WO2015113502A1 - 连续铸轧制备b4c/al中子吸收材料板材的方法 - Google Patents

连续铸轧制备b4c/al中子吸收材料板材的方法 Download PDF

Info

Publication number
WO2015113502A1
WO2015113502A1 PCT/CN2015/071767 CN2015071767W WO2015113502A1 WO 2015113502 A1 WO2015113502 A1 WO 2015113502A1 CN 2015071767 W CN2015071767 W CN 2015071767W WO 2015113502 A1 WO2015113502 A1 WO 2015113502A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
aluminum matrix
matrix melt
magnetic field
absorbing material
Prior art date
Application number
PCT/CN2015/071767
Other languages
English (en)
French (fr)
Inventor
束国刚
李丘林
罗志远
刘伟
刘彦章
王鑫
李学军
张腾飞
Original Assignee
中广核工程有限公司
清华大学深圳研究生院
中国广核集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 清华大学深圳研究生院, 中国广核集团有限公司 filed Critical 中广核工程有限公司
Priority to EP15743006.7A priority Critical patent/EP3112486B8/en
Publication of WO2015113502A1 publication Critical patent/WO2015113502A1/zh
Priority to US15/220,440 priority patent/US20160332219A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field

Definitions

  • the present invention is in the field of composite materials, and more particularly, the present invention relates to a method for continuously casting and rolling a sheet of B 4 C/Al neutron absorbing material.
  • a high-content B 4 C/Al composite sheet as a neutron absorbing material for storing spent fuel has been commercially used, in which the mass content of B 4 C particles, whether it is dispersed in the matrix, and whether the matrix forms a well-bonded interface And the microstructure of the matrix is the key to the performance of the B 4 C/Al composite.
  • the preparation methods of B 4 C/Al neutron absorbing materials mainly include powder metallurgy method, melt infiltration method and stirring casting method, wherein the stirring casting method has the advantages of high production efficiency, simple process flow and suitable for large-scale production. It is considered to be the most promising production method for B 4 C/Al neutron absorbing materials.
  • the general stirring casting method for preparing B 4 C/Al composite material is: aluminum ingot melting ⁇ mixing compound ⁇ casting ⁇ sawing, milling, heating ⁇ opening ⁇ hot rolling intermittent production process, low productivity and automation . Due to the slow cooling rate during the casting process, the uniformity of B 4 C particle distribution in the prepared B 4 C/Al plate is not ideal, which will adversely affect the neutron absorption performance and subsequent mechanical properties of the B 4 C/Al composite.
  • the solidification rate of the alloy in the conventional slab preparation method is slow, so defects such as tissue segregation are difficult to avoid.
  • the aluminum matrix melt with high-quality B 4 C particles has high viscosity and poor fluidity, and it is easy to cause shrinkage during casting, which leads to defects such as shrinkage and shrinkage of the ingot.
  • the B 4 C particles act as a heterogeneous core, and the wettability with the aluminum matrix is poor, and during the solidification process, uneven distribution occurs due to the displacement of the B 4 C particles by the solidification front.
  • the twin-roll continuous casting and rolling is a forming process integrating rapid solidification and hot rolling deformation.
  • the casting rolls play the dual roles of “crystallizer” and “hot roll”. Due to the very fast solidification rate of liquid metal during casting and rolling (up to 103-104 ° C / S), the distribution of reinforcement in the composite material is uniform, the defects are significantly reduced, and the strength of the material is improved while ensuring the toughness and deformability of the material. It is especially important for composites with high B 4 C mass content.
  • Thin sheets with thicknesses of 2.0 mm and 1.7 mm, respectively, are prepared, and the uniformity of particle distribution is higher than that of ordinary casting, and subsequent cold and hot rolling can be performed.
  • the results show that there is still a problem of uneven particle distribution in the continuous casting and rolling of the sheet.
  • the present invention provides a method for continuously producing a B 4 C/Al neutron absorbing material sheet by continuous casting and rolling, which comprises the following steps:
  • the aluminum matrix melt containing B 4 C particles flowing out of the casting nozzle is continuously cast and rolled by a double roll to obtain a B 4 C/Al neutron absorbing material sheet.
  • the acoustic air cavitation and sound flow effects are utilized to significantly degas the aluminum matrix melt, and spheroidize and refine the solidified grains.
  • the energy applied by the ultrasonic at the interface of the aluminum melt/B 4 C particles can significantly promote the wetting of the B 4 C particles by the aluminum matrix melt.
  • the local high temperature and high pressure caused by acoustic cavitation can clean and activate the surface of the B 4 C particles, and improve The surface energy of the particles reduces the surface energy of the melt.
  • the agitation of the acoustic flow also causes the B 4 C particles to be uniformly dispersed macroscopically, and the combined action of the acoustic flow and the acoustic cavitation causes the B 4 C particles to be microscopically dispersed.
  • the front box of the continuous casting and rolling equipment is placed in the gap between the upper and lower iron cores of the electromagnetic inductor.
  • the electromagnetic induction device When direct current is supplied to the aluminum liquid and the alternating current is supplied to the coil, the electromagnetic induction device generates a traveling wave alternating along the axis of the roll.
  • the magnetic field and the oscillating magnetic field in the vertical direction are dominated by the traveling wave magnetic field.
  • the changing magnetic field causes the aluminum liquid to generate an induced current under non-contact conditions, and the two acts to produce a varying electromagnetic force, resulting in movement of the particles in the aluminum liquid.
  • a composite magnetic field mainly composed of a traveling wave magnetic field is applied in the casting and rolling zone, and electromagnetic induction is applied to the casting and rolling zone to generate a horizontal stirring force parallel to the axial direction of the roll; the direction of the traveling wave magnetic field is constantly changed, The direction of the stirring force is changed, so that the front edge of the solidification zone of the solidification front produces an abnormal, small-amplitude migration flow, so that the flow field, the temperature field and the concentration field of the melt are continuously changed, and the dendrites of the solidification front are washed and mechanically sheared. Cut, the dendrites are peeled off, broken, and the center of nucleation is increased. Therefore, the use of an electromagnetic field during continuous casting and rolling causes the composite slab grains to be fine and equiaxed, and the B 4 C particles are evenly distributed.
  • the B 4 C particles have a particle size distribution of 0 to 44 ⁇ m.
  • the aluminum matrix melt in the step 1) contains ⁇ 0.25% Si, ⁇ 0.35% Fe, in terms of weight percentage. ⁇ 0.05% Cu, ⁇ 0.03% Mn, ⁇ 0.03% Mg, ⁇ 0.10% Zn, ⁇ 0.10% Ti, and ⁇ 99.60% Al.
  • the B4C particles are in an air atmosphere at 300 ° C to 500 ° C. Preheat for 2h-2.5h and dry thoroughly in a vacuum oven.
  • step 1) the aluminum substrate is melted at a vacuum of 5-10 Pa at 720 ° C to 730 ° C. The mixture was held for 15-20 minutes and mechanically agitated to form an aluminum matrix melt.
  • the aluminum base melt is allowed to stand, refine and slag.
  • the compound stirring is carried out at a temperature of 690-720 ° C, and the stirring speed is 600-800 rpm, and the stirring time is It is 15-30min.
  • the electromagnetic field generates electromagnetic oscillation by a static magnetic field interacting with a low frequency alternating magnetic field to realize electromagnetic dispersion.
  • the steady magnetic field adopts a direct current 180A-200A, and the number of turns of the coil is 80-120.
  • the direction of the magnetic field is the axial direction of the coil, the magnetic field strength is 0.1-0.4T; the low-frequency alternating magnetic field is AC current 80A-100A, the number of turns of the coil is 80-120, the frequency of the alternating current is 20Hz-40Hz, the direction of the magnetic field is the axial direction of the coil, and the effective magnetic field
  • the strength is 0.05-0.3T, and the oscillation time is 1.5min-2min.
  • the ultrasonic vibration is introduced by a top, the power is 240 W-300 W, and the vibration time is 150-180 s. .
  • the double roll continuous casting and rolling adopts a copper double roll, and the loading pressure between the two rolls is 25- 30KN, the roll speed is 0.9-1.2m/min, and it is cooled by water.
  • the mass content of the B 4 C particles in the B 4 C/Al neutron absorbing material sheet is 20-31%.
  • the present invention provides a B 4 C/Al neutron absorbing material sheet which is prepared by the aforementioned method.
  • the method for continuously casting and rolling a B 4 C/Al neutron absorbing material sheet of the present invention has the following advantages:
  • twin-roll continuous casting and rolling can achieve direct conversion from liquid to solid sheet, shorten the processing flow, improve processing efficiency, reduce cost, and have high economic value.
  • FIG. 1 is a schematic view showing a method of continuously casting and rolling a B 4 C/Al neutron absorbing material sheet according to the present invention
  • 2(a) and 2(b) are metallographic photographs of a B 4 C/Al neutron absorbing material sheet having a B 4 C mass content of 31% according to a conventional casting method and a method according to the present invention, respectively, under an optical microscope. (100 times);
  • 3(a) and 3(b) are metallographic photographs of a B 4 C/Al neutron absorbing material sheet having a B 4 C mass content of 25% according to a conventional casting method and a method according to the present invention, respectively, under an optical microscope. (500 times and 100 times).
  • B 4 C particles -325 mesh nuclear grade boron carbide powder produced by Mudanjiang Diamond Diamond Carbide Co., Ltd., with a particle size distribution of 0-44 ⁇ m and an average particle size of 18.25 ⁇ m, each chemical in B 4 C particles
  • the mass content of the ingredients is shown in the following table:
  • the aluminum substrate was washed in dilute hydrochloric acid, wiped with alcohol, and dried for use.
  • Pretreatment of B 4 C particles Take 4.5 kg of B 4 C particles, preheat in air atmosphere, 300 ° C -500 ° C for 2 h - 2.5 h, remove impurities and moisture on the surface of B 4 C particles, and then in a vacuum drying oven Dry thoroughly in the middle.
  • the aluminum matrix melt is allowed to stand, refine and slag to reduce bubbles and surface oxides in the aluminum matrix melt.
  • the pretreated B 4 C particles were uniformly added to the aluminum matrix melt at a rate of 150 g/min by a spray addition technique, and mechanical agitation was applied while adding the B 4 C particles.
  • Stirring compounding The aluminum matrix melt containing B 4 C particles is stirred at a stirring speed of 600-800 rpm at 690-720 ° C (preferably 700 ° C), the rotation speed in the early stage of stirring is 750 r / min, and the later stage is stable. 650 r / min, stirring time is 15-30min (preferably 20min).
  • the front box of the continuous casting and rolling equipment is placed in the gap between the upper and lower iron cores of the electromagnetic inductor, and the aluminum matrix melt containing B 4 C particles is applied by the electromagnetic field when flowing through the front box, and the low frequency is crossed by the steady magnetic field.
  • the alternating magnetic field interacts to produce an electromagnetic oscillation that achieves the effect of electromagnetic dispersion, such as the applied magnetic field shown in FIG.
  • the direct current is 180A-200A
  • the number of turns of the coil is 80-120
  • the direction of the magnetic field is the axial direction of the coil
  • the magnetic field strength is 0.1-0.4T
  • the alternating current is 80A-100A
  • the number of turns of the coil is 80-120
  • the frequency of the alternating current It is 20-40Hz
  • the direction of the magnetic field is the axial direction of the coil
  • the effective magnetic field strength is 0.05-0.3T
  • the oscillation time is 1.5-2min.
  • Ultrasonic vibration is applied when the melt of the aluminum matrix containing B 4 C particles flows through the casting nozzle.
  • the ultrasonic vibration adopts the top introduction method, as shown in the ultrasonic vibration rod shown in Fig. 1, the ultrasonic power is 240W-300W, and the processing time is 150s. -180s.
  • Rapid twin-roll continuous casting and rolling using copper double rolls, the loading pressure between the two rolls is 25-30KN (preferably 27KN), cooled by cooling water, and the roll speed is 0.9-1.2m/min.
  • the B 4 C particles in the matrix can be used as a separation material, so there is no need to spray the separation material on the casting rolls to avoid contamination of the composite material.
  • continuous casting and rolling apparatus employed in the present invention is substantially the same as the continuous casting and rolling apparatus known to those skilled in the art except for the ultrasonic vibrating rod and the applied magnetic field, and therefore will not be described again.
  • the method for continuously casting and rolling a B 4 C/Al neutron absorbing material sheet of the present invention has the following advantages:
  • twin-roll continuous casting and rolling can achieve direct conversion from liquid to solid sheet, shorten the processing flow, improve processing efficiency, reduce cost, and have high economic value.
  • FIG. 2a is a metallographic photograph (100 times) of a B 4 C/Al neutron absorbing material prepared by a common casting method with a mass content of 31% under an optical microscope
  • FIG. 2b is a mass content of 31% prepared by the method of the present invention.
  • Metallographic photograph of a B 4 C/Al neutron absorbing material under an optical microscope (100 times). It can be seen from the comparison of Fig. 2a and Fig.
  • the B 4 C particles are easily aggregated and black holes are generated; and the method of the invention is prepared.
  • the B 4 C particles are uniformly distributed, the solidified structure is refined, and no obvious defects are generated.
  • the B 4 C particles are also easy to aggregate and generate black holes.
  • the B4C/Al neutron absorbing material prepared by the method of the invention with a mass content of 25%, the B4C particles are uniformly distributed, the solidified structure is refined, no obvious defects are generated, and the microscopic compactness is ideal.
  • Content of 30% by mass of B 4 C / Al neutron absorbing material, for example, with respect to the mass content of the preparation according to the conventional casting method is 30% of B 4 C / Al neutron absorbing material, under the same experimental conditions,
  • the tensile strength of the B 4 C/Al neutron absorbing material prepared according to the method of the present invention was increased by about 16.1%, and the elongation was increased by about 15.6%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Metal Rolling (AREA)

Abstract

一种连续铸轧制备B 4C/Al中子吸收材料板材的方法,包括以下步骤:1)提供B 4C颗粒和铝基体熔体,将B 4C颗粒在搅拌条件下加入铝基体熔体中,并搅拌复合;2)对流经前箱的含有B 4C颗粒的铝基体熔体施加电磁场;3)对流经铸嘴的含有B 4C颗粒的铝基体熔体施加超声振动;以及4)对自铸嘴流出的含有B 4C颗粒的铝基体熔体采用双辊连续铸轧,获得B 4C/Al中子吸收材料板材。该方法利用超声与电磁振荡耦合下的双辊连续铸轧,快速冷却使得复合材料凝固组织晶粒细化、B 4C颗粒分布均匀、无偏聚产生。

Description

连续铸轧制备B4C/Al中子吸收材料板材的方法 技术领域
本发明属于复合材料领域,更具体地说,本发明涉及一种连续铸轧制备B4C/Al中子吸收材料板材的方法。
背景技术
在核能技术领域中,核燃料在反应堆内经过一定的工作时间后会成为乏燃料,乏燃料卸出后仍具有很强的辐射,需要合理贮存。作为贮存乏燃料用中子吸收材料的高含量B4C/Al复合材料板材已被商业应用,其中,B4C颗粒的质量含量、在基体中是否弥散分布、与基体是否形成结合良好的界面,以及基体的微观组织,是B4C/Al复合材料的性能是否理想的关键。
目前,B4C/Al中子吸收材料制备方法主要有粉末冶金法、熔体浸渗法和搅拌铸造法,其中,搅拌铸造法具有生产效率高、工艺流程简单和适合大规模生产等优点,被认为是最有前景的B4C/Al中子吸收材料的生产方法。
普通的搅拌铸造法制备B4C/Al复合材料的方法为:铝锭熔炼→搅拌复合→铸造→锯切、铣面→加热→开坯→热轧的间断式生产流程,生产率和自动化程度低。由于铸造过程中冷速较慢,制备的B4C/Al板材中B4C颗粒分布均匀性不理想,会对B4C/Al复合材料的中子吸收性能及后续力学性能产生不良影响。
在进行大批量生产时,传统铸坯制备方法中合金凝固速率慢,因此组织偏析等缺陷难以避免。特别是加入高质量含量B4C颗粒的铝基体熔体的粘性大、流动性差,铸造时容易出现补缩不及时,导致铸锭出现缩孔、缩松等缺陷。此外,B4C颗粒作为异质核心,与铝基体之间的润湿性差,在凝固过程中,还会因为凝固前沿对B4C颗粒的排挤作用而出现分布不均匀。
双辊连续铸轧是集快速凝固与热轧变形于一体的成型过程,双辊连续铸轧过程中,铸轧辊起“结晶器”和“热轧辊”的双重作用。由于铸轧时液态金属凝固速 率非常快(可达103-104℃/S),使得复合材料中增强体分布均匀,缺陷明显减少,在提高材料强度的同时,保证材料具有一定的韧性和变形能力,对高B4C质量含量的复合材料尤其重要。
加拿大Alcan公司的X.Grant Chen等在《DEVELOPMENT OF AL-30%B4C METAL MATRIX COMPOSITES FOR MEUTRON ABSORBER MATERIAL》中记载,在实验室阶段采用搅拌复合法,后续采用挤压或热轧工序制备出B4C质量含量为30%的B4C/Al复合材料板材。但是,在凝固过程中,B4C颗粒在中心区域有聚集的趋势。虽然经过挤压或热轧会使B4C颗粒分布均匀性有所提高,但是,B4C/Al复合材料的硬度非常高,特别是高B4C质量含量的B4C/Al复合材料,变形加工性能很差,用冷轧制备板材非常困难。现有的方式是对铸锭进行重复的热轧,成本显著增加。
国内上海交通大学的聂存珠在其博士论文《B4C颗粒增强Al基复合材料的制备及焊接性能研究》中利用搅拌复合法制备出B4C体积含量为10%的B4C/Al复合材料,但由于界面反应严重,致使其力学性能不高,而且B4C体积含量也偏低。日本学者T.Haga等的文章《Roll casting of Al-SiCp strip》中记载,搅拌复合后,利用双辊连续铸轧技术对SiCp体积含量分别为20%、30%的复合材料直接轧制,可制备厚度分别为2.0mm与1.7mm的薄板材,其颗粒分布均匀性高于普通铸造的均匀性,且可以进行后续冷、热轧制。但是,结果表明,经过连续铸轧的板材中依然存在颗粒分布不均匀的问题。
有鉴于此,确有必要提供一种可实现B4C颗粒在Al基体中均匀分布的连续铸轧制备B4C/Al中子吸收材料板材的方法。
发明内容
本发明的目的在于:提供一种连续铸轧制备B4C/Al中子吸收材料板材的方法,其可实现B4C颗粒在Al基体中的均匀分布。
为了实现上述发明目的,本发明提供了一种连续铸轧制备B4C/Al中子吸收材料板材的方法,其包括以下步骤:
1)提供B4C颗粒和铝基体熔体,将B4C颗粒在搅拌条件下加入铝基体熔体 中,并搅拌复合;
2)对流经前箱的含有B4C颗粒的铝基体熔体施加电磁场,达到电磁分散;
3)对流经铸嘴的含有B4C颗粒的铝基体熔体施加超声振动;以及
4)对自铸嘴流出的含有B4C颗粒的铝基体熔体采用双辊连续铸轧,以获得B4C/Al中子吸收材料板材。
通过在铸轧过程中施加超声振动,利用声空化和声流效应,对铝基体熔体产生显著除气,对凝固晶粒有球化、细化作用。超声在铝熔体/B4C颗粒界面施加的能量可显著促进铝基体熔体对B4C颗粒的润湿,声空化引起的局部高温高压可以清洗和活化B4C颗粒的表面,提高颗粒表面能,降低熔体表面能。声流的搅拌作用还使得B4C颗粒在宏观上达到均匀分散,声流和声空化的综合作用则使得B4C颗粒达到微观分散。
将连续铸轧设备的前箱置于电磁感应器的上下铁芯的空隙中,当铝液中通入直流电,线圈中通入交流电时,电磁感应装置会产生沿轧辊轴线方向交变的行波磁场和垂直方向的振荡磁场,以行波磁场为主。变化的磁场会在非接触条件下使铝液产生感生电流,两者作用产生变化的电磁力,导致铝液中颗粒的运动。根据电磁学原理,在铸轧区施加以行波磁场为主的复合磁场,并通过电磁感应作用于铸轧区,产生平行于轧辊轴线方向的水平搅拌力;不断改变行波磁场的方向,可改变搅拌力的方向,使得凝固前沿凝固区前沿产生非正常、小幅值的迁移流动,使熔体的流场、温度场和浓度场不断变化,并且对凝固前沿的枝晶产生冲刷和机械剪切,使枝晶剥落、碎断,增加形核中心。因此,连续铸轧过程中使用电磁场会使复合材料板坯晶粒微细、等轴,B4C颗粒均匀分布。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤1)中,所述B4C颗粒的粒度分布为0-44μm。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,以重量百分比计,步骤1)中的铝基体熔体含有≤0.25%Si、≤0.35%Fe、≤0.05%Cu、≤0.03%Mn、≤0.03%Mg、≤0.10%Zn、≤0.10%Ti和≥99.60%Al。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤1)中,在加入铝基体熔体之前,B4C颗粒在空气氛围、300℃-500℃下预热 2h-2.5h,并在真空干燥箱中充分干燥。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤1)中,通过将铝基体在5-10Pa真空度下熔融,在720℃-730℃下保温15-20分钟,并施加机械搅拌形成铝基体熔体。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤1)中,对铝基体熔体进行静置、精炼、扒渣。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤1)中,复合搅拌在690-720℃温度下进行,搅拌速度为600-800rpm,搅拌时间为15-30min。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤2)中,所述电磁场通过稳恒磁场与低频交变磁场相互作用产生电磁振荡,实现电磁分散。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤2)中,所述稳恒磁场采用直流电流180A-200A,线圈匝数为80-120,磁场方向为线圈轴向,磁场强度为0.1-0.4T;低频交变磁场采用交流电流80A-100A,线圈匝数为80-120,交流电流频率20Hz-40Hz,磁场方向为线圈轴向,有效磁场强度0.05-0.3T,振荡时间1.5min-2min。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤3)中,所述超声振动采用顶部导入,功率为240W-300W,振动时间为150-180s。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,步骤4)中,双辊连续铸轧采用铜制双辊,双辊之间加载压力为25-30KN,轧辊转速为0.9-1.2m/min,采用水冷却。
作为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的一种改进,所述B4C/Al中子吸收材料板材中B4C颗粒的质量含量为20-31%。
此外,本发明还提供了一种B4C/Al中子吸收材料板材,其是通过前述方法制备。
相对于现有技术,本发明连续铸轧制备B4C/Al中子吸收材料板材的方法具有以下优点:
1.利用双辊连续铸轧可以实现由液态到固态板材的直接转变,缩短了加工流程,提高了加工效率,降低了成本,具有很高的经济价值。
2.利用超声与电磁振荡耦合下的双辊连续铸轧,快速冷却使得复合材料凝固组织晶粒细化、B4C颗粒整体分布均匀、无偏聚产生。
3.利用超声和电磁场的作用,使得B4C颗粒分布更加均匀,而且清洁无任何污染。
附图说明
下面结合附图和实施例,对本发明连续铸轧制备B4C/Al中子吸收材料板材的方法进行详细说明,附图中:
图1为本发明连续铸轧制备B4C/Al中子吸收材料板材的方法的示意图;
图2(a)和2(b)分别为根据普通铸造方法和根据本发明方法制备的B4C质量含量为31%的B4C/Al中子吸收材料板材在光学显微镜下的金相照片(100倍);
图3(a)和3(b)分别为根据普通铸造方法和根据本发明方法制备的B4C质量含量为25%的B4C/Al中子吸收材料板材在光学显微镜下的金相照片(500倍和100倍)。
具体实施方式
为了使本发明的发明目的、技术方案和技术效果更加清晰,以下结合附图和实施例,对本发明进一步详细说明。应当理解的是,本说明书中给出的实施例仅是为了解释本发明,并非为了限定本发明,本发明并不局限于说明书中给出的实施例。
1.原材料选择
1)B4C颗粒的选择:采用牡丹江金刚钻碳化硼有限公司生产的-325目核级碳化硼粉,其粒度分布为0-44μm,平均粒径为18.25μm,B4C颗粒中的各化学成分的质量含量如下表所示:
化学成分 总硼 游离硼 总碳 游离碳 Fe2O3 其余
质量含量/% 79.31 0.23 19.03 0.58 0.15 0.05 0.65
2)基体的选择:采用纯铝1060铝锭作为基体,铝基体的各化学成分的质量含量如下表所示:
元素
质量含量/% ≤0.25 ≤0.35 ≤0.05 ≤0.03 ≤0.03 ≤0.10 ≤0.10 ≥99.60
将铝基体在稀盐酸中清洗,用酒精擦拭后吹干待用。
2.B4C颗粒的预处理:取4.5kgB4C颗粒,在空气氛围、300℃-500℃下预热2h-2.5h,除去B4C颗粒表面的杂质和水分,然后在真空干燥箱中进行充分干燥。
3.在真空度为5-10Pa的真空环境下熔融10kg铝锭,在720℃-730℃(优选725℃)保温15-20分钟并施加机械搅拌,使铝基体熔体各处溶质、温度均匀。
4.对铝基体熔体进行静置、精炼和扒渣,以减少铝基体熔体中的气泡和表面氧化物。
5.采用喷射加粉技术将预处理后的B4C颗粒以150g/min的速度均匀加入铝基体熔体中,在加入B4C颗粒的同时施加机械搅拌。
6.搅拌复合:在690-720℃(优选700℃)下,以600-800rpm的搅拌速度对含有B4C颗粒的铝基体熔体进行搅拌,搅拌前期的转速为750r/min,后期稳定为650r/min,搅拌时间为15-30min(优选20min)。
7.将连续铸轧设备的前箱设置在电磁感应器的上下铁芯的空隙中,含有B4C颗粒的铝基体熔体流经前箱时施加电磁场的作用,通过稳恒磁场与低频交变磁场相互作用产生电磁振荡,达到电磁分散的效果,如图1所示的外加磁场。其中,直流电流为180A-200A,线圈匝数为80-120,磁场方向为线圈轴向,磁场强度为0.1-0.4T;交流电流为80A-100A,线圈匝数为80-120,交流电流频率为20-40Hz,磁场方向为线圈轴向,有效磁场强度为0.05-0.3T,振荡时间为1.5-2min。
8.在含有B4C颗粒的铝基体熔体流经铸嘴时施加超声振动,超声振动采用顶部导入法,如图1所示的超声波振动杆,超声功率为240W-300W,处理时间 为150s-180s。
9.快速双辊连续铸轧:采用铜制双辊,双辊之间的加载压力为25-30KN(优选27KN),通冷却水冷却,轧辊转速为0.9-1.2m/min。基体中的B4C颗粒可以作为分离材料,因此不需要在铸辊上喷分离材料,可避免对复合材料造成污染。
可以理解的是,除了超声波振动杆和外加磁场外,本发明中采用的连续铸轧设备与本领域技术人员熟知的连续铸轧设备的构造基本相同,因此不再赘述。
相对于现有技术,本发明连续铸轧制备B4C/Al中子吸收材料板材的方法具有以下优点:
1.利用双辊连续铸轧可以实现由液态到固态板材的直接转变,缩短了加工流程,提高了加工效率,降低了成本,具有很高的经济价值。
2.利用超声与电磁振荡耦合下的双辊连续铸轧,快速冷却使得复合材料凝固组织晶粒细化、B4C颗粒分布均匀、无偏聚产生。图2a为普通铸造方法制备的质量含量为31%的B4C/Al中子吸收材料在光学显微镜下的金相照片(100倍),图2b为本发明方法制备的质量含量为31%的B4C/Al中子吸收材料在光学显微镜下的金相照片(100倍)。从图2a和图2b的对比中可以看出,普通铸造方法制备的质量含量为31%的B4C/Al中子吸收材料中,B4C颗粒容易聚集并产生黑洞;而本发明方法制备的质量含量为31%的B4C/Al中子吸收材料中,B4C颗粒分布均匀,凝固组织细化,没有明显缺陷产生。类似的,从图3a和图3b的对比中也可以看出,采用普通铸造方法制备的质量含量为25%的B4C/Al中子吸收材料中,B4C颗粒也容易聚集并产生黑洞;而采用本发明方法制备的质量含量为25%的B4C/Al中子吸收材料中,B4C颗粒分布均匀,凝固组织细化,没有明显缺陷产生,具有理想的微观致密性。以质量含量为30%的B4C/Al中子吸收材料为例,相对于根据普通铸造方法制备的质量含量为30%的B4C/Al中子吸收材料,在相同的实验条件下,根据本发明方法制备的B4C/Al中子吸收材料的抗拉强度提升约16.1%,延伸率提升约15.6%。
3.利用超声和电磁场的作用,使得B4C颗粒分布更加均匀,而且清洁无任何污染。
需要说明的是,根据上述说明书的揭示和教导,本发明所属领域的技术人 员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些等同修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (13)

  1. 一种连续铸轧制备B4C/Al中子吸收材料板材的方法,其特征在于,包括以下步骤:
    1)提供B4C颗粒和铝基体熔体,将B4C颗粒在搅拌条件下加入铝基体熔体中,并搅拌复合;
    2)对流经前箱的含有B4C颗粒的铝基体熔体施加电磁场;
    3)对流经铸嘴的含有B4C颗粒的铝基体熔体施加超声振动;以及
    4)对自铸嘴流出的含有B4C颗粒的铝基体熔体采用双辊连续铸轧,获得B4C/Al中子吸收材料板材。
  2. 根据权利要求1所述的方法,其特征在于,步骤1)中,所述B4C颗粒的粒度分布为0-44μm。
  3. 根据权利要求1所述的方法,其特征在于,以重量百分比计,步骤1)中的铝基体熔体含有≤0.25%Si、≤0.35%Fe、≤0.05%Cu、≤0.03%Mn、≤0.03%Mg、≤0.10%Zn、≤0.10%Ti和≥99.60%Al。
  4. 根据权利要求1所述的方法,其特征在于,步骤1)中,在加入铝基体熔体之前,B4C颗粒在空气氛围、300℃-500℃下预热2h-2.5h,并在真空干燥箱中充分干燥。
  5. 根据权利要求1所述的方法,其特征在于,步骤1)中,通过将铝基体在5-10Pa真空度下熔融,在720℃-730℃下保温15-20分钟,并施加机械搅拌形成铝基体熔体。
  6. 根据权利要求5所述的方法,其特征在于,步骤1)中,对铝基体熔体进行静置、精炼、扒渣。
  7. 根据权利要求1所述的方法,其特征在于,步骤1)中,复合搅拌在690-720℃温度下进行,搅拌速度为600-800rpm,搅拌时间为15-30min。
  8. 根据权利要求1所述的方法,其特征在于,步骤2)中,所述电磁场通过稳恒磁场与低频交变磁场相互作用产生电磁振荡,达到电磁分散。
  9. 根据权利要求8所述的方法,其特征在于,步骤2)中,所述稳恒磁场采 用直流电流180A-200A,线圈匝数为80-120,磁场方向为线圈轴向,磁场强度为0.1-0.4T;低频交变磁场采用交流电流80A-100A,线圈匝数为80-120,交流电流频率为20Hz-40Hz,磁场方向为线圈轴向,有效磁场强度为0.05-0.3T,振荡时间为1.5-2min。
  10. 根据权利要求1所述的方法,其特征在于,步骤3)中,所述超声振动采用顶部导入,功率为240W-300W,振动时间为150-180s。
  11. 根据权利要求1所述的方法,其特征在于,步骤4)中,双辊连续铸轧采用铜制双辊,双辊之间加载压力为25-30KN,轧辊转速为0.9-1.2m/min,采用水冷却。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述B4C/Al中子吸收材料板材中B4C颗粒的质量含量为20-31%。
  13. 一种B4C/Al中子吸收材料板材,其特征在于,所述B4C/Al中子吸收材料板材是通过权利要求1至12中任一项所述的方法制备。
PCT/CN2015/071767 2014-01-28 2015-01-28 连续铸轧制备b4c/al中子吸收材料板材的方法 WO2015113502A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15743006.7A EP3112486B8 (en) 2014-01-28 2015-01-28 Method of producing b 4c/al neutron absorbent material sheet by continuous cast rolling
US15/220,440 US20160332219A1 (en) 2014-01-28 2016-07-27 Method for producing b4c/al neutron-absorbing material sheet by continuous cast rolling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410042799.0A CN103789599B (zh) 2014-01-28 2014-01-28 连续铸轧制备B4C/Al中子吸收材料板材的方法
CN201410042799.0 2014-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/220,440 Continuation US20160332219A1 (en) 2014-01-28 2016-07-27 Method for producing b4c/al neutron-absorbing material sheet by continuous cast rolling

Publications (1)

Publication Number Publication Date
WO2015113502A1 true WO2015113502A1 (zh) 2015-08-06

Family

ID=50665649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071767 WO2015113502A1 (zh) 2014-01-28 2015-01-28 连续铸轧制备b4c/al中子吸收材料板材的方法

Country Status (4)

Country Link
US (1) US20160332219A1 (zh)
EP (1) EP3112486B8 (zh)
CN (1) CN103789599B (zh)
WO (1) WO2015113502A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130091640A (ko) 2010-04-09 2013-08-19 사우쓰와이어 컴퍼니 용융 금속의 초음파 가스 제거
CA2931124C (en) 2013-11-18 2022-11-29 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
CN103789599B (zh) * 2014-01-28 2016-01-06 中广核工程有限公司 连续铸轧制备B4C/Al中子吸收材料板材的方法
CN104357768B (zh) * 2014-09-26 2016-09-14 清华大学深圳研究生院 一种碳化硼-铝合金复合材料板材及其制备方法
CN104492812B (zh) * 2014-12-16 2018-03-20 广东省材料与加工研究所 一种电工铝杆的连铸连轧装置及方法
LT3256275T (lt) 2015-02-09 2020-07-10 Hans Tech, Llc Ultragarsinis granulių rafinavimas
CN104726731B (zh) * 2015-02-11 2016-07-06 太原理工大学 一种增强型镁合金基中子吸收板的制备方法
RU2722378C2 (ru) * 2015-05-01 2020-05-29 Юниверсите Дю Квебек А Шикутими Композитные материалы с улучшенными механическими свойствами при повышенных температурах
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
WO2017044769A1 (en) 2015-09-10 2017-03-16 Southwire Company Ultrasonic grain refining and degassing proceures and systems for metal casting
DE102015116517A1 (de) * 2015-09-29 2017-03-30 Thyssenkrupp Ag Vorrichtung und Verfahren zur kontinuierlichen Herstellung eines bandförmigen, metallischen Werkstücks
CN105312520B (zh) * 2015-11-25 2017-07-25 燕山大学 制造碳化硅颗粒增强铝基复合型材的连续铸轧方法及设备
US10173260B2 (en) 2016-04-19 2019-01-08 Nucor Corporation Method of operation of twin roll strip caster to reduce chatter
RU2639203C2 (ru) * 2016-05-31 2017-12-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ совмещенного непрерывного литья, прокатки и прессования металлической заготовки и устройство для его реализации
EP3565680A4 (en) * 2017-01-11 2020-05-27 Assan Alüminyum San. Ve Tic. A.S. TWO-CYLINDER CASTING PROCESS WITH MAGNETIC AGITATOR
CN106992030B (zh) * 2017-04-11 2018-08-21 太原理工大学 一种碳化硼梯度含量的铝基层状中子屏蔽板的制备方法
CN107377903A (zh) * 2017-06-26 2017-11-24 永杰新材料股份有限公司 一种原位内生颗粒增强铝基复合材料的铸轧成型方法及系统
CN111057979B (zh) * 2019-12-17 2021-06-29 北京科技大学 一种车用高性能铝合金原生相离散的复合物理场调控方法
CN111118329B (zh) * 2020-01-19 2021-11-23 江苏大学 一种高强韧高中子吸收铝基复合材料的制备方法和装置
CN111420988B (zh) * 2020-03-13 2021-07-06 西安交通大学 航天发动机薄壁高筋大型壁板的半固态振动轧制成形工艺
CN111979508B (zh) * 2020-06-23 2022-03-01 中北大学 一种废铝回收直接成形装置及方法
CN114107746B (zh) * 2020-08-26 2022-09-16 宝山钢铁股份有限公司 一种高性能宽幅6xxx铝合金板带及其制造方法
CN112501478A (zh) * 2020-11-09 2021-03-16 镇江龙源铝业有限公司 一种5g基站用散热装置铝合金板材及其制备方法
CN114653906A (zh) * 2020-12-23 2022-06-24 中国科学院江西稀土研究院 一种金属基复合板材的制备方法及系统装置
CN112936694A (zh) * 2021-01-26 2021-06-11 李海平 一种具有热能回收功能的流延机烘干箱
CN115558811B (zh) * 2022-09-10 2023-06-16 哈尔滨工业大学 利用超声与电磁场制备TiAl半固态材料的装备与方法
CN115591941B (zh) * 2022-12-15 2023-03-28 太原理工大学 双金属复合板带深冷辅助波平固-液铸轧复合设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437153A1 (fr) * 1990-01-04 1991-07-17 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Procédé et dispositif pour la coulée continue de composites à matrice métallique renforcée par des particules d'un matériau céramique réfractaire
CN1140766A (zh) * 1996-03-18 1997-01-22 凌刚 耐高温低膨胀锌基耐磨合金
CN1708597A (zh) * 2002-10-25 2005-12-14 艾尔坎国际有限公司 改进的铝合金-碳化硼复合材料
JP2012096289A (ja) * 2011-10-27 2012-05-24 Josho Gakuen 双ロール式縦型鋳造装置及び複合材料シート製造方法
CN103789599A (zh) * 2014-01-28 2014-05-14 中广核工程有限公司 连续铸轧制备B4C/Al中子吸收材料板材的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421535B2 (ja) * 1997-04-28 2003-06-30 トヨタ自動車株式会社 金属基複合材料の製造方法
ES2270858T3 (es) * 1999-07-30 2007-04-16 Mitsubishi Heavy Industries, Ltd. Material compuesto de aluminio que tiene potencia para absorber neutrones.
JP4550598B2 (ja) * 2005-01-21 2010-09-22 株式会社神戸製鋼所 成形用アルミニウム合金板
JP4555183B2 (ja) * 2005-07-15 2010-09-29 株式会社神戸製鋼所 成形用アルミニウム合金板の製造方法および成形用アルミニウム合金の連続鋳造装置
JP4914098B2 (ja) * 2006-03-30 2012-04-11 株式会社神戸製鋼所 アルミニウム合金鋳造板の製造方法
CN101391290B (zh) * 2008-11-05 2010-12-08 江苏大学 一种磁场与超声场耦合作用下熔体反应合成金属基复合材料的方法
US9415440B2 (en) * 2010-11-17 2016-08-16 Alcoa Inc. Methods of making a reinforced composite and reinforced composite products
CN103273026B (zh) * 2013-06-07 2015-04-08 中南大学 深冲用铝合金板带的多能场非对称下沉式铸轧制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437153A1 (fr) * 1990-01-04 1991-07-17 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Procédé et dispositif pour la coulée continue de composites à matrice métallique renforcée par des particules d'un matériau céramique réfractaire
CN1140766A (zh) * 1996-03-18 1997-01-22 凌刚 耐高温低膨胀锌基耐磨合金
CN1708597A (zh) * 2002-10-25 2005-12-14 艾尔坎国际有限公司 改进的铝合金-碳化硼复合材料
JP2012096289A (ja) * 2011-10-27 2012-05-24 Josho Gakuen 双ロール式縦型鋳造装置及び複合材料シート製造方法
CN103789599A (zh) * 2014-01-28 2014-05-14 中广核工程有限公司 连续铸轧制备B4C/Al中子吸收材料板材的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, LAOHU: "Study on Preparation, Microstructures, and Properties of Magnesium Matrix Composites under Physical External Fields", MASTER'S DISSERTATION OF DALIAN UNIVERSITY OF TECHNOLOGY, 30 September 2013 (2013-09-30), pages 13 - 15, XP008184593 *

Also Published As

Publication number Publication date
EP3112486A1 (en) 2017-01-04
EP3112486B8 (en) 2019-09-18
CN103789599A (zh) 2014-05-14
EP3112486A4 (en) 2017-11-15
EP3112486B1 (en) 2019-06-05
CN103789599B (zh) 2016-01-06
US20160332219A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
WO2015113502A1 (zh) 连续铸轧制备b4c/al中子吸收材料板材的方法
CN105734369B (zh) φ784mm的7xxx系超硬铝合金圆棒的热顶铸造工艺
CN104928542B (zh) 一种汽车控制臂用6x82基复合材料的制备方法
CN101199989B (zh) 异频复合电磁场下连续铸造颗粒增强金属基复合材料的方法
CN108746625A (zh) 一种铝基纳米复合材料的制备方法
CN103451456A (zh) 一种利用超声重熔稀释预制块强制分散纳米粒子强化铝合金的方法
Akbar et al. Experimental study of quenching agents on Al6061–Al2O3 composite: Effects of quenching treatment to microstructure and hardness characteristics
Li et al. Strengthening of the magnesium matrix composites hybrid reinforced by chemically oxidized carbon nanotubes and in situ Mg2Sip
Pramanik et al. Fabrication of nano-particle reinforced metal matrix composites
CN111041288A (zh) 一种高强韧、抗疲劳原位铝基复合材料及其制备方法
CN114749679A (zh) 一种多孔框架结构增强镁基复合材料及其制备方法
CN106756305B (zh) 一种铝合金变质处理方法
BAI et al. Annulus electromagnetic stirring for preparing semisolid A357 aluminum alloy slurry
Verma et al. Microstructure evolution and mechanical properties of aluminium matrix composites reinforced with CoMoMnNiV high-entropy alloy
CN102925768A (zh) 粉末喷涂铝合金型材的生产方法
CN106555066B (zh) 一种用微量复合添加剂制备高性能富铁再生铝的方法
CN111001777A (zh) 一种含铁铝合金的复合场处理及高压挤压成形方法
Jiang et al. Effect of ultrasonic power on degassing and microstructure of large-scale 7085 aluminum alloy ingots
CN101705405B (zh) 镁基球形准晶中间合金及其制备方法
CN106244838B (zh) 铌钛碳复合铝合金变质剂及其制备方法
CN112195358A (zh) 一种铝基合金、铝基复合材料及其制备方法与应用
Ding et al. Interfacial characterization and high‐temperature property of NbB2+ NbC nanoparticles‐reinforced 2219Al matrix composite synthesized by melt spinning
CN112941358A (zh) 一种石墨烯增强Mg-Al-Zn合金的制备方法
CN110512105A (zh) 一种高强度铝合金材料的熔炼制备方法
CN112941357A (zh) 一种石墨烯和稀土复合增强铝合金半固态浆料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015743006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743006

Country of ref document: EP