WO2015113504A1 - 实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部 - Google Patents

实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部 Download PDF

Info

Publication number
WO2015113504A1
WO2015113504A1 PCT/CN2015/071782 CN2015071782W WO2015113504A1 WO 2015113504 A1 WO2015113504 A1 WO 2015113504A1 CN 2015071782 W CN2015071782 W CN 2015071782W WO 2015113504 A1 WO2015113504 A1 WO 2015113504A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft section
bearing
eccentric shaft
power
different
Prior art date
Application number
PCT/CN2015/071782
Other languages
English (en)
French (fr)
Inventor
刘素华
Original Assignee
刘素华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘素华 filed Critical 刘素华
Priority to EP15742732.9A priority Critical patent/EP3101226A4/en
Priority to US15/115,278 priority patent/US10400597B2/en
Priority to AU2015210534A priority patent/AU2015210534B2/en
Priority to UAA201609104A priority patent/UA120176C2/uk
Priority to CA2938340A priority patent/CA2938340C/en
Priority to EA201691546A priority patent/EA034626B1/ru
Publication of WO2015113504A1 publication Critical patent/WO2015113504A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/02Machines slitting solely by one or more percussive tools moved through the seam
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C27/00Machines which completely free the mineral from the seam
    • E21C27/20Mineral freed by means not involving slitting
    • E21C27/28Mineral freed by means not involving slitting by percussive drills with breaking-down means, e.g. wedge-shaped tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C31/00Driving means incorporated in machines for slitting or completely freeing the mineral from the seam
    • E21C31/02Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for cutting or breaking-down devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C31/00Driving means incorporated in machines for slitting or completely freeing the mineral from the seam
    • E21C31/02Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for cutting or breaking-down devices
    • E21C31/04Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for cutting or breaking-down devices imparting both a rotary and reciprocating motion
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/20General features of equipment for removal of chippings, e.g. for loading on conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/18Eccentric-shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof

Definitions

  • the invention belongs to the field of machinery, and particularly relates to a reciprocating impact portion of a different convex shaft fixed bearing of a method for implementing a reciprocating impact portion different convex shaft fixed bearing method.
  • the reciprocating impact tooth is perpendicular to the reciprocating impact of the material to be excavated, with high block rate, energy saving and high efficiency.
  • the price of lump coal sold in the market is more than twice the price of the end coal.
  • the reciprocating impact mining machine has broad application prospects. However, during the promotion of the product, it was found that although the reciprocating impact type roadheader has high mining efficiency, the rotating shaft of the reciprocating impact mechanism has a small size of the installed bearing bush, and the shock reaction is large, and the impact lateral force is large.
  • the problem is that the service life of the rotating crankshaft is extremely short, and the bearing bush or the split bearing is a split structure, which has poor anti-swinging and impact resistance, and is easy to be damaged, and is difficult to replace and repair after damage, thereby making the reciprocating impact mining machine It is impossible to work continuously for a long time, so that the reciprocating impact mining machine is difficult to meet the requirements of field use.
  • the retaining rings of commonly used fixed bearings are mostly circlips. The circlip is easy to use as a retaining ring, but it is used on the crankshaft of the reciprocating impact boring machine. It will be deformed and detached due to the strong reciprocating impact vibration force and lateral force damage, which will cause the bearing to move and cannot work.
  • the reciprocating impact type roadheader which is energy-saving, environmentally-friendly, high-efficiency, and material use value is popularized and applied, and the present invention proposes a reciprocating of different convex-shaft fixed bearings for implementing a reciprocating impact part different-spindle shaft fixed bearing method. Impact section.
  • a reciprocating impact portion of a different convex shaft fixed bearing that implements a reciprocating impact portion of a different convex shaft fixed bearing method
  • the reciprocating impact portion of the different convex shaft fixed bearing includes a power shaft section and an eccentric shaft Segment, power shaft bearing, eccentric shaft bearing, power shaft bearing ring, eccentric shaft bearing ring, connecting rod, power source and box, etc.
  • the power shaft section and the eccentric shaft section are connected or integrated
  • eccentric shaft section bearing is arranged on the eccentric shaft section
  • power shaft section bearing is arranged on the power shaft section
  • the eccentric shaft section bearing includes an eccentric shaft section split bearing or an eccentric shaft section integral bearing, etc., the power shaft section bearing retaining ring
  • the eccentric shaft section bearing retaining ring blocks the power shaft section bearing, the eccentric shaft section bearing, etc., or the power shaft section bearing retaining ring and the eccentric shaft section bearing retaining ring are integrated into different heart-connecting retaining sleeves, and different heart-connecting retaining sleeves
  • the inner diameter of the retaining ring, the bearing ring of the power shaft section and the bearing ring of the eccentric shaft section form a height difference, and the space of the height difference avoids friction between the bearing ring of the eccentric shaft section and the outer support ring of the power shaft section during rotation and/or the height difference
  • the space avoids the friction of the bearing section of the power shaft section and the outer support ring of the eccentric shaft section during rotation.
  • the different concentric sleeves are arranged between the bearing of the power shaft section and the eccentric shaft section or the eccentric shaft section bearing and the eccentric shaft
  • the different core connecting sleeves and the eccentric shaft segments and/or the different core connecting sleeves and the power shaft segments are provided with anti-slip sleeve rotating parts, etc.
  • the anti-slip sleeve rotating parts prevent different heart-connecting body sleeves Relative to the power shaft segment and relative to the eccentric shaft segment
  • the connecting rod comprises a split-body fastening crankshaft connecting rod or an integral sleeve crankshaft connecting rod, etc.
  • the overall sleeve crankshaft connecting rod is sleeved on the eccentric shaft section bearing
  • the power shaft section The bearing is arranged on one side or both sides of the box body, the power shaft section bearing supports the power shaft section, the eccentric shaft section rotates, etc., and the power source drives the power shaft section to drive the connecting rod and the like to reciprocate impact.
  • the center of the circular section of the eccentric shaft section and the center of the circular section of the power shaft section are set: the circular section of the power shaft section is set in the circular section of the eccentric shaft section, and the distance between the center of the circular section of the power shaft section and the center of the circular section of the eccentric shaft section is the reciprocating impact stroke.
  • One-half of the eccentric shaft section is integrally mounted on the eccentric shaft section, and the power shaft section and the eccentric shaft section are connected separately or in one piece, and the different heart-connecting retaining sleeves are disposed on the power shaft section bearing and the eccentric shaft.
  • the segment bearings are blocked between the power shaft bearing and the eccentric shaft bearing, and the eccentric shaft section is provided with a shoulder, and the other side is provided with a different concentric sleeve or a circlip or a retaining ring.
  • the power shaft segment bearing retaining ring includes a snap spring or a spacer sleeve, and the eccentric shaft segment includes one or more eccentric shaft segments and the like.
  • the eccentric shaft section is provided with an anti-rotation hole or an anti-rotation groove, and the protrusions of the different heart-connecting body sleeves are matched with the anti-rotation holes or the anti-rotation grooves, and the protrusions and the anti-rotation holes or the anti-rotation The grooves and the like cooperate to prevent the rotation of the different heart-connecting sleeves relative to the eccentric shaft section.
  • Anti-rotation keys are arranged in the inner diameter of different heart-connecting retaining sleeves, correspondingly, a keyway is provided on the power shaft section and/or the eccentric shaft section, and the anti-rotation key is advanced to prevent the keyway from being rotated, or in different heart-connecting body sleeves.
  • a keyway is arranged on the power shaft section, and an anti-rotation key is arranged in the keyway of the different heart-connecting sleeve and the power shaft section.
  • the anti-slip sleeve rotating member comprises an anti-rotation pin and a pin hole, and the pin hole and the hole are arranged on the eccentric shaft segment and/or the different core connecting body sleeve, and the pin hole comprises a through hole or a boring hole, and the anti-rotation pin is disposed at
  • the pin hole prevents the different heart joint body sleeve from rotating relative to the eccentric shaft section
  • the blind hole prevents the anti-rotation pin from falling off
  • the blind hole is arranged on the eccentric shaft section to provide a through hole on the different heart joint body sleeve, etc.
  • one end of the anti-rotation pin is disposed in the blind hole of the eccentric shaft section and the other end is disposed in the through hole of the different core conjoined sleeve, and the anti-rotation pin is prevented from being different by spot welding or glue.
  • the heart-shaped body sleeve is detached from the through-hole, or a blind hole is arranged on the eccentric shaft section, and a blind hole is arranged on the different heart-connecting body sleeve, and one end of the anti-rotation pin is set in the blind hole of the different heart-connecting body sleeve, and the other One end is placed in the blind hole of the eccentric shaft section.
  • the side of the eccentric shaft section is provided with a shoulder, and the other side is provided with a different core connecting body sleeve, and the shoulder and the different core connecting body sleeve together prevent the eccentric shaft section bearing from axially pulsing along the eccentric shaft section.
  • the inner diameter of the different heart conjoined sleeves is interlocked with the power shaft section for radial positioning.
  • the different heart-connecting retaining sleeves are provided with a disassembling top wire hole and/or a lifting hole or the like on the eccentric shaft section or the power shaft section.
  • the reciprocating impact portion of the different convex shaft fixed bearing further comprises a squeezing mechanism, the squeezing mechanism comprises a squeegee transmission member, the smashing material transmission part and the power shaft section are connected separately or separately, or are integrated, etc.
  • the material is disposed in the box body or outside the box body, and the material feeding mechanism further comprises a rotating material for rotating the material and the arm of the material.
  • the material conveying member drives the rotating member of the material to rotate, and the rotating material drives the rotating arm of the material arm and the like. .
  • the pick-up transmission component comprises a pick-up drive sprocket or a pick-up drive gear or a pick-up drive pulley or a feed transmission friction wheel or a pick-up drive coupling or a pick-up spline sleeve or a pick-up clutch.
  • the picking mechanism comprises a pick-up clutch, etc.
  • the pick-up clutch is arranged on the rotating part of the material or is arranged on the power shaft section or is arranged on the material transmission part, etc.
  • the different heart-shaped body sleeve is arranged on the eccentric shaft section
  • the pick-up clutch drives the pick-up rotating member to drive the pick-up arm to rotate, and when the reciprocating impact is blanked, the pick-up clutch stops the pick-up arm from rotating.
  • the anti-bill arm is prevented from obstructing the impact blanking, and the tumbler transmission member and the tanning material rotating member are separately arranged or integrated.
  • the box body is provided with a rotating arm drop limit mechanism
  • the rotating arm drop limit mechanism comprises a claw, a fixed shaft and a limit block
  • the limit block includes an upper limit block and a lower limit block
  • the claw is at The upper limit block and the lower limit block oscillate
  • the limit block is connected with the box body or integrated
  • the fixed shaft is arranged on the box body
  • the claw is hinged with the fixed shaft
  • the limit block limits the claw.
  • the power shaft section is provided with an oil slinging member, etc., and an oil slinging mechanism is arranged in the box body, and the oil slinging mechanism includes an oil slinger shaft, a oil shovel, etc., the slick oil power unit drives the oil sling shaft, and the sling oil shaft drives the oil. ⁇ Rotary oil, the oil shaft is placed in the lower part of the tank to increase the amount of oil.
  • the oil-powered parts include sprocket chain slick oil power parts or belt belt rim oil power parts or gear racks ⁇ oil power parts or pin teeth Type oyster oil power parts or ropes and ropes ⁇ oil power parts or gear ⁇ oil power parts or hanging ⁇ oil power parts.
  • the eccentric shaft segment includes more than one eccentric shaft segment or the like, and the two or more eccentric shaft segments are disposed in the same direction or at equal intervals in the radial direction of the power shaft segment or in the radial direction of the power shaft segment.
  • the eccentric shaft segment includes a middle eccentric shaft segment, a left eccentric shaft segment and a right eccentric shaft segment.
  • the diameter of the intermediate eccentric shaft segment is larger than the diameter of the left eccentric shaft segment or the right eccentric shaft segment
  • the eccentric shaft segment bearing includes an intermediate eccentric shaft segment bearing, Left eccentric shaft bearing and right eccentric shaft bearing, the middle eccentric shaft bearing is integrally fixed to the middle eccentric shaft section through the left eccentric shaft section or the right eccentric shaft section, or the intermediate eccentric shaft section bearing is a split intermediate eccentric shaft section Bearing.
  • the reciprocating impact portion of the different convex shaft fixed bearing further includes a driving transmission member or the like, and the driving transmission member is disposed on the power shaft segment or disposed between the power shaft segment and the eccentric shaft portion or between the eccentric shaft portion and the eccentric shaft portion.
  • the invention also includes a method for fixing a bearing of a reciprocating impact portion with a different convex axis, the steps of the method are:
  • the bearing retaining ring and the eccentric shaft bearing ring are made into a one-piece different heart-connecting retaining sleeve, so that the outer diameter of the bearing ring of the power shaft segment of the different heart-shaped retaining sleeve is smaller than the inner diameter of the outer bearing ring of the power shaft bearing, eccentric
  • the outer diameter of the bearing ring of the shaft section is smaller than the inner diameter of the outer support ring of the eccentric shaft section bearing, so that the bearing section of the power shaft section and the bearing ring of the eccentric shaft section are provided with a height difference, and the space of the height difference avoids the rotation of the bearing ring of the eccentric shaft section.
  • the friction with the outer support ring of the power shaft section bearing and/or the space of the height difference avoids the friction of the bearing ring of the power shaft section and the outer support ring of the eccentric shaft section during the rotation, in the different heart joint sleeve and the eccentric shaft section and / or set the anti-slip sleeve rotating parts on the different heart conjoining sleeves and the power shaft section, so that the anti-slip sleeve rotating parts prevent the different core conjoined sleeves from rotating relative to the power shaft section and relative to the eccentric shaft section, which will be different Heart conjoined sleeve is set at Or a force is provided between the bearing shaft and the eccentric shaft bearing section between the eccentric section of the shaft bearing section and the eccentric shaft bearing section disposed between the eccentric shaft or the bearing section and the power section shaft clutch raking the like;
  • the inner diameter of the ring, the outer diameter of the bearing ring of the eccentric shaft section is smaller than the inner diameter of the outer support ring of the eccentric shaft section bearing, so that the bearing section of the power shaft section and the bearing ring of the eccentric shaft section are provided with a height difference, and the space of the height difference avoids the eccentric shaft section bearing When the retaining ring rotates, it rubs against the outer support ring of the power shaft section bearing and/or the space of the height difference avoids the rotation of the bearing section of the power shaft section.
  • the outer support ring of the eccentric shaft bearing When rotating, the outer support ring of the eccentric shaft bearing is frictioned, and the anti-slip sleeve rotating member is arranged on the different core connecting sleeve and the eccentric shaft section and/or the different core connecting sleeve and the power shaft section, so that the anti-stop sleeve rotates.
  • the integral sleeve crankshaft connecting rod is sleeved on the eccentric shaft section bearing
  • the power shaft section bearing is arranged on the box body to make the power shaft section bearing Supporting the power shaft section and the eccentric shaft section
  • the power source part drives the power shaft section to rotate, so that the power shaft section drives the connecting rod to reciprocate impact
  • the different heart joint body sleeve is disposed between the power shaft section bearing and the eccentric shaft section bearing to block the power
  • the shaft section bearing, the eccentric shaft section bearing, etc., the power shaft section bearing retaining ring and the eccentric shaft section bearing retaining ring are integrated into different heart-connecting retaining sleeves, which increases the volume and strength of the different heart-connecting
  • the center of the circular section of the eccentric shaft section and the center of the circular section of the power shaft section are set: the circular section of the power shaft section is set in the circular section of the eccentric shaft section, and the distance between the center of the circular section of the power shaft section and the center of the circular section of the eccentric shaft section is reciprocating.
  • the integral bearing of the eccentric shaft section is integrally mounted on the eccentric shaft section, and the different heart-connecting retaining sleeves are arranged between the power shaft section bearing and the eccentric shaft section bearing to block the power shaft section bearing and the eccentric shaft section bearing.
  • the connecting rod is integrally sleeved on the eccentric shaft section integral bearing, so the eccentric shaft section must be made larger than the power shaft section, so it is greatly increased.
  • the volume and strength of the eccentric shaft segment are increased, and the volume and strength of the eccentric shaft section are increased by the increase of the eccentric shaft section, which increases the volume and strength of the crank connecting rod, and makes the power shaft section and the eccentric shaft
  • the integral part of the segment increases the strength of the different convex shafts.
  • the integral sleeve of the connecting rod and the integral bearing of the eccentric shaft section can improve the bearing capacity and improve the components. Accuracy.
  • Anti-rotation hole or anti-rotation groove is arranged on the eccentric shaft section, and the protrusions of the different heart-connecting body sleeves are matched with the anti-rotation holes or the anti-rotation grooves, and the protrusions cooperate with the anti-rotation holes or the anti-rotation grooves to prevent
  • the different heart conjoined sleeves rotate relative to the eccentric shaft section, and the eccentric shaft sections and the different core conjoined sleeves are mutually constrained to prevent the rotation of the different concentric body retaining sleeves relative to the eccentric shaft section, thereby avoiding the use of anti-rotation. Pins, etc., reduce the easy to lose parts and wearing parts of the equipment.
  • the keyway is provided on the power shaft section and/or the eccentric shaft section, and the anti-rotation key advances the keyway anti-rotation, or in the different heart conjoined sleeve
  • a keyway is arranged on the power shaft section, and an anti-rotation key is arranged in the keyway of the different heart-connecting body sleeve and the power shaft section, and the anti-rotation key and the keyway cooperate to prevent the rotation of the different heart-connecting body sleeve relative to the power shaft section.
  • the pin hole is arranged on the eccentric shaft section and/or the different heart joint body sleeve, and the anti-rotation pin is arranged in the pin hole to prevent the rotation of the different heart joint body sleeve relative to the eccentric shaft section, and the blind hole is arranged on the eccentric shaft section.
  • Through holes are provided on the different heart-connecting retaining sleeves, and the anti-rotation pins are passed through Different heart joints are provided with through holes, one end of the anti-rotation pin is disposed in the blind hole of the eccentric shaft section, and the other end is disposed in the through hole of the different core connecting body sleeve, and the anti-rotation pin is prevented from being different from the heart-connected body by spot welding or glue
  • the cover sleeve is detached in the through hole to facilitate the quick installation and positioning of the anti-rotation pin, or a blind hole is arranged on the eccentric shaft section, and a blind hole is arranged on the different heart joint cover, and one end of the anti-rotation pin is set in the different heart joint cover Inside the blind hole, the other end is disposed in the blind hole of the eccentric shaft section, and the blind hole prevents the anti-rotation pin from falling off.
  • One side of the eccentric shaft section is provided with a shoulder, and the other side is provided with a different concentric body sleeve.
  • the shoulder and the different concentric body sleeve together prevent the eccentric shaft section bearing from axially pulsing along the eccentric shaft section.
  • the inner diameter of the body sleeve is interlocked with the power shaft section for radial positioning, and the axial positioning and radial positioning of the bearing of the different heart joints and the eccentric shaft section bearing and the power shaft section bearing are realized.
  • the distracting top wire hole is arranged on the different heart conjoined sleeves and/or the lifting hole is arranged on the eccentric shaft section or the power shaft section, and the top wire hole is convenient for removing the different heart conjoined sleeves from the eccentric shaft section
  • the eccentric shaft section is provided with a lifting hole, which solves the problem that it is difficult to disassemble and difficult to disassemble due to the fact that the different convex shafts are too large and too heavy, and the working efficiency is improved.
  • the pick-up transmission member is arranged inside the box or outside the box, the pick-up transmission member drives the rotating part of the rotating material, the rotating part drives the rotating arm, the pick-up drive sprocket or the pick-up gear or the pick-up belt
  • the wheel or the feed transmission friction wheel or the feed transmission coupling or the pick-up clutch drives the rotating part of the material to rotate, and the pick-up transmission member is arranged on the power shaft section, thereby eliminating the special power source part for the material transmission part.
  • the rotating material rotates the arm to rotate, and the material transmission piece and the rotating piece of the material are connected separately or in one piece, and the rotating part of the material is connected with the material arm or integrated, and the components of the material are combined and used. Simple and reliable.
  • the pick-up clutch is disposed on the rotating part of the material or on the power shaft section or on the pick-up transmission member, and the different-hearted body sleeve is disposed between the eccentric shaft section bearing and the power shaft section pick-up clutch.
  • the picking clutch drives the rotating part of the material to drive the picking arm to rotate.
  • the picking clutch stops the picking arm from rotating, preventing the picking arm from obstructing the impact blanking, and solving
  • the reciprocating impact is blanked, the rotation of the rotating arm hinders the reciprocating impact and the blanking affects the lifting arm and the like, and the structure is ingenious and practical.
  • the claw is oscillated between the upper block and the lower block, the limit block is connected to the box body or integrated, the fixed shaft is arranged on the box body, the claw is hinged with the fixed shaft, and the limit block is paired
  • the claw position is such that the claw is in a working or rest state, and when the arm is rotated, the arm raises the claw to a certain angle and then smoothly rotates the material through the rotation space of the claw, when the arm is reversely moved.
  • the arm is held, and the arm is kept in a resting state.
  • the power shaft section is provided with an oil-repellent power component, and an oil-steaming mechanism is arranged in the tank body, the oil-steaming power component drives the oil-sucking shaft, the oil-sucking shaft drives the oil bowl to rotate the oil, and the oil-sucking shaft is arranged in the box body.
  • the amount of oil is increased, and the power on the power shaft section is fully utilized to solve the problems of lubrication and cooling of different convex shafts, so that the eccentric shaft bearing and the power shaft bearing are well lubricated, and the service life of the equipment is prolonged.
  • Two or more eccentric shaft segments are arranged at equal intervals along the radial direction of the power shaft section, which improves the efficiency of equipment mining, makes the different core convex shafts have uniform force, long service life and reliable operation.
  • the diameter of the intermediate eccentric shaft segment is larger than the diameter of the left eccentric shaft segment or the right eccentric shaft segment, and the intermediate eccentric shaft segment bearing is integrally fixed to the middle eccentric shaft segment or the middle eccentric shaft segment through the left eccentric shaft segment or the middle eccentric shaft segment, or the intermediate eccentric shaft
  • the segment bearing is a split type intermediate eccentric shaft segment bearing, and the middle eccentric shaft segment increases the width of the reciprocating impact mining blanking.
  • the drive transmission member is disposed on the power shaft segment or between the power shaft segment and the eccentric shaft segment or between the eccentric shaft segment and the eccentric shaft segment, and the drive transmission member of the different cardiac projection shaft is favorable for multiple positions.
  • the angle receives the power transmitted by the power source.
  • the anti-slip sleeve rotation member prevents the rotation of the different core conjoined sleeves relative to the eccentric shaft section, so that the different core conjoined sleeves are relatively stationary relative to the power shaft section bearing and the eccentric shaft section bearing, thereby eliminating relative running wear and ensuring Long-lasting, accurate positioning and blocking of power shaft bearing and eccentric shaft bearing bearing turbulence.
  • the parallelism of the two sides of the different heart-connecting retaining sleeves makes the axial positioning of the bearing of the power shaft section bearing and the eccentric shaft section accurate, improves the stability of the operation of the eccentric shaft section bearing connecting rod driving device, and improves the service life of the bearing.
  • Embodiment 1 is a schematic structural view of a reciprocating impact portion of a different-spiral shaft fixed bearing in Embodiment 1;
  • FIG. 2 is a second structural schematic view of a reciprocating impact portion of a different-spiral shaft fixed bearing in Embodiment 1;
  • FIG. 3 is a schematic structural view of a different heart-connecting retaining sleeve in Embodiment 1;
  • Figure 4 is a schematic structural view 3 of the reciprocating impact portion of the different-spiral shaft fixed bearing in the first embodiment
  • Figure 5 is a schematic structural view 2 of the different heart-connecting retaining sleeves in the first embodiment
  • Figure 6 is a schematic structural view 3 of the different concentric body retaining sleeves in the first embodiment
  • FIG. 7 is a schematic structural view of a power shaft section and an eccentric shaft section in Embodiment 1;
  • Figure 8 is a schematic enlarged view of the structure I in Figure 2;
  • Figure 9 is a schematic view showing the structure of different heart-connecting retaining sleeves in the second embodiment.
  • Figure 10 is a schematic view showing the installation structure of the different heart-connecting retaining sleeves in the third embodiment
  • Figure 11 is a second schematic view showing the installation structure of different heart-connecting retaining sleeves in the third embodiment
  • Figure 12 is a schematic structural view 1 of the different heart-connecting retaining sleeves in the third embodiment
  • Figure 13 is a second schematic structural view of the different concentric body retaining sleeves in the third embodiment
  • Figure 14 is a schematic view showing the mounting structure of different heart-connecting retaining sleeves in the fourth embodiment
  • Figure 15 is a schematic view showing the mounting structure of different heart-connecting retaining sleeves in Embodiment 5;
  • Figure 16 is a schematic structural view 1 of the reciprocating impact portion of the different-spigot shaft fixed bearing in the sixth embodiment
  • Figure 17 is a second structural schematic view of a reciprocating impact portion of a different concentric male shaft fixed bearing in Embodiment 6;
  • Figure 18 is a structural schematic view 3 of the reciprocating impact portion of the different-spiral shaft fixed bearing in the sixth embodiment
  • Figure 19 is a schematic structural view 1 of the reciprocating impact portion of the different-spiral shaft fixed bearing in the seventh embodiment
  • Figure 20 is a second structural schematic view of the reciprocating impact portion of the different-spiral shaft fixed bearing in the seventh embodiment
  • Figure 21 is a first schematic structural view of the picking mechanism of the seventh embodiment
  • Figure 22 is a second schematic structural view of the picking mechanism in the seventh embodiment
  • Figure 23 is a first schematic structural view of the pick-up clutch of the seventh embodiment
  • Figure 24 is a second schematic structural view of the pick-up clutch of the seventh embodiment
  • Figure 25 is a schematic view showing the structure of a reciprocating impact portion of a different-spiral shaft fixed bearing in Embodiment 8;
  • Figure 26 is a schematic view showing the structure of a reciprocating impact portion of a different-spiral shaft fixed bearing in Embodiment 9;
  • Figure 27 is a schematic view showing the structure of a reciprocating impact portion of a different-spiral shaft fixed bearing in Embodiment 10;
  • Figure 28 is a structural schematic view 1 of the reciprocating impact portion of the different-spiral shaft fixed bearing in the eleventh embodiment
  • Figure 29 is a second structural schematic view of the reciprocating impact portion of the different-spiral shaft fixed bearing in the eleventh embodiment
  • Figure 30 is a structural schematic view 3 of the reciprocating impact portion of the different-spiral shaft fixed bearing in the embodiment 11;
  • Figure 31 is a fourth structural view showing the reciprocating impact portion of the different-spiral shaft fixed bearing in the eleventh embodiment.
  • the reciprocating impact portion of the different convex shaft fixed bearing includes a power shaft section 11, an eccentric shaft section 12, a power shaft section bearing 5, an eccentric shaft section bearing 8, a power shaft section bearing retaining ring 10, an eccentric shaft section bearing retaining ring 9, and even
  • the rod 2, the power source member 3 and the box body 1 and the like, the power shaft section 11 and the eccentric shaft section 12 are an integral structure, the eccentric shaft section 12 is provided with an eccentric shaft section bearing 8 and the like, and the power shaft section 11 is provided with a power shaft section bearing.
  • the eccentric shaft section bearing 8 uses the eccentric shaft section split bearing, the eccentric shaft section bearing 8 can also use the eccentric shaft section integral bearing, etc., the power shaft section bearing retaining ring 10, the eccentric shaft section bearing retaining ring 9 respectively block the power shaft Segment bearing 5, eccentric shaft section bearing 8, etc., the positioning of the power shaft section bearing 5 and the eccentric shaft section bearing 8 can also use the power shaft section bearing retaining ring 10 and the eccentric shaft section bearing retaining ring 9 as a single heart-shaped coupling
  • the body retaining sleeve 7 is prevented from moving axially, and the outer diameter of the bearing ring 10 of the power shaft section of the different concentric body retaining sleeve 7 is smaller than the inner diameter of the outer support ring of the bearing of the power shaft section, and the outer diameter 15 of the bearing ring of the eccentric shaft section is smaller than the eccentric shaft section.
  • the shaft bearing retaining ring 9 forms a height difference, and the space of the height difference prevents the eccentric shaft bearing ring 9 from rubbing against the outer ring of the power shaft bearing bearing when rotating and/or the space of the height difference avoids the power shaft bearing ring 10 When rotating, it is rubbed with the outer support ring of the eccentric shaft section bearing, etc., as shown in Fig.
  • the different core connecting body sleeve 7 is disposed between the power shaft section bearing 5 and the eccentric shaft section bearing 8, and the different core connecting body sleeve 7 It can also be arranged between the eccentric shaft section bearing 8 and the eccentric shaft section bearing 8 to prevent the two eccentric shaft section bearings 8 from approaching the friction, the different concentric body sleeve 7 and the eccentric shaft section 12 and/or the different core conjoined sleeves 7
  • An anti-sleeve rotating member 6 is disposed on the power shaft segment 11, and the anti-slip sleeve rotating member 6 prevents the different concentric body sleeve 7 from rotating relative to the power shaft segment 11 and the eccentric shaft portion 12, and the connecting rod 2 includes a split body.
  • crankshaft connecting rod 4 is integrally fastened or the crankshaft connecting rod is integrally sleeved, and the whole sleeve crankshaft connecting rod is sleeved on the eccentric shaft section bearing 8.
  • the power shaft section bearing 5 is disposed on one side of the box body 1 or is provided on both sides to support the power
  • the shaft section 11 and the power shaft section bearing 5 support the rotation of the power shaft section 11 and the eccentric shaft section 12, and the power source drive Power shaft 11 to drive link segments 2 reciprocating impact.
  • the power shaft segment bearing retaining ring 10 includes a retaining ring or a spacer sleeve, the retaining sleeve and the spacer sleeve fix the relative position of the power shaft segment 11 and the power shaft segment bearing 5, and the eccentric shaft segment 12 includes one or more eccentric shaft segments 12, etc. .
  • Two or more eccentric shaft segments 12 are disposed in the same direction or are disposed at equal intervals in the radial direction of the power shaft segment 11 or an angular difference is formed along the radial direction of the power shaft segment 11 or the like.
  • the power shaft segment 11 and the eccentric shaft segment 12 may also be in a split connection manner.
  • the link 2 can also be used to fasten the crankshaft link 4 or the like.
  • the invention also includes a method for mounting an eccentric shaft segment integral bearing in a reciprocating impact portion, the method being characterized by:
  • the eccentric shaft section 12 and the power shaft section 11 are set, the eccentric shaft section bearing 8 and the like are arranged on the eccentric shaft section 12, and the power shaft section bearing 5 is arranged on the power shaft section 11;
  • the mandrel section bearing retaining ring 9 blocks the power shaft section bearing 5, the eccentric shaft section bearing 8 and the like, respectively, or makes the power shaft section bearing retaining ring 10 and the eccentric shaft section bearing retaining ring 9 into a one-piece different heart-connecting retaining sleeve 7 etc.
  • the outer diameter of the bearing ring of the power shaft segment of the different heart-connected sleeves is smaller than the inner diameter of the outer support ring of the power shaft section bearing 13 etc.
  • the outer diameter 15 of the eccentric shaft section bearing ring is smaller than the outer diameter of the outer ring of the eccentric shaft section bearing 14.
  • the power shaft bearing ring 10 and the eccentric shaft bearing ring 9 are provided with a height difference, and the space of the height difference prevents the eccentric shaft bearing ring 9 from rubbing against the outer ring of the power shaft bearing when rotating.
  • the height difference space avoids the friction of the power shaft bearing ring 10 with the outer support ring of the eccentric shaft section when rotating, in the different heart joint sleeve 7 and the eccentric shaft section 12 and/or in the different heart joint sleeve 7 and the power shaft segment 11 is provided with a retaining sleeve rotating member 6 and the like, so that the retaining sleeve rotating member 6 prevents the different core connecting body sleeves 7 and the like from rotating relative to the power shaft segment 11 and relative to the eccentric shaft portion 12, and will be different
  • the cover sleeve 7 and the like are disposed between the power shaft section bearing 5 and the eccentric shaft section bearing 8 or Mandrel segments bearing section 8 and the eccentric shaft 8 or bearing between the eccentric shaft is provided between the bearing section 8 and the power shaft clutch raking
  • the connecting rod 2 is set as a split body to engage the crankshaft connecting rod 4 or set as a whole sleeve crank connecting rod, etc., and the whole sleeve crankshaft connecting rod is sleeved on the eccentric shaft section bearing 8;
  • the power source member 3 is arranged to rotate the power source member 3 to drive the power shaft segment 11 and the like, so that the power shaft segment 11 drives the connecting rod 2 to reciprocate impact.
  • Different heart conjoined retaining sleeves are arranged between the power shaft section bearing and the eccentric shaft section bearing to block the power shaft section bearing and the eccentric shaft section bearing to move, and the power shaft section bearing retaining ring and the eccentric shaft section bearing retaining ring are integrated.
  • the different heart conjoined retaining sleeves increase the volume and strength of the different concentric body retaining sleeves, greatly improving the impact resistance and shock resistance of different heart conjoined retaining sleeves, improving the service life of the equipment and reducing the maintenance amount.
  • the eccentric shaft section circular cross section
  • the center of the circle 18 and the center section of the circular section of the power shaft section are set such that the circular section 19 of the power shaft section is disposed in the circular section 20 of the eccentric shaft section, and the distance between the center 17 of the circular section of the power shaft section and the center 18 of the circular section of the eccentric shaft section is a reciprocating impact.
  • the eccentric shaft section integral bearing is integrally mounted on the eccentric shaft section 12, and the power shaft section 11 and the eccentric shaft section 12 are connected or integrated in one body, and the different heart-connecting sleeves 7 are disposed in the power shaft section.
  • the eccentric shaft section 12 is provided with a shoulder 21, and the other side is provided with a different concentric sleeve 7 Or set a circlip or set a retaining ring.
  • the connecting rod is integrally sleeved on the integral bearing of the eccentric shaft section. Therefore, the eccentric shaft section must be made larger than the power shaft section, thus greatly increasing the volume and strength of the eccentric shaft section, and increasing the volume and strength of the eccentric shaft section integral bearing due to the increase of the eccentric shaft section.
  • the volume and strength of the crank connecting rod are increased, and the strength of the different convex shafts is increased by integrating the power shaft section and the eccentric shaft section.
  • a method for fixing a bearing by a reciprocating impact portion of a reciprocating impact portion shown in Embodiment 3 and a reciprocating impact portion of a different concentric shaft fixed bearing for implementing the method the eccentric shaft portion 12
  • the anti-rotation hole 22 or the anti-rotation groove is provided, and the protrusions 23 and the like which are matched with the anti-rotation hole 22 or the anti-rotation groove are arranged on the different concentric body sleeve 7, the protrusion 23 and the anti-rotation hole 22 or the anti-rotation groove The cooperation prevents the different concentric sleeves 7 from rotating relative to the eccentric shaft segments 12.
  • the anti-slip sleeve rotating member 6 includes an anti-rotation pin 25 and a pin hole, etc., and the eccentric shaft portion 12 and/or the different core connecting body sleeve 7 are provided with a pin hole or the like, and the pin hole includes a through hole or a boring hole, etc.
  • the reversing pin 25 is disposed in the pin hole to prevent the different concentric body sleeve 7 and the like from rotating relative to the eccentric shaft segment 12, and the blind hole 24 prevents the anti-rotation pin 25 from falling off, and the blind hole 24 is disposed on the eccentric shaft segment 12 at different heart connections.
  • Corresponding through holes are formed in the body sleeve 7, and the anti-rotation pin 25 is inserted into the blind hole 24 of the eccentric shaft section 12 through the through hole of the different core connecting body sleeve, and one end of the anti-rotation pin 25 is disposed in the blind hole of the eccentric shaft section.
  • the other end of the 24 is disposed in the through hole of the different concentric body sleeve 7, and the anti-rotation pin 25 is prevented from falling off from the through hole of the different concentric body sleeve 7 by spot welding or glue, as shown in FIG.
  • a blind hole 24 is disposed in the eccentric shaft section 12, and a blind hole 24 is disposed on the different heart joint body sleeve 7, and one end of the anti-rotation pin 25 is disposed in the blind hole 24 of the different heart-connecting body sleeve, and the other end is disposed in the eccentric shaft section. Inside the blind hole 24.
  • the different cardiac conjoined sleeves 7 are provided with disassembling top wire holes 26 for facilitating disassembly of the different heart conjoined body sleeves 7.
  • the eccentric shaft section and the different core connecting body sleeves are mutually constrained to prevent the rotation of different heart-connecting body sleeves relative to the eccentric shaft section, thereby avoiding the use of anti-rotation pins, etc., thereby reducing the easy loss and wearing parts of the equipment. .
  • the method for fixing the bearing by the reciprocating impact portion of the reciprocating impact portion shown in the fourth embodiment and the reciprocating impact portion of the different concentric convex shaft fixed bearing for implementing the method are provided in the inner diameter of the different concentric body sleeves 7
  • the rotary key 28 is correspondingly provided with a keyway 27 on the power shaft section 11 and/or the eccentric shaft section 12, and the anti-rotation key 28 is advanced against the keyway 27 to prevent rotation.
  • a keyway 27 or the like is provided on the different heart-connecting cover 7 and the power shaft section 11, and the anti-rotation key 28 and the like are disposed in the key groove 27 of the different cardiac body cover 7 and the power shaft section 11.
  • the anti-rotation key cooperates with the keyway to prevent the different concentric body sleeves from rotating relative to the power shaft section.
  • the reciprocating impact portion shown in the fifth embodiment is a method for fixing a bearing with a different convex shaft, and a reciprocating impact portion of a different convex shaft fixed bearing for carrying out the method, wherein the eccentric shaft portion 12 is provided on one side.
  • the shoulder 21 and the like, and the other side is provided with a different concentric sleeve 7, the shoulder 21 and the different concentric sleeve 7 together prevent the eccentric shaft bearing 8 from axially pulsing along the eccentric shaft section 12, and the different heart joints
  • the inner diameter of the sleeve 7 is engaged with the power shaft section 11 in a radial position.
  • the reciprocating impact portion shown in Embodiment 6 is a method of fixing a bearing with a different convex shaft, and a reciprocating impact portion of a different convex shaft fixed bearing for carrying out the method, as shown in FIG.
  • the different camshafts are moved, and the eccentric shaft section 12 or the power shaft section 11 is provided with lifting holes 29 and the like.
  • the reciprocating impact portion of the different convex shaft fixed bearing further includes a squeezing mechanism 30 or the like, the squeezing mechanism 30 includes a squeegee transmission member 31, and the like, and the squeegee transmission member 31 is connected to the power shaft segment 11 separately or in a separate body or is integrated
  • the pick-up transmission member 31 is disposed in the box body 1.
  • the pick-up mechanism 30 further includes a squeegee rotating member 32, a pick-up arm 33, and the like.
  • the pick-up transmission member 31 drives the rotary rotating member 32 to rotate, and the squeezing rotary member 32 The rotating arm 33 and the like are driven to rotate.
  • the pick-up transmission member 31 is a structure of a pick-up drive sprocket 35, and the pick-up transmission member 31 can also be a pick-up drive gear or a pick-up drive pulley or a feed transmission friction wheel. Or pick-up drive coupling or pick-up spline sleeve or pick-up clutch.
  • the pick-up transmission member 31 can also be disposed outside the casing 1.
  • the combination of equipment components is simple in structure and reliable in work performance.
  • the different core conjoined sleeves are provided with a disassembling top wire hole and/or a lifting hole on the eccentric shaft section or the power shaft section, and the top wire hole is convenient for detaching the different heart conjoined sleeves from the eccentric shaft section,
  • the eccentric shaft section is provided with a lifting hole, which solves the problem that it is difficult to disassemble and difficult to disassemble due to the fact that the different convex shafts are too large and too heavy, and the working efficiency is improved.
  • the reciprocating impact portion shown in FIG. 7 is a method for fixing a bearing with a different convex shaft, and the reciprocating impact portion of the different convex shaft fixing bearing for implementing the method, the dip mechanism 30 includes The pick-up clutch 36 or the like, as shown in FIGS. 20 to 22, the pick-up clutch 36 is disposed on the pick-up rotating member 32; as shown in FIG. 23, the pick-up clutch 36 is disposed on the power shaft section 11; the pick-up clutch 36 It may also be disposed on the pick-up transmission member 31 or the like. As shown in Figure 24, different The heart-connecting retaining sleeve 7 is disposed between the eccentric shaft section bearing 8 and the power shaft section pick-up clutch.
  • the pick-up clutch 36 drives the pick-up rotating member 32 to drive the pick-up arm 33 to rotate.
  • the pick-up clutch 36 stops the pick-up arm 33 from rotating, preventing the pick-up arm 33 from rotating.
  • the impact transmission blank is obstructed, and the pick-up transmission member 31 and the pick-up rotating member 32 are separately provided or integrated.
  • the invention solves the problems of the reciprocating impact blanking, the rotation of the rotating arm hindering the reciprocating impact and the falling of the rocker arm, and the structure is ingenious and practical.
  • the reciprocating impact portion shown in Embodiment 8 is a method of fixing a bearing with a different convex shaft, and a reciprocating impact portion of a different concentric shaft fixed bearing for carrying out the method, wherein the casing 1 is provided with a rotating arm
  • the position block 41 and the lower limit block 42 are swung between each other.
  • the limit block 40 is connected to the box body 1 or integrated.
  • the fixed shaft 39 is disposed on the box body 1.
  • the claws 38 are hinged to the fixed shaft 39, and the limit block is 40 pairs of the claws 38 are restricted, so that the claws 38 are in the working or rest state, and when the picking arms 33 are rotated, the picking arms 33 hold the claws 38 at a certain angle and then smoothly rotate through the rotating space of the claws 38.
  • the yoke 38 holds the raking arm 33 under the action of the limiting block 40, keeping the raking arm 33 in a rest state.
  • the power shaft section 11 is provided with an oil slicker 46 and the like, and an oil slinging mechanism 43 or the like is disposed in the tank body 1.
  • the oil slinging mechanism 43 includes an oil slinger 45, an oil shovel 44, etc., and the slick oil power unit 46 drives the oil sling shaft. 45, etc., the oil shaft 45 drives the oil shovel 44 and the like, and the oil slinger 45 is disposed at the lower portion of the casing 1 to increase the amount of oil.
  • the slick oil member 46 is a sprocket chain oyster sauce.
  • the power component 47, the oil slick power component 46 may also be a belt pulley rim oil power component or a rack and pinion slick oil power component or a pin gear type slick oil power component or a rope and a rope sling oil slick power component or gear ⁇ oil power parts or hanging gear ⁇ oil power parts.
  • the method of fixing the bearing by the reciprocating impact portion of the reciprocating impact portion shown in Embodiment 10 and the reciprocating impact portion of the different concentric shaft fixed bearing for carrying out the method are different from Embodiment 1 in that the eccentric shaft section is 12 includes an intermediate eccentric shaft section 49, a left eccentric shaft section 52 and a right eccentric shaft section 53, etc., the diameter of the intermediate eccentric shaft section 49 is larger than the diameter of the left eccentric shaft section 52 or the right eccentric shaft section 53, and the eccentric shaft section bearing 8 includes the middle The eccentric shaft section bearing 48, the left eccentric shaft section bearing 51 and the right eccentric shaft section bearing 50, etc., the intermediate eccentric shaft section bearing 48 is integrally fixed to the intermediate eccentric shaft section 49 through the left eccentric shaft section 52 or the right eccentric shaft section 53, Or the intermediate eccentric shaft bearing 48 is a split intermediate eccentric shaft bearing 48.
  • Two or more eccentric shaft segments are arranged at equal intervals along the radial direction of the power shaft section, which improves the efficiency of equipment mining, so that the reciprocating impact blanking rotary material multi-function power shaft has uniform force, long service life and reliable operation.
  • the reciprocating impact portion shown in FIG. 11 is a method for fixing a bearing with a different convex shaft, and a reciprocating impact portion of a different convex shaft fixed bearing for implementing the method, the reciprocating impact bearing of the different convex shaft
  • the impact portion further includes a drive transmission member 54 and the like.
  • the drive transmission member 54 is disposed between the eccentric shaft portion 12 and the eccentric shaft portion 12; as shown in FIG. 29, the drive transmission member 54 is disposed at the power shaft portion 11 Between the eccentric shaft section 12; as shown in FIGS. 30 and 31, the drive transmission member 54 is disposed on the power shaft section 11.
  • the driving transmission member or the like is disposed on the power shaft segment or between the power shaft segment and the eccentric shaft portion or between the eccentric shaft portion and the eccentric shaft portion, and the driving transmission member of the different convex shaft facilitates multiple positions from multiple positions.
  • the angle accepts the power transmitted by the power source.

Abstract

一种往复冲击部不同心凸轴固定轴承的方法,该方法包括:一、设置偏心轴段(12)和动力轴段(11),在偏心轴段(12)上设置偏心轴段轴承(8),在动力轴段(11)上设置动力轴段轴承(5);二、设置动力轴段轴承挡圈(10)和偏心轴段轴承挡圈(9),使动力轴段轴承挡圈(10)、偏心轴段轴承挡圈(9)分别阻挡动力轴段轴承(5)、偏心轴段轴承(8);三、设置连杆(2),将连杆(2)设置为分体扣合曲轴连杆或设置为整体套合曲轴连杆,将整体套合曲轴连杆套合在偏心轴段轴承(8)上;四、设置箱体(1),将动力轴段轴承(5)设置在箱体(1)上,使动力轴段轴承(5)支撑动力轴段(11)和偏心轴段(12);五、设置动力源件(3),使动力源件(3)驱动动力轴段(11)旋转,使动力轴段(11)带动连杆往复冲击。还提供了一种实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部;该方法和实施该方法的往复冲击部提高了设备的使用寿命,减少了维护工作量。

Description

实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部 技术领域
本发明属于机械领域,具体涉及实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部。
背景技术
目前,往复冲击式掘进机掘进时,往复冲击齿垂直于待采掘物往复冲击落料,块料率高、节能环保、效率高,现市场销售块煤的价格是末煤价格的两倍多,因此往复冲击式采掘机具有广阔的使用前景。但在该产品的推广过程中发现,虽然往复冲击式掘进机采掘效率很高,但由于其往复冲击机构的旋转曲轴存在所安装的轴瓦体积小、而所承受冲击反作用大、冲击侧向力大,使旋转曲轴使用寿命极短等问题,又因轴瓦或分体轴承为分体式结构,其抗摆动、抗冲击能力差,且易损坏,损坏后更换、维修困难,因而使往复冲击式采掘机无法长期连续工作,使往复冲击式采掘机难以满足现场使用要求,常用的固定轴承等的挡圈多为卡簧,卡簧作为挡圈使用方便,但用在往复冲击式掘进机的曲轴上,会因所受强大往复冲击振动力及侧向力损坏很快就会变形脱落,造成轴承窜动无法工作,加之其往复冲击落料采掘头不具有向后输料的功能,使往复冲击所落料大量堆积在待采掘面上,不能运至运输系统将物料运走,故严重制约了往复冲击式采掘机的性能及推广应用。
为了解决上述问题,使节能、环保、高效、提高物料使用价值的往复冲击式掘进机得以推广应用,本发明提出一种实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部。
发明内容
本发明是采用以下的技术方案实现的:实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部,该不同心凸轴固定轴承往复冲击部包括动力轴段、偏心轴段、动力轴段轴承、偏心轴段轴承、动力轴段轴承挡圈、偏心轴段轴承挡圈、连杆、动力源件和箱体等,动力轴段与偏心轴段分体连接或为一体式,偏心轴段上设置偏心轴段轴承等,动力轴段上设置动力轴段轴承等,偏心轴段轴承包括偏心轴段分体轴承或偏心轴段整体轴承等,动力轴段轴承挡圈、偏心轴段轴承挡圈分别阻挡动力轴段轴承、偏心轴段轴承等,或动力轴段轴承挡圈与偏心轴段轴承挡圈为一体式的不同心连体挡套,不同心连体挡套的动力轴段轴承挡圈外径小于动力轴段轴承外支撑圈内径,偏心轴段轴承挡圈外径小于偏心轴段轴承外支 撑圈内径,动力轴段轴承挡圈与偏心轴段轴承挡圈形成高度差,高度差的空间避免偏心轴段轴承挡圈在旋转时与动力轴段轴承外支撑圈摩擦和/或该高度差的空间避免动力轴段轴承挡圈在旋转时与偏心轴段轴承外支撑圈摩擦,不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与偏心轴段轴承之间,不同心连体挡套与偏心轴段上和/或不同心连体挡套与动力轴段上设置防挡套旋转件等,防挡套旋转件阻止不同心连体挡套相对于动力轴段和相对于偏心轴段旋转,连杆包括分体扣合曲轴连杆或整体套合曲轴连杆等,整体套合曲轴连杆套合在偏心轴段轴承上,动力轴段轴承设置在箱体的一侧或两侧,动力轴段轴承支撑动力轴段、偏心轴段旋转等,动力源驱动动力轴段带动连杆等往复冲击。
偏心轴段圆截面圆心与动力轴段圆截面圆心设置位置为:动力轴段圆截面设置在偏心轴段圆截面内,动力轴段圆截面圆心与偏心轴段圆截面圆心的距离为往复冲击行程的二分之一,偏心轴段整体轴承整体安装在偏心轴段上,动力轴段与偏心轴段分体连接或为一体式等,不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间阻挡动力轴段轴承、偏心轴段轴承等窜动,偏心轴段一侧设有挡肩等,另一侧设置不同心连体挡套或设置卡簧或设置挡圈等。
所述动力轴段轴承挡圈包括卡簧或隔套等,偏心轴段包括一个或多个偏心轴段等。
所述的偏心轴段上设有防转孔或防转槽等,不同心连体挡套上设置与防转孔或防转槽相配合的凸起等,凸起与防转孔或防转槽等配合阻止不同心连体挡套相对于偏心轴段旋转。
在不同心连体挡套内径设置防转键等,相对应地在动力轴段和/或偏心轴段上设有键槽等,将防转键推进键槽防转,或在不同心连体挡套与动力轴段上均设置键槽,在不同心连体挡套与动力轴段的键槽内设置防转键。
所述的防挡套旋转件包括防转销和销孔等,偏心轴段和/或不同心连体挡套上设置销孔等,销孔包括通孔或肓孔等,防转销设置在销孔内阻止不同心连体挡套相对于偏心轴段旋转,盲孔阻止防转销脱落,在偏心轴段上设置盲孔在不同心连体挡套上设置通孔等,将防转销穿过不同心连体挡套通孔,防转销一端设置在偏心轴段盲孔内另一端设置在不同心连体挡套通孔内,用点焊或粘胶等阻止防转销从不同心连体挡套通孔内脱落,或在偏心轴段上设置盲孔在不同心连体挡套上设置盲孔等,将防转销一端设置在不同心连体挡套盲孔内,另一端设置在偏心轴段盲孔内。
所述的偏心轴段一侧设有挡肩等,另一侧设置不同心连体挡套等,挡肩与不同心连体挡套共同阻止偏心轴段轴承沿偏心轴段轴向窜动,不同心连体挡套的内径与动力轴段相扣合径向定位。
所述的不同心连体挡套上设有拆卸顶丝孔和/或在偏心轴段或动力轴段上设有吊装孔等。
该不同心凸轴固定轴承往复冲击部还包括耙料机构等,耙料机构包括耙料传动件等,耙料传动件与动力轴段分体或分体连接或为一体式等,耙料传动件设置在箱体内或箱体外等,耙料机构还包括耙料旋转件和耙料臂等,耙料传动件带动耙料旋转件等旋转,耙料旋转件带动耙料臂等旋转耙料。
所述的耙料传动件包括耙料传动链轮或耙料传动齿轮或耙料传动带轮或耙料传动摩擦轮或耙料传动联轴器或耙料传动花键套或耙料离合器等。
所述的耙料机构包括耙料离合器等,耙料离合器设置在耙料旋转件上或设置在动力轴段上或设置在耙料传动件等上,不同心连体挡套设置在偏心轴段轴承与动力轴段耙料离合器之间,当耙料臂需旋转耙料时耙料离合器驱动耙料旋转件带动耙料臂旋转,当往复冲击落料时耙料离合器使耙料臂停止旋转,防止耙料臂阻碍冲击落料,耙料传动件与耙料旋转件分体设置或为一体式等。
所述的箱体上设有旋转臂下落限位机构等,旋转臂下落限位机构包括托爪、固定轴和限位块等,限位块包括上限位块和下限位块等,托爪在上限位块和下限位块之间摆动,限位块与箱体分体连接或为一体式等,固定轴设置在箱体上,托爪与固定轴铰接,限位块对托爪限位,使托爪处于工作或休止状态等,耙料臂旋转耙料时,耙料臂将托爪托起一定角度后通过托爪的旋转空间顺利旋转耙料,当耙料臂反向运动时,托爪在限位块的作用下将耙料臂托住,保持耙料臂处于休止状态。
所述的动力轴段上设有甩油动力件等,在箱体内设置甩油机构等,甩油机构包括甩油轴、油甩等,甩油动力件驱动甩油轴,甩油轴带动油甩旋转甩油,甩油轴设置在箱体下部,增加甩油量,甩油动力件包括链轮链条甩油动力件或皮带带轮甩油动力件或齿轮齿条甩油动力件或销齿式甩油动力件或绳与卷绳器甩油动力件或齿轮甩油动力件或挂齿甩油动力件等。
偏心轴段包括一个以上的偏心轴段等,两个以上的偏心轴段为同向设置或沿动力轴段径向均等间隔设置或沿动力轴段径向形成角度差设置。
偏心轴段包括中间偏心轴段、左偏心轴段和右偏心轴段等,中间偏心轴段的直径大于左偏心轴段或右偏心轴段的直径,偏心轴段轴承包括中间偏心轴段轴承、左偏心轴段轴承和右偏心轴段轴承,中间偏心轴段轴承整体穿过左偏心轴段或右偏心轴段固定在中间偏心轴段上,或中间偏心轴段轴承为分体式中间偏心轴段轴承。
不同心凸轴固定轴承往复冲击部还包括驱动传动件等,驱动传动件设置在动力轴段上或设置在动力轴段与偏心轴段之间或设置在偏心轴段与偏心轴段之间等。
本发明还包括往复冲击部不同心凸轴固定轴承方法,该方法的步骤是:
一、设置偏心轴段和动力轴段等,在偏心轴段上设置偏心轴段轴承等,在动力轴段上设置动力轴段轴承等;
二、设置动力轴段轴承挡圈和偏心轴段轴承挡圈等,使动力轴段轴承挡圈、偏心轴段轴承挡圈等分别阻挡动力轴段轴承、偏心轴段轴承,或使动力轴段轴承挡圈与偏心轴段轴承挡圈等做成一体式的不同心连体挡套,使不同心连心挡套的动力轴段轴承挡圈外径小于动力轴段轴承外支撑圈内径,偏心轴段轴承挡圈外径小于偏心轴段轴承外支撑圈内径,使动力轴段轴承挡圈与偏心轴段轴承挡圈设有高度差,该高度差的空间避免偏心轴段轴承挡圈在旋转时与动力轴段轴承外支撑圈摩擦和/或该高度差的空间避免动力轴段轴承挡圈在旋转时与偏心轴段轴承外支撑圈摩擦,在不同心连体挡套与偏心轴段和/或在不同心连体挡套与动力轴段上设置防挡套旋转件等,使防挡套旋转件阻止不同心连体挡套相对于动力轴段和相对于偏心轴段旋转,将不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与动力轴段耙料离合器之间等;
三、设置连杆等,将连杆设置为分体扣合曲轴连杆或设置为整体套合曲轴连杆等,将整体套合曲轴连杆套合在偏心轴段轴承上;
四、设置箱体等,将动力轴段轴承等设置在箱体上,使动力轴段轴承支撑动力轴段、偏心轴段等;
五、设置动力源件等,使动力源件驱动动力轴段等旋转,使动力轴段带动连杆等往复冲击。
本实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部发明的有益效果是:
1.在偏心轴段上设置偏心轴段轴承,在动力轴段上设置动力轴段轴承,使动力轴段轴承挡圈、偏心轴段轴承挡圈分别阻挡动力轴段轴承、偏心轴段轴承,或使动力轴段轴承挡圈与偏心轴段轴承挡圈做成一体式的不同心连体挡套,使不同心连心挡套的动力轴段轴承挡圈外径小于动力轴段轴承外支撑圈内径,偏心轴段轴承挡圈外径小于偏心轴段轴承外支撑圈内径,使动力轴段轴承挡圈与偏心轴段轴承挡圈设有高度差,该高度差的空间避免偏心轴段轴承挡圈在旋转时与动力轴段轴承外支撑圈摩擦和/或该高度差的空间避免动力轴段轴承挡圈在旋 转时与偏心轴段轴承外支撑圈摩擦,在不同心连体挡套与偏心轴段和/或在不同心连体挡套与动力轴段上设置防挡套旋转件,使防挡套旋转件阻止不同心连体挡套相对于动力轴段和相对于偏心轴段旋转,将不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与动力轴段离合器之间,将整体套合曲轴连杆套合在偏心轴段轴承上,将动力轴段轴承设置在箱体上,使动力轴段轴承支撑动力轴段、偏心轴段,使动力源件驱动动力轴段旋转,使动力轴段带动连杆往复冲击,不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间阻挡动力轴段轴承、偏心轴段轴承等窜动,动力轴段轴承挡圈与偏心轴段轴承挡圈为一体式的不同心连体挡套,增大了不同心连体挡套的体积与强度,大大提高了不同心连体挡套的抗冲击抗震动等能力,提高了设备的使用寿命,减少了维护量。
2.偏心轴段圆截面圆心与动力轴段圆截面圆心设置位置为:动力轴段圆截面设置在偏心轴段圆截面内,动力轴段圆截面圆心与偏心轴段圆截面圆心的距离为往复冲击行程的二分之一,偏心轴段整体轴承整体安装在偏心轴段上,不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间阻挡动力轴段轴承、偏心轴段轴承窜动,因需将偏心轴段整体轴承整体安装在偏心轴段上,连杆整体套合在偏心轴段整体轴承上,故必须将偏心轴段做得直径大于动力轴段,因此极大地增大了偏心轴段的体积与强度,同时因偏心轴段的增大亦增大了偏心轴段整体轴承的体积与强度,增大了曲柄连杆的体积与强度,使动力轴段与偏心轴段为一体式更增加了不同心凸轴的强度,连杆整体套和在偏心轴段整体轴承上相比分体连杆扣合分体轴承上既提高了承载力又提高了各部件配合的精度。
3.偏心轴段上设有防转孔或防转槽,不同心连体挡套上设置与防转孔或防转槽相配合的凸起,凸起与防转孔或防转槽配合阻止不同心连体挡套相对于偏心轴段旋转,利用偏心轴段及不同心连体挡套的自身结构相互限位,阻止不同心连体挡套相对于偏心轴段旋转,避免了使用防转销等,减少了设备的易丢失件、易损件。
4.在不同心连体挡套内径设置防转键,相对应地在动力轴段和/或偏心轴段上设有键槽,将防转键推进键槽防转,或在不同心连体挡套与动力轴段上均设置键槽,在不同心连体挡套与动力轴段的键槽内设置防转键,防转键与键槽配合阻止不同心连体挡套相对于动力轴段旋转。
5.偏心轴段和/或不同心连体挡套上设置销孔,防转销设置在销孔内阻止不同心连体挡套相对于偏心轴段旋转,在偏心轴段上设置盲孔在不同心连体挡套上设置通孔,将防转销穿过 不同心连体挡套通孔,防转销一端设置在偏心轴段盲孔内另一端设置在不同心连体挡套通孔内,用点焊或粘胶阻止防转销从不同心连体挡套通孔内脱落,方便防转销的快速安装定位,或在偏心轴段上设置盲孔在不同心连体挡套上设置盲孔,将防转销一端设置在不同心连体挡套盲孔内,另一端设置在偏心轴段盲孔内,盲孔阻止防转销脱落。
6.偏心轴段一侧设有挡肩,另一侧设置不同心连体挡套,挡肩与不同心连体挡套共同阻止偏心轴段轴承沿偏心轴段轴向窜动,不同心连体挡套的内径与动力轴段相扣合径向定位,实现对不同心连体挡套及偏心轴段轴承、动力轴段轴承的轴向定位及径向定位。
7.不同心连体挡套上设有拆卸顶丝孔和/或在偏心轴段或动力轴段上设有吊装孔,顶丝孔方便将不同心连体挡套从偏心轴段上拆卸下来,在偏心轴段上设有吊装孔,解决了因不同心凸轴过大过重用人力难以搬动难以组装难以拆卸维修等问题,提高了工作效率。
8.耙料传动件设置在箱体内或箱体外,耙料传动件带动耙料旋转件旋转,耙料旋转件带动耙料臂旋转,耙料传动链轮或耙料传动齿轮或耙料传动带轮或耙料传动摩擦轮或耙料传动联轴器或耙料离合器带动耙料旋转件旋转,耙料传动件设置在动力轴段上,免去了为耙料传动件专设的动力源件,耙料旋转件带动耙料臂旋转,耙料传动件与耙料旋转件分体连接或为一体式,耙料旋转件与耙料臂分体连接或为一体式,设备部件组合使用,结构简单,工作性能可靠。
9.耙料离合器设置在耙料旋转件上或设置在动力轴段上或设置在耙料传动件上,不同心连体挡套设置在偏心轴段轴承与动力轴段耙料离合器之间,当耙料臂需旋转耙料时耙料离合器驱动耙料旋转件带动耙料臂旋转,当往复冲击落料时耙料离合器使耙料臂停止旋转,防止耙料臂阻碍冲击落料,解决了往复冲击落料时因耙料旋转臂旋转妨碍往复冲击落料影响摇臂升降等问题,结构巧妙,实用性强。
10.托爪在上限位块和下限位块之间摆动,限位块与箱体分体连接或为一体式,固定轴设置在箱体上,托爪与固定轴铰接,限位块对托爪限位,使托爪处于工作或休止状态,耙料臂旋转耙料时,耙料臂将托爪托起一定角度后通过托爪的旋转空间顺利旋转耙料,当耙料臂反向运动时,托爪在限位块的作用下将耙料臂托住,保持耙料臂处于休止状态。
11.所述的动力轴段上设有甩油动力件,在箱体内设置甩油机构,甩油动力件驱动甩油轴,甩油轴带动油甩旋转甩油,甩油轴设置在箱体下部,增加甩油量,充分利用了动力轴段上的动力解决了不同心凸轴需要润滑降温等问题,使偏心轴段轴承和动力轴段轴承等得到了良好润滑,延长了设备的使用寿命。
12.两个以上的偏心轴段沿动力轴段径向均等间隔设置,提高了设备采掘的效率,使不同心凸轴受力均匀,寿命长,工作可靠。
13.中间偏心轴段的直径大于左偏心轴段或右偏心轴段的直径,中间偏心轴段轴承整体穿过左偏心轴段或右偏心轴段固定在中间偏心轴段上,或中间偏心轴段轴承为分体式中间偏心轴段轴承,中间偏心轴段增加了往复冲击采掘落料的宽度。
14.驱动传动件设置在动力轴段上或设置在动力轴段与偏心轴段之间或设置在偏心轴段与偏心轴段之间,不同心凸轴的驱动传动件有利于从多个位置多个角度接受动力源件传递来的动力。
15.防挡套旋转件阻止不同心连体挡套相对于偏心轴段旋转,使不同心连体挡套相对于动力轴段轴承与偏心轴段轴承相对静止,消除了相对运行磨损,保证了持久、准确定位及阻挡动力轴段轴承及偏心轴段轴承窜动。
16.不同心连体挡套两侧面平行使动力轴段轴承与偏心轴段轴承轴向定位准确,提高了偏心轴段轴承连杆驱动装置运行的稳定性,提高了轴承的使用寿命。
附图说明
图1是实施例1中不同心凸轴固定轴承往复冲击部的结构示意图;
图2是实施例1中不同心凸轴固定轴承往复冲击部的结构示意图二;
图3是实施例1中不同心连体挡套的结构示意图;
图4是实施例1中不同心凸轴固定轴承往复冲击部的结构示意图三;
图5是实施例1中不同心连体挡套的结构示意图二;
图6是实施例1中不同心连体挡套的结构示意图三;
图7是实施例1中动力轴段及偏心轴段的结构示意图;
图8是图2中I处放大结构示意图;
图9是实施例2中不同心连体挡套的结构示意图;
图10是实施例3中不同心连体挡套的安装结构示意图;
图11是实施例3中不同心连体挡套的安装结构示意图二;
图12是实施例3中不同心连体挡套的结构示意图一;
图13是实施例3中不同心连体挡套的结构示意图二;
图14是实施例4中不同心连体挡套的安装结构示意图;
图15是实施例5中不同心连体挡套的安装结构示意图;
图16是实施例6中不同心凸轴固定轴承往复冲击部的结构示意图一;
图17是实施例6中不同心凸轴固定轴承往复冲击部的结构示意图二;
图18是实施例6中不同心凸轴固定轴承往复冲击部的结构示意图三;
图19是实施例7中不同心凸轴固定轴承往复冲击部的结构示意图一;
图20是实施例7中不同心凸轴固定轴承往复冲击部的结构示意图二;
图21是实施例7中耙料机构的结构示意图一;
图22是实施例7中耙料机构的结构示意图二;
图23是实施例7中耙料离合器的结构示意图一;
图24是实施例7中耙料离合器的结构示意图二;
图25是实施例8中不同心凸轴固定轴承往复冲击部的结构示意图;
图26是实施例9中不同心凸轴固定轴承往复冲击部的结构示意图;
图27是实施例10中不同心凸轴固定轴承往复冲击部的结构示意图;
图28是实施例11中不同心凸轴固定轴承往复冲击部的结构示意图一;
图29是实施例11中不同心凸轴固定轴承往复冲击部的结构示意图二;
图30是实施例11中不同心凸轴固定轴承往复冲击部的结构示意图三;
图31是实施例11中不同心凸轴固定轴承往复冲击部的结构示意图四。
图中:1、箱体;2、连杆;3、动力源件;4、分体扣合曲轴连杆;5、动力轴段轴承;6、防挡套旋转件;7、不同心连体挡套;8、偏心轴段轴承;9、偏心轴段轴承挡圈;10、动力轴段轴承挡圈;11、动力轴段;12、偏心轴段;13、动力轴段轴承外支撑圈内径;14、偏心轴段轴承外支撑圈内径;15、偏心轴段轴承挡圈外径;16、动力轴段轴承挡圈外径;17、动力轴段圆截面圆心;18、偏心轴段圆截面圆心;19、动力轴段圆截面;20、偏心轴段圆截面;21、挡肩;22、防转孔;23、凸起;24、盲孔;25、防转销;26、拆卸顶丝孔;27、键槽;28、防转键;29、吊装孔;30、耙料机构;31、耙料传动件;32、耙料旋转件;33、耙料臂;34、耙料传动齿轮;35、耙料传动链轮;36、耙料离合器;37、旋转臂下落限位机构;38、托爪;39、固定轴;40、限位块;41、上限位块;42、下限位块;43、甩油机构;44、油甩;45、甩油轴;46、甩油动力件;47、链轮链条甩油动力件;48、中间偏心轴段轴承;49、中间偏心轴段;50、右偏心轴段轴承;51、左偏心轴段轴承;52、左偏心轴段;53、右偏心轴段;54、驱动传动件。
具体实施方式
下面结合附图对本发明做进一步说明。
实施例1
图1至图7为实施例1所述的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部。该不同心凸轴固定轴承往复冲击部包括动力轴段11、偏心轴段12、动力轴段轴承5、偏心轴段轴承8、动力轴段轴承挡圈10、偏心轴段轴承挡圈9、连杆2、动力源件3和箱体1等,动力轴段11与偏心轴段12为一体式结构,偏心轴段12上设置偏心轴段轴承8等,动力轴段11上设置动力轴段轴承5等,偏心轴段轴承8使用偏心轴段分体轴承,偏心轴段轴承8也可以使用偏心轴段整体轴承等,动力轴段轴承挡圈10、偏心轴段轴承挡圈9分别阻挡动力轴段轴承5、偏心轴段轴承8等,动力轴段轴承5和偏心轴段轴承8的定位固定也可以使用动力轴段轴承挡圈10与偏心轴段轴承挡圈9为一体式的不同心连体挡套7防轴向移动,不同心连体挡套7的动力轴段轴承挡圈10外径小于动力轴段轴承外支撑圈内径13,偏心轴段轴承挡圈外径15小于偏心轴段轴承外支撑圈内径14,动力轴段轴承挡圈10与偏心轴段轴承挡圈9形成高度差,高度差的空间避免偏心轴段轴承挡圈9在旋转时与动力轴段轴承外支撑圈摩擦和/或该高度差的空间避免动力轴段轴承挡圈10在旋转时与偏心轴段轴承外支撑圈摩擦等,如图1所示,不同心连体挡套7设置在动力轴段轴承5与偏心轴段轴承8之间,不同心连体挡套7也可以设置在偏心轴段轴承8与偏心轴段轴承8之间防止两偏心轴段轴承8靠近摩擦,不同心连体挡套7与偏心轴段12上和/或不同心连体挡套7与动力轴段11上设置防挡套旋转件6,防挡套旋转件6阻止不同心连体挡套7相对于动力轴段11和相对于偏心轴段12等旋转,连杆2包括分体扣合曲轴连杆4或整体套合曲轴连杆,整体套合曲轴连杆套合在偏心轴段轴承8上,动力轴段轴承5设置在箱体1的一侧或设置在两侧支撑动力轴段11,动力轴段轴承5支撑动力轴段11、偏心轴段12等旋转,动力源驱动动力轴段11带动连杆2往复冲击。
所述动力轴段轴承挡圈10包括卡簧或隔套,卡簧或隔套固定动力轴段11与动力轴段轴承5的相对位置,偏心轴段12包括一个或多个偏心轴段12等。两个以上的偏心轴段12为同向设置或沿动力轴段11径向均等间隔设置或沿动力轴段11径向形成角度差设置等。
所述的动力轴段11与偏心轴段12也可以为分体连接方式。
所述的连杆2也可以使用分体扣合曲轴连杆4等。
本发明还包括一种往复冲击部安装偏心轴段整体轴承方法,该方法特征为:
一、设置偏心轴段12和动力轴段11等,在偏心轴段12上设置偏心轴段轴承8等,在动力轴段11上设置动力轴段轴承5等;
二、设置动力轴段轴承挡圈10和偏心轴段轴承挡圈9等,使动力轴段轴承挡圈10、偏 心轴段轴承挡圈9分别阻挡动力轴段轴承5、偏心轴段轴承8等,或使动力轴段轴承挡圈10与偏心轴段轴承挡圈9做成一体式的不同心连体挡套7等,使不同心连心挡套的动力轴段轴承挡圈10外径小于动力轴段轴承外支撑圈内径13等,偏心轴段轴承挡圈外径15小于偏心轴段轴承外支撑圈内径14,使动力轴段轴承挡圈10与偏心轴段轴承挡圈9设有高度差,该高度差的空间避免偏心轴段轴承挡圈9在旋转时与动力轴段轴承外支撑圈摩擦和/或该高度差的空间避免动力轴段轴承挡圈10在旋转时与偏心轴段轴承外支撑圈摩擦,在不同心连体挡套7与偏心轴段12和/或在不同心连体挡套7与动力轴段11上设置防挡套旋转件6等,使防挡套旋转件6阻止不同心连体挡套7等相对于动力轴段11和相对于偏心轴段12旋转,将不同心连体挡套7等设置在动力轴段轴承5与偏心轴段轴承8之间或设置在偏心轴段轴承8与偏心轴段轴承8之间或设置在偏心轴段轴承8与动力轴段耙料离合器之间;
三、设置连杆2等,将连杆2设置为分体扣合曲轴连杆4或设置为整体套合曲轴连杆等,将整体套合曲轴连杆套合在偏心轴段轴承8上;
四、设置箱体1等,将动力轴段轴承5等设置在箱体1上,使动力轴段轴承5支撑动力轴段11、偏心轴段12等;
五、设置动力源件3等,使动力源件3驱动动力轴段11等旋转,使动力轴段11带动连杆2往复冲击。
不同心连体挡套等设置在动力轴段轴承与偏心轴段轴承之间阻挡动力轴段轴承、偏心轴段轴承窜动,动力轴段轴承挡圈与偏心轴段轴承挡圈为一体式的不同心连体挡套,增大了不同心连体挡套的体积与强度,大大提高了不同心连体挡套的抗冲击抗震等能力,提高了设备的使用寿命,减少了维护量。
实施例2
如图8至图9所示,为实施例2所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,所述的偏心轴段圆截面圆心18与动力轴段圆截面圆心17设置位置为:动力轴段圆截面19设置在偏心轴段圆截面20内,动力轴段圆截面圆心17与偏心轴段圆截面圆心18的距离为往复冲击行程的二分之一,偏心轴段整体轴承整体安装在偏心轴段12上,动力轴段11与偏心轴段12分体连接或为一体式,不同心连体挡套7设置在动力轴段轴承5与偏心轴段轴承8之间阻挡动力轴段轴承5、偏心轴段轴承8等窜动,偏心轴段12一侧设有挡肩21等,另一侧设置不同心连体挡套7或设置卡簧或设置挡圈等。
因需将偏心轴段整体轴承整体安装在偏心轴段上,连杆整体套合在偏心轴段整体轴承上, 故必须将偏心轴段做得直径大于动力轴段,因此极大地增大了偏心轴段的体积与强度,同时因偏心轴段的增大亦增大了偏心轴段整体轴承的体积与强度,增大了曲柄连杆的体积与强度,使动力轴段与偏心轴段为一体式更增加了不同心凸轴的强度。
其它同实施例1。
实施例3
如图10至图13所示,为实施例3所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,所述的偏心轴段12上设有防转孔22或防转槽等,不同心连体挡套7上设置与防转孔22或防转槽相配合的凸起23等,凸起23与防转孔22或防转槽配合阻止不同心连体挡套7相对于偏心轴段12旋转。
所述的防挡套旋转件6包括防转销25和销孔等,偏心轴段12和/或不同心连体挡套7上设置销孔等,销孔包括通孔或肓孔等,防转销25设置在销孔内阻止不同心连体挡套7等相对于偏心轴段12旋转,盲孔24阻止防转销25脱落,在偏心轴段12上设置盲孔24时在不同心连体挡套7上对应的设置通孔,将防转销25穿过不同心连体挡套通孔插入偏心轴段12上的盲孔24内,防转销25一端设置在偏心轴段盲孔24内另一端设置在不同心连体挡套7通孔内,用点焊或粘胶阻止防转销25从不同心连体挡套7通孔内脱落,如图11所示,也可以为在偏心轴段12上设置盲孔24在不同心连体挡套7上设置盲孔24,将防转销25一端设置在不同心连体挡套盲孔24内,另一端设置在偏心轴段盲孔24内。
如图12所示,所述的不同心连体挡套7上设有拆卸顶丝孔26,方便不同心连体挡套7拆卸。
利用偏心轴段及不同心连体挡套的自身结构相互限位,阻止不同心连体挡套相对于偏心轴段旋转,避免了使用防转销等,减少了设备的易丢失、易损件。
其它同实施例1。
实施例4
如图14所示,为实施例4所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,在不同心连体挡套7内径设置防转键28,相对应地在动力轴段11和/或偏心轴段12上设有键槽27,将防转键28推进键槽27防转。
或在不同心连体挡套7与动力轴段11上均设置键槽27等,在不同心连体挡套7与动力轴段11的键槽27内设置防转键28等。
防转键与键槽配合阻止不同心连体挡套相对于动力轴段旋转。
其它同实施例1。
实施例5
如图15所示,为实施例5所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,所述的偏心轴段12一侧设有挡肩21等,另一侧设置不同心连体挡套7,挡肩21与不同心连体挡套7共同阻止偏心轴段轴承8沿偏心轴段12轴向窜动,不同心连体挡套7的内径与动力轴段11相扣合径向定位。
其它同实施例1。
实施例6
如图16至图18所示,为实施例6所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,如图16所示,为了方便不同心凸轮轴搬动,在所述的在偏心轴段12或动力轴段11上设有吊装孔29等。
该不同心凸轴固定轴承往复冲击部还包括耙料机构30等,耙料机构30包括耙料传动件31等,耙料传动件31与动力轴段11分体或分体连接或为一体式,耙料传动件31设置在箱体1内,耙料机构30还包括耙料旋转件32和耙料臂33等,耙料传动件31带动耙料旋转件32等旋转,耙料旋转件32带动耙料臂33等旋转。
如图17和图18所示,所述的耙料传动件31为耙料传动链轮35结构等,耙料传动件31也可以为耙料传动齿轮或耙料传动带轮或耙料传动摩擦轮或耙料传动联轴器或耙料传动花键套或耙料离合器等。
为了使于维护,所述的耙料传动件31也可以设置在箱体1外。
设备部件组合使用,结构简单,工作性能可靠。
不同心连体挡套上设有拆卸顶丝孔和/或在偏心轴段或动力轴段上设有吊装孔等,顶丝孔方便将不同心连体挡套从偏心轴段上拆卸下来,在偏心轴段上设有吊装孔,解决了因不同心凸轴过大过重用人力难以搬动难以组装难以拆卸维修等问题,提高了工作效率。
其它同实施例1。
实施例7
如图19至图24所示,为实施例7所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,所述的耙料机构30包括耙料离合器36等,如图20至图22所示,耙料离合器36设置在耙料旋转件32上;如图23所示,耙料离合器36设置在动力轴段11上;耙料离合器36也可以设置在耙料传动件31上等。如图24所示,不同 心连体挡套7设置在偏心轴段轴承8与动力轴段耙料离合器之间。
当耙料臂33需旋转耙料时耙料离合器36驱动耙料旋转件32带动耙料臂33旋转,当往复冲击落料时耙料离合器36使耙料臂33停止旋转,防止耙料臂33阻碍冲击落料,耙料传动件31与耙料旋转件32分体设置或为一体式。
解决了往复冲击落料时因耙料旋转臂旋转妨碍往复冲击落料影响摇臂升降等问题,结构巧妙,实用性强。
其它同实施例1。
实施例8
如图25所示,为实施例8所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,所述的箱体1上设有旋转臂下落限位机构37等,旋转臂下落限位机构37包括托爪38、固定轴39和限位块40等,限位块40包括上限位块41和下限位块42等,托爪38在上限位块41和下限位块42之间摆动,限位块40与箱体1分体连接或为一体式,固定轴39设置在箱体1上,托爪38与固定轴39铰接,限位块40对托爪38限位,使托爪38处于工作或休止状态,耙料臂33旋转耙料时,耙料臂33将托爪38托起一定角度后通过托爪38的旋转空间顺利旋转耙料,当耙料臂33反向运动时,托爪38在限位块40的作用下将耙料臂33托住,保持耙料臂33处于休止状态。
其它同实施例1。
实施例9
如图26所示,为实施例9所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,与实施例1不同的是:所述的动力轴段11上设有甩油动力件46等,在箱体1内设置甩油机构43等,甩油机构43包括甩油轴45、油甩44等,甩油动力件46驱动甩油轴45等,甩油轴45带动油甩44等旋转甩油,甩油轴45等设置在箱体1下部,增加甩油量,如图26所示,甩油动力件46为链轮链条甩油动力件47,所述的甩油动力件46也可以为皮带带轮甩油动力件或齿轮齿条甩油动力件或销齿式甩油动力件或绳与卷绳器甩油动力件或齿轮甩油动力件或挂齿甩油动力件等。
充分利用了动力轴段上的动力解决了不同心凸轴需要润滑降温等问题,使偏心轴段轴承和动力轴段轴承等得到了良好润滑,延长了设备的使用寿命。
其它同实施例1。
实施例10
如图27所示,为实施例10所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,与实施例1不同的是:偏心轴段12包括中间偏心轴段49、左偏心轴段52和右偏心轴段53等,中间偏心轴段49的直径大于左偏心轴段52或右偏心轴段53的直径,偏心轴段轴承8包括中间偏心轴段轴承48、左偏心轴段轴承51和右偏心轴段轴承50等,中间偏心轴段轴承48整体穿过左偏心轴段52或右偏心轴段53固定在中间偏心轴段49上,或中间偏心轴段轴承48为分体式中间偏心轴段轴承48。
两个以上的偏心轴段沿动力轴段径向均等间隔设置,提高了设备采掘的效率,使往复冲击落料旋转耙料多功能动力轴受力均匀,寿命长,工作可靠。
其它同实施例1。
实施例11
如图28至图31所示,为实施例11所示的往复冲击部不同心凸轴固定轴承的方法及实施该方法的不同心凸轴固定轴承往复冲击部,该不同心凸轴固定轴承往复冲击部还包括驱动传动件54等,如图28所示,驱动传动件54设置在偏心轴段12与偏心轴段12之间;如图29所示,驱动传动件54设置在动力轴段11与偏心轴段12之间;如图30和图31所示,驱动传动件54设置在动力轴段11上。
驱动传动件等设置在动力轴段上或设置在动力轴段与偏心轴段之间或设置在偏心轴段与偏心轴段之间,不同心凸轴的驱动传动件有利于从多个位置多个角度接受动力源件传递来的动力。
其它同实施例1。
本发明创造并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (17)

  1. 一种往复冲击部不同心凸轴固定轴承的方法,该方法的特征是:
    一、设置偏心轴段和动力轴段,在偏心轴段上设置偏心轴段轴承,在动力轴段上设置动力轴段轴承;
    二、设置动力轴段轴承挡圈和偏心轴段轴承挡圈,使动力轴段轴承挡圈、偏心轴段轴承挡圈分别阻挡动力轴段轴承、偏心轴段轴承,或使动力轴段轴承挡圈与偏心轴段轴承挡圈做成一体式的不同心连体挡套,使不同心连心挡套的动力轴段轴承挡圈外径小于动力轴段轴承外支撑圈内径,偏心轴段轴承挡圈外径小于偏心轴段轴承外支撑圈内径,使动力轴段轴承挡圈与偏心轴段轴承挡圈设有高度差,该高度差的空间避免偏心轴段轴承挡圈在旋转时与动力轴段轴承外支撑圈摩擦和/或该高度差的空间避免动力轴段轴承挡圈在旋转时与偏心轴段轴承外支撑圈摩擦,在不同心连体挡套与偏心轴段和/或在不同心连体挡套与动力轴段上设置防挡套旋转件,使防挡套旋转件阻止不同心连体挡套相对于动力轴段和相对于偏心轴段旋转,将不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与动力轴段耙料离合器之间;
    三、设置连杆,将连杆设置为分体扣合曲轴连杆或设置为整体套合曲轴连杆,将整体套合曲轴连杆套合在偏心轴段轴承上;
    四、设置箱体,将动力轴段轴承设置在箱体上,使动力轴段轴承支撑动力轴段、偏心轴段;
    五、设置动力源件,使动力源件驱动动力轴段旋转,使动力轴段带动连杆往复冲击。
  2. 根据权利要求1所述的一种实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部,其特征在于:该不同心凸轴固定轴承往复冲击部包括动力轴段、偏心轴段、动力轴段轴承、偏心轴段轴承、动力轴段轴承挡圈、偏心轴段轴承挡圈、连杆、动力源件和箱体,动力轴段与偏心轴段分体连接或为一体式,偏心轴段上设置偏心轴段轴承,动力轴段上设置动力轴段轴承,偏心轴段轴承包括偏心轴段分体轴承或偏心轴段整体轴承,动力轴段轴承挡圈、偏心轴段轴承挡圈分别阻挡动力轴段轴承、偏心轴段轴承,或动力轴段轴承挡圈与偏心轴段轴承挡圈为一体式的不同心连体挡套,不同心连体挡套的动力轴段轴承挡圈外径小于动力轴段轴承外支撑圈内径,偏心轴段轴承挡圈外径小于偏心轴段轴承外支撑圈内径,动力轴段轴承挡圈与偏心轴段轴承挡圈形成高度差,高度差的空间避免偏心轴段轴承挡圈在旋转时与动力轴段轴承外支撑圈摩擦和/或该高度差的空间避免动力轴段轴承挡圈在旋转时与偏心轴段轴承外支撑圈摩擦,不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间或设置在偏心轴段轴承与偏心轴段轴承之间,不同心连体挡套与偏心轴段上和/或不同心连体 挡套与动力轴段上设置防挡套旋转件,防挡套旋转件阻止不同心连体挡套相对于动力轴段和相对于偏心轴段旋转,连杆包括分体扣合曲轴连杆或整体套合曲轴连杆,整体套合曲轴连杆套合在偏心轴段轴承上,动力轴段轴承设置在箱体的一侧或两侧,动力轴段轴承支撑动力轴段、偏心轴段旋转,动力源驱动动力轴段带动连杆往复冲击。
  3. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:偏心轴段圆截面圆心与动力轴段圆截面圆心设置位置为:动力轴段圆截面设置在偏心轴段圆截面内,动力轴段圆截面圆心与偏心轴段圆截面圆心的距离为往复冲击行程的二分之一,偏心轴段整体轴承整体安装在偏心轴段上,动力轴段与偏心轴段分体连接或为一体式,不同心连体挡套设置在动力轴段轴承与偏心轴段轴承之间阻挡动力轴段轴承、偏心轴段轴承窜动,偏心轴段一侧设有挡肩,另一侧设置不同心连体挡套或设置卡簧或设置挡圈。
  4. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述动力轴段轴承挡圈包括卡簧或隔套,偏心轴段包括一个或多个偏心轴段。
  5. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的偏心轴段上设有防转孔或防转槽,不同心连体挡套上设置与防转孔或防转槽相配合的凸起,凸起与防转孔或防转槽配合阻止不同心连体挡套相对于偏心轴段旋转。
  6. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:在不同心连体挡套内径设置防转键,相对应地在动力轴段和/或偏心轴段上设有键槽,将防转键推进键槽防转,或在不同心连体挡套与动力轴段上均设置键槽,在不同心连体挡套与动力轴段的键槽内设置防转键。
  7. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的防挡套旋转件包括防转销和销孔,偏心轴段和/或不同心连体挡套上设置销孔,销孔包括通孔或肓孔,防转销设置在销孔内阻止不同心连体挡套相对于偏心轴段旋转,盲孔阻止防转销脱落,在偏心轴段上设置盲孔在不同心连体挡套上设置通孔,将防转销穿过不同心连体挡套通孔,防转销一端设置在偏心轴段盲孔内另一端设置在不同心连体挡套通孔内,用点焊或粘胶阻止防转销从不同心连体挡套通孔内脱落,或在偏心轴段上设置盲孔在不同心连体挡套上设置盲孔,将防转销一端设置在不同心连体挡套盲孔内,另一端设置在偏心轴段盲孔内。
  8. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的偏心轴段一侧设有挡肩,另一侧设置不同心连体挡套,挡肩与不同心连体挡套共同阻止偏心轴段轴承沿偏心轴段轴向窜动,不同心连体挡套的内径与动力轴段相扣合径向定位。
  9. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的不同心连体挡套上设有拆卸顶丝孔和/或在偏心轴段或动力轴段上设有吊装孔。
  10. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:该不同心凸轴固定轴承往复冲击部还包括耙料机构,耙料机构包括耙料传动件,耙料传动件与动力轴段分体或分体连接或为一体式,耙料传动件设置在箱体内或箱体外,耙料机构还包括耙料旋转件和耙料臂,耙料传动件带动耙料旋转件旋转,耙料旋转件带动耙料臂旋转耙料。
  11. 根据权利要求10所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的耙料传动件包括耙料传动链轮或耙料传动齿轮或耙料传动带轮或耙料传动摩擦轮或耙料传动联轴器或耙料传动花键套或耙料离合器。
  12. 根据权利要求11所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的耙料离合器设置在耙料旋转件上或设置在动力轴段上或设置在耙料传动件上,不同心连体挡套设置在偏心轴段轴承与动力轴段耙料离合器之间,当耙料臂需旋转耙料时耙料离合器驱动耙料旋转件带动耙料臂旋转,当往复冲击落料时耙料离合器使耙料臂停止旋转,防止耙料臂阻碍冲击落料,耙料传动件与耙料旋转件分体设置或为一体式。
  13. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的箱体上设有旋转臂下落限位机构,旋转臂下落限位机构包括托爪、固定轴和限位块,限位块包括上限位块和下限位块,托爪在上限位块和下限位块之间摆动,限位块与箱体分体连接或为一体式,固定轴设置在箱体上,托爪与固定轴铰接,限位块对托爪限位,使托爪处于工作或休止状态,耙料臂旋转耙料时,耙料臂将托爪托起一定角度后通过托爪的旋转空间顺利旋转耙料,当耙料臂反向运动时,托爪在限位块的作用下将耙料臂托住,保持耙料臂处于休止状态。
  14. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:所述的动力轴段上设有甩油动力件,在箱体内设置甩油机构,甩油机构包括甩油轴、油甩,甩油动力件驱动甩油轴,甩油轴带动油甩旋转甩油,甩油轴设置在箱体下部,增加甩油量,甩油动力件包括链轮链条甩油动力件或皮带带轮甩油动力件或齿轮齿条甩油动力件或销齿式甩油动力件或绳与卷绳器甩油动力件或齿轮甩油动力件或挂齿甩油动力件。
  15. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:偏心轴段包括一个以上的偏心轴段,两个以上的偏心轴段为同向设置或沿动力轴段径向均等间隔设置或沿动力轴段径向形成角度差设置。
  16. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:偏心轴段包括中 间偏心轴段、左偏心轴段和右偏心轴段,中间偏心轴段的直径大于左偏心轴段或右偏心轴段的直径,偏心轴段轴承包括中间偏心轴段轴承、左偏心轴段轴承和右偏心轴段轴承,中间偏心轴段轴承整体穿过左偏心轴段或右偏心轴段固定在中间偏心轴段上,或中间偏心轴段轴承为分体式中间偏心轴段轴承。
  17. 根据权利要求2所述的不同心凸轴固定轴承往复冲击部,其特征在于:不同心凸轴固定轴承往复冲击部还包括驱动传动件,驱动传动件设置在动力轴段上或设置在动力轴段与偏心轴段之间或设置在偏心轴段与偏心轴段之间。
PCT/CN2015/071782 2014-01-29 2015-01-29 实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部 WO2015113504A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15742732.9A EP3101226A4 (en) 2014-01-29 2015-01-29 Non-concentric protruding shaft fixed bearing reciprocating impact part for implementing a reciprocating impact non-concentric protruding shaft fixed bearing method
US15/115,278 US10400597B2 (en) 2014-01-29 2015-01-29 Non-concentric protruding shaft fixed bearing reciprocating impact part for implementing reciprocating impact part non-concentric protruding shaft fixed bearing method
AU2015210534A AU2015210534B2 (en) 2014-01-29 2015-01-29 Non-concentric protruding shaft fixed bearing reciprocating impact part for implementing reciprocrating impact part non-concentric protruding shaft fixed bearing method
UAA201609104A UA120176C2 (uk) 2014-01-29 2015-01-29 Частина, яка здійснює зворотно-поступальні ударні рухи та з'єднана з валом з неконцентрично розташованими секціями за допомогою підшипників, для здійснення способу з'єднання частини, яка здійснює зворотно-поступальні ударні рухи, з валом з неконцентрично розташованими секціями за допомогою підшипників
CA2938340A CA2938340C (en) 2014-01-29 2015-01-29 Non-concentric protruding shaft fixed bearing reciprocating impact part for implementing reciprocating impact non-concentric protruding shaft fifixed bearing method
EA201691546A EA034626B1 (ru) 2014-01-29 2015-01-29 Осуществляющий возвратно-поступательные ударные движения узел и способ его соединения с валом

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410042607.6 2014-01-29
CN201410042607 2014-01-29
CN201410379365 2014-08-01
CN201410379365.X 2014-08-01

Publications (1)

Publication Number Publication Date
WO2015113504A1 true WO2015113504A1 (zh) 2015-08-06

Family

ID=53691391

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/071782 WO2015113504A1 (zh) 2014-01-29 2015-01-29 实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部
PCT/CN2015/071783 WO2015113505A1 (zh) 2014-01-29 2015-01-29 往复冲击落料旋转耙料多功能动力轴

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071783 WO2015113505A1 (zh) 2014-01-29 2015-01-29 往复冲击落料旋转耙料多功能动力轴

Country Status (8)

Country Link
US (2) US10400597B2 (zh)
EP (2) EP3101227A1 (zh)
CN (4) CN104806239B (zh)
AU (2) AU2015210535B2 (zh)
CA (2) CA2938340C (zh)
EA (2) EA034626B1 (zh)
UA (1) UA120176C2 (zh)
WO (2) WO2015113504A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806239B (zh) * 2014-01-29 2019-02-05 刘素华 实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部
US20170108032A1 (en) * 2015-10-16 2017-04-20 General Electric Company Stepped shaft assembly
CN106609671B (zh) * 2015-10-27 2021-01-29 刘素华 一种摇臂伸缩油缸内置往复冲击掘进机
CN105508406A (zh) * 2016-01-05 2016-04-20 三联传动机械有限公司 一种摆线减速机的输入套件及其加工方法
CN108457647B (zh) * 2017-02-18 2023-12-05 刘素华 一种空心凸轮套冲击箱
CN207297610U (zh) * 2017-04-12 2018-05-01 中清能(北京)科技有限公司 组合曲轴、包含无连杆旋转往复运动转换结构设备
CN108799316B (zh) * 2018-08-02 2020-04-07 南通振康焊接机电有限公司 一种rv精密减速机偏心轴及精密减速机
CN117662588B (zh) * 2024-01-31 2024-04-12 唯实重工股份有限公司 一种铲运结构及掘进机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1643221A (en) * 1926-06-11 1927-09-20 Robert B Metzner Mining tool
US4815543A (en) * 1986-06-09 1989-03-28 General Mining Union Corporation Limited Activated rock cutting assembly
CN202483570U (zh) * 2012-01-10 2012-10-10 刘素华 摆杆传动直冲铲煤机
CN202745687U (zh) * 2012-01-10 2013-02-20 刘素华 往复冲击钻掘机
CN202882909U (zh) * 2012-05-12 2013-04-17 刘素华 冲击平移式掘进机
CN103195420A (zh) * 2012-01-10 2013-07-10 刘素华 对往复冲击掘进反作用力缓冲的方法及实施该方法的缓冲掘进机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1435783A1 (ru) * 1987-01-20 1988-11-07 Коммунарский горно-металлургический институт Виброгидравлическа выемочна машина
RU2105148C1 (ru) * 1995-06-26 1998-02-20 Иркутская государственная экономическая академия Ударный струг
CA2409464A1 (en) * 2002-10-22 2004-04-22 Ferruccio I. China Device for breaking rocks and the like without explosives
RU2563467C1 (ru) * 2011-09-11 2015-09-20 Сухуа Лю Способ добычи ударным резанием и горный комбайн ударного резания для осуществления способа
CN103307093A (zh) * 2012-03-12 2013-09-18 义乌市黑白矿山机械有限公司 一种自平衡偏心轴及其自平衡实现方法
MX2014013782A (es) * 2012-05-12 2016-11-30 Suhua Liu Metodo de minado altamente eficiente para percutir materiales en caida libre sin la captura de materiales y maquina de minado altamente eficiente para percutir materiales en caida libre sin la captura de materiales.
CN103498673B (zh) * 2012-05-12 2017-12-05 刘素华 旋转运动转变为往复冲击运动的方法及设备
CN204002782U (zh) * 2013-02-22 2014-12-10 刘素华 连杆内置式往复冲击动力箱
CN203584428U (zh) * 2013-05-10 2014-05-07 刘素华 一种旋转运动转变为往复冲击运动设备
EA201501184A1 (ru) * 2013-06-01 2016-06-30 Сухуа Лю Деталь для ударного действия с возвратно-поступательным движением для горных работ со встроенным соединительным стержнем для горной машины
WO2015027672A1 (zh) * 2013-09-01 2015-03-05 Liu Suhua 一种采掘机导向螺杆紧固冲击架往复冲击采掘部
WO2015058465A1 (zh) * 2013-10-21 2015-04-30 刘素华 一种掘进机动力箱往复落料滚耙装料的方法及一种动力箱往复落料滚耙装料掘进机
CN104806239B (zh) * 2014-01-29 2019-02-05 刘素华 实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部
WO2016202309A2 (zh) * 2015-06-19 2016-12-22 刘素华 往复冲击采掘机无泵增高润滑多级导向系统方法的增高润滑多级导向系统往复冲击采掘机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1643221A (en) * 1926-06-11 1927-09-20 Robert B Metzner Mining tool
US4815543A (en) * 1986-06-09 1989-03-28 General Mining Union Corporation Limited Activated rock cutting assembly
CN202483570U (zh) * 2012-01-10 2012-10-10 刘素华 摆杆传动直冲铲煤机
CN202745687U (zh) * 2012-01-10 2013-02-20 刘素华 往复冲击钻掘机
CN103195420A (zh) * 2012-01-10 2013-07-10 刘素华 对往复冲击掘进反作用力缓冲的方法及实施该方法的缓冲掘进机
CN202882909U (zh) * 2012-05-12 2013-04-17 刘素华 冲击平移式掘进机

Also Published As

Publication number Publication date
EP3101226A4 (en) 2017-10-25
AU2015210535B2 (en) 2018-07-26
WO2015113505A1 (zh) 2015-08-06
UA120176C2 (uk) 2019-10-25
US10400597B2 (en) 2019-09-03
CA2938340C (en) 2019-12-17
AU2015210534A2 (en) 2016-10-06
EP3101227A1 (en) 2016-12-07
AU2015210535A1 (en) 2016-09-15
CN204512167U (zh) 2015-07-29
US20170009579A1 (en) 2017-01-12
US20170002656A1 (en) 2017-01-05
CN104806624A (zh) 2015-07-29
AU2015210534A1 (en) 2016-09-15
AU2015210534B2 (en) 2019-09-12
EA201691546A1 (ru) 2018-06-29
CN104806239B (zh) 2019-02-05
CN104806624B (zh) 2018-12-18
EA034626B1 (ru) 2020-02-28
EP3101226A1 (en) 2016-12-07
CA2938340A1 (en) 2015-08-06
CA2938342A1 (en) 2015-08-06
CN204511438U (zh) 2015-07-29
EA201691547A1 (ru) 2017-01-30
CN104806239A (zh) 2015-07-29
EA033292B1 (ru) 2019-09-30
AU2015210535A2 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2015113504A1 (zh) 实施往复冲击部不同心凸轴固定轴承方法的不同心凸轴固定轴承往复冲击部
CN203009702U (zh) 一种带注油杯的梯级链条
AU2014273757B2 (en) Reciprocating impact mining part with built-in connecting rod for mining machine
CN206032444U (zh) 一种一体式转载机机尾链轮轴组
CN203652644U (zh) 一种辊筒
CN204419133U (zh) 圆盘式同步换向链条皮带抽油机
US9115712B2 (en) Swing barrel type positive displacement pump using cross shaft joint bearing
CN204164159U (zh) 一种发动机凸轮轴止推装置
CN207774638U (zh) 一种井下手拉单轨吊机车
CN103697131B (zh) 一种滚珠丝杆
CN207297612U (zh) 便于维护的曲轴
CN206032528U (zh) 一种竹木加工用缓释自润滑输送机构
CN204783584U (zh) 隔膜式真空泵
CN205101055U (zh) 凸轮轴轴承盖
CN203730232U (zh) 一种防偏磨导向装置及砂浆泵
CN106335767A (zh) 一种竹木加工用缓释自润滑输送机构
CN208123239U (zh) 空压机连杆
CN209408477U (zh) 一种基板自动吸取分离移载机用升降装置
CN2238935Y (zh) 无磨损曲轴
CN202660565U (zh) 一种链带从动轴炉排
CN205734516U (zh) 悬挂式抛丸机可回转吊钩装置
CN207848317U (zh) 一种带有润滑功能的长寿命链条
CN203049668U (zh) 挖掘机用液压泵以及具有所述液压泵的挖掘机
CN2620083Y (zh) 油田油井井筒转动机
CN205446367U (zh) 耐磨型油锯曲轴

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2938340

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15115278

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015742732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: A201609104

Country of ref document: UA

Ref document number: 201691546

Country of ref document: EA

Ref document number: IDP00201605840

Country of ref document: ID

Ref document number: 2015742732

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015210534

Country of ref document: AU

Date of ref document: 20150129

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742732

Country of ref document: EP

Kind code of ref document: A1