WO2015114958A1 - 発光ダイオード駆動装置及び照明装置 - Google Patents

発光ダイオード駆動装置及び照明装置 Download PDF

Info

Publication number
WO2015114958A1
WO2015114958A1 PCT/JP2014/082733 JP2014082733W WO2015114958A1 WO 2015114958 A1 WO2015114958 A1 WO 2015114958A1 JP 2014082733 W JP2014082733 W JP 2014082733W WO 2015114958 A1 WO2015114958 A1 WO 2015114958A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
pwm signal
emitting diode
current
Prior art date
Application number
PCT/JP2014/082733
Other languages
English (en)
French (fr)
Inventor
篤司 山下
小野崎 学
剛史 小野
宮田 正高
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015559769A priority Critical patent/JP6077144B2/ja
Priority to US15/108,822 priority patent/US10104726B2/en
Priority to CN201480073205.0A priority patent/CN105917475A/zh
Priority to KR1020167020805A priority patent/KR101922786B1/ko
Publication of WO2015114958A1 publication Critical patent/WO2015114958A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/305Frequency-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a light emitting diode driving device and a lighting device.
  • the backlight used in so-called liquid crystal TV includes an LED chip that emits blue light as primary light, a red phosphor that emits red light as secondary light when excited by the blue light, And a green phosphor that emits green light.
  • the backlight emits white light by mixing blue light, green light, and red light.
  • CASN phosphor divalent Eu-activated CaAlSiN 3
  • CASN phosphor a divalent Eu-activated CaAlSiN 3 that is a nitride-based phosphor that emits red light and a green phosphor that emits green light are emitted blue light.
  • a light-emitting element that is excited by a blue LED and exhibits white light is disclosed.
  • an Eu-activated ⁇ -type SiAlON phosphor disclosed in Patent Document 2 has been suitably used conventionally.
  • the wavelength width of the emission spectrum of the red phosphor is 80 nm or more, and thus red color reproducibility is not sufficient.
  • KSF phosphor Mn 4+ activated K 2 SiF 6
  • liquid crystal TVs draw images at 60 Hz, 120 Hz, or 240 Hz, which are integer multiples of the frame frequency of the video signal.
  • the LED can be turned on and off at high speed, it is possible to realize a display in which the backlight is temporarily turned off and unnecessary images are not shown to the user.
  • the feeling of afterimage can be reduced by temporarily turning off the backlight while rewriting the image of the next frame on the LCD screen.
  • 3D (3D) display is performed using the frame sequential method in which the video for the right eye and the video for the left eye are displayed alternately, the backlight is temporarily turned off until the video has been drawn on the entire screen. It is possible to reduce video (crosstalk) in which pictures of the right eye and left eye are mixed.
  • the PWM (Pulse Width Modulation) drive method that repeats turning on and off is used as the LED drive method used for the backlight, but the timing of turning on and off is applied to the liquid crystal panel. Since it is performed in synchronization with drawing, the PWM period is often 60 Hz, 120 Hz, or 240 Hz, which is an integral multiple of the frame frequency of the video signal.
  • the red phosphor (KSF phosphor) described in Patent Document 3 When the red phosphor (KSF phosphor) described in Patent Document 3 is used, light emission having a narrow spectrum can be obtained and the color reproducibility can be improved.
  • the KSF phosphor has an emission intensity of 1 / e (e Is about 10 [ms], which is about 100 to 1000 times longer than the afterglow time of the CASN phosphor.
  • the LED when the LED is turned on / off at a dimming frequency (PWM dimming) synchronized with the display on the liquid crystal panel, as shown in FIG. 19, the blue light that is a rectangular wave from the LED chip is turned off. Even after that, there is red light afterglow from the KSF phosphor that is excited and emitted by the blue light from the LED chip. Due to the afterglow of red light from the KSF phosphor, problems such as a phenomenon that the display image appears to be colored and a so-called crosstalk phenomenon in which the left and right images are mixed during 3D display occur. This crosstalk occurs remarkably in, for example, a video in which telop characters flow on the screen, and a part of the telop appears to be colored red.
  • PWM dimming dimming frequency
  • FIG. 19 shows the response waveform of the KSF phosphor when the backlight is driven at a PWM drive frequency of 120 Hz and a duty of 25%.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a light emitting diode driving device and an illumination device in which the afterglow of secondary light is reduced.
  • a light-emitting diode driving device is driven by a driving current that changes in accordance with a rectangular wave signal level, and emits primary light having a luminance corresponding to the driving current.
  • a light-emitting diode chip that emits light, and a phosphor that emits secondary light when excited by the primary light, emits mixed-color light of the primary light and the secondary light, and the light emission A first output circuit and a second output circuit connected to a diode chip and connected to the output terminal of the light emitting diode from which the drive current is output, respectively, wherein the first output circuit includes the rectangular wave When the signal level of the rectangular wave is “H”, the light emitting diode chip is caused to emit light by outputting the first current from the output terminal, while the driving is stopped when the signal level of the rectangular wave is “L”.
  • the second output circuit causes the light emitting diode chip to emit light by outputting a second current having a current value lower than the first current from the output terminal when the signal level of the rectangular wave is “L”. It is characterized by.
  • FIG. 2 is a block diagram illustrating a configuration of an LED drive circuit according to Embodiment 1.
  • FIG. (A) is a top view which expands and shows a part of illuminating device using LED which concerns on Embodiment 1
  • (b) is sectional drawing of the illuminating device shown to (a).
  • 1 is a cross-sectional view of an LED according to Embodiment 1.
  • FIG. It is a figure showing the emission spectrum of KSF fluorescent substance. It is a figure showing the emission spectrum of a CASN fluorescent substance.
  • It is a block diagram showing the structure of the LED drive circuit which concerns on a 1st comparative example.
  • (A) represents the PWM signal according to the first and second comparative examples
  • (b) represents the IF signal according to the first and second comparative examples
  • (c) represents the first and second comparative examples.
  • (A) represents a PWM signal related to the LED drive circuit of the first embodiment
  • (b) represents an IF signal related to the LED drive circuit of the first embodiment
  • (c) represents a state of light emission of the LED related to the LED drive circuit of the first embodiment.
  • FIG. It is a figure showing the relationship between offset current and afterglow. It is a figure showing the relationship between offset current and animation performance improvement.
  • 6 is a block diagram illustrating a configuration of an LED drive circuit according to Embodiment 2.
  • FIG. 6 is a block diagram illustrating a configuration of an LED drive circuit according to Embodiment 3.
  • FIG. FIG. 6 is a block diagram illustrating a configuration of an LED drive circuit according to a fourth embodiment.
  • A) represents the first PWM signal PWM of the LED drive circuit according to the fourth embodiment
  • (b) represents the second PWM signal PWM of the LED drive circuit according to the fourth embodiment
  • (c) represents the LED drive circuit according to the fourth embodiment.
  • D represents the state of light emission of the LED of the LED drive circuit according to the fourth embodiment.
  • It is a block diagram showing the structure of the LED drive circuit which concerns on embodiment. It is a figure which shows an example of the value of each signal used with the LED drive circuit which concerns on each embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of an LED drive circuit that is a modification of the LED drive circuit according to the second embodiment.
  • Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail.
  • FIG. 1 is an enlarged plan view showing a part of the illumination device 71 using the LED 11 according to Embodiment 1
  • FIG. 2B is a cross-sectional view of the illumination device 71 shown in FIG.
  • the lighting device 71 includes a substrate 72, a plurality of LEDs 11, and a light guide plate 75.
  • the lighting device 71 also includes an LED drive circuit unit (see FIG. 1) not shown in FIG. 2 in order to control driving of the plurality of LEDs 11.
  • the light guide plate 75 is a transparent member that is rectangular in its entirety and has a predetermined thickness.
  • the light guide plate 75 has a structure capable of extracting light from each part of the light emitting surface 75b so as to emit light incident from the light incident part 75a in a planar shape, and is formed of a transparent material such as acrylic. Yes.
  • the end surface on one side of the light guide plate 75 functions as a light incident portion 75a on which light is incident.
  • the substrate 72 is formed in an elongated rectangle (strip shape).
  • printed wiring (not shown) for supplying power to the LEDs 11 is formed on a mounting surface on which the plurality of LEDs 11 are mounted.
  • a positive terminal and a negative terminal (not shown) connected to the printed wiring are provided at both ends or one end of the substrate 72.
  • the LED 11 is fed by connecting wiring for feeding power from the outside to the positive terminal and the negative terminal.
  • a plurality of LEDs 11 are mounted on the substrate 72 in a line along the longitudinal direction of the substrate 72.
  • the plurality of LEDs 11 are connected in series along the longitudinal direction of the substrate 72.
  • the substrate 72 and the LED 11 constitute a light source unit 77.
  • the light emitting surfaces of the plurality of LEDs 11 are light incident so that the light emitted from the LED chips (light emitting diode chips) 13 of the plurality of LEDs 11 enters the light incident unit 75 a of the light guide plate 75. It is disposed at a position facing the portion 75 a and close to the light guide plate 75.
  • FIG. 1 is a block diagram illustrating a configuration of an LED drive circuit 30 according to the first embodiment.
  • the LED drive circuit 30 includes an anode voltage generation circuit 1, a constant current circuit 2 having a first output circuit 5, a PWM signal generation circuit (PWM signal generation unit) 3, a second output circuit 6, and an LED 11. ing.
  • the first output circuit 5 includes a switching element 4.
  • the second output circuit 6 includes a resistor 7.
  • the LED 11 includes an anode 11A that is an input terminal for a forward current that flows through the LED chip 13 and a cathode 11C that is an output terminal for outputting the forward current that flows through the LED chip 13 to the outside of the LED 11.
  • the LED drive circuit 30 has a plurality of LEDs 11, and each LED 11 is connected in series or in parallel. Note that the LED drive circuit 30 may have only one LED 11.
  • the LED 11 receives an anode voltage signal from the anode voltage generation circuit 1 and emits white light when IF (forward current (drive current)) flows through the LED chip 13.
  • IF forward current (drive current)
  • the anode voltage generation circuit 1 is a circuit that outputs an anode voltage signal necessary for lighting the LED 11.
  • the anode voltage generation circuit 1 supplies the generated anode voltage signal to the anode 11A of the LED 11, thereby supplying a VF (forward voltage) value necessary for the LED 11 to light.
  • the constant current circuit 2 is connected to the PWM signal generation circuit 3, the cathode 11C of the LED 11, and the second output circuit 6.
  • the PWM signal generation circuit 3 is connected to the constant current circuit 2 and to the switching element 4 that is the first output circuit 5.
  • the anode voltage generation circuit 1 is connected to the constant current circuit 2 and the anode 11 ⁇ / b> A of the LED 11.
  • the LED 11 has an anode 11 ⁇ / b> A connected to the anode voltage generation circuit 1, a cathode 11 ⁇ / b> C connected to the switching element 4, and one end of a resistor 7 that is a second output circuit. One end of the resistor 7 is connected to the cathode 11C of the LED 11, and the other end is electrically grounded.
  • the constant current circuit 2 is a circuit that turns on the LED 11 with a constant current by flowing a constant current through the LED 11.
  • the constant current circuit 2 can set an IF value that flows to the LED chip 13 of the LED 11 and can also be expressed as an LED driver, a constant current driver, or the like.
  • the switching element 4 is built in the constant current circuit 2 and is connected to the PWM signal generation circuit 3 and the cathode 11C of the LED 11.
  • the switching element 4 is turned ON / OFF corresponding to the frequency of the PWM signal input from the PWM signal generation circuit 3 and the duty ratio.
  • the switching element 4 is ON (conductive) when the signal level of the PWM signal is “H”, and is OFF (non-conductive) when the signal level of the PWM signal is “L”.
  • the first output circuit 5 is driven when the switching element 4 is turned on, while the first output circuit 5 is stopped when the switching element 4 is turned off.
  • switching element 4 various switching elements such as an Nch FET can be used.
  • the constant current circuit 2 can monitor the voltage input to the switching element 4 and feed back to the anode voltage generation circuit 1 according to the VF (forward voltage) value of the LED 11 to adjust the voltage to an appropriate anode voltage. It may have a function.
  • the constant current circuit 2 is connected to the anode voltage generation circuit 1 and outputs a feedback signal for adjusting the anode voltage according to the VF of the LED 11 to the anode voltage generation circuit 1.
  • the voltage input to the switching element 4 is obtained by subtracting the VF value necessary for lighting the LED 11 from the voltage output from the anode voltage generation circuit 1 when the switching element 4 is turned on. Voltage (referred to as adjustment voltage).
  • the constant current circuit 2 compares the adjustment voltage with a predetermined reference voltage. When the adjustment voltage is lower than the reference voltage, the constant current circuit 2 outputs a feedback signal instructing to increase the anode voltage to the anode voltage generation circuit 1. As a result, the anode voltage generation circuit 1 increases the anode voltage. On the other hand, when the adjustment voltage is higher than the reference voltage, the constant current circuit 2 outputs a feedback signal instructing to decrease the anode voltage to the anode voltage generation circuit 1. Thereby, the anode voltage generation circuit 1 thereby reduces the anode voltage.
  • the constant current circuit 2 can generate an appropriate anode voltage according to the VF value of the LED 11.
  • the reference voltage may be built in the constant current circuit 2. Or you may supply from the outside.
  • the constant current circuit 2 feeds the anode voltage to the anode voltage generation circuit 1 as a feedback signal. Is output.
  • the constant current circuit 2 outputs a feedback signal for decreasing the anode voltage to the anode voltage generation circuit 1.
  • the PWM signal generation circuit 3 receives a PWM signal, which is a pulse signal and a dimming signal, which is composed of High (first level; hereinafter referred to as “H”) / Low (second level; hereinafter referred to as “L”).
  • the generated PWM signal is output to the constant current circuit 2.
  • the PWM signal generation circuit 3 can change the frequency of the PWM signal and the duty ratio by external control.
  • the switching element 4 is turned on when the PWM signal is “H” and turned off when the PWM signal is “L”.
  • the present invention is not limited to this, and the switching element 4 may be turned on when the PWM signal is “L” (first level) and turned off when the PWM signal is “H” (second level).
  • the second output circuit 6 is a circuit for passing a current from the cathode 11C side of the LED 11 to the LED 11 via the resistor 7.
  • the resistance value of the resistor 7 is determined by the voltage value of the cathode 11C of the LED 11 and the current (IF) value passed through the LED 11. Even when the switching element 4 is OFF, a current flows to the LED 11 through the resistor 7, and the LED 11 is lit. In other words, in the present embodiment, the second output circuit 6 is always driven regardless of the driving state of the first output circuit 5.
  • the LED 11 since the LED 11 is always lit regardless of whether the switching element 4 is ON or OFF, it is preferable to provide a function that can turn ON / OFF the anode voltage generation circuit 1 by external control. desirable.
  • the LED 11 When the switching element 4 is ON, the LED 11 causes IF (first current) to flow from the cathode 11 ⁇ / b> C to the switching element 4 that is the first output circuit 5 and the resistor 7 that is the second output circuit 6, thereby generating white light. Emits light.
  • the LED 11 when the switching element 4 is OFF, the LED 11 sends an offset current (second current) from the cathode 11C to the resistor 7 that is the second output circuit 6 out of the first output circuit 5 and the second output circuit 6. Only by flowing, white light is emitted.
  • the value of the offset current that flows through the LED 11 when the switching element 4 is OFF is lower than the value of the IF that flows through the LED 11 when the switching element 4 is ON. For this reason, the luminance of the LED 11 that lights when the switching element 4 is OFF is lower than the luminance of the LED 11 that lights when the switching element 4 is ON.
  • FIG. 3 is a cross-sectional view of the LED 11.
  • the LED 11 has an LED chip 13 mounted in the center. As shown in FIG. 3, the LED 11 includes a package 12, an LED chip 13, a resin 14, a KSF phosphor (phosphor, red phosphor, Mn 4+ activated composite fluoride phosphor) 15, and a green phosphor (green). (Phosphor) 17.
  • the package 12 is provided with a cavity (recess) 12a which is one recess.
  • the cavity 12a is a space provided in the package 12 so that the LED chip 13 is mounted on the bottom surface in the recess and the inner surface of the recess is a reflection surface.
  • the package 12 is made of a nylon material, and is provided by insert molding so that a lead frame (not shown) is exposed on the bottom surface of the package 12 in the cavity 12a. This lead frame is divided into two at the exposed portion.
  • the package 12 has a reflecting surface that forms the inner surface of the cavity 12a, which is a recess.
  • This reflecting surface is preferably formed of a metal film or white silicone containing Ag or Al having a high reflectivity so as to reflect the light emitted from the LED chip 13 to the outside of the LED 11.
  • the LED chip 13 emits primary light having a luminance corresponding to a current that changes in accordance with the signal level of the PWM signal.
  • the LED chip 13 is, for example, a gallium nitride (GaN) semiconductor light emitting device having a conductive substrate. Although not shown, a bottom electrode is formed on the bottom surface of the conductive substrate, and an upper electrode is formed on the opposite surface. Is formed.
  • the emitted light (primary light) of the LED chip 13 is blue light having a peak wavelength in the range of 430 nm to 480 nm, and has a peak wavelength particularly in the vicinity of 450 nm.
  • the LED chip 13 (blue LED chip) is die-bonded with a conductive brazing material on one side of the exposed portion of the lead frame. Further, in the LED chip 13, the upper electrode of the LED chip 13 and the other side of the exposed portion of the lead frame are wire-bonded with a wire (not shown). Thus, the LED chip 13 is electrically connected to the lead frame.
  • the LED chip having the electrodes on the upper surface and the lower surface is described, but an LED chip having two electrodes on the upper surface may be used.
  • Resin 14 fills the cavity 12a, thereby sealing the cavity 12a in which the LED chip 13 is disposed. Further, since the resin 14 is required to have high durability against primary light having a short wavelength, a silicone resin is preferably used. The surface of the resin 14 forms a light emitting surface from which light is emitted.
  • a KSF phosphor 15 that emits red light and a green phosphor 17 that emits green light are respectively dispersed as secondary light that is excited by the primary light emitted from the LED chip 13. Yes.
  • the KSF phosphor 15 is a phosphor that emits red light by a forbidden transition (hereinafter sometimes referred to as a forbidden transition type phosphor).
  • the red phosphor (phosphor) dispersed in the resin 14 is a phosphor that emits red light by forbidden transition.
  • the red phosphor is particularly preferably a phosphor material having a narrow spectrum having a peak wavelength width of about 30 nm or less.
  • the resin 14 may be a phosphor that emits red light by an allowable transition such as a CASN phosphor (hereinafter, referred to as an allowable transition type phosphor). Two types of phosphors may be dispersed, and three or more types of red phosphors may be dispersed. Further, the green phosphor 17 may or may not be dispersed in the resin 14 as necessary.
  • the KSF phosphor 15 is an example of a red phosphor that is dispersed in the resin 14 and emits red light by forbidden transition.
  • the KSF phosphor 15 is excited by blue light that is primary light and emits red secondary light having a longer wavelength than the primary light (peak wavelength is 600 nm or more and 780 nm or less).
  • the KSF phosphor 15 is a phosphor having a Mn 4+ activated K 2 SiF 6 structure.
  • the KSF phosphor 15 has a narrow peak wavelength width of about 30 nm or less and emits high-purity red light.
  • FIG. 4 is a diagram showing an emission spectrum of the KSF phosphor 15.
  • FIG. 5 is a diagram showing an emission spectrum of the CASN phosphor.
  • the KSF phosphor 15 which is a forbidden transition type phosphor has a narrow spectrum with a narrow peak wavelength width near 630 nm, compared to the CASN phosphor which is an allowable transition type phosphor.
  • the wavelength width of the peak wavelength in the emission spectrum is preferably about 30 nm or less.
  • the emission spectrum having a narrow spectrum of the peak wavelength in the emission spectrum has a lower ratio of including a wavelength band of a color other than the red wavelength band intended to emit light. Is more clearly separated from the other wavelength bands. For this reason, LED11 with wide color reproducibility can be obtained.
  • the response speed of the KSF phosphor 15 for turning off the light is slower than that of the LED chip 13.
  • the time required for the emission intensity of the secondary light from the KSF phosphor 15 to become 1 / e (e is the base of the natural logarithm) of the KSF phosphor 15 The afterglow time is about 7 ms to 8 ms. In addition, it takes about 10 ms for the secondary light from the KSF phosphor 15 to be turned on and off almost completely.
  • the CASN phosphor which is the time required for the emission intensity of the secondary light from the CASN phosphor when the primary light from the LED chip 13 is turned off to 1 / e (e is the base of natural logarithm),
  • the afterglow time is about 1 ⁇ s to 10 ⁇ s.
  • the afterglow time of the KSF phosphor which is a forbidden transition type phosphor
  • the response speed of the KSF phosphor is 100 to 1000 times slower than the response speed of the CASN phosphor, which is an allowable transition type phosphor.
  • red phosphors having a Mn 4+ activated K 2 SiF 6 structure examples of materials that can be used as red phosphors with a narrow peak wavelength range include Mn 4+ activated Mg fluorogermanate phosphors and the like. Can do.
  • the red phosphor that emits red light by the forbidden transition may be any of the Mn 4+ activated composite fluoride phosphors represented by the following general formulas (A1) to (A8).
  • the red phosphor dispersed in the resin 14 is substantially represented by, for example, the following general formula (A9) or general formula (A10) other than the phosphor having the Mn 4+ activated K 2 SiF 6 structure. It may be a tetravalent manganese-activated fluorinated tetravalent metal salt phosphor. MII 2 (MIII 1-h Mn h ) F 6 ...
  • MII represents at least one alkali metal element selected from Li, Na, K, Rb and Cs, and MII is preferably K from the viewpoint of brightness and stability of powder characteristics.
  • MIII represents at least one tetravalent metal element selected from Ge, Si, Sn, Ti, and Zr. From the viewpoint of brightness and stability of powder characteristics, MIII is Ti. Preferably there is.
  • the value of h indicating the composition ratio (concentration) of Mn is 0.001 ⁇ h ⁇ 0.1.
  • the value of h is less than 0.001
  • the value of h exceeds 0.1
  • the brightness is reduced by concentration quenching or the like. This is because there is a problem of a significant decrease.
  • the value of h is preferably 0.005 ⁇ h ⁇ 0.5.
  • red phosphor represented by the general formula (A9) examples include K 2 (Ti 0.99 Mn 0.01 ) F 6 , K 2 (Ti 0.9 Mn 0.1 ) F 6 , K 2 (Ti 0.999 Mn 0.001 ) F 6 , Na 2 (Zr 0.98 Mn 0.02 ) F 6 , Cs 2 (Si 0.95 Mn 0.05 ) F 6 , Cs 2 (Sn 0 .98 Mn 0.02 ) F 6 , K 2 (Ti 0.88 Zr 0.10 Mn 0.02 ) F 6 , Na 2 (Ti 0.75 Sn 0.20 Mn 0.05 ) F 6 , Cs 2 (Ge 0.999 Mn 0.001 ) F 6 , (K 0.80 Na 0.20 ) 2 (Ti 0.69 Ge 0.30 Mn 0.01 ) F 6 and the like can be mentioned.
  • MIV (MIII 1-h Mn h ) F 6 ...
  • MIII represents at least one tetravalent metal element selected from Ge, Si, Sn, Ti, and Zr as in MIII in general formula (A9) described above. For the same reason, MIII is preferably Ti.
  • MIV represents at least one alkaline earth metal element selected from Mg, Ca, Sr, Ba and Zn. From the viewpoint of brightness and stability of powder characteristics, MIV is Ca. Preferably there is.
  • the value of h indicating the composition ratio (concentration) of Mn is 0.001 ⁇ h ⁇ 0.1 in the same manner as h in the general formula (A9) described above, and for the same reason. 0.005 ⁇ h ⁇ 0.5 is preferable.
  • red phosphor represented by the general formula (A10) examples include Zn (Ti 0.98 Mn 0.02 ) F 6 , Ba (Zr 0.995 Mn 0.005 ) F 6 , Ca ( Ti 0.995 Mn 0.005 ) F 6 , Sr (Zr 0.98 Mn 0.02 ) F 6 and the like can be mentioned, but of course not limited thereto.
  • the green phosphor 17 (green phosphor) is dispersed in the resin 14.
  • the green phosphor 17 is a phosphor that is excited by blue light that is primary light and emits green secondary light having a longer wavelength than the primary light (peak wavelength is 500 nm or more and 550 nm or less).
  • the green phosphor 17 may be a ⁇ -type SiAlON that is a divalent Eu-activated oxynitride phosphor represented by the following general formula (B1), or a divalent Eu that is represented by the following general formula (B2).
  • An active silicate phosphor may be used.
  • EuaSibAlcOdNe ...
  • General formula (B1) the value of a representing the composition ratio (concentration) of Eu is 0.005 ⁇ a ⁇ 0.4. If the value of a is less than 0.005, sufficient brightness cannot be obtained. If the value of a exceeds 0.4, the brightness is greatly reduced due to concentration quenching or the like. It is to do.
  • the composition ratio (concentration) of O is E representing the composition ratio (concentration) of d
  • green phosphor 17 represented by the general formula (B1)
  • YI represents at least one alkaline earth metal element selected from Mg, Ca, and Sr. In order to obtain a highly efficient matrix, YI is preferably Sr.
  • the value of f representing the composition ratio (concentration) of YI is 0 ⁇ f ⁇ 0.55, and the value of f is within this range, so that the green system in the range of 510 to 540 nm. Luminescence can be obtained. When the value of f exceeds 0.55, yellowish green light emission is caused, and the color purity is deteriorated. Furthermore, from the viewpoint of efficiency and color purity, the value of f is preferably in the range of 0.15 ⁇ f ⁇ 0.45. In the general formula (B2), the value of g indicating the composition ratio (concentration) of Eu is 0.03 ⁇ g ⁇ 0.10.
  • the value of g is preferably in the range of 0.04 ⁇ g ⁇ 0.08 in terms of brightness and stability of powder characteristics.
  • green phosphor 17 represented by the general formula (B2)
  • the green phosphor 17 may be a divalent Eu-activated silicate phosphor represented by the following general formula (B3). 2 (M1 1-g , Eu g ) O.SiO 2 ... General formula (B3)
  • M1 represents at least one element selected from Mg, Ca, Sr, and Ba
  • g represents a number that satisfies 0.005 ⁇ g ⁇ 0.10.
  • the so-called BOSE alkaline earth metal silicate phosphor represented by the general formula (B3) is of an allowable transition type with an afterglow time of 10 ⁇ s or less, which is the time until the emission intensity becomes 1 / e, like the CASN phosphor. It is a phosphor.
  • the LED 11 configured as described above, as the primary light (blue light) emitted from the LED chip 13 passes through the resin 14, a part thereof excites the KSF phosphor 15 to generate secondary light (red light). ) To excite the green phosphor 17 and convert it into secondary light (green light). In this way, from the LED 11, the blue primary light and the red and green secondary lights are mixed and white light (mixed light) W 0 is emitted to the outside of the LED 11.
  • FIG. 6 is a block diagram showing the configuration of the LED drive circuit 130 according to the first comparative example.
  • the LED drive circuit 130 is configured by removing the second output circuit 6 from the LED drive circuit 30 shown in FIG.
  • the LED drive circuit 130 includes an anode voltage generation circuit 101, a constant current circuit 102 having a switching element 104, a PWM signal generation circuit 103, and an LED 111.
  • the PWM signal generation circuit 103 generates a PWM signal which is a pulse signal consisting of “H” / “L” and is a dimming signal, and outputs the generated PWM signal to the constant current circuit 102.
  • the switching element 104 built in the constant current circuit 102 is turned ON / OFF corresponding to the frequency of the PWM signal and the duty ratio.
  • the anode voltage generation circuit 101 generates a VF (forward voltage) necessary for the LED 111 to turn on and outputs it to the anode 111A of the LED 111.
  • VF forward voltage
  • IF flows from the anode 111A of the LED 111 to the constant current circuit 102 via the cathode 111C, and when the switching element 104 is turned off, IF does not flow.
  • the LED 111 receives an anode voltage signal from the anode voltage generation circuit 101, and emits white light when an IF (forward current) flows through an LED chip included in the LED 111.
  • IF forward current
  • the IF flows through the LED 111 only when the switching element 104 is ON, emits white light, and when the switching element 104 is OFF, the IF does not flow and goes off.
  • FIG. 7 is a block diagram showing the configuration of the LED drive circuit 131 according to the second comparative example.
  • the LED drive circuit 131 has a configuration in which the switching element 104 is separated from the constant current circuit 102 in the LED drive circuit 130 shown in FIG.
  • the LED drive circuit 131 includes a current control circuit 121, a switching element 104, and a resistor 107 instead of the constant current circuit 102 in the LED drive circuit 130.
  • the current control circuit 121 turns on the switching element 104 when the PWM signal input from the PWM signal generation circuit 103 is “H”, and the VF (forward voltage) output from the anode voltage generation circuit 101 causes the LED 111 to IF flows from the anode 111A through the cathode 111C, the switching element 104, and the resistor 107. As a result, the LED 111 emits white light.
  • the current control circuit 121 turns off the switching element 104, the IF does not flow to the LED 111, and the LED 111 is turned off.
  • the IF value is determined by the voltage value between the resistors 107 when the switching element 104 is turned on and the resistance value of the resistor 107.
  • the current control circuit 121 monitors so that the voltage between the switching element 104 and the resistor 107 is always constant. For example, it is assumed that the voltage between the switching element 104 and the resistor 107 is adjusted to 1.0V. When this voltage is 1.0 V or less, the current control circuit 121 outputs (feeds back) a feedback signal for increasing the anode voltage to the anode voltage generation circuit 101. When the voltage is 1.0 V or more, the current control circuit 121 outputs to the anode voltage generation circuit 101. A feedback signal for lowering the anode voltage is output. As a result, the voltage between the switching element 104 and the resistor 107 is always 1.0 V, and a constant current flows by calculating the resistance value.
  • FIG. 8A shows the PWM signal according to the first and second comparative examples
  • FIG. 8B shows the IF signal according to the first and second comparative examples
  • FIG. 8C shows the first and second IF signals.
  • the mode of light emission of LED which concerns on a comparative example is shown.
  • the light emission of the LED chip represents the state of the blue light emitted from the LED chip of the LED 111, and the red afterglow by the KSF phosphor is from the LED chip which is the primary light.
  • the frequency of the PWM signal supplied from the PWM signal generation circuit 103 to the constant current circuit 102 is 120 Hz, Duty is 25%, IF is 50 mA, the red phosphor is KSF phosphor, and the green phosphor is Eu-activated ⁇ -type SiAlON. It is a phosphor.
  • the LED chip 13 emits light so as to form a rectangular wave corresponding to the “H” and “L” periods of the PWM signal.
  • FIG. 9A shows a PWM signal related to the LED drive circuit 30
  • FIG. 9B shows an IF signal related to the LED drive circuit 30
  • FIG. 9C shows a state of light emission of the LED related to the LED drive circuit 30. .
  • the frequency of the PWM signal supplied from the PWM signal generation circuit 3 to the constant current circuit 2 is 120 Hz, and the duty is 25%.
  • the red phosphor of the LED 11 is a KSF phosphor 15 and the green phosphor 17 is an Eu-activated ⁇ -type SiAlON phosphor.
  • the LED 11 Assuming that the current (referred to as offset current) flowing from the cathode 11C of the LED 11 to the second output circuit 6 is 2 mA, for example, when the PWM signal is “L”, that is, when the switching element 4 is OFF, the LED 11 has an offset of 2 mA. Current flows, and the IF flows from the cathode 11C of the LED 11 to the resistor 7. As described above, in the LED drive circuit 30, the LED 11 slightly lights (slightly lights) white light even when the PWM signal is “L”.
  • the IF when the PWM signal is on is set to 44.9 mA lower than the maximum value instead of the maximum value of 50 mA.
  • the power (brightness) per frame can be made the same as that of the LED drive circuits 130 and 131 according to the first and second comparative examples.
  • the red light from the KSF phosphor 15 does not disappear instantaneously but remains as afterglow, but the PWM signal is “ Even at L ′′, since a 2 mA offset current flows through the LED 11, the white light of the LED 11 is lit. That is, according to the LED drive circuit 30, red light, primary light (blue light of the LED chip 13), and secondary light (KSF phosphor) as the afterglow component by the KSF phosphor 15 during the period when the PWM signal is off. 15) and white light (green light from the green phosphor 17) are mixed to reduce the phenomenon that the display image appears red.
  • FIG. 10 is a diagram showing the relationship between offset current and afterglow.
  • FIG. 11 is a diagram illustrating the relationship between the offset current and the moving image performance improvement.
  • the horizontal axis indicates the amount of afterglow, and the vertical axis indicates the ratio of offset current to IF.
  • the moving image performance and the afterglow reduction are in a trade-off relationship, it is desirable to adjust the timely according to the use conditions of the display device in which the LED drive circuit 30 is used. Also, if the offset current is increased too much, the meaning of PWM dimming itself is lost. That is, the current value of the offset current is varied in proportion to the current value of IF.
  • the ratio of the current value of the offset current to the IF is desirably 10% or less.
  • the driving method according to the present invention is effective for the driving condition of the PWM signal transmission frequency of 120 Hz or less where the coloring phenomenon due to phosphor afterglow is easy to see. Thereby, the afterglow of KSF fluorescent substance 15 can be reduced, suppressing the fall of the display performance of the animation in display devices, such as a liquid crystal display device in which LED drive circuit 30 is used.
  • the ratio of the offset current to the IF is preferably about 2 to 3% or more. This is because if the offset current value is too low, the effect of flowing the offset current cannot be obtained.
  • the LED drive circuit 30 when the signal level of the PWM signal is “H”, the IF flows from the cathode 11C of the LED 11 to the first output circuit 5, so that the LED chip 13 of the LED 11 emits the primary light. Emits light. As a result, white light in which the primary light and the secondary light from the KSF phosphor 15 and the green phosphor 17 are mixed is emitted from the LED 11.
  • the first output circuit 5 stops driving, and the IF does not flow from the LED 11 to the first output circuit 5.
  • the second output circuit 6 outputs an offset current having a value lower than IF from the cathode 11C by passing it through its own circuit. For this reason, even when the signal level of the PWM signal is “L”, the LED chip 13 emits primary light whose luminance is lower than the primary light by the IF, and thereby the LED 11 slightly lights white light.
  • the first output circuit 5 and the second output circuit 6 are connected in parallel. For this reason, even when the driving of the first output circuit 5 is stopped, an offset current flows to the LED 11 through the second output circuit 6, and the LED 11 can be slightly lit.
  • the second output circuit 6 causes the LED 11 to emit white light with minute brightness even during the period in which the switching element 4 of the constant current circuit 2 is turned off and the afterglow of the KSF phosphor 15 is generated. Since it lights, afterglow red light and white light are mixed, and the visibility of afterglow can be reduced.
  • the liquid crystal television using the LED driving circuit 30 and the lighting device 71, it is possible to reduce the coloring phenomenon caused by the afterglow time of the forbidden transition type phosphor represented by the KSF phosphor. it can.
  • the LED driving circuit 30 and the illumination device according to the present invention By applying 71 to the liquid crystal television, it is effective not only for the frequency based on the television broadcasting standard currently used in Japan but also for the frame frequency used in other television broadcasting standards in other countries. . That is, it is possible to reduce the coloring phenomenon caused by the afterglow time of the forbidden transition type phosphor represented by the KSF phosphor.
  • FIG. 12 is a block diagram showing a configuration of an LED drive circuit (light emitting diode drive device) 31 according to the second embodiment.
  • the LED drive circuit 31 is different from the LED drive circuit 30 in that it includes a second output circuit 61 and a PWM signal generation circuit 3A instead of the second output circuit 6.
  • Other configurations of the LED drive circuit 31 are the same as those of the LED drive circuit 30.
  • the second output circuit 61 includes a switching element 41 in addition to the resistor 7.
  • the cathode 11C of the LED 11 is connected to the switching element 4 that is the first output circuit 5, and is also connected to the input terminal of the switching element 41 of the second output circuit 61.
  • the output terminal of the switching element 41 is connected to one end of the resistor 7, and the other end of the resistor 7 is electrically grounded.
  • the PWM signal generation circuit 3 ⁇ / b> A is connected to the switching element 41.
  • the PWM signal generation circuit 3A outputs a PWM signal to the switching element 41.
  • the switching element 41 can be turned OFF. On the other hand, when the switching element 4 is OFF, the switching element 41 can be turned ON.
  • both the switching element 4 and the switching element 41 are turned OFF, and the LED 11 is turned off. it can.
  • a pulse obtained by inverting the pulse output from the PWM signal generation circuit 3 via the inverter 8 as shown in FIG. 20 may be input to the switching element 41.
  • FIG. 20 is a block diagram showing a configuration of an LED drive circuit (light emitting diode drive device) 31A that is a modification of the LED drive circuit 31 according to the second embodiment.
  • the LED drive circuit 31A is different from the LED drive circuit 31 in that an inverter 8 is provided instead of the PWM signal generation circuit 3A.
  • the inverter 8 has an input terminal connected to the PWM signal generation circuit 3 and an output terminal connected to the switching element 41. According to the LED drive circuit 31 ⁇ / b> A, by providing the inverter 8, a PWM signal in which “H” and “L” are inverted from the PWM signal input to the switching element 4 can be input to the switching element 41.
  • the switching element 4 when the PWM signal output from the PWM signal generation circuit 3 to the constant current circuit 2 is "H”, the switching element 4 is turned on, and at the same time, output from the PWM signal generation circuit 3A to the switching element 41.
  • the switching element 41 is turned off by setting the PWM signal to “L”. For this reason, when the PWM signal is “H”, the IF flowing to the LED 11 flows from the cathode 11 ⁇ / b> C only to the first output circuit 5 among the first output circuit 5 and the second output circuit 61. Thereby, LED11 lights white light.
  • the LED 11 lights white light with a minute brightness by the second output circuit 61 even during the period when the switching element 4 of the constant current circuit 2 is turned off and the afterglow of the KSF phosphor 15 is generated. Therefore, afterglow red light and white light are mixed, and the visibility of afterglow can be reduced.
  • the LED drive circuit 31A shown in FIG. 20 can also obtain the same effects as the LED drive circuit 31.
  • both the switching element 4 and the switching element 41 are turned OFF, and the LED 11 is turned off. To do.
  • the LED drive circuit 31 it is possible to individually control the driving of the constant current circuit 2 and the second output circuit 61, and thus the LED drive circuit 30 described in the first embodiment. As compared with, the LED 11 can be turned off by turning off the switching elements 4 and 41 without stopping the output from the anode voltage generation circuit 1 (while keeping the output).
  • FIG. 13 is a block diagram showing a configuration of an LED drive circuit (light emitting diode drive device) 32 according to the third embodiment.
  • the LED drive circuit 32 is different from the LED drive circuit 30 in that it includes a current control circuit 21 and a first output circuit 51 instead of the constant current circuit 2.
  • Other configurations of the LED drive circuit 32 are the same as those of the LED drive circuit 30.
  • the LED drive circuit 32 is different from the LED drive circuit 30 in that the first output circuit 51 is arranged outside the current control circuit 21.
  • the first output circuit 51 includes a switching element 42 and a resistor 73.
  • the current control circuit 21 has a first input terminal connected to the PWM signal generation circuit 3 and a second input terminal connected to the first output terminal of the switching element 42.
  • a first output terminal of the current control circuit 21 is connected to the anode voltage generation circuit 1, and a second output terminal is connected to the switching element 42.
  • the cathode 11C of the LED 11 is connected to the second input end of the switching element 42 of the first output circuit 51 and one end of the resistor 7 which is the second output circuit 6.
  • the first input terminal of the switching element 42 is connected to the second output terminal of the current control circuit 21, and the second input terminal is connected to the cathode 11C of the LED 11.
  • the output terminal of the switching element 42 is connected to the second input terminal of the current control circuit 21 and one end of the resistor 73. The other end of the resistor 73 is electrically grounded.
  • the current flows to the GND via the switching element 42.
  • the IF value of the LED 11 is determined by a resistance between the voltage applied to the switching element 42 and GND. Since the voltage applied to the switching element 42 needs to be kept constant, a feedback signal to the anode voltage generation circuit 1 is essential.
  • the first input terminal of the switching element 42 is a gate terminal
  • the second input terminal is a drain terminal
  • the first output terminal is a source terminal
  • the PWM signal “H” / “L” output from the PWM signal generation circuit 3 is input to the current control circuit 21, and the current control circuit 21 outputs a PWM signal for turning on / off the switching element 42.
  • the current control circuit 21 may have a function of raising the voltage to a voltage necessary for turning on the switching element 42.
  • the PWM signal generation circuit 3 outputs a 3.3V PWM signal ("H") and the ON voltage of the gate terminal of the NchFET is 10V, the 3.3V signal is raised to 12V or the like for switching.
  • the function output to the element 42 is shown.
  • the anode voltage generation circuit 1 generates an anode voltage signal necessary for lighting the LED 11, and supplies the generated anode voltage signal to the anode 11A of the LED 11 to supply it to the LED 11.
  • IF flows from the cathode 11C of the LED 11 to the switching element 42 and the resistor 7 of the second output circuit 6, whereby the LED 11 emits white light.
  • the current control circuit 21 turns on the switching element 42, a current flows through the LED 11, and the LED 11 is lit.
  • the current value flowing to the second output circuit is determined by the voltage obtained by subtracting the VF value of the LED 11 from the anode voltage signal and the resistance value of the resistor 73. Further, the voltage across the resistor 73 when the switching element 42 is turned on. The current flowing through the first output circuit 1 is determined by the value and the resistance value of the resistor 73.
  • the current control circuit 21 monitors the voltage value so that the voltage between the switching element 42 and the resistor 73 is always constant when the switching element 42 is turned on and the LED 11 is lit, and the result is used as an anode voltage generation circuit. Feedback to 1.
  • the voltage between the switching element 42 and the resistor 73 is adjusted to 1.0V.
  • this voltage is 1.0 V or less
  • the current control circuit 21 outputs (feeds back) a feedback signal for increasing the anode voltage to the anode voltage generation circuit 1, and when it is 1.0 V or more, the current control circuit 21 A feedback signal for lowering the anode voltage is output to the anode voltage generation circuit 1.
  • the voltage between the switching element 42 and the resistor 73 is always 1.0 V.
  • the resistance value is 20 ⁇
  • a current of IF 50 mA flows to the LED 11.
  • the current control circuit 21 turns off the switching element 42 so that the current flows only through the resistor 7 of the second output circuit 6. become.
  • the voltage applied to the cathode 11C of the LED 11 is 10 V and the resistance 7 is 5 k ⁇ when the switching element 42 is turned OFF
  • the switching element 42 when the switching element 42 is turned on / off according to the frequency of the PWM signal and the duty ratio, the LED 11 is repeatedly lit and slightly lit with a constant current.
  • the LED 11 causes IF to flow from the cathode 11C to the second output circuit 6 when an anode voltage signal is input to the anode 11A.
  • the LED 11 slightly illuminates white light by the current flowing through the second output circuit 6 even when the PWM signal is “L”, that is, when the switching element 42 is OFF.
  • the LED driving circuit 32 even when the number of LEDs 11 to be connected increases, that is, even when VF exceeds the rating (withstand voltage) of the constant current circuit, the current control circuit 21 and the like are only increased by increasing the rating of only the switching element 42. Circuit breakage can be prevented.
  • Embodiment 4 The following description will discuss Embodiment 4 of the present invention with reference to FIGS. 14 and 15. For convenience of explanation, members having the same functions as those explained in the first to third embodiments are given the same reference numerals and explanation thereof is omitted.
  • FIG. 14 is a block diagram showing a configuration of an LED drive circuit (light emitting diode drive device) 33 according to the fourth embodiment.
  • 15A shows the first PWM signal PWM1 of the LED drive circuit 33
  • FIG. 15B shows the second PWM signal PWM2 of the LED drive circuit 33
  • FIG. 15C shows the IF signal of the LED drive circuit 33
  • d) represents a state of light emission of the LED 11 of the LED drive circuit 33.
  • the LED drive circuit 33 shown in FIG. 14 includes a constant current circuit 22 and a PWM signal generation circuit (PWM signal generation unit) 3B instead of the constant current circuit 2, the PWM signal generation circuit 3, and the second output circuit 6.
  • the LED driving circuit 30 is different.
  • Other configurations of the LED drive circuit 33 are the same as those of the LED drive circuit 30.
  • the second output circuit 62 is built in the constant current circuit 22 in addition to the first output circuit 5.
  • the PWM signal generation circuit 3B generates a first PWM signal PWM1 and a second PWM signal PWM2, and outputs the generated first PWM signal PWM1 and second PWM signal PWM2 to the constant current circuit 22, respectively.
  • the second PWM signal PWM2 is a signal that becomes “H” when the first PWM signal PWM1 is “L”.
  • the second PWM signal PWM2 rises simultaneously with the fall of the first PWM signal PWM1.
  • the second PWM signal PWM2 is a signal having a higher frequency than the first PWM signal PWM1.
  • the frequency of the first PWM signal PWM1 is 120 Hz
  • the frequency of the second PWM signal PWM2 is 240 Hz. Note that the duty is 25% for both the first PWM signal PWM1 and the second PWM signal PWM2.
  • the constant current circuit 22 includes a first output circuit 5 and a second output circuit 62.
  • the first output circuit 5 includes a switching element 4.
  • the second output circuit 62 includes a switching element 43.
  • the switching element 4 is turned on when the first PWM signal input from the PWM signal generation circuit 3B is “H”, and turned off when it is “L”.
  • the switching element 43 is turned on when the second PWM signal input from the PWM signal generation circuit 3B is “H”, and turned off when it is “L”. That is, the switching element 43 is ON when the switching element 4 is OFF, and is OFF when the switching element 4 is ON.
  • the LED 11 when the IF flows from the cathode 11C of the LED 11 to the switching element 4 or the switching element 43, the LED 11 emits white light.
  • the current that flows from the cathode 11 ⁇ / b> C of the LED 11 to the switching element 43 is an offset current for slightly lighting the LED 11.
  • the first PWM signal PWM1 or the second PWM signal PWM2 is individually input to each of the first output circuit 5 and the second output circuit 62 that are connected in parallel.
  • the second output circuit 62 can be driven in parallel. For this reason, it becomes possible to arbitrarily change the offset current flowing to the LED 11 by turning on the second output circuit 62 in accordance with the value of the IF flowing to the LED 11 by turning on the first output circuit 5.
  • the constant current circuit 22 has two switching elements 4 and a switching element 43, and can be controlled individually. For this reason, when the switching element 4 is OFF, it is also possible to switch ON / OFF of the offset current flowing through the LED 11 by PWM control of the switching element 43.
  • FIG. 15 shows the light emission intensity of the LED 11 in this case.
  • the first PWM signal PWM1 input to the switching element 4 changes from “H” to “L”
  • the second PWM signal PWM2 input to the switching element 43 changes from “L” to “H”.
  • the second PWM signal PWM2 is 240 Hz, which is a higher frequency than the first PWM signal PWM1, and the duty is 25%, which is the same as the first PWM signal PWM1, so that the second PWM signal PWM2 is 2 while the first PWM signal PWM1 is “L”.
  • the pulse is output twice.
  • the IF has the maximum value in order to match the emission intensity per frame of the LED shown in FIG. 49.6 mA for 50 mA.
  • the switching element 4 when the switching element 4 is turned OFF and red afterglow due to the KSF phosphor starts to be generated in the LED 11, that is, the first PWM signal PWM1 is changed from “H” to “L”.
  • the second output circuit 62 is turned on to cause the LED 11 to emit white light slightly. Thereby, the afterglow of the red light by the KSF phosphor and the white light are mixed, and the visibility of the afterglow can be reduced.
  • the LED drive circuit 33 drives the second output circuit 62 a plurality of times when the first output circuit 5 is OFF, that is, when afterglow of red light is generated.
  • the same effect as when the second output circuit is always ON can be obtained, and the offset current flowing to the LED 11 is pulsed.
  • An afterimage reduction effect in a display device such as a liquid crystal can be further obtained without the LED 11 being lit.
  • IF, offset current, frequency and duty of each PWM signal shown in FIG. 15 are examples, and the present invention is not limited to these.
  • FIG. 16 is a block diagram showing a configuration of an LED drive circuit (light emitting diode drive device) 34 according to the fifth embodiment.
  • the LED drive circuit 34 is different from the LED drive circuit 33 shown in FIG. 14 in that it includes a current control circuit 23, a first output circuit 51, and a second output circuit 63 instead of the constant current circuit 22.
  • Other configurations of the LED drive circuit 34 are the same as those of the LED drive circuit 33.
  • the first output circuit 51 and the second output circuit 63 are arranged outside the current control circuit 23.
  • the second output circuit 63 includes a switching element 44 and a resistor 74.
  • One end of the resistor 74 is connected to the output end of the switching element 44, and the other end is electrically grounded. An offset current that causes the LED 11 to light slightly is passed through the switching element 44.
  • the anode voltage generation circuit 1 generates an anode voltage signal, and supplies the generated anode voltage signal to the LED 11 by outputting it to the anode 11A of the LED 11. Then, when the IF flows from the cathode 11C of the LED 11 to the switching element 42 or the switching element 44, the LED 11 emits white light. The current flowing from the cathode 11C of the LED 11 to the switching element 44 is the offset current of the LED 11.
  • the current control circuit 23 generates a first PWM signal PWM11 which is a pulse signal for turning on / off the switching element 42 in response to “H” / “L” of the first PWM signal PWM1 from the PWM signal generation circuit 3B.
  • the generated first PWM signal PWM11 is output to the switching element 42.
  • the current control circuit 23 turns on the switching element 42 when the first PWM signal PWM1 input from the PWM signal generation circuit 3B is “H”.
  • the IF flowing in the LED 11 for a period corresponding to “H” of the first PWM signal PWM1 from the PWM signal generation circuit 3B flows from the cathode 11C to the first output circuit 51. Thereby, LED11 lights white light.
  • the current control circuit 23 generates a second PWM signal PWM12 which is a pulse signal for turning on / off the switching element 44 in response to “H” / “L” of the second PWM signal PWM2 from the PWM signal generation circuit 3B.
  • the generated second PWM signal PWM12 is output to the switching element 44.
  • the current control circuit 23 turns on the switching element 44 when the second PWM signal PWM2 input from the PWM signal generation circuit 3B is “H”.
  • the IF flowing in the LED 11 for a period corresponding to “H” of the second PWM signal PWM2 from the PWM signal generation circuit 3B flows from the cathode 11C to the second output circuit 63.
  • the LED 11 slightly lights up white light.
  • the current control circuit 23 monitors the voltage value so that the voltage between the switching element 42 and the resistor 73 is always constant, and the result is used as a feedback signal for the anode. Feedback is provided by outputting to the voltage generation circuit 1.
  • the current control circuit 23 monitors the voltage value so that the voltage between the switching element 44 and the resistor 74 is always constant when the switching element 44 is turned on and the LED 11 is slightly lit, and the result is fed back. Feedback is provided by outputting the signal to the anode voltage generation circuit 1 as a signal.
  • the second PWM signal PWM2 is a signal that becomes “H” when the first PWM signal PWM1 is “L”.
  • the second PWM signal PWM2 rises simultaneously with the fall of the first PWM signal PWM1.
  • the first PWM signal PWM1 and the second PWM signal PWM2 By controlling the first PWM signal PWM1 and the second PWM signal PWM2 as described above, when the switching element 42 is turned off and red afterglow due to the KSF phosphor 15 starts to be generated in the LED 11, that is, the first PWM signal PWM1 is “ When the second output circuit 63 is turned on when changing from “H” to “L”, the LED 11 can emit white light slightly. Thereby, the afterglow of the red light by the KSF phosphor 15 and the white light are mixed, and the visibility of the afterglow can be reduced.
  • FIG. 17 is a diagram illustrating an example of values of signals used in the LED driving circuits.
  • FIG. 18 is a diagram illustrating an example of values of signals used in the LED drive circuits 130 and 34.
  • VF1 is a forward voltage applied to the LED 11 to flow IF.
  • the offset current VF2 is a forward voltage applied to the LED 11 in order to cause the offset current to flow through the LED 11.
  • the electric power is a value calculated by (1) ⁇ (100% ⁇ (2)) ⁇ (5) + (2) ⁇ (3) ⁇ (4).
  • FIG. 17 and FIG. 18 show an example in which (6) the offset current and IF are changed when the power is the same between the LED drive circuits. Due to the general characteristics of LEDs, when IF is varied, VF also varies, and when the value of IF is increased, the value of VF is also increased.
  • the light emitting diode driving device (LED driving circuits 30 to 34) according to the first aspect of the present invention is driven by a driving current that changes in accordance with the signal level of a rectangular wave (PWM signal), and has a luminance of 1 corresponding to the driving current.
  • a light-emitting diode chip (LED chip 13) that emits secondary light; and a phosphor (KSF phosphor 15) that is excited by the primary light and emits secondary light.
  • the primary light and the secondary light A first output connected to a light emitting diode (LED 11) that emits light mixed with light and an output terminal (cathode 11C) of the light emitting diode connected to the light emitting diode chip and outputting the driving current.
  • the signal level of the rectangular wave is the second level (“L”)
  • the driving is stopped, and the second output circuit
  • the signal level of the LED is the second level (“L")
  • the light emitting diode chip is caused to emit light by outputting a second current (offset current) having a current value lower than the first current from the output terminal. It is characterized by.
  • the first current flows from the output terminal of the light emitting diode to the first output circuit, so that the light emitting diode chip emits primary light. To do. Thereby, the mixed light of the primary light and the secondary light is emitted from the light emitting diode.
  • the first output circuit stops driving and no first current flows from the light emitting diode to the first output circuit.
  • the second output circuit causes a second current having a value lower than the first current to flow from the output end of the light emitting diode. For this reason, even when the signal level of the rectangular wave is the second level, the light emitting diode chip emits primary light having a lower luminance than the primary light generated by the first current, whereby the light emitting diode is white. Turn on the light slightly.
  • the afterglow of the phosphor generated when the signal level of the rectangular wave is the second level and the white light resulting from the fine lighting are mixed, thereby reducing the visibility of the afterglow of red light. it can.
  • the rectangular wave is a PWM signal
  • the frequency of the PWM signal is 120 Hz or less
  • the current value of the second current is the first value. It is preferably 1/10 or less of the current value of one current.
  • the light emitting diode driving device is the light emitting diode driving apparatus according to aspect 1, in which the signal level becomes the first level during the period in which the first PWM signal that is the rectangular wave and the signal level of the first PWM signal are the second level.
  • a PWM signal generator for generating a second PWM signal, wherein the first output circuit is driven when the signal level of the first PWM signal is the first level, and the signal level of the first PWM signal is the second level.
  • the second output circuit includes a switching element that is conductive when the signal level of the second PWM signal is the first level and is non-conductive when the signal level of the second PWM signal is the second level.
  • the first output circuit and the second output circuit can be driven individually. Thereby, the image display quality of the display device in which the light emitting diode driving device is used can be improved.
  • the current value of the second current varies in proportion to the current value of the first current.
  • the second output circuit includes a switching element that conducts when the first output circuit stops driving, and the switching element. It is preferable to have a resistor having one end connected to the output end and the other end electrically grounded.
  • the second current can be output from the output terminal of the light emitting diode through the second output circuit, so that the light emitting diode can be lighted slightly.
  • the first output circuit and the second output circuit are connected in parallel.
  • the LED (including a plurality) is driven by 1ch.
  • a plurality of channels are used to drive simultaneously in parallel.
  • a plurality of light emitting diodes can be driven at different frequencies or different timings without being driven simultaneously.
  • the light emitting diode driving device is the light emitting diode driving apparatus according to aspect 1, wherein the light emitting diode chip is a blue LED chip that emits blue light, and the phosphor emits red light by the blue light. And a green phosphor that emits green light by the blue light, and the red phosphor is preferably a phosphor that emits the red light by forbidden transition.
  • the red phosphor is a Mn 4+ activated composite fluorinated phosphor.
  • the lighting device 71 according to the ninth aspect of the present invention preferably includes the light-emitting diode driving device according to the first to eighth aspects.
  • the second output circuit is a resistor in which one end is connected to the output end of the light emitting diode and the other end is electrically grounded. It is preferable to have (7.74).
  • the first output circuit is composed of a switching element that conducts when the first level.
  • the first output circuit further includes a resistor (one end connected to the output end of the switching element and the other end electrically grounded). 73).
  • the light emitting diode driving device is the light emitting diode driving device according to aspect 3, wherein the first PWM signal that is the rectangular wave and the signal level of the first PWM signal during the period in which the signal level of the first PWM signal is the second level
  • a PWM signal generation unit configured to generate a second PWM signal having two levels; and the first output circuit is driven when the signal level of the first PWM signal is the first level, and the signal level of the first PWM signal is the first level. Switching is stopped when the level is two, and the second output circuit is turned on when the signal level of the second PWM signal is the first level, and is turned off when the signal level of the second PWM signal is the second level. It is preferable to have an element.
  • the present invention can be used for a light emitting diode driving device and a lighting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Abstract

 2次光の残光を低減する。LEDチップ(13)及びKSF蛍光体(15)を備えたLED(11)と、カソード(11C)に接続された第1出力回路(5)・第2出力回路(6)とを備え、PWM信号が"H"で上記第1出力回路は駆動し上記カソードからIFが流れ、PWM信号が"L"で上記第1出力回路は駆動を停止し、上記第2出力回路は上記カソードから上記オフセット電流が流れる。

Description

発光ダイオード駆動装置及び照明装置
 本発明は発光ダイオード駆動装置及び照明装置に関する。
 いわゆる液晶TV(テレビ)に使用されているバックライトには、1次光としての青色光を発光するLEDチップと、当該青色光により励起されて2次光として赤色光を発光する赤蛍光体、および緑色光を発光する緑蛍光体とが用いられる。当該バックライトは、青色光、緑色光、および赤色光が混色することで白色光を出射する。
 特許文献1には、赤色発光を示す窒化物系蛍光体である2価のEu付活CaAlSiN(以下、CASN蛍光体と称する)と、緑色発光を示す緑蛍光体とを、青色光を発光する青色LEDにより励起し、白色光を示す発光素子が開示されている。
 また、緑色発光を示す蛍光体としては、たとえば特許文献2に示すEu付活β型SiAlON蛍光体が従来から好適に使用されてきた。
 青色LEDと赤蛍光体と緑蛍光体との組合せで白色光を発光する照明装置を、液晶TVのバックライト光源として用いる場合、蛍光体としての発光スペクトルのピーク波長がより狭いものを用いることで、液晶TVの色再現性が向上する傾向がある。
 しかしながら、特許文献1に示されている蛍光体であるCASN蛍光体を用いた場合、赤蛍光体の発光スペクトルの波長幅が80nm以上となるため、赤色の色再現性が充分でない。
 そこで、深い赤色を表示できる液晶TV等の表示装置を実現するために、特許文献3に示されるMn4+付活KSiFの蛍光体(以下、KSF蛍光体と称する)を用いたバックライトの開発が進められている。KSF蛍光体は、CASN蛍光体と比べピーク波長が狭スペクトルであり、CASN蛍光体を用いた場合と比べ色再現性を向上させることができる。
日本国公開特許公報「特開2006‐16413号公報(2006年1月19日公開)」 日本国公開特許公報「特開2005‐255895号公報(2005年9月22日公開)」 日本国公開特許公報「特開2010‐93132号公報(2010年4月22日公開)」 国際公開特許公報「WO2009/110285号公報(2009年9月11日国際公開)」 特表2009‐528429号公報(2009年8月6日公表) 特開2007‐49114号公報(2007年2月22日公開)
 ここで、液晶TVの大半は、画像を映像信号のフレーム周波数の整数倍である60Hz、120Hzあるいは240Hzで描画している。LEDが高速に点灯・消灯できることを利用し、一時的にバックライトを消灯させ不要な映像をユーザに見せない表示を実現できる。
 例えば、液晶画面に、次のフレームの映像に書き換えている最中は、バックライトを一時的に消灯させることにより残像感を低減できる。また、右眼用の映像と左眼用の映像を交互に表示するフレームシーケンシャル方式にて3D(3次元)表示する際、画面全体に映像を描ききるまでバックライトを一時的に消灯することで、右眼と左眼の絵が混在した映像(クロストーク)を低減させることができる。
 この機能を実現する場合、バックライトに用いられているLEDの駆動方式として点灯と消灯とを繰り返すPWM(Pulse Width Modulation)駆動方式が使用されるが、その点灯・消灯のタイミングは液晶パネルへの描画と同期して行われるため、PWM周期は映像信号のフレーム周波数の整数倍である60Hz、120Hzあるいは240Hzが使用されることが多い。
 特許文献3に記載の赤蛍光体(KSF蛍光体)を用いると、狭いスペクトルを有する発光が得られ色再現性を向上させることができるものの、KSF蛍光体は、発光強度が1/e(eは自然対数の底)となるまでの時間(残光時間と称する)が約10〔ms〕と、CASN蛍光体の残光時間より100~1000倍程長い。
 そのため、液晶パネルへの表示と同期させた調光周波数(PWM調光)でLEDを点灯・消灯させる場合、図19に示すように、LEDのうちLEDチップからの矩形波である青色光が消灯しているタイミングであっても、当該LEDチップからの青色光により励起され発光したKSF蛍光体から赤色光の残光が存在する。このKSF蛍光体からの赤色光の残光に起因して、表示映像に色が付いて見える現象や、3D表示時に左右映像が混ざって見えるいわゆるクロストーク現象等の不具合が発生する。このクロストークは、例えば、画面上をテロップ文字が流れる映像などにおいて顕著に発生し、テロップの一部が赤く色付いて見える。
 なお、図19では、PWM駆動周波数120Hz、Duty25%でバックライトを駆動させたときのKSF蛍光体の応答波形を表している。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、2次光の残光を低減させた発光ダイオード駆動装置及び照明装置を得ることである。
 上記の課題を解決するために、本発明の一態様に係る発光ダイオード駆動装置は、矩形波の信号レベルに応じて変化する駆動電流により駆動され、当該駆動電流に対応する輝度の1次光を発光する発光ダイオードチップと、当該1次光により励起されて2次光を発光する蛍光体とを有し、上記1次光と上記2次光との混色光を出射する発光ダイオードと、上記発光ダイオードチップと接続され、上記駆動電流が出力される上記発光ダイオードの出力端に、それぞれ接続されている第1出力回路及び第2出力回路と、を備え、上記第1出力回路は、上記矩形波の信号レベルが”H”のとき駆動し、上記出力端から第1電流を出力させることで上記発光ダイオードチップを発光させる一方、上記矩形波の信号レベルが”L”のとき駆動を停止し、上記第2出力回路は、上記矩形波の信号レベルが”L”のとき、上記出力端から、上記第1電流より電流値が低い第2電流を出力させることで上記発光ダイオードチップを発光させることを特徴とする。
 本発明の一態様によれば、2次光の残光を低減させた発光ダイオード駆動装置及び照明装置を得るという効果を奏する。
実施形態1に係るLED駆動回路の構成を表すブロック図である。 (a)は実施形態1に係るLEDを用いた照明装置の一部を拡大して示す平面図であり、(b)は(a)に示す照明装置の断面図である。 実施形態1に係るLEDの断面図である。 KSF蛍光体の発光スペクトルを表す図である。 CASN蛍光体の発光スペクトルを表す図である。 第1の比較例に係るLED駆動回路の構成を表すブロック図である。 第2の比較例に係るLED駆動回路の構成を表すブロック図である。 (a)は第1及び第2の比較例に係るPWM信号を表し(b)は第1及び第2の比較例に係るIF信号を表し(c)は第1及び第2の比較例に係るLEDの発光の様子を表す図である。 (a)は実施形態1のLED駆動回路に係るPWM信号を表し(b)は実施形態1LED駆動回路に係るIF信号を表し(c)は実施形態1のLED駆動回路に係るLEDの発光の様子を表す図である。 オフセット電流と残光との関係を表す図である。 オフセット電流と動画性能改善との関係を表す図である。 実施形態2に係るLED駆動回路の構成を表すブロック図である。 実施形態3に係るLED駆動回路の構成を表すブロック図である。 実施形態4に係るLED駆動回路の構成を表すブロック図である。 (a)は実施形態4に係るLED駆動回路の第1PWM信号PWMを表し(b)は実施形態4に係るLED駆動回路の第2PWM信号PWMを表し(c)は実施形態4に係るLED駆動回路のIF信号を表し(d)は実施形態4に係るLED駆動回路のLEDの発光の様子を表している。 実施形態に係るLED駆動回路の構成を表すブロック図である。 各実施形態に係るLED駆動回路で使用される各信号の値の一例を示す図である。 第1の比較例に係るLED駆動回路130及び実施形態5に係るLED駆動回路で使用される各信号の値の一例を示す図である。 KSF蛍光体を使った従来のLEDにおいてPWM信号によるLEDの青色光と赤色光との発光の様子を表す図である。 実施形態2に係るLED駆動回路の変形例であるLED駆動回路の構成を表すブロック図である。
 〔実施形態1〕
 以下、本発明の実施形態1について、詳細に説明する。
 (照明装置1の構成)
 まず、本実施の形態に係るLED(発光ダイオード)11を用いた照明装置71について説明する。図2の(a)は実施形態1に係るLED11を用いた照明装置71の一部を拡大して示す平面図であり、(b)は(a)に示す照明装置71の断面図である。
 図2の(a)及び(b)に示すように、照明装置71は、基板72、複数のLED11および導光板75を備えている。なお、照明装置71は、複数のLED11の駆動を制御するために、図2には図示しないLED駆動回路部(図1参照)も備えている。
 導光板75は、全体が長方形であり、所定の厚さを有している透明部材である。この導光板75は、光入射部75aから入射される光を面状に放射するように、光放射面75bの各部から光を取り出せる構造を有しており、アクリルなどの透明材料によって形成されている。また、導光板75の一辺側の端面は、光が入射する光入射部75aとして機能する。
 基板72は、細長い長方形(短冊状)に形成されている。基板72は、複数のLED11を実装する実装面に、LED11への給電のための図示しないプリント配線が形成されている。また、基板72の両端部または一方の端部には、プリント配線に接続される図示しない正極端子および負極端子が設けられている。この正極端子および負極端子に外部からの給電のための配線が接続されることにより、LED11が給電される。
 基板72上には、基板72の長手方向に沿って1列に複数のLED11が実装されている。複数のLED11は、基板72の長手方向に沿ってそれぞれ直列に接続されている。
 基板72およびLED11は光源部77を構成している。この光源部77は、複数のLED11のそれぞれのLEDチップ(発光ダイオードチップ)13からの出射光が導光板75の光入射部75aに入射するように、複数のLED11のそれぞれの発光面が光入射部75aに対向し、かつ導光板75と近接する位置に配置されている。
 (LED駆動回路30)
 図1を用いて、照明装置71が備えるLED駆動回路(発光ダイオード駆動装置)30の構成について説明する。図1は実施形態1に係るLED駆動回路30の構成を表すブロック図である。
 LED駆動回路30は、アノード電圧生成回路1と、第1出力回路5を有する定電流回路2と、PWM信号生成回路(PWM信号生成部)3と、第2出力回路6と、LED11とを備えている。第1出力回路5はスイッチング素子4からなる。第2出力回路6は抵抗7からなる。
 LED11は、LEDチップ13に流す順電流の入力端であるアノード11Aと、LEDチップ13に流れた順電流をLED11の外部に出力するための出力端であるカソード11Cとを有する。LED駆動回路30は、このLED11を複数有し、それぞれのLED11は直列接続、あるいは並列接続されている。なお、LED駆動回路30が有するLED11の個数は一つのみであってもよい。
 LED11は、アノード電圧生成回路1からアノード電圧信号が入力され、LEDチップ13にIF(順電流(駆動電流))が流れることで白色光を発光する。
 アノード電圧生成回路1は、LED11を点灯させるために必要なアノード電圧信号を出力する回路である。アノード電圧生成回路1は、上記生成したアノード電圧信号を、LED11のアノード11Aに出力することで、LED11が点灯するのに必要なVF(順電圧)値を供給する。
 定電流回路2は、PWM信号生成回路3、LED11のカソード11C、第2出力回路6と接続されている。PWM信号生成回路3は、定電流回路2と接続されていると共に、第1出力回路5であるスイッチング素子4と接続されている。アノード電圧生成回路1は定電流回路2及びLED11のアノード11Aと接続されている。LED11はアノード11Aがアノード電圧生成回路1と接続されており、カソード11Cがスイッチング素子4と接続されていると共に、第2出力回路である抵抗7の一端と接続されている。抵抗7は、一端がLED11のカソード11Cと接続されており、他端は電気的に接地されている。
 定電流回路2は、LED11に一定の電流を流すことで、当該LED11を一定の電流で点灯させる回路である。
 定電流回路2は、LED11のLEDチップ13に流すIF値を設定でき、LEDドライバや定電流ドライバ等と表現することもできる。
 スイッチング素子4は、定電流回路2に内蔵されており、PWM信号生成回路3及びLED11のカソード11Cと接続されている。スイッチング素子4は、PWM信号生成回路3から入力されるPWM信号の周波数とDuty比とに対応してON/OFFする。スイッチング素子4は、PWM信号の信号レベルが“H”のときON(導通)し、PWM信号の信号レベルが“L”のときOFF(非導通)となる。換言すると、スイッチング素子4がONすることで第1出力回路5は駆動する一方、スイッチング素子4がOFFとなることで、第1出力回路5は駆動を停止する。
 これによりLED11は、一定の電流で点灯、消灯を繰り返す。
 スイッチング素子4としては、NchFET等、各種スイッチング素子を用いることができる。
 また、定電流回路2は、スイッチング素子4に入力される電圧をモニターして、LED11のVF(順電圧)値に応じて、アノード電圧生成回路1にフィードバックを行い、適切なアノード電圧に調整できる機能を有していてもよい。この場合、定電流回路2はアノード電圧生成回路1に接続され、LED11のVFに応じてアノード電圧を調整するためのフィードバック信号を、アノード電圧生成回路1へ出力する。
 具体的には、スイッチング素子4に入力される電圧とは、スイッチング素子4がONした際に、アノード電圧生成回路1から出力された電圧から、LED11を点灯させるために必要なVF値を引いた電圧(調整用電圧と称する)である。
 定電流回路2は、上記調整用電圧を、所定の基準電圧と比較する。そして、定電流回路2は、上記調整用電圧が上記基準電圧より低い場合、アノード電圧を上げるように指示するフィードバック信号をアノード電圧生成回路1へ出力する。これによりアノード電圧生成回路1はアノード電圧を上げる。一方、定電流回路2は、調整用電圧が上記基準電圧より高い場合、アノード電圧を下げるように指示するフィードバック信号をアノード電圧生成回路1へ出力する。これにより、これによりアノード電圧生成回路1はアノード電圧を下げる。
 このように、定電流回路2は、LED11のVF値に応じて適切なアノード電圧を生成させることができる。上記基準電圧は、定電流回路2に内蔵しても良い。あるいは外部より供給しても良い。
 さらに詳しくは、上記基準電圧を仮に1.0Vとすると、スイッチング素子4に入力される電圧が1.0Vを下回った場合、定電流回路2は、アノード電圧生成回路1へアノード電圧を上げるフィードバック信号を出力する。また、スイッチング素子4に入力される電圧が1.0Vを上回った場合、定電流回路2は、アノード電圧生成回路1へアノード電圧を下げるフィードバック信号を出力する。
 PWM信号生成回路3は、High(第1レベル。以下“H”と表記する)/Low(第2レベル。以下“L”と表記する)からなるパルス信号であり調光信号であるPWM信号を発生し、当該発生させたPWM信号を定電流回路2に出力する。また、PWM信号生成回路3は、外部からの制御により上記PWM信号の周波数とDuty比とを変更することができる。
 なお、以下では、スイッチング素子4は、PWM信号が”H”のときONし、”L”のときOFFするものとして説明する。しかし、これに限定されず、スイッチング素子4は、PWM信号が”L”(第1レベル)のときONし、”H”(第2レベル)のときOFFしてもよい。
 第2出力回路6は、LED11のカソード11C側から抵抗7を介してLED11に電流を流す回路である。LED11のカソード11Cの電圧値と、LED11に流す電流(IF)値より、抵抗7の抵抗値が決まる。スイッチング素子4がOFFの場合も、この抵抗7を介してLED11に電流が流れ、LED11が点灯する。換言すると、本実施の形態では、第2出力回路6は、第1出力回路5の駆動状態に関わらず、常に駆動している。
 このように、LED駆動回路30では、スイッチング素子4のON/OFFに関わらず常時LED11が点灯しているため、外部からの制御によりアノード電圧生成回路1をON/OFFできる機能を持たせる方が望ましい。
 スイッチング素子4がONのとき、LED11は、IF(第1電流)を、カソード11Cから第1出力回路5であるスイッチング素子4及び第2出力回路6である抵抗7に流すことで、白色光を発光する。一方、スイッチング素子4がOFFのとき、LED11は、オフセット電流(第2電流)を、カソード11Cから、第1出力回路5と第2出力回路6とのうち第2出力回路6である抵抗7にだけ流すことで、白色光を発光する。
 スイッチング素子4がOFFのときにLED11に流れるオフセット電流の値は、スイッチング素子4がONのときにLED11に流れるIFの値より低い。このため、スイッチング素子4がOFFのときに点灯するLED11の輝度は、スイッチング素子4がONのときに点灯するLED11の輝度より低い。
 (LED11の構成)
 図3を用いて、LED11の構成について詳細に説明する。図3は、LED11の断面図である。
 LED11は、一例としてLEDチップ13が中央に実装されている。また、図3に示すように、LED11は、パッケージ12、LEDチップ13、樹脂14、KSF蛍光体(蛍光体、赤色蛍光体、Mn4+賦活複合フッ素化物蛍光体)15、および緑蛍光体(緑色蛍光体)17を有している。
 パッケージ12は、一つの凹部であるキャビティ(凹部)12aが設けられている。キャビティ12aは、凹部内の底面にLEDチップ13を実装するとともに、凹部内側面を反射面とするため、パッケージ12に設けられた空間である。このパッケージ12は、ナイロン系材料にて形成されており、図示しないリードフレームがパッケージ12におけるキャビティ12a内の底面に露出するようにインサート成形により設けられている。このリードフレームは、露出する部分で2分割されている。
 パッケージ12は、凹部であるキャビティ12a内側面を形成する反射面を有している。この反射面は、LEDチップ13からの出射光をLED11の外部へ反射するように、高反射率のAgまたはAlを含む金属膜や白色シリコーンで形成されることが好ましい。
 LEDチップ13は、PWM信号の信号レベルに応じて変化する電流に対応する輝度の1次光を発光する。
 LEDチップ13は、例えば、導電性基板を有する窒化ガリウム(GaN)系半導体発光素子であって、図示はしないが、導電性基板の底面に底面電極が形成され、その逆の面に上部電極が形成されている。LEDチップ13の出射光(1次光)は、ピーク波長が430nm以上480nm以下の範囲の青色光であり、特に450nm付近にピーク波長を有する。
 また、LEDチップ13(青色LEDチップ)は、上記のリードフレームにおける露出部の一方側に導電性のロウ材によってダイボンドされている。さらに、LEDチップ13は、LEDチップ13の上部電極とリードフレームにおける露出部の他方側とが図示しないワイヤによってワイヤボンドされている。このように、LEDチップ13は、リードフレームと電気的に接続されている。ここでは、上面および下面に電極があるタイプのLEDチップで説明しているが、上面に2つの電極を持つタイプのLEDを使用してもかまわない。
 樹脂14は、キャビティ12a内に充填されることによって、LEDチップ13が配置されたキャビティ12aを封止している。また、樹脂14は波長の短い1次光に対して耐久性の高いことが要求されるため、シリコーン樹脂が好適に用いられる。樹脂14の表面は、光が出射される発光面を形成している。
 樹脂14には、LEDチップ13から発光される1次光によってそれぞれ励起され、2次光として、赤色光を発光するKSF蛍光体15と、緑色光を発光する緑蛍光体17とが分散されている。
 KSF蛍光体15は禁制遷移により赤色光を発光する蛍光体(以下、禁制遷移タイプの蛍光体と称する場合がある)である。
 樹脂14に分散される赤蛍光体(蛍光体)は、禁制遷移により赤色光を発光する蛍光体である。赤蛍光体は、特に、ピーク波長の波長幅が約30nm以下の狭スペクトルを有する蛍光体材料が好ましい。
 なお、樹脂14に分散される赤蛍光体として、少なくとも、禁制遷移タイプの蛍光体が分散されていればよい。また、樹脂14には、赤蛍光体として、禁制遷移タイプの蛍光体に加え、CASN蛍光体のような許容遷移により赤色光を発光する蛍光体(以下、許容遷移タイプの蛍光体と称する場合がある)など、2種類の蛍光体が分散されてもよく、さらに、3種類以上の赤蛍光体が分散されていてもよい。また、緑蛍光体17は必要に応じて樹脂14に分散させればよく、なくてもよい。
 KSF蛍光体15は、樹脂14に分散されており、禁制遷移により赤色光を発光する赤蛍光体の一例である。KSF蛍光体15は、1次光である青色光により励起され、1次光よりも長波長である赤色(ピーク波長が600nm以上780nm以下)の2次光を発する。KSF蛍光体15は、Mn4+付活KSiF構造を有する蛍光体である。
 KSF蛍光体15は、ピーク波長の波長幅が約30nm以下と狭く、高純度の赤色光を発光する。
 図4は、KSF蛍光体15の発光スペクトルを表す図である。図5は、CASN蛍光体の発光スペクトルを表す図である。
 図4及び図5に示すように、禁制遷移タイプの蛍光体であるKSF蛍光体15は、許容遷移タイプの蛍光体であるCASN蛍光体と比べて、630nm近傍であるピーク波長幅が狭い狭スペクトルを有することが分かる。このKSF蛍光体15のように、発光スペクトルにおけるピーク波長の波長幅は30nm以下程度が好ましい。このように、発光スペクトルにおけるピーク波長の波長幅が狭スペクトルである発光スペクトルの方が、発光させることを目的とする赤色の波長帯以外の色の波長帯が含まれる割合が低く、また、目的とする赤色の波長帯が、それ以外の他の色の波長帯と、より明確に分離される。このため、色再現性が広いLED11を得ることができる。
 KSF蛍光体15は、LEDチップ13より光を消灯する応答速度が遅い。LEDチップ13からの1次光が消灯した時におけるKSF蛍光体15からの2次光の発光強度が1/e(eは自然対数の底)となるまでに要する時間であるKSF蛍光体15の残光時間は、約7ms~8ms程度である。なお、KSF蛍光体15からの2次光が、ほぼ完全に点灯・消灯するには約10ms程度必要である。
 また、LEDチップ13からの1次光が消灯した時におけるCASN蛍光体からの2次光の発光強度が1/e(eは自然対数の底)となるまでに要する時間であるCASN蛍光体の残光時間は、1μs~10μs程度である。
 つまり、禁制遷移タイプの蛍光体であるKSF蛍光体の残光時間は、許容遷移タイプの蛍光体であるCASN蛍光体の残光時間より100倍~1000倍長くなっている。言い換えれば、禁制遷移タイプの蛍光体であるKSF蛍光体の応答速度は、許容遷移タイプの蛍光体であるCASN蛍光体の応答速度の100倍から1000倍遅いということである。
 Mn4+付活KSiF構造を有する蛍光体以外にも、ピーク波長の波長幅が狭く赤蛍光体として用いることができる材料として、Mn4+付活Mgフルオロジャーマネート蛍光体等を挙げることができる。さらに、禁制遷移により赤色光を発光する赤蛍光体は、下記一般式(A1)~(A8)に示すMn4+付活複合フッ化物蛍光体の何れかであってもよい。
[MF]:Mn4+・・・一般式(A1)
(上記一般式(A1)において、AはLi、Na、K、Rb、Cs、NHの何れか、又はこれらの組合せから選択され、MはAl、Ga、Inの何れか又はこれらの組合せから選択される)
[MF]:Mn4+・・・一般式(A2)
(上記一般式(A2)において、AはLi、Na、K、Rb、Cs、NHの何れか、又はこれらの組合せから選択され、MはAl、Ga、Inの何れか又はこれらの組合せから選択される)
Zn[MF]:Mn4+・・・一般式(A3)
(上記一般式(A3)において、[ ]内のMはAl、Ga、Inの何れか又はこれらの組合せから選択される)
A[In]:Mn4+・・・一般式(A4)
(上記一般式(A4)において、AはLi、Na、K、Rb、Cs、NHの何れか又はこれらの組合せから選択される)
[MF]:Mn4+・・・一般式(A5)
(上記一般式(A5)において、AはLi、Na、K、Rb、Cs、NHの何れか又はこれらの組合せから選択され、MはGe、Si、Sn、Ti、Zr何れか又はこれらの組合せから選択される)
E[MF]:Mn4+・・・一般式(A6)
(上記一般式(A6)において、EはMg、Ca、Sr、Ba、Znの何れか又はこれらの組合せから選択され、MはGe、Si、Sn、Ti、Zrの何れか又はこれらの組合せから選択される)
Ba0.65Zr0.352.70:Mn4+・・・一般式(A7)
[ZrF]:Mn4+・・・一般式(A8)
(上記一般式(A8)において、AはLi、Na、K、Rb、Cs、NHの何れか又はこれらの組合せから選択される)
 さらに、樹脂14に分散される赤蛍光体は、Mn4+付活KSiF構造を有する蛍光体以外にも、例えば、下記一般式(A9)、又は一般式(A10)で実質的に表される4価のマンガン付活フッ化4価金属塩蛍光体であってもよい。
MII(MIII1-hMn)F・・・一般式(A9)
 一般式(A9)において、MIIはLi、Na、K、Rb及びCsから選ばれる少なくとも1種のアルカリ金属元素を示し、明るさおよび粉体特性の安定性から、MIIはKであることが好ましい。また一般式(A9)において、MIIIは、Ge、Si、Sn、TiおよびZrから選ばれる少なくとも1種の4価の金属元素を示し、明るさおよび粉体特性の安定性から、MIIIはTiであることが好ましい。
 また、一般式(A9)において、Mnの組成比(濃度)を示すhの値は0.001≦h≦0.1である。hの値が0.001未満である場合には、十分な明るさが得られないという不具合があり、また、hの値が0.1を超える場合には、濃度消光などにより、明るさが大きく低下するという不具合があるためである。明るさおよび粉体特性の安定性から、hの値は0.005≦h≦0.5であることが好ましい。
 一般式(A9)で表される赤蛍光体としては、具体的には、K(Ti0.99Mn0.01)F、K(Ti0.9Mn0.1)F、K(Ti0.999Mn0.001)F、Na(Zr0.98Mn0.02)F、Cs(Si0.95Mn0.05)F、Cs(Sn0.98Mn0.02)F、K(Ti0.88Zr0.10Mn0.02)F、Na(Ti0.75Sn0.20Mn0.05)F、Cs(Ge0.999Mn0.001)F、(K0.80Na0.20(Ti0.69Ge0.30Mn0.01)Fなどを挙げることができるが、これらに限定されるものではない。
MIV(MIII1-hMn)F・・・一般式(A10)
 一般式(A10)において、MIIIは、上述した一般式(A9)におけるMIIIと同じくGe、Si、Sn、TiおよびZrから選ばれる少なくとも1種の4価の金属元素を示し、同様の理由から、MIIIはTiであることが好ましい。また一般式(A10)において、MIVは、Mg、Ca、Sr、BaおよびZnから選ばれる少なくとも1種のアルカリ土類金属元素を示し、明るさおよび粉体特性の安定性から、MIVはCaであることが好ましい。また、一般式(A10)において、Mnの組成比(濃度)を示すhの値は、上述した一般式(A9)におけるhと同じく0.001≦h≦0.1であり、同様の理由から、0.005≦h≦0.5であることが好ましい。
 一般式(A10)で表される赤蛍光体としては、具体的には、Zn(Ti0.98Mn0.02)F、Ba(Zr0.995Mn0.005)F、Ca(Ti0.995Mn0.005)F、Sr(Zr0.98Mn0.02)Fなどを挙げることができるが、勿論これに限定されるものではない。
 緑蛍光体17(緑蛍光体)は、樹脂14に分散されている。緑蛍光体17は、1次光である青色光により励起され、1次光よりも長波長の緑色(ピーク波長が500nm以上550nm以下)の2次光を発する蛍光体である。
 緑蛍光体17としては、下記一般式(B1)で表される2価のEu付活酸窒化物蛍光体であるβ型SiAlON、又は下記一般式(B2)で表される2価のEu付活珪酸塩蛍光体であってもよい。
EuaSibAlcOdNe・・・一般式(B1)
 一般式(B1)において、Euの組成比(濃度)を表すaの値は0.005≦a≦0.4である。aの値が0.005未満である場合には、十分な明るさが得られないためであり、またaの値が0.4を超える場合には、濃度消光などにより、明るさが大きく低下するためである。なお、粉体特性の安定性、母体の均質性から、上記一般式(B1)におけるaの値は、0.01≦a≦0.2であることが好ましい。また、一般式(B1)において、Siの組成比(濃度)を表すbおよびAlの組成比(濃度)を表すcは、b+c=12を満足する数であり、Oの組成比(濃度)を表すdおよびNの組成比(濃度)を表すeは、d+e=16を満足する数である。
 一般式(B1)で表される緑蛍光体17としては、具体的には、Eu0.05Si11.50Al0.500.0515.95、Eu0.10Si11.00Al1.000.1015.90、Eu0.30Si9.80Al2.200.3015.70、Eu0.15Si10.00Al2.000.2015.80、Eu0.01Si11.60Al0.400.0115.99、Eu0.005Si11.70Al0.300.0315.97などを挙げることができるが、これらに限定されるものではない。
2(Ba1-f-gYIEu)O・SiO・・・一般式(B2)
一般式(B2)において、YIは、Mg、CaおよびSrから選ばれる少なくとも1種のアルカリ土類金属元素を示し、高効率な母体を得るためには、YIはSrであることが好ましい。
 一般式(B2)中、YIの組成比(濃度)を表すfの値は0<f≦0.55であり、fの値がこの範囲内であることで、510~540nmの範囲の緑色系発光を得ることができる。fの値が0.55を超える場合には、黄色味がかった緑色系発光となり、色純度が悪くなってしまう。さらには、効率、色純度の観点からは、fの値は0.15≦f≦0.45の範囲の範囲内であることが好ましい。また一般式(B2)において、Euの組成比(濃度)を示すgの値は0.03≦g≦0.10である。gの値が0.03未満である場合には、十分な明るさが得られないためであり、また、gの値が0.10を超える場合には、濃度消光などにより、明るさが大きく低下するためである。なお、明るさおよび粉体特性の安定性から、gの値は0.04≦g≦0.08の範囲内であることが好ましい。
 一般式(B2)で表される緑蛍光体17としては、具体的には、2(Ba0.70Sr0.26Eu0.04)・SiO、2(Ba0.57Sr0.38Eu0.05)O・SiO、2(Ba0.53Sr0.43Eu0.04)O・SiO、2(Ba0.82Sr0.15Eu0.03)O・SiO、2(Ba0.46Sr0.49Eu0.05)O・SiO、2(Ba0.59Sr0.35Eu0.06)O・SiO、2(Ba0.52Sr0.40Eu0.08)O・SiO、2(Ba0.85Sr0.10Eu0.05)O・SiO、2(Ba0.47Sr0.50Eu0.03)O・SiO、2(Ba0.54Sr0.36Eu0.10)O・SiO、2(Ba0.69Sr0.25Ca0.02Eu0.04)O・SiO、2(Ba0.56Sr0.38Mg0.01Eu0.05)O・SiO、2(Ba0.81Sr0.13Mg0.01Ca0.01Eu0.04)O・SiOなどを挙げることができるが、これらに限定されるものではない。
 また、緑蛍光体17としては、下記一般式(B3)で表される2価のEu付活珪酸塩蛍光体であってもよい。
2(M11-g,Eu)O・SiO・・・一般式(B3)
 一般式(B3)において、M1はMg、Ca、Sr、およびBaから選ばれる少なくとも1種の元素を表し、gは0.005≦g≦0.10を満足する数を表す。
 一般式(B3)で表される所謂BOSEアルカリ土類金属ケイ酸塩蛍光体はCASN蛍光体同様、発光強度が1/eとなるまでの時間である残光時間が10μs以下の許容遷移タイプの蛍光体である。
 上記のように構成されるLED11では、LEDチップ13から出射される1次光(青色光)が樹脂14を通過するにつれ、その一部が、KSF蛍光体15を励起し2次光(赤色光)に変換され、緑蛍光体17を励起し2次光(緑色光)に変換される。このように、LED11からは、青色の1次光と、赤色及び緑色の2次光とが混色して白色光(混色光)W0が、LED11の外部に放射される。
 (比較例について)
 次に、図6~図8を用いて、比較例に係るLED駆動回路の構成及びLEDの発光強度について説明する。
 図6は、第1の比較例に係るLED駆動回路130の構成を表すブロック図である。LED駆動回路130は、図1に示したLED駆動回路30から、第2出力回路6を除いた構成である。LED駆動回路130は、アノード電圧生成回路101と、スイッチング素子104を有する定電流回路102と、PWM信号生成回路103と、LED111とを備えている。
 PWM信号生成回路103は、“H”/“L”からなるパルス信号であり調光信号であるPWM信号を発生し、当該発生させたPWM信号を定電流回路102に出力する。
 次に、当該PWM信号を定電流回路102が受けると、定電流回路102に内蔵されているスイッチング素子104は、当該PWM信号の周波数とDuty比とに対応してON/OFFする。
 アノード電圧生成回路101は、LED111が点灯するために必要なVF(順電圧)を生成し、LED111のアノード111Aへ出力する。
 そして、定電流回路102に内蔵されたスイッチング素子104がONになると、LED111のアノード111Aからカソード111Cを介して定電流回路102へIFが流れ、スイッチング素子104がOFFになると、IFが流れない。
 LED111は、アノード電圧生成回路101からアノード電圧信号が入力され、LED111が備えるLEDチップにIF(順電流)が流れることで白色光を発光する。
 このように、LED111には、スイッチング素子104がONのときだけIFが流れ白色光を発光し、スイッチング素子104がOFFのときはIFが流れず消灯する。
 図7は、第2の比較例に係るLED駆動回路131の構成を表すブロック図である。LED駆動回路131は、図6に示したLED駆動回路130における定電流回路102から、スイッチング素子104を分離した構成である。LED駆動回路131は、LED駆動回路130のうち定電流回路102に換えて、電流制御回路121、スイッチング素子104及び抵抗107を備える。
 電流制御回路121は、PWM信号生成回路103から入力されるPWM信号が“H”のときは、スイッチング素子104をONし、アノード電圧生成回路101から出力されたVF(順電圧)により、LED111のアノード111Aからカソード111Cと、スイッチング素子104、抵抗107を介してIFが流れ、この結果、LED111は白色光を発光する。
 一方、電流制御回路121は、PWM信号生成回路103から入力されるPWM信号が“L”のときは、スイッチング素子104をOFFし、LED111にIFは流れず、LED111は消灯する。
 IF値は、スイッチング素子104がONした際の抵抗107間の電圧値と、抵抗107の抵抗値で決まる。電流制御回路121は、スイッチング素子104と抵抗107間の電圧が常に一定になるようにモニターする。例えば、スイッチング素子104と抵抗107間の電圧を1.0Vになるように調整するとする。この電圧が1.0V以下の場合、電流制御回路121は、アノード電圧生成回路101へ、アノード電圧を上げるフィードバック信号を出力(フィードバック)し、1.0V以上の場合は、アノード電圧生成回路101へ、アノード電圧を下げるフィードバック信号を出力する。この結果、常にスイッチング素子104と抵抗107と間の電圧は1.0Vとなり、抵抗値との計算により一定の電流が流れることになる。
 図8を用いて、LED駆動回路130・131のLED111の発光の様子について説明する。
 図8の(a)は第1及び第2の比較例に係るPWM信号を表し、(b)は第1及び第2の比較例に係るIF信号を表し、(c)は第1及び第2の比較例に係るLEDの発光の様子を表している。
 図8の(c)において、LEDチップの発光は、LED111が有するLEDチップが出射する青色光の発光の様子を表し、KSF蛍光体による赤色の残光は、1次光であるLEDチップからの青色光が消灯したあとのKSF蛍光体の残光を表している。なお、PWM信号生成回路103から定電流回路102へ供給されるPWM信号の周波数は120Hz、Dutyは25%、IFは50mA、赤蛍光体はKSF蛍光体、緑蛍光体はEu付活β型SiAlON蛍光体である。
 図8に示すように、LEDチップ13はPWM信号の”H”・”L”期間に対応して矩形波となるように発光している。
 しかし、図8に示すように、KSF蛍光体の応答速度が遅いため、PWM信号が”H”から”L”に切り替わった際、換言すると、点灯しているLEDチップが消灯した際、KSF蛍光体が発光する赤色光が瞬時に消えず、PWM信号が”L”のときもKSF蛍光体からの赤色光は残光として残っている。LED駆動回路130・131はこの残光に起因して、表示映像に色が付いて見える現象が生じる。
 (LED駆動回路30の主な効果について)
 次に、図1、図9~図11を用いて、本実施の形態に係るLED駆動回路30の主な効果について説明する。
 図9の(a)はLED駆動回路30に係るPWM信号を表し(b)はLED駆動回路30に係るIF信号を表し(c)はLED駆動回路30に係るLEDの発光の様子を表している。
 第1及び第2の比較例同様、PWM信号生成回路3から定電流回路2へ供給されるPWM信号の周波数は120Hz、Dutyは25%である。また、LED11の赤蛍光体はKSF蛍光体15、緑蛍光体17はEu付活β型SiAlON蛍光体である。
 LED11のカソード11Cから第2出力回路6へ流す電流(オフセット電流と称する)を例えば2mAとすると、PWM信号が“L”のとき、すなわち、スイッチング素子4がOFFのときもLED11には2mAのオフセット電流が流れ、当該IFはLED11のカソード11Cから抵抗7へ流れる。このように、LED駆動回路30では、PWM信号が“L”のときもLED11はわずかに白色光を点灯(微点灯)する。
 このように、PWM信号がオフのときもLED11に常時2mAのオフセット電流を流す場合、PWM信号がオンのときのIFは、最大値の50mAではなく、最大値より低い44.9mAとすることで、1フレーム当たりの電力(明るさ)を、第1及び第2の比較例に係るLED駆動回路130・131と同様にすることができる。
 図9に示すように、LED駆動回路30では、PWM信号が”H”から”L”に切り替わった際、KSF蛍光体15による赤色光が瞬時に消えず残光として残るものの、PWM信号が”L”でもLED11に2mAのオフセット電流を流しているため、LED11の白色光が点灯する。すなわち、LED駆動回路30によると、PWM信号がオフの期間において、KSF蛍光体15による残光成分としての赤色光と、1次光(LEDチップ13の青色光)及び2次光(KSF蛍光体15による赤色光及び緑蛍光体17による緑色光)からなる白色光とが混色し、表示映像に赤色が付いて見える現象が低減される。
 つまり、KSF蛍光体15の鮮やかな赤色に、白色光が混色することにより彩度が低くなり、画面上を流れるテロップ文字の一部が色付く赤色が目に付き難くくなる。図9に示すPWM信号のDutyとオフセット電流とは、変動させても良い。
 図10はオフセット電流と残光との関係を表す図である。図11はオフセット電流と動画性能改善との関係を表す図である。
 図10の横軸は残光の量を示し、縦軸はIFに対してのオフセット電流の割合を示す。図11の横軸は動画性能を示し縦軸はIFに対してのオフセット電流の割合を示す。例えばIF=50mA、オフセット電流2mAの場合、IFに対してのオフセット電流の割合は4%となる。
 図10及び図11に示すように、オフセット電流を上げると、PWM信号が”L”の時にLED11が点灯する白色光の光強度が増える。このため、赤色光の残光(色つき)は少なくなるものの、動画の表示性能は低下する。
 すなわち動画性能と、残光の低減はトレードオフの関係にあるため、LED駆動回路30が用いられる表示装置等の使用条件に応じて適時調整することが望ましい。また、オフセット電流を上げすぎるとPWM調光自体の意味がなくなってくる。つまり、IFの電流値に比例して、オフセット電流の電流値を変動させる。
 このため、IFに対してのオフセット電流の電流値の割合は、10%以下が望ましい。また蛍光体の残光による色付き現象が見え易いPWM信号の発信周波数120Hz以下の駆動条件に対して、本発明による駆動方法は有効である。これにより、LED駆動回路30が用いられる液晶表示装置等の表示装置における動画の表示性能の低下を抑制しつつ、かつ、KSF蛍光体15の残光を低減することができる。
 IFに対してのオフセット電流の電流値の割合は、2~3%程度以上であることが好ましい。オフセット電流値が低すぎると、実質的に、当該オフセット電流を流す効果を得ることができないためである。
 以上のようにLED駆動回路30によると、PWM信号の信号レベルが”H”のときは、LED11のカソード11Cから第1出力回路5にIFが流れることで、LED11のLEDチップ13は1次光を発光する。これにより、当該1次光と、KSF蛍光体15及び緑蛍光体17からの2次光とが混色した白色光がLED11から出射される。
 一方、PWM信号の信号レベルが”L”のときは、第1出力回路5は駆動を停止し、LED11から第1出力回路5へIFは流れない。しかし、第2出力回路6は、カソード11Cから、IFより値が低いオフセット電流を、自身の回路に流すことで出力させる。このため、PWM信号の信号レベルが”L”のときも、LEDチップ13は、IFによる1次光より輝度が低い1次光を発光し、これにより、LED11は白色光を微点灯する。
 第1出力回路5と、第2出力回路6とは、並列に接続されている。このため、第1出力回路5が駆動を停止しているときも、第2出力回路6を通じてLED11にオフセット電流が流れ、LED11を微点灯させることができる。
 このように、LED駆動回路30によると、定電流回路2のスイッチング素子4がOFFとなりKSF蛍光体15の残光が発生する期間でも、第2出力回路6によりLED11は微小な輝度の白色光を点灯するため、残光の赤色光と白色光が混色され、残光の視認性を低減することができる。
 以上のように、LED駆動回路30や照明装置71を用いて液晶テレビを構成することで、KSF蛍光体に代表される禁制遷移タイプ蛍光体の残光時間に起因する色付き現象を低減することができる。
 ここで、厳密に言えばテレビ放送などの映像信号のフレーム周波数として、120Hz,60Hz,60/1.001Hz,50Hz,30Hz,30/1.001Hz,25Hz,24Hz,24/1.001Hz等があるが、ここでは簡易に説明するために、現在、日本国で使用されているテレビ放送規格のフレーム周波数を考慮し、液晶パネルへの表示を60Hzおよびその整数倍をベースとした周波数で説明してきた。
 しかし、KSF蛍光体に代表される禁制遷移タイプ蛍光体の残光時間に起因する色付き現象は液晶パネルへの表示が120Hz以下のときに目立ち易いため、本発明に係るLED駆動回路30や照明装置71を液晶テレビに適用することで、日本国において現在使用されているテレビ放送規格に基づく周波数のみならず、他国等、他のテレビ放送規格で使用されているフレーム周波数に対しても有効である。すなわち、KSF蛍光体に代表される禁制遷移タイプ蛍光体の残光時間に起因する色付き現象を低減することができる。
 なお、これは、以下の他の実施形態にて説明するLED駆動回路についても同様である。
 〔実施形態2〕
 本発明の実施形態2について、図12及び図20に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図12は実施形態2に係るLED駆動回路(発光ダイオード駆動装置)31の構成を表すブロック図である。LED駆動回路31は、第2出力回路6に換えて第2出力回路61とPWM信号生成回路3Aとを備える点で、LED駆動回路30と相違する。LED駆動回路31の他の構成はLED駆動回路30と同様である。
 第2出力回路61は、抵抗7に加え、スイッチング素子41を備えている。LED11のカソード11Cは第1出力回路5であるスイッチング素子4と接続されていると共に、第2出力回路61のスイッチング素子41の入力端とも接続されている。スイッチング素子41の出力端は抵抗7の一端と接続されており、抵抗7の他端は電気的に接地されている。PWM信号生成回路3Aは、スイッチング素子41と接続されている。
 PWM信号生成回路3Aはスイッチング素子41へPWM信号を出力する。
 LED駆動回路31では、スイッチング素子4と、スイッチング素子41とを個別に制御することにより、スイッチング素子4がONのときは、スイッチング素子41はOFFにすることができる。一方、スイッチング素子4がOFFのときは、スイッチング素子41はONにすることができる。
 また、外部からの制御によりPWM信号生成回路3と、PWM信号生成回路3AからのPWM信号の出力を停止すると、スイッチング素子4と、スイッチング素子41との両方がOFFし、LED11を消灯させることができる。
 なお、スイッチング素子41へ、PWM信号生成回路3から出力されるパルスを、図20に示す通りインバータ8を介して反転させたパルスを入力してもよい。
 図20は、実施の形態2に係るLED駆動回路31の変形例であるLED駆動回路(発光ダイオード駆動装置)31Aの構成を表すブロック図である。LED駆動回路31Aは、PWM信号生成回路3Aに換えてインバータ8を備える点で、LED駆動回路31と相違する。
 インバータ8は、入力端がPWM信号生成回路3と接続され、出力端がスイッチング素子41と接続されている。LED駆動回路31Aによると、インバータ8を設けたことで、スイッチング素子4へ入力されるPWM信号とは“H”・“L”が反転したPWM信号をスイッチング素子41に入力することができる。
 これにより、スイッチング素子4と、スイッチング素子41とのON及びOFFを反転させることができる。
 LED駆動回路31によると、PWM信号生成回路3から定電流回路2へ出力されるPWM信号が”H”のとき、スイッチング素子4はONとなり、同時にPWM信号生成回路3Aからスイッチング素子41へ出力されるPWM信号を”L”にすることで、スイッチング素子41はOFFとなる。このため、PWM信号が”H”のとき、LED11に流れたIFは、カソード11Cから、第1出力回路5と第2出力回路61とのうち、第1出力回路5にのみ流れる。これにより、LED11は白色光を点灯する。
 一方、PWM信号生成回路3から定電流回路2へ出力されるPWM信号が”L”のとき、スイッチング素子4はOFFとなり、同時にPWM信号生成回路3Aからスイッチング素子41へ出力されるPWM信号を”H”にすることで、スイッチング素子41はONとなる。このため、LED11に流れたIFは、カソード11Cから、第1出力回路5と第2出力回路61とのうち、第2出力回路61にのみ流れる。これにより、PWM信号生成回路3から定電流回路2へ出力されるPWM信号が”L”のときも、LED11は微小な輝度の白色光を点灯する。
 この結果、LED駆動回路31によると、定電流回路2のスイッチング素子4がOFFとなりKSF蛍光体15の残光が発生する期間でも、第2出力回路61によりLED11は微小な輝度の白色光を点灯するため、残光の赤色光と白色光が混色され、残光の視認性を低減することができる。図20に示したLED駆動回路31Aも、LED駆動回路31と同様の効果を得ることができる。
 なお、図12においては、PWM信号生成回路3と、PWM信号生成回路3Aの両方から、”L”のPWM信号を出力することで、スイッチング素子4とスイッチング素子41が共にOFFとなり、LED11は消灯する。
 以上のように、LED駆動回路31によると、定電流回路2と、第2出力回路61とのそれぞれの駆動を個別に制御することが可能であるため、実施形態1で説明したLED駆動回路30と比べて、アノード電圧生成回路1からの出力を停止せずに(出力したままで)、スイッチング素子4と41をOFFにすることでLED11を消灯することができる。
 〔実施形態3〕
 本発明の実施形態3について、図13に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態1、2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図13は実施形態3に係るLED駆動回路(発光ダイオード駆動装置)32の構成を表すブロック図である。LED駆動回路32は、定電流回路2に換えて、電流制御回路21及び第1出力回路51を備える点で、LED駆動回路30と相違する。LED駆動回路32の他の構成はLED駆動回路30と同様である。LED駆動回路32では、第1出力回路51が電流制御回路21の外部に配されている点で、LED駆動回路30と相違する。第1出力回路51はスイッチング素子42と抵抗73とを備えている。
 電流制御回路21は、第1入力端がPWM信号生成回路3と接続されており、第2入力端がスイッチング素子42の第1出力端と接続されている。電流制御回路21の第1出力端はアノード電圧生成回路1と接続されており、第2出力端はスイッチング素子42と接続されている。
 LED11のカソード11Cは第1出力回路51のスイッチング素子42の第2入力端および第2出力回路6である抵抗7の一端と接続されている。
 第1出力回路51は、スイッチング素子42の第1入力端は電流制御回路21の第2出力端と接続され、第2入力端はLED11のカソード11Cと接続されている。スイッチング素子42の出力端は、電流制御回路21の第2入力端と、抵抗73の一端と接続されている。抵抗73の他端は電気的に接地されている。
 電流制御回路21では、電流はスイッチング素子42を経由して、GNDに対して電流が流れる。電流制御回路21を用いた場合、LED11のIF値はスイッチング素子42にかかる電圧とGNDとの間の抵抗で決まる。そして、スイッチング素子42にかかる電圧を一定に保つことが必要であるため、アノード電圧生成回路1へのフィードバック信号は必須となる。
 一例として、スイッチング素子42にNchFETを用いた場合、スイッチング素子42の第1入力端がゲート端子、第2入力端がドレイン端子、第1出力端がソース端子となる。
 PWM信号生成回路3から出力された、”H”・”L”のPWM信号は、電流制御回路21に入力され、電流制御回路21はスイッチング素子42をON/OFFさせるPWM信号を出力する。
 この際、電流制御回路21は、スイッチング素子42をONさせるために必要な電圧に上げる機能を有しても良い。例えば、PWM信号生成回路3からは、3.3VのPWM信号(”H”)が出力され、NchFETのゲート端子のON電圧が10Vとした場合、3.3Vの信号を12V等に上げてスイッチング素子42に出力する機能のことを示す。
 アノード電圧生成回路1は、LED11を点灯させるために必要なアノード電圧信号を生成し、当該生成したアノード電圧信号をLED11のアノード11Aに出力することで、LED11に供給する。
 そして、LED11のカソード11Cから、スイッチング素子42、第2出力回路6の抵抗7にIFが流れることで、LED11は白色光を発光する。
 電流制御回路21は、PWM信号生成回路3から入力されるPWM信号が“H”のときは、スイッチング素子42をONし、LED11に電流が流れ、LED11が点灯する。
 この場合、アノード電圧信号からLED11のVF値を引いた電圧と、抵抗73の抵抗値により、第2出力回路へ流れる電流値が決まり、さらに、スイッチング素子42がONした際の抵抗73間の電圧値と、抵抗73の抵抗値で第1出力回路1に流れる電流が決まる。
 電流制御回路21は、スイッチング素子42がONしてLED11が点灯した際に、スイッチング素子42と抵抗73間の電圧が常に一定になるように電圧値をモニターして、その結果をアノード電圧生成回路1へフィードバックする。
 例えば、スイッチング素子42と抵抗73との間の電圧を1.0Vになるように調整するとする。この電圧が1.0V以下の場合、電流制御回路21は、アノード電圧生成回路1へ、アノード電圧を上げるフィードバック信号を出力(フィードバック)し、1.0V以上の場合は、電流制御回路21は、アノード電圧生成回路1へ、アノード電圧を下げるフィードバック信号を出力する。これにより、常にスイッチング素子42と抵抗73間の電圧は1.0Vとなり、抵抗値が20Ωの場合はIF=50mAの電流がLED11に流れることになる。
 一方、電流制御回路21は、PWM信号生成回路3から入力されるPWM信号が“L”のときは、スイッチング素子42をOFFすることで、電流は第2出力回路6の抵抗7のみに流れることになる。例えば、スイッチング素子42をOFFした時にLED11のカソード11Cにかかる電圧が10Vで抵抗7が5kΩの場合、第2出力回路6はIF=2mAの電流が流れる。これにより、LED11はスイッチング素子42がONした際に流れるIF=50mA時の明るさに比べ、約2/(50+2)の明るさで微点灯することになる。
 よって、スイッチング素子42がPWM信号の周波数とDuty比に応じてON/OFFすることにより、一定の電流でLED11は点灯・微点灯を繰り返す。
 LED11は、アノード11Aにアノード電圧信号が入力されると、IFをカソード11Cから、第2出力回路6に流す。これにより、LED11は、PWM信号が”L”のとき、すなわち、スイッチング素子42がOFFのときも、第2出力回路6に電流が流れることで白色光を微点灯する。
 LED駆動回路32によると、LED11の直列させる個数が多くなった場合、すなわち、VFが定電流回路の定格(耐圧)を超える場合でも、スイッチング素子42のみ定格を上げるだけで、電流制御回路21等回路の破損を防止することができる。
 〔実施形態4〕
 本発明の実施形態4について、図14及び図15に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態1~3にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図14は実施形態4に係るLED駆動回路(発光ダイオード駆動装置)33の構成を表すブロック図である。図15の(a)はLED駆動回路33の第1PWM信号PWM1を表し、(b)はLED駆動回路33の第2PWM信号PWM2を表し、(c)はLED駆動回路33のIF信号を表し、(d)はLED駆動回路33のLED11の発光の様子を表している。
 図14に示すLED駆動回路33は、定電流回路2、PWM信号生成回路3、及び第2出力回路6に換えて、定電流回路22及びPWM信号生成回路(PWM信号生成部)3Bを備える点で、LED駆動回路30と相違する。LED駆動回路33の他の構成はLED駆動回路30と同様である。LED駆動回路33では、第1出力回路5に加え第2出力回路62も定電流回路22に内蔵されている。
 PWM信号生成回路3Bは、第1PWM信号PWM1と、第2PWM信号PWM2とを生成し、生成したそれぞれの第1PWM信号PWM1及び第2PWM信号PWM2を定電流回路22へ出力する。
 図15の(a)(b)に示すように、第2PWM信号PWM2は、第1PWM信号PWM1が”L”のとき、”H”となる信号である。第2PWM信号PWM2は、第1PWM信号PWM1の立ち下がりと同時に立ち上がる。第2PWM信号PWM2は、第1PWM信号PWM1より高周波数の信号である。一例として、第1PWM信号PWM1の周波数は120Hz、第2PWM信号PWM2の周波数は240Hzである。なお、Dutyは、第1PWM信号PWM1及び第2PWM信号PWM2共に25%である。
 図14に示すように、定電流回路22は、第1出力回路5と、第2出力回路62とを有する。第1出力回路5はスイッチング素子4からなる。第2出力回路62はスイッチング素子43からなる。
 スイッチング素子4は、PWM信号生成回路3Bから入力された第1PWM信号が”H”のときONとなり、”L”のときOFFとなる。スイッチング素子43は、PWM信号生成回路3Bから入力された第2PWM信号が”H”のときONとなり、”L”のときOFFとなる。すなわち、スイッチング素子43は、スイッチング素子4がOFFのときONとなり、スイッチング素子4がONのときはOFFとなる。
 そして、LED11のカソード11Cから、スイッチング素子4又はスイッチング素子43にIFが流れることで、LED11は白色光を発光する。LED11のカソード11Cからスイッチング素子43に流れる電流が、LED11を微点灯させるためのオフセット電流である。
 LED駆動回路33では、並列に接続された第1出力回路5と第2出力回路62とのそれぞれに、第1PWM信号PWM1又は第2PWM信号PWM2を個別に入力することで、第1出力回路5と第2出力回路62とを並列に駆動させることができる。このため、第1出力回路5がONすることでLED11に流すIFの値に応じ、第2出力回路62がONすることによりLED11に流すオフセット電流を任意に変化させることが可能となる。
 また、定電流回路22は、2個のスイッチング素子4とスイッチング素子43とを有す、それぞれ個別に制御可能となっている。このため、スイッチング素子4がOFFの時に、スイッチング素子43をPWM制御することにより、LED11に流すオフセット電流のON/OFFを切り替えることも可能となる。
 この場合のLED11の発光強度を図15に示す。図15では、スイッチング素子4に入力する第1PWM信号PWM1が”H”から”L”になると同時に、スイッチング素子43に入力する第2PWM信号PWM2が”L”から”H”となっている。
 第2PWM信号PWM2は、第1PWM信号PWM1より高い周波数である240Hzであり、Dutyは第1PWM信号PWM1と同じ25%のため、第1PWM信号PWM1が”L”の間に、第2PWM信号PWM2は2回パルスを出力している。
 図15の(c)に示すように、パルス状のオフセット電流の値を2mAとした場合、図8の(c)に示したLEDの1フレーム当たりの発光強度と合わせるため、IFは最大値の50mAに対し、49.6mAとする。
 図15の(d)に示すように、スイッチング素子4がOFFとなりLED11にKSF蛍光体による赤色の残光が発生し始めたとき、すなわち第1PWM信号PWM1が”H”から”L”になった時に、第2出力回路62をONさせることにより、LED11に白色光を微発光させる。これにより、KSF蛍光体による赤色光の残光と白色光が混色され、残光の視認性を低減させることができる。
 また、LED駆動回路33では、第1出力回路5がOFFのときすなわち赤色光の残光が発生しているとき、第2出力回路62を複数回、駆動させる。これにより、第2出力回路62を高い周波数で駆動することにより、常時第2出力回路をONしている時と同様の効果を得られ、かつLED11に流すオフセット電流がパルス状であるため、常時LED11が点灯することなく、液晶等、表示装置における残像低減効果を、より得ることができる。
 なお、図15に示したIF、オフセット電流、各PWM信号の周波数とDutyは一例であり、これらに限定するものではない。
 〔実施形態5〕
 本発明の実施形態5について、図16に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態1~4にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図16は実施形態5に係るLED駆動回路(発光ダイオード駆動装置)34の構成を表すブロック図である。
 LED駆動回路34は、図14に示したLED駆動回路33から、定電流回路22に換えて電流制御回路23、第1出力回路51及び第2出力回路63を備える点で相違する。LED駆動回路34の他の構成はLED駆動回路33と同様である。
 第1出力回路51及び第2出力回路63は、電流制御回路23の外部に配されている。第2出力回路63はスイッチング素子44と抵抗74とを備えている。
 抵抗74の一端はスイッチング素子44の出力端と接続されており、他端は電気的に接地されている。スイッチング素子44にはLED11を微点灯させるオフセット電流を流す。
 第1出力回路51のスイッチング素子42と、第2出力回路63のスイッチング素子44を、それぞれ個別に“ON”・“OFF”させることにより、それぞれ任意のタイミングでLED11にIFを流すことが可能となる。
 アノード電圧生成回路1は、アノード電圧信号を生成し、当該生成したアノード電圧信号を、LED11のアノード11Aに出力することで、LED11に供給する。そして、LED11のカソード11Cから、スイッチング素子42又はスイッチング素子44にIFが流れることで、LED11は白色光を発光する。LED11のカソード11Cからスイッチング素子44に流れる電流がLED11のオフセット電流である。
 電流制御回路23は、PWM信号生成回路3Bからの第1PWM信号PWM1の”H”・”L”に対応してスイッチング素子42をON/OFFさせるパルス信号である第1PWM信号PWM11を生成し、当該生成した第1PWM信号PWM11をスイッチング素子42に出力する。これにより、電流制御回路23は、PWM信号生成回路3Bから入力される第1PWM信号PWM1が”H”のときは、スイッチング素子42をONする。これにより、PWM信号生成回路3Bからの第1PWM信号PWM1の”H”に対応した期間LED11に流れたIFは、カソード11Cから第1出力回路51に流れる。これにより、LED11は白色光を点灯する。
 一方、PWM信号生成回路3Bから電流制御回路23へ出力される第1PWM信号PWM1が”L”のとき、スイッチング素子42はOFFとなり、LED11のカソード11Cから第1出力回路51へはIFは流れない。
 電流制御回路23は、PWM信号生成回路3Bからの第2PWM信号PWM2の”H”・”L”に対応してスイッチング素子44をON/OFFさせるパルス信号である第2PWM信号PWM12を生成し、当該生成した第2PWM信号PWM12をスイッチング素子44に出力する。これにより、電流制御回路23は、PWM信号生成回路3Bから入力される第2PWM信号PWM2が”H”のときは、スイッチング素子44をONする。これにより、PWM信号生成回路3Bからの第2PWM信号PWM2の”H”に対応した期間LED11に流れたIFは、カソード11Cから第2出力回路63に流れる。これにより、LED11は白色光を微点灯する。
 一方、PWM信号生成回路3Bから電流制御回路23へ出力される第2PWM信号PWM2が”L”のとき、スイッチング素子44はOFFとなり、LED11のカソード11Cから第2出力回路63へはIFは流れない。
 電流制御回路23は、スイッチング素子42がONしてLED11が点灯した際に、スイッチング素子42と抵抗73間の電圧が常に一定になるように電圧値をモニターして、その結果をフィードバック信号としてアノード電圧生成回路1へ出力することでフィードバックする。
 さらに、電流制御回路23は、スイッチング素子44がONしてLED11が微点灯した際に、スイッチング素子44と抵抗74間の電圧が常に一定になるように電圧値をモニターして、その結果をフィードバック信号としてアノード電圧生成回路1へ出力することでフィードバックする。
 ここで、第2PWM信号PWM2は、第1PWM信号PWM1が”L”のとき、”H”となる信号である。第2PWM信号PWM2は、第1PWM信号PWM1の立ち下がりと同時に立ち上がる。
 上述のように第1PWM信号PWM1及び第2PWM信号PWM2を制御することにより、スイッチング素子42がOFFとなりLED11にKSF蛍光体15による赤色の残光が発生し始めたとき、すなわち第1PWM信号PWM1が”H”から”L”になった時に、第2出力回路63をONさせることにより、LED11に白色光を微発光させることができる。これにより、KSF蛍光体15による赤色光の残光と白色光が混色され、残光の視認性を低減させることができる。
 一例として、第1PWM信号PWM1の周波数は120Hz、第2PWM信号PWM2の周波数は240Hzである。なお、Dutyは、第1PWM信号PWM1及び第2PWM信号PWM2共に25%である。
 〔実施例〕
 図17は各LED駆動回路で使用される各信号の値の一例を示す図である。図18はLED駆動回路130・34で使用される各信号の値の一例を示す図である。
 図17では、実施形態で説明した比較例に係るLED駆動回路130、LED駆動回路30、LED駆動回路32・33で用いる(1)オフセット電流(2)PWM信号のDuty(3)IF(4)VF1(5)オフセット電流のVF2(6)電力の具体的な数値を例示する。また、図18では、LED駆動回路130・34で使用される(1)オフセット電流(2)第1PWM信号PWM1のDuty(7)第2PWM信号PWM2のDuty(3)IF(4)VF1(5)オフセット電流のVF2(6)電力の具体的な数値を例示する。
 (4)VF1とは、IFを流すためにLED11に印加される順電圧である。(5)オフセット電流のVF2とは、LED11にオフセット電流を流すためにLED11に印加される順電圧である。
 なお(4)(5)に示す値はIF‐VF特性による算出される値であり、ここでは概算を示している。
 (6)電力は、(1)×(100%-(2))×(5)+(2)×(3)×(4)で算出される値である。
 図17、図18では、各LED駆動回路間で(6)電力を同じとした場合のオフセット電流、IFとを変更した場合の一例を示している。LEDの一般的な特性上、IFを変動させるとVFも変動し、IFの値を上昇させるとVFの値も上昇する。
 なお、図17、図18に示す各信号における数値は一例である。
 〔まとめ〕
 本発明の態様1に係る発光ダイオード駆動装置(LED駆動回路30~34)は、矩形波(PWM信号)の信号レベルに応じて変化する駆動電流により駆動され、当該駆動電流に対応する輝度の1次光を発光する発光ダイオードチップ(LEDチップ13)と、当該1次光により励起されて2次光を発光する蛍光体(KSF蛍光体15)とを有し、上記1次光と上記2次光との混色光を出射する発光ダイオード(LED11)と、上記発光ダイオードチップと接続され、上記駆動電流が出力される上記発光ダイオードの出力端(カソード11C)に、それぞれ接続されている第1出力回路5・51及び第2出力回路6・61・62と、を備え、上記第1出力回路は、上記矩形波の信号レベルが第1レベル(”H”)のとき駆動し、上記出力端から第1電流を出力させることで上記発光ダイオードチップを発光させる一方、上記矩形波の信号レベルが第2レベル(”L”)のとき駆動を停止し、上記第2出力回路は、上記矩形波の信号レベルが上記第2レベル(”L”)のとき、上記出力端から、上記第1電流より電流値が低い第2電流(オフセット電流)を出力させることで上記発光ダイオードチップを発光させることを特徴とする。
 上記構成によると、上記矩形波の信号レベルが第1レベルのときは、上記発光ダイオードの出力端から上記第1出力回路に第1電流が流れることで、上記発光ダイオードチップは1次光を発光する。これにより、1次光と2次光との混色光が発光ダイオードから出射される。
 一方、上記矩形波の信号レベルが第2レベルのときは、上記第1出力回路は駆動を停止し、上記発光ダイオードから上記第1出力回路へ第1電流は流れない。しかし、上記第2出力回路により、上記発光ダイオードの上記出力端から、上記第1電流より値が低い第2電流が流れる。このため、上記矩形波の信号レベルが第2レベルのときも、上記発光ダイオードチップは、上記第1電流による1次光より輝度が低い1次光を発光し、これにより、上記発光ダイオードは白色光を微点灯する。
 したがって、上記矩形波の信号レベルが第2レベルのときに発生する上記蛍光体の残光と、上記微点灯による白色光が混色することにより、赤色光の残光の視認性を低減することができる。
 本発明の態様2に係る発光ダイオード駆動装置は、上記態様1において、上記矩形波は、PWM信号であり、上記PWM信号の周波数は120Hz以下であり、上記第2電流の電流値は、上記第1電流の電流値の1/10以下であることが好ましい。
 上記構成により、発光ダイオード駆動装置が用いられる表示装置における動画の表示性能の低下を抑制し、かつ、残光の低減をすることができる。
 本発明の態様3に係る発光ダイオード駆動装置は、上記態様1において、上記矩形波である第1PWM信号と、当該第1PWM信号の信号レベルが第2レベルの期間に信号レベルが第1レベルとなる第2PWM信号とを生成するPWM信号生成部を備え、上記第1出力回路は、上記第1PWM信号の信号レベルが第1レベルのとき駆動し、上記第1PWM信号の信号レベルが上記第2レベルのとき駆動を停止し、上記第2出力回路は、上記第2PWM信号の信号レベルが上記第1レベルのとき導通し、上記第2PWM信号の信号レベルが第2レベルのとき非導通となるスイッチング素子を有する。
 上記構成により、上記第1出力回路と、上記第2出力回路とを個別に駆動させることができる。これにより、より発光ダイオード駆動装置が用いられる表示装置の画像表示品質を向上させることができる。
 本発明の態様4に係る発光ダイオード駆動装置は、上記態様1~3において、上記第1電流の電流値に比例して、上記第2電流の電流値が変動することが好ましい。
 本発明の態様5に係る発光ダイオード駆動装置は、上記態様1または2において、上記第2出力回路は、上記第1出力回路が駆動を停止しているとき導通するスイッチング素子と、当該スイッチング素子の出力端に一端が接続され、他端が電気的に接地されている抵抗とを有することが好ましい。
 上記構成により、上記第1出力回路が駆動を停止しているときも、上記第2出力回路を通じて上記発光ダイオードの出力端から第2電流を出力させ、発光ダイオードを微点灯させることができる。
 本発明の態様6に係る発光ダイオード駆動装置は、上記態様1~5において、上記第1出力回路と、上記第2出力回路とは、並列に接続されていることが好ましい。上記構成により、上記第1出力回路が駆動を停止しているときも、上記第2出力回路を通じて上記発光ダイオードから第2電流を出力させ、発光ダイオードを微点灯させることができる。
 ここで、通常、LEDを駆動する方法としては、(複数含む)LEDに対して1chで駆動させる。但し、1chでは流す電流が不足する場合は、複数のchを使って同時に並列駆動させる。
 上記構成によると、複数の発光ダイオードを同時に駆動させず、異なる周波数、あるいは異なるタイミングで駆動させることができる。
 本発明の態様7に係る発光ダイオード駆動装置は、上記態様1において、上記発光ダイオードチップは青色光を発光する青色LEDチップであり、上記蛍光体は、上記青色光により赤色光を発光する赤色蛍光体と、上記青色光により緑色光を発光する緑色蛍光体とを有し、上記赤色蛍光体は、禁制遷移により上記赤色光を発光する蛍光体であることが好ましい。
 本発明の態様8係る発光ダイオード駆動装置は、上記態様7において、上記赤色蛍光体は、Mn4+賦活複合フッ素化物蛍光体であることが好ましい。
 本発明の態様9に係る照明装置71は、上記態様1~8における発光ダイオード駆動装置を備えていることが好ましい。上記構成により、上記矩形波の信号レベルが第2レベルのときに発生する上記蛍光体の残光の視認性が低減された照明装置を得ることができる。
 本発明の態様10に係る発光ダイオード駆動装置は、上記態様1~8において、上記第2出力回路は、上記発光ダイオードの出力端に一端が接続され、他端が電気的に接地されている抵抗(7・74)を有することが好ましい。
 本発明の態様11に係る発光ダイオード駆動装置は、上記態様1~8、10において、上記第1出力回路は上記第1レベルのときに導通するスイッチング素子からなることが好ましい。
 本発明の態様12に係る発光ダイオード駆動装置は、上記態様11において、上記第1出力回路は、さらに上記スイッチング素子の出力端に一端が接続され、他端が電気的に接地されている抵抗(73)を有することが好ましい。
 本発明の態様13に係る発光ダイオード駆動装置は、上記態様3において、上記矩形波である第1PWM信号と、当該第1PWM信号の信号レベルが第2レベルの期間に信号レベルが第1レベル及び第2レベルとなる第2PWM信号とを生成するPWM信号生成部を備え、上記第1出力回路は、上記第1PWM信号の信号レベルが第1レベルのとき駆動し、上記第1PWM信号の信号レベルが第2レベルのとき駆動を停止し、上記第2出力回路は、上記第2PWM信号の信号レベルが第1レベルのとき導通し、上記第2PWM信号の信号レベルが第2レベルのとき非導通となるスイッチング素子を有することが好ましい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、発光ダイオード駆動装置及び照明装置に利用することができる。
1 アノード電圧生成回路
2 定電流回路
3・3a PWM信号生成回路(PWM信号生成部)
4 スイッチング素子
5・51 第1出力回路
6・61・62・63 第2出力回路
7 抵抗
11 LED(発光ダイオード)
11A アノード
11C カソード
13 LEDチップ(発光ダイオードチップ)
14 樹脂
15 KSF蛍光体(蛍光体、赤色蛍光体、Mn4+賦活複合フッ素化物蛍光体)
17 緑蛍光体
21・23 電流制御回路
22 定電流回路
30~34 LED駆動回路(発光ダイオード駆動装置)
41~44 スイッチング素子
71 照明装置
73・74 抵抗
W0 白色光(混色光)

Claims (9)

  1.  矩形波の信号レベルに応じて変化する駆動電流により駆動され、当該駆動電流に対応する輝度の1次光を発光する発光ダイオードチップと、当該1次光により励起されて2次光を発光する蛍光体とを有し、上記1次光と上記2次光との混色光を出射する発光ダイオードと、
     上記発光ダイオードチップと接続され、上記駆動電流が出力される上記発光ダイオードの出力端に、それぞれ接続されている第1出力回路及び第2出力回路と、を備え、
     上記第1出力回路は、上記矩形波の信号レベルが第1レベルのとき駆動し、上記出力端から第1電流を出力させることで上記発光ダイオードチップを発光させる一方、上記矩形波の信号レベルが第2レベルのとき駆動を停止し、
     上記第2出力回路は、上記矩形波の信号レベルが上記第2レベルのとき、上記出力端から、上記第1電流より電流値が低い第2電流を出力させることで上記発光ダイオードチップを発光させることを特徴とする発光ダイオード駆動装置。
  2.  上記矩形波は、PWM信号であり、
     上記PWM信号の周波数は120Hz以下であり、
     上記第2電流の電流値は、上記第1電流の電流値の1/10以下であることを特徴とする請求項1に記載の発光ダイオード駆動装置。
  3.  上記矩形波である第1PWM信号と、当該第1PWM信号の信号レベルが第2レベルの期間に信号レベルが第1レベルとなる第2PWM信号とを生成するPWM信号生成部を備え、
     上記第1出力回路は、上記第1PWM信号の信号レベルが第1レベルのとき駆動し、上記第1PWM信号の信号レベルが上記第2レベルのとき駆動を停止し、
     上記第2出力回路は、上記第2PWM信号の信号レベルが上記第1レベルのとき導通し、上記第2PWM信号の信号レベルが第2レベルのとき非導通となるスイッチング素子を有することを特徴とする請求項1に記載の発光ダイオード駆動装置。
  4.  上記第1電流の電流値に比例して、上記第2電流の電流値が変動することを特徴とする請求項1~3の何れか1項に記載の発光ダイオード駆動装置。
  5.  上記第2出力回路は、
     上記第1出力回路が駆動を停止しているとき導通するスイッチング素子と、
     当該スイッチング素子の出力端に一端が接続され、他端が電気的に接地されている抵抗とを有することを特徴とする請求項1または2に記載の発光ダイオード駆動装置。
  6.  上記第1出力回路と、上記第2出力回路とは、並列に接続されていることを特徴とする請求項1~5の何れか1項に記載の発光ダイオード駆動装置。
  7.  上記発光ダイオードチップは青色光を発光する青色LEDチップであり、
     上記蛍光体は、上記青色光により赤色光を発光する赤色蛍光体と、上記青色光により緑色光を発光する緑色蛍光体とを有し、
     上記赤色蛍光体は、禁制遷移により上記赤色光を発光する蛍光体であることを特徴とする請求項1に記載の発光ダイオード駆動装置。
  8.  上記赤色蛍光体は、Mn4+賦活複合フッ素化物蛍光体であることを特徴とする請求項7に記載の発光ダイオード駆動装置。
  9.  請求項1~8の何れか1項に記載の発光ダイオード駆動装置を備えたことを特徴とする照明装置。
PCT/JP2014/082733 2014-01-28 2014-12-10 発光ダイオード駆動装置及び照明装置 WO2015114958A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015559769A JP6077144B2 (ja) 2014-01-28 2014-12-10 発光ダイオード駆動装置及び照明装置
US15/108,822 US10104726B2 (en) 2014-01-28 2014-12-10 Light emitting diode drive device and illumination device
CN201480073205.0A CN105917475A (zh) 2014-01-28 2014-12-10 发光二极管驱动装置以及照明装置
KR1020167020805A KR101922786B1 (ko) 2014-01-28 2014-12-10 발광 다이오드 구동 장치 및 조명 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014013763 2014-01-28
JP2014-013763 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015114958A1 true WO2015114958A1 (ja) 2015-08-06

Family

ID=53756552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082733 WO2015114958A1 (ja) 2014-01-28 2014-12-10 発光ダイオード駆動装置及び照明装置

Country Status (5)

Country Link
US (1) US10104726B2 (ja)
JP (1) JP6077144B2 (ja)
KR (1) KR101922786B1 (ja)
CN (1) CN105917475A (ja)
WO (1) WO2015114958A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015274A (ja) * 2014-07-03 2016-01-28 Necディスプレイソリューションズ株式会社 表示装置および表示方法
US10333034B2 (en) 2016-12-29 2019-06-25 Amtran Technology Co., Ltd. Phosphor and light emitting device and backlight module including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102164079B1 (ko) * 2014-05-30 2020-10-12 엘지이노텍 주식회사 산질화물계 형광체를 포함하는 발광 소자 패키지
JP6156440B2 (ja) 2014-05-30 2017-07-05 日亜化学工業株式会社 赤色発光蛍光体及びこれを用いた発光装置
TWI692459B (zh) 2015-05-29 2020-05-01 日商Agc股份有限公司 紫外線透射玻璃
CN105592595B (zh) * 2016-03-08 2017-06-27 深圳市华星光电技术有限公司 背光调光电路及液晶显示器
EP3480903B1 (en) * 2016-07-04 2020-09-30 Panasonic Intellectual Property Management Co., Ltd. Fiber light source, endoscope, and endoscope system
JP6264706B1 (ja) 2016-07-04 2018-01-24 パナソニックIpマネジメント株式会社 プロジェクター装置
CN107849448B (zh) 2016-07-04 2022-04-15 松下知识产权经营株式会社 荧光体以及发光装置
US9924574B1 (en) * 2016-10-28 2018-03-20 Uledo Llc. Method and apparatus for controlling light output from a LED lamp
JP2023013150A (ja) * 2021-07-15 2023-01-26 株式会社Pfu 発光素子駆動装置及び画像読取装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073656A (ja) * 2004-08-31 2006-03-16 Nichia Chem Ind Ltd 発光装置
JP2006339507A (ja) * 2005-06-03 2006-12-14 Rohm Co Ltd 駆動回路およびそれを備えた携帯情報端末
JP2008211071A (ja) * 2007-02-27 2008-09-11 Sony Corp 発光ダイオード駆動回路及びそれを用いた撮像装置
JP2012104814A (ja) * 2010-10-15 2012-05-31 Mitsubishi Chemicals Corp 白色発光装置及び照明器具
WO2012121304A1 (ja) * 2011-03-08 2012-09-13 三菱化学株式会社 発光装置及び発光装置を備えた照明装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87105659A (zh) * 1986-08-15 1988-03-09 蒙特集团有限公司 荧光灯工作
JP2770422B2 (ja) * 1989-05-30 1998-07-02 岩崎電気株式会社 表示灯点灯装置
JPH1186104A (ja) * 1997-09-02 1999-03-30 Fuji Electric Co Ltd 自動販売機の制御装置
JP3921545B2 (ja) 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 蛍光体とその製造方法
JP4565141B2 (ja) 2004-06-30 2010-10-20 独立行政法人物質・材料研究機構 蛍光体と発光器具
US7497973B2 (en) 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
US7648649B2 (en) * 2005-02-02 2010-01-19 Lumination Llc Red line emitting phosphors for use in led applications
JP2007049114A (ja) 2005-05-30 2007-02-22 Sharp Corp 発光装置とその製造方法
DE102006032071B4 (de) * 2006-07-11 2008-07-10 Austriamicrosystems Ag Steuerschaltung und Verfahren zum Steuern von Leuchtdioden
CN101118935A (zh) * 2006-08-03 2008-02-06 黎涤萍 白光led及其照明装置
CN101217842A (zh) * 2008-01-18 2008-07-09 李光男 小功率发光二极管照明灯泡的驱动电路
CN101505559A (zh) * 2008-02-04 2009-08-12 光联科技股份有限公司 背光模组的温度控制系统
KR101559603B1 (ko) 2008-02-07 2015-10-12 미쓰비시 가가꾸 가부시키가이샤 반도체 발광 장치, 백라이트, 컬러 화상 표시 장치, 및 그들에 사용하는 형광체
US8237348B2 (en) 2008-03-03 2012-08-07 Sharp Kabushiki Kaisha Light-emitting device
EP2144482B1 (en) * 2008-07-08 2016-02-10 ams AG Voltage conversion circuit and voltage conversion method
JP2010093132A (ja) 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
CN201336760Y (zh) * 2009-01-09 2009-10-28 深圳市启欣科技有限公司 一种lcd背光亮度调节led驱动电路
CN101705095B (zh) * 2009-09-21 2011-08-10 四川新力光源有限公司 黄光余辉材料及其制备方法和使用它的led照明装置
KR20120115322A (ko) * 2009-12-17 2012-10-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 광원 및 파장 변환 요소를 구비한 조명 장치
US20120320030A1 (en) * 2010-03-10 2012-12-20 Takahiko Origuchi Plasma display device, plasma display system, and method of driving plasma display panel
CN102340906B (zh) * 2010-07-26 2014-02-19 美芯晟科技(北京)有限公司 用于led驱动电路的调光装置
CN201811038U (zh) * 2010-09-03 2011-04-27 贵阳世纪天元科技有限公司 一种带脉冲的led照明装置
JP5545866B2 (ja) * 2010-11-01 2014-07-09 シチズン電子株式会社 半導体発光装置
CN201975048U (zh) * 2010-12-31 2011-09-14 上海济丽信息技术有限公司 一种led大屏幕驱动控制装置
WO2012125585A1 (en) * 2011-03-11 2012-09-20 Intematix Corporation Millisecond decay phosphors for ac led lighting applications
DE102012200711A1 (de) * 2011-04-29 2012-10-31 Tridonic Jennersdorf Gmbh LED Dimmer-Modul
JP5252107B2 (ja) 2011-09-02 2013-07-31 三菱化学株式会社 照明方法及び発光装置
CN202940237U (zh) * 2012-04-06 2013-05-15 隆达电子股份有限公司 长余辉发光二极管封装结构
CN203289686U (zh) * 2012-12-27 2013-11-13 茂晖科技股份有限公司 Led色温调整装置及具有led色温调整装置的发光系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073656A (ja) * 2004-08-31 2006-03-16 Nichia Chem Ind Ltd 発光装置
JP2006339507A (ja) * 2005-06-03 2006-12-14 Rohm Co Ltd 駆動回路およびそれを備えた携帯情報端末
JP2008211071A (ja) * 2007-02-27 2008-09-11 Sony Corp 発光ダイオード駆動回路及びそれを用いた撮像装置
JP2012104814A (ja) * 2010-10-15 2012-05-31 Mitsubishi Chemicals Corp 白色発光装置及び照明器具
WO2012121304A1 (ja) * 2011-03-08 2012-09-13 三菱化学株式会社 発光装置及び発光装置を備えた照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015274A (ja) * 2014-07-03 2016-01-28 Necディスプレイソリューションズ株式会社 表示装置および表示方法
US10333034B2 (en) 2016-12-29 2019-06-25 Amtran Technology Co., Ltd. Phosphor and light emitting device and backlight module including the same

Also Published As

Publication number Publication date
KR101922786B1 (ko) 2018-11-27
JP6077144B2 (ja) 2017-02-08
CN105917475A (zh) 2016-08-31
KR20160104681A (ko) 2016-09-05
US20160330806A1 (en) 2016-11-10
US10104726B2 (en) 2018-10-16
JPWO2015114958A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6077144B2 (ja) 発光ダイオード駆動装置及び照明装置
US10396254B2 (en) Light emitting device that emits secondary light with a fast response
JP6262335B2 (ja) Led駆動回路
JP2005005482A (ja) Led発光装置及びそれを用いたカラー表示装置
US8294387B2 (en) Backlight device and display device using the same for adjusting color tone of illumination light
JP6323319B2 (ja) 照明装置及びその駆動方法
JP2001144332A (ja) Led駆動方法およびled装置ならびにledランプ、ledランプ駆動方法と表示装置
JP2010225842A (ja) 液晶ディスプレイのバックライト用光源、液晶ディスプレイのバックライト及び液晶ディスプレイ
KR100737060B1 (ko) 발광 장치 및 이의 구동 방법
JP2009076656A (ja) 発光装置、画像表示装置および液晶ディスプレイ
TWI544255B (zh) 顯示裝置及使用其之顯示方法
US10333034B2 (en) Phosphor and light emitting device and backlight module including the same
US10083660B2 (en) Liquid-crystal display device and liquid-crystal display device control method
WO2009090788A1 (ja) 白色光源並びにそれを備えた照明装置及び表示装置
CN108269904B (zh) 荧光体及其应用的发光装置与背光模块
JP2007065361A (ja) カラー液晶表示装置
US20160078801A1 (en) Display apparatus and backlight driving method of the same
US20100289431A1 (en) Dimming Control Method for Display
JP2002313282A (ja) 白色光源及びこの白色光源を用いたカラー表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15108822

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167020805

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880911

Country of ref document: EP

Kind code of ref document: A1