CN106555066B - 一种用微量复合添加剂制备高性能富铁再生铝的方法 - Google Patents

一种用微量复合添加剂制备高性能富铁再生铝的方法 Download PDF

Info

Publication number
CN106555066B
CN106555066B CN201610977811.6A CN201610977811A CN106555066B CN 106555066 B CN106555066 B CN 106555066B CN 201610977811 A CN201610977811 A CN 201610977811A CN 106555066 B CN106555066 B CN 106555066B
Authority
CN
China
Prior art keywords
compound additive
secondary aluminium
micro compound
micro
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610977811.6A
Other languages
English (en)
Other versions
CN106555066A (zh
Inventor
唐鹏
赵艳君
胡治流
蒋长标
曾建民
李逸泰
周成云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201610977811.6A priority Critical patent/CN106555066B/zh
Publication of CN106555066A publication Critical patent/CN106555066A/zh
Application granted granted Critical
Publication of CN106555066B publication Critical patent/CN106555066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

本发明涉及一种用微量复合添加剂制备高性能富铁再生铝的方法,该方法包括制备复合添加剂、配料熔炼、晶粒细化处理、精炼、变质处理、浇铸六个步骤。微量复合添加剂是将Al‑5Ti‑0.5C、Al‑10Mn、Al‑10Sr、Al‑10Ce各中间合金分别通过机加工成合金屑,再通过机械研磨将其制备成一定大小的颗粒,合理选择颗粒的复配比例组成微量复合添加剂,预热后将其加入富铁再生铝熔体中,得到高性能富铁再生铝。本发明具有良好的晶粒细化效果,大幅度提高富铁再生铝的力学性能。本发明简化了熔体处理工艺,添加剂制备方便且易于保存,易于控制,无污染析出。

Description

一种用微量复合添加剂制备高性能富铁再生铝的方法
技术领域
本发明属于再生铝材料制备领域,具体是一种用微量复合添加剂制备高性能富铁再生铝的方法。
背景技术
铸造铝合金具有密度小强度高的特点,在航空、机械以及汽车等领域应用广泛。随着原铝资源日益紧张,人们将废旧回收的铝再次利用,循环用于铸造铝合金体系。在铝资源的回收与再利用中,因反复熔炼或者回收期间接触含铁部件,导致废旧铝熔化后Fe、Si含量较高;而高铁的铝硅合金中,会形成粗大片状的β铁相割裂组织,使得铸造铝硅合金的力学性能大幅降低。
在铸造铝硅合金中添加微量元素是改善其力学性能的一种有效手段。在添加的微量元素中,Al-Ti-C是一种新型晶粒细化剂,起到细化作用的粒子是TiAl3和TiC,其细化原理就是有效的异质晶核分布在熔体当中。TiC相的质点团是α-Al有效的异质结晶的核心,并且Al-Ti-C中间合金形成的TiC质点的表面是一个凸面,有很大的表面曲率,从而降低形核能力。合金元素Mn能很好的阻碍铝合金的再结晶过程,提高铝合金的再结晶温度,同时还能明显的细化再结晶晶粒。微量元素Sr添加到合金中能够改变金属间化合物相的析出行为,是一种很好的表面活性元素。稀土元素Ce能使铝合金熔铸的时候成分过冷,降低二次枝晶之间的间距,而且能够使熔体的表面张力降低,熔体流动性增加,从而细化组织,提高了铸造铝合金的工艺性能。
公开号为CN103820638A的专利公开了一种高Fe铝硅合金中Fe相的多元复合细化变质处理方法。该发明采用Al-Ti-C、Mn、RE对高Fe铝硅合金中的Fe相进行细化变质,可有效地将针状有害的β-Fe相转变汉字α-Fe相或者颗粒状α-Fe相。吴亮等【吴亮,Mn、Sr对铝硅合金中铁相的影响,铸造,2011年12期(60),1185-1189】证实Mn和Sr复合可将Fe相由针状的转变成细小的鱼骨状,并均匀分布于α-A1枝晶中。因此添加适量的微量合金元素,再通过适当处理来控制和改善铁相生长方式,可在细化初生铝同时,抑制β铁相的形成,达到有效细化组织和控制合金相形貌的目的,从而提高再生铝的力学性能。通过添加微量元素控制废铝在铸造过程中组织形貌,降低再生铝中粗大相的不利影响,可获得高性能铸造铝合金,提高再生铝资源的循环利用并缓解铝锭供不应求的矛盾。
发明内容
本发明的目的在于提供一种用微量复合添加剂制备高性能富铁再生铝的方法。
本发明解决上述技术问题的技术方案如下。
一种用微量复合添加剂制备高性能富铁再生铝的方法,要处理的富铁再生铝组分组成,以重量百分比计,Si:10.5~12.0%、Cu:1.5~3.0%、Fe:1.3~2.0%、余量为铝,以上各组分含量之和为100%;
操作步骤如下:
1.制备微量复合添加剂:
微量复合添加剂由按重量百分比计,Al-5Ti-0.5C:5~27%、Al-10Mn:30~55%、Al-10Sr:9~25%、Al-10Ce:9~15%;以上各组分含量之和为100%组成,利用机加工将各中间合金加工为颗粒状,颗粒尺寸范围为1.0~0.1cm,按上述比例均匀混合备用。
2.将要处理的富铁再生铝装入石墨坩埚内,将其在坩埚电阻炉加热到750℃±5℃熔化成熔体,待全部熔化,保温10~20分钟后加入精炼剂C2Cl6进行精炼,精炼完毕后扒去表面浮渣,得到再生铝熔液。
3.将步骤1配置的微量复合添加剂,放入温度为150~250℃烘箱进行预热,预热后的微量复合添加剂加入到步骤2)再生铝熔液中,微量复合添加剂与再生铝的重量比例为2:1000,以200~500r/min的速率进行漩涡搅拌1~5分钟,静置保温15~25分钟后,自然冷却至700℃~720℃,扒渣浇铸于预热的金属铸型中,得到高性能富铁再生铝。
本发明与现有技术相比具有以下优点:
1.本发明将对β-Fe相的变质和α-Al的细化处理合为一体,简化了铸造铝合金熔体处理工艺,降低了成本,具有好的复合处理效果,改善了富铁再生铝合金的性能。
2.本发明方法工艺简单,微量复合添加剂成分易于控制,预热和搅拌工艺参数易于设置,易于实现工业化批量生产。
3.本发明的微量复合添加剂在使用过程中,均无污染物排出,属于环保型技术。
4.本发明对富铁铸造压铸铝合金具有较好处理效果,特别对于再生铝合金中铁的质量百分比为1.3~2.0%时处理效果尤其显著。如对于应用最为广泛的ADC12合金,其铁含量要求小于1.3%,当铁含量超标时,合金性能无法达标。经过添加本专利复合微量添加剂,经复合处理后粗大的β-Fe相变为块状,α-Al明显细化,可使得铁含量超标的ADC12合金力学性能达到使用要求。
附图说明
图1.机加工获得的微量复合添加剂各合金切屑的混合照片。
图2.微量复合添加剂处理前富铁再生铝合金的OM显微组织照片。
图3.微量复合添加剂处理前富铁再生铝合金的XRD图谱。
图4.经实施例1的微量复合处理后的再生铝合金的OM照片。
图5.经实施例2的微量复合处理后的再生铝合金的OM照片。
图6.经实施例3的微量复合处理后的再生铝合金的OM照片。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例1
用微量复合添加剂制备高性能富铁再生铝的方法,操作步骤如下:
本方法用设备及工具:加热设备为坩埚电阻炉、烘箱,机加工设备为车床、机械研磨机,其它工具有扒渣工具、钟形罩、搅拌工具及金属型模具。
本方法要处理的富铁再生铝的组分按重量百分比计为Si:10.5%、Cu:1.5%、Fe:1.3%、余量为铝。所使用的精炼剂为C2Cl6
1.制备微量复合添加剂
按重量百分比称取,Al-5Ti-0.5C:5%、Al-10Mn:55%、Al-10Sr:25%、Al-10Ce:15%混合均匀配制成微量复合添加剂备用。
2.将要处理的富铁再生铝合金切屑装入石墨坩埚内,将其在坩埚电阻炉加热到750℃熔化成熔体,待全部熔化,保温20分钟后加入精炼剂C2Cl6进行精炼,精炼完毕后扒去表面浮渣,得到再生铝熔液。
3.将步骤1制备的微量复合添加剂放入150℃预热,预热后的微量复合添加剂加入到步骤2再生铝熔液中,微量复合添加剂与再生铝的重量比例为2:1000,以200r/min的速率进行漩涡搅拌1分钟,静置保温15分钟后,自然冷却至720℃,扒渣浇铸于预热的金属铸型中,得到高性能富铁再生铝。
实施例2
用微量复合添加剂制备高性能富铁再生铝的方法,操作步骤如下:
本方法所用设备及工具:同实施例1。
本方法要处理的富铁再生铝的组分按重量百分比计为Si:12.0%、Cu:3.0%、Fe:2.0%、余量为铝。所使用的精炼剂为C2Cl6
1.制备微量复合添加剂;按重量百分比称取,Al-5Ti-0.5C:13%、Al-10Mn:52%、Al-10Sr:22%、Al-10Ce:13%混合均匀配制成微量复合添加剂备用。
2.将要处理的富铁再生铝合金切屑装入石墨坩埚内,将其在坩埚电阻炉加热到753℃熔化成熔体,待全部熔化,保温10分钟后加入精炼剂C2Cl6进行精炼,精炼完毕后扒去表面浮渣。得到再生铝熔液。
3.将步骤1制备的微量复合添加剂放入250℃预热,预热后的微量复合添加剂加入到步骤2再生铝熔液中,微量复合添加剂与再生铝的重量比例为2:1000,以350r/min的速率进行漩涡搅拌4分钟,静置保温20分钟后,自然冷却至700℃,扒渣浇铸于预热的金属铸型中,得到高性能富铁再生铝。
实施例3
用微量复合添加剂制备高性能富铁再生铝的方法,操作步骤如下:
本方法所用设备及工具:同实施例1。
本方法要处理的富铁再生铝的组分按重量百分比计为Si:11.0%、Cu:2.5%、Fe:1.8%、余量为铝。所使用的精炼剂为C2Cl6
1.制备微量复合添加剂;按重量百分比,Al-5Ti-0.5C:27%、Al-10Mn:55%、Al-10Sr:9%、Al-10Ce:9%混合均匀配制成微量复合添加剂备用。
2.将要处理的富铁再生铝合金切屑装入石墨坩埚内,将其在坩埚电阻炉加热到750℃熔化成熔体,待全部熔化,保温20分钟后加入精炼剂C2Cl6进行精炼,精炼完毕后扒去表面浮渣。得到再生铝熔液。
3.将步骤1制备的微量复合添加剂放入250℃预热,预热后的微量复合添加剂加入到步骤2再生铝熔液中,微量复合添加剂与再生铝的重量比例为2:1000,以500r/min的速率进行漩涡搅拌5分钟,静置保温25分钟后,自然冷却至700℃,扒渣浇铸于预热的金属铸型中,得到高性能富铁再生铝。
下面将以上三个实施例中的添加剂成分、处理前后的组织以及力学性能列表进行对比分析。表1为三个实施例中复合添加剂的重量百分含量。表2为处理前后铁相的尺寸对比。图3为微量复合添加剂处理前富铁再生铝合金的XRD图谱。
表1复合微量添加剂的各实施例中各种成分的重量百分比
图2为微量复合添加剂处理前的再生铝合金的OM显微组织,从图中可以看出α-Al呈树枝状,共晶硅也呈粗大层片状,β-Fe为粗大的针状相。图4、5、6为经过微量复合添加剂处理后的金相组织的OM照片,经过处理后α-Al的树枝状明显细化呈卵圆形,共晶硅也由层片状向纤维状转变,粗大针状铁相变为块状。从组织分析可知,多元复合微量添加剂对再生铝具有明显的细化和变质的双重作用。为量化处理后组织的变化,分别进行了α-Al的二次枝晶臂、β-Fe的长径比测量,数据如表2所示。
表2各实施例处理前后的与原材料的相尺寸
对未添加微量复合添加剂的再生铝和按不同微量复合添加剂配方获得的实施例1、2、3复合作用后获得的再生铝进行硬度、拉伸性能测试,拉伸试样按照中华人民共和国国家标准GB/T288-2002《金属材料室温拉伸实验方法》进行加工。
表3未加复合微量添加剂和加添加剂的再生合金的力学性能
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (1)

1.一种用微量复合添加剂制备高性能富铁再生铝的方法,其特征在于,要处理的富铁再生铝组分组成,以重量百分比计,
Si:10.5~12.0%、Cu:1.5~3.0%、Fe:1.3~2.0%、余量为铝,以上各组分含量之和为100%;
操作步骤如下:
1)制备微量复合添加剂:微量复合添加剂由按重量百分比计,Al-5Ti-0.5C:5~27%、Al-10Mn:30~55%、Al-10Sr:9~25%、Al-10Ce:9~15%;以上各组分含量之和为100%,利用机加工将各中间合金加工为颗粒状,颗粒尺寸范围为1.0~0.1cm,按上述比例均匀混合备用;
2)将要处理的富铁再生铝装入石墨坩埚内,将其在坩埚电阻炉加热到750℃±5℃熔化成熔体,待全部熔化,保温10~20分钟后加入精炼剂C2Cl6进行精炼,精炼完毕后扒去表面浮渣,得到再生铝熔液;
3)将步骤1)配置的微量复合添加剂,放入温度为150~250℃烘箱进行预热,预热后的微量复合添加剂加入到步骤2)再生铝熔液中,微量复合添加剂与再生铝的重量比例为2:1000,以200~500r/min的速率进行漩涡搅拌1~5分钟,静置保温15~25分钟后,自然冷却至700℃~720℃,扒渣浇铸于预热的金属铸型中,得到高性能富铁再生铝。
CN201610977811.6A 2016-11-08 2016-11-08 一种用微量复合添加剂制备高性能富铁再生铝的方法 Active CN106555066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610977811.6A CN106555066B (zh) 2016-11-08 2016-11-08 一种用微量复合添加剂制备高性能富铁再生铝的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610977811.6A CN106555066B (zh) 2016-11-08 2016-11-08 一种用微量复合添加剂制备高性能富铁再生铝的方法

Publications (2)

Publication Number Publication Date
CN106555066A CN106555066A (zh) 2017-04-05
CN106555066B true CN106555066B (zh) 2018-11-02

Family

ID=58443650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610977811.6A Active CN106555066B (zh) 2016-11-08 2016-11-08 一种用微量复合添加剂制备高性能富铁再生铝的方法

Country Status (1)

Country Link
CN (1) CN106555066B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354324A (zh) * 2017-06-30 2017-11-17 宁夏大学 稀土优化压铸铝合金的方法及改性合金
CN107739867A (zh) * 2017-12-03 2018-02-27 广西丰达三维科技有限公司 一种晶粒细化剂及其在制备稀土铝合金中的应用
CN110804698A (zh) * 2019-10-24 2020-02-18 安徽枫慧金属股份有限公司 一种基于改变富铁相形态的高性能再生铝的加工工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820683B (zh) * 2014-02-28 2016-10-05 华南理工大学 一种高Fe铝硅合金中Fe相的多元复合细化变质处理方法
CN104975196B (zh) * 2015-06-25 2017-03-01 江西雄鹰铝业股份有限公司 一种再生高硅铝合金锭制造工艺

Also Published As

Publication number Publication date
CN106555066A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
US20160273075A1 (en) Aluminium alloy refiner and preparation method and application thereof
CN108165842A (zh) 一种半固态压铸高导热铝合金及其压铸方法
CN100406159C (zh) 一种使Mg-Al-Zn基铸造镁合金获得高强度高韧性的方法
CN106555066B (zh) 一种用微量复合添加剂制备高性能富铁再生铝的方法
CN109136670B (zh) 一种6xxx系铝合金及其制备方法
CN106756276A (zh) 一种铸造铝合金用Al‑Ti‑B‑Y‑Ce细化剂及其制备方法和应用
CN115044810B (zh) 一种铝合金及其制备方法、汽车用材料
CN111763837B (zh) 一种细化过共晶铝硅合金初生硅相的方法
CN105568019B (zh) 一种CuAlMn形状记忆合金晶粒的细化方法
CN107723545A (zh) 一种低密度高强度镁锂合金及其制备方法
CN110408807A (zh) 一种亚共晶Al-Si铸造合金及其制备方法
CN106756305B (zh) 一种铝合金变质处理方法
CN106893912A (zh) 一种镁合金晶粒细化剂及其制备方法
JP3496833B1 (ja) 固液共存状態金属材料の製造方法
CN109439974B (zh) 一种高硅铝合金薄板制备工艺
CN103233138B (zh) Mg-Al系镁合金用晶粒细化剂及其制备方法
CN107400808B (zh) 一种Al-Ti-C-Nd中间合金及其制备方法和应用
CN105908020B (zh) 一种铝‑钨复合材料的制备方法
CN104004936A (zh) 一种锆细化复合低温浇注制备稀土镁合金半固态浆料的方法
CN107916348B (zh) 细晶CuAlMn形状记忆合金的制备方法
CN111001777A (zh) 一种含铁铝合金的复合场处理及高压挤压成形方法
CN106702227B (zh) 一种耐磨铝合金及其制备方法
CN107723491B (zh) 一种用于ic装备专用铸造铝合金的变质剂及变质处理方法
CN110029251A (zh) 一种耐高温铝合金材料及其制备方法
CN107447140A (zh) 一种性能优异的高强铝合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant