 나노입자가 함께 잡힌 것이기 때문에 발색 시그널은 무기 나노입자 고유의 색으로 나타난다.
3-2 무기 나노입자와 반응 가능한 기질의 선택
본 발명자의 측면유동 면역발색칩에 적용될 기질은 효소와 반응해서 침전을 형성하며 발색할 수 있는 것이어야 한다. 대표적으로 과산화효소와 반응해서 침전 발색하는 기질로 3-amino-9-ethylcarbazole (AEC) 와 3,3′-Diaminobenzidine (DAB)가 있다. AEC는 산화되기 전에 노란색을 띠고 있다가 반응 후 붉은 색으로 변하는 성질을 가진 기질이다. DAB는 산화되기 전에 오렌지색을 띠고 있다가 반응 후 갈색으로 변하는 성질을 가진 기질이다. 우선 실시예 3-1의 방법으로 마우스 IgG에 의해 무기 나노입자가 칩 위의 컨트롤부에 위치할 수 있도록 해 두고 순차적으로 상기 두 종류의 기질을 100㎕씩 처리해 주었다. 그 결과 본 발명자가 개발한 무기 나노입자와 반응하는 기질은 AEC로서 도 4에서 보여지는 것처럼 기질 처리 후 컨트롤부가 붉게 발색 되는 것을 확인할 수 있었다.
실시예 4. 융모성 성선자극호르몬 (human chorionic gonadotropin , hCG) 분석물을 사용한 측면유동 면역발색칩의 감도 측정
4-1 항 hCG 항체의 고정
합성 후 수분산 된 백금나노입자 (30 nm) 표면에 hCG를 검출할 수 있는 검출 항체(detection antibody)를 고정시키기 위해서 두 물질간의 이차 결합을 매개로 한 고정법을 선택하여 적용시켰다. 최종적으로 합성된 뒤 물 (deionized water)에 분산돼 있는 백금나노입자 (0.5 mg/mL)에 검출항체인 β-hCG 단일항체를 0.1 mg/mL의 농도로 넣어서 잘 섞어 주고 24시간 동안 4℃에서 로테이터에 장착하여 반응을 보내주었다. 반응 후에 생리식염수로 두 번 씻어 주고 (14,000 rpm. 15분, 4℃), 최종적으로 항체가 고정된 백금나노입자를 1 mg/mL의 농도로 접합부 저장 용액 (10 wt% sucrose, 0.1 wt% Tween 20, 3 wt% BSA, PBS) 나 보존 용액 (1% BSA, PBS)에 보관하였다.
4-2 효소-기질 반응을 이용한 hCG의 검출
실시예 4-1로 완성된 hCG 검출용 측면유동 면역발색칩을 사용하여 무기 나노입자와 AEC의 효소-기질 반응으로 증폭된 검출 감도를 측정하였다. 상용화된 hCG 검출용 dip-stick은 25 mIU/mL (3.7 ng/mL) 의 감도를 가지고 있다. 이것을 참고하여 hCG의 농도를 11.1~0.41 ng/mL 의 범위로 정하였고, 상기 범위 내에서 검출 표준 곡선을 그려보았다. 확인된 농도의 hCG를 생리식염수에 섞어서 샘플 패드로 흘려주었고 약 10분의 시간 동안 테스트 패드를 흐르게 하여 검출부의 capture antibody에 포획될 수 있게 하였다. 기질과 반응할 수 있는 환경을 조성하기 위해 pH 4.5의 sodium acetate 용액을 사용하여 테스트 패드를 충분히 씻어 주었고, 패드가 마르지 않도록 하여 검출부와 컨트롤부 쪽에 AEC 기질 용액을 100㎕ 떨어뜨려 효소-기질 반응이 일어나도록 해 주었다. 그 결과 시간이 지남에 따라 컨트롤 라인과 테스트 라인에서는 효소-기질 반응의 결과로 붉은색의 시그널이 관찰되었다. 1.23 ng/mL의 농도 이하에서는 기질과 반응 전에 무기 나노입자만의 발색현상은 보이지 않다가 기질 처리 후 시간이 지남에 따라 발색 시그널이 증폭되어 점점 붉은색으로 띠가 나타나는 것이 관찰되었다. hCG가 없는 생리식염수 (0ng/mL)만 흘려준 경우에 시간이 지나도 테스트 라인쪽의 붉은색이 발색되지 않음을 미루어 도 5에서 보여지는 발색 시그널은 모두 분명한 hCG 검출 값임을 확인할 수 있었다. 도 6은 이미지 분석으로 검출부의 발색값을 측정하여 그래프로 나타낸 것이다. hCG 농도에 따른 표준 곡선 값은 각각의 칩에서 나오는 검출부의 시그널 값을 컨트롤부의 시그널 값으로 나눠준 비율로 정의하였다. 도 7은 기질과 반응시간을 늘려줄수록 검출값의 시그널 세기는 증가되는 현상을 보여주고 있다.
본 발명에서 제공하는 고감도의 측면유동 면역 발색칩은 효소-기질 반응을 통한 시그널 증폭법이 적용된 것이며, 산화되어 침전을 형성하는 발색 기질은 증폭된 시그널을 간편하게 현장에서 육안으로 관찰 가능하게 한다.
또한 효소 모방 무기 나노입자를 사용했기 때문에 이는 기존에 사용되어온 단백질로 구성된 효소에 비해 안정적인 검출 시스템으로 보존될 수 있다. 상기 특징들은 고감도로 체액으로부터 소량의 분석물을 검출해낼 수 있게 함으로써 급성발병질환이나 암질환의 조기 진단과 초기 대응을 가능하게 하고, 안정적으로 검출시스템이 보존되기 때문에 내전지역이나 재난지역에 구호물품으로 제공될 진단 도구에 적용될 수 있다.

Claims (20)

  1. 접합부에 검출 항체를 포함하는 효소 모방 무기 나노입자가 존재하는 것을 특징으로 하는 측면 유동 면역 발색칩.
  2. 제1항에 있어서, 상기 무기 나노입자는 표적물질과 결합하여 반응부에 고정되고, 발색기질과 반응하여 검출 신화를 증폭시키는 것을 특징으로 하는 측면 유동 면역 발색칩.
  3. 제1항 또는 제2항에 있어서, 상기 무기 나노입자는 단분산성 무기 나노입자인 것을 특징으로 하는 측면 유동 면역 발색칩.
  4. 제1항 또는 제2항에 있어서, 상기 무기 나노입자는 산화철, 백금을 포함하는 것을 특징으로 하는 측면 유동 면역 발색칩.
  5. 제1항 또는 제2항에 있어서, 상기 검출항체는 무기 나노 입자의 표면에 존재하는 카르복실기와 반응하여 무기 나노 입자에 결합된 것을 특징으로 하는 측면 유동 면역 발색칩.
  6. 제1항 또는 제2항에 있어서, 상기 무기 나노 입자는 검출항체가 반응부의 지지체 위에 고정된 검출물질에 결합되는 것을 특징으로 하는 측면 유동 면역 발색칩.
  7. 제1항 또는 제2항에 있어서, 효소 모방 무기 나노입자는 발색 기질의 산화 촉매인 것을 특징으로 하는 측면 유동 면역 발색칩.
  8. 제7항에 있어서, 상기 효소 모방 무기 나노입자는 발색 기질을 침전 및 불용화시키는 것을 특징으로 하는 측면 유동 면역 발색칩.
  9. 제8항에 있어서, 상기 발색기질은 3-아미노-9-에틸카바졸(3-amino-9-ethylcarbazole) 인 것을 특징으로 하는 측면 유동 면역 발색칩.
  10. 제1항 또는 제2항에 있어서, 상기 측면 유동 면역 발색칩은 표적물질을 포함하는 시료가 투입되는 샘플부, 검출 항체가 표지된 단분산성 효소 모방 무기 나노입자가 존재하는 접합부(컨쥬게이션 패드), 무기 나노입자가 결합된 표적물질과 결합할 수 있는 검출물질이 고정된 측정부, 오류 확인을 위한 컨트롤부 및 액체 시료를 모세관 현상에 의해 흡수할 수 있는 흡수부를 포함하는 것을 특징으로 하는 측면 유동 면역 발색칩.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 측면 유동 면역 발색 칩을 이용하여 표적물질을 검출하는 단계;와 발색기질을 효소 모방 무기 나노입자로 반응시켜 검출 신호를 증폭시키는 단계를 포함하는 것을 특징으로 하는 표적 물질 검출 방법.
  12. 표면에 표적물질과 결합할 수 있는 검출항체가 표지되고, 발색 기질을 산화시키는것을 특징으로 하는 효소 모방 무기 나노 입자.
  13. 제12항에 있어서, 상기 무기 나노 입자는 철산화물, 백금 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 효소 모방 무기 나노입자.
  14. 제11항 또는 제12항에 있어서, 상기 검출항체는 무기 나노입자에 물리적 결합에 의해 표지된 것을 특징으로 하는 효소 모방 무기 나노입자.
  15. 제11항 또는 제12항에 있어서, 상기 무기 나노입자는 단분산성 무기 나노입자인 것을 특징으로 하는 효소 모방 나노입자.
  16. 제11항 또는 제12항에 있어서, 상기 발색기질을 침전 및 불용화시키는 것을 특징으로 하는 효소 모방 무기 나노입자.
  17. 단분산성의 효소 모방 무기 나노입자를 합성하는 단계;
    상기 무기 나노입자에 검출 항체를 표지하는 단계; 및
    상기 검출항체가 표지된 무기 나노입자를 측면유동 발색칩의 접합부에 위치시키는 단계; 를 포함하는 측면 유동 면역 발색칩의 제조 방법.
  18. 제17항에 있어서, 상기 무기 나노입자는 산화철과 백금을 사용하여 합성하는 것을 특징으로 하는 방법.
  19. 제17항에 있어서, 상기 무기 나노입자는 유기용매환경에서 계면활성제를 사용하여 크기가 균일하게 조절되어 단분산성으로 합성되는 것을 특징으로 하는 방법.
  20. 제17항에 있어서, 상기 무기 나노입자는 무기 나노입자의 표면을 카르복실산기로 치환하고, 치환된 무기 나노입자와 검출 항체를 생리식염수에 고르게 분산시켜 고정시키는 것을 특징으로 하는 방법.
PCT/KR2015/000431 2014-02-04 2015-01-15 효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법 WO2015119386A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/113,807 US20160349249A1 (en) 2014-02-04 2015-01-15 High-sensitivity lateral-flow immunochromatographic chip using enzyme-mimic inorganic nanoparticles and detection method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140012782A KR101597413B1 (ko) 2014-02-04 2014-02-04 효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법
KR10-2014-0012782 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119386A1 true WO2015119386A1 (ko) 2015-08-13

Family

ID=53778155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000431 WO2015119386A1 (ko) 2014-02-04 2015-01-15 효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법

Country Status (3)

Country Link
US (1) US20160349249A1 (ko)
KR (1) KR101597413B1 (ko)
WO (1) WO2015119386A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10596632B2 (en) * 2015-12-15 2020-03-24 Fondazione Istituto Italiano Di Tecnologia Method for the synthesis of metal nanoparticles in aqueous environment without the use of shape directing agents
KR20180049602A (ko) * 2016-11-03 2018-05-11 (의료)길의료재단 효소 모방 나노자임에 기반한 면역학적 분석에 의한 IgE 검출 및 알러지 진단법
KR102064961B1 (ko) * 2017-12-13 2020-01-10 주식회사 포스코 자성 나노입자 및 이를 이용한 측방유동 분석에서의 신호 증폭 방법
KR102070794B1 (ko) * 2019-01-21 2020-01-29 (의료)길의료재단 효소 모방 나노자임에 기반한 면역학적 분석에 의한 IgE 검출 및 알러지 진단법
KR102332618B1 (ko) * 2019-12-17 2021-11-30 한양대학교 에리카산학협력단 성게 모양 백금 나노입자를 이용한 당화알부민의 고감도 측정방법
EP4241085A1 (en) 2020-11-04 2023-09-13 Sorrento Therapeutics, Inc. Lateral flow devices for high sensitivity detection of coronavirus infection, and methods of making and using the same
CN114441779B (zh) * 2022-02-14 2023-05-16 上海交通大学 一种针对胃泌素17的双模态免疫层析试剂盒及其检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130081429A (ko) * 2012-01-09 2013-07-17 한국세라믹기술원 효소 모방 자성나노촉매의 합성방법 및 그에 의하여 합성된 효소 모방 자성나노촉매

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130081429A (ko) * 2012-01-09 2013-07-17 한국세라믹기술원 효소 모방 자성나노촉매의 합성방법 및 그에 의하여 합성된 효소 모방 자성나노촉매

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOSENSORS AND BIOELECTRONICS, vol. 40, 2013, pages 412 - 416 *
SENSORS AND ACTUATORS B, vol. 178, 2013, pages 494 - 500 *

Also Published As

Publication number Publication date
US20160349249A1 (en) 2016-12-01
KR101597413B1 (ko) 2016-02-25
KR20150092443A (ko) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2015119386A1 (ko) 효소 모방 무기 나노입자를 이용한 고감도 측면유동 면역 발색칩 및 이를 이용한 검출 방법
US9599609B2 (en) Lateral flow strip assay with immobilized conjugate
JP2532788B2 (ja) 免疫学的検定を行うための装置と方法
US10048257B2 (en) Signal amplification microspheres, their use in one-step and multi-step analytical amplification procedures and methods for their production
US8377643B2 (en) Split flow device for analyses of specific-binding partners
JP5662430B2 (ja) 固相をベースとする生物学的検定におけるシグナル可読性の改善のためのシグナル生成とシグナル局在化の方法
IT9067625A1 (it) Dispositivo e materiali per immunoanalisi.
TW200404158A (en) Internal calibration system for flow-through assays
CN102388310A (zh) 样品分析用具、样品分析用具的制造方法、以及抑制展开部件的液体浸透性降低的方法
KR20120017884A (ko) 자성입자의 항체고정화 방법 및 이를 이용해 제조되는 진단스트립, 진단키트
CN106443003A (zh) 基于适配体特异识别的荧光淬灭试纸条及制备方法与应用
CN109239326A (zh) 基于磁颗粒纳米酶的微流控免疫芯片分析方法及应用
Wang et al. Development of an immunochromatographic test to detect white spot syndrome virus of shrimp
CN106526166A (zh) 猪肉中瘦肉精的快速检测
WO2013011323A2 (en) Apparatus and method for affinity assays
EP1933148B1 (en) Urinary immunochromatographic multiparameter detection cup
CN104569376B (zh) 一种磁微粒介导的层析检测技术装置及其用途
JP2001033453A (ja) リガンドの測定方法
JP3718510B2 (ja) 検出装置及び検出方法
JPH1138006A (ja) 検査方法及び検査用キット
EP1933141B1 (en) Antigen detection method involving an oligonucleotide enhanced collodial gold signal
CN115980343B (zh) 一种化学发光法侧流免疫检测方法
JP2001228156A (ja) 梅毒抗体検出用免疫分析装置
CA1292180C (en) Particle-bound binding component immunoassay
JP2012073178A (ja) 視覚的に確認可能な被験物質の測定方法および測定用キット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113807

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746348

Country of ref document: EP

Kind code of ref document: A1