WO2015114774A1 - 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 - Google Patents
冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 Download PDFInfo
- Publication number
- WO2015114774A1 WO2015114774A1 PCT/JP2014/052106 JP2014052106W WO2015114774A1 WO 2015114774 A1 WO2015114774 A1 WO 2015114774A1 JP 2014052106 W JP2014052106 W JP 2014052106W WO 2015114774 A1 WO2015114774 A1 WO 2015114774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- composition
- accumulator
- surplus
- value
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0314—Temperature sensors near the indoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/08—Refrigeration machines, plants and systems having means for detecting the concentration of a refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/23—High amount of refrigerant in the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Definitions
- the present invention relates to an air conditioner applied to a refrigeration cycle apparatus, for example, a multi air conditioner for buildings, and a method for calculating a circulation composition in the refrigeration cycle apparatus.
- a refrigerant circulation circuit filled with a mixed refrigerant such as a non-azeotropic mixed refrigerant and a control device.
- the control device calculates a circulation composition that is a composition of at least one of the plurality of refrigerant components in a state where the mixed refrigerant circulates in the refrigerant circulation circuit.
- the control device controls, for example, the operation of the compressor of the refrigerant circulation circuit, the operation of the heat source side blower, and the like using the calculated circulation composition value.
- the value of the circulating composition is, for example, the detected value of the liquid level height of the surplus refrigerant detected by the liquid level detecting device provided in the accumulator, and the relationship between the liquid level height created in advance and the value of the circulating composition. And calculated by conversion (for example, refer to Patent Document 1).
- the control device calculates the value of the circulation composition without changing the calculation method depending on whether or not there is surplus refrigerant in the accumulator.
- surplus refrigerant is generated in the accumulator
- the circulation composition and the composition of at least one refrigerant component of the plurality of refrigerant components in a state where the refrigerant mixture is filled with the refrigerant mixture, and a known value Therefore, it is effective that the value of the circulation composition is calculated by, for example, the method described above.
- the difference between the circulation composition and the known filling composition is small, so that the value of the circulation composition is calculated, for example, by the method described above.
- the accuracy of calculation may be lowered.
- the circulation composition value is calculated by a single calculation method regardless of whether or not there is excess refrigerant in the accumulator.
- the circulation composition value is calculated by a single calculation method regardless of whether or not there is excess refrigerant in the accumulator.
- the present invention has been made against the background of the above problems, and improves the performance and the like of the refrigeration cycle apparatus when there is no surplus refrigerant in the accumulator and when there is surplus refrigerant in the accumulator.
- a refrigeration cycle apparatus that can be realized in both cases is obtained.
- such an air conditioning apparatus is obtained.
- the calculation method of the circulation composition used for such a refrigeration cycle apparatus is obtained.
- a compressor, a heat source side heat exchanger, a throttling device, a load side heat exchanger, and an accumulator that stores excess refrigerant are connected by piping, and a plurality of boiling points are different.
- a circulation composition that is a composition of at least one refrigerant component of the plurality of refrigerant components in a state in which the non-azeotropic refrigerant mixture circulates in the refrigerant circulation circuit
- a circulation composition calculating means for calculating using a different calculation method from the case where the refrigerant presence / absence determining means does not determine that there is no excess refrigerant.
- the refrigeration cycle apparatus determines that there is no surplus refrigerant in the accumulator, it is determined that there is no surplus refrigerant in the accumulator.
- a circulation composition calculating means for calculating using a different calculation method from the case where the excess refrigerant presence / absence determining means does not determine that there is no excess refrigerant. Therefore, it is possible to improve the performance of the refrigeration cycle apparatus in both the case where no surplus refrigerant is generated in the accumulator and the case where the surplus refrigerant is generated in the accumulator.
- FIG. 1 It is a schematic circuit block diagram which shows an example of a circuit structure of the air conditioning apparatus which concerns on Embodiment 1.
- 2 is a schematic circuit configuration diagram illustrating a refrigerant flow during a cooling operation of the air-conditioning apparatus according to Embodiment 1.
- FIG. It is a schematic circuit block diagram which shows the flow of the refrigerant
- 2 is a ph diagram of a refrigeration cycle of the air-conditioning apparatus according to Embodiment 1.
- FIG. 6 is a diagram showing an operation flow of Modification 1 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1.
- FIG. 6 is a diagram showing an operation flow of Modification-2 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1. It is a figure which shows the operation
- FIG. It is a figure which shows the operation
- FIG. 6 is a schematic circuit configuration diagram showing an example of a circuit configuration of an air-conditioning apparatus according to Embodiment 2.
- FIG. 1 is a diagram showing an operation flow of Modification 1 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1.
- FIG. 6 is a diagram showing an operation flow of Modification-2 of the surplus ref
- FIG. 1 It is a figure which shows the operation
- FIG. It is a figure which shows the operation
- the composition of at least one refrigerant component among the plurality of refrigerant components in a state where the non-azeotropic refrigerant mixture circulates in the refrigerant circuit is defined as “circulation composition”. Further, the composition of at least one refrigerant component among the plurality of refrigerant components in a state where the non-azeotropic refrigerant mixture is filled in the refrigerant circuit is defined as “filling composition”. The composition of at least one refrigerant component among the plurality of refrigerant components is defined as “refrigerant composition”. “Refrigerant composition” includes both “circulation composition” and “filling composition”.
- the refrigeration cycle apparatus according to the present invention is an air conditioner.
- the present invention is not limited to such a case, and the refrigeration cycle apparatus according to the present invention is not an air conditioner.
- Other refrigeration cycle apparatuses may be used.
- movement, etc. which are demonstrated below are only examples, and the refrigeration cycle apparatus which concerns on this invention is not limited to the case where it is such a structure, operation
- detailed descriptions of the configuration, operation, and the like are appropriately simplified or omitted.
- overlapping or similar descriptions are appropriately simplified or omitted.
- FIG. 1 is a schematic circuit configuration diagram illustrating an example of a circuit configuration of an air-conditioning apparatus according to Embodiment 1.
- the air conditioning apparatus 100 includes a refrigerant circulation circuit 1 filled with a non-azeotropic refrigerant mixture having a plurality of refrigerant components having different boiling points, and a control device 50.
- the air conditioning apparatus 100 performs air conditioning by circulating a non-azeotropic refrigerant mixture.
- the non-azeotropic refrigerant mixture is, for example, a mixed refrigerant of R32 refrigerant and R1234yf refrigerant, a mixed refrigerant of R32 refrigerant and R1234ze refrigerant, or the like.
- a mixed refrigerant of R32 refrigerant and R1234yf refrigerant are refrigerants mixed in a mass ratio of 44 wt% and 56 wt%.
- the non-azeotropic refrigerant mixture is a mixed refrigerant of an R32 refrigerant and an R1234yf refrigerant and the case of a mixed refrigerant of an R32 refrigerant and an R1234ze refrigerant are given as examples
- the non-azeotropic refrigerant mixture is not necessarily It is not necessary to be a mixed refrigerant in which R32 refrigerant and R1234yf refrigerant are the main components and a small amount of other refrigerants are mixed.
- a mixture in which R32 refrigerant and R1234ze refrigerant are the main components and a small amount of other refrigerants are mixed.
- a refrigerant may be used.
- the non-azeotropic refrigerant mixture is not limited to the above-described mixed refrigerant, and may be a mixed refrigerant in which any refrigerant is mixed.
- the number of refrigerant components to be mixed may be two components, three components, or more.
- the air conditioner 100 includes an outdoor unit 2 and an indoor unit 3.
- each device constituting the refrigerant circulation circuit 1 is connected by a refrigerant pipe 4.
- each device constituting the refrigerant circulation circuit 1 is connected by a refrigerant pipe 5.
- the refrigerant pipe 4 and the refrigerant pipe 5 are connected via a refrigerant main pipe 6.
- a plurality of indoor units 3 may be connected to the outdoor unit 2 via the refrigerant main pipe 6. In such a case, for example, a cooling only operation mode in which all the indoor units 3 perform a cooling operation, all indoors It is preferable that the all-heating operation mode in which the machine 3 performs the heating operation can be executed.
- the outdoor unit 2 is equipped with a compressor 11, a refrigerant flow switching device 12 such as a four-way valve, a heat source side heat exchanger (outdoor heat exchanger) 13, and an accumulator 14.
- the compressor 11 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
- the compressor 11 may be, for example, an inverter compressor whose capacity can be controlled.
- the refrigerant flow switching device 12 switches the refrigerant flow in the cooling operation and the refrigerant flow in the heating operation.
- the heat source side heat exchanger 13 functions as a condenser in the cooling operation, and functions as an evaporator in the heating operation. In the heat source side heat exchanger 13, the air and the refrigerant supplied by a heat source side blower (not shown) configured with a fan or the like perform heat exchange.
- the accumulator 14 is provided on the suction side of the compressor 11.
- the accumulator 14 stores surplus refrigerant generated due to a difference in operating state between the cooling operation and the heating operation, surplus refrigerant with respect to a transient change in operation, and the like.
- the outdoor unit 2 is provided with a first pressure detection device 21 and a second pressure detection device 22.
- the first pressure detection device 21 is provided in the refrigerant pipe 4 that communicates between the compressor 11 and the refrigerant flow switching device 12, and the pressure P 1 of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 11. Is detected.
- Second pressure detecting device 22 is provided in the refrigerant pipe 4 that communicates between the refrigerant flow switching device 12 and the accumulator 14, to detect the pressure P 2 of the low-temperature low-pressure refrigerant sucked into the compressor 11.
- the second pressure detection device 22 corresponds to the “pressure detection device” in the present invention.
- the second pressure detection device 22 is not necessarily limited to such a case.
- the second pressure detection device 22 communicates the outlet side of the load side heat exchanger 31 and the inlet side of the accumulator 14.
- the second pressure detector 22 may be provided in the heat source side heat exchanger 13 when the air conditioner 100 is an air conditioner that performs only heating operation. Any refrigerant pipe may be provided as long as it connects the outlet side and the inlet side of the accumulator 14. Even in such a case, the same effect is produced.
- the outdoor unit 2 is provided with a first temperature detection device 23 and a second temperature detection device 24.
- the first temperature detection device 23 is provided in the refrigerant pipe 4 that communicates between the compressor 11 and the refrigerant flow switching device 12, and the temperature T 1 of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 11. Is detected.
- the second temperature detection device 24 is provided in the refrigerant pipe 4 that communicates between the refrigerant flow switching device 12 and the accumulator 14, and detects the temperature T 2 of the low-temperature and low-pressure refrigerant sucked into the compressor 11.
- Each of the first temperature detection device 23 and the second temperature detection device 24 may be configured with a thermistor or the like.
- the second temperature detection device 24 corresponds to a “temperature detection device” in the present invention.
- the second temperature detection device 24 is not necessarily limited to such a case.
- the second temperature detection device 24 may be provided in the heat source side heat exchanger 13 when the air conditioning device 100 is an air conditioning device that performs only heating operation. Any refrigerant pipe may be provided as long as it connects the outlet side and the inlet side of the accumulator 14. Even in such a case, the same effect is produced.
- the indoor unit 3 is equipped with a load side heat exchanger (indoor heat exchanger) 31 and an expansion device 32.
- the expansion device 32 is, for example, a valve, and decompresses the refrigerant to expand it.
- the expansion device 32 may be configured by a valve whose opening degree can be controlled, for example, an electronic expansion valve.
- the indoor unit 3 is provided with a third temperature detection device 41, a fourth temperature detection device 42, and a fifth temperature detection device 43.
- the third temperature detection device 41 is provided in the refrigerant pipe 5 that communicates between the expansion device 32 and the load side heat exchanger 31, and detects the temperature of the refrigerant flowing into the load side heat exchanger 31 in the cooling operation.
- the fourth temperature detection device 42 is provided in the refrigerant pipe 5 that communicates between the load-side heat exchanger 31 and the refrigerant flow switching device 12, and the temperature of the refrigerant that flows out of the load-side heat exchanger 31 in the cooling operation. Is detected.
- the fifth temperature detection device 43 is provided in the air suction portion of the load-side heat exchanger 31 and detects the indoor air temperature.
- Each of the third temperature detection device 41, the fourth temperature detection device 42, and the fifth temperature detection device 43 may be formed of a thermistor or the like.
- the control device 50 includes a surplus refrigerant presence / absence determination unit 51, a circulation composition calculation unit 52, and an operation control unit 53.
- Each unit constituting the control device 50 may be constituted by, for example, a microcomputer, a microprocessor unit, etc., may be constituted by an updatable firmware or the like, and is executed by a command from the CPU or the like. It may be a program module or the like. Further, the control device 50 may be provided in the outdoor unit 2, may be provided in the indoor unit 3, may be provided separately for the outdoor unit 2 and the indoor unit 3, You may provide in addition to them.
- the excess refrigerant presence / absence determination unit 51 corresponds to “excess refrigerant presence / absence determination means” in the present invention.
- the circulation composition calculation unit 52 corresponds to “circulation composition calculation means” in the present invention.
- the surplus refrigerant presence / absence determination unit 51 determines the presence / absence of surplus refrigerant in the accumulator 14 using at least the detection value P2 of the second pressure detection device 22 and the detection value T2 of the second temperature detection device 24, for example. judge.
- the circulation composition calculation unit 52 selects a calculation method of the circulation composition in accordance with the determination result of the surplus refrigerant presence determination unit 51, for example, at least the detection value P2 of the second pressure detection device 22 and the second temperature detection. by using the detection value T 2 of the apparatus 24, it calculates the circulation composition of the non-azeotropic mixed refrigerant circulating through the refrigerant circuit 1.
- the operation control unit 53 governs the overall operation of the air conditioning apparatus 100.
- the operation control unit 53 rotates the frequency f c of the compressor 11, the fan constituting the heat source side blower (not shown), or the like based on detection values of various detection devices, instructions input via a remote controller, and the like.
- the air conditioner 100 is caused to execute each operation mode by controlling the number f f (including ON / OFF switching), switching of the refrigerant flow switching device 12, opening of the expansion device 32, and the like.
- Operation control unit 53 for example, a circulation composition calculated by the circulating composition computing unit 52, a detection value P 1 of the first pressure detector 21, the detected value P 2 of the second pressure detecting device 22, the Based on this, the frequency f c of the compressor 11, the number of rotations f f (including ON / OFF switching) of the fan constituting the heat source side blower (not shown), and the like are controlled.
- FIG. 2 is a schematic circuit configuration diagram illustrating a refrigerant flow during the cooling operation of the air-conditioning apparatus according to Embodiment 1.
- the flow direction of the refrigerant is indicated by solid arrows.
- the cooling operation mode will be described by taking as an example a case where a cooling load is generated in the load-side heat exchanger 31.
- the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12.
- the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 is condensed while dissipating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant that has flowed into the indoor unit 3 is decompressed to a low-temperature and low-pressure gas-liquid two-phase refrigerant by the expansion device 32, and then flows into the load-side heat exchanger 31 that acts as an evaporator, and absorbs heat from the indoor air By doing so, the indoor air is cooled and becomes a low-temperature and low-pressure gas refrigerant.
- the refrigerant flowing into the outdoor unit 2 is sucked into the compressor 11 through the refrigerant flow switching device 12 and the accumulator 14.
- the operation control unit 53 of the control device 50 calculates the opening degree of the expansion device 32 from the circulation composition calculated by the circulation composition calculation unit 52 and the detected value P 2 of the second pressure detection device 22.
- the superheat (superheat degree) which is the difference between the saturated gas temperature and the detected value of the fourth temperature detection device 42, is controlled to be constant.
- FIG. 3 is a schematic circuit configuration diagram showing a refrigerant flow during heating operation of the air-conditioning apparatus according to Embodiment 1.
- the flow direction of the refrigerant is indicated by solid arrows.
- the heating operation mode is demonstrated by taking as an example the case where the thermal load is generated in the load side heat exchanger 31.
- the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor unit 3 through the refrigerant main pipe 6 via the refrigerant flow switching device 12.
- the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 3 radiates heat to the indoor air in the load-side heat exchanger 31, becomes high-pressure liquid refrigerant, and flows into the expansion device 32.
- the refrigerant flows out from the indoor unit 3, and flows into the outdoor unit 2 through the refrigerant main pipe 6.
- the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 2 becomes low-pressure gas-liquid two-phase refrigerant that has absorbed heat from outdoor air in the heat source side heat exchanger 13.
- the low-pressure gas-liquid two-phase refrigerant that has flowed out of the heat source side heat exchanger 13 flows into the accumulator 14 through the refrigerant flow switching device 12, and the accumulator 14 separates the gas phase and the liquid phase. Only the refrigerant is sucked into the compressor 11.
- the operation control unit 53 of the control device 50 calculates the opening degree of the expansion device 32 from the circulation composition calculated by the circulation composition calculation unit 52 and the detected value P 1 of the first pressure detection device 21.
- the subcool (supercooling degree) which is the difference between the saturated liquid temperature and the detected value of the third temperature detector 41, is controlled to be constant.
- FIG. 4 is a ph diagram of the refrigeration cycle of the air-conditioning apparatus according to Embodiment 1.
- the temperature of the saturated liquid refrigerant and the temperature of the saturated gas refrigerant at the same pressure are different because the non-azeotropic refrigerant mixture has a plurality of refrigerant components having different boiling points. There is a feature that becomes. Further, if three parameters of pressure, temperature, and refrigerant composition are not given, there is a characteristic that the state of the refrigerant on the ph diagram is not determined at one point.
- the refrigerant circuit 1 includes a portion where a gas-liquid interface such as an accumulator 14 is generated, the low-boiling component is likely to be a gas phase in the portion where the gas-liquid interface is generated, and the high-boiling component is a liquid phase. Therefore, there is a feature that a large amount of low boiling point components flow in the refrigerant circuit 1.
- FIG. 5 is a diagram illustrating an operation flow of the surplus refrigerant presence / absence determination unit of the air-conditioning apparatus according to Embodiment 1.
- the surplus refrigerant presence / absence determination unit 51 detects the detection value P2 of the second pressure detection device 22, the detection value T2 of the second temperature detection device 24, and To get.
- the surplus refrigerant presence / absence determination unit 51 calculates the accumulator 14 from the detected value P2 of the second pressure detection device 22 and the filling composition ⁇ O of the non-azeotropic refrigerant mixture which is a known amount.
- the saturated gas temperature T sat of the refrigerant in the inflow portion of the refrigerant is calculated.
- the surplus refrigerant presence / absence determination unit 51 determines whether or not the detection value T2 of the second temperature detection device 24 exceeds the refrigerant saturation gas temperature T sat at the inflow portion of the accumulator 14 in step A103. If the determination result is YES, since it can be determined that the gas refrigerant is flowing into the accumulator 14, the surplus refrigerant presence / absence determination unit 51 outputs that there is no surplus refrigerant in the accumulator 14 in step A104.
- the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 may be calculated by an arithmetic expression such as the following expression (1), or stored in advance as a table or the like. and the detection value P 2 of the pressure sensing device 22, and the fill composition alpha O, may be calculated by being read from the saturated gas temperature T sat, relationship. The resolution at the time of calculating the saturated gas temperature T sat may be improved by interpolating between the tabulated values as necessary. Further, an approximate expression indicating the relationship between the detected value P2 of the second pressure detection device 22 and the saturated gas temperature T sat is stored or calculated in advance, and the saturated gas temperature T sat is calculated using the approximate expression. May be.
- the surplus refrigerant presence / absence determination unit 51 uses the filling composition when calculating the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14. Since the saturated gas temperature T sat at the same pressure becomes higher as the ratio of the low boiling point component becomes smaller, such a configuration is compared with the case where the saturated gas temperature T sat is calculated using the circulation composition. Therefore, the saturated gas temperature T sat of the refrigerant flowing into the accumulator 14 is estimated to be high, and the determination that there is no surplus refrigerant in the accumulator 14 is made on the safety side.
- the surplus refrigerant presence / absence determination unit 51 may calculate the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 using another refrigerant composition that is not a filling composition. For example, the surplus refrigerant presence / absence determination unit 51 is selected when the circulation composition calculation unit 52 determines that there is no surplus refrigerant in the accumulator 14 by the circulation composition calculation unit 52, which will be described later.
- the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 may be calculated using the value of the circulation composition calculated by the calculation method.
- the surplus refrigerant presence / absence determination unit 51 calculates the saturated gas temperature T sat of the refrigerant in the inflow portion of the accumulator 14 based on the detection value P2 of the second pressure detection device 22 and the filling composition.
- the present invention is not limited to such a case.
- the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value P2 of the second pressure detection device 22, and at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness.
- Information stored in a table or the like is stored in advance, and from the filling composition, the detected value P2 of the second pressure detection device 22, and the stored information, the filling composition and the second pressure detection device 22 are stored.
- the detected values to derive the refrigerant physical properties corresponding to P 2 based on the derived coolant properties, the saturated gas temperature T sat of the refrigerant at the inlet of the accumulator 14 may be calculated.
- the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value P2 of the second pressure detection device 22,
- the saturated gas temperature T sat of the refrigerant at the inflow portion of the accumulator 14 may be calculated based on the calculated refrigerant physical properties.
- the present invention is not limited to such a case.
- a filling composition of two or more refrigerant components among the plurality of refrigerant components may be used.
- FIG. 6 is a diagram illustrating an operation flow of Modification Example 1 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1.
- the surplus refrigerant presence / absence determination unit 51 in step A201, the detection value P2 of the second pressure detection device 22, the detection value T2 of the second temperature detection device 24, To get.
- the surplus refrigerant presence / absence determination unit 51 calculates the accumulator 14 from the detected value T2 of the second temperature detection device 24 and the filling composition ⁇ O of the non-azeotropic refrigerant mixture which is a known amount.
- the saturated gas pressure P sat of the refrigerant in the inflow portion of the refrigerant is calculated. Then, excess refrigerant determining unit 51, in step A203, the detection value P 2 of the second pressure detecting device 22, determine whether it is less than the saturated gas pressure P sat of the refrigerant in the inlet of the accumulator 14 To do. If the determination result is YES, since it can be determined that the gas refrigerant is flowing into the accumulator 14, the surplus refrigerant presence / absence determination unit 51 outputs that there is no surplus refrigerant in the accumulator 14 in step A204.
- the determination result is NO, it can be determined that the gas-liquid two-phase refrigerant is flowing into the accumulator 14, and therefore the surplus refrigerant presence / absence determination unit 51 has an excess refrigerant in the accumulator 14 in step A205. Outputs the effect.
- the saturated gas pressure P sat of the refrigerant at the inflow portion of the accumulator 14 may be calculated by an arithmetic expression such as the following expression (2), or stored in advance as a table or the like. It may be calculated by reading from the relationship between the detection value T 2 of the temperature detection device 24, the filling composition ⁇ O and the saturated gas pressure P sat . The resolution at the time of calculating the saturated gas pressure P sat may be improved by interpolating between the tabulated values as necessary. Further, an approximate expression indicating the relationship between the detected value T 2 of the second temperature detection device 24 and the saturated gas pressure P sat is stored or calculated in advance, and the saturated gas pressure P sat is calculated using the approximate expression. May be.
- coolant presence-absence determination part 51 calculates the saturated gas pressure Psat of the refrigerant
- the present invention is not limited to such a case.
- the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value T2 of the second temperature detection device 24, and at least one refrigerant physical property of pressure, temperature, enthalpy, and dryness.
- Information stored in a table or the like is stored in advance, and from the filling composition, the detected value T2 of the second temperature detection device 24, and the stored information, the filling composition and the second temperature detection device 24 are stored. of deriving the refrigerant physical properties corresponding to the detected value T 2, based on the derived coolant properties, the saturated gas pressure P sat of the refrigerant in the inlet of the accumulator 14 may be calculated.
- the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value T2 of the second temperature detection device 24,
- the saturated gas pressure P sat of the refrigerant at the inflow portion of the accumulator 14 may be calculated based on the calculated refrigerant physical properties.
- the present invention is not limited to such a case.
- a filling composition of two or more refrigerant components among the plurality of refrigerant components may be used.
- FIG. 7 is a diagram illustrating an operation flow of Modification-2 of the surplus refrigerant presence / absence determining unit of the air-conditioning apparatus according to Embodiment 1. As shown in FIG. 7, first, the surplus refrigerant presence / absence determination unit 51, in step A301, the detection value P2 of the second pressure detection device 22, the detection value T2 of the second temperature detection device 24, To get.
- the accumulator 14 is a saturated gas enthalpy of the refrigerant at the inlet, calculates the temperature calculation saturated gas enthalpy H GT. Further, from the detected value P 2 of the second pressure detection device 22 and the filling composition ⁇ O of the non-azeotropic refrigerant mixture which is a known amount, the pressure which is the saturated gas enthalpy of the refrigerant in the inflow portion of the accumulator 14 calculating a calculated saturated gas enthalpy H GP.
- excess refrigerant determining unit 51 determines, in step A303, the temperature calculation saturated gas enthalpy H GT is, whether more than the pressure calculation saturated gas enthalpy H GP. If the determination result is YES, it can be determined that the gas refrigerant is flowing into the accumulator 14, and therefore the surplus refrigerant presence / absence determination unit 51 outputs that there is no surplus refrigerant in the accumulator 14 in step A304. If the determination result is NO, it can be determined that the gas-liquid two-phase refrigerant is flowing into the accumulator 14, and therefore the surplus refrigerant presence / absence determination unit 51 has an excess refrigerant in the accumulator 14 in step A305. Outputs the effect.
- temperature calculating saturated gas enthalpy H GT is may be calculated by the following arithmetic expression of Equation (3), also previously stored as a table or the like, the detection of the second temperature detector 24 the value T 2, a filling composition alpha O, may be calculated by being read from the temperature calculating saturated gas enthalpy H GT, relationship. If necessary, by between between tabulated values are interpolated (interpolation), the resolution at the time of calculating the temperature calculation saturated gas enthalpy H GT may be improved.
- the second and the detected value T 2 of the temperature sensing device 24, a temperature calculation saturated gas enthalpy H GT are approximate expression indicating the relationship previously stored or calculating, the temperature calculation saturated gas enthalpy H by using the approximate expression GT may be calculated.
- the pressure calculation saturated gas enthalpy H GP may be calculated by an arithmetic expression such as the following expression (4), or the second pressure detection device 22 stored in advance as a table or the like. Between the detection value P 2, a filling composition alpha O, may be calculated by being read from the pressure calculating saturated gas enthalpy H GP, relationship. If necessary, by between between tabulated values are interpolated (interpolation), the resolution at the time of calculating the pressure calculation saturated gas enthalpy H GP may be improved.
- an approximate expression indicating the relationship between the detected value P 2 of the second pressure detection device 22 and the pressure calculation saturated gas enthalpy H GP is stored or calculated in advance, and the pressure calculation saturated gas enthalpy H is calculated using the approximate expression. GP may be calculated.
- excess refrigerant determining unit 51, the detected value T 2 of the second temperature detector 24, and the fill composition, based on, has been described a case of calculating the temperature calculation saturated gas enthalpy H GT, It is not limited to such a case.
- the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value T2 of the second temperature detection device 24, and at least one refrigerant physical property of pressure, temperature, enthalpy, and dryness.
- Information stored in a table or the like is stored in advance, and from the filling composition, the detected value T2 of the second temperature detection device 24, and the stored information, the filling composition and the second temperature detection device 24 are stored.
- the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value T2 of the second temperature detection device 24, based on the calculated refrigerant physical properties, it may be calculated temperature calculation saturated gas enthalpy H GT.
- the excess refrigerant presence determination part 51 calculates the pressure calculation saturated gas enthalpy H GP based on the detection value P2 of the second pressure detection device 22 and the filling composition, It is not limited to such a case.
- the surplus refrigerant presence / absence determination unit 51 has a relationship between the filling composition, the detection value P2 of the second pressure detection device 22, and at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness. Information stored in a table or the like is stored in advance, and from the filling composition, the detected value P2 of the second pressure detection device 22, and the stored information, the filling composition and the second pressure detection device 22 are stored.
- the detected values to derive the refrigerant physical properties corresponding to P 2, based on the derived refrigerant physical properties, may be calculated pressure calculation saturated gas enthalpy H GP.
- the surplus refrigerant presence / absence determination unit 51 calculates at least one refrigerant physical property among pressure, temperature, enthalpy, and dryness from the filling composition and the detection value P2 of the second pressure detection device 22, Based on the calculated refrigerant physical properties, the pressure calculation saturated gas enthalpy H GP may be calculated.
- the charging composition ⁇ O of the refrigerant component having the lowest boiling point among the plurality of refrigerant components is described.
- a filling composition of two or more refrigerant components among a plurality of refrigerant components may be used.
- FIG. 8 is a diagram illustrating an operation flow of the circulation composition calculation unit of the air-conditioning apparatus according to Embodiment 1.
- the circulation composition calculation unit 52 acquires the output of the surplus refrigerant presence / absence determination unit 51, and the output is an output indicating that there is no surplus refrigerant in the accumulator 14.
- the process proceeds to step B102, and if the output indicates that there is surplus refrigerant in the accumulator 14, the process proceeds to step B104.
- step B102 the circulation composition calculation unit 52 selects the first calculation method as the calculation method of the circulation composition ⁇ , and proceeds to step B103.
- step B103 the circulation composition calculating unit 52 calculates a value obtained by adding the composition correction value ⁇ to the filling composition ⁇ O as the circulation composition ⁇ , and outputs the circulation composition ⁇ in step B107.
- the composition correction value ⁇ is a positive value.
- step B103 the circulation composition calculation unit 52 adds the composition correction value ⁇ that is a positive value to the filling composition ⁇ O instead of the filling composition ⁇ O as the circulation composition ⁇ when there is no surplus refrigerant in the accumulator 14. Calculate by value. Even when there is no surplus refrigerant in the accumulator 14, the circulation composition ⁇ does not become equal to the filling composition ⁇ O because the refrigerant dissolves in the refrigerating machine oil. Therefore, the accuracy of calculation of the circulation composition ⁇ can be improved by adding the composition correction value ⁇ , which is a parameter corresponding to the composition variation caused by the refrigerant dissolved in the refrigerating machine oil, to the filling composition ⁇ O. .
- the non-azeotropic refrigerant mixture is a refrigerant mixture of R32 refrigerant and R1234yf refrigerant
- the boiling point of R32 refrigerant is ⁇ 52 ° C.
- the boiling point of R1234yf refrigerant is ⁇ 29.4 ° C., which is the most boiling point.
- the filling composition ⁇ O is defined as the mass ratio of the R32 refrigerant in the state in which the refrigerant circulation circuit 1 is filled.
- the accumulator 14 has no excess refrigerant. From the test, it was clarified that the circulation composition ⁇ becomes larger by any value included in the range of 1 wt% to 4 wt% as compared with the filling composition ⁇ O. Therefore, the composition correction value ⁇ may be any value included in the range of 1 wt% to 4 wt%.
- the non-azeotropic refrigerant mixture is a refrigerant mixture of R32 refrigerant and R1234ze refrigerant
- the R1234yf refrigerant and R1234ze refrigerant have similar physical properties, so that the mass ratio of the R32 refrigerant is the refrigerant circulation.
- the circulation composition ⁇ in a state where there is no excess refrigerant in the accumulator 14 is compared with the filling composition ⁇ O. It is clear that the value increases by any value included in the range of 1 wt% to 4 wt%.
- the circulation composition calculation unit 52 may change the composition correction value ⁇ according to the operating state of the refrigeration cycle.
- the composition correction value ⁇ is set to any value included in the range of 2 wt% to 3 wt%. It is good to be done.
- the solubility of refrigerant in refrigeration oil also varies depending on the type of refrigerant and refrigeration oil, temperature conditions, pressure conditions, etc., so the composition correction value ⁇ is calculated from the type of refrigerant and refrigeration oil, temperature conditions, pressure conditions, etc. It may be set to a value that takes into account the solubility.
- the circulating composition calculation unit 52 may calculate the solubility during the operation of the refrigeration cycle, and change the composition correction value ⁇ according to the solubility.
- step B104 the circulation composition calculation unit 52 selects the second calculation method as the calculation method of the circulation composition ⁇ , and proceeds to step B105.
- step B105 the circulation composition calculation unit 52 acquires the detection value P2 of the second pressure detection device 22 and the detection value T2 of the second temperature detection device 24.
- step B106 the circulation composition calculation unit 52 calculates the saturated gas composition ⁇ G calculated from the detection value P2 of the second pressure detection device 22 and the detection value T2 of the second temperature detection device 24.
- the circulation composition ⁇ is calculated, and in step B107, the circulation composition ⁇ is output.
- the saturated gas composition ⁇ G is a circulation composition when it is assumed that the refrigerant flowing into the accumulator 14 is a saturated gas (that is, dryness of 1). Actually, in a state where surplus refrigerant is generated in the accumulator 14, a gas-liquid two-phase refrigerant having a dryness of about 0.9 flows into the accumulator 14. However, even if the dryness is high and the refrigerant flowing into the accumulator 14 is approximated to be saturated gas (that is, dryness 1), the influence on the calculation accuracy of the circulation composition ⁇ is small, so the saturated gas composition ⁇ G There is no problem even if the calculation is made as the circulation composition ⁇ .
- the saturated gas composition ⁇ G may be calculated by an arithmetic expression such as the following expression (5), and the detection value P 2 of the second pressure detection device 22 stored in advance as a table or the like, and the detection value T 2 of the second temperature sensing device 24, may be calculated by being read from the saturated gas composition alpha G, the relationship.
- the saturated gas state can be specified from two of temperature and pressure. Therefore, the saturated gas composition ⁇ G specifies the saturated gas state from the detection value P 2 of the second pressure detection device 22 and the detection value T 2 of the second temperature detection device 24, and the saturated gas state It can be calculated by specifying the circulation composition. If necessary, the resolution in calculating the saturated gas composition ⁇ G may be improved by interpolating between the tabulated values. Further, a detection value P 2 of the second pressure detector 22, the detected value T 2 of the second temperature detector 24, the approximate expression indicating the saturated gas composition alpha G, the relationship stored in advance or operation, The saturated gas composition ⁇ G may be calculated using the approximate expression.
- the present invention is not limited to such a case.
- a circulating composition of two or more of the refrigerant components may be used.
- the filling composition ⁇ O of the refrigerant component having the lowest boiling point among the plurality of refrigerant components is used as the filling composition.
- a filling composition of two or more refrigerant components may be used.
- the physical property values shown below are values calculated by REFPROP Version 9.0 released by NIST (National Institute of Standards and Technology).
- step A103 the surplus refrigerant presence / absence determination unit 51 determines whether or not the detection value T2 of the second temperature detection device 24 is equal to or higher than the saturated gas temperature T sat .
- the surplus refrigerant presence / absence determination unit 51 proceeds to Step A105 to indicate that there is surplus refrigerant in the accumulator 14. Is output.
- step B101 the circulation composition calculation unit 52 acquires the output of the surplus refrigerant presence / absence determination unit 51. Since the output is an output indicating that there is surplus refrigerant in the accumulator 14, the flow proceeds to step B104.
- step B104 the circulation composition calculation unit 52 selects the second calculation method as the calculation method of the circulation composition ⁇ , and proceeds to step B105.
- the circulation composition calculating unit 52 outputs the circulation composition ⁇ in step B107.
- the circulation composition calculation unit 52 calculates the circulation composition ⁇ by approximating that the refrigerant flowing into the accumulator 14 is a saturated gas (that is, dryness 1). For example, when the detection value P 2 of the second pressure detection device 22 is 0.70 MPa abs and the detection value T 2 of the second temperature detection device 24 is 1.0 ° C., the second pressure detection device 22 flows into the accumulator 14. When the refrigerant is a saturated gas (ie, dryness 1), the circulation composition ⁇ (ie, saturated gas composition ⁇ G ) of the R32 refrigerant is 56.4 wt%, and the refrigerant flowing into the accumulator 14 has a dryness of 0.9.
- a saturated gas that is, dryness 1
- the circulation composition ⁇ of the R32 refrigerant in the case of the gas-liquid two-phase refrigerant is 54.8 wt%, even if it is approximated that the refrigerant flowing into the accumulator 14 is a saturated gas (that is, dryness 1), the circulation Only an error of 1.6 wt% occurs in the composition ⁇ .
- the circulation composition ⁇ 50.5 wt%
- the circulation composition ⁇ 59.6 wt%.
- the circulation composition ⁇ has an error in the range of ⁇ 4.3 wt% to 4.8 wt% from the true value due to an error included in the detection value T 2 of the second temperature detection device 24. Since the value is larger than the error of 1.6 wt% described above, even if the refrigerant flowing into the accumulator 14 is approximated to be a saturated gas (that is, dryness 1), the circulation composition ⁇ can be calculated. It turns out that there is no hindrance.
- FIG. 9 is a diagram illustrating an operation flow of the operation control unit of the air-conditioning apparatus according to Embodiment 1. As shown in FIG. 9, first, the operation control unit 53, in step C101, and the detected value P 1 of the first pressure detector 21, the detected value P 2 of the second pressure detecting device 22, the circulating composition The circulation composition ⁇ calculated by the calculation unit 52 is acquired.
- step C102 the operation control unit 53 calculates the condensation temperature Tc from the detection value P1 of the first pressure detection device 21 and the circulation composition ⁇ . Further, the evaporation temperature Te is calculated from the detection value P2 of the second pressure detection device 22 and the circulation composition ⁇ .
- the condensation temperature Tc may be calculated by reading from the relationship among the detected value P1 of the first pressure detection device 21, the circulation composition ⁇ , and the condensation temperature Tc stored in advance as a table or the like. Good. Further, the evaporation temperature T e is stored as a table or the like, and the detection value P 2 of the second pressure detecting device 22, and the circulating composition alpha, calculated by being read from the evaporation temperature T e, the relation May be.
- the operation control unit 53 in step C103, by subtracting the [Delta] T c from the condensing temperature T c is a value obtained by subtracting the target value T cm of the condensing temperature, the target value T em evaporation temperature from evaporation temperature T e The value ⁇ T e is calculated.
- the condensation temperature target value T cm and the evaporation temperature target value T em are target values set in accordance with the outdoor temperature and the indoor temperature.
- the target value T cm for the condensation temperature and the target value T em for the evaporation temperature are stored in advance as a table or the like, the outdoor temperature, the indoor temperature, the target value T cm for the condensation temperature, and the target value T em for the evaporation temperature, It may be calculated by reading from the relationship.
- step C104 the operation control unit 53 sets the frequency f c of the compressor 11 and the rotation speed f f of the fan constituting the heat source side blower (not shown) so that ⁇ T c and ⁇ T e approach zero. Control etc. Operation control unit 53, the frequency f c and the heat source side blower of the compressor 11 may be controlled both the rotational speed f f of fan or the like constituting the (not shown), also controls only one May be.
- step C104 for example, when the heat source side heat exchanger 13 acts as a condenser, the operation control unit 53 performs control so that the frequency f c of the compressor 11 is reduced when ⁇ T c is a positive value. To do. And controls so as to increase the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
- step C104 for example, when the heat source side heat exchanger 13 acts as a condenser, the operation control unit 53 performs control so as to increase the frequency f c of the compressor 11 when ⁇ T c is a negative value. To do. And controls so as to reduce the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
- step C 104 the operation control unit 53, for example, when the heat source heat exchanger 13 acts as an evaporator, when [Delta] T e is a positive value, the control to increase the frequency f c of the compressor 11 To do. And controls so as to reduce the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
- the operation control unit 53 for example, when the heat source heat exchanger 13 acts as an evaporator, when [Delta] T e is negative, the control to decrease the frequency f c of the compressor 11 To do. And controls so as to increase the rotational speed f f of fan or the like constituting the heat source side blower (not shown).
- Embodiment 2 FIG. Below, the air conditioning apparatus which concerns on Embodiment 2 is demonstrated. Note that, in the following, descriptions that overlap or are similar to those of the first embodiment are appropriately simplified or omitted.
- FIG. 10 is a schematic circuit configuration diagram illustrating an example of a circuit configuration of the air-conditioning apparatus according to Embodiment 2.
- the air conditioning apparatus 100 includes a plurality of outdoor units 2 and a plurality of indoor units 3.
- the plurality of outdoor units 2 and the plurality of indoor units 3 are connected via a refrigerant main pipe 6.
- the number of outdoor units 2 is not limited to two.
- the number of indoor units 3 is not limited to three, and may be one.
- the control device 50 includes a surplus refrigerant presence / absence determination unit 51, a circulation composition calculation unit 52, and an operation control unit 53.
- Each part constituting the control device 50 may be provided separately for a plurality of outdoor units 2 or collectively in one representative outdoor unit 2 among the plurality of outdoor units 2. It may be provided separately or collectively in one representative indoor unit 3 among the plurality of indoor units 3, or may be provided separately or collectively in addition to them.
- the excess refrigerant presence / absence determination unit 51 corresponds to “excess refrigerant presence / absence determination means” in the present invention.
- the circulation composition calculation unit 52 corresponds to “circulation composition calculation means” in the present invention.
- FIG. 11 is a diagram illustrating an operation flow of the surplus refrigerant presence / absence determination unit of the air-conditioning apparatus according to Embodiment 2.
- the surplus refrigerant presence / absence determination unit 51 detects the detected value P2 of the second pressure detection device 22 from each of the plurality of outdoor units 2 and the second temperature detection device. 24 detection values T 2 are obtained.
- the surplus refrigerant presence / absence determination unit 51 determines the presence / absence of surplus refrigerant in each of the accumulators 14 according to the operation flow shown in FIGS.
- step D103 the surplus refrigerant presence / absence determining unit 51 determines whether there is no surplus refrigerant in all the accumulators 14. If the determination result is YES, the surplus refrigerant presence / absence determination unit 51 proceeds to step D104 and outputs that there is no surplus refrigerant. If the determination result is NO, the surplus refrigerant presence / absence determination unit 51 proceeds to step D105 and outputs that there is surplus refrigerant.
- FIG. 12 is a diagram illustrating an operation flow of the circulation composition calculation unit of the air-conditioning apparatus according to Embodiment 2.
- the circulation composition calculation unit 52 was detected by the outdoor unit 2 determined to have excess refrigerant among the detection values P 2 of the second pressure detection device 22 in Step E105. obtaining a detection value P 2, of the detection value T 2 of the second temperature detector 24, the detected value T 2 detected by the outdoor unit 2 where it is determined that excess refrigerant is present, the.
- the average value of the detection value P 2 and the detection value T 2 detected by the outdoor unit 2 that is determined to have surplus refrigerant is Of the detected value P 2 and the detected value T 2 detected by the outdoor unit 2 that may have been acquired and determined to have surplus refrigerant, the representative outdoor unit 2 or the outdoor unit 2 with the most surplus refrigerant. detection value P 2 and the detection value T 2 may be obtained detected the like.
- Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or some of the embodiments.
- the air conditioner 100 is a direct expansion circuit in which the outdoor unit 2 and the indoor unit 3 are connected in series by the refrigerant main pipe 6
- the air-conditioning apparatus 100 includes the load-side heat exchanger 31 and the expansion device 32 other than the indoor unit 3, and in the load-side heat exchanger 31, the refrigerant circulating in the refrigerant circulation circuit 1 and other heat medium May exchange heat, and the heat medium may be supplied to another heat exchanger provided in the indoor unit 3.
- the air conditioning apparatus 100 may include a multistage refrigerant circulation circuit 1. Even in such a case, the same effect is produced.
- the refrigerant filled in the refrigerant circuit 1 is described as an example of the case where the refrigerant is a non-azeotropic refrigerant mixture in which R32 refrigerant and R1234yf refrigerant are mixed in a mass ratio of 44 wt% and 56 wt%.
- the refrigerant filled in the refrigerant circuit 1 is not limited to such a case, and is a non-azeotropic mixture in which a plurality of refrigerants are mixed and the temperature of the saturated gas and the temperature of the saturated liquid are different at the same pressure.
- any kind of mixed refrigerant may be used, and any mixing ratio may be used.
- the case where one compressor 11 is provided in the outdoor unit 2 has been described as an example.
- the present invention is not limited to such a case, and the outdoor unit 2 may be provided with a plurality of compressors 11.
- the case where one accumulator 14 is provided in the outdoor unit 2 has been described as an example.
- the present invention is not limited to such a case, and a plurality of accumulators 14 may be provided in the outdoor unit 2.
- the present invention is not limited to such a case, and the refrigerant circulation circuit 1 does not have the refrigerant flow switching device 12.
- the air conditioner 100 may perform only one of the cooling operation and the heating operation. The same effect is produced when the air conditioner 100 changes the presence or absence of excess refrigerant in the accumulator 14 according to the operating state.
- 1 refrigerant circulation circuit 2 outdoor unit, 3 indoor unit, 4 refrigerant piping, 5 refrigerant piping, 6 refrigerant main pipe, 11 compressor, 12 refrigerant flow switching device, 13 heat source side heat exchanger, 14 accumulator, 21 1st Pressure detection device, 22 second pressure detection device, 23 first temperature detection device, 24 second temperature detection device, 31 load side heat exchanger, 32 expansion device, 41 third temperature detection device, 42 fourth Temperature detector, 43 fifth temperature detector, 50 controller, 51 surplus refrigerant presence / absence determiner, 52 circulation composition calculator, 53 operation controller, 100 air conditioner.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
なお、本発明では、非共沸混合冷媒が冷媒循環回路を循環する状態での、複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成が、「循環組成」と定義される。また、非共沸混合冷媒が冷媒循環回路に充填される状態での、複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成が、「充填組成」と定義される。また、複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成が、「冷媒組成」と定義される。「冷媒組成」には、「循環組成」と「充填組成」との両方が含まれる。
以下に、実施の形態1に係る空気調和装置について説明する。
図1は、実施の形態1に係る空気調和装置の、回路構成の一例を示す概略回路構成図である。
図1に示されるように、空気調和装置100は、沸点の異なる複数の冷媒成分を有する非共沸混合冷媒が充填された冷媒循環回路1と、制御装置50と、を備える。空気調和装置100は、非共沸混合冷媒を循環させることによって空気調和を行う。非共沸混合冷媒は、例えば、R32冷媒とR1234yf冷媒の混合冷媒、R32冷媒とR1234ze冷媒の混合冷媒等である。これ以降の説明では、R32冷媒とR1234yf冷媒が、44wt%と56wt%の質量割合で混合された冷媒である場合を例に説明する。また、非共沸混合冷媒が、R32冷媒とR1234yf冷媒の混合冷媒である場合、及び、R32冷媒とR1234ze冷媒の混合冷媒である場合を例に挙げたが、必ずしもそれらの非共沸混合冷媒である必要はなく、R32冷媒とR1234yf冷媒を主成分としてその他の冷媒が少量混ざっている混合冷媒であってもよく、また、R32冷媒とR1234ze冷媒を主成分としてその他の冷媒が少量混ざっている混合冷媒であってもよい。また、非共沸混合冷媒は、上述の混合冷媒である場合に限定されず、どのような冷媒が混合された混合冷媒であってもよい。また、混合される冷媒成分の数は、2成分であってもよく、また、3成分であってもよく、また、それ以上であってもよい。
室外機2には、圧縮機11と、四方弁等の冷媒流路切替装置12と、熱源側熱交換器(室外熱交換器)13と、アキュムレータ14と、が搭載される。
室内機3には、負荷側熱交換器(室内熱交換器)31と、絞り装置32と、が搭載される。
制御装置50は、余剰冷媒有無判定部51と、循環組成演算部52と、動作制御部53と、を有する。制御装置50を構成する各部は、例えば、マイコン、マイクロプロセッサユニット等で構成されてもよく、また、ファームウェア等の更新可能なもので構成されてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。また、制御装置50は、室外機2に設けられてもよく、また、室内機3に設けられてもよく、また、室外機2と室内機3とに分けて設けられてもよく、また、それら以外に設けられてもよい。余剰冷媒有無判定部51は、本発明における「余剰冷媒有無判定手段」に相当する。循環組成演算部52は、本発明における「循環組成演算手段」に相当する。
図2は、実施の形態1に係る空気調和装置の、冷房運転時の冷媒の流れを示す概略回路構成図である。なお、図2では、冷媒の流れ方向を実線矢印で示している。また、以下では、負荷側熱交換器31に冷熱負荷が発生している場合を例として、冷房運転モードを説明している。
図3は、実施の形態1に係る空気調和装置の、暖房運転時の冷媒の流れを示す概略回路構成図である。なお、図3では、冷媒の流れ方向を実線矢印で示している。また、以下では、負荷側熱交換器31に温熱負荷が発生している場合を例として、暖房運転モードを説明している。
図4は、実施の形態1に係る空気調和装置の、冷凍サイクルのp-h線図である。
図4に示されるように、非共沸混合冷媒が、沸点の異なる複数の冷媒成分を有することに起因して、同一圧力での飽和液冷媒の温度と飽和ガス冷媒の温度とが、異なる値になるという特徴がある。また、圧力、温度、及び、冷媒組成という三つのパラメータが与えられないと、p-h線図上での冷媒の状態が一点に決定されないという特徴がある。また、冷媒循環回路1が、アキュムレータ14のような気液界面が発生する部分を含んでいると、気液界面が発生する部分において、低沸点成分が気相となりやすく、高沸点成分が液相となりやすいことから、冷媒循環回路1内を低沸点成分が多く流れるようになるという特徴がある。
以下に、余剰冷媒有無判定部51の動作について説明する。
なお、以下では、本発明における「充填組成」が、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αOである場合を例に、説明している。
図5に示されるように、まず、余剰冷媒有無判定部51は、ステップA101において、第二の圧力検出装置22の検出値P2と、第二の温度検出装置24の検出値T2と、を取得する。次に、余剰冷媒有無判定部51は、ステップA102において、第二の圧力検出装置22の検出値P2と、既知の量である非共沸混合冷媒の充填組成αOと、から、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを演算する。次に、余剰冷媒有無判定部51は、ステップA103において、第二の温度検出装置24の検出値T2が、アキュムレータ14の流入部における冷媒の飽和ガス温度Tsatを超えるか否かを判定する。判定結果がYESである場合には、アキュムレータ14にガス冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA104において、アキュムレータ14内に余剰冷媒が無い旨を出力する。また、判定結果がNOである場合には、アキュムレータ14に気液二相冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA105において、アキュムレータ14内に余剰冷媒が有る旨を出力する。
Tsat=f(P2,αO) ・・・(1)
図6は、実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の変形例-1の動作フローを示す図である。
図6に示されるように、まず、余剰冷媒有無判定部51は、ステップA201において、第二の圧力検出装置22の検出値P2と、第二の温度検出装置24の検出値T2と、を取得する。次に、余剰冷媒有無判定部51は、ステップA202において、第二の温度検出装置24の検出値T2と、既知の量である非共沸混合冷媒の充填組成αOと、から、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psatを演算する。次に、余剰冷媒有無判定部51は、ステップA203において、第二の圧力検出装置22の検出値P2が、アキュムレータ14の流入部における冷媒の飽和ガス圧力Psat未満であるか否かを判定する。判定結果がYESである場合には、アキュムレータ14にガス冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA204において、アキュムレータ14内に余剰冷媒が無い旨を出力する。また、判定結果がNOである場合には、アキュムレータ14に気液二相冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA205において、アキュムレータ14内に余剰冷媒が有る旨を出力する。
Psat=f(T2,αO) ・・・(2)
図7は、実施の形態1に係る空気調和装置の、余剰冷媒有無判定部の変形例-2の動作フローを示す図である。
図7に示されるように、まず、余剰冷媒有無判定部51は、ステップA301において、第二の圧力検出装置22の検出値P2と、第二の温度検出装置24の検出値T2と、を取得する。次に、余剰冷媒有無判定部51は、ステップA302において、第二の温度検出装置24の検出値T2と、既知の量である非共沸混合冷媒の充填組成αOと、から、アキュムレータ14の流入部における冷媒の飽和ガスエンタルピである、温度算出飽和ガスエンタルピHGTを演算する。また、第二の圧力検出装置22の検出値P2と、既知の量である非共沸混合冷媒の充填組成αOと、から、アキュムレータ14の流入部における冷媒の飽和ガスエンタルピである、圧力算出飽和ガスエンタルピHGPを演算する。次に、余剰冷媒有無判定部51は、ステップA303において、温度算出飽和ガスエンタルピHGTが、圧力算出飽和ガスエンタルピHGPを超えるか否かを判定する。判定結果がYESである場合には、アキュムレータ14にガス冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA304において、アキュムレータ14内に余剰冷媒が無い旨を出力する。また、判定結果がNOである場合には、アキュムレータ14に気液二相冷媒が流入していると判断できるため、余剰冷媒有無判定部51は、ステップA305において、アキュムレータ14内に余剰冷媒が有る旨を出力する。
HGT=f(T2,αO) ・・・(3)
HGP=f(P2,αO) ・・・(4)
以下に、循環組成演算部52の動作について説明する。
なお、以下では、本発明における「循環組成」が、複数の冷媒成分のうちの最も沸点が低い冷媒成分の循環組成αである場合を例に、説明している。また、以下では、本発明における「充填組成」が、複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成αOである場合を例に、説明している。
図8に示されるように、まず、循環組成演算部52は、ステップB101において、余剰冷媒有無判定部51の出力を取得し、その出力が、アキュムレータ14内に余剰冷媒が無い旨の出力である場合には、ステップB102に進み、アキュムレータ14内に余剰冷媒が有る旨の出力である場合には、ステップB104に進む。
αG=f(P2,T2) ・・・(5)
以下に、余剰冷媒有無判定部51及び循環組成演算部52の動作の具体例について説明する。
非共沸混合冷媒が、R32冷媒とR1234yf冷媒との混合冷媒であり、R32冷媒とR1234yf冷媒の質量割合が、44wt%と56wt%であり、第二の圧力検出装置22の検出値P2=0.70MPaabsであり、第二の温度検出装置24の検出値T2=1.0℃である場合について説明する。なお、以下に示される物性値は、NIST(National Institute of Standards and Technology)が発売しているREFPROP Version 9.0によって計算された値である。
以下に、動作制御部53の動作について説明する。
図9は、実施の形態1に係る空気調和装置の、動作制御部の動作フローを示す図である。
図9に示されるように、まず、動作制御部53は、ステップC101において、第一の圧力検出装置21の検出値P1と、第二の圧力検出装置22の検出値P2と、循環組成演算部52で算出された循環組成αと、を取得する。
以下に、実施の形態2に係る空気調和装置について説明する。
なお、以下では、実施の形態1と重複又は類似する説明については、適宜簡略化又は省略している。
図10に示されるように、空気調和装置100は、複数の室外機2と、複数の室内機3と、を有する。複数の室外機2と、複数の室内機3と、は、冷媒主管6を介して接続される。室外機2は、2つである場合に限定されない。室内機3は、3つである場合に限定されず、また、1つであってもよい。
制御装置50は、余剰冷媒有無判定部51と、循環組成演算部52と、動作制御部53と、を有する。制御装置50を構成する各部は、複数の室外機2に分けて又は複数の室外機2のうちの代表する一つの室外機2に纏めて設けられてもよく、また、複数の室内機3に分けて又は複数の室内機3のうちの代表する一つの室内機3に纏めて設けられてもよく、また、それら以外に分けて又は纏めて設けられてもよい。余剰冷媒有無判定部51は、本発明における「余剰冷媒有無判定手段」に相当する。循環組成演算部52は、本発明における「循環組成演算手段」に相当する。
以下に、余剰冷媒有無判定部51の動作について説明する。
図11は、実施の形態2に係る空気調和装置の、余剰冷媒有無判定部の動作フローを示す図である。
図11に示されるように、まず、余剰冷媒有無判定部51は、ステップD101において、複数の室外機2のそれぞれから第二の圧力検出装置22の検出値P2と、第二の温度検出装置24の検出値T2と、を取得する。次に、余剰冷媒有無判定部51は、ステップD102において、図5~図7に示されるような動作フローによって、アキュムレータ14のそれぞれにおける、余剰冷媒の有無を判定する。余剰冷媒有無判定部51は、ステップD103において、全てのアキュムレータ14において余剰冷媒が無いか否かを判定する。判定結果がYESである場合には、余剰冷媒有無判定部51は、ステップD104に進んで、余剰冷媒が無い旨を出力する。判定結果がNOである場合には、余剰冷媒有無判定部51は、ステップD105に進んで、余剰冷媒が有る旨を出力する。
以下に、循環組成演算部52の動作について説明する。
図12は、実施の形態2に係る空気調和装置の、循環組成演算部の動作フローを示す図である。
図12に示されるように、循環組成演算部52は、ステップE105において、第二の圧力検出装置22の検出値P2のうちの、余剰冷媒が有ると判定された室外機2で検出された検出値P2と、第二の温度検出装置24の検出値T2のうちの、余剰冷媒が有ると判定された室外機2で検出された検出値T2と、を取得する。余剰冷媒が有ると判定された室外機2が、複数である場合には、例えば、余剰冷媒が有ると判定された室外機2で検出された検出値P2及び検出値T2の平均値が取得されてもよく、また、余剰冷媒が有ると判定された室外機2で検出された検出値P2及び検出値T2のうちの、代表する室外機2、最も余剰冷媒が多い室外機2等で検出された検出値P2及び検出値T2が取得されてもよい。
Claims (16)
- 圧縮機と、熱源側熱交換器と、絞り装置と、負荷側熱交換器と、余剰冷媒を貯留するアキュムレータと、が配管で接続され、
沸点が異なる複数の冷媒成分を有する非共沸混合冷媒が充填された冷媒循環回路と、
前記アキュムレータ内に前記余剰冷媒が無いか否かを判定する余剰冷媒有無判定手段と、
前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定される場合に、前記非共沸混合冷媒が前記冷媒循環回路を循環する状態での前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、循環組成を、前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定されない場合と異なる演算方法を用いて演算する循環組成演算手段と、を有する制御装置と、
を備えたことを特徴とする冷凍サイクル装置。 - 前記余剰冷媒有無判定手段は、
前記アキュムレータの上流側に設けられた、圧力検出装置及び温度検出装置の検出値に基づいて、前記アキュムレータ内に前記余剰冷媒が無いか否かを判定する、
ことを特徴とする請求項1に記載の冷凍サイクル装置。 - 前記余剰冷媒有無判定手段は、
前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、冷媒組成と、前記圧力検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガス温度を、判定の指標値として演算し、
前記温度検出装置の検出値と前記飽和ガス温度とを比較し、
前記温度検出装置の検出値が前記飽和ガス温度を超える場合に、前記アキュムレータ内に前記余剰冷媒が無いと判定する、
ことを特徴とする請求項2に記載の冷凍サイクル装置。 - 前記余剰冷媒有無判定手段は、
前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、冷媒組成と、前記温度検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガス圧力を、判定の指標値として演算し、
前記圧力検出装置の検出値と前記飽和ガス圧力とを比較し、
前記圧力検出装置の検出値が前記飽和ガス圧力未満である場合に、前記アキュムレータ内に前記余剰冷媒が無いと判定する、
ことを特徴とする請求項2に記載の冷凍サイクル装置。 - 前記余剰冷媒有無判定手段は、
前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、冷媒組成と、前記温度検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガスエンタルピである、温度算出飽和ガスエンタルピを、判定の指標値として演算し、
前記冷媒組成と、前記圧力検出装置の検出値と、に基づいて、前記アキュムレータに流入する冷媒の飽和ガスエンタルピである、圧力算出飽和ガスエンタルピを、判定の指標値として演算し、
前記温度算出飽和ガスエンタルピと前記圧力算出飽和ガスエンタルピとを比較し、
前記温度算出飽和ガスエンタルピが前記圧力算出飽和ガスエンタルピを超える場合に、前記アキュムレータ内に前記余剰冷媒が無いと判定する、
ことを特徴とする請求項2に記載の冷凍サイクル装置。 - 前記余剰冷媒有無判定手段は、
前記判定の指標値を、圧力、温度、エンタルピ、及び、乾き度のうちの少なくとも一つの冷媒物性に基づいて演算する、
ことを特徴とする請求項3~5のいずれか一項に記載の冷凍サイクル装置。 - 前記余剰冷媒有無判定手段は、
前記冷媒組成として、前記非共沸混合冷媒が前記冷媒循環回路に充填される状態での前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、充填組成を用いる、
ことを特徴とする請求項3~6のいずれか一項に記載の冷凍サイクル装置。 - 前記余剰冷媒有無判定手段は、
前記充填組成として、前記複数の冷媒成分のうちの最も沸点が低い冷媒成分の充填組成を用いる、
ことを特徴とする請求項7に記載の冷凍サイクル装置。 - 前記循環組成演算手段は、
前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定される場合に、
前記非共沸混合冷媒が前記冷媒循環回路に充填される状態での前記複数の冷媒成分のうちの最も沸点が低い冷媒成分の組成である、充填組成に、正の値である組成補正値を加算した値を、前記循環組成として演算する、
ことを特徴とする請求項1~8のいずれか一項に記載の冷凍サイクル装置。 - 前記非共沸混合冷媒は、前記最も沸点が低い冷媒成分であるR32冷媒と、R1234yf冷媒と、を主成分とし、
前記R32冷媒の質量割合は、35wt%~75wt%の範囲に含まれるいずれかの値であり、
前記組成補正値は、+1~+4wt%の範囲に含まれるいずれかの値である、
ことを特徴とする請求項9に記載の冷凍サイクル装置。 - 前記非共沸混合冷媒は、前記最も沸点が低い冷媒成分であるR32冷媒と、R1234ze冷媒と、を主成分とし、
前記R32冷媒の質量割合は、35wt%~75wt%の範囲に含まれるいずれかの値であり、
前記組成補正値は、+1~+4wt%の範囲に含まれるいずれかの値である、
ことを特徴とする請求項9に記載の冷凍サイクル装置。 - 前記循環組成演算手段は、
前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定されない場合に、
前記アキュムレータの上流側に設けられた、圧力検出装置及び温度検出装置の検出値に基づいて、前記循環組成を演算する、
ことを特徴とする請求項1~11のいずれか一項に記載の冷凍サイクル装置。 - 前記冷媒循環回路には、複数の前記アキュムレータが並列に接続され、
前記余剰冷媒有無判定手段は、
前記アキュムレータ毎に、前記余剰冷媒が無いか有るかを判定し、
前記複数のアキュムレータの全てにおいて前記余剰冷媒が無いと判定される場合に、前記余剰冷媒が無いと判定する、
ことを特徴とする請求項1~12のいずれか一項に記載の冷凍サイクル装置。 - 前記循環組成演算手段は、
前記余剰冷媒有無判定手段において前記余剰冷媒が無いと判定されない場合に、
前記複数のアキュムレータのうちの前記余剰冷媒が無いと判定されないアキュムレータの上流側に設けられた、圧力検出装置及び温度検出装置の検出値に基づいて、前記循環組成を演算する、
ことを特徴とする請求項13に記載の冷凍サイクル装置。 - 請求項1~14のいずれか一項に記載の冷凍サイクル装置である、
ことを特徴とする空気調和装置。 - 圧縮機と、熱源側熱交換器と、絞り装置と、負荷側熱交換器と、余剰冷媒を貯留するアキュムレータと、が配管で接続され、沸点が異なる複数の冷媒成分を有する非共沸混合冷媒が充填された冷媒循環回路を備えた冷凍サイクル装置における、前記非共沸混合冷媒が前記冷媒循環回路を循環する状態での前記複数の冷媒成分のうちの少なくとも一つの冷媒成分の組成である、循環組成の算出方法であって、
前記アキュムレータ内に前記余剰冷媒が無いか否かを判定する余剰冷媒有無判定段階と、
前記余剰冷媒有無判定段階において前記余剰冷媒が無いと判定される場合に、前記循環組成を、前記余剰冷媒有無判定段階において前記余剰冷媒が無いと判定されない場合と異なる演算方法を用いて演算する循環組成演算段階と、
を備えたことを特徴とする循環組成の算出方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015559671A JP6072311B2 (ja) | 2014-01-30 | 2014-01-30 | 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 |
GB1608160.6A GB2534789B (en) | 2014-01-30 | 2014-01-30 | Refrigeration cycle apparatus, air-conditioning apparatus, and method for calculating circulation composition in refrigeration cycle apparatus |
PCT/JP2014/052106 WO2015114774A1 (ja) | 2014-01-30 | 2014-01-30 | 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/052106 WO2015114774A1 (ja) | 2014-01-30 | 2014-01-30 | 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015114774A1 true WO2015114774A1 (ja) | 2015-08-06 |
Family
ID=53756386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/052106 WO2015114774A1 (ja) | 2014-01-30 | 2014-01-30 | 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6072311B2 (ja) |
GB (1) | GB2534789B (ja) |
WO (1) | WO2015114774A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181065A1 (ja) * | 2017-03-31 | 2018-10-04 | ダイキン工業株式会社 | 空気調和装置 |
JPWO2019234914A1 (ja) * | 2018-06-08 | 2021-02-25 | 三菱電機株式会社 | 室外機および冷凍サイクル装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000161804A (ja) * | 1998-11-26 | 2000-06-16 | Mitsubishi Electric Corp | 冷凍空調装置 |
JP2001317830A (ja) * | 2000-05-11 | 2001-11-16 | Matsushita Refrig Co Ltd | 空気調和機 |
WO2013093981A1 (ja) * | 2011-12-22 | 2013-06-27 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2013168199A1 (ja) * | 2012-05-11 | 2013-11-14 | 三菱電機株式会社 | 空気調和装置 |
-
2014
- 2014-01-30 JP JP2015559671A patent/JP6072311B2/ja active Active
- 2014-01-30 GB GB1608160.6A patent/GB2534789B/en active Active
- 2014-01-30 WO PCT/JP2014/052106 patent/WO2015114774A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000161804A (ja) * | 1998-11-26 | 2000-06-16 | Mitsubishi Electric Corp | 冷凍空調装置 |
JP2001317830A (ja) * | 2000-05-11 | 2001-11-16 | Matsushita Refrig Co Ltd | 空気調和機 |
WO2013093981A1 (ja) * | 2011-12-22 | 2013-06-27 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2013168199A1 (ja) * | 2012-05-11 | 2013-11-14 | 三菱電機株式会社 | 空気調和装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181065A1 (ja) * | 2017-03-31 | 2018-10-04 | ダイキン工業株式会社 | 空気調和装置 |
JP2018173196A (ja) * | 2017-03-31 | 2018-11-08 | ダイキン工業株式会社 | 空気調和装置 |
CN110446898A (zh) * | 2017-03-31 | 2019-11-12 | 大金工业株式会社 | 空调装置 |
CN110446898B (zh) * | 2017-03-31 | 2021-05-25 | 大金工业株式会社 | 空调装置 |
JPWO2019234914A1 (ja) * | 2018-06-08 | 2021-02-25 | 三菱電機株式会社 | 室外機および冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
GB2534789A (en) | 2016-08-03 |
GB201608160D0 (en) | 2016-06-22 |
GB2534789B (en) | 2020-03-11 |
JPWO2015114774A1 (ja) | 2017-03-23 |
JP6072311B2 (ja) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228023B2 (ja) | 冷凍サイクル装置 | |
JP6482655B2 (ja) | 冷凍サイクル装置 | |
JP6021945B2 (ja) | 冷凍サイクル装置、及び冷凍サイクル装置の制御方法 | |
JP6109205B2 (ja) | 冷凍サイクル装置、及び冷凍サイクル装置の制御方法 | |
JP6433709B2 (ja) | ターボ冷凍機及びその制御装置並びにその制御方法 | |
JP2009299914A (ja) | 多室空気調和機 | |
JP2011069570A (ja) | ヒートポンプサイクル装置 | |
JP5818979B2 (ja) | 空気調和装置 | |
JPWO2012032787A1 (ja) | 熱媒体循環型ヒートポンプ暖房機 | |
CN105378392B (zh) | 空调装置 | |
JP6239092B2 (ja) | 空気調和機 | |
EP3199889B1 (en) | Air conditioner | |
CN104254742B (zh) | 空气调节装置 | |
JP2007225140A (ja) | ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法 | |
JP2010164270A (ja) | 多室型空気調和機 | |
JP6072311B2 (ja) | 冷凍サイクル装置、空気調和装置、及び、冷凍サイクル装置における循環組成の算出方法 | |
JP5889347B2 (ja) | 冷凍サイクル装置及び冷凍サイクル制御方法 | |
JP2005048973A (ja) | 空気調和機及び空気調和機の制御方法 | |
JP2018146142A (ja) | 空気調和機 | |
JP5479625B2 (ja) | 冷凍サイクル装置及び冷凍サイクル制御方法 | |
JP6415612B2 (ja) | 冷凍サイクル装置 | |
JP2002061979A (ja) | 冷暖房装置 | |
JPH0821667A (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14881166 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015559671 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 201608160 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20140130 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14881166 Country of ref document: EP Kind code of ref document: A1 |