WO2015118804A1 - 物体検知装置 - Google Patents

物体検知装置 Download PDF

Info

Publication number
WO2015118804A1
WO2015118804A1 PCT/JP2015/000149 JP2015000149W WO2015118804A1 WO 2015118804 A1 WO2015118804 A1 WO 2015118804A1 JP 2015000149 W JP2015000149 W JP 2015000149W WO 2015118804 A1 WO2015118804 A1 WO 2015118804A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
vehicle
transmission
determination unit
determination
Prior art date
Application number
PCT/JP2015/000149
Other languages
English (en)
French (fr)
Inventor
隼人 成瀬
晃寿 上田
彰吾 相良
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/111,796 priority Critical patent/US10180491B2/en
Priority to EP15746491.8A priority patent/EP3104192A4/en
Priority to JP2015561197A priority patent/JP6413097B2/ja
Priority to CN201580007274.6A priority patent/CN105960597A/zh
Publication of WO2015118804A1 publication Critical patent/WO2015118804A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52012Means for monitoring or calibrating involving a reference ground return
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/4034Antenna boresight in elevation, i.e. in the vertical plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features

Definitions

  • the present invention relates to an object detection device that detects an object based on a reflected wave obtained by emitting a signal wave such as an ultrasonic wave or an electromagnetic wave.
  • a radar device which is an example of a conventional object detection device, transmits electromagnetic waves in front of a vehicle and performs signal processing on a reflected wave from an obstacle (object) located in front of the vehicle, so that the presence or absence of the obstacle and the obstacle Is detected (for example, Patent Document 1).
  • This radar apparatus has a radar inclination detecting means and a vehicle inclination detecting means.
  • the radar inclination detection means detects the inclination of the radar apparatus with respect to a direction perpendicular to the traveling surface of the vehicle.
  • the vehicle inclination detecting means detects the inclination of the vehicle with respect to a direction perpendicular to the traveling surface.
  • the radar apparatus When the relationship between the inclination of the radar apparatus detected by the radar inclination detection means and the inclination of the vehicle detected by the vehicle inclination detection means is deviated from the initial time, the radar apparatus is displaced in the vertical direction. Judge that you are doing.
  • the present invention provides an object detection device capable of detecting an abnormality in a transmission unit and a reception unit with a simple configuration.
  • the object detection device of the present invention is attached to a vehicle.
  • the object detection apparatus includes a transmission unit, a reception unit, a measurement unit, and a determination unit.
  • the transmission unit intermittently transmits signal waves to the space around the vehicle.
  • the receiving unit receives a reflected wave from the object.
  • the measuring unit measures the distance to the object based on the reflected wave received by the receiving unit.
  • the determination unit determines that the object is abnormally approaching when the distance measured by the measurement unit is within the determination distance range, and counts the number of times the object is determined to be abnormally approached. When the threshold value is reached, it is determined that an abnormality has occurred in at least one of the transmission unit and the reception unit.
  • the determination unit counts the number of times that the object is determined to be abnormally approached, and when this number reaches a predetermined threshold (determination number), at least one of the transmission unit and the reception unit is abnormal. Judge that there is. Therefore, it is not necessary to provide a sensor separately from the transmission unit and the reception unit in order to detect an abnormality in the transmission unit and the reception unit, and an abnormality in the transmission / reception unit can be detected with a simple configuration.
  • FIG. 1 is a block diagram of an obstacle detection apparatus which is an object detection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a state where the transmission / reception unit shown in FIG. 1 is attached to the vehicle.
  • FIG. 3 is an explanatory view of a state in which a vehicle equipped with the obstacle detection device shown in FIG. 1 is traveling on a flat ground.
  • 4A is an explanatory diagram showing a state before the vehicle shown in FIG. 3 climbs uphill.
  • FIG. 4B is an explanatory diagram of a state where the vehicle shown in FIG. 3 has climbed uphill.
  • FIG. 5A is an explanatory diagram showing a state before the vehicle shown in FIG. 3 enters a downhill.
  • FIG. 5B is an explanatory diagram showing a state where the vehicle shown in FIG. 3 has entered a downhill.
  • the obstacle detection device 1 is not limited to detecting obstacles around the automobile, and can be applied to vehicles such as motorcycles, railway vehicles, and endless track vehicles as long as they travel on land. Is possible. Further, the object detection device may detect an object other than an obstacle (including a human being).
  • FIG. 1 is a block diagram of an obstacle detection device (object detection device) 1 according to this embodiment.
  • FIG. 2 shows a state where the transmission / reception unit 11 ⁇ / b> A is attached to the rear bumper 21.
  • FIG. 3 is an external view of the vehicle 20 to which the obstacle detection device 1 is attached.
  • the obstacle detection apparatus 1 includes a determination unit 10, transmission / reception units 11A and 11B, and a measurement unit 14.
  • the transmission / reception units 11A and 11B each include a transmission unit 12 and a reception unit 13.
  • the transmission unit 12 intermittently transmits signal waves to the space around the vehicle 20.
  • the receiving unit 13 receives a reflected wave generated when the signal wave is reflected by an object.
  • the measuring unit 14 measures the distance to the object based on the reflected wave received by the receiving unit 13.
  • the obstacle detection device 1 may include a vehicle speed acquisition unit 15, an acceleration acquisition unit 16, an output unit 17, and a storage unit 18 in addition to the above components.
  • the transmission / reception units 11A and 11B are attached to the exterior portion of the vehicle 20, for example, the left and right sides of the rear bumper 21 shown in FIG. More specifically, as shown in FIG. 2, the transmission / reception unit 11 ⁇ / b> A is attached to the rear side of the rear bumper 21 with the input / output surface 111 exposed on the front side of the rear bumper 21. Since the transmission / reception unit 11B is attached to the rear bumper 21 in the same manner as the transmission / reception unit 11A, the description thereof is omitted. Note that the attachment positions of the transmission / reception units 11A and 11B are not limited to the rear bumper 21 and may be attached to the front bumper 22. That is, the transmission / reception units 11A and 11B may be attached to positions corresponding to obstacle detection areas. In FIG. 2, the input / output surface 111 protrudes from the surface of the rear bumper 21 to the outside of the vehicle 20, but the input / output surface 111 may be attached so as to constitute substantially the same surface as the surface of the rear bumper 21.
  • the transmission / reception units 11A and 11B include the transmission unit 12 and the reception unit 13, respectively.
  • the transmitter / receiver 11 ⁇ / b> A is attached to the right side of the rear bumper 21, for example, and monitors obstacles in the detection area on the right rear side of the vehicle 20.
  • the transmission / reception unit 11 ⁇ / b> B is attached to the left side of the rear bumper 21, for example, and monitors an obstacle in the detection area on the left rear side of the vehicle 20.
  • the detection area of the transmission / reception unit 11A and the detection area of the transmission / reception unit 11B are set to overlap at least partially. Although there is a blind spot near the boundary between the detection area of the transmission / reception unit 11A and the detection area of the transmission / reception unit 11B, this configuration reduces the blind spot.
  • the transmission unit 12 includes, for example, an ultrasonic transducer (not shown) such as a piezoelectric element that expands and contracts when a voltage is applied.
  • the ultrasonic output surface of the transmission unit 12 is disposed on the input / output surface 111 (see FIG. 2) exposed on the front side of the rear bumper 21.
  • the transmission unit 12 vibrates the ultrasonic transducer for a predetermined pulse duration, and transmits pulsed ultrasonic waves from the input / output surface 111 along the beam axis C1. .
  • the receiving unit 13 includes, for example, an ultrasonic transducer (not shown) such as a piezoelectric element that generates a voltage when vibration is applied from the outside.
  • the input surface of ultrasonic waves in the receiving unit 13 is also arranged on the input / output surface 111 shown in FIG.
  • the receiving unit 13 converts the ultrasonic wave input to the input / output surface 111 into an electric signal, amplifies it, and then shapes the waveform. It outputs to the measurement part 14 as a received signal.
  • the transmission / reception units 11A and 11B transmit ultrasonic waves to the space in order to detect an obstacle
  • the transmission waves transmitted to the space are not limited to ultrasonic waves (sound waves), and may be electromagnetic waves.
  • the transmission unit 12 and the reception unit 13 each have an ultrasonic transducer, but the transmission unit 12 and the reception unit 13 may share one ultrasonic transducer.
  • ultrasonic waves are transmitted from the input / output surface 111 by one ultrasonic transducer shared by the transmission unit 12 and the reception unit 13, and the ultrasonic waves input to the input / output surface 111 are converted into electrical signals.
  • the rear bumper 21 is provided with two sets of transmission / reception units 11A and 11B, but the number of transmission / reception units may be one or three or more.
  • the measurement unit 14 individually drives the transmission / reception units 11A and 11B to transmit ultrasonic waves.
  • the measuring unit 14 measures the presence / absence of an obstacle and the distance to the obstacle in each detection area of the transmission / reception units 11A and 11B based on signals input from the transmission / reception units 11A and 11B.
  • the measurement unit 14 outputs a transmission signal at a predetermined cycle to the transmission unit 12 of the transmission / reception units 11A and 11B.
  • the transmission unit 12 receives this transmission signal and transmits pulsed ultrasonic waves at a predetermined cycle.
  • the measurement unit 14 measures the length of time from when the transmission signal is output until the reception signal is input. That is, the measurement unit 14 obtains each propagation time required for the ultrasonic wave to reciprocate between the transmission / reception units 11A and 11B and the obstacle. Based on these propagation times and sound speeds, the measurement unit 14 determines the distances to the obstacles in the detection areas of the transmission / reception units 11A and 11B and outputs the distances to the determination unit 10.
  • the storage unit 18 includes, for example, an electrically erasable and programmable read only memory (EEPROM).
  • EEPROM electrically erasable and programmable read only memory
  • a determination distance range for determining whether or not an obstacle is abnormally approaching is registered in advance. This determination distance range is set to 80 cm ⁇ 20 cm, for example. Note that the determination distance range may be set to a range of a predetermined distance or less. For example, the determination distance range may be set to 80 cm or less.
  • a first reference number is registered in advance as a reference for determining whether or not to determine the determination of abnormal approach.
  • the first reference number is, for example, a predetermined number of times, that is, a number of times of 1 or more and less than 10 times.
  • a second reference number is registered in the storage unit 18 in advance as a reference for determining whether or not an abnormality has occurred in the transmission / reception units 11A and 11B.
  • the second reference number is a threshold for determining that an abnormality has occurred in at least one of the transmission unit 12 and the reception unit 13, and is several tens of times, for example. In the following description, the second reference number is set to 75 times.
  • the determination unit 10 includes, for example, a microcomputer, and determines whether there is an abnormal approach of an obstacle and whether the transmission / reception units 11A and 11B are abnormal based on a distance measurement value input from the measurement unit 14. As described above, the measurement unit 14 separately obtains the distance to the obstacle detected by the transmission / reception unit 11A and the distance to the obstacle detected by the transmission / reception unit 11B and outputs the distance to the determination unit 10. Based on the distance to the obstacle detected by the transmission / reception unit 11A, the determination unit 10 determines whether there is an abnormal approach of the obstacle detected by the transmission / reception unit 11A or whether there is an abnormality in the transmission / reception unit 11A.
  • the determination unit 10 determines whether there is an abnormal approach of the obstacle detected by the transmission / reception unit 11B or the abnormality of the transmission / reception unit 11B based on the distance to the obstacle detected by the transmission / reception unit 11B. That is, the determination unit 10 determines that the object is abnormally approaching when the distance measured by the measurement unit 14 is within a predetermined range, that is, within the determination distance range. Further, the determination unit 10 counts the number of times that the object is determined to be abnormally approached, and when this number reaches a threshold value, an abnormality has occurred in at least one of the transmission unit 12 and the reception unit 13. to decide.
  • the determination unit 10 determines that an obstacle is abnormally approaching in at least one of the detection areas of the transmission / reception units 11A and 11B, the determination unit 10 outputs a signal to notify the abnormal approach of the obstacle to the output unit 17. Further, when the determination unit 10 detects an abnormality in the transmission / reception unit 11A or the transmission / reception unit 11B, the determination unit 10 outputs a signal for notifying the occurrence of the abnormality to the output unit 17.
  • the vehicle speed acquisition unit 15 acquires vehicle speed information from a controller (not shown) provided in the vehicle 20, for example, and outputs the vehicle speed information to the determination unit 10.
  • the acceleration acquisition unit 16 includes a three-dimensional acceleration sensor (hereinafter referred to as an acceleration sensor) 161 provided integrally with the transmission / reception units 11A and 11B.
  • the acceleration sensor 161 detects the inclination of the transmission / reception units 11A and 11B with respect to the direction of gravity.
  • the acceleration acquisition unit 16 outputs the tilt detection result to the determination unit 10. That is, the acceleration acquisition unit 16 outputs tilt information of the vehicle 20 with respect to the vertical direction to the determination unit 10.
  • the acceleration acquisition unit 16 may be connected to a three-dimensional acceleration sensor (not shown) provided in the vehicle 20 and acquire inclination information with respect to the vertical direction of the vehicle 20 from the acceleration sensor.
  • the output unit 17 When the output unit 17 receives a signal for notifying abnormal approach of an obstacle or a signal for notifying the abnormality of the transmission / reception units 11 ⁇ / b> A and 11 ⁇ / b> B from the determination unit 10, these signals are provided in the vehicle 20. Output to the controller. When a signal for notifying an abnormal approach of an obstacle is input from the output unit 17, the controller notifies the passenger of the vehicle 20 of the abnormal approach of the obstacle with sound, a sign, light, or the like.
  • the controller when a signal for notifying the abnormality of the transmission / reception units 11A and 11B is input from the output unit 17, the controller generates an abnormality in the transmission / reception units 11A and 11B to the occupant of the vehicle 20 by sound, a sign, light, or the like. To inform the passengers of the response to the abnormality.
  • the measurement unit 14 outputs transmission signals to the transmission units 12 of the transmission / reception units 11A and 11B, respectively, at a predetermined cycle.
  • the transmission unit 12 transmits pulsed ultrasonic waves from the input / output surface 111 to the space around the vehicle 20.
  • the ultrasonic wave transmitted from the transmission unit 12 hits an obstacle existing around the vehicle 20, the ultrasonic wave is reflected by the obstacle.
  • the receiving units 13 of the transmission / reception units 11A and 11B each convert the ultrasonic wave into an electric signal, amplify the electric signal, and receive the waveform obtained by shaping the waveform.
  • the signal is output to the measurement unit 14.
  • the measurement unit 14 When the reception signal is input from the transmission / reception unit 11A after outputting the transmission signal to the transmission / reception unit 11A, the measurement unit 14 obtains the distance to the obstacle detected by the transmission / reception unit 11A and determines the measured value of the distance. Output to. Similarly, when the reception signal is input from the transmission / reception unit 11B after the transmission signal is output to the transmission / reception unit 11B, the measurement unit 14 obtains the distance to the obstacle detected by the transmission / reception unit 11B, and calculates the measured value of the distance. Output to the determination unit 10.
  • the determination unit 10 is within the determination distance range read from the storage unit 18. Judge whether or not.
  • the determination unit 10 determines that the obstacle is abnormally approached, and determines the number of times that the obstacle is abnormally approached (hereinafter referred to as an abnormality determination number). Count. That is, the abnormality determination count is increased by one, for example. The number of times of abnormality determination is separately counted for each of the transmission / reception units 11A and 11B. Note that the number of times of abnormality determination is set to zero at the time of initialization or reset, but the number of times of abnormality determination is maintained even when the engine of the vehicle 20 is stopped.
  • the determination unit 10 compares the number of abnormality determinations with the second reference number read from the storage unit 18. When the number of abnormality determinations is equal to or greater than the second reference number, the determination unit 10 determines that an abnormality that always determines that an obstacle is abnormally approaching has occurred in the transmission / reception unit 11A. And the signal which alert
  • FIG. In the present embodiment, the determination unit 10 is in a state where the transmission direction (beam axis C1) in which the transmission / reception unit 11A transmits a signal wave is shifted from the predetermined transmission direction by a predetermined angle (for example, 45 ° downward) or more. Judged as abnormal.
  • the output unit 17 notifies the occupant of the vehicle 20 when a signal for notifying abnormal approach of an obstacle or a signal for notifying abnormality of the transmission / reception units 11A and 11B is input from the determination unit 10.
  • the transmission / reception units 11A and 11B are attached to the vehicle 20 so that the ultrasonic beam axis C1 faces a predetermined transmission direction, the obstacle detection area is set above the road surface and reflected by the road surface. Sound waves are not input to the transmission / reception units 11A and 11B.
  • the beam axis C1 through which the obstacle detection device 1 transmits ultrasonic waves is directed downward from a predetermined transmission direction.
  • the obstacle detection area A ⁇ b> 1 may face downward and overlap the road 100.
  • the ultrasonic waves reflected by the road 100 are input to the transmission / reception units 11A and 11B.
  • the determination unit 10 may erroneously determine that the obstacle is abnormally approaching.
  • the determination unit 10 increases the value of the abnormality determination number by one, for example, only when the vehicle speed acquired by the vehicle speed acquisition unit 15 is outside the predetermined speed range and it is determined that the obstacle is abnormally approaching. You may do it. In this case, even if the determination unit 10 determines that the obstacle is abnormally approaching in a state where the vehicle speed is within the predetermined speed range, the determination unit 10 does not perform the process of counting the number of abnormality determinations, and sets the value of the number of abnormality determinations. The value is used as it is.
  • the predetermined speed range is a speed range when the vehicle 20 is slowing down for entering a garage or parking, and is set to a speed range of 10 km / h or less, for example.
  • the determination unit 10 does not perform the abnormality determination count processing. Such a determination makes it difficult to erroneously detect a state where an abnormal approach of an obstacle has been detected for a long time as an abnormality of the transmission / reception units 11A and 11B.
  • the determination unit 10 may acquire information on the transmission switching position from the controller of the vehicle 20. When the transmission is set to the parking position, the determination by the determination unit 10 is configured so that the value of the number of times of abnormality determination remains unchanged even if it is determined that the obstacle is abnormally approaching. May be.
  • the determination unit 10 is equal to or longer than the travel time when the non-detected state in which the obstacle is not abnormally approached travels at the vehicle speed acquired by the vehicle speed acquisition unit 15 for the distance corresponding to the entire length of the vehicle 20. If it continues, the value of the number of times of abnormality determination may be reset. Moreover, the determination part 10 may hold
  • the traveling time T1 is 2.4 seconds. If the non-detection state continues for 2.4 seconds or more, the value of the abnormality determination number is reset. When the non-detection state continues for less than 2.4 seconds, the value of the abnormality determination number is held as it is.
  • the transmission / reception units 11A and 11B are attached with the transmission direction inclined downward so that the detection area A1 interferes with the road surface of the road 100.
  • a case where such a vehicle 20 travels on the road 100 where the flat road 101 is located at the tip of the uphill 102 will be described with reference to FIGS. 4A and 4B.
  • FIG. 4A shows a state where the vehicle 20 reaches the boundary between the uphill 102 and the flat road 101, the front wheels of the vehicle 20 are on the flat road 101, and the rear wheels are on the uphill 102.
  • the rear portion of the vehicle 20 is inclined obliquely upward with respect to the uphill 102.
  • the detection area A1 is above the road surface and the determination unit 10 does not erroneously detect the road surface.
  • the detection area A1 overlaps the road surface as shown in FIG. 4B. Even during the transition from the state shown in FIG. 4A to the state shown in FIG.
  • the detection area A1 may be above the road surface, and the determination unit 10 may not detect the road surface erroneously. That is, it is considered that the non-detection state continues for about the travel time T1 when the vehicle 20 travels at a vehicle speed V1 acquired by the vehicle speed acquisition unit 15 for a distance corresponding to the entire length L1 of the vehicle 20.
  • the vehicle 20 When the vehicle 20 is on the flat road 101 or the downhill 103, the vehicle 20 maintains a certain angle with respect to the road surface. Therefore, when the vehicle 20 is traveling on the flat road 101 or the downhill 103, the road surface overlaps the detection area A1, and the reflected wave from the road surface is input to the transmission / reception units 11A and 11B. Therefore, the determination unit 10 erroneously detects an abnormal approach of an obstacle.
  • FIG. 5A shows a state where the vehicle 20 reaches the boundary between the flat road 101 and the downhill 103, the front wheels of the vehicle 20 are on the downhill 103, and the rear wheels are on the flat road 101.
  • the rear portion of the vehicle 20 is inclined obliquely upward with respect to the flat road 101.
  • the detection area A1 is above the road surface and the determination unit 10 does not erroneously detect the road surface.
  • the detection area A1 overlaps the road surface as shown in FIG. 5B. Even during the transition from the state shown in FIG. 5A to the state shown in FIG. 5B, the detection area A1 may be above the road surface, and the determination unit 10 may not detect the road surface erroneously.
  • This non-detection state is also considered to continue for about the traveling time T1.
  • the obstacle non-detection state continues for about the traveling time T1 depending on the state of the road on which the vehicle 20 travels. It is thought that there is a case.
  • the determination unit 10 preferably retains the value of the abnormality determination number as it is if the duration of the non-detection state in which the obstacle is not abnormally approaching is less than the travel time T1.
  • the determination unit 10 keeps the value of the abnormality determination number as it is even if the determination unit 10 temporarily enters a non-detection state where no obstacle is detected. Can be held. Therefore, when the determination unit 10 detects the abnormal approach of the obstacle again, the determination unit 10 can restart the count of the number of abnormality determinations and determine the abnormality of the transmission / reception units 11A and 11B at an early stage.
  • the determination unit 10 resets the value of the abnormality determination number when the non-detection state in which the obstacle is not abnormally approaching continues for the traveling time T1 or longer. Even when the vehicle travels on the boundary between the uphill 102 and the flat road 101, or on the boundary between the flat road 101 and the downhill 103, the vehicle 20 is expected to pass through the boundary when the travel time T1 elapses. The Therefore, if the non-detection state continues for the traveling time T1 or longer, it can be determined that the transmission / reception units 11A and 11B are attached to the vehicle 20 so that the detection area A1 does not overlap the road surface.
  • the transmission / reception units 11A and 11B are abnormal by resetting the value of the abnormality determination count. It is possible to reduce the possibility of false detection.
  • the determination unit 10 determines that the transmission direction in which the transmission / reception units 11A and 11B transmit signal waves deviates from the predetermined transmission direction by a predetermined angle or more is an abnormality in the transmission / reception units 11A and 11B. . Thereby, it is possible to detect a state in which the transmission direction in which the transmission / reception units 11A and 11B transmit the signal waves deviate from a predetermined transmission direction by a predetermined angle or more without adding a separate sensor.
  • the determination unit 10 uses the inclination information of the vehicle 20 acquired by the acceleration acquisition unit 16 and determines that the object is abnormally approaching in a state where the inclination of the vehicle 20 is equal to or less than a predetermined angle. For example, the number of times may be increased by one.
  • the tilt information is information on the tilt angle with respect to the vertical direction.
  • the determination unit 10 may increase the number of abnormality determinations by one, for example. Thereby, since the vehicle 20 is inclined, the possibility of erroneous detection that an abnormality has occurred in the transmission / reception units 11A and 11B can be reduced.
  • the determination unit 10 determines that the transmission / reception units 11A and 11B are abnormal when the number of times of abnormality detection is equal to or greater than the second reference number and the inclination angle of the vehicle 20 acquired by the acceleration acquisition unit 16 is within a predetermined range. It may be configured to.
  • the predetermined range is, for example, within 20 °.
  • the obstacle detection device 1 that is an object detection device according to the present embodiment includes the transmission unit 12, the reception unit 13, the measurement unit 14, and the determination unit 10, and is attached to the vehicle 20. .
  • the transmission unit 12 intermittently transmits signal waves to the space around the vehicle 20.
  • the receiving unit 13 receives a reflected wave generated when the signal wave is reflected by an object.
  • the measuring unit 14 measures the distance to the object based on the reflected wave received by the receiving unit 13.
  • the determination unit 10 determines that the object is approaching abnormally when the distance measured by the measurement unit 14 is within a predetermined determination distance range.
  • the determination unit 10 counts the number of times that the object is determined to be abnormally approached (the above-mentioned abnormality determination number), and when this value reaches a predetermined threshold (second reference number), the transmission unit 12 and the reception unit It is determined that an abnormality has occurred in at least one of the number 13.
  • the determination unit 10 counts the number of times that the object is determined to be abnormally approaching, and when this value reaches a predetermined threshold value, the determination unit 10 is at least one of the transmission unit 12 and the reception unit 13. It is determined that there is an abnormality on either side. Therefore, it is not necessary to provide a separate sensor to detect an abnormality in the transmission unit 12 and the reception unit 13, and an abnormality in the transmission unit 12 and the reception unit 13 can be detected with a simple configuration.
  • the obstacle detection apparatus 1 preferably further includes a vehicle speed acquisition unit 15 that acquires the vehicle speed of the vehicle 20.
  • the determination unit 10 preferably increases the value of the number of times of abnormality determination only when it is determined that the object is abnormally approaching in a state where the vehicle speed acquired by the vehicle speed acquisition unit 15 is outside the predetermined speed range. Thereby, when the vehicle is traveling within a predetermined speed range, the determination unit 10 determines that the object is abnormally approaching even if the distance measured by the measurement unit 14 is equal to or less than the predetermined threshold. Do not count the number of times. Therefore, when an obstacle is detected while parked or parked, the number of times that the object is determined to be abnormally approached exceeds the threshold value, and the transmitter 12 and the receiver 13 are erroneously detected as abnormal. The possibility of being reduced can be reduced.
  • the value may be reset.
  • the travel time T1 is a time required for traveling at a vehicle speed V1 acquired by the vehicle speed acquisition unit 15 over a distance corresponding to the entire length L1 of the vehicle 20. If the non-detection state continues for a predetermined traveling time T1 or more, it can be determined that the transmission unit 12 and the reception unit 13 are attached to the vehicle 20 at the correct positions. Therefore, resetting the value of the abnormality determination count can reduce the possibility of erroneously detecting an abnormality in the transmission unit 12 and the reception unit 13.
  • the determination unit 10 keeps the value of the number of times of abnormality determination as it is when the duration of the non-detection state is less than the travel time T1. Since the non-detection state may continue for about the traveling time T1 depending on the traveling state of the vehicle 20, if the duration of the non-detection state is less than the traveling time T1, the determination unit 10 maintains the value of the abnormality determination number as it is. To do. Thereby, when the abnormal approach of an obstruction is detected again, the abnormality of the transmission part 12 and the receiving part 13 can be detected at an early stage.
  • the determination unit 10 may determine that the transmission direction in which the transmission unit 12 transmits the signal wave is shifted from the predetermined transmission direction by a predetermined angle or more as an abnormality of the transmission unit 12. Since it is possible to detect the state in which the transmission unit 12 is attached to the vehicle 20 with the transmission direction of the signal wave deviated by a predetermined angle or more without adding a separate sensor, the abnormality of the transmission unit 12 is detected with a simple configuration. be able to.
  • the determination unit 10 increases the number of abnormality determinations under the above-described conditions, there is a possibility of erroneous detection that an abnormality has occurred in the transmission unit 12 and the reception unit 13 due to the vehicle 20 leaning. Can be reduced.

Abstract

 車両に取り付けられる物体検知装置は、送信部と、受信部と、測定部と、判断部と、を有する。送信部は車両の周囲の空間に信号波を間欠的に送信する。受信部は物体からの反射波を受信する。測定部は受信部が受信した反射波に基づいて物体までの距離を測定する。判断部は、測定部が測定した距離が判定距離範囲内であった場合、物体が異常接近していると判断するとともに、物体が異常接近していると判断した回数をカウントし、この回数が閾値に達すると、送信部と受信部との少なくとも何れか一方に異常が生じていると判断する。

Description

物体検知装置
 本発明は、超音波や電磁波などの信号波を発することによって得られる反射波に基づいて物体を検知する物体検知装置に関する。
 従来の物体検知装置の一例であるレーダ装置は、車両の前方に電磁波を送信して、車両前方に位置する障害物(物体)からの反射波を信号処理して、障害物の有無や障害物までの距離を検知する(例えば、特許文献1)。このレーダ装置は、レーダ傾き検出手段と、車両傾き検出手段とを有する。レーダ傾き検出手段は、車両の走行面と垂直な方向に対するレーダ装置の傾きを検出する。車両傾き検出手段は、走行面と垂直な方向に対する車両の傾きを検出する。そして、レーダ傾き検出手段によって検出されたレーダ装置の傾きと、車両傾き検出手段によって検出された車両の傾きとの関係が、初期時からずれると、レーダ装置は、レーダ装置が垂直方向において軸ずれしていると判断する。
特開2004-85258号公報
 本発明は、送信部、受信部の異常を簡単な構成で検知できる物体検知装置を提供する。
 本発明の物体検知装置は車両に取り付けられる。この物体検知装置は、送信部と、受信部と、測定部と、判断部とを有する。送信部は車両の周囲の空間に信号波を間欠的に送信する。受信部は物体からの反射波を受信する。測定部は受信部が受信した反射波に基づいて物体までの距離を測定する。判断部は、測定部が測定した距離が判定距離範囲内であった場合、物体が異常接近していると判断するとともに、物体が異常接近していると判断した回数をカウントし、この回数が閾値に達すると、送信部と受信部との少なくとも何れか一方に異常が生じていると判断する。
 車両が走行している状態であれば、物体が異常接近していると継続的に判断される可能性は少ないと考えられる。上記構成では、判断部は、物体が異常接近していると判断した回数をカウントし、この回数が所定の閾値(判定回数)に達すると、送信部及び受信部の少なくとも何れか一方が異常であると判断する。したがって、送信部、受信部の異常を検知するために、送信部、受信部とは別にセンサを設ける必要がなく、簡単な構成で送受信部の異常を検知することができる。
図1は本発明の実施の形態による物体検知装置である障害物検知装置のブロック図である。 図2は図1に示す送受信部が車両に取り付けられた状態を示す断面図である。 図3は図1に示す障害物検知装置を搭載した車両が平地を走行している状態の説明図である。 図4Aは図3に示す車両が上り坂を登り切る手前の状態を示す説明図である。 図4Bは図3に示す車両が上り坂を登り切った状態の説明図である。 図5Aは図3に示す車両が下り坂に入る手前の状態を示す説明図である。 図5Bは図3に示す車両が下り坂に入った状態を示す説明図である。
 本発明の実施の形態の説明に先立ち、従来の物体検知装置における問題点を説明する。特許文献1に開示されたレーダ装置では、レーダ装置(送信部、受信部)の軸ずれを検出するために、レーダ傾き検出手段や車両傾き検出手段が設けられている。そのため、レーダ装置の構成が複雑になり、コストアップを招く。
 以下、本発明の実施の形態による物体検知装置として、自動車の周囲に存在する障害物を検知する障害物検知装置1に適用した例について、図面を参照しながら説明する。なお、障害物検知装置1は自動車の周囲に存在する障害物を検知するものに限定されず、陸上を走行する車両であれば、自動二輪車や鉄道車両や無限軌道車などの車両にも適用が可能である。また、物体検知装置は障害物以外の対象物(人間も含む)を検知してもよい。
 図1は本実施の形態による障害物検知装置(物体検知装置)1のブロック図である。図2は送受信部11Aがリアバンパ21に取り付けられた状態を示している。図3は障害物検知装置1が取り付けられた車両20の外観図である。
 障害物検知装置1は、判断部10と、送受信部11A、11Bと、測定部14とを有する。送受信部11A、11Bはそれぞれ、送信部12と受信部13とを含む。送信部12は、車両20の周囲の空間に信号波を間欠的に送信する。受信部13は、信号波が物体により反射されることにより生じる反射波を受信する。測定部14は、受信部13が受信した反射波に基づいて物体までの距離を測定する。また、障害物検知装置1は、上記の構成要素に加えて、車速取得部15と、加速度取得部16と、出力部17と、記憶部18とを有してもよい。
 送受信部11A、11Bは車両20の外装部分、例えば図3に示すリアバンパ21の左右にそれぞれ取り付けられている。より詳細には、送受信部11Aは、図2に示すように、リアバンパ21の表側に入出力面111を露出させた状態で、リアバンパ21の裏側に取り付けられている。送受信部11Bのリアバンパ21への取付状態は送受信部11Aと同様であるので、その説明は省略する。なお、送受信部11A、11Bの取付位置はリアバンパ21に限定されず、フロントバンパ22に取り付けられてもよい。すなわち、送受信部11A、11Bは、障害物の検知エリアに対応した位置に取り付けられればよい。また、図2では入出力面111がリアバンパ21の表面から車両20の外側に出っ張っているが、入出力面111はリアバンパ21の表面とほぼ同一面を構成するように取り付けられていてもよい。
 前述のように、送受信部11A、11Bは、それぞれ、送信部12と受信部13とを含む。送受信部11Aは、例えばリアバンパ21の右側に取り付けられて、車両20の右後方の検知エリアにおいて障害物を監視する。送受信部11Bは、例えばリアバンパ21の左側に取り付けられて、車両20の左後方の検知エリアにおいて障害物を監視する。送受信部11Aの検知エリアと送受信部11Bの検知エリアは少なくとも一部が重なるように設定されている。送受信部11Aの検知エリアと送受信部11Bの検知エリアの境界付近には死角ができるが、上記構成によりこの死角は小さくなる。
 送信部12は、例えば、電圧が印加されることによって伸縮する圧電素子などの超音波振動子(図示せず)を有する。送信部12における超音波の出力面は、リアバンパ21の表側に露出した入出力面111(図2参照)に配置されている。送信部12は、測定部14から送信信号が入力されると、所定のパルス持続時間だけ超音波振動子を振動させ、入出力面111からビーム軸C1に沿ってパルス状の超音波を送信させる。
 受信部13は、例えば、外部から振動が加えられると電圧を発生する圧電素子などの超音波トランスデューサ(図示せず)を有する。受信部13における超音波の入力面も、図2に示す入出力面111に配置されている。入出力面111に超音波(障害物による反射波)が入力されると、受信部13は、入出力面111に入力された超音波を電気信号に変換して増幅した後、波形整形し、受信信号として測定部14に出力する。
 なお、送受信部11A、11Bは障害物を検知するために超音波を空間に送信しているが、空間に送信する送信波は超音波(音波)に限定されず、電磁波でもよい。また、送受信部11A、11Bでは送信部12および受信部13がそれぞれ超音波振動子を有しているが、送信部12と受信部13とで1つの超音波振動子を共用してもよい。この場合、送信部12および受信部13で共用される1つの超音波振動子によって入出力面111から超音波が送信され、入出力面111に入力された超音波が電気信号に変換される。また、リアバンパ21に2組の送受信部11A、11Bが設けられているが、送受信部の数は1個でも3個以上でもよい。
 測定部14は、送受信部11A、11Bを個別に駆動して超音波をそれぞれ送信させる。また測定部14は、送受信部11A、11Bから入力される信号をもとに、送受信部11A、11Bの各々の検知エリアにおいて障害物の有無および障害物までの距離を測定する。
 次に、測定部14が送受信部11Aを駆動して、障害物の有無および障害物までの距離を測定するための構成について説明する。測定部14は、送受信部11A、11Bの送信部12にそれぞれ、所定の周期で送信信号を出力する。送信部12はこの送信信号を受けて所定の周期でパルス状の超音波を送信する。測定部14は、送信部12に送信信号を出力した後に受信部13から受信信号が入力されると、送信信号を出力してから受信信号が入力されるまでの時間の長さを計測する。つまり測定部14は、送受信部11A、11Bと障害物との間を超音波が往復するのに要したそれぞれの伝搬時間を求める。測定部14は、これらの伝搬時間と音速とに基づいて、送受信部11A、11Bの検知エリアにある障害物までのそれぞれの距離を求め、判断部10に出力する。
 記憶部18は、例えばelectrically erasable and programmable read only memory(EEPROM)を有する。記憶部18には、障害物が異常接近しているか否かを判定するための判定距離範囲が予め登録されている。この判定距離範囲は、例えば80cm±20cmに設定されている。なお、判定距離範囲は、所定の距離以下という範囲に設定されてもよい。例えば、判定距離範囲は80cm以下に設定されていてもよい。
 また、記憶部18には、異常接近の判断を確定させるか否かを判断する基準として第1基準回数が予め登録されている。第1基準回数は例えば数回、すなわち、1回以上、10回未満の所定の回数である。さらに、記憶部18には、送受信部11A、11Bに異常が発生しているか否かを判断する基準として第2基準回数が予め登録されている。第2基準回数は送信部12と受信部13との少なくとも何れか一方に異常が生じていると判断するための閾値であり、例えば数十回である。以下の説明では第2基準回数は75回に設定されている。
 判断部10は、例えばマイクロコンピュータを有し、測定部14から入力される距離の測定値に基づき、障害物の異常接近の有無や、送受信部11A、11Bの異常の有無を判断する。上述のように測定部14は、送受信部11Aによって検知される障害物までの距離と、送受信部11Bによって検知される障害物までの距離を別個に求めて、判断部10に出力している。判断部10は、送受信部11Aによって検知される障害物までの距離に基づき、送受信部11Aによって検知される障害物の異常接近や送受信部11Aの異常の有無を判断する。また、判断部10は、送受信部11Bによって検知される障害物までの距離に基づき、送受信部11Bによって検知される障害物の異常接近や送受信部11Bの異常の有無を判断する。すなわち、判断部10は、測定部14が測定した距離が所定の範囲内、つまり判定距離範囲内であった場合、物体が異常接近していると判断する。また、判断部10は、物体が異常接近していると判断した回数をカウントし、この回数が閾値に達すると、送信部12と受信部13との少なくとも何れか一方に異常が生じていると判断する。
 判断部10は、送受信部11A、11Bのうち少なくとも何れか一方の検知エリアで障害物が異常接近していると判断すると、障害物の異常接近を報知する信号を出力部17に出力する。また、判断部10は、送受信部11Aまたは送受信部11Bの異常を検知すると、異常の発生を報知する信号を出力部17に出力する。
 車速取得部15は、例えば車両20に設けられたコントローラ(図示せず)から車速の情報を取得し、車速の情報を判断部10に出力する。
 加速度取得部16は、送受信部11A、11Bと一体的に設けられた3次元加速度センサ(以下、加速度センサ)161を有する。加速度センサ161は重力方向に対する送受信部11A、11Bの傾きを検出する。加速度取得部16は、傾きの検出結果を判断部10に出力する。すなわち加速度取得部16は車両20の鉛直方向に対する傾き情報を判断部10に出力する。なお、加速度取得部16は、車両20に設けられた3次元加速度センサ(図示せず)に接続され、この加速度センサから車両20の鉛直方向に対する傾き情報を取得してもよい。
 出力部17は、判断部10から、障害物の異常接近を報知する信号や、送受信部11A、11Bの異常を報知する信号が入力されると、これらの信号を車両20に設けられた前述のコントローラへ出力する。コントローラは、出力部17から障害物の異常接近を報知する信号が入力されると、車両20の乗員に対して、音やサインや光などで障害物の異常接近を報知する。また、コントローラは、出力部17から送受信部11A、11Bの異常を報知する信号が入力されると、車両20の乗員に対して、音やサインや光などで送受信部11A、11Bに異常が発生したことを報知し、異常への対応を乗員に促す。
 次に、障害物検知装置1の動作について説明する。測定部14は、送受信部11A、11Bの送信部12にそれぞれ、送信信号を所定の周期で出力する。送信部12は、測定部14から送信信号が入力されると、入出力面111からパルス状の超音波を車両20の周囲の空間に送信する。車両20の周囲に存在する障害物に送信部12から送信された超音波が当たると、障害物によって超音波が反射される。この反射波が入出力面111に入力されると、送受信部11A、11Bの受信部13はそれぞれ、超音波を電気信号に変換し、この電気信号を増幅し、波形整形して得られた受信信号を測定部14に出力する。
 測定部14は、送受信部11Aに送信信号を出力した後に送受信部11Aから受信信号が入力されると、送受信部11Aによって検知された障害物までの距離を求め、距離の測定値を判断部10に出力する。同様に、測定部14は、送受信部11Bに送信信号を出力した後に送受信部11Bから受信信号が入力されると、送受信部11Bによって検知された障害物までの距離を求め、距離の測定値を判断部10に出力する。
 判断部10は、測定部14から距離の測定値が入力されると、障害物の異常接近の有無や送受信部11A、11Bの異常の有無を判断する。以下では、判断部10が、送受信部11Aによって検知される障害物までの距離から障害物の異常接近や送受信部11Aの異常の有無を判断する動作について説明する。判断部10が、送受信部11Bによって検知される障害物までの距離から障害物の異常接近や送受信部11Bの異常の有無を判断する動作は、送受信部11Aの場合と同様であるので、その説明は省略する。
 判断部10は、送受信部11Aによって検知された障害物までの距離の測定値が測定部14から入力されると、この距離の測定値が、記憶部18から読み出した判定距離範囲内であるか否かを判断する。
 判断部10は、距離の測定値が判定距離範囲内であれば、障害物が異常接近していると判断し、障害物が異常接近していると判断した回数(以下、異常判断回数という)をカウントする。つまり異常判断回数を例えば1つ増加する。異常判断回数は、送受信部11A、11Bの各々について別個にカウントされている。なお、異常判断回数は初期時またはリセット時にはゼロにセットされるが、車両20のエンジンを停止させた場合でも異常判断回数は保持される。
 そして、判断部10は、障害物が異常接近しているとの判断が、記憶部18から読み込んだ第1基準回数以上連続すると、障害物が異常接近しているとの判断を確定し、障害物の異常接近を報知する信号を出力部17に出力する。
 さらに、判断部10は、異常判断回数と、記憶部18から読み込んだ第2基準回数との大小を比較する。判断部10は、異常判断回数が第2基準回数以上になると、障害物が異常接近していると常時判断されてしまうような異常が送受信部11Aに発生していると判断する。そして、送受信部11Aの異常を報知する信号を出力部17に出力する。本実施の形態においては、判断部10は、送受信部11Aが信号波を送信する送信方向(ビーム軸C1)が、所定の送信方向から所定角度(例えば、下向きに45°)以上ずれた状態を異常と判断している。
 出力部17は、判断部10から、障害物の異常接近を報知する信号や、送受信部11A、11Bの異常を報知する信号が入力されると、車両20の乗員に対して報知する。
 超音波のビーム軸C1が所定の送信方向を向くように送受信部11A、11Bが車両20に取り付けられていれば、障害物の検知エリアは路面よりも上側に設定され、路面で反射された超音波が送受信部11A、11Bに入力されることはない。
 しかしながら、車両20が障害物などに衝突してバンパが変形したり、施工ミスがあったりすると、障害物検知装置1が超音波を送信するビーム軸C1が所定の送信方向よりも下向きとなる場合がある。このような場合、図3に示すように障害物の検知エリアA1が下向きとなり、道路100に重なってしまう可能性がある。すると、道路100で反射された超音波が送受信部11A、11Bに入力される。その結果、道路100からの反射波に基づいて測定された距離が判定距離範囲内であることで、障害物が異常接近していると判断部10が誤った判断をする可能性がある。
 このように、ビーム軸C1が下向きになり、障害物が異常接近していると判断部10が誤検知する場合には、異常接近の誤検知は継続する。そのため、いずれ異常判断回数が第2基準回数に達する。判断部10は、異常判断回数が第2基準回数以上になると、送受信部11A、11Bで異常が発生していると判断する。このように、送受信部11A、11Bの異常を検知するためのセンサを別途設ける必要がなく、簡単な構成で送受信部11A、11Bの異常を検知できる。そして、出力部17が、判断部10からの報知信号に応じて、送受信部11A、11Bの異常を報知することによって、送受信部11A、11Bの異常への対応を乗員に促すことができる。
 なお、判断部10は、車速取得部15で取得した車速が所定の速度範囲外である状態で、障害物が異常接近していると判断した場合のみ、異常判断回数の値を例えば1つ増やすようにしてもよい。この場合、判断部10は、車速が所定の速度範囲内にある状態で障害物が異常接近していると判断しても、異常判断回数をカウントする処理を行わず、異常判断回数の値をそのままの値とする。所定の速度範囲とは、車庫入れや駐停車のために車両20が徐行している場合の速度範囲であり、例えば時速10km以下の速度範囲に設定される。車両20が所定の速度よりも遅い速度で微速走行していたり、停車或いは駐車している場合は、車両20の周囲にある物体が長時間に亘って検知され続ける。そこで、車速が所定の速度範囲内である状態で障害物が異常接近していると判断された場合に、判断部10が異常判断回数のカウント処理を行わないようにすることが好ましい。このような判断によって、障害物の異常接近を長期間検知している状態を送受信部11A、11Bの異常と誤検知しにくくなる。なお、判断部10が、車両20のコントローラから変速機の切り替え位置の情報を取得してもよい。そして、変速機がパーキングの位置に設定されている場合には、障害物が異常接近していると判断しても、異常判断回数の値をそのままとするように、判断部10による判断を構成してもよい。
 また、判断部10は、障害物が異常接近していると判断していない非検知状態が、車両20の全長に相当する距離を車速取得部15で取得した車速で走行した場合の走行時間以上継続すると、異常判断回数の値をリセットしてもよい。また、判断部10は、非検知状態の継続時間が上記の走行時間未満であれば、異常判断回数の値をそのまま保持してもよい。ここで、車両の全長をL1、車速取得部15で取得した車速をV1とすると、走行時間T1は、T1=L1/V1の式で求められる。例えば車両20の全長L1が3400mmで、車速V1が時速5kmの場合、走行時間T1は2.4秒となる。非検知状態が2.4秒以上継続すれば、異常判断回数の値がリセットされる。非検知状態が2.4秒未満しか継続しない場合は、異常判断回数の値がそのまま保持される。
 前述のように図3に示す車両20では、検知エリアA1が道路100の路面と干渉するように送信方向が下側に傾いた状態で送受信部11A、11Bが取り付けられている。次に、このような車両20が、登り坂102の先に平坦路101があるような道路100を走行する場合について図4A、図4Bを参照しながら説明する。
 車両20が登り坂102または平坦路101の上にある場合、車両20は路面に対して一定の角度を保つ。したがって、車両20が登り坂102または平坦路101の上を走行している場合は、検知エリアA1と路面とが重なり、路面からの反射波が送受信部11A、11Bに入力される。そのため、判断部10は障害物の異常接近を誤検知する。
 図4Aは、車両20が登り坂102と平坦路101との境界部分にさしかかり、車両20の前輪が平坦路101に載り、後輪が登り坂102に載っている状態を示している。この状態では、車両20の後部が登り坂102に対して斜め上側に傾く。この場合、検知エリアA1が路面よりも上側になり、判断部10が路面を誤検知しなくなる可能性がある。また、後輪が水平な平坦路101に載った後、車両20が前進すると、図4Bに示すように検知エリアA1が路面に重なる。図4Aの状態から図4Bの状態になる間にも、検知エリアA1が路面よりも上側になり、判断部10が路面を誤検知しなくなる可能性がある。すなわち、非検知状態が、車両20の全長L1に相当する距離を車速取得部15で取得した車速V1で走行した場合の走行時間T1程度継続すると考えられる。
 次に、図3に示す車両20が、平坦路101の先に下り坂103がある道路100を走行する場合について図5A、図5Bを参照しながら説明する。
 車両20が平坦路101または下り坂103の上にある場合、車両20は路面に対して一定の角度を保つ。したがって、車両20が平坦路101または下り坂103の上を走行している場合は、検知エリアA1に路面が重なり、路面からの反射波が送受信部11A、11Bに入力される。そのため、判断部10は障害物の異常接近を誤検知する。
 図5Aは、車両20が平坦路101と下り坂103との境界部分にさしかかり、車両20の前輪が下り坂103に載り、後輪が平坦路101に載っている状態を示している。この状態では、車両20の後部が平坦路101に対して斜め上側に傾く。この場合、検知エリアA1が路面よりも上側になり、判断部10が路面を誤検知しなくなる可能性がある。また、後輪が下り坂103に載った後、車両20が前進すると、図5Bに示すように検知エリアA1が路面に重なる。図5Aの状態から図5Bの状態になる間にも、検知エリアA1が路面よりも上側になり、判断部10が路面を誤検知しなくなる可能性がある。この非検知状態も上記の走行時間T1程度継続すると考えられる。
 以上のように、超音波を送信するビーム軸C1が所定の送信方向よりも下向きになっている場合でも、車両20が走行する道路の状態によって、障害物の非検知状態が走行時間T1程度継続する場合があると考えられる。
 そこで、判断部10は、障害物が異常接近していると判断していない非検知状態の継続時間が、走行時間T1未満であれば、異常判断回数の値をそのまま保持することが好ましい。これにより、車両20が登り坂102や下り坂103を走行する場合に、判断部10は、一時的に障害物を検知していない非検知状態になったとしても、異常判断回数の値をそのまま保持することができる。したがって、判断部10は、障害物の異常接近を再び検知した際に、異常判断回数のカウントを再開して、送受信部11A、11Bの異常を早期に判断することができる。
 また、判断部10は、障害物が異常接近していると判断していない非検知状態が、走行時間T1以上継続すると、異常判断回数の値をリセットすることが好ましい。登り坂102と平坦路101との境界部分や、平坦路101と下り坂103との境界部分を走行している場合でも、走行時間T1が経過すれば、車両20は境界部分を抜けると予想される。したがって、非検知状態が走行時間T1以上継続するのであれば、検知エリアA1が路面と重ならないように、送受信部11A、11Bが車両20に取り付けられていると判断できる。よって、判断部10は、障害物が異常接近していると判断していない非検知状態が走行時間T1以上継続すれば、異常判断回数の値をリセットすることで、送受信部11A、11Bが異常であると誤検知される可能性を低減できる。
 なお上述のように、判断部10は、送受信部11A、11Bが信号波を送信する送信方向が、所定の送信方向から所定角度以上ずれた状態を送受信部11A、11Bの異常と判断している。これにより、別途のセンサを追加することなく、送受信部11A、11Bが信号波を送信する送信方向が所定の送信方向から所定角度以上ずれた状態を簡単な構成で検知することができる。
 また、判断部10は、加速度取得部16が取得した車両20の傾き情報を用い、車両20の傾きが所定角度以下となる状態で、物体が異常接近していると判断した場合のみ、異常判断回数の値を例えば1つ増やしてもよい。傾き情報とは、鉛直方向に対する傾斜角度の情報である。送受信部11A、11Bが取り付けられた車両20の傾きが所定角度を超えている場合は、障害物検知装置1による物体の検知動作が正しく行われない可能性がある。車両20の傾きが所定角度以下となる状態で、物体が異常接近していると判断した場合のみ、判断部10が異常判断回数を例えば1つ増やすようにすればよい。これにより、車両20が傾いているために送受信部11A、11Bに異常が発生していると誤検知される可能性を低減できる。
 なお、判断部10は、異常検知回数が第2基準回数以上になり、且つ、加速度取得部16が取得した車両20の傾斜角度が所定の範囲内になると、送受信部11A、11Bの異常と判断するように構成されてもよい。所定の範囲内とは、例えば、20°以内である。これにより、車両20が傾くことで検知エリアA1が路面に重なって路面を障害物と誤検知した場合に、判断部10が送受信部11A、11Bの異常と誤って判断しにくくなり、送受信部11A、11Bの異常を精度よく検知できる。
 以上説明したように、本実施の形態による物体検知装置である障害物検知装置1は、送信部12と、受信部13と、測定部14と、判断部10とを有し車両20に取り付けられる。送信部12は、車両20の周囲の空間に信号波を間欠的に送信する。受信部13は、信号波が物体により反射されることにより生じる反射波を受信する。測定部14は、受信部13が受信した反射波に基づいて物体までの距離を測定する。判断部10は、測定部14の測定した距離が所定の判定距離範囲内であった場合、物体が異常接近していると判断する。また判断部10は、物体が異常接近していると判断した回数(上記の異常判断回数)をカウントし、この値が所定の閾値(第2基準回数)に達すると、送信部12と受信部13との少なくとも何れか一方に異常が生じていると判断する。
 車両20が走行している状態であれば、物体が異常接近していると継続的に判断される可能性は少ないと考えられる。本実施の形態では、物体が異常接近していると判断した回数を判断部10がカウントし、この値が所定の閾値に達すると、判断部10は送信部12と受信部13との少なくとも何れか一方に異常が生じていると判断する。したがって、送信部12、受信部13の異常を検知するために、別途のセンサを設ける必要がなく、簡単な構成で送信部12、受信部13の異常を検知することができる。
 障害物検知装置1は、車両20の車速を取得する車速取得部15をさらに有することが好ましい。そして判断部10は、車速取得部15が取得した車速が所定の速度範囲外である状態で、物体が異常接近していると判断した場合のみ、異常判断回数の値を増加させることが好ましい。これにより、車両が所定の速度範囲内で走行している場合は、測定部14の測定した距離が所定の閾値以下になっても、判断部10は、物体が異常接近していると判断した回数をカウントしない。よって、停車中や駐車中に障害物を検知している場合に、物体が異常接近していると判断した回数が閾値を超えて、送信部12、受信部13が異常であると誤検出される可能性を低減できる。
 また障害物検知装置1が車速取得部15を有する場合、判断部10は、物体が異常接近していると判断していない非検知状態が、所定の走行時間T1以上継続すると、異常判断回数の値をリセットしてもよい。上記の走行時間T1とは、車両20の全長L1に相当する距離を車速取得部15で取得した車速V1で走行した場合に要する時間である。非検知状態が所定の走行時間T1以上継続すれば、送信部12、受信部13は車両20に対して正しい位置に取り付けられていると判断できる。そのため、異常判断回数の値をリセットすることで、送信部12、受信部13の異常を誤検知する可能性を低減できる。
 また判断部10は、非検知状態の継続時間が走行時間T1未満であれば、異常判断回数の値をそのまま保持することも好ましい。車両20の走行状況によって非検知状態が走行時間T1程度継続することもあり得るので、判断部10は、非検知状態の継続時間が走行時間T1未満であれば、異常判断回数の値をそのまま保持する。これにより、障害物の異常接近を再び検知した場合に、送信部12、受信部13の異常を早期に検知できる。
 また判断部10は、送信部12が信号波を送信する送信方向が、所定の送信方向から所定角度以上ずれた状態を、送信部12の異常と判断してもよい。信号波の送信方向が所定角度以上ずれた状態で送信部12が車両20に取り付けられた状態を、別途のセンサを追加することなく検知できるので、簡単な構成で送信部12の異常を検知することができる。
 さらに、車両20の鉛直方向に対する傾き情報を判断部10に出力する加速度取得部16をさらに有することが好ましい。そして、判断部10は、この傾き情報を用い、車両20の傾きが所定角度以下となる状態で、物体が異常接近していると判断した場合のみ、異常判断回数の値を増加させることが好ましい。障害物検知装置1が取り付けられた車両20の鉛直方向に対する傾きが所定角度を超えている場合は、障害物検知装置1による物体の検知動作が正しく行われない可能性がある。しかしながら、判断部10が上述の条件で異常判断回数を増加させるようにすれば、車両20が傾いていることによって、送信部12、受信部13に異常が発生していると誤検知する可能性を低減できる。
 なお加速度取得部16は、送信部12または受信部13に設けられた加速度センサ161を含むか、または車両20に設けられた加速度センサと接続されていればよい。
1  障害物検知装置(物体検知装置)
10  判断部
11A,11B  送受信部
12  送信部
13  受信部
14  測定部
15  車速取得部
16  加速度取得部
17  出力部
18  記憶部
20  車両
21  リアバンパ
22  フロントバンパ
100  道路
101  平坦路
102  登り坂
103  下り坂
111  入出力面
161  加速度センサ

Claims (9)

  1. 車両に取り付けられる物体検知装置であって、
    前記車両の周囲の空間に信号波を間欠的に送信する送信部と、
    前記信号波が物体により反射されることにより生じる反射波を受信する受信部と、
    前記受信部が受信した前記反射波に基づいて前記物体までの距離を測定する測定部と、
    前記測定部が測定した距離が判定距離範囲内であった場合、前記物体が異常接近していると判断するとともに、前記物体が異常接近していると判断した回数をカウントし、前記回数が閾値に達すると、前記送信部と前記受信部との少なくとも何れか一方に異常が生じていると判断する判断部と、を備えた、
    物体検知装置。
  2. 前記車両の車速を取得する車速取得部をさらに備え、
    前記判断部は、前記車速取得部が取得した車速が所定の速度範囲外である状態で、前記物体が異常接近していると判断した場合のみ、前記回数を増加させる、
    請求項1に記載の物体検知装置。
  3. 前記判断部は、前記物体が異常接近していると判断していない非検知状態が、前記車両の全長に相当する距離を前記車速取得部で取得した車速で走行した場合の走行時間以上継続すると、前記回数をリセットする、
    請求項2に記載の物体検知装置。
  4. 前記判断部は、前記非検知状態の継続時間が前記走行時間未満であれば、前記回数をそのまま保持する、
    請求項3に記載の物体検知装置。
  5. 前記車両の車速を取得する車速取得部をさらに備え、
    前記判断部は、前記物体が異常接近していると判断していない非検知状態が、前記車両の全長に相当する距離を前記車速取得部で取得した車速で走行した場合の走行時間以上継続すると、前記回数をリセットする、
    請求項1に記載の物体検知装置。
  6. 前記判断部は、前記非検知状態の継続時間が前記走行時間未満であれば、前記回数をそのまま保持する、
    請求項5に記載の物体検知装置。
  7. 前記判断部は、前記送信部が前記信号波を送信する送信方向が、所定の送信方向から所定角度以上ずれた状態を、前記送信部の異常と判断する、
    請求項1に記載の物体検知装置。
  8. 前記車両の鉛直方向に対する傾き情報を前記判断部に出力する加速度取得部をさらに備え、
    前記判断部は、前記傾き情報を用いて、前記車両の傾きが所定角度以下となる状態で、前記物体が異常接近していると判断した場合のみ、前記回数を増加させる、
    請求項7に記載の物体検知装置。
  9. 前記加速度取得部は、前記送信部と、前記受信部とのいずれかに設けられた加速度センサを有するか、または、前記車両に設けられた加速度センサと接続されている、
    請求項8に記載の物体検知装置。
PCT/JP2015/000149 2014-02-05 2015-01-15 物体検知装置 WO2015118804A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/111,796 US10180491B2 (en) 2014-02-05 2015-01-15 Object detection device
EP15746491.8A EP3104192A4 (en) 2014-02-05 2015-01-15 Object detection device
JP2015561197A JP6413097B2 (ja) 2014-02-05 2015-01-15 物体検知装置
CN201580007274.6A CN105960597A (zh) 2014-02-05 2015-01-15 物体探测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014020686 2014-02-05
JP2014-020686 2014-02-05

Publications (1)

Publication Number Publication Date
WO2015118804A1 true WO2015118804A1 (ja) 2015-08-13

Family

ID=53777619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000149 WO2015118804A1 (ja) 2014-02-05 2015-01-15 物体検知装置

Country Status (5)

Country Link
US (1) US10180491B2 (ja)
EP (1) EP3104192A4 (ja)
JP (1) JP6413097B2 (ja)
CN (1) CN105960597A (ja)
WO (1) WO2015118804A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844961A (zh) * 2016-01-07 2016-08-10 乐卡汽车智能科技(北京)有限公司 测量距离的方法、装置和系统
CN106569213A (zh) * 2016-10-21 2017-04-19 奇瑞汽车股份有限公司 一种汽车静态防碰撞系统及其控制方法
WO2017159170A1 (ja) * 2016-03-18 2017-09-21 パナソニックIpマネジメント株式会社 センサ取り付け状態判定装置およびセンサ取り付け状態判定方法
JP2018036231A (ja) * 2016-09-02 2018-03-08 株式会社デンソー 物体検知装置
WO2018066391A1 (ja) * 2016-10-04 2018-04-12 株式会社デンソー 物体検出センサの軸ずれ判定方法
JP2019519051A (ja) * 2016-04-07 2019-07-04 上海三思▲電▼子工程有限公司Shanghai Sansi Electronic Engineering Co.,Ltd. 知的照明システム、照明デバイス、車両、車載端末、車両運転支援システム及び車両運転支援方法
JP2022154276A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 自己診断装置
WO2023282097A1 (ja) * 2021-07-06 2023-01-12 株式会社アイシン 物体検出装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512164B2 (ja) * 2016-04-22 2019-05-15 株式会社デンソー 物体検出装置、物体検出方法
US10408921B2 (en) * 2016-10-28 2019-09-10 Ford Global Technologies, Llc Vehicle detection of external objects
WO2018155142A1 (ja) * 2017-02-21 2018-08-30 日立オートモティブシステムズ株式会社 車両制御装置
JP6686961B2 (ja) * 2017-04-24 2020-04-22 株式会社デンソー 物体検知装置
CN112470027A (zh) * 2018-07-27 2021-03-09 三菱电机株式会社 物体检测装置的控制装置、物体检测装置和物体检测程序
CN109581390A (zh) * 2018-11-27 2019-04-05 北京纵目安驰智能科技有限公司 基于超声波雷达的地形检测方法、系统、终端和存储介质
KR20210136631A (ko) * 2020-05-08 2021-11-17 주식회사 만도모빌리티솔루션즈 차량용 레이더의 수직 장착 오정렬 감지 장치, 방법 및 그를 포함하는 레이더 장치
JP2022122196A (ja) * 2021-02-09 2022-08-22 株式会社アイシン 物体検出装置及び移動体制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114747A (ja) * 1997-06-25 1999-01-22 Honda Motor Co Ltd 車両の物体検知装置
JP2004085258A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd レーダ装置
JP2007178183A (ja) * 2005-12-27 2007-07-12 Mazda Motor Corp 車両の障害物検知装置
JP2008040646A (ja) * 2006-08-03 2008-02-21 Honda Motor Co Ltd 車両制御装置
JP2011002346A (ja) * 2009-06-19 2011-01-06 Fujitsu Ten Ltd 信号処理装置、及びレーダ装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331882B2 (ja) * 1995-12-27 2002-10-07 株式会社デンソー 車両用障害物検出装置の中心軸偏向量算出装置,中心軸偏向量補正装置,および車間制御装置
US6230107B1 (en) * 1996-03-29 2001-05-08 Komatsu Ltd. Vehicle speed detection system
DE19650863C1 (de) * 1996-12-07 1998-04-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung einer vertikalen Dejustierung eines Abstandssensors
US6087975A (en) 1997-06-25 2000-07-11 Honda Giken Kogyo Kabushiki Kaisha Object detecting system for vehicle
JP3428009B2 (ja) * 1998-07-03 2003-07-22 トヨタ自動車株式会社 車両用レーダ装置
JP4740449B2 (ja) * 2000-12-27 2011-08-03 富士通テン株式会社 車載用レーダの上下軸ずれ検出装置
DE60222471T2 (de) * 2002-01-18 2008-06-12 Hitachi, Ltd. Radareinrichtung
JP4593968B2 (ja) * 2004-05-14 2010-12-08 キヤノン株式会社 位置姿勢計測方法および装置
US7667636B2 (en) 2006-08-03 2010-02-23 Honda Motor Co., Ltd. Vehicle control system
US7813851B2 (en) * 2007-02-21 2010-10-12 Autoliv Asp, Inc. Sensing misalignment detection and estimation system
KR101053855B1 (ko) * 2009-01-22 2011-08-03 주식회사 만도 센서 수직 얼라이먼트 조절 장치 및 센서
US20100188932A1 (en) * 2009-01-28 2010-07-29 Darwin Mitchel Hanks Low Power Sensor System
US8775064B2 (en) * 2011-05-10 2014-07-08 GM Global Technology Operations LLC Sensor alignment process and tools for active safety vehicle applications
US8957807B2 (en) * 2011-12-14 2015-02-17 Ford Global Technologies, Llc Internal multi-axis G sensing used to align an automotive forward radar to the vehicle's thrust axis
US8930063B2 (en) * 2012-02-22 2015-01-06 GM Global Technology Operations LLC Method for determining object sensor misalignment
JP6430778B2 (ja) * 2014-10-22 2018-11-28 株式会社デンソー 物体検知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114747A (ja) * 1997-06-25 1999-01-22 Honda Motor Co Ltd 車両の物体検知装置
JP2004085258A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd レーダ装置
JP2007178183A (ja) * 2005-12-27 2007-07-12 Mazda Motor Corp 車両の障害物検知装置
JP2008040646A (ja) * 2006-08-03 2008-02-21 Honda Motor Co Ltd 車両制御装置
JP2011002346A (ja) * 2009-06-19 2011-01-06 Fujitsu Ten Ltd 信号処理装置、及びレーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3104192A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844961A (zh) * 2016-01-07 2016-08-10 乐卡汽车智能科技(北京)有限公司 测量距离的方法、装置和系统
CN109903586A (zh) * 2016-01-07 2019-06-18 法法汽车(中国)有限公司 测量距离的方法、装置和系统
US10571553B2 (en) 2016-03-18 2020-02-25 Panasonic Intellectual Property Management Co., Ltd. Sensor mounting state determination device and sensor mounting state determination method
WO2017159170A1 (ja) * 2016-03-18 2017-09-21 パナソニックIpマネジメント株式会社 センサ取り付け状態判定装置およびセンサ取り付け状態判定方法
JP2017167096A (ja) * 2016-03-18 2017-09-21 パナソニックIpマネジメント株式会社 取り付け状態判定装置および取り付け状態判定方法
JP2019519051A (ja) * 2016-04-07 2019-07-04 上海三思▲電▼子工程有限公司Shanghai Sansi Electronic Engineering Co.,Ltd. 知的照明システム、照明デバイス、車両、車載端末、車両運転支援システム及び車両運転支援方法
CN109661593A (zh) * 2016-09-02 2019-04-19 株式会社电装 物体检测装置
WO2018043306A1 (ja) * 2016-09-02 2018-03-08 株式会社デンソー 物体検知装置
JP2018036231A (ja) * 2016-09-02 2018-03-08 株式会社デンソー 物体検知装置
US11487007B2 (en) * 2016-09-02 2022-11-01 Denso Corporation Object detection device
CN109661593B (zh) * 2016-09-02 2022-11-22 株式会社电装 物体检测装置
JP2018059783A (ja) * 2016-10-04 2018-04-12 株式会社デンソー 物体検出センサの軸ずれ判定方法
WO2018066391A1 (ja) * 2016-10-04 2018-04-12 株式会社デンソー 物体検出センサの軸ずれ判定方法
CN106569213A (zh) * 2016-10-21 2017-04-19 奇瑞汽车股份有限公司 一种汽车静态防碰撞系统及其控制方法
JP2022154276A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 自己診断装置
WO2023282097A1 (ja) * 2021-07-06 2023-01-12 株式会社アイシン 物体検出装置

Also Published As

Publication number Publication date
US10180491B2 (en) 2019-01-15
CN105960597A (zh) 2016-09-21
JPWO2015118804A1 (ja) 2017-03-23
US20160334505A1 (en) 2016-11-17
EP3104192A4 (en) 2017-03-08
EP3104192A1 (en) 2016-12-14
JP6413097B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6413097B2 (ja) 物体検知装置
JP6246465B2 (ja) 路肩の空間認知方法及びシステム
US7552012B2 (en) Device for detecting objects in the blind spot of a vehicle
US10571564B2 (en) Method for detecting at least one object in a surrounding area of a motor vehicle, driver assistance system and motor vehicle
KR20170114054A (ko) 충돌방지장치 및 충돌방지방법
JP6089585B2 (ja) 障害物検知装置
CN106537175B (zh) 用于运载工具的周围环境对象的声学检查的设备和方法
CN103109312A (zh) 一种用于警告机动车辆的驾驶员在靠近车辆的侧板的侧部区域中存在障碍物的方法以及具有驾驶员辅助系统的机动车辆
US8823578B2 (en) Driving assist apparatus
JP6577767B2 (ja) 物体検知装置及び物体検知方法
JP6140755B2 (ja) 距離決定の装置と方法
JP7122101B2 (ja) 車両用障害物検知装置
JP2008536738A (ja) 乗員保護装置に対するトリガ信号生成のための方法及び装置
JP2008514907A (ja) 駐車余地を測定する赤外線センサ及び車両に対する周囲の状況の監視
JP2013061690A (ja) 車両用障害物検出システム
US20150097702A1 (en) Blind spot sensing apparatus and method
JP2015132511A (ja) 路面監視装置および電動カート
CN111038380A (zh) 前向碰撞预警方法和系统
JP2011242170A (ja) 車両用レーダ装置
KR101105338B1 (ko) 자동차 속도 감지 시스템
JP2004083009A (ja) 自動二輪車における傾斜検出方法および装置
JP3171767B2 (ja) 衝突予知システム
KR102075927B1 (ko) 주차 보조 장치 및 방법
KR101544850B1 (ko) 차량의 측후방 물체 검출장치
CN110967689B (zh) 一种目标对象高度的确定方法、装置及车载雷达设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15111796

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015561197

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015746491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746491

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE