WO2015114774A1 - 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 - Google Patents

冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 Download PDF

Info

Publication number
WO2015114774A1
WO2015114774A1 PCT/JP2014/052106 JP2014052106W WO2015114774A1 WO 2015114774 A1 WO2015114774 A1 WO 2015114774A1 JP 2014052106 W JP2014052106 W JP 2014052106W WO 2015114774 A1 WO2015114774 A1 WO 2015114774A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
composition
accumulator
surplus
value
Prior art date
Application number
PCT/JP2014/052106
Other languages
English (en)
French (fr)
Inventor
亮宗 石村
航祐 田中
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015559671A priority Critical patent/JP6072311B2/ja
Priority to GB1608160.6A priority patent/GB2534789B/en
Priority to PCT/JP2014/052106 priority patent/WO2015114774A1/ja
Publication of WO2015114774A1 publication Critical patent/WO2015114774A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/08Refrigeration machines, plants and systems having means for detecting the concentration of a refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner applied to a refrigeration cycle apparatus, for example, a multi air conditioner for buildings, and a method for calculating a circulation composition in the refrigeration cycle apparatus.
  • a refrigerant circulation circuit filled with a mixed refrigerant such as a non-azeotropic mixed refrigerant and a control device.
  • the control device calculates a circulation composition that is a composition of at least one of the plurality of refrigerant components in a state where the mixed refrigerant circulates in the refrigerant circulation circuit.
  • the control device controls, for example, the operation of the compressor of the refrigerant circulation circuit, the operation of the heat source side blower, and the like using the calculated circulation composition value.
  • the value of the circulating composition is, for example, the detected value of the liquid level height of the surplus refrigerant detected by the liquid level detecting device provided in the accumulator, and the relationship between the liquid level height created in advance and the value of the circulating composition. And calculated by conversion (for example, refer to Patent Document 1).
  • the control device calculates the value of the circulation composition without changing the calculation method depending on whether or not there is surplus refrigerant in the accumulator.
  • surplus refrigerant is generated in the accumulator
  • the circulation composition and the composition of at least one refrigerant component of the plurality of refrigerant components in a state where the refrigerant mixture is filled with the refrigerant mixture, and a known value Therefore, it is effective that the value of the circulation composition is calculated by, for example, the method described above.
  • the difference between the circulation composition and the known filling composition is small, so that the value of the circulation composition is calculated, for example, by the method described above.
  • the accuracy of calculation may be lowered.
  • the circulation composition value is calculated by a single calculation method regardless of whether or not there is excess refrigerant in the accumulator.
  • the circulation composition value is calculated by a single calculation method regardless of whether or not there is excess refrigerant in the accumulator.
  • the present invention has been made against the background of the above problems, and improves the performance and the like of the refrigeration cycle apparatus when there is no surplus refrigerant in the accumulator and when there is surplus refrigerant in the accumulator.
  • a refrigeration cycle apparatus that can be realized in both cases is obtained.
  • such an air conditioning apparatus is obtained.
  • the calculation method of the circulation composition used for such a refrigeration cycle apparatus is obtained.
  • a compressor, a heat source side heat exchanger, a throttling device, a load side heat exchanger, and an accumulator that stores excess refrigerant are connected by piping, and a plurality of boiling points are different.
  • a circulation composition that is a composition of at least one refrigerant component of the plurality of refrigerant components in a state in which the non-azeotropic refrigerant mixture circulates in the refrigerant circulation circuit
  • a circulation composition calculating means for calculating using a different calculation method from the case where the refrigerant presence / absence determining means does not determine that there is no excess refrigerant.
  • the refrigeration cycle apparatus determines that there is no surplus refrigerant in the accumulator, it is determined that there is no surplus refrigerant in the accumulator.
  • a circulation composition calculating means for calculating using a different calculation method from the case where the excess refrigerant presence / absence determining means does not determine that there is no excess refrigerant. Therefore, it is possible to improve the performance of the refrigeration cycle apparatus in both the case where no surplus refrigerant is generated in the accumulator and the case where the surplus refrigerant is generated in the accumulator.
  • FIG. 1 It is a schematic circuit block diagram which shows an example of a circuit structure of the air conditioning apparatus which concerns on Embodiment 1.
  • 2 is a schematic circuit configuration diagram illustrating a refrigerant flow during a cooling operation of the air-conditioning apparatus according to Embodiment 1.
  • FIG. It is a schematic circuit block diagram which shows the flow of the refrigerant
  • 2 is a ph diagram of a refrigeration cycle of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 6 is a diagram showing an operation flow of Modification 1 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 6 is a diagram showing an operation flow of Modification-2 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1. It is a figure which shows the operation
  • FIG. It is a figure which shows the operation
  • FIG. 6 is a schematic circuit configuration diagram showing an example of a circuit configuration of an air-conditioning apparatus according to Embodiment 2.
  • FIG. 1 is a diagram showing an operation flow of Modification 1 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 6 is a diagram showing an operation flow of Modification-2 of the surplus ref
  • FIG. 1 It is a figure which shows the operation
  • FIG. It is a figure which shows the operation
  • the composition of at least one refrigerant component among the plurality of refrigerant components in a state where the non-azeotropic refrigerant mixture circulates in the refrigerant circuit is defined as “circulation composition”. Further, the composition of at least one refrigerant component among the plurality of refrigerant components in a state where the non-azeotropic refrigerant mixture is filled in the refrigerant circuit is defined as “filling composition”. The composition of at least one refrigerant component among the plurality of refrigerant components is defined as “refrigerant composition”. “Refrigerant composition” includes both “circulation composition” and “filling composition”.
  • the refrigeration cycle apparatus according to the present invention is an air conditioner.
  • the present invention is not limited to such a case, and the refrigeration cycle apparatus according to the present invention is not an air conditioner.
  • Other refrigeration cycle apparatuses may be used.
  • movement, etc. which are demonstrated below are only examples, and the refrigeration cycle apparatus which concerns on this invention is not limited to the case where it is such a structure, operation
  • detailed descriptions of the configuration, operation, and the like are appropriately simplified or omitted.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • FIG. 1 is a schematic circuit configuration diagram illustrating an example of a circuit configuration of an air-conditioning apparatus according to Embodiment 1.
  • the air conditioning apparatus 100 includes a refrigerant circulation circuit 1 filled with a non-azeotropic refrigerant mixture having a plurality of refrigerant components having different boiling points, and a control device 50.
  • the air conditioning apparatus 100 performs air conditioning by circulating a non-azeotropic refrigerant mixture.
  • the non-azeotropic refrigerant mixture is, for example, a mixed refrigerant of R32 refrigerant and R1234yf refrigerant, a mixed refrigerant of R32 refrigerant and R1234ze refrigerant, or the like.
  • a mixed refrigerant of R32 refrigerant and R1234yf refrigerant are refrigerants mixed in a mass ratio of 44 wt% and 56 wt%.
  • the non-azeotropic refrigerant mixture is a mixed refrigerant of an R32 refrigerant and an R1234yf refrigerant and the case of a mixed refrigerant of an R32 refrigerant and an R1234ze refrigerant are given as examples
  • the non-azeotropic refrigerant mixture is not necessarily It is not necessary to be a mixed refrigerant in which R32 refrigerant and R1234yf refrigerant are the main components and a small amount of other refrigerants are mixed.
  • a mixture in which R32 refrigerant and R1234ze refrigerant are the main components and a small amount of other refrigerants are mixed.
  • a refrigerant may be used.
  • the non-azeotropic refrigerant mixture is not limited to the above-described mixed refrigerant, and may be a mixed refrigerant in which any refrigerant is mixed.
  • the number of refrigerant components to be mixed may be two components, three components, or more.
  • the air conditioner 100 includes an outdoor unit 2 and an indoor unit 3.
  • each device constituting the refrigerant circulation circuit 1 is connected by a refrigerant pipe 4.
  • each device constituting the refrigerant circulation circuit 1 is connected by a refrigerant pipe 5.
  • the refrigerant pipe 4 and the refrigerant pipe 5 are connected via a refrigerant main pipe 6.
  • a plurality of indoor units 3 may be connected to the outdoor unit 2 via the refrigerant main pipe 6. In such a case, for example, a cooling only operation mode in which all the indoor units 3 perform a cooling operation, all indoors It is preferable that the all-heating operation mode in which the machine 3 performs the heating operation can be executed.
  • the outdoor unit 2 is equipped with a compressor 11, a refrigerant flow switching device 12 such as a four-way valve, a heat source side heat exchanger (outdoor heat exchanger) 13, and an accumulator 14.
  • the compressor 11 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the compressor 11 may be, for example, an inverter compressor whose capacity can be controlled.
  • the refrigerant flow switching device 12 switches the refrigerant flow in the cooling operation and the refrigerant flow in the heating operation.
  • the heat source side heat exchanger 13 functions as a condenser in the cooling operation, and functions as an evaporator in the heating operation. In the heat source side heat exchanger 13, the air and the refrigerant supplied by a heat source side blower (not shown) configured with a fan or the like perform heat exchange.
  • the accumulator 14 is provided on the suction side of the compressor 11.
  • the accumulator 14 stores surplus refrigerant generated due to a difference in operating state between the cooling operation and the heating operation, surplus refrigerant with respect to a transient change in operation, and the like.
  • the outdoor unit 2 is provided with a first pressure detection device 21 and a second pressure detection device 22.
  • the first pressure detection device 21 is provided in the refrigerant pipe 4 that communicates between the compressor 11 and the refrigerant flow switching device 12, and the pressure P 1 of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 11. Is detected.
  • Second pressure detecting device 22 is provided in the refrigerant pipe 4 that communicates between the refrigerant flow switching device 12 and the accumulator 14, to detect the pressure P 2 of the low-temperature low-pressure refrigerant sucked into the compressor 11.
  • the second pressure detection device 22 corresponds to the “pressure detection device” in the present invention.
  • the second pressure detection device 22 is not necessarily limited to such a case.
  • the second pressure detection device 22 communicates the outlet side of the load side heat exchanger 31 and the inlet side of the accumulator 14.
  • the second pressure detector 22 may be provided in the heat source side heat exchanger 13 when the air conditioner 100 is an air conditioner that performs only heating operation. Any refrigerant pipe may be provided as long as it connects the outlet side and the inlet side of the accumulator 14. Even in such a case, the same effect is produced.
  • the outdoor unit 2 is provided with a first temperature detection device 23 and a second temperature detection device 24.
  • the first temperature detection device 23 is provided in the refrigerant pipe 4 that communicates between the compressor 11 and the refrigerant flow switching device 12, and the temperature T 1 of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 11. Is detected.
  • the second temperature detection device 24 is provided in the refrigerant pipe 4 that communicates between the refrigerant flow switching device 12 and the accumulator 14, and detects the temperature T 2 of the low-temperature and low-pressure refrigerant sucked into the compressor 11.
  • Each of the first temperature detection device 23 and the second temperature detection device 24 may be configured with a thermistor or the like.
  • the second temperature detection device 24 corresponds to a “temperature detection device” in the present invention.
  • the second temperature detection device 24 is not necessarily limited to such a case.
  • the second temperature detection device 24 may be provided in the heat source side heat exchanger 13 when the air conditioning device 100 is an air conditioning device that performs only heating operation. Any refrigerant pipe may be provided as long as it connects the outlet side and the inlet side of the accumulator 14. Even in such a case, the same effect is produced.
  • the indoor unit 3 is equipped with a load side heat exchanger (indoor heat exchanger) 31 and an expansion device 32.
  • the expansion device 32 is, for example, a valve, and decompresses the refrigerant to expand it.
  • the expansion device 32 may be configured by a valve whose opening degree can be controlled, for example, an electronic expansion valve.
  • the indoor unit 3 is provided with a third temperature detection device 41, a fourth temperature detection device 42, and a fifth temperature detection device 43.
  • the third temperature detection device 41 is provided in the refrigerant pipe 5 that communicates between the expansion device 32 and the load side heat exchanger 31, and detects the temperature of the refrigerant flowing into the load side heat exchanger 31 in the cooling operation.
  • the fourth temperature detection device 42 is provided in the refrigerant pipe 5 that communicates between the load-side heat exchanger 31 and the refrigerant flow switching device 12, and the temperature of the refrigerant that flows out of the load-side heat exchanger 31 in the cooling operation. Is detected.
  • the fifth temperature detection device 43 is provided in the air suction portion of the load-side heat exchanger 31 and detects the indoor air temperature.
  • Each of the third temperature detection device 41, the fourth temperature detection device 42, and the fifth temperature detection device 43 may be formed of a thermistor or the like.
  • the control device 50 includes a surplus refrigerant presence / absence determination unit 51, a circulation composition calculation unit 52, and an operation control unit 53.
  • Each unit constituting the control device 50 may be constituted by, for example, a microcomputer, a microprocessor unit, etc., may be constituted by an updatable firmware or the like, and is executed by a command from the CPU or the like. It may be a program module or the like. Further, the control device 50 may be provided in the outdoor unit 2, may be provided in the indoor unit 3, may be provided separately for the outdoor unit 2 and the indoor unit 3, You may provide in addition to them.
  • the excess refrigerant presence / absence determination unit 51 corresponds to “excess refrigerant presence / absence determination means” in the present invention.
  • the circulation composition calculation unit 52 corresponds to “circulation composition calculation means” in the present invention.
  • the surplus refrigerant presence / absence determination unit 51 determines the presence / absence of surplus refrigerant in the accumulator 14 using at least the detection value P2 of the second pressure detection device 22 and the detection value T2 of the second temperature detection device 24, for example. judge.
  • the circulation composition calculation unit 52 selects a calculation method of the circulation composition in accordance with the determination result of the surplus refrigerant presence determination unit 51, for example, at least the detection value P2 of the second pressure detection device 22 and the second temperature detection. by using the detection value T 2 of the apparatus 24, it calculates the circulation composition of the non-azeotropic mixed refrigerant circulating through the refrigerant circuit 1.
  • the operation control unit 53 governs the overall operation of the air conditioning apparatus 100.
  • the operation control unit 53 rotates the frequency f c of the compressor 11, the fan constituting the heat source side blower (not shown), or the like based on detection values of various detection devices, instructions input via a remote controller, and the like.
  • the air conditioner 100 is caused to execute each operation mode by controlling the number f f (including ON / OFF switching), switching of the refrigerant flow switching device 12, opening of the expansion device 32, and the like.
  • Operation control unit 53 for example, a circulation composition calculated by the circulating composition computing unit 52, a detection value P 1 of the first pressure detector 21, the detected value P 2 of the second pressure detecting device 22, the Based on this, the frequency f c of the compressor 11, the number of rotations f f (including ON / OFF switching) of the fan constituting the heat source side blower (not shown), and the like are controlled.
  • FIG. 2 is a schematic circuit configuration diagram illustrating a refrigerant flow during the cooling operation of the air-conditioning apparatus according to Embodiment 1.
  • the flow direction of the refrigerant is indicated by solid arrows.
  • the cooling operation mode will be described by taking as an example a case where a cooling load is generated in the load-side heat exchanger 31.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 is condensed while dissipating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 3 is decompressed to a low-temperature and low-pressure gas-liquid two-phase refrigerant by the expansion device 32, and then flows into the load-side heat exchanger 31 that acts as an evaporator, and absorbs heat from the indoor air By doing so, the indoor air is cooled and becomes a low-temperature and low-pressure gas refrigerant.
  • the refrigerant flowing into the outdoor unit 2 is sucked into the compressor 11 through the refrigerant flow switching device 12 and the accumulator 14.
  • the operation control unit 53 of the control device 50 calculates the opening degree of the expansion device 32 from the circulation composition calculated by the circulation composition calculation unit 52 and the detected value P 2 of the second pressure detection device 22.
  • the superheat (superheat degree) which is the difference between the saturated gas temperature and the detected value of the fourth temperature detection device 42, is controlled to be constant.
  • FIG. 3 is a schematic circuit configuration diagram showing a refrigerant flow during heating operation of the air-conditioning apparatus according to Embodiment 1.
  • the flow direction of the refrigerant is indicated by solid arrows.
  • the heating operation mode is demonstrated by taking as an example the case where the thermal load is generated in the load side heat exchanger 31.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor unit 3 through the refrigerant main pipe 6 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 3 radiates heat to the indoor air in the load-side heat exchanger 31, becomes high-pressure liquid refrigerant, and flows into the expansion device 32.
  • the refrigerant flows out from the indoor unit 3, and flows into the outdoor unit 2 through the refrigerant main pipe 6.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 2 becomes low-pressure gas-liquid two-phase refrigerant that has absorbed heat from outdoor air in the heat source side heat exchanger 13.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed out of the heat source side heat exchanger 13 flows into the accumulator 14 through the refrigerant flow switching device 12, and the accumulator 14 separates the gas phase and the liquid phase. Only the refrigerant is sucked into the compressor 11.
  • the operation control unit 53 of the control device 50 calculates the opening degree of the expansion device 32 from the circulation composition calculated by the circulation composition calculation unit 52 and the detected value P 1 of the first pressure detection device 21.
  • the subcool (supercooling degree) which is the difference between the saturated liquid temperature and the detected value of the third temperature detector 41, is controlled to be constant.
  • FIG. 4 is a ph diagram of the refrigeration cycle of the air-conditioning apparatus according to Embodiment 1.
  • the temperature of the saturated liquid refrigerant and the temperature of the saturated gas refrigerant at the same pressure are different because the non-azeotropic refrigerant mixture has a plurality of refrigerant components having different boiling points. There is a feature that becomes. Further, if three parameters of pressure, temperature, and refrigerant composition are not given, there is a characteristic that the state of the refrigerant on the ph diagram is not determined at one point.
  • the refrigerant circuit 1 includes a portion where a gas-liquid interface such as an accumulator 14 is generated, the low-boiling component is likely to be a gas phase in the portion where the gas-liquid interface is generated, and the high-boiling component is a liquid phase. Therefore, there is a feature that a large amount of low boiling point components flow in the refrigerant circuit 1.
  • FIG. 5 is a diagram illustrating an operation flow of the surplus refrigerant presence / absence determination unit of the air-conditioning apparatus according to Embodiment 1.
  • the surplus refrigerant presence / absence determination unit 51 detects the detection value P2 of the second pressure detection device 22, the detection value T2 of the second temperature detection device 24, and To get.
  • the surplus refrigerant presence / absence determination unit 51 calculates the accumulator 14 from the detected value P2 of the second pressure detection device 22 and the filling composition ⁇ O of the non-azeotropic refrigerant mixture which is a known amount.
  • the saturated gas temperature T sat of the refrigerant in the inflow portion of the refrigerant is calculated.
  • the surplus refrigerant presence / absence determination unit 51 determines whether or not the detection value T2 of the second temperature detection device 24 exceeds the refrigerant saturation gas temperature T sat at the inflow portion of the accumulator 14 in step A103. If the determination result is YES, since it can be determined that the gas refrigerant is flowing into the accumulator 14, the surplus refrigerant presence / absence determination unit 51 outputs that there is no surplus refrigerant in the accumulator 14 in step A104.
  • the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 may be calculated by an arithmetic expression such as the following expression (1), or stored in advance as a table or the like. and the detection value P 2 of the pressure sensing device 22, and the fill composition alpha O, may be calculated by being read from the saturated gas temperature T sat, relationship. The resolution at the time of calculating the saturated gas temperature T sat may be improved by interpolating between the tabulated values as necessary. Further, an approximate expression indicating the relationship between the detected value P2 of the second pressure detection device 22 and the saturated gas temperature T sat is stored or calculated in advance, and the saturated gas temperature T sat is calculated using the approximate expression. May be.
  • the surplus refrigerant presence / absence determination unit 51 uses the filling composition when calculating the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14. Since the saturated gas temperature T sat at the same pressure becomes higher as the ratio of the low boiling point component becomes smaller, such a configuration is compared with the case where the saturated gas temperature T sat is calculated using the circulation composition. Therefore, the saturated gas temperature T sat of the refrigerant flowing into the accumulator 14 is estimated to be high, and the determination that there is no surplus refrigerant in the accumulator 14 is made on the safety side.
  • the surplus refrigerant presence / absence determination unit 51 may calculate the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 using another refrigerant composition that is not a filling composition. For example, the surplus refrigerant presence / absence determination unit 51 is selected when the circulation composition calculation unit 52 determines that there is no surplus refrigerant in the accumulator 14 by the circulation composition calculation unit 52, which will be described later.
  • the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 may be calculated using the value of the circulation composition calculated by the calculation method.
  • the surplus refrigerant presence / absence determination unit 51 calculates the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 based on the detection value P2 of the second pressure detection device 22 and the filling composition.
  • the present invention is not limited to such a case.
  • the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value P2 of the second pressure detection device 22, and at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness.
  • Information stored in a table or the like is stored in advance, and from the filling composition, the detected value P2 of the second pressure detection device 22, and the stored information, the filling composition and the second pressure detection device 22 are stored.
  • the detected values to derive the refrigerant physical properties corresponding to P 2 based on the derived coolant properties, the saturated gas temperature T sat of the refrigerant at the inlet of the accumulator 14 may be calculated.
  • the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value P2 of the second pressure detection device 22,
  • the saturated gas temperature T sat of the refrigerant at the inflow portion of the accumulator 14 may be calculated based on the calculated refrigerant physical properties.
  • the present invention is not limited to such a case.
  • a filling composition of two or more refrigerant components among the plurality of refrigerant components may be used.
  • FIG. 6 is a diagram illustrating an operation flow of Modification Example 1 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1.
  • the surplus refrigerant presence / absence determination unit 51 in step A201, the detection value P2 of the second pressure detection device 22, the detection value T2 of the second temperature detection device 24, To get.
  • the surplus refrigerant presence / absence determination unit 51 calculates the accumulator 14 from the detected value T2 of the second temperature detection device 24 and the filling composition ⁇ O of the non-azeotropic refrigerant mixture which is a known amount.
  • the saturated gas pressure P sat of the refrigerant in the inflow portion of the refrigerant is calculated. Then, excess refrigerant determining unit 51, in step A203, the detection value P 2 of the second pressure detecting device 22, determine whether it is less than the saturated gas pressure P sat of the refrigerant in the inlet of the accumulator 14 To do. If the determination result is YES, since it can be determined that the gas refrigerant is flowing into the accumulator 14, the surplus refrigerant presence / absence determination unit 51 outputs that there is no surplus refrigerant in the accumulator 14 in step A204.
  • the determination result is NO, it can be determined that the gas-liquid two-phase refrigerant is flowing into the accumulator 14, and therefore the surplus refrigerant presence / absence determination unit 51 has an excess refrigerant in the accumulator 14 in step A205. Outputs the effect.
  • the saturated gas pressure P sat of the refrigerant at the inflow portion of the accumulator 14 may be calculated by an arithmetic expression such as the following expression (2), or stored in advance as a table or the like. It may be calculated by reading from the relationship between the detection value T 2 of the temperature detection device 24, the filling composition ⁇ O and the saturated gas pressure P sat . The resolution at the time of calculating the saturated gas pressure P sat may be improved by interpolating between the tabulated values as necessary. Further, an approximate expression indicating the relationship between the detected value T 2 of the second temperature detection device 24 and the saturated gas pressure P sat is stored or calculated in advance, and the saturated gas pressure P sat is calculated using the approximate expression. May be.
  • coolant presence-absence determination part 51 calculates the saturated gas pressure Psat of the refrigerant
  • the present invention is not limited to such a case.
  • the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value T2 of the second temperature detection device 24, and at least one refrigerant physical property of pressure, temperature, enthalpy, and dryness.
  • Information stored in a table or the like is stored in advance, and from the filling composition, the detected value T2 of the second temperature detection device 24, and the stored information, the filling composition and the second temperature detection device 24 are stored. of deriving the refrigerant physical properties corresponding to the detected value T 2, based on the derived coolant properties, the saturated gas pressure P sat of the refrigerant in the inlet of the accumulator 14 may be calculated.
  • the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value T2 of the second temperature detection device 24,
  • the saturated gas pressure P sat of the refrigerant at the inflow portion of the accumulator 14 may be calculated based on the calculated refrigerant physical properties.
  • the present invention is not limited to such a case.
  • a filling composition of two or more refrigerant components among the plurality of refrigerant components may be used.
  • FIG. 7 is a diagram illustrating an operation flow of Modification-2 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1. As shown in FIG. 7, first, the surplus refrigerant presence / absence determination unit 51, in step A301, the detection value P2 of the second pressure detection device 22, the detection value T2 of the second temperature detection device 24, To get.
  • the accumulator 14 is a saturated gas enthalpy of the refrigerant at the inlet, calculates the temperature calculation saturated gas enthalpy H GT. Further, from the detected value P 2 of the second pressure detection device 22 and the filling composition ⁇ O of the non-azeotropic refrigerant mixture which is a known amount, the pressure which is the saturated gas enthalpy of the refrigerant in the inflow portion of the accumulator 14 calculating a calculated saturated gas enthalpy H GP.
  • excess refrigerant determining unit 51 determines, in step A303, the temperature calculation saturated gas enthalpy H GT is, whether more than the pressure calculation saturated gas enthalpy H GP. If the determination result is YES, it can be determined that the gas refrigerant is flowing into the accumulator 14, and therefore the surplus refrigerant presence / absence determination unit 51 outputs that there is no surplus refrigerant in the accumulator 14 in step A304. If the determination result is NO, it can be determined that the gas-liquid two-phase refrigerant is flowing into the accumulator 14, and therefore the surplus refrigerant presence / absence determination unit 51 has an excess refrigerant in the accumulator 14 in step A305. Outputs the effect.
  • temperature calculating saturated gas enthalpy H GT is may be calculated by the following arithmetic expression of Equation (3), also previously stored as a table or the like, the detection of the second temperature detector 24 the value T 2, a filling composition alpha O, may be calculated by being read from the temperature calculating saturated gas enthalpy H GT, relationship. If necessary, by between between tabulated values are interpolated (interpolation), the resolution at the time of calculating the temperature calculation saturated gas enthalpy H GT may be improved.
  • the second and the detected value T 2 of the temperature sensing device 24, a temperature calculation saturated gas enthalpy H GT are approximate expression indicating the relationship previously stored or calculating, the temperature calculation saturated gas enthalpy H by using the approximate expression GT may be calculated.
  • the pressure calculation saturated gas enthalpy H GP may be calculated by an arithmetic expression such as the following expression (4), or the second pressure detection device 22 stored in advance as a table or the like. Between the detection value P 2, a filling composition alpha O, may be calculated by being read from the pressure calculating saturated gas enthalpy H GP, relationship. If necessary, by between between tabulated values are interpolated (interpolation), the resolution at the time of calculating the pressure calculation saturated gas enthalpy H GP may be improved.
  • an approximate expression indicating the relationship between the detected value P 2 of the second pressure detection device 22 and the pressure calculation saturated gas enthalpy H GP is stored or calculated in advance, and the pressure calculation saturated gas enthalpy H is calculated using the approximate expression. GP may be calculated.
  • excess refrigerant determining unit 51, the detected value T 2 of the second temperature detector 24, and the fill composition, based on, has been described a case of calculating the temperature calculation saturated gas enthalpy H GT, It is not limited to such a case.
  • the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value T2 of the second temperature detection device 24, and at least one refrigerant physical property of pressure, temperature, enthalpy, and dryness.
  • Information stored in a table or the like is stored in advance, and from the filling composition, the detected value T2 of the second temperature detection device 24, and the stored information, the filling composition and the second temperature detection device 24 are stored.
  • the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value T2 of the second temperature detection device 24, based on the calculated refrigerant physical properties, it may be calculated temperature calculation saturated gas enthalpy H GT.
  • the excess refrigerant presence determination part 51 calculates the pressure calculation saturated gas enthalpy H GP based on the detection value P2 of the second pressure detection device 22 and the filling composition, It is not limited to such a case.
  • the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value P2 of the second pressure detection device 22, and at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness. Information stored in a table or the like is stored in advance, and from the filling composition, the detected value P2 of the second pressure detection device 22, and the stored information, the filling composition and the second pressure detection device 22 are stored.
  • the detected values to derive the refrigerant physical properties corresponding to P 2, based on the derived refrigerant physical properties, may be calculated pressure calculation saturated gas enthalpy H GP.
  • the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value P2 of the second pressure detection device 22, Based on the calculated refrigerant physical properties, the pressure calculation saturated gas enthalpy H GP may be calculated.
  • the charging composition ⁇ O of the refrigerant component having the lowest boiling point among the plurality of refrigerant components is described.
  • a filling composition of two or more refrigerant components among a plurality of refrigerant components may be used.
  • FIG. 8 is a diagram illustrating an operation flow of the circulation composition calculation unit of the air-conditioning apparatus according to Embodiment 1.
  • the circulation composition calculation unit 52 acquires the output of the surplus refrigerant presence / absence determination unit 51, and the output is an output indicating that there is no surplus refrigerant in the accumulator 14.
  • the process proceeds to step B102, and if the output indicates that there is surplus refrigerant in the accumulator 14, the process proceeds to step B104.
  • step B102 the circulation composition calculation unit 52 selects the first calculation method as the calculation method of the circulation composition ⁇ , and proceeds to step B103.
  • step B103 the circulation composition calculating unit 52 calculates a value obtained by adding the composition correction value ⁇ to the filling composition ⁇ O as the circulation composition ⁇ , and outputs the circulation composition ⁇ in step B107.
  • the composition correction value ⁇ is a positive value.
  • step B103 the circulation composition calculation unit 52 adds the composition correction value ⁇ that is a positive value to the filling composition ⁇ O instead of the filling composition ⁇ O as the circulation composition ⁇ when there is no surplus refrigerant in the accumulator 14. Calculate by value. Even when there is no surplus refrigerant in the accumulator 14, the circulation composition ⁇ does not become equal to the filling composition ⁇ O because the refrigerant dissolves in the refrigerating machine oil. Therefore, the accuracy of calculation of the circulation composition ⁇ can be improved by adding the composition correction value ⁇ , which is a parameter corresponding to the composition variation caused by the refrigerant dissolved in the refrigerating machine oil, to the filling composition ⁇ O. .
  • the non-azeotropic refrigerant mixture is a refrigerant mixture of R32 refrigerant and R1234yf refrigerant
  • the boiling point of R32 refrigerant is ⁇ 52 ° C.
  • the boiling point of R1234yf refrigerant is ⁇ 29.4 ° C., which is the most boiling point.
  • the filling composition ⁇ O is defined as the mass ratio of the R32 refrigerant in the state in which the refrigerant circulation circuit 1 is filled.
  • the accumulator 14 has no excess refrigerant. From the test, it was clarified that the circulation composition ⁇ becomes larger by any value included in the range of 1 wt% to 4 wt% as compared with the filling composition ⁇ O. Therefore, the composition correction value ⁇ may be any value included in the range of 1 wt% to 4 wt%.
  • the non-azeotropic refrigerant mixture is a refrigerant mixture of R32 refrigerant and R1234ze refrigerant
  • the R1234yf refrigerant and R1234ze refrigerant have similar physical properties, so that the mass ratio of the R32 refrigerant is the refrigerant circulation.
  • the circulation composition ⁇ in a state where there is no excess refrigerant in the accumulator 14 is compared with the filling composition ⁇ O. It is clear that the value increases by any value included in the range of 1 wt% to 4 wt%.
  • the circulation composition calculation unit 52 may change the composition correction value ⁇ according to the operating state of the refrigeration cycle.
  • the composition correction value ⁇ is set to any value included in the range of 2 wt% to 3 wt%. It is good to be done.
  • the solubility of refrigerant in refrigeration oil also varies depending on the type of refrigerant and refrigeration oil, temperature conditions, pressure conditions, etc., so the composition correction value ⁇ is calculated from the type of refrigerant and refrigeration oil, temperature conditions, pressure conditions, etc. It may be set to a value that takes into account the solubility.
  • the circulating composition calculation unit 52 may calculate the solubility during the operation of the refrigeration cycle, and change the composition correction value ⁇ according to the solubility.
  • step B104 the circulation composition calculation unit 52 selects the second calculation method as the calculation method of the circulation composition ⁇ , and proceeds to step B105.
  • step B105 the circulation composition calculation unit 52 acquires the detection value P2 of the second pressure detection device 22 and the detection value T2 of the second temperature detection device 24.
  • step B106 the circulation composition calculation unit 52 calculates the saturated gas composition ⁇ G calculated from the detection value P2 of the second pressure detection device 22 and the detection value T2 of the second temperature detection device 24.
  • the circulation composition ⁇ is calculated, and in step B107, the circulation composition ⁇ is output.
  • the saturated gas composition ⁇ G is a circulation composition when it is assumed that the refrigerant flowing into the accumulator 14 is a saturated gas (that is, dryness of 1). Actually, in a state where surplus refrigerant is generated in the accumulator 14, a gas-liquid two-phase refrigerant having a dryness of about 0.9 flows into the accumulator 14. However, even if the dryness is high and the refrigerant flowing into the accumulator 14 is approximated to be saturated gas (that is, dryness 1), the influence on the calculation accuracy of the circulation composition ⁇ is small, so the saturated gas composition ⁇ G There is no problem even if the calculation is made as the circulation composition ⁇ .
  • the saturated gas composition ⁇ G may be calculated by an arithmetic expression such as the following expression (5), and the detection value P 2 of the second pressure detection device 22 stored in advance as a table or the like, and the detection value T 2 of the second temperature sensing device 24, may be calculated by being read from the saturated gas composition alpha G, the relationship.
  • the saturated gas state can be specified from two of temperature and pressure. Therefore, the saturated gas composition ⁇ G specifies the saturated gas state from the detection value P 2 of the second pressure detection device 22 and the detection value T 2 of the second temperature detection device 24, and the saturated gas state It can be calculated by specifying the circulation composition. If necessary, the resolution in calculating the saturated gas composition ⁇ G may be improved by interpolating between the tabulated values. Further, a detection value P 2 of the second pressure detector 22, the detected value T 2 of the second temperature detector 24, the approximate expression indicating the saturated gas composition alpha G, the relationship stored in advance or operation, The saturated gas composition ⁇ G may be calculated using the approximate expression.
  • the present invention is not limited to such a case.
  • a circulating composition of two or more of the refrigerant components may be used.
  • the filling composition ⁇ O of the refrigerant component having the lowest boiling point among the plurality of refrigerant components is used as the filling composition.
  • a filling composition of two or more refrigerant components may be used.
  • the physical property values shown below are values calculated by REFPROP Version 9.0 released by NIST (National Institute of Standards and Technology).
  • step A103 the surplus refrigerant presence / absence determination unit 51 determines whether or not the detection value T2 of the second temperature detection device 24 is equal to or higher than the saturated gas temperature T sat .
  • the surplus refrigerant presence / absence determination unit 51 proceeds to Step A105 to indicate that there is surplus refrigerant in the accumulator 14. Is output.
  • step B101 the circulation composition calculation unit 52 acquires the output of the surplus refrigerant presence / absence determination unit 51. Since the output is an output indicating that there is surplus refrigerant in the accumulator 14, the flow proceeds to step B104.
  • step B104 the circulation composition calculation unit 52 selects the second calculation method as the calculation method of the circulation composition ⁇ , and proceeds to step B105.
  • the circulation composition calculating unit 52 outputs the circulation composition ⁇ in step B107.
  • the circulation composition calculation unit 52 calculates the circulation composition ⁇ by approximating that the refrigerant flowing into the accumulator 14 is a saturated gas (that is, dryness 1). For example, when the detection value P 2 of the second pressure detection device 22 is 0.70 MPa abs and the detection value T 2 of the second temperature detection device 24 is 1.0 ° C., the second pressure detection device 22 flows into the accumulator 14. When the refrigerant is a saturated gas (ie, dryness 1), the circulation composition ⁇ (ie, saturated gas composition ⁇ G ) of the R32 refrigerant is 56.4 wt%, and the refrigerant flowing into the accumulator 14 has a dryness of 0.9.
  • a saturated gas that is, dryness 1
  • the circulation composition ⁇ of the R32 refrigerant in the case of the gas-liquid two-phase refrigerant is 54.8 wt%, even if it is approximated that the refrigerant flowing into the accumulator 14 is a saturated gas (that is, dryness 1), the circulation Only an error of 1.6 wt% occurs in the composition ⁇ .
  • the circulation composition ⁇ 50.5 wt%
  • the circulation composition ⁇ 59.6 wt%.
  • the circulation composition ⁇ has an error in the range of ⁇ 4.3 wt% to 4.8 wt% from the true value due to an error included in the detection value T 2 of the second temperature detection device 24. Since the value is larger than the error of 1.6 wt% described above, even if the refrigerant flowing into the accumulator 14 is approximated to be a saturated gas (that is, dryness 1), the circulation composition ⁇ can be calculated. It turns out that there is no hindrance.
  • FIG. 9 is a diagram illustrating an operation flow of the operation control unit of the air-conditioning apparatus according to Embodiment 1. As shown in FIG. 9, first, the operation control unit 53, in step C101, and the detected value P 1 of the first pressure detector 21, the detected value P 2 of the second pressure detecting device 22, the circulating composition The circulation composition ⁇ calculated by the calculation unit 52 is acquired.
  • step C102 the operation control unit 53 calculates the condensation temperature Tc from the detection value P1 of the first pressure detection device 21 and the circulation composition ⁇ . Further, the evaporation temperature Te is calculated from the detection value P2 of the second pressure detection device 22 and the circulation composition ⁇ .
  • the condensation temperature Tc may be calculated by reading from the relationship among the detected value P1 of the first pressure detection device 21, the circulation composition ⁇ , and the condensation temperature Tc stored in advance as a table or the like. Good. Further, the evaporation temperature T e is stored as a table or the like, and the detection value P 2 of the second pressure detecting device 22, and the circulating composition alpha, calculated by being read from the evaporation temperature T e, the relation May be.
  • the operation control unit 53 in step C103, by subtracting the [Delta] T c from the condensing temperature T c is a value obtained by subtracting the target value T cm of the condensing temperature, the target value T em evaporation temperature from evaporation temperature T e The value ⁇ T e is calculated.
  • the condensation temperature target value T cm and the evaporation temperature target value T em are target values set in accordance with the outdoor temperature and the indoor temperature.
  • the target value T cm for the condensation temperature and the target value T em for the evaporation temperature are stored in advance as a table or the like, the outdoor temperature, the indoor temperature, the target value T cm for the condensation temperature, and the target value T em for the evaporation temperature, It may be calculated by reading from the relationship.
  • step C104 the operation control unit 53 sets the frequency f c of the compressor 11 and the rotation speed f f of the fan constituting the heat source side blower (not shown) so that ⁇ T c and ⁇ T e approach zero. Control etc. Operation control unit 53, the frequency f c and the heat source side blower of the compressor 11 may be controlled both the rotational speed f f of fan or the like constituting the (not shown), also controls only one May be.
  • step C104 for example, when the heat source side heat exchanger 13 acts as a condenser, the operation control unit 53 performs control so that the frequency f c of the compressor 11 is reduced when ⁇ T c is a positive value. To do. And controls so as to increase the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
  • step C104 for example, when the heat source side heat exchanger 13 acts as a condenser, the operation control unit 53 performs control so as to increase the frequency f c of the compressor 11 when ⁇ T c is a negative value. To do. And controls so as to reduce the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
  • step C 104 the operation control unit 53, for example, when the heat source heat exchanger 13 acts as an evaporator, when [Delta] T e is a positive value, the control to increase the frequency f c of the compressor 11 To do. And controls so as to reduce the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
  • the operation control unit 53 for example, when the heat source heat exchanger 13 acts as an evaporator, when [Delta] T e is negative, the control to decrease the frequency f c of the compressor 11 To do. And controls so as to increase the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
  • Embodiment 2 FIG. Below, the air conditioning apparatus which concerns on Embodiment 2 is demonstrated. Note that, in the following, descriptions that overlap or are similar to those of the first embodiment are appropriately simplified or omitted.
  • FIG. 10 is a schematic circuit configuration diagram illustrating an example of a circuit configuration of the air-conditioning apparatus according to Embodiment 2.
  • the air conditioning apparatus 100 includes a plurality of outdoor units 2 and a plurality of indoor units 3.
  • the plurality of outdoor units 2 and the plurality of indoor units 3 are connected via a refrigerant main pipe 6.
  • the number of outdoor units 2 is not limited to two.
  • the number of indoor units 3 is not limited to three, and may be one.
  • the control device 50 includes a surplus refrigerant presence / absence determination unit 51, a circulation composition calculation unit 52, and an operation control unit 53.
  • Each part constituting the control device 50 may be provided separately for a plurality of outdoor units 2 or collectively in one representative outdoor unit 2 among the plurality of outdoor units 2. It may be provided separately or collectively in one representative indoor unit 3 among the plurality of indoor units 3, or may be provided separately or collectively in addition to them.
  • the excess refrigerant presence / absence determination unit 51 corresponds to “excess refrigerant presence / absence determination means” in the present invention.
  • the circulation composition calculation unit 52 corresponds to “circulation composition calculation means” in the present invention.
  • FIG. 11 is a diagram illustrating an operation flow of the surplus refrigerant presence / absence determination unit of the air-conditioning apparatus according to Embodiment 2.
  • the surplus refrigerant presence / absence determination unit 51 detects the detected value P2 of the second pressure detection device 22 from each of the plurality of outdoor units 2 and the second temperature detection device. 24 detection values T 2 are obtained.
  • the surplus refrigerant presence / absence determination unit 51 determines the presence / absence of surplus refrigerant in each of the accumulators 14 according to the operation flow shown in FIGS.
  • step D103 the surplus refrigerant presence / absence determining unit 51 determines whether there is no surplus refrigerant in all the accumulators 14. If the determination result is YES, the surplus refrigerant presence / absence determination unit 51 proceeds to step D104 and outputs that there is no surplus refrigerant. If the determination result is NO, the surplus refrigerant presence / absence determination unit 51 proceeds to step D105 and outputs that there is surplus refrigerant.
  • FIG. 12 is a diagram illustrating an operation flow of the circulation composition calculation unit of the air-conditioning apparatus according to Embodiment 2.
  • the circulation composition calculation unit 52 was detected by the outdoor unit 2 determined to have excess refrigerant among the detection values P 2 of the second pressure detection device 22 in Step E105. obtaining a detection value P 2, of the detection value T 2 of the second temperature detector 24, the detected value T 2 detected by the outdoor unit 2 where it is determined that excess refrigerant is present, the.
  • the average value of the detection value P 2 and the detection value T 2 detected by the outdoor unit 2 that is determined to have surplus refrigerant is Of the detected value P 2 and the detected value T 2 detected by the outdoor unit 2 that may have been acquired and determined to have surplus refrigerant, the representative outdoor unit 2 or the outdoor unit 2 with the most surplus refrigerant. detection value P 2 and the detection value T 2 may be obtained detected the like.
  • Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or some of the embodiments.
  • the air conditioner 100 is a direct expansion circuit in which the outdoor unit 2 and the indoor unit 3 are connected in series by the refrigerant main pipe 6
  • the air-conditioning apparatus 100 includes the load-side heat exchanger 31 and the expansion device 32 other than the indoor unit 3, and in the load-side heat exchanger 31, the refrigerant circulating in the refrigerant circulation circuit 1 and other heat medium May exchange heat, and the heat medium may be supplied to another heat exchanger provided in the indoor unit 3.
  • the air conditioning apparatus 100 may include a multistage refrigerant circulation circuit 1. Even in such a case, the same effect is produced.
  • the refrigerant filled in the refrigerant circuit 1 is described as an example of the case where the refrigerant is a non-azeotropic refrigerant mixture in which R32 refrigerant and R1234yf refrigerant are mixed in a mass ratio of 44 wt% and 56 wt%.
  • the refrigerant filled in the refrigerant circuit 1 is not limited to such a case, and is a non-azeotropic mixture in which a plurality of refrigerants are mixed and the temperature of the saturated gas and the temperature of the saturated liquid are different at the same pressure.
  • any kind of mixed refrigerant may be used, and any mixing ratio may be used.
  • the case where one compressor 11 is provided in the outdoor unit 2 has been described as an example.
  • the present invention is not limited to such a case, and the outdoor unit 2 may be provided with a plurality of compressors 11.
  • the case where one accumulator 14 is provided in the outdoor unit 2 has been described as an example.
  • the present invention is not limited to such a case, and a plurality of accumulators 14 may be provided in the outdoor unit 2.
  • the present invention is not limited to such a case, and the refrigerant circulation circuit 1 does not have the refrigerant flow switching device 12.
  • the air conditioner 100 may perform only one of the cooling operation and the heating operation. The same effect is produced when the air conditioner 100 changes the presence or absence of excess refrigerant in the accumulator 14 according to the operating state.
  • 1 refrigerant circulation circuit 2 outdoor unit, 3 indoor unit, 4 refrigerant piping, 5 refrigerant piping, 6 refrigerant main pipe, 11 compressor, 12 refrigerant flow switching device, 13 heat source side heat exchanger, 14 accumulator, 21 1st Pressure detection device, 22 second pressure detection device, 23 first temperature detection device, 24 second temperature detection device, 31 load side heat exchanger, 32 expansion device, 41 third temperature detection device, 42 fourth Temperature detector, 43 fifth temperature detector, 50 controller, 51 surplus refrigerant presence / absence determiner, 52 circulation composition calculator, 53 operation controller, 100 air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷凍サイクル装置は、アキュムレータ14内に余剰冷媒が無いか否かを判定する余剰冷媒有無判定手段と、余剰冷媒有無判定手段において余剰冷媒が無いと判定される場合に、非共沸混合冷媒が冷媒循環回路1を循環する状態での複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、循環組成を、余剰冷媒有無判定手段において余剰冷媒が無いと判定されない場合と異なる演算方法を用いて演算する循環組成演算手段と、を有する制御装置50と、を備えたものである。

Description

冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法
 本発明は、冷凍サイクル装置、例えばビル用マルチエアコン等に適用される空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法に関するものである。
 従来の冷凍サイクル装置として、例えば非共沸混合冷媒等の混合冷媒が充填された冷媒循環回路と、制御装置と、を備えたものがある。制御装置は、混合冷媒が冷媒循環回路を循環する状態での複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、循環組成を算出する。制御装置は、算出された循環組成の値を用いて、例えば、冷媒循環回路の圧縮機の動作、熱源側送風機の動作等を制御する。循環組成の値は、例えば、アキュムレータ内に設けられた液面検出装置で検出される余剰冷媒の液面高さの検出値を、予め作成された液面高さと循環組成の値との関係を用いて、換算することによって算出される(例えば、特許文献1を参照。)。
特開平8-35725号公報(段落[0044]~段落[0047]、図9、図10等)
 従来の冷凍サイクル装置では、制御装置が、アキュムレータ内に余剰冷媒が無いか否かに応じて演算方法を変更することなく、循環組成の値を演算する。アキュムレータ内に余剰冷媒が生じる場合には、循環組成と、混合冷媒が冷媒循環回路に充填される状態での複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成であり、且つ、既知の値である、充填組成と、の差が大きくなるため、循環組成の値が、例えば上述の手法等によって算出されることが有効である。しかし、アキュムレータ内に余剰冷媒が生じない場合には、循環組成と、既知の値である充填組成と、の差が小さくなるため、循環組成の値が、例えば上述の手法等によって算出されると、例えば、検出装置で生じる誤差、換算で生じる誤差等の誤差要因に起因して、却って算出の精度が低下してしまう場合がある。また、演算の処理量が無駄に多くなってしまう場合がある。
 つまり、従来の冷凍サイクル装置では、アキュムレータ内に余剰冷媒が無いか否かに関わらず、単一の演算方法によって循環組成の値が演算されるため、例えば、循環組成の値の算出の精度を向上したり、循環組成の値の演算の処理量を削減したりして、冷凍サイクル装置の性能等を向上することを、アキュムレータ内に余剰冷媒が生じない場合と、アキュムレータ内に余剰冷媒が生じる場合と、の両方において実現することが困難であるという問題点があった。
 本発明は、上記のような課題を背景としてなされたものであり、冷凍サイクル装置の性能等を向上することを、アキュムレータ内に余剰冷媒が生じない場合と、アキュムレータ内に余剰冷媒が生じる場合と、の両方において実現できる冷凍サイクル装置を得るものである。また、そのような空気調和装置を得るものである。また、そのような冷凍サイクル装置に用いられる循環組成の算出方法を得るものである。
 本発明に係る冷凍サイクル装置は、圧縮機と、熱源側熱交換器と、絞り装置と、負荷側熱交換器と、余剰冷媒を貯留するアキュムレータと、が配管で接続され、沸点が異なる複数の冷媒成分を有する非共沸混合冷媒が充填された冷媒循環回路と、前記アキュムレータ内に前記余剰冷媒が無いか否かを判定する余剰冷媒有無判定手段と、前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定される場合に、前記非共沸混合冷媒が前記冷媒循環回路を循環する状態での前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、循環組成を、前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定されない場合と異なる演算方法を用いて演算する循環組成演算手段と、を有する制御装置と、を備えたものである。
 本発明に係る冷凍サイクル装置は、アキュムレータ内に余剰冷媒が無いか否かを判定する余剰冷媒有無判定手段と、余剰冷媒有無判定手段において余剰冷媒が無いと判定される場合に、循環組成を、余剰冷媒有無判定手段において余剰冷媒が無いと判定されない場合と異なる演算方法を用いて演算する循環組成演算手段と、を有する制御装置を備えたものである。そのため、冷凍サイクル装置の性能等を向上することを、アキュムレータ内に余剰冷媒が生じない場合と、アキュムレータ内に余剰冷媒が生じる場合と、の両方において実現することが可能となる。
実施の形態1に係る空気調和装置の、回路構成の一例を示す概略回路構成図である。 実施の形態1に係る空気調和装置の、冷房運転時の冷媒の流れを示す概略回路構成図である。 実施の形態1に係る空気調和装置の、暖房運転時の冷媒の流れを示す概略回路構成図である。 実施の形態1に係る空気調和装置の、冷凍サイクルのp-h線図である。 実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の動作フローを示す図である。 実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の変形例-1の動作フローを示す図である。 実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の変形例-2の動作フローを示す図である。 実施の形態1に係る空気調和装置の、循環組成演算部の動作フローを示す図である。 実施の形態1に係る空気調和装置の、動作制御部の動作フローを示す図である。 実施の形態2に係る空気調和装置の、回路構成の一例を示す概略回路構成図である。 実施の形態2に係る空気調和装置の、余剰冷媒有無判定部の動作フローを示す図である。 実施の形態2に係る空気調和装置の、循環組成演算部の動作フローを示す図である。
 以下、本発明に係る冷凍サイクル装置について、図面を用いて説明する。
 なお、本発明では、非共沸混合冷媒が冷媒循環回路を循環する状態での、複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成が、「循環組成」と定義される。また、非共沸混合冷媒が冷媒循環回路に充填される状態での、複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成が、「充填組成」と定義される。また、複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成が、「冷媒組成」と定義される。「冷媒組成」には、「循環組成」と「充填組成」との両方が含まれる。
 また、以下では、本発明に係る冷凍サイクル装置が、空気調和装置である場合について説明しているが、そのような場合に限定されず、本発明に係る冷凍サイクル装置が、空気調和装置以外の他の冷凍サイクル装置であってもよい。また、以下で説明する構成、動作等は、一例にすぎず、本発明に係る冷凍サイクル装置は、そのような構成、動作等である場合に限定されない。また、構成、動作等の細かい説明については、適宜簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
実施の形態1.
 以下に、実施の形態1に係る空気調和装置について説明する。
 図1は、実施の形態1に係る空気調和装置の、回路構成の一例を示す概略回路構成図である。
 図1に示されるように、空気調和装置100は、沸点の異なる複数の冷媒成分を有する非共沸混合冷媒が充填された冷媒循環回路1と、制御装置50と、を備える。空気調和装置100は、非共沸混合冷媒を循環させることによって空気調和を行う。非共沸混合冷媒は、例えば、R32冷媒とR1234yf冷媒の混合冷媒、R32冷媒とR1234ze冷媒の混合冷媒等である。これ以降の説明では、R32冷媒とR1234yf冷媒が、44wt%と56wt%の質量割合で混合された冷媒である場合を例に説明する。また、非共沸混合冷媒が、R32冷媒とR1234yf冷媒の混合冷媒である場合、及び、R32冷媒とR1234ze冷媒の混合冷媒である場合を例に挙げたが、必ずしもそれらの非共沸混合冷媒である必要はなく、R32冷媒とR1234yf冷媒を主成分としてその他の冷媒が少量混ざっている混合冷媒であってもよく、また、R32冷媒とR1234ze冷媒を主成分としてその他の冷媒が少量混ざっている混合冷媒であってもよい。また、非共沸混合冷媒は、上述の混合冷媒である場合に限定されず、どのような冷媒が混合された混合冷媒であってもよい。また、混合される冷媒成分の数は、2成分であってもよく、また、3成分であってもよく、また、それ以上であってもよい。
 空気調和装置100は、室外機2と、室内機3と、を有する。室外機2において、冷媒循環回路1を構成する各機器は、冷媒配管4によって接続される。室内機3において、冷媒循環回路1を構成する各機器は、冷媒配管5によって接続される。冷媒配管4と冷媒配管5とは、冷媒主管6を介して接続される。室外機2に、冷媒主管6を介して複数の室内機3が接続されてもよく、そのような場合には、例えば、全ての室内機3が冷房運転を行う全冷房運転モード、全ての室内機3が暖房運転を行う全暖房運転モード等が実行可能であるとよい。
[室外機]
 室外機2には、圧縮機11と、四方弁等の冷媒流路切替装置12と、熱源側熱交換器(室外熱交換器)13と、アキュムレータ14と、が搭載される。
 圧縮機11は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機11は、例えば、容量制御可能なインバータ圧縮機等であるとよい。冷媒流路切替装置12は、冷房運転における冷媒の流れと暖房運転における冷媒の流れとを切り替えるものである。熱源側熱交換器13は、冷房運転において凝縮器として機能し、暖房運転において蒸発器として機能する。熱源側熱交換器13において、ファン等で構成される熱源側送風機(図示省略)によって供給される空気と冷媒とが熱交換を行う。アキュムレータ14は、圧縮機11の吸入側に設けられる。アキュムレータ14は、冷房運転と暖房運転の運転状態の違いによって生じる余剰冷媒、過渡的な運転の変化に対する余剰冷媒等を貯留する。
 室外機2には、第一の圧力検出装置21と、第二の圧力検出装置22と、が設けられる。第一の圧力検出装置21は、圧縮機11と冷媒流路切替装置12との間を連通させる冷媒配管4に設けられ、圧縮機11によって圧縮されて吐出された高温高圧の冷媒の圧力Pを検出する。第二の圧力検出装置22は、冷媒流路切替装置12とアキュムレータ14との間を連通させる冷媒配管4に設けられ、圧縮機11に吸入される低温低圧の冷媒の圧力Pを検出する。第二の圧力検出装置22は、本発明における「圧力検出装置」に相当する。なお、以上では、第二の圧力検出装置22が、冷媒流路切替装置12とアキュムレータ14との間を連通させる冷媒配管4に設けられる場合を例に説明したが、必ずしもそのような場合に限定されず、例えば、空気調和装置100が冷房運転のみを行う空気調和装置である場合において、第二の圧力検出装置22は、負荷側熱交換器31の出口側とアキュムレータ14の入口側とを連通させる冷媒配管であれば、どこに設けられてもよく、また、空気調和装置100が暖房運転のみを行う空気調和装置である場合において、第二の圧力検出装置22は、熱源側熱交換器13の出口側とアキュムレータ14の入口側とを連通させる冷媒配管であれば、どこに設けられてもよい。それらのような場合であっても、同様の効果が奏される。
 室外機2には、第一の温度検出装置23と、第二の温度検出装置24と、が設けられる。第一の温度検出装置23は、圧縮機11と冷媒流路切替装置12との間を連通させる冷媒配管4に設けられ、圧縮機11によって圧縮されて吐出された高温高圧の冷媒の温度Tを検出する。第二の温度検出装置24は、冷媒流路切替装置12とアキュムレータ14との間を連通させる冷媒配管4に設けられ、圧縮機11に吸入される低温低圧の冷媒の温度Tを検出する。第一の温度検出装置23及び第二の温度検出装置24のそれぞれが、サーミスタ等で構成されるとよい。第二の温度検出装置24は、本発明における「温度検出装置」に相当する。なお、以上では、第二の温度検出装置24が、冷媒流路切替装置12とアキュムレータ14との間を連通させる冷媒配管4に設けられる場合を例に説明したが、必ずしもそのような場合に限定されず、例えば、空気調和装置100が冷房運転のみを行う空気調和装置である場合において、第二の温度検出装置24は、負荷側熱交換器31の出口側とアキュムレータ14の入口側とを連通させる冷媒配管であれば、どこに設けられてもよく、また、空気調和装置100が暖房運転のみを行う空気調和装置である場合において、第二の温度検出装置24は、熱源側熱交換器13の出口側とアキュムレータ14の入口側とを連通させる冷媒配管であれば、どこに設けられてもよい。それらのような場合であっても、同様の効果が奏される。
[室内機]
 室内機3には、負荷側熱交換器(室内熱交換器)31と、絞り装置32と、が搭載される。
 負荷側熱交換器31において、ファン等で構成される負荷側送風機(図示省略)によって供給される空気と冷媒とが熱交換を行い、室内空間に供給される暖房用空気又は冷房用空気が生成される。絞り装置32は、例えば弁であり、冷媒を減圧して膨張させる。絞り装置32が、開度制御可能な弁、例えば、電子式膨張弁等で構成されるとよい。
 室内機3には、第三の温度検出装置41と、第四の温度検出装置42と、第五の温度検出装置43と、が設けられる。第三の温度検出装置41は、絞り装置32と負荷側熱交換器31との間を連通させる冷媒配管5に設けられ、冷房運転において負荷側熱交換器31に流入する冷媒の温度を検出する。第四の温度検出装置42は、負荷側熱交換器31と冷媒流路切替装置12との間を連通させる冷媒配管5に設けられ、冷房運転において負荷側熱交換器31から流出する冷媒の温度を検出する。第五の温度検出装置43は、負荷側熱交換器31の空気吸込み部に設けられ、室内の空気温度を検出する。第三の温度検出装置41、第四の温度検出装置42、及び、第五の温度検出装置43のそれぞれが、サーミスタ等で構成されるとよい。
[制御装置]
 制御装置50は、余剰冷媒有無判定部51と、循環組成演算部52と、動作制御部53と、を有する。制御装置50を構成する各部は、例えば、マイコン、マイクロプロセッサユニット等で構成されてもよく、また、ファームウェア等の更新可能なもので構成されてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。また、制御装置50は、室外機2に設けられてもよく、また、室内機3に設けられてもよく、また、室外機2と室内機3とに分けて設けられてもよく、また、それら以外に設けられてもよい。余剰冷媒有無判定部51は、本発明における「余剰冷媒有無判定手段」に相当する。循環組成演算部52は、本発明における「循環組成演算手段」に相当する。
 余剰冷媒有無判定部51は、例えば、少なくとも第二の圧力検出装置22の検出値Pと第二の温度検出装置24の検出値Tとを用いて、アキュムレータ14内の余剰冷媒の有無を判定する。
 循環組成演算部52は、余剰冷媒有無判定部51の判定結果に応じて、循環組成の演算方法を選択し、例えば、少なくとも第二の圧力検出装置22の検出値Pと第二の温度検出装置24の検出値Tとを用いて、冷媒循環回路1内を循環する非共沸混合冷媒の循環組成を演算する。
 動作制御部53は、空気調和装置100の動作全般を司る。動作制御部53は、例えば、各種検出装置の検出値、リモコンを介して入力された指示等に基づいて、圧縮機11の周波数f、熱源側送風機(図示省略)を構成するファン等の回転数f(ON/OFFの切り替えを含む)、冷媒流路切替装置12の切り替え、絞り装置32の開度等を制御して、空気調和装置100に各運転モードを実行させる。動作制御部53は、例えば、循環組成演算部52で算出された循環組成と、第一の圧力検出装置21の検出値Pと、第二の圧力検出装置22の検出値Pと、に基づいて、圧縮機11の周波数f、熱源側送風機(図示省略)を構成するファン等の回転数f(ON/OFFの切り替えを含む)等を制御する。
[冷房運転モード]
 図2は、実施の形態1に係る空気調和装置の、冷房運転時の冷媒の流れを示す概略回路構成図である。なお、図2では、冷媒の流れ方向を実線矢印で示している。また、以下では、負荷側熱交換器31に冷熱負荷が発生している場合を例として、冷房運転モードを説明している。
 図2に示されるように、冷房運転モードでは、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した高温高圧のガス冷媒は、室外空気に放熱しながら凝縮して、高圧の液冷媒となる。熱源側熱交換器13から流出した高圧の液冷媒は、室外機2から流出し、冷媒主管6を通って、室内機3に流入する。室内機3に流入した高圧の液冷媒は、絞り装置32によって低温低圧の気液二相冷媒に減圧された後、蒸発器として作用する負荷側熱交換器31に流入して、室内空気から吸熱することで室内空気を冷却し、低温低圧のガス冷媒となる。負荷側熱交換器31から流出した低温低圧のガス冷媒は、冷媒主管6を通って、室外機2へ流入する。室外機2に流入した冷媒は、冷媒流路切替装置12とアキュムレータ14とを通って、圧縮機11へ吸入される。
 制御装置50の動作制御部53は、例えば、絞り装置32の開度を、循環組成演算部52で算出された循環組成と第二の圧力検出装置22の検出値Pとから算出される冷媒の飽和ガス温度と、第四の温度検出装置42の検出値と、の差であるスーパーヒート(過熱度)が、一定になるように制御する。
[暖房運転モード]
 図3は、実施の形態1に係る空気調和装置の、暖房運転時の冷媒の流れを示す概略回路構成図である。なお、図3では、冷媒の流れ方向を実線矢印で示している。また、以下では、負荷側熱交換器31に温熱負荷が発生している場合を例として、暖房運転モードを説明している。
 図3に示されるように、暖房運転モードでは、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して冷媒主管6を通って、室内機3に流入する。室内機3に流入した高温高圧のガス冷媒は、負荷側熱交換器31で室内空気に放熱し、高圧の液冷媒となり、絞り装置32へ流入する。そして、絞り装置32によって低温低圧の気液二相冷媒に減圧された後、室内機3から流出し、冷媒主管6を通って、室外機2へ流入する。室外機2へ流入した低温低圧の気液二相冷媒は、熱源側熱交換器13において、室外空気から吸熱した低圧の気液二相冷媒となる。熱源側熱交換器13から流出した低圧の気液二相冷媒は、冷媒流路切替装置12を通って、アキュムレータ14に流入し、アキュムレータ14で気相と液相とが分離され、その気相の冷媒のみが圧縮機11へ吸入される。
 制御装置50の動作制御部53は、例えば、絞り装置32の開度を、循環組成演算部52で算出された循環組成と第一の圧力検出装置21の検出値Pとから算出される冷媒の飽和液温度と、第三の温度検出装置41の検出値と、の差であるサブクール(過冷却度)が、一定になるように制御する。
[冷凍サイクルのp-h線図]
 図4は、実施の形態1に係る空気調和装置の、冷凍サイクルのp-h線図である。
 図4に示されるように、非共沸混合冷媒が、沸点の異なる複数の冷媒成分を有することに起因して、同一圧力での飽和液冷媒の温度と飽和ガス冷媒の温度とが、異なる値になるという特徴がある。また、圧力、温度、及び、冷媒組成という三つのパラメータが与えられないと、p-h線図上での冷媒の状態が一点に決定されないという特徴がある。また、冷媒循環回路1が、アキュムレータ14のような気液界面が発生する部分を含んでいると、気液界面が発生する部分において、低沸点成分が気相となりやすく、高沸点成分が液相となりやすいことから、冷媒循環回路1内を低沸点成分が多く流れるようになるという特徴がある。
[余剰冷媒有無判定部]
 以下に、余剰冷媒有無判定部51の動作について説明する。
 なお、以下では、本発明における「充填組成」が、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αである場合を例に、説明している。
 図5は、実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の動作フローを示す図である。
 図5に示されるように、まず、余剰冷媒有無判定部51は、ステップA101において、第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、を取得する。次に、余剰冷媒有無判定部51は、ステップA102において、第二の圧力検出装置22の検出値Pと、既知の量である非共沸混合冷媒の充填組成αと、から、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを演算する。次に、余剰冷媒有無判定部51は、ステップA103において、第二の温度検出装置24の検出値Tが、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを超えるか否かを判定する。判定結果がYESである場合には、アキュムレータ14にガス冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA104において、アキュムレータ14内に余剰冷媒が無い旨を出力する。また、判定結果がNOである場合には、アキュムレータ14に気液二相冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA105において、アキュムレータ14内に余剰冷媒が有る旨を出力する。
 ステップA102において、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatが、以下の式(1)のような演算式によって算出されてもよく、また、予めテーブル等として記憶された、第二の圧力検出装置22の検出値Pと、充填組成αと、飽和ガス温度Tsatと、の関係から読み出されることによって算出されてもよい。必要に応じて、テーブル化された値同士の間が内挿(補間)されることによって、飽和ガス温度Tsatを算出する際の分解能が向上されてもよい。また、第二の圧力検出装置22の検出値Pと、飽和ガス温度Tsatと、の関係を示す近似式が予め記憶又は演算され、その近似式を用いて飽和ガス温度Tsatが算出されてもよい。
 [数1]
 Tsat=f(P,α)     ・・・(1)
 余剰冷媒有無判定部51は、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを演算する際に、充填組成を用いる。低沸点成分の比率が小さくなる程、同一圧力における飽和ガス温度Tsatが高くなるため、そのように構成されることで、循環組成を用いて飽和ガス温度Tsatを演算する場合と比較して、アキュムレータ14に流入する冷媒の飽和ガス温度Tsatを高く見積もることとなり、アキュムレータ14内に余剰冷媒が無いという判定が、安全側で行われることとなる。
 なお、余剰冷媒有無判定部51が、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを、充填組成ではない他の冷媒組成を用いて演算してもよい。例えば、余剰冷媒有無判定部51が、後に説明される、循環組成演算部52で第一の演算方法(余剰冷媒有無判定部51でアキュムレータ14内に余剰冷媒が無いと判定される場合に選択される演算方法)によって算出される循環組成の値を用いて、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを演算してもよい。
 また、余剰冷媒有無判定部51が、第二の圧力検出装置22の検出値Pと、充填組成と、に基づいて、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを演算する場合を説明しているが、そのような場合に限定されない。例えば、余剰冷媒有無判定部51が、充填組成と、第二の圧力検出装置22の検出値Pと、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性と、の関係が、テーブル化等された情報を予め記憶し、充填組成と、第二の圧力検出装置22の検出値Pと、その記憶された情報と、から、その充填組成及びその第二の圧力検出装置22の検出値Pに対応する冷媒物性を導出し、その導出された冷媒物性に基づいて、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを演算してもよい。また、余剰冷媒有無判定部51が、充填組成と、第二の圧力検出装置22の検出値Pと、から、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性を演算し、その演算された冷媒物性に基づいて、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを演算してもよい。
 また、飽和ガス温度Tsatの演算において、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αが用いられる場合を説明しているが、そのような場合に限定されず、例えば、複数の冷媒成分のうちの二つ以上の冷媒成分の充填組成が用いられてもよい。
(余剰冷媒有無判定部の変形例-1)
 図6は、実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の変形例-1の動作フローを示す図である。
 図6に示されるように、まず、余剰冷媒有無判定部51は、ステップA201において、第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、を取得する。次に、余剰冷媒有無判定部51は、ステップA202において、第二の温度検出装置24の検出値Tと、既知の量である非共沸混合冷媒の充填組成αと、から、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psatを演算する。次に、余剰冷媒有無判定部51は、ステップA203において、第二の圧力検出装置22の検出値Pが、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psat未満であるか否かを判定する。判定結果がYESである場合には、アキュムレータ14にガス冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA204において、アキュムレータ14内に余剰冷媒が無い旨を出力する。また、判定結果がNOである場合には、アキュムレータ14に気液二相冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA205において、アキュムレータ14内に余剰冷媒が有る旨を出力する。
 ステップA202において、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psatが、以下の式(2)のような演算式によって算出されてもよく、また、予めテーブル等として記憶された、第二の温度検出装置24の検出値Tと、充填組成αと、飽和ガス圧力Psatと、の関係から読み出されることによって算出されてもよい。必要に応じて、テーブル化された値同士の間が内挿(補間)されることによって、飽和ガス圧力Psatを算出する際の分解能が向上されてもよい。また、第二の温度検出装置24の検出値Tと、飽和ガス圧力Psatと、の関係を示す近似式が予め記憶又は演算され、その近似式を用いて飽和ガス圧力Psatが算出されてもよい。
 [数2]
 Psat=f(T,α)     ・・・(2)
 なお、余剰冷媒有無判定部51が、第二の温度検出装置24の検出値Tと、充填組成と、に基づいて、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psatを演算する場合を説明しているが、そのような場合に限定されない。例えば、余剰冷媒有無判定部51が、充填組成と、第二の温度検出装置24の検出値Tと、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性と、の関係が、テーブル化等された情報を予め記憶し、充填組成と、第二の温度検出装置24の検出値Tと、その記憶された情報と、から、その充填組成及びその第二の温度検出装置24の検出値Tに対応する冷媒物性を導出し、その導出された冷媒物性に基づいて、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psatを演算してもよい。また、余剰冷媒有無判定部51が、充填組成と、第二の温度検出装置24の検出値Tと、から、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性を演算し、その演算された冷媒物性に基づいて、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psatを演算してもよい。
 また、飽和ガス圧力Psatの演算において、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αが用いられる場合を説明しているが、そのような場合に限定されず、例えば、複数の冷媒成分のうちの二つ以上の冷媒成分の充填組成が用いられてもよい。
(余剰冷媒有無判定部の変形例-2)
 図7は、実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の変形例-2の動作フローを示す図である。
 図7に示されるように、まず、余剰冷媒有無判定部51は、ステップA301において、第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、を取得する。次に、余剰冷媒有無判定部51は、ステップA302において、第二の温度検出装置24の検出値Tと、既知の量である非共沸混合冷媒の充填組成αと、から、アキュムレータ14の流入部における冷媒の飽和ガスエンタルピである、温度算出飽和ガスエンタルピHGTを演算する。また、第二の圧力検出装置22の検出値Pと、既知の量である非共沸混合冷媒の充填組成αと、から、アキュムレータ14の流入部における冷媒の飽和ガスエンタルピである、圧力算出飽和ガスエンタルピHGPを演算する。次に、余剰冷媒有無判定部51は、ステップA303において、温度算出飽和ガスエンタルピHGTが、圧力算出飽和ガスエンタルピHGPを超えるか否かを判定する。判定結果がYESである場合には、アキュムレータ14にガス冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA304において、アキュムレータ14内に余剰冷媒が無い旨を出力する。また、判定結果がNOである場合には、アキュムレータ14に気液二相冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA305において、アキュムレータ14内に余剰冷媒が有る旨を出力する。
 ステップA302において、温度算出飽和ガスエンタルピHGTが、以下の式(3)のような演算式によって算出されてもよく、また、予めテーブル等として記憶された、第二の温度検出装置24の検出値Tと、充填組成αと、温度算出飽和ガスエンタルピHGTと、の関係から読み出されることによって算出されてもよい。必要に応じて、テーブル化された値同士の間が内挿(補間)されることによって、温度算出飽和ガスエンタルピHGTを算出する際の分解能が向上されてもよい。また、第二の温度検出装置24の検出値Tと、温度算出飽和ガスエンタルピHGTと、の関係を示す近似式が予め記憶又は演算され、その近似式を用いて温度算出飽和ガスエンタルピHGTが算出されてもよい。
 [数3]
 HGT=f(T,α)     ・・・(3)
 また、ステップA302において、圧力算出飽和ガスエンタルピHGPが、以下の式(4)のような演算式によって算出されてもよく、また、予めテーブル等として記憶された、第二の圧力検出装置22の検出値Pと、充填組成αと、圧力算出飽和ガスエンタルピHGPと、の関係から読み出されることによって算出されてもよい。必要に応じて、テーブル化された値同士の間が内挿(補間)されることによって、圧力算出飽和ガスエンタルピHGPを算出する際の分解能が向上されてもよい。また、第二の圧力検出装置22の検出値Pと、圧力算出飽和ガスエンタルピHGPと、の関係を示す近似式が予め記憶又は演算され、その近似式を用いて圧力算出飽和ガスエンタルピHGPが算出されてもよい。
 [数4]
 HGP=f(P,α)     ・・・(4)
 なお、余剰冷媒有無判定部51が、第二の温度検出装置24の検出値Tと、充填組成と、に基づいて、温度算出飽和ガスエンタルピHGTを演算する場合を説明しているが、そのような場合に限定されない。例えば、余剰冷媒有無判定部51が、充填組成と、第二の温度検出装置24の検出値Tと、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性と、の関係が、テーブル化等された情報を予め記憶し、充填組成と、第二の温度検出装置24の検出値Tと、その記憶された情報と、から、その充填組成及びその第二の温度検出装置24の検出値Tに対応する冷媒物性を導出し、その導出された冷媒物性に基づいて、温度算出飽和ガスエンタルピHGTを演算してもよい。また、余剰冷媒有無判定部51が、充填組成と、第二の温度検出装置24の検出値Tと、から、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性を演算し、その演算された冷媒物性に基づいて、温度算出飽和ガスエンタルピHGTを演算してもよい。
 また、余剰冷媒有無判定部51が、第二の圧力検出装置22の検出値Pと、充填組成と、に基づいて、圧力算出飽和ガスエンタルピHGPを演算する場合を説明しているが、そのような場合に限定されない。例えば、余剰冷媒有無判定部51が、充填組成と、第二の圧力検出装置22の検出値Pと、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性と、の関係が、テーブル化等された情報を予め記憶し、充填組成と、第二の圧力検出装置22の検出値Pと、その記憶された情報と、から、その充填組成及びその第二の圧力検出装置22の検出値Pに対応する冷媒物性を導出し、その導出された冷媒物性に基づいて、圧力算出飽和ガスエンタルピHGPを演算してもよい。また、余剰冷媒有無判定部51が、充填組成と、第二の圧力検出装置22の検出値Pと、から、圧力、温度、エンタルピ、乾き度のうちの少なくとも一つの冷媒物性を演算し、その演算された冷媒物性に基づいて、圧力算出飽和ガスエンタルピHGPを演算してもよい。
 また、温度算出飽和ガスエンタルピHGT及び圧力算出飽和ガスエンタルピHGPの演算において、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αが用いられる場合を説明しているが、そのような場合に限定されず、例えば、複数の冷媒成分のうちの二つ以上の冷媒成分の充填組成が用いられてもよい。
[循環組成演算部]
 以下に、循環組成演算部52の動作について説明する。
 なお、以下では、本発明における「循環組成」が、複数の冷媒成分のうちの最も沸点が低い冷媒成分の循環組成αである場合を例に、説明している。また、以下では、本発明における「充填組成」が、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αである場合を例に、説明している。
 図8は、実施の形態1に係る空気調和装置の、循環組成演算部の動作フローを示す図である。
 図8に示されるように、まず、循環組成演算部52は、ステップB101において、余剰冷媒有無判定部51の出力を取得し、その出力が、アキュムレータ14内に余剰冷媒が無い旨の出力である場合には、ステップB102に進み、アキュムレータ14内に余剰冷媒が有る旨の出力である場合には、ステップB104に進む。
 循環組成演算部52は、ステップB102において、循環組成αの演算方法として、第一の演算方法を選択して、ステップB103に進む。循環組成演算部52は、ステップB103において、充填組成αに組成補正値βを加えた値を循環組成αとして算出し、ステップB107において、循環組成αを出力する。組成補正値βは、正の値である。
 循環組成演算部52は、ステップB103において、アキュムレータ14内に余剰冷媒が無い場合の循環組成αを、充填組成αではなく、充填組成αに正の値である組成補正値βを加えた値で算出する。アキュムレータ14内に余剰冷媒が無い場合でも、冷媒が冷凍機油に溶け込むことによって、循環組成αは、充填組成αと等しくならない。そのため、充填組成αに、冷媒の冷凍機油への溶け込みに起因する組成変動に相当するパラメータである、組成補正値βを加算することで、循環組成αの算出の精度を向上することができる。
 例えば、非共沸混合冷媒が、R32冷媒とR1234yf冷媒との混合冷媒である場合には、R32冷媒の沸点が-52℃であり、R1234yf冷媒の沸点が-29.4℃であり、最も沸点が低い冷媒成分がR32冷媒であるため、充填組成αは、冷媒循環回路1に充填される状態でのR32冷媒の質量割合と定義される。そして、R32冷媒の質量割合が、冷媒循環回路1に充填される状態で35wt%~75wt%の範囲に含まれるいずれかの値である場合には、アキュムレータ14内に余剰冷媒が無い状態での循環組成αは、充填組成αと比較して、1wt%~4wt%の範囲に含まれるいずれかの値だけ大きくなることが、試験から明らかとなった。そのため、組成補正値βを、1wt%~4wt%の範囲に含まれるいずれかの値とするとよい。また、非共沸混合冷媒が、R32冷媒とR1234ze冷媒との混合冷媒である場合においても、R1234yf冷媒とR1234ze冷媒とが似た物性を有しているため、R32冷媒の質量割合が、冷媒循環回路1に充填される状態で35wt%~75wt%の範囲に含まれるいずれかの値である場合には、アキュムレータ14内に余剰冷媒が無い状態での循環組成αは、充填組成αと比較して、1wt%~4wt%の範囲に含まれるいずれかの値だけ大きくなることが、明らかとなっている。
 なお、冷媒が冷凍機油に溶け込む量は、冷凍サイクルの動作状態(高圧側の圧力値、低圧側の圧力値等)に依存して変動する。そのため、循環組成演算部52が、冷凍サイクルの動作状態に応じて、組成補正値βを変化させるとよい。また、循環組成演算部52が、冷凍サイクルの動作状態に応じて組成補正値βを変化させない場合には、組成補正値βが、2wt%~3wt%の範囲に含まれるいずれかの値に設定されるとよい。
 また、冷媒の冷凍機油に対する溶解度は、冷媒及び冷凍機油の種類、温度条件、圧力条件等によっても変動するため、組成補正値βが、冷媒と冷凍機油の種類、温度条件、圧力条件等から算出される溶解度を加味した値に設定されてもよい。循環組成演算部52が、冷凍サイクルの動作中に溶解度を算出し、その溶解度に応じて組成補正値βを変化させてもよい。
 循環組成演算部52は、ステップB104において、循環組成αの演算方法として、第二の演算方法を選択して、ステップB105に進む。循環組成演算部52は、ステップB105において、第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、を取得する。次に、循環組成演算部52は、ステップB106において、第二の圧力検出装置22の検出値Pと第二の温度検出装置24の検出値Tとから算出される飽和ガス組成αを、循環組成αとして算出し、ステップB107において、循環組成αを出力する。
 なお、飽和ガス組成αは、アキュムレータ14に流入する冷媒が飽和ガス(つまり乾き度1)であると仮定した場合の、循環組成である。実際には、アキュムレータ14内に余剰冷媒が生じる状態では、アキュムレータ14に、乾き度0.9程度の気液二相冷媒が流入する。しかし、その乾き度が高く、アキュムレータ14に流入する冷媒が飽和ガス(つまり乾き度1)であると近似しても、循環組成αの算出の精度に与える影響が小さいため、飽和ガス組成αを循環組成αとして算出しても支障がない。
 飽和ガス組成αは、以下の式(5)のような演算式によって算出されてもよく、また、予めテーブル等として記憶された、第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、飽和ガス組成αと、の関係から読み出されることによって算出されてもよい。p-h線図では、温度及び圧力の二つから、飽和ガス状態を特定することができる。そのため、飽和ガス組成αは、第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、から飽和ガス状態を特定し、その飽和ガス状態になる循環組成を特定することによって、算出することができる。必要に応じて、テーブル化された値同士の間が内挿(補間)されることによって、飽和ガス組成αを算出する際の分解能が向上されてもよい。また、第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、飽和ガス組成αと、の関係を示す近似式が予め記憶又は演算され、その近似式を用いて飽和ガス組成αが算出されてもよい。
 [数5]
 α=f(P,T)       ・・・(5)
 なお、循環組成として、複数の冷媒成分のうちの最も沸点が低い冷媒成分の循環組成αが用いられる場合を説明しているが、そのような場合に限定されず、例えば、複数の冷媒成分のうちの二つ以上の冷媒成分の循環組成が用いられてもよい。また、充填組成として、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αが用いられる場合を説明しているが、そのような場合に限定されず、例えば、複数の冷媒成分のうちの二つ以上の冷媒成分の充填組成が用いられてもよい。
[余剰冷媒有無判定部及び循環組成演算部の動作の具体例]
 以下に、余剰冷媒有無判定部51及び循環組成演算部52の動作の具体例について説明する。
 非共沸混合冷媒が、R32冷媒とR1234yf冷媒との混合冷媒であり、R32冷媒とR1234yf冷媒の質量割合が、44wt%と56wt%であり、第二の圧力検出装置22の検出値P=0.70MPaabsであり、第二の温度検出装置24の検出値T=1.0℃である場合について説明する。なお、以下に示される物性値は、NIST(National Institute of Standards and Technology)が発売しているREFPROP Version 9.0によって計算された値である。
 まず、余剰冷媒有無判定部51は、ステップA101において、第二の圧力検出装置22の検出値P=0.70MPaabsと、第二の温度検出装置24の検出値T=1.0℃と、を取得する。次に、余剰冷媒有無判定部51は、ステップA102において、第二の圧力検出装置22の検出値P=0.70MPaabsと、R32冷媒の充填組成αと、から、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを、飽和ガス温度Tsat=4.3℃と算出する。次に、余剰冷媒有無判定部51は、ステップA103において、第二の温度検出装置24の検出値Tが、飽和ガス温度Tsat以上であるか否かを判定する。この例では、T(=1.0℃)<Tsat(=4.3℃)であるため、余剰冷媒有無判定部51は、ステップA105に進んで、アキュムレータ14内に余剰冷媒が有る旨を出力する。
 循環組成演算部52は、ステップB101において、余剰冷媒有無判定部51の出力を取得し、その出力が、アキュムレータ14内に余剰冷媒が有る旨の出力であるため、ステップB104に進む。循環組成演算部52は、ステップB104において、循環組成αの演算方法として、第二の演算方法を選択して、ステップB105に進む。循環組成演算部52は、ステップB105において、第二の圧力検出装置22の検出値P=0.70MPaabsと、第二の温度検出装置24の検出値T=1.0℃と、を取得する。次に、循環組成演算部52は、ステップB106において、第二の圧力検出装置22の検出値P=0.70MPaabsと第二の温度検出装置24の検出値T=1.0℃とから、R32冷媒の飽和ガス組成αを、飽和ガス組成α=56.4wt%と算出し、この飽和ガス組成αを、循環組成αの値とする。次に、循環組成演算部52は、ステップB107において、循環組成αを出力する。
 循環組成演算部52は、アキュムレータ14に流入する冷媒が飽和ガス(つまり乾き度1)であると近似して、循環組成αを算出する。例えば、第二の圧力検出装置22の検出値P=0.70MPaabsであり、第二の温度検出装置24の検出値T=1.0℃である場合には、アキュムレータ14に流入する冷媒が飽和ガス(つまり乾き度1)である場合のR32冷媒の循環組成α(つまり飽和ガス組成α)は、56.4wt%であり、アキュムレータ14に流入する冷媒が乾き度0.9の気液二相冷媒である場合のR32冷媒の循環組成αは、54.8wt%であることから、アキュムレータ14に流入する冷媒が飽和ガス(つまり乾き度1)であると近似しても、循環組成αには、1.6wt%の誤差しか生じない。
 一方、一般的に、温度検出装置の検出値には±1℃程度の誤差が含まれており、第二の圧力検出装置22の検出値P=0.70MPaabsに固定して、第二の温度検出装置24の検出値T=2℃である場合と、第二の温度検出装置24の検出値T=0℃である場合とで、アキュムレータ14に流入する冷媒が乾き度0.9の気液二相冷媒である場合のR32冷媒の循環組成αを演算すると、第二の温度検出装置24の検出値T=2℃である場合には、循環組成α=50.5wt%となり、第二の温度検出装置24の検出値T=0℃である場合には循環組成α=59.6wt%となる。つまり、循環組成αには、第二の温度検出装置24の検出値Tに含まれる誤差によって、真値から-4.3wt%~4.8wt%の範囲で誤差が生じる。そして、その値は、上述の1.6wt%の誤差と比較して大きいため、アキュムレータ14に流入する冷媒が飽和ガス(つまり乾き度1)であると近似しても、循環組成αの算出に支障がないことが分かる。
[動作制御部]
 以下に、動作制御部53の動作について説明する。
 図9は、実施の形態1に係る空気調和装置の、動作制御部の動作フローを示す図である。
 図9に示されるように、まず、動作制御部53は、ステップC101において、第一の圧力検出装置21の検出値Pと、第二の圧力検出装置22の検出値Pと、循環組成演算部52で算出された循環組成αと、を取得する。
 次に、動作制御部53は、ステップC102において、第一の圧力検出装置21の検出値Pと、循環組成αと、から、凝縮温度Tを演算する。また、第二の圧力検出装置22の検出値Pと、循環組成αと、から、蒸発温度Tを演算する。なお、凝縮温度Tcは、予めテーブル等として記憶された、第一の圧力検出装置21の検出値Pと、循環組成αと、凝縮温度Tcと、の関係から読み出されることによって算出されてもよい。また、蒸発温度Tは、予めテーブル等として記憶された、第二の圧力検出装置22の検出値Pと、循環組成αと、蒸発温度Tと、の関係から読み出されることによって算出されてもよい。
 次に、動作制御部53は、ステップC103において、凝縮温度Tから凝縮温度の目標値Tcmを減じた値であるΔTと、蒸発温度Tから蒸発温度の目標値Temを減じた値であるΔTと、を計算する。なお、凝縮温度の目標値Tcm及び蒸発温度の目標値Temは、室外温度と、室内温度と、に応じて設定される目標値である。凝縮温度の目標値Tcm及び蒸発温度の目標値Temは、予めテーブル等として記憶された、室外温度と、室内温度と、凝縮温度の目標値Tcm及び蒸発温度の目標値Temと、の関係から読み出されることによって算出されるとよい。
 次に、動作制御部53は、ステップC104において、ΔT及びΔTがゼロに近づくように、圧縮機11の周波数f、熱源側送風機(図示省略)を構成するファン等の回転数f等を制御する。動作制御部53が、圧縮機11の周波数fと熱源側送風機(図示省略)を構成するファン等の回転数fとの両方を制御してもよく、また、いずれか一方のみを制御してもよい。
 ステップC104において、動作制御部53は、例えば、熱源側熱交換器13が凝縮器として作用する場合には、ΔTが正の値のとき、圧縮機11の周波数fを小さくするように制御する。また、熱源側送風機(図示省略)を構成するファン等の回転数fを大きくするように制御する。ステップC104において、動作制御部53は、例えば、熱源側熱交換器13が凝縮器として作用する場合には、ΔTが負の値のとき、圧縮機11の周波数fを大きくするように制御する。また、熱源側送風機(図示省略)を構成するファン等の回転数fを小さくするように制御する。
 ステップC104において、動作制御部53は、例えば、熱源側熱交換器13が蒸発器として作用する場合には、ΔTが正の値のとき、圧縮機11の周波数fを大きくするように制御する。また、熱源側送風機(図示省略)を構成するファン等の回転数fを小さくするように制御する。ステップC104において、動作制御部53は、例えば、熱源側熱交換器13が蒸発器として作用する場合には、ΔTが負の値のとき、圧縮機11の周波数fを小さくするように制御する。また、熱源側送風機(図示省略)を構成するファン等の回転数fを大きくするように制御する。
実施の形態2.
 以下に、実施の形態2に係る空気調和装置について説明する。
 なお、以下では、実施の形態1と重複又は類似する説明については、適宜簡略化又は省略している。
 図10は、実施の形態2に係る空気調和装置の、回路構成の一例を示す概略回路構成図である。
 図10に示されるように、空気調和装置100は、複数の室外機2と、複数の室内機3と、を有する。複数の室外機2と、複数の室内機3と、は、冷媒主管6を介して接続される。室外機2は、2つである場合に限定されない。室内機3は、3つである場合に限定されず、また、1つであってもよい。
 空気調和装置100のように、室外機2が複数である場合には、例えば、暖房運転等において、低圧の気液二相冷媒が、室内機3から冷媒主管6を通って複数の室外機2に流入することとなるため、冷媒の分配が均等にならず、一方の室外機2には、液冷媒が多く流入し、他方の室外機2には、ガス冷媒が流入するような状態が生じる。このような状態で運転が継続されると、アキュムレータ14内に余剰冷媒が無い室外機2と、アキュムレータ14内に余剰冷媒が有る室外機2と、が混在する状態となる。そのため、空気調和装置100のように、室外機2が複数である場合には、実施の形態1に係る空気調和装置と、制御装置50の構成、動作等を異ならせる必要がある。
[制御装置]
 制御装置50は、余剰冷媒有無判定部51と、循環組成演算部52と、動作制御部53と、を有する。制御装置50を構成する各部は、複数の室外機2に分けて又は複数の室外機2のうちの代表する一つの室外機2に纏めて設けられてもよく、また、複数の室内機3に分けて又は複数の室内機3のうちの代表する一つの室内機3に纏めて設けられてもよく、また、それら以外に分けて又は纏めて設けられてもよい。余剰冷媒有無判定部51は、本発明における「余剰冷媒有無判定手段」に相当する。循環組成演算部52は、本発明における「循環組成演算手段」に相当する。
[余剰冷媒有無判定部]
 以下に、余剰冷媒有無判定部51の動作について説明する。
 図11は、実施の形態2に係る空気調和装置の、余剰冷媒有無判定部の動作フローを示す図である。
 図11に示されるように、まず、余剰冷媒有無判定部51は、ステップD101において、複数の室外機2のそれぞれから第二の圧力検出装置22の検出値Pと、第二の温度検出装置24の検出値Tと、を取得する。次に、余剰冷媒有無判定部51は、ステップD102において、図5~図7に示されるような動作フローによって、アキュムレータ14のそれぞれにおける、余剰冷媒の有無を判定する。余剰冷媒有無判定部51は、ステップD103において、全てのアキュムレータ14において余剰冷媒が無いか否かを判定する。判定結果がYESである場合には、余剰冷媒有無判定部51は、ステップD104に進んで、余剰冷媒が無い旨を出力する。判定結果がNOである場合には、余剰冷媒有無判定部51は、ステップD105に進んで、余剰冷媒が有る旨を出力する。
[循環組成演算部]
 以下に、循環組成演算部52の動作について説明する。
 図12は、実施の形態2に係る空気調和装置の、循環組成演算部の動作フローを示す図である。
 図12に示されるように、循環組成演算部52は、ステップE105において、第二の圧力検出装置22の検出値Pのうちの、余剰冷媒が有ると判定された室外機2で検出された検出値Pと、第二の温度検出装置24の検出値Tのうちの、余剰冷媒が有ると判定された室外機2で検出された検出値Tと、を取得する。余剰冷媒が有ると判定された室外機2が、複数である場合には、例えば、余剰冷媒が有ると判定された室外機2で検出された検出値P及び検出値Tの平均値が取得されてもよく、また、余剰冷媒が有ると判定された室外機2で検出された検出値P及び検出値Tのうちの、代表する室外機2、最も余剰冷媒が多い室外機2等で検出された検出値P及び検出値Tが取得されてもよい。
 以上、実施の形態1及び実施の形態2について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全て又は一部を組み合わせることも可能である。
 なお、以上では、空気調和装置100が、室外機2と室内機3とが冷媒主管6によって直列に接続されている直膨回路である場合を例に説明したが、そのような場合に限定されず、例えば、空気調和装置100が、負荷側熱交換器31及び絞り装置32が室内機3以外に設けられ、負荷側熱交換器31において、冷媒循環回路1を循環する冷媒と他の熱媒体とが熱交換し、その熱媒体が室内機3に設けられた他の熱交換器に供給されるものであってもよい。また、空気調和装置100が、多段の冷媒循環回路1を備えるものであってもよい。それらのような場合であっても、同様の効果が奏される。
 また、以上では、冷媒循環回路1に充填される冷媒が、R32冷媒とR1234yf冷媒が44wt%と56wt%の質量割合で混合された非共沸混合冷媒である場合を例に説明したが、そのような場合に限定されず、冷媒循環回路1に充填される冷媒が、複数の冷媒が混合された冷媒で、且つ、同一圧力における飽和ガスの温度と飽和液の温度とが異なる非共沸混合冷媒であれば、どのような種類の混合冷媒であってもよく、また、どのような混合割合であってもよい。
 また、以上では、室外機2に一つの圧縮機11が設けられる場合を例に説明したが、そのような場合に限定されず、室外機2に複数の圧縮機11が設けられてもよい。また、以上では、室外機2に一つのアキュムレータ14が設けられる場合を例に説明したが、そのような場合に限定されず、室外機2に複数のアキュムレータ14が設けられてもよい。
 また、以上では、冷媒循環回路1が冷媒流路切替装置12を有する場合を例に説明したが、そのような場合に限定されず、冷媒循環回路1が冷媒流路切替装置12を有さず、空気調和装置100が、冷房運転又は暖房運転のどちらか一方のみを行うものであってもよい。空気調和装置100が、動作状態に応じてアキュムレータ14内の余剰冷媒の有無が変化するものである場合に、同様の効果が奏される。
 1 冷媒循環回路、2 室外機、3 室内機、4 冷媒配管、5 冷媒配管、6 冷媒主管、11 圧縮機、12 冷媒流路切替装置、13 熱源側熱交換器、14 アキュムレータ、21 第一の圧力検出装置、22 第二の圧力検出装置、23 第一の温度検出装置、24 第二の温度検出装置、31 負荷側熱交換器、32 絞り装置、41 第三の温度検出装置、42 第四の温度検出装置、43 第五の温度検出装置、50 制御装置、51 余剰冷媒有無判定部、52 循環組成演算部、53 動作制御部、100 空気調和装置。

Claims (16)

  1.  圧縮機と、熱源側熱交換器と、絞り装置と、負荷側熱交換器と、余剰冷媒を貯留するアキュムレータと、が配管で接続され、
     沸点が異なる複数の冷媒成分を有する非共沸混合冷媒が充填された冷媒循環回路と、
     前記アキュムレータ内に前記余剰冷媒が無いか否かを判定する余剰冷媒有無判定手段と、
     前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定される場合に、前記非共沸混合冷媒が前記冷媒循環回路を循環する状態での前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、循環組成を、前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定されない場合と異なる演算方法を用いて演算する循環組成演算手段と、を有する制御装置と、
     を備えたことを特徴とする冷凍サイクル装置。
  2.  前記余剰冷媒有無判定手段は、
     前記アキュムレータの上流側に設けられた、圧力検出装置及び温度検出装置の検出値に基づいて、前記アキュムレータ内に前記余剰冷媒が無いか否かを判定する、
     ことを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  前記余剰冷媒有無判定手段は、
     前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、冷媒組成と、前記圧力検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガス温度を、判定の指標値として演算し、
     前記温度検出装置の検出値と前記飽和ガス温度とを比較し、
     前記温度検出装置の検出値が前記飽和ガス温度を超える場合に、前記アキュムレータ内に前記余剰冷媒が無いと判定する、
     ことを特徴とする請求項2に記載の冷凍サイクル装置。
  4.  前記余剰冷媒有無判定手段は、
     前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、冷媒組成と、前記温度検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガス圧力を、判定の指標値として演算し、
     前記圧力検出装置の検出値と前記飽和ガス圧力とを比較し、
     前記圧力検出装置の検出値が前記飽和ガス圧力未満である場合に、前記アキュムレータ内に前記余剰冷媒が無いと判定する、
     ことを特徴とする請求項2に記載の冷凍サイクル装置。
  5.  前記余剰冷媒有無判定手段は、
     前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、冷媒組成と、前記温度検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガスエンタルピである、温度算出飽和ガスエンタルピを、判定の指標値として演算し、
     前記冷媒組成と、前記圧力検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガスエンタルピである、圧力算出飽和ガスエンタルピを、判定の指標値として演算し、
     前記温度算出飽和ガスエンタルピと前記圧力算出飽和ガスエンタルピとを比較し、
     前記温度算出飽和ガスエンタルピが前記圧力算出飽和ガスエンタルピを超える場合に、前記アキュムレータ内に前記余剰冷媒が無いと判定する、
     ことを特徴とする請求項2に記載の冷凍サイクル装置。
  6.  前記余剰冷媒有無判定手段は、
     前記判定の指標値を、圧力、温度、エンタルピ、及び、乾き度のうちの少なくとも一つの冷媒物性に基づいて演算する、
     ことを特徴とする請求項3~5のいずれか一項に記載の冷凍サイクル装置。
  7.  前記余剰冷媒有無判定手段は、
     前記冷媒組成として、前記非共沸混合冷媒が前記冷媒循環回路に充填される状態での前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、充填組成を用いる、
     ことを特徴とする請求項3~6のいずれか一項に記載の冷凍サイクル装置。
  8.  前記余剰冷媒有無判定手段は、
     前記充填組成として、前記複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成を用いる、
     ことを特徴とする請求項7に記載の冷凍サイクル装置。
  9.  前記循環組成演算手段は、
     前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定される場合に、
     前記非共沸混合冷媒が前記冷媒循環回路に充填される状態での前記複数の冷媒成分のうちの最も沸点が低い冷媒成分の組成である、充填組成に、正の値である組成補正値を加算した値を、前記循環組成として演算する、
     ことを特徴とする請求項1~8のいずれか一項に記載の冷凍サイクル装置。
  10.  前記非共沸混合冷媒は、前記最も沸点が低い冷媒成分であるR32冷媒と、R1234yf冷媒と、を主成分とし、
     前記R32冷媒の質量割合は、35wt%~75wt%の範囲に含まれるいずれかの値であり、
     前記組成補正値は、+1~+4wt%の範囲に含まれるいずれかの値である、
     ことを特徴とする請求項9に記載の冷凍サイクル装置。
  11.  前記非共沸混合冷媒は、前記最も沸点が低い冷媒成分であるR32冷媒と、R1234ze冷媒と、を主成分とし、
     前記R32冷媒の質量割合は、35wt%~75wt%の範囲に含まれるいずれかの値であり、
     前記組成補正値は、+1~+4wt%の範囲に含まれるいずれかの値である、
     ことを特徴とする請求項9に記載の冷凍サイクル装置。
  12.  前記循環組成演算手段は、
     前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定されない場合に、
     前記アキュムレータの上流側に設けられた、圧力検出装置及び温度検出装置の検出値に基づいて、前記循環組成を演算する、
     ことを特徴とする請求項1~11のいずれか一項に記載の冷凍サイクル装置。
  13.  前記冷媒循環回路には、複数の前記アキュムレータが並列に接続され、
     前記余剰冷媒有無判定手段は、
     前記アキュムレータ毎に、前記余剰冷媒が無いか有るかを判定し、
     前記複数のアキュムレータの全てにおいて前記余剰冷媒が無いと判定される場合に、前記余剰冷媒が無いと判定する、
     ことを特徴とする請求項1~12のいずれか一項に記載の冷凍サイクル装置。
  14.  前記循環組成演算手段は、
     前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定されない場合に、
     前記複数のアキュムレータのうちの前記余剰冷媒が無いと判定されないアキュムレータの上流側に設けられた、圧力検出装置及び温度検出装置の検出値に基づいて、前記循環組成を演算する、
     ことを特徴とする請求項13に記載の冷凍サイクル装置。
  15.  請求項1~14のいずれか一項に記載の冷凍サイクル装置である、
     ことを特徴とする空気調和装置。
  16.  圧縮機と、熱源側熱交換器と、絞り装置と、負荷側熱交換器と、余剰冷媒を貯留するアキュムレータと、が配管で接続され、沸点が異なる複数の冷媒成分を有する非共沸混合冷媒が充填された冷媒循環回路を備えた冷凍サイクル装置における、前記非共沸混合冷媒が前記冷媒循環回路を循環する状態での前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、循環組成の算出方法であって、
     前記アキュムレータ内に前記余剰冷媒が無いか否かを判定する余剰冷媒有無判定段階と、
     前記余剰冷媒有無判定段階において前記余剰冷媒が無いと判定される場合に、前記循環組成を、前記余剰冷媒有無判定段階において前記余剰冷媒が無いと判定されない場合と異なる演算方法を用いて演算する循環組成演算段階と、
     を備えたことを特徴とする循環組成の算出方法。
PCT/JP2014/052106 2014-01-30 2014-01-30 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 WO2015114774A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015559671A JP6072311B2 (ja) 2014-01-30 2014-01-30 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法
GB1608160.6A GB2534789B (en) 2014-01-30 2014-01-30 Refrigeration cycle apparatus, air-conditioning apparatus, and method for calculating circulation composition in refrigeration cycle apparatus
PCT/JP2014/052106 WO2015114774A1 (ja) 2014-01-30 2014-01-30 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052106 WO2015114774A1 (ja) 2014-01-30 2014-01-30 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法

Publications (1)

Publication Number Publication Date
WO2015114774A1 true WO2015114774A1 (ja) 2015-08-06

Family

ID=53756386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052106 WO2015114774A1 (ja) 2014-01-30 2014-01-30 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法

Country Status (3)

Country Link
JP (1) JP6072311B2 (ja)
GB (1) GB2534789B (ja)
WO (1) WO2015114774A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181065A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 空気調和装置
JPWO2019234914A1 (ja) * 2018-06-08 2021-02-25 三菱電機株式会社 室外機および冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161804A (ja) * 1998-11-26 2000-06-16 Mitsubishi Electric Corp 冷凍空調装置
JP2001317830A (ja) * 2000-05-11 2001-11-16 Matsushita Refrig Co Ltd 空気調和機
WO2013093981A1 (ja) * 2011-12-22 2013-06-27 三菱電機株式会社 冷凍サイクル装置
WO2013168199A1 (ja) * 2012-05-11 2013-11-14 三菱電機株式会社 空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161804A (ja) * 1998-11-26 2000-06-16 Mitsubishi Electric Corp 冷凍空調装置
JP2001317830A (ja) * 2000-05-11 2001-11-16 Matsushita Refrig Co Ltd 空気調和機
WO2013093981A1 (ja) * 2011-12-22 2013-06-27 三菱電機株式会社 冷凍サイクル装置
WO2013168199A1 (ja) * 2012-05-11 2013-11-14 三菱電機株式会社 空気調和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181065A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 空気調和装置
JP2018173196A (ja) * 2017-03-31 2018-11-08 ダイキン工業株式会社 空気調和装置
CN110446898A (zh) * 2017-03-31 2019-11-12 大金工业株式会社 空调装置
CN110446898B (zh) * 2017-03-31 2021-05-25 大金工业株式会社 空调装置
JPWO2019234914A1 (ja) * 2018-06-08 2021-02-25 三菱電機株式会社 室外機および冷凍サイクル装置

Also Published As

Publication number Publication date
GB2534789A (en) 2016-08-03
GB201608160D0 (en) 2016-06-22
GB2534789B (en) 2020-03-11
JPWO2015114774A1 (ja) 2017-03-23
JP6072311B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5228023B2 (ja) 冷凍サイクル装置
JP6482655B2 (ja) 冷凍サイクル装置
JP6021945B2 (ja) 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
JP6109205B2 (ja) 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
JP6433709B2 (ja) ターボ冷凍機及びその制御装置並びにその制御方法
JP2009299914A (ja) 多室空気調和機
JP2011069570A (ja) ヒートポンプサイクル装置
JP5818979B2 (ja) 空気調和装置
JPWO2012032787A1 (ja) 熱媒体循環型ヒートポンプ暖房機
CN105378392B (zh) 空调装置
JP6239092B2 (ja) 空気調和機
EP3199889B1 (en) Air conditioner
CN104254742B (zh) 空气调节装置
JP2007225140A (ja) ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法
JP2010164270A (ja) 多室型空気調和機
JP6072311B2 (ja) 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP2005048973A (ja) 空気調和機及び空気調和機の制御方法
JP2018146142A (ja) 空気調和機
JP5479625B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP6415612B2 (ja) 冷凍サイクル装置
JP2002061979A (ja) 冷暖房装置
JPH0821667A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559671

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201608160

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140130

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881166

Country of ref document: EP

Kind code of ref document: A1