WO2015110086A1 - 一种led照明装置和灯罩、及其电路制备方法 - Google Patents

一种led照明装置和灯罩、及其电路制备方法 Download PDF

Info

Publication number
WO2015110086A1
WO2015110086A1 PCT/CN2015/071639 CN2015071639W WO2015110086A1 WO 2015110086 A1 WO2015110086 A1 WO 2015110086A1 CN 2015071639 W CN2015071639 W CN 2015071639W WO 2015110086 A1 WO2015110086 A1 WO 2015110086A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
circuit
dimensional structure
led
led lighting
Prior art date
Application number
PCT/CN2015/071639
Other languages
English (en)
French (fr)
Inventor
陈必寿
许礼
王鹏
何孝良
李晟
刘海波
Original Assignee
上海三思电子工程有限公司
上海三思科技发展有限公司
嘉善三思光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410040724.9A external-priority patent/CN103796438A/zh
Priority claimed from CN201410193097.2A external-priority patent/CN104006317B/zh
Application filed by 上海三思电子工程有限公司, 上海三思科技发展有限公司, 嘉善三思光电技术有限公司 filed Critical 上海三思电子工程有限公司
Priority to CA2938049A priority Critical patent/CA2938049A1/en
Priority to EP15740090.4A priority patent/EP3102011A4/en
Priority to JP2016548066A priority patent/JP6343812B2/ja
Priority to KR1020167023575A priority patent/KR20160133426A/ko
Priority to US15/114,831 priority patent/US10208896B2/en
Publication of WO2015110086A1 publication Critical patent/WO2015110086A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/235Details of bases or caps, i.e. the parts that connect the light source to a fitting; Arrangement of components within bases or caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/237Details of housings or cases, i.e. the parts between the light-generating element and the bases; Arrangement of components within housings or cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/005Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by permanent fixing means, e.g. gluing, riveting or embedding in a potting compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/006Fastening of light sources or lamp holders of point-like light sources, e.g. incandescent or halogen lamps, with screw-threaded or bayonet base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/506Cooling arrangements characterised by the adaptation for cooling of specific components of globes, bowls or cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/86Ceramics or glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09018Rigid curved substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09045Locally raised area or protrusion of insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/0999Circuit printed on or in housing, e.g. housing as PCB; Circuit printed on the case of a component; PCB affixed to housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding

Definitions

  • the invention particularly relates to an LED lighting device and a lampshade, and a circuit manufacturing method thereof.
  • the chips used in LED luminaires need to be connected to the circuit to illuminate, and the electrical wiring used to illuminate the chip in conventional LED luminaires is realized by a circuit board.
  • This board is also the PCB board in our usual sense.
  • the fabricated PCB board is mounted on the base of the lamp, and then the chip is soldered to the corresponding position of the circuit board, thus forming a prototype of the LED lamp.
  • the PCB board is usually a flat sheet, and all the lines must be on one plane, which is bound to occupy a large space, and is not conducive to the design of some special luminaire structures.
  • Circuit Boards are also a key component. It is equipped with other electronic components and connected to the circuit to provide a stable circuit working environment.
  • the most common circuit board in the application is a flat PCB board usually painted with green paint. It forms a copper plate on both sides of a substrate by electroplating, and then determines the exact position of the circuit layer by photocopying and printing processes, and then etches away the excess.
  • the copper material is soldered to the surface of the circuit layer to form a circuit board used in daily production.
  • the existing circuit board manufacturing process is very mature, it is not as good as it is.
  • the waste liquid generated by the electroplating method is seriously polluted, and the purification treatment will incur high cost.
  • Many enterprises are arbitrarily discharging the sewage under the interests of the interests, and the harm to humans and the environment is immeasurable.
  • the photocopying and printing process is generally used to determine the precise position of the circuit layer in the copper plate. This process is convenient.
  • the degree of freedom of the board is greatly limited, so that the entire board has to be fabricated into a two-dimensional flat sheet without any three-dimensional structure.
  • the object of the present invention is to solve the above technical problems, and to provide a method for preparing a coated three-dimensional structure circuit and an application thereof.
  • the method of the present invention can directly produce a complicated three-dimensional line on a lamp base, and the method can eliminate the LED lamp
  • the dependence of the circuit board, and the appearance of the three-dimensional line also makes the design of the lamp more free and diverse.
  • This method is further extended, and the method for manufacturing a three-dimensional circuit provided by the present invention avoids the adverse impact on the environment caused by the conventional circuit board manufacturing process.
  • the present invention relates to a method of fabricating a coated three-dimensional structure circuit, the method comprising the steps of:
  • circuit layer to the surface of the susceptor by means of a programmable coating apparatus, a manual coating or a combination of the two, the circuit layer being a liquid or powder coating containing a metal material,
  • the thickness of the circuit layer is 20 ⁇ m or more;
  • the pedestal After cooling, the pedestal is obtained, and the pedestal has a three-dimensional structure line.
  • the programmable coating device can be accurately positioned after being programmed, and the circuit layer pattern is drawn in a fast dot or pressure extrusion manner according to wiring requirements. Part or all of the wiring layer pattern can also be completed by hand smearing.
  • the high temperature baking process described above helps the circuit layer to be better bonded to the base of the lamp.
  • the susceptor is a columnar, block, horn or prismatic physical entity having a three-dimensional structure on the surface.
  • the three-dimensional structure comprises one or more of a boss, a groove, an arched protrusion, and a sinking structure.
  • the constituent material of the susceptor is a metal, a polymer material, a heat resistant plastic or a ceramic with an insulating material.
  • the base is a lamp base.
  • the programmable coating apparatus is capable of automatically drawing a line layer pattern by reading an already drawn CAD drawing.
  • the programmable coating apparatus is capable of directly drawing the required line layer pattern by programming of the microcontroller.
  • the programmable coating apparatus is a dispenser.
  • the dispenser has a glue applicator.
  • the glue applicator has degrees of freedom in three directions of X, Y, and Z.
  • the glue applicator is capable of smoothly moving on a path synthesized by the three dimensions of X, Y, and Z.
  • the circuit layer is a metal paste.
  • the metal paste is a metal paste having a certain viscosity, preferably a silver paste.
  • the cooling mode comprises air drying, air drying or instrument cooling.
  • the present invention relates to an LED bulb without a circuit board, comprising a bulb, a light emitting chip, a lamp base and a lamp cap, wherein the lamp base has a three-dimensional structure line, and the three-dimensional structure line passes
  • the coating process coats the circuit layer on the surface of the luminaire base, the thickness of the circuit layer meeting the electrical specifications of the bulb.
  • the lamp base is a trumpet-shaped ceramic base having a three-dimensional structure on the upper surface.
  • the three-dimensional structure comprises a boss and an arched protrusion.
  • the bulb is a light transmissive lampshade.
  • the light emitting chip is soldered to the base of the lamp.
  • the electrode pins of the light emitting chip are in contact with the wiring layer.
  • the coating process is achieved by means of a programmable coating apparatus, hand coating or a combination of both.
  • the circuit layer is a conductive silver paste.
  • the electrical indicator is the highest voltage that the circuit layer can withstand and the maximum current that can be passed.
  • the wiring layer has a thickness of 20 ⁇ m or more.
  • the electrical index of the bulb can be achieved.
  • a driving device is mounted in the lamp cap.
  • the present invention relates to an electronic device without a circuit board, comprising a substrate, an electronic component and a housing, the substrate having a three-dimensional structure line, the three-dimensional structure line being coated by a coating process A circuit layer on the surface of the substrate, the thickness of the circuit layer meeting the electrical specifications of the electronic device.
  • the substrate is a square ceramic substrate having a three-dimensional structure on its surface.
  • the three-dimensional structure comprises a boss, a groove and a lower arch structure.
  • the electronic component is soldered to a substrate.
  • the electrode pins of the electronic component are in contact with the wiring layer.
  • the electronic component comprises one or more of a resistor, a capacitor, an inductor, a diode, a triode, and an integrated chip.
  • the coating process is achieved by means of a programmable coating apparatus, hand coating or a combination of both.
  • the electrical indicator is the highest voltage that the circuit layer can withstand and the maximum current that can be passed.
  • the wiring layer has a thickness of 20 ⁇ m or more.
  • the thickness of the circuit layer is above 20 ⁇ m, the electrical parameters of the electronic device can be achieved.
  • the electronic device is encapsulated by a housing.
  • the present invention provides an LED lighting device, including: a base, an LED lighting unit, and a lamp cover;
  • the LED lighting unit is disposed on the upper surface of the base, the lamp cover is in direct contact with the base, and the LED lighting unit is covered; the LED lighting unit comprises a plurality of LED light emitting chips and a circuit coating, and the circuit coating is directly coated on the LED light emitting unit.
  • the upper surface of the pedestal, the LED light emitting chip is directly disposed on the upper surface of the pedestal, and the electrode pins of the LED light emitting chip are electrically connected to the circuit coating;
  • the lamp cover includes an outer surface and an inner surface, the outer surface is a light exit surface, and the inner surface includes a light distribution surface and a heat conduction surface, wherein the light distribution surface is disposed on the inner surface of the inner surface corresponding to the LED light emitting chip
  • the gap between the non-glossy surface and the LED light-emitting chip is matched, and the light-emitting cavity is formed together with the upper surface of the base, and the heat-transfer surface is disposed on part or all of the inner surface and the LED light-emitting chip mounted on the base.
  • the inner surface area corresponding to the surface is closely adhered to the base, and the heat conducting surface is distributed at least in the central area and the edge area of the inner surface.
  • the area of the central region occupies 10-55% of the projected area of the entire inner surface.
  • the inner surface of the lamp cover is composed only of a light distribution surface and a heat conduction surface.
  • the lamp cover is made of light transmissive ceramic or glass.
  • the light transmissive ceramic comprises at least one material selected from the group consisting of one or a combination of one of PLZT, CaF 2 , Y 2 O 3 , YAG, polycrystalline AION, and MgAl 2 O 4 .
  • the inventors of the present invention made a lampshade by using PC, glass and light-transmissive ceramics through repeated experiments.
  • the experimental results show that the junction temperature of PC is the highest, and the temperature rise of the junction temperature of the glass lens is significantly lower than that of PC.
  • the temperature rise of the junction temperature of the lens is lower than that of glass. Therefore, the present invention uses glass and ceramics which have better thermal conductivity and lower temperature and temperature rise in use.
  • the LED lighting unit further comprises a circuit board, the LED lighting chip is disposed on the circuit board, and the circuit board is disposed on the base.
  • the circuit coating is a fluid or powder coating comprising a metal material, and the circuit coating circuit layer has a thickness of 20 ⁇ m or more.
  • the metal material of the circuit coating is selected from at least one of a combination of molybdenum, manganese, tungsten, silver, gold, platinum, silver palladium alloy, copper, aluminum, tin, and the like.
  • the upper surface of the pedestal is a planar, curved, or multi-planar combined shape.
  • the outer surface of the lamp cover is formed into a specific curved shape according to the light distribution requirement, and the inner surface in contact with the base is a curved surface shape corresponding to the shape of the upper surface of the base.
  • the base is provided with a first heat dissipation through hole.
  • the lamp cover is provided with a second heat dissipation through hole, wherein the second heat dissipation through hole is correspondingly connected to the first heat dissipation through hole.
  • the susceptor is a metal pedestal coated with an insulating layer or a pedestal made of an insulating material.
  • the pedestal is a hollow structure, and the first heat dissipation through hole on the pedestal communicates with the outside air through the side of the pedestal.
  • the base is a non-hollow structure, and the outer side of the base is provided with heat dissipation fins.
  • the power supply cavity is further included, wherein the power supply cavity is not in communication with the base, that is, the cavity of the power supply cavity is isolated from the base.
  • the outer casing of the power supply chamber and the base are connected by means of card insertion, snapping, screwing, etc., and can achieve independent heat dissipation. Reduce the impact of the heat generated by the chip on the power supply, and enhance the overall heat dissipation capability of the entire LED lighting device.
  • an LED lamp cover comprising an outer surface and an inner surface, the outer surface being a light exit surface, the inner surface comprising a light distribution surface and a heat conduction surface, the light distribution The surface is a light incident surface, and the heat conducting surface is distributed at least in a central region of the inner surface.
  • the area of the central area accounts for 10-55% of the projected area of the entire inner surface
  • the LED lamp cover is composed of a light transmissive heat conductive material.
  • the thermally conductive surface is also distributed over an edge region of the inner surface.
  • the LED lamp cover is made of light transmissive ceramic, glass or plastic.
  • the light transmissive ceramic is a combination of one or more of PLZT, CaF 2 , Y 2 O 3 , YAG, polycrystalline AION, and MgAl 2 O 4 .
  • An LED lighting device includes the above LED lamp cover, further comprising a base, an LED lighting unit, the LED lighting unit being disposed on an upper surface of the base, the LED lamp cover and the The light-emitting surface and the upper surface of the base form a light distribution cavity for accommodating the LED light-emitting unit, the heat-conducting surface and the base The upper surface fits snugly to form a hot flow path.
  • the specific structure of the LED lighting unit is any one of the following structures:
  • the LED lighting unit comprises a plurality of LED lighting chips and a circuit board, the LED lighting chip is disposed on the circuit board, and the circuit board is disposed on the base; or
  • the LED lighting unit comprises a plurality of LED light emitting chips and a circuit coating, the circuit coating is directly coated on the upper surface of the base, the LED light emitting chip is directly disposed on the upper surface of the base, and the LED light emitting chip
  • the electrode pins are electrically connected to the circuit coating.
  • the circuit coating is a metal paste.
  • the upper surface of the base is a planar, curved or multi-planar combined shape.
  • the pedestal is provided with a first heat dissipation through hole
  • the LED lamp cover is provided with a second heat dissipation through hole
  • the second heat dissipation through hole is correspondingly communicated with the first heat dissipation through hole
  • the susceptor is a metal pedestal coated with an insulating layer, or a pedestal made of an insulating material.
  • the structure of the pedestal is any one of the following structures:
  • the pedestal is a hollow structure, and the first heat dissipation through hole provided on the pedestal communicates with outside air through a side of the pedestal; or
  • the base is a non-hollowed structure, and the outer side of the base has fins.
  • the method further includes a power supply cavity, wherein the outer casing of the power supply cavity is connected to the base, and the cavity of the power supply cavity is isolated from the base.
  • the present invention has the following beneficial effects:
  • the invention abandons the use of the circuit board, further simplifies the structure of the LED lamp, and at the same time achieves the purpose of directly forming a three-dimensional line on the base of the lamp; on the basis of the above, the invention further proposes a stereo line
  • the manufacturing method is more environmentally friendly than traditional processes.
  • the heat generated by the chip can be radiated through the pedestal, and can also be led out through the heat conduction surface of the inner surface of the lamp cover which is directly attached to the pedestal. Since the heat conducting surface of the lamp cover is distributed in the central area and the edge area of the inner surface, the contact area of the lamp cover and the base is increased as compared with the prior art which only contacts the edge, thereby increasing the heat dissipation function of the lamp cover.
  • the inventors of the present invention calculated by computer thermal simulation software. Compared with the existing products of the same material, the same volume, and the same power with only edge contact, the temperature rise of the junction temperature is significantly reduced, and can be reduced by at least 30 ° C or more. At the same time, the inventors have verified through repeated experiments that the experimental results are in full compliance with the results simulated by computer thermal simulation software.
  • the inventor calculated by computer thermal simulation software.
  • the area ratio of the central surface of the heat transfer surface to the inner surface projection surface is in the range of 10-55%, the calculated junction temperature rise is significantly reduced and linear, and when the area ratio is When it is less than 10% or more than 55%, the temperature rise of the junction temperature changes minutely.
  • the abscissa indicates the ratio of the central area to the area of the inner surface projection surface, and the ordinate indicates the junction temperature.
  • some preferred structures of the present invention can further enhance the heat dissipation function.
  • the entire device can be cooled in all directions, the heat dissipation performance of the device is greatly improved, and the service life of the device is improved.
  • a separate power supply cavity allows the heat generated by the chip and the heat generated by the power supply The amount is separately radiated out through different structures, thereby reducing the influence of the heat generated by the chip on the power source, thereby reducing the influence of the excessive heat on the power source.
  • a higher power lighting device can be manufactured without increasing the volume of the device, thereby improving the illumination brightness of the device, and increasing the use range and flexibility of the LED lighting device in living and industrial use.
  • FIG. 1 is a block diagram showing the steps of a specific embodiment of the process method of the present invention.
  • FIG. 2 is a schematic structural view of a lamp base having a three-dimensional line fabricated by the method of the present invention in Embodiment 1;
  • FIG. 3 is a schematic view of a dispenser used in the process of fabricating a lamp base in Embodiment 1;
  • FIG. 4 is a schematic structural view of a second embodiment of the LED bulb according to the present invention.
  • FIG. 5 is a schematic structural view of a circuit board manufactured by a conventional process
  • FIG. 6 is a schematic structural view showing that a substrate of the electronic device of Embodiment 3 has not been coated with a wiring layer;
  • FIG. 7 is a schematic structural view of a substrate of an electronic device of Embodiment 3 after a circuit layer is coated and components are added;
  • Embodiment 8 is a schematic structural view of a preferred embodiment of Embodiment 3.
  • 2-1 is a schematic view showing the overall structure of an LED lighting device in a fourth embodiment of the present invention.
  • FIG. 2-2 is a schematic cross-sectional structural view of the LED lighting device of FIG. 2-1;
  • 2-3 is a schematic view showing the overall structure of an LED lighting device according to a fifth embodiment of the present invention.
  • FIG. 2-3 is a schematic cross-sectional structural view of the LED lighting device of FIG. 2-3;
  • FIG. 2-5 is a schematic view showing the overall structure of an LED lighting device according to a fifth embodiment of the present invention.
  • FIG. 2-6 is a schematic cross-sectional structural view of the LED lighting device of FIG. 2-5;
  • 2-7 is a schematic view showing the assembly of an LED lighting device in a seventh embodiment of the present invention.
  • FIG. 2-8 is a schematic structural view of a light emitting unit of an LED lighting device according to a seventh embodiment of the present invention.
  • 2-9 is a schematic view showing the overall structure of an LED lighting device in a seventh embodiment of the present invention.
  • FIGS 2-10 are schematic diagrams showing the overall structure of an LED lighting device in an eighth embodiment of the present invention.
  • FIGS. 2-10 are schematic cross-sectional views of the LED lighting device of FIGS. 2-10.
  • FIGS. 2-12 are schematic diagrams showing the overall structure of an LED lighting device in a ninth embodiment of the present invention.
  • FIG. 2-13 is a schematic cross-sectional structural view of the LED lighting device of FIG. 2-12;
  • FIG. 2-14 is a detailed distribution diagram of the light distribution surface 2-31 and the heat conduction surface 2-32 of the lampshade 2-3 shown in FIG. 2-2;
  • FIG. 2-15 are schematic diagrams showing the detailed distribution of the light distribution surface 2-31 and the heat conduction surface 2-32 of the lampshade 2-3 shown in FIG. 2-4;
  • FIG. 2-16 is a detailed distribution diagram of the light distribution surface 2-31 and the heat conduction surface 2-32 of the lampshade 2-3 shown in FIG. 2-6;
  • FIG. 2-17 are schematic diagrams showing the detailed distribution of the light distribution surface and the heat conduction surface of the lampshade shown in FIG. 2-12;
  • Figure 2-18 is a schematic diagram of the heat dissipation result of the computer simulated LED lampshade
  • FIGS. 2-19 are schematic diagrams showing the overall structure of an LED lighting device in a tenth embodiment of the present invention.
  • FIGS. 2-19 is a schematic cross-sectional structural view of the LED lighting device of FIGS. 2-19;
  • 1 is the first lamp base
  • 2 is the first conductive silver paste
  • 3 is the second conductive silver paste
  • 4 is the first boss
  • 5 is a square groove
  • 6 is a bulb
  • 7 is a third conductive silver Pulp
  • 8 is a light-emitting chip
  • 9 is a second boss
  • 10 is an arched protrusion
  • 11 is an electrical connection line
  • 12 is a second lamp base
  • 13 is a lamp head
  • 14 is a plate
  • 15 is a first circuit layer
  • 16 is the first device
  • 17 is the second device
  • 18 is the solder joint
  • 19 is the substrate
  • 20 is the circular groove
  • 21 is the third boss
  • 22 is the lower arch structure
  • 23 is the second circuit layer
  • This embodiment relates to a method of fabricating a coated three-dimensional structure line and its use on a luminaire base without a circuit board.
  • a three-dimensional line is formed on the first lamp base 1 having a three-dimensional structure on the surface.
  • the specific embodiments and processes are shown in Figures 1-3.
  • FIG. 1 is a flow chart showing the process of fabricating a three-dimensional line of the present invention. It can be seen that the manufacturing method is divided into four steps: firstly, it is necessary to provide a pedestal having a certain three-dimensional structure, and the shape and material of the susceptor are not specific; secondly, the circuit layer is coated according to a pre-designed or designed circuit diagram. On the surface of the pedestal; then, will be coated with The base of the circuit layer is placed in a heater for sintering reinforcement; finally, the temperature is lowered and a pedestal is obtained, and the pedestal has a three-dimensional line.
  • FIG. 2 is a schematic structural view of a lamp base for making a three-dimensional line by the process of the present invention.
  • the manufacturing steps are as follows: (1) providing a first lamp base 1, the surface of the first lamp base 1 has a three-dimensional structure; (2) using a program written by a single-chip microcomputer to operate the dispenser to coat the first conductive silver paste 2 Deploying on the surface of the first lamp base 1; manually drawing conductive silver paste, brushing the second conductive silver paste 3 on the surface of the lamp base 1; (3) coating the first conductive silver paste 2 The first lamp base 1 of the second conductive silver paste 3 is baked in a high temperature furnace, and the first conductive silver paste 2 and the second conductive silver paste 3 are baked and taken out; (4) the first lamp base 1 to be obtained is obtained. It is naturally air-dried in a cool place, and the first lamp base 1 has a three-dimensional line.
  • the first lamp base 1 is not provided with a circuit board, and its surface is not a flat surface, but has a certain three-dimensional structure. These three-dimensional structures are specifically a first boss 4 and a square groove 5.
  • the first lamp base 1 has a trumpet shape as a whole, is made of heat-resistant plastic, and has good thermal conductivity.
  • the material of the first lamp base 1 can also be selected from other materials having good thermal conductivity, such as ceramic or polymer materials.
  • the circuit layer is a first conductive silver paste 2 and a second conductive silver paste 3, and the circuit layer may also be replaced by other liquid or powder coatings containing a metal component, such as solder.
  • the coating of the first conductive silver paste 2 is performed by a dispenser, which covers the upper surface of the first lamp base 1 and partially passes through the first boss 4; the coating of the second conductive silver paste 3 is used by a technician.
  • the brush draws the conductive silver paste and manually applies it to the first lamp base 1 , and the second conductive silver paste 3 passes through the square groove 5 .
  • the first conductive silver paste 2 and the second conductive silver paste 3 have a thickness of 20 ⁇ m or more, preferably 50 ⁇ m. The thickness is adjusted by the system built in the dispenser. In this embodiment, the thickness of the first conductive silver paste 2 is determined to be 50 ⁇ m to meet the electrical parameters required for the manufactured lamp. The electrical parameters include resistance, voltage, current, and the like.
  • the dispenser applies the first conductive silver paste 2 to the first lamp base 1 by compression extrusion.
  • the dispenser has a glue injection device, and the glue injection device is subjected to internal pressure, and the conductive silver glue is extruded into the needle tube to smoothly move on the prepared path, and the coating of the first conductive silver glue 2 is completed.
  • the first lamp base 1 coated with the circuit layer is placed in a high temperature furnace for about 1.5 hours, and the control temperature is baked at about 600 degrees Celsius. After the circuit layer is baked, the heating is stopped.
  • Continuous baking at this temperature for more than one hour can greatly improve the adhesion of the first and second conductive silver pastes 2 and 3, so that the wiring layer is closely sintered on the first lamp base 1.
  • the temperature is lower than 100 °C, it is difficult to achieve the purpose of heating; when the temperature is too high, it reaches 1000. Above °C, it is possible to burn out the first lamp base 1.
  • the first lamp base 1 is taken out and naturally air-dried, and the first lamp base 1 is provided with a three-dimensional line.
  • FIG. 3 is a schematic view showing the structure of a dispenser used in the process of manufacturing the lamp base 1 of FIG. 2 by the process of the invention.
  • the dispenser is produced by Shenzhen Lingdian High-Tech Co., Ltd., model SD300.
  • the dispenser can be dispensed according to the already drawn CAD graphics, or can be dispensed by a program programmed by the single-chip microcomputer, and the positioning is very accurate. It also has the function of high frequency dot. A slurry with a certain viscosity can be filled in the glue applicator for dispensing.
  • the dispenser also features an advanced control system that controls the pressure, dispensing rate and amount of glue in the glue applicator as needed.
  • This embodiment relates to the application of a method for preparing a coated three-dimensional structure line on an LED bulb without a circuit board.
  • Fig. 4 is a specific embodiment of the LED bulb of the embodiment.
  • the LED bulb is composed of a bulb 6, a light-emitting chip 8, a second lamp base 12 and a lamp cap 13.
  • the LED bulb eliminates the circuit board and directly lays the line on the second lamp base 12, and more importantly, the line appears in the form of a three-dimensional circuit structure.
  • On the second lamp base 12 The advantage of omitting the circuit board is that it can shorten the path of heat transfer from the light-emitting chip 8 to the second lamp base 12, greatly reducing the thermal resistance, thereby improving the heat dissipation efficiency of the lamp.
  • the appearance of the three-dimensional circuit structure not only makes the shape of the second lamp base 12 more diverse, but also helps the technician to more reasonably control the position and angle of the chip arrangement, thereby achieving the light distribution requirement.
  • the bulb lamp utilizes the process of the present invention in the fabrication of a stereoscopic line by applying a circuit layer to the second lamp base 12 by means of a programmable coating apparatus, manual coating, or a combination of the two. A three-dimensional line structure was fabricated.
  • the uppermost end of the luminaire is provided with a bulb 6, which is a light transmissive lampshade.
  • the bulb 6 contains four light-emitting chips 8 which are soldered to the second lamp base 12 two by two.
  • the second lamp base 12 is a trumpet-shaped ceramic base having a certain three-dimensional structure on its upper surface.
  • the three-dimensional structure is more specifically a second boss 9 and an arched projection 10.
  • two light-emitting chips 8 are respectively arranged on the two side edges of the second boss 9, and the other two light-emitting chips 8 are arranged on the two landslide surfaces of the arch-shaped protrusions 10.
  • a sintered three-dimensional line structure is applied, which is more specifically a third conductive silver paste 7, that is, coated on the surface of the second lamp base 12 Line layer.
  • the third conductive silver paste 7 has a thickness of 20 ⁇ m or more, preferably 50 ⁇ m. At this thickness, after the LED bulb is turned on, the magnitude of the voltage applied to the third conductive silver paste 7 and the current flowing through the third conductive silver paste 7 are within a normal range, so that the line is not burned, and Can maintain the normal operation of LED bulbs.
  • the third conductive silver The slurry 7 partially covers the surfaces of the second boss 9 and the arcuate projections 10, and the positive and negative terminals of the light-emitting chip 8 are in contact with the third conductive silver paste 7 to ensure electrical connection.
  • the second lamp base 12 further has two electrical holes and a central process hole.
  • the electrical connection line 11 turns on the third conductive silver paste 7, and is connected to the driving device in the lamp cap 13 through the electrical hole to complete the entire lamp. Electrical circuit.
  • This embodiment relates to the application of a method for preparing a coated three-dimensional structure line on an electronic device without a circuit board.
  • FIG. 5 A schematic structural view of a circuit board which is relatively common on the market and which is manufactured by a conventional process is shown in FIG. 5; it can be seen that the entire board 14 has a flat plate-like structure on which a first circuit layer 15 is disposed. .
  • the first device 16 and the second device 17 are mounted at predetermined locations on the sheet 14 and are secured to the sheet 14 by solder joints 18 and in communication with the first wiring layer 15.
  • the first circuit layer 15 is formed by etching a surplus copper material by a photoresist etching process and soldering a layer of tin; and the first circuit layer 15, the solder joint 18, and the first device 16 and the second device 17 are formed.
  • the board 14 of the board is required to be a two-dimensional panel having a flat surface and having no three-dimensional structure thereon. This greatly limits the freedom of operation when designing and manufacturing boards.
  • the space occupied by the circuit board in the horizontal direction may be limited, and the first device 16 and the second device 17 have mutual interaction with each other in terms of electromagnetics or heat, and the interval needs to be constant. The distance can eliminate the impact, which poses a challenge to the planar circuit structure design.
  • the schematic diagram of the structure of the substrate of the electronic device of the present embodiment that has not been coated with a circuit layer is as shown in FIG. 6.
  • the substrate 19 is substantially square, and the material is mainly ceramic, and the structure thereof is relatively complicated, and includes a plurality of depressions.
  • the circular groove 20 further comprises two sets of third bosses 21, and each set of third bosses 21 is connected by an approximately semi-circular lower arch structure 22.
  • the circular groove 20, the third boss 21, and the lower arch structure 22 form a certain three-dimensional structure on the substrate 19.
  • the substrate 19 shown in the figures has not been coated with a wiring layer.
  • FIG. 7 is a schematic view showing the structure of the substrate of the electronic device shown in FIG. 6 after the circuit layer is coated and the components are added.
  • the substrate 19 is coated with the second wiring layer 23 by the process of the present invention, and the thickness of the second wiring layer 23 is 20 ⁇ m or more. In order to satisfy the normal operation of the electronic components in the substrate 19, it is preferable that the thickness of the coating wiring layer 23 is 40 ⁇ m.
  • the first component 24, the second component 25 and other components are soldered at corresponding positions of the substrate 19, and the positive and negative pins of the first and second components 24, 25 are in contact with the second circuit layer 23. .
  • the first and second components 24, 25 include a resistor, a capacitor, an inductor, a triode, an integrated chip, and the like.
  • the first component 24 and the second component 25 have a certain electromagnetic interference between each other, and need to be separated by a certain distance to be eliminated. Since the second circuit layer 23 is coated on the surface of the substrate 19 having the three-dimensional structure, the substrate 19 is provided with a three-dimensional line structure, which allows the first component 24 and the second component 25 not to be in the same horizontal plane, so that both A certain distance is also spaced in the vertical direction, making up for the drawback that the first and second components 24, 25 are spaced apart from each other by a sufficiently large distance due to the limited space of the substrate 19 in the horizontal direction.
  • the three-dimensional structure of the surface of the substrate 19 can also be more complicated and diverse, and is not limited to the bosses, the grooves, and the like.
  • the three-dimensional circuit can be formed by applying a circuit layer thereon. The structure completely eliminates the constraints of the circuit board on the production and design of the line.
  • FIG. 8 is a schematic structural view of a preferred embodiment of the electronic device of the embodiment.
  • the main structure of the electronic device includes a substrate 19, an electronic component, and a housing 26.
  • the electronic device does not have a wiring board installed, but realizes its electrical function by directly forming a three-dimensional line on the surface of the substrate 19.
  • a three-dimensional line structure is prepared on the surface of the substrate 19, and after the electronic components are added, the outer casing 26 is packaged intact, which constitutes a complete electronic device with certain functions.
  • the manufacturing method of the present invention is used to fabricate a three-dimensional circuit structure, which can be free from the fact that the circuit board must be bound by a planar plate structure, and has high feasibility; in addition, since the process is simple and pollution-free, the technical solution The specific application is also more responsive to the general trend of low-carbon environmental protection.
  • the LED lighting device comprises: a base 2-1, an LED lighting unit, a lamp cover 2-3, and a power supply chamber 2-5.
  • the lampshade 2-3 is made of a solid transparent heat conductive material and has good heat conduction.
  • the LED light emitting chip of the LED light emitting unit is fixed on the base 2-1, and the light cover 2-3 is disposed on the base 2-1 and directly contacts the base 2-1 to cover the LED light emitting unit, and the light cover 2
  • the heat conducting surface 2-32 of the inner surface of the -3 is closely adhered to the upper surface of the base 2-1 to form a heat flow path for realizing the heat dissipation function, and the inner surface of the corresponding area of the lamp cover 2-3 and the LED light emitting chip 2-2 is pressed.
  • the design needs to form a specific spatial structure shape to change the light intensity distribution, and the inner surface of the corresponding area of the lamp cover 2-3 and the LED light emitting unit or the LED light emitting chip, that is, the light distribution surface and the upper surface of the base are formed to be accommodated.
  • Technical solutions for participating in light distribution are also within the non-limiting embodiments of the invention.
  • the upper surface of the susceptor 2-1 is a flat surface, a curved surface, or a multi-planar combined shape.
  • the pedestal 2-1 may adopt a hollow structure to increase air circulation to enhance heat dissipation.
  • the first heat dissipation through hole 2-81 is disposed in the middle of the base 2-1 to increase air circulation to enhance heat dissipation, and accordingly, the lamp cover 2-3 and the base
  • the second heat dissipation through hole 2-82 is disposed at a position corresponding to 2-1.
  • the number of LED light emitting chips is one or more.
  • the lampshade 2-3 has a light distribution function and is selected from ceramics, glass or other high thermal conductive materials having light transmitting properties.
  • the outer surface of the lampshade 2-3 is designed to have a specific shape according to actual needs.
  • the susceptor 2-1 is disposed on the power supply chamber 2-5, and can achieve independent heat dissipation.
  • the susceptor 2-1 may be a metal pedestal coated insulating layer, a ceramic pedestal or the like.
  • the LED lighting device is an LED bulb.
  • the LED bulb mainly comprises a base 2-1, 16 LED light-emitting chips 2-2, a circuit board 2-4, a lamp cover 2-3 and a power supply chamber 2-5.
  • the base 2-1 is an aluminum base coated with an insulating layer on the upper surface, and the circuit board 2-4 is disposed on the aluminum base, and 16 LED light-emitting chips 2-2 are disposed on the circuit board 2-4. on.
  • the lampshade 2-3 is a solid light transmissive glass.
  • the lamp cover 2-3 is in direct contact with the pedestal 2-1 and covers the pedestal 2-1, and the LED light-emitting chip and the circuit board are encapsulated.
  • the light-distributing surface 2-31 is disposed on the LED light-emitting chip 2
  • the corresponding inner surface of -2 does not fit with the LED light-emitting chip 2-2, and forms a light distribution cavity together with the upper surface of the base, and the heat transfer surface 2-32 is distributed in the central area and the edge area of the inner surface, and the base 2 1
  • the upper surface is completely fitted to achieve light transmission and heat dissipation.
  • the base 2-1 is a non-hollow structure, and the outer side of the base 2-1 is provided with heat dissipation fins 2-9, which can increase the heat dissipation area.
  • the power supply chamber 2-5 is integrated with the base, and the cavity and the base 2-1 are not connected to each other, and the heat dissipation can be independently performed.
  • the power supply chamber 2-5 is made of plastic, and is a separate structure, and the base 2 is not -1 connected.
  • the base 2-1 is connected to the power supply cavity by a screw.
  • the LED lighting device can be an LED bulb.
  • the LED bulb mainly comprises a base 2-1, 12 LED light-emitting chips 2-2, a circuit coating, a lamp cover 2-3 and a power supply chamber 2-5.
  • the pedestal 2-1 is a ceramic base 2-1 having a curved upper surface, as shown in FIGS. 2-3 and 2-4, and the circuit coating is a conductive silver paste directly coated on the susceptor.
  • the upper surface of the pedestal, the LED light-emitting chip is disposed on the curved surface convex on the upper surface of the pedestal 2-1, and the upper surface of the pedestal 2-1 is directly coated with a circuit coating to connect all the chips and the power source for electrical connection, and the electrode of the LED light-emitting chip
  • the pins are electrically connected to the circuit coating.
  • the circuit coating material is a conductive silver paste.
  • the lampshade 2-3 is a solid light transmissive ceramic made of PLZT.
  • the lampshade 2-3 is in direct contact with and bonded to the susceptor 2-1, covering the susceptor 2-1, encapsulating the LED illuminating chip 2-2 and the circuit coating, and the light distribution surface 2-31 is disposed in The inner surface corresponding to the LED light-emitting chip 2-2 does not fit with the LED light-emitting chip 2-2, and forms a light distribution cavity together with the upper surface of the base, and the heat-transfer surface 2-32 is distributed in the central region and the edge region of the inner surface, and The upper surface of the base 2-1 is completely fitted to achieve light transmission and heat dissipation.
  • Power supply cavity 2-5 is a separate structure and is not connected to the susceptor 2-1.
  • the base 2-1 is connected to the housing of the power supply chamber 2-5 by a socket, and can separately dissipate heat independently.
  • the base 2-1 is a fully hollow structure, and convection ventilation can be achieved.
  • the LED lighting device can be a unitized LED lighting device.
  • Each LED lighting device is used as an LED lighting unit in the entire lighting system, wherein each LED lighting unit is mainly composed of a base 2-1, four LED light emitting chips 2-2, and a light cover 2-3.
  • the susceptor 2-1 is an aluminum pedestal and is coated with an insulating material, and the wiring board 2-4 is mounted on the susceptor 2-1, and the LED light emitting chip 2-2 is disposed on the wiring board 2-4.
  • the lampshade 2-3 is a solid light transmissive ceramic made of polycrystalline AION.
  • the lamp cover 2-3 is in direct contact with the base 2-1 and covers the base 2-1, and the LED light-emitting chip 2-2 and the circuit board 2-4 are packaged, and the light distribution surface 2-31 is disposed.
  • the inner surface corresponding to the LED light-emitting chip 2-2 does not adhere to the LED light-emitting chip 2-2, and forms a light distribution cavity together with the upper surface of the base.
  • the heat-dissipating surface 2-32 is distributed in the central area and the edge area of the inner surface. It is completely adhered to the upper surface of the base 2-1 to achieve light transmission and heat dissipation.
  • the base 2-1 is a non-hollow structure, and the outer side of the base 2-1 is provided with heat dissipation fins 2-9, which can increase the heat dissipation area. Multiple LED lighting units can be combined to form a lighting system for use.
  • the LED lighting device may be a modular LED lighting device, which is mainly composed of a combination of the light emitting mold strip 2-6 and the frame 2-7.
  • the modular LED lighting device comprises a base 2-1, 24 LED light-emitting chips 2-2, and 8 lampshades 2-3.
  • the susceptor 2-1 is an aluminum base and is coated with an insulating material, and the insulating material is coated with a circuit coating.
  • the 24 LED light-emitting chips 2-2 are divided into three groups and respectively disposed on the pedestal coated with an insulating material 2 - 1 and connected to each other by a circuit coating.
  • the circuit coating is a conductive copper paste.
  • the eight lampshades 3 are a solid light transmissive ceramic made of YAG.
  • the outer surface is hemispherical, respectively covering the pedestal 2-1, and each of the lampshades 2-3 respectively encloses three corresponding LED light-emitting chips 2-2, and the light-distributing surface 2-31 is disposed in the same
  • the inner surface corresponding to the light-emitting chip 2-2 does not adhere to the LED light-emitting chip 2-2, and forms a light distribution cavity together with the upper surface of the base.
  • the heat-dissipating surface 2-32 is distributed in the central region and the edge region of the inner surface, and the base The upper surface of the seat 2-1 is completely fitted to achieve light transmission and heat dissipation.
  • the base 2-1 is a non-hollow structure, and the outer side of the base 2-1 is provided with heat dissipation fins 2-9, which can increase the heat dissipation area.
  • Nine light-emitting stencils 2-6 are attached to the frame 2-7 to form a complete modular LED illuminator system, as shown in Figures 2-10.
  • the LED lighting device can be an LED bulb.
  • the LED bulb mainly comprises a base 2-1, 12 LED light emitting chips and a high heat conducting lamp cover 2-3.
  • the susceptor 1 is a ceramic base 2-1 whose upper surface is a curved surface, as shown in FIGS. 2-9 and 2-10, and the pedestal 2-1 is coated with a circuit coating, and the circuit is coated.
  • the layer is a conductive silver-palladium alloy slurry.
  • a first heat dissipation through hole 2-81 is formed in the middle of the susceptor 2-1, and the LED light emitting chip 2-2 is disposed on the upper surface of the susceptor 2-1 except for the heat dissipation through hole, and is connected to each other by a circuit coating.
  • the lampshade 2-3 is a solid light transmissive ceramic made of MgAl 2 O 4 .
  • a second heat dissipation through hole 2-82 of the same size is opened at an intermediate position corresponding to the first heat dissipation through hole 2-81 of the susceptor 2-1 to achieve air circulation.
  • the inner surface of the globe 2-3 in contact with the susceptor 2-1 is a curved surface corresponding to the shape of the susceptor 2-1.
  • the lampshade 2-3 is in direct contact with the susceptor 2-1 and covers the susceptor 2-1, and the LED illuminating unit 2-2 and the circuit coating are encapsulated, and the light distribution surface 2-31 is disposed to emit light with the LED.
  • the inner surface corresponding to the chip 2-2 does not fit with the LED light emitting chip 2-2, and forms a light distribution cavity together with the upper surface of the base.
  • the heat conducting surface 2-32 is distributed in the central area and the edge area of the inner surface, and the base 2-1
  • the upper surface is completely fitted to achieve light transmission and heat dissipation.
  • the pedestal 2-1 is a fully hollow structure for convection ventilation.
  • the housing of the power supply chamber 2-5 and the base 2-1 are not in communication.
  • the base 2-1 is connected to the housing of the power supply chamber 2-5 by a screw, so that independent heat dissipation can be achieved.
  • the LED lighting device comprises a base 2-1, 2-25 LED light emitting chips and a lamp cover 2-3.
  • the susceptor 2-1 is a square ceramic base 2-1, and the base 2-1 is provided with a wiring board 2-4, and the LED light emitting chip is disposed on the wiring board 2-4.
  • the lampshade 2-3 is a solid light transmissive ceramic.
  • the light transmissive ceramic is a square shape corresponding to the susceptor 2-1, covering the susceptor 2-1, and encapsulating all the LED light emitting chips 2-2 and the circuit board 2-4, the light distribution surface 2 -31 is disposed on the inner surface corresponding to the LED light-emitting chip 2-2, does not fit with the LED light-emitting chip 2-2, and forms a light distribution cavity together with the upper surface of the base, and the heat-transfer surface 2-32 is distributed in the central area of the inner surface And the edge region, completely conforms to the upper surface of the base 2-1 to achieve light transmission and heat dissipation.
  • the LED lighting device can be an LED bulb.
  • the LED bulb mainly comprises a base, 36 LED light emitting chips, a circuit board, a high heat conducting lamp cover and a power supply cavity.
  • the base is a ceramic base whose upper surface is a flat surface, the circuit board is disposed on the base, and the LED light emitting chip is disposed on the circuit board.
  • the lampshade is a solid light transmissive plastic.
  • the light cover is in direct contact with the pedestal, and the LED light emitting chip and the circuit board are covered, and the light distribution surface and the upper surface of the pedestal form a light distribution cavity for accommodating the LED light emitting unit.
  • the heat conducting surface is distributed in a central area and an edge area of the inner surface, and closely adheres to the upper surface of the base to form a heat flow channel.
  • the area of the heat conducting surface occupies the whole 10%, 40% or 55% of the projected area of the inner surface.
  • the base is a non-hollowed structure, and the outer side of the base is designed with fins.
  • An electrical hole through which the wire passes is left on the base, the wire is connected to the circuit board at one end, and the other end is connected to the power supply in the power supply cavity through the electrical hole.
  • the power supply cavity is made of ceramic, and the base is fixedly connected with the power supply cavity, and is not connected to the base, so that independent heat dissipation can be achieved.
  • the fifth embodiment to the tenth embodiment can be regarded as variations and preferred examples of the fourth embodiment, and the fifth embodiment to the tenth embodiment can be regarded as mutually different examples and preferred examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

一种LED照明装置以及电路制备方法,LED照明装置包括:基座(2-1)、LED发光单元、灯罩(2-3);LED发光单元和灯罩(2-3)设置在基座(2-1)上,灯罩(2-3)将LED发光单元包覆在内,灯罩(2-3)的内表面包括配光面(2-31)以及导热面(2-32),形成整个装置全方位均可散热,大大提高了装置的散热性能;所述电路制备方法包括如下步骤:提供一基座,该基座为一表面具有三维结构的物理实体;利用可编程的涂覆设备涂覆、手工涂覆或二者相结合的方式将线路层涂布于基座表面,所述线路层为包含有金属材料的流质或粉末涂层,线路层厚度为20μm以上;将涂覆有线路层的基座在100~1000℃高温烘焙至线路层烤干;降温后取得基座,所述基座上具备立体结构线路;采用该方法无需线路板即可在基座表面直接制作立体线路结构,实现电气连接。

Description

一种LED照明装置和灯罩、及其电路制备方法 技术领域
本发明具体涉及一种LED照明装置和灯罩、及其电路制备方法。
背景技术
LED灯具中所使用的芯片都需要连通电路才能够点亮,而传统LED灯具中用以点亮芯片的电气线路是通过一块线路板来实现的。这块线路板也就是我们通常意义上所说的PCB板。将制作好的PCB板贴装在灯具基座上,再将芯片焊接在线路板的对应位置,这样就构成了一盏LED灯具的雏形。遗憾的是,PCB板通常是一种平面的板材,所有的线路都必须处在一个平面上,这就势必会占据很大的空间,也不利于一些特殊灯具结构的设计。
而在电子装配中,线路板(Circuit Boards)也是个关键零件。它搭载其他的电子零件并连通电路,以提供一个安稳的电路工作环境。应用中最为人们常见的电路板,为通常漆有绿漆的平面PCB板,其通过电镀方式在一基材的两面形成铜板,再由影印及印刷工艺确定线路层的精确位置,然后蚀刻掉多余的铜材并在线路层表面加焊一层锡,进而形成了人们日常生产中所用的电路板。
尽管现有的线路板制作工艺已十分成熟,但其不尽如人意之处也比比皆是。电镀方式产生的废液污染严重,净化处理又将产生高昂的成本,不少企业在利益的驱使下将污水肆意排放,其对人类及环境造成的危害不可估量。另一方面,人们出于定位及效率的考虑,在制作电路板的线路层时,一般会采用影印及印刷的工艺以确定线路层在铜板的精确位置,这一工艺在带来方便的同时也极大的限制了电路板的自由度,使得整块线路板都不得不制作成一块二维的平整板材,而不会呈现出任何立体结构。
有鉴于此,人们希望找到一种对环境更为友善且能够制造立体结构线路的工艺方法以取代现有电路板的工艺流程。
发明内容
本发明的目的在于解决上述技术问题,提供一种涂覆式立体结构线路的制备方法及其应用;本发明的方法能够在灯具基座上直接制作复杂立体线路,该方法能够使LED灯具摆脱对线路板的依赖,而立体线路的出现同时也使得灯具的设计更为自由、多样。 将这种方法进一步推广,本发明提供的制造立体线路的方法,避免了传统线路板制造工艺对环境造成的不利影响。
本发明的目的是通过以下技术方案来实现的:
第一方面,本发明涉及一种涂覆式立体结构线路的制备方法,所述方法包括如下步骤:
A、提供一基座,所述基座为一表面具有三维结构的物理实体;
B、利用可编程的涂覆设备、手工涂覆或二者相结合的方式将线路层涂布于所述基座的表面,所述线路层为包含有金属材料的流质或粉末涂层,所述线路层的厚度为20μm以上;
C、将涂覆有线路层的基座在100~1000℃高温烘焙至线路层烤干;
D、降温后取得基座,所述基座上具备立体结构线路。
其中,所述可编程的涂覆设备在经过编程后可精确定位,按照布线要求以快速打点或受压挤出的方式绘出线路层图形。所述线路层图形的部分或全部也可通过手工涂抹的方式完成。上述高温烘焙工艺有助于线路层更好地固结在灯具基座上。
优选地,所述基座为表面具有三维结构的柱状、块状、喇叭状或棱台状的物理实体。
优选地,所述三维结构包括凸台、凹槽、拱形凸起、下沉结构中的一种或几种。
优选地,所述基座的构成材料为附有绝缘材料的金属、高分子材料、耐热塑料或陶瓷。
优选地,所述基座为一灯具基座。
优选地,所述可编程的涂覆设备能够读取已经绘制好的CAD图纸自动绘制出线路层图形。
优选地,所述可编程的涂覆设备能够通过单片机的编程直接绘制出所需要的线路层图形。
优选地,所述可编程的涂覆设备为点胶机。
优选地,所述点胶机具有一注胶器。
更优选地,所述注胶器具有X、Y、Z三个方向的自由度。
更优选地,所述注胶器能够在X、Y、Z三个维度合成的路径上平滑移动。
优选地,所述线路层为金属浆体。该金属浆体为具有一定黏度的金属浆体,优选为银浆。
优选地,所述降温方式包括晾晒、风干或仪器冷却。
第二方面,本发明涉及一种不带线路板的LED球泡灯,包括球泡、发光芯片、灯具基座和灯头,所述灯具基座上具备立体结构线路,所述立体结构线路为通过涂覆工艺涂布在灯具基座表面的线路层,所述线路层的厚度满足球泡灯的电学指标。
优选地,所述灯具基座为上表面具有三维结构的喇叭状陶瓷基座。
优选地,其特征在于,所述三维结构包括凸台和拱形凸起。
优选地,所述球泡为一透光的灯罩。
优选地,所述发光芯片焊接在灯具基座上。
优选地,所述发光芯片的电极引脚与线路层接触。
优选地,所述涂覆工艺通过可编程的涂覆设备、手工涂覆或二者相结合的方式实现。
优选地,所述线路层为导电银浆。
优选地,所述电学指标为线路层所能承受的最高电压及所能通过的最大电流。
优选地,所述线路层的厚度为20μm以上。线路层的厚度为20μm以上时才能达到球泡灯的电学指标。
优选地,所述灯头内安装有驱动装置。
第三方面,本发明涉及一种不带线路板的电子器件,包括基材、电子元器件和外壳,所述基材上具备立体结构线路,所述立体结构线路为通过涂覆工艺涂布在基材表面的线路层,所述线路层的厚度满足电子器件的电学指标。
优选地,所述基材为表面具有三维结构的方形陶瓷基材。
优选地,所述三维结构包括凸台、凹槽及下拱结构。
优选地,所述电子元器件焊接在基材上。
优选地,所述电子元器件的电极引脚与线路层接触。
优选地,所述电子元器件包括电阻、电容、电感、二极管、三极管、集成芯片中的一种或几种。
优选地,所述涂覆工艺通过可编程的涂覆设备、手工涂覆或二者相结合的方式实现。
优选地,所述电学指标为线路层所能承受的最高电压及所能通过的最大电流。
优选地,所述线路层的厚度在20μm以上。线路层的厚度在20μm以上时才能达到电子器件的电学指标
优选地,所述电子器件由一外壳封装。
第四方面,本发明提供一种LED照明装置,包括:基座、LED发光单元、灯罩;
LED发光单元设置在基座的上表面,灯罩与基座直接接触,把LED发光单元包覆在内;所述LED发光单元包含多个LED发光芯片和电路涂层,电路涂层直接涂覆在所述基座上表面,LED发光芯片直接设置在所述基座上表面,且LED发光芯片的电极引脚与电路涂层电连接;
所述灯罩包括外表面和内表面,外表面为光线出射面,所述内表面包括配光面和导热面,其中,所述配光面设置在内表面的与LED发光芯片对应的内表面区域上,不配光面与LED发光芯片之间存在间隙贴合,与基座上表面共同形成配光腔,所述导热面设置在内表面的与基座上安装LED发光芯片以外的部分或全部上表面所对应的内表面区域上,并与基座紧密贴合,导热面至少分布于内表面的中央区域和边缘区域。
优选地,中央区域的面积占整个内表面投影面积的10-55%。
优选地,所述灯罩内表面仅由配光面和导热面构成。
优选地,所述灯罩采用透光陶瓷或者玻璃制成。
优选地,所述透光陶瓷包含从PLZT、CaF2、Y2O3、YAG、多晶AION以及MgAl2O4中的一种或几种的组合组成的组中选择的至少一种材料。
本发明的发明人通过反复实验,分别使用了PC、玻璃和透光陶瓷制作灯罩,实验结果证明采用PC的结温温升最高,玻璃透镜的结温温升明显低于PC,而透光陶瓷透镜的结温温升比玻璃更低。因此本发明采用导热性更好、使用中结温温升更低的玻璃和陶瓷。
优选地,所述LED发光单元还包括线路板,LED发光芯片设置在线路板上,线路板设置在基座上。
优选地,所述电路涂层为包含有金属材料的流质或粉末涂层,所述电路涂层线路层的厚度为20μm以上。
优选地,所述电路涂层的金属材料选自钼、锰、钨、银、金、铂、银钯合金、铜、铝、锡等材料中的至少一种或几种的组合。
优选地,基座的上表面为平面、曲面、或者多平面结合形状。
优选地,灯罩外表面按照配光要求制成特定曲面形状,与基座接触的内表面为与基座上表面形状相对应的曲面形状。
优选地,基座设置有第一散热通孔。
优选地,灯罩设置有第二散热通孔,其中,第二散热通孔与第一散热通孔对应连通。
优选地,基座为涂覆有绝缘层的金属基座、或者为由绝缘材料制成的基座。
优选地,所述基座为镂空结构,其上的第一散热通孔通过基座的侧面与外界空气相通。
优选地,所述基座为非镂空结构,基座的外侧面设置有散热鳍片。
优选地,还包括电源腔,其中,电源腔不与基座相通,即电源腔的腔体与基座相隔离。电源腔的外壳体与基座通过卡插、卡接、螺口等方式相连接,可以实现分别独立散热。降低芯片产生的热量对电源的影响,增强整个LED照明装置的综合散热能力。
根据本发明提供的一种LED灯灯罩,所述LED灯灯罩的表面包括外表面和内表面,所述外表面为光线出射面,所述内表面包括配光面以及导热面,所述配光面为光线入射面,所述导热面至少分布于内表面的中央区域。
优选地,中央区域的面积占整个内表面投影面积的10-55%,所述LED灯灯罩由透光导热材料构成。
优选地,所述导热面还分布于内表面的边缘区域。
优选地,所述LED灯罩采用透光陶瓷、玻璃或者塑料制成。
优选地,所述透光陶瓷为PLZT、CaF2、Y2O3、YAG、多晶AION和MgAl2O4中的一种或几种的组合。
根据本发明提供的一种LED照明装置,包括上述的LED灯灯罩,还包括基座、LED发光单元,所述LED发光单元设置在所述基座的上表面,所述LED灯灯罩与所述基座直接接触,把所述LED发光单元包覆在内,所述配光面与所述基座上表面形成容置所述LED发光单元的配光腔,所述导热面与所述基座上表面紧密贴合,构成热流动通道。
优选地,所述LED发光单元的具体结构为如下任一种结构:
-所述LED发光单元包括多个LED发光芯片和线路板,LED发光芯片设置在线路板上,线路板设置在基座上;或者
-所述LED发光单元包括多个LED发光芯片和电路涂层,电路涂层直接涂覆在所述基座上表面,所述LED发光芯片直接设置在所述基座上表面,且LED发光芯片的电极引脚与电路涂层电连接。
优选地,所述电路涂层为金属浆体。
优选地,所述基座的上表面为平面、曲面或多平面结合形状。
优选地,所述基座设置有第一散热通孔,所述LED灯灯罩设置有第二散热通孔,所述第二散热通孔与所述第一散热通孔对应连通。
优选地,所述基座为涂覆有绝缘层的金属基座、或者绝缘材料制成的基座。
优选地,所述基座的结构为如下任一种结构:
-所述基座为镂空结构,所述基座上设置的第一散热通孔通过基座的侧面与外界空气相通;或者
-所述基座为非镂空结构,基座的外侧面有散热鳍片。
优选地,还包括电源腔,其中,电源腔的外壳体与基座相连接,电源腔的腔体与基座相隔离。
与现有技术相比,本发明具有如下有益效果:
本发明摒弃了线路板的使用,使LED灯具的结构有了进一步的精简,同时还达成了直接在灯具基座上制作立体线路的目的;在此基础上,本发明进一步提出了一种立体线路的制造方法,该方法相比于传统工艺对环境更加友善。
由于采用了导热性能较好的材料用作灯罩,芯片产生的热量除了可以通过基座散热,还可以通过灯罩内表面上设置的与基座直接贴合的导热面向外导出。由于灯罩导热面分布于内表面的中央区域和边缘区域,与仅边缘接触的现有技术相比,增大了灯罩与基座的接触面积,从而增加了灯罩的散热功能。本发明的发明人通过计算机热模拟软件进行计算,本发明与相同材料、相同体积、相同功率的仅有边缘接触的现有产品相比较,结温温升明显下降,可降低至少30℃以上。同时,发明人经过反复实验验证,得出的实验结果,完全符合计算机热模拟软件模拟出的结果。
发明人通过计算机热模拟软件进行计算,当导热面中央区域占内表面投影面的面积比在10-55%范围内时,计算出的结温升有明显降低,且呈线性,而当面积比小于10%或大于55%时,则结温温升变化微小。如图18所示,其中,横坐标表示中央区域占内表面投影面面积的比例,纵坐标表示结温。
另外,本发明的一些优选的结构,如散热通孔和镂空的基座,可以更进一步地增强散热功能。从而形成整个装置全方位均可散热,大大提高了装置的散热性能,提高了装置的使用寿命。独立设置的电源腔可以使芯片产生的热量和电源产生的热 量分别通过不同的结构向外散出,从而可以减少芯片产生的热量对电源造成的影响,从而减少因热量过高对电源的影响。
进一步地,由于散热性能的提升,可以在不增加装置体积的情况下制造更大功率的照明装置,提高装置的照明亮度,同时在生活和工业使用上增加了LED照明装置的使用范围和灵活度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明所述工艺方法的具体实施方式的步骤框图;
图2为实施例1的利用本发明所述工艺方法制作而成的一具备立体线路的灯具基座的结构示意图;
图3为实施例1中制作灯具基座的过程中所用到的点胶机的示意图;
图4为本发明所述LED球泡灯的具体实施例2的结构示意图;
图5为传统工艺制造而成的线路板的结构示意图;
图6为实施例3所述电子器件的基材尚未涂覆线路层的结构示意图;
图7为实施例3的电子器件的基材涂覆好线路层并加装了元器件后的结构示意图;
图8为实施例3优选方案的结构示意图;
图2-1为本发明第4实施例中LED照明装置的整体结构示意图;
图2-2为图2-1中LED照明装置的剖面结构示意图;
图2-3为本发明第5实施例中LED照明装置的整体结构示意图;
图2-4为图2-3中LED照明装置的剖面结构示意图;
图2-5为本发明第5实施例中LED照明装置的整体结构示意图;
图2-6为图2-5中LED照明装置的剖面结构示意图;
图2-7为本发明第7实施例中LED照明装置的装配示意图;
图2-8为本发明第7实施例中LED照明装置的发光单元的结构示意图;
图2-9为本发明第7实施例中LED照明装置的整体结构示意图;
图2-10为本发明第8实施例中LED照明装置的整体结构示意图。
图2-11为图2-10中LED照明装置的剖面结构示意图。
图2-12为本发明第9实施例中LED照明装置的整体结构示意图;
图2-13为图2-12中LED照明装置的剖面结构示意图;
图2-14为图2-2所示灯罩2-3的配光面2-31和导热面2-32的详细分布示意图;
图2-15为图2-4所示灯罩2-3的配光面2-31和导热面2-32的详细分布示意图;
图2-16为图2-6所示灯罩2-3的配光面2-31和导热面2-32的详细分布示意图;
图2-17为图2-12所示灯罩的配光面和导热面的详细分布示意图;
图2-18为计算机模拟LED灯灯罩的散热结果示意曲线图;
图2-19为本发明第10实施例中LED照明装置的整体结构示意图;
图2-20为图2-19中LED照明装置的剖面结构示意图;
其中,1为第一灯具基座,2为第一导电银浆,3为第二导电银浆,4为第一凸台,5为方形凹槽,6为球泡,7为第三导电银浆,8为发光芯片,9为第二凸台,10为拱形凸起,11为电气连接线,12为第二灯具基座,13为灯头,14为板材,15为第一线路层,16为第一器件,17为第二器件,18为焊点,19为基材,20为圆形凹槽,21为第三凸台,22为下拱结构,23为第二线路层,24为第一元器件,25为第二元器件,26为外壳;2-1为基座,2-2为LED发光芯片,2-3为灯罩,2-31为配光面,2-32为导热面,2-4为线路板,2-5为电源腔,2-6为发光模条,2-7为框架,2-81为第一散热通孔,2-82为第二散热通孔,2-9为散热鳍片。
具体实施方式
下面结合具体实施例和附图对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及涂覆式立体结构线路的制备方法及其在一种不带线路板的灯具基座上的应用。在本实施例中,按照本发明所述制备方法,在一表面具有三维结构的第一灯具基座1上制作出了立体线路。具体实施方式及过程如图1~3所示。
图1展示了本发明所述制造立体线路的工艺方法的流程框图。可以看到,该制造方法分为四个步骤:首先,需要提供一具有一定三维结构的基座,基座的形状及材料不特定;其次,按照预先设计或构思好线路图将线路层涂覆于基座的表面;然后,将涂覆有 线路层的基座放入加热器中烧结加固;最后,降温并取得基座,所述基座上具备立体线路。
图2是利用本发明所述工艺方法制作好立体线路的一灯具基座的结构示意图。其制作步骤为:(1)提供一第一灯具基座1,该第一灯具基座1的表面具有三维结构;(2)利用单片机编写的程序操作点胶机将第一导电银浆2涂布于第一灯具基座1的表面;人工蘸取导电银浆,用刷子将第二导电银浆3涂抹在灯具基座1的表面;(3)将涂覆有第一导电银浆2、第二导电银浆3的第一灯具基座1放入高温炉中烘焙,烤干第一导电银浆2、第二导电银浆3后取出;(4)将取得的第一灯具基座1放至阴凉处自然风干,该第一灯具基座1上具备立体线路。
从图2中可以看到,所述第一灯具基座1上并没有搭载线路板,其表面也不是一个平面,而是具有一定三维结构的。这些三维结构具体为一个第一凸台4和一个方形凹槽5。该第一灯具基座1整体呈一喇叭状,是由耐热塑料构成的,具有良好的导热性能。所述第一灯具基座1的材质也可选用其他具有良好导热性能的材料,如陶瓷或高分子材料等。在第一灯具基座1的表面上,我们用机器和人工两种方式涂布了线路层。所述的线路层为第一导电银浆2和第二导电银浆3,所述线路层也可由其他包含有金属成分的流质或粉末涂层替代,如焊锡。第一导电银浆2的涂布由点胶机来完成,其覆盖在第一灯具基座1的上表面并部分通过第一凸台4;第二导电银浆3的涂布由技术人员用刷子蘸取导电银浆后手工涂抹至第一灯具基座1,第二导电银浆3部分通过方形凹槽5。所述第一导电银浆2和第二导电银浆3的厚度在20μm以上,优选50μm。该厚度由点胶机内置的系统调节设置,就该实施方式中,第一导电银浆2的厚度确定为50μm能够满足制作而成的灯具所需要的电学参数的要求。所述电学参数包括电阻、电压及电流等。当第一、二导电银浆2、3的厚度在20μm以下时,其可能难以承受施加在其上的电压,流经第一、二导电银浆2、3的电流过大而致烧坏线路。所述点胶机是通过受压挤出的方式将第一导电银浆2涂布在第一灯具基座1上的。该点胶机具备一注胶器,注胶器受到内部的压力,将导电银胶挤出针管,在编写好的路径上平滑移动,完成了第一导电银胶2的涂布。所述涂覆有线路层的第一灯具基座1放入高温炉中约1.5小时左右,控制温度在600摄氏度左右进行了烘焙,待线路层烤干后,停止加热。在该温度下持续烘焙一小时以上能够大幅度提高导第一、二导电银浆2和3的附着力,使线路层紧密的烧结在第一灯具基座1上。当温度低于100℃时难以达到加热目的;当温度过高,达到1000 ℃以上则有可能烧坏第一灯具基座1。取出并自然风干第一灯具基座1,该第一灯具基座1上具备有立体线路。
图3所示的是通过该发明所述工艺方法制造图2中所述灯具基座1的过程中使用到的一款点胶机的结构示意图。该点胶机由深圳市羚电高科技有限公司生产,型号为SD300。该点胶机能够按照已经绘制好的CAD图形进行点胶,也可通过单片机编写好的程序进行点胶,定位十分准确。其还具有高频打点的功能。在其注胶器内可以填充具有一定黏度的浆体,用于点胶。该点胶机还具有先进的控制系统,可以按照需求来掌控注胶器内的压力、点胶速率和胶量。
实施例2
本实施例涉及涂覆式立体结构线路的制备方法在一种不带线路板的LED球泡灯上的应用。
图4是本实施例所述LED球泡灯的具体实施例。该LED球泡灯由球泡6、发光芯片8、第二灯具基座12和灯头13组成。该LED球泡灯与传统的球泡灯相比,省去了线路板,而将线路直接布设在第二灯具基座12上,更重要的是,该线路还是以立体线路结构的形式出现在第二灯具基座12上的。省去线路板的好处在于,其能够缩短热量从发光芯片8传递至第二灯具基座12的路径,大幅度减小热阻,从而提高灯具的散热效率。而立体线路结构的出现,不仅使第二灯具基座12的形状更加多样,而且可以帮助技术人员更合理地控制芯片排布的位置和角度,进而达到配光要求。该球泡灯在制作立体线路时,利用到了本发明所述的工艺方法,其是将线路层通过可编程的涂覆设备、人工涂覆或二者之结合的方式在第二灯具基座12上制作了立体线路结构。
从结构上来看,该灯具的最上端罩设有一个球泡6,该球泡6是一个可透光的灯罩。球泡6内包含有4颗发光芯片8,所述发光芯片8两两焊接在第二灯具基座12上。所述第二灯具基座12是一个呈喇叭状的陶瓷基座,在其上表面具有一定的三维结构。所述三维结构更具体地说是一个第二凸台9和一个拱形凸起10。为了达到配光要求,其中两颗发光芯片8分别排布在第二凸台9的两个侧沿,另外两颗发光芯片8则排布在拱形凸起10的两个滑坡面上。在第二灯具基座12的上表面,涂覆有烧结好的立体线路结构,所述立体线路结构更具体地说是第三导电银浆7,即涂覆在第二灯具基座12表面的线路层。所述第三导电银浆7的厚度在20μm以上,优选为50μm。在此厚度下,LED球泡灯接通电源后,施加在第三导电银浆7上的电压大小和流经第三导热银浆7的电流大小均处于正常范围内,不致烧坏线路,且能维持LED球泡灯的正常工作。所述第三导电银 浆7部分覆盖了第二凸台9和拱形凸起10的表面,而发光芯片8的正负极引脚均与第三导电银浆7有所接触以保证电气连接。第二灯具基座12上还打有两个电气孔和一个中央工艺孔,电气连接线11接通第三导电银浆7,穿过电气孔连接至灯头13内的驱动装置,完成整个灯具的电气线路。
实施例3
本实施例涉及涂覆式立体结构线路的制备方法在一种不带线路板的电子器件上的应用。
市面上比较常见的、经由传统工艺制作而成的线路板的结构示意图如图5所示;图中可以看到,整个板材14呈一平面的板状结构,其上布设有第一线路层15。第一器件16和第二器件17安装于板材14的预定位置,通过焊点18固定在板材14上并与第一线路层15连通。其中,第一线路层15是通过光阻蚀刻工艺将多余的铜材蚀刻掉,并加焊一层锡形成的;而第一线路层15、焊点18以及第一器件16和第二器件17的位置则是利用预先绘制好的图纸影印印刷在板材14上的;最终,第一器件16和第二器件17通过焊点18固定于板材14上并与第一线路层15连通。同时,在影印印刷工艺中,为了能够使各部件及线路的位置清晰精确地反映到板材14上,要求线路板的板材14必须为一表面平整、且其上不具有任何三维结构的二维面板,这就极大地限制了人们设计和制造线路板时的操作自由度。而且,在某些特殊的情况下,线路板在水平方向所占的空间会有所限制,而第一器件16和第二器件17在电磁学或热学方面彼此存在一定的相互影响,需要间隔一定的距离才能消除影响,这就对平面的线路结构设计提出了挑战。
本实施例的所述电子器件的基材尚未涂覆线路层的结构示意图如图6所示:该基材19大体呈方形,材质主要为陶瓷,其结构相对较为复杂,包含有多处凹陷。在基材19的中心有一圆形凹槽20,圆形凹槽20的边缘具有一定坡度。同时,该圆形凹槽20内还包含有两组第三凸台21,每组第三凸台21之间通过一近似半圆形的下拱结构22相连。圆形凹槽20、第三凸台21以及下拱结构22在基材19上构成了一定的三维结构。图中所展示的基材19尚未涂抹上线路层。
图7是图6中所示的电子器件的基材涂覆好线路层并加装了元器件后的结构示意图。所述基材19利用本发明所述工艺方法涂覆了第二线路层23,且第二线路层23的厚度在20μm以上。为了满足该基材19内各电子元器件的正常运作,优选地,涂覆线路层23的厚度为40μm。第一元器件24、第二元器件25以及其他一些元器件焊接在基材19的相应位置,所述第一、二元器件24、25的正、负极引脚均与第二线路层23接触。 所述第一、二元器件24、25包括电阻、电容、电感、三极管、集成芯片等。所述第一元器件24与第二元器件25彼此之间存在一定的电磁干扰,需要间隔一定距离才能消除。由于第二线路层23涂覆在具有三维结构基材19表面,所以该基材19上具备了立体线路结构,其允许第一元器件24和第二元器件25不在同一个水平面,使两者在垂直方向上也间隔了一定的距离,弥补了由于基材19在水平方向空间有限而不能使第一、二元器件24、25彼此间隔足够大距离的缺陷。另外地,基材19表面的三维结构也可更为复杂和多样,而不仅仅局限于凸台、凹槽等,在这种情况下仍可通过在其上涂抹线路层的方式来构成立体线路结构,彻底摆脱了线路板对线路制作和设计的束缚。
图8是本实施例所述电子器件的优选方案的结构示意图。所述电子器件的主要结构包括基材19、电子元器件以及外壳26。该电子器件没有安装线路板,而是通过直接在基材19表面制作立体线路的方式来实现其电气功能的。在基材19表面制备好立体线路结构,并加装了电子元器件后,由外壳26封装完好,即构成了一个完整的、具有一定功能的电子器件。
综上所述,利用本发明所述的制造方法来制作立体线路结构,能够摆脱线路板必须是平面板材结构束缚,具有很高的可行性;另外,由于流程简洁、无污染,该技术方案的具体应用也更能迎合全社会对低碳环保的大趋势。
本发明提供的LED照明装置,包括:基座2-1、LED发光单元、灯罩2-3、电源腔2-5。所述灯罩2-3是实体透光导热材料制成,具有良好的导热作用。所述LED发光单元的LED发光芯片固定在基座2-1上,灯罩2-3设置在基座2-1上与基座2-1直接接触,把LED发光单元包覆在内,灯罩2-3的内表面的导热面2-32与基座2-1上表面紧密贴合,构成热流动通道,以实现散热功能,灯罩2-3与LED发光芯片2-2对应区域的内表面按设计需要形成特定的空间结构形状,以改变光强分布,灯罩2-3与LED发光单元或LED发光芯片对应区域的内表面即所述配光面与所述基座上表面形成容置所述LED发光单元的配光腔;其中,导热面2-32作为灯罩2-3内表面的一部分,其本身可以利用对光线的反射和/或折射特性参与配光,因此,利用导热面2-32参与配光的技术方案同样属于本发明所保护的非限制性实施例。
基座2-1的上表面为平面、曲面、或者多平面结合形状。基座2-1可以采用镂空结构以增加空气流通加强散热,例如基座2-1的中间设置第一散热通孔2-81以增加空气流通加强散热,相应地,灯罩2-3与基座2-1对应的位置设置第二散热通孔2-82。LED发光芯片的数量为一个或多个。
灯罩2-3具有配光功能,选自陶瓷,玻璃或其他具有透光性能的高导热材料。所述灯罩2-3的外表面根据实际需要设计成特定形状。基座2-1设置电源腔2-5上,可以实现分别独立散热。基座2-1可以是金属基座涂覆绝缘层、陶瓷基座等。
实施例4
接下来结合图2-1和图2-2对第4实施例进行具体描述。
所述LED照明装置为LED球泡灯。该LED球泡灯主要包括基座2-1、16个LED发光芯片2-2、线路板2-4、灯罩2-3和电源腔2-5。所述基座2-1为一上表面为平面的涂覆有绝缘层的铝基座,铝基座上设置线路板2-4,16个LED发光芯片2-2设置在线路板2-4上。所述灯罩2-3为一实体的透光玻璃。所述灯罩2-3与基座2-1直接接触并覆盖在基座2-1上,把LED发光芯片和线路板封装在内,所述配光面2-31设置在与LED发光芯片2-2对应的内表面,不与LED发光芯片2-2贴合,与基座上表面共同形成配光腔,导热面2-32分布于内表面的中央区域和边缘区域,与基座2-1上表面完全贴合从而实现透光及散热作用。基座2-1为非镂空结构,基座2-1外侧面设计有散热鳍片2-9,可以增大散热面积。所述基座上留有可供导线穿过的电气孔,所述导线一端连接至线路板,另一端穿过电气孔连接至电源腔2-5内的电源。电源腔2-5与基座为一个整体,腔体和基座2-1不连通,可以实现分别独立散热;或者,电源腔2-5由塑料制成,为独立结构,不和基座2-1连通。基座2-1与电源腔用螺口连接。
实施例5
接下来结合图2-3和图2-4对第5实施例进行具体描述。
所述LED照明装置可以为LED球泡灯。该LED球泡灯主要包括基座2-1、12个LED发光芯片2-2、电路涂层、灯罩2-3和电源腔2-5。所述基座2-1为一上表面为曲面的陶瓷基座2-1,如图2-3、图2-4所示的形状,所述电路涂层为导电银浆,直接涂覆在基座上表面,LED发光芯片设置在基座2-1上表面凸出的曲面上,基座2-1上表面直接涂覆电路涂层连接所有芯片和电源实现电气连接,LED发光芯片的电极引脚与电路涂层电连接。所述电路涂层材料为导电银浆。所述灯罩2-3为一实体的透光陶瓷,由PLZT制成。灯罩2-3与基座2-1直接接触并接合,覆盖在基座2-1上,把LED发光芯片2-2和电路涂层封装在内,所述配光面2-31设置在与LED发光芯片2-2对应的内表面,不与LED发光芯片2-2贴合,与基座上表面共同形成配光腔,导热面2-32分布于内表面的中央区域和边缘区域,与基座2-1上表面完全贴合从而实现透光及散热作用。电源腔 2-5为独立结构,和基座2-1不连通。基座2-1与电源腔2-5的壳体用插口方式连接,可以实现分别独立散热。优选地,基座2-1为全镂空结构,可以实现对流通风。
实施例6
接下来结合图2-5和图2-6对第6实施例进行具体描述。
所述LED照明装置可以为单元化LED照明装置。每个LED照明装置在整个照明系统中作为一个LED发光单位,其中,每个LED发光单位主要由基座2-1、4个LED发光芯片2-2、灯罩2-3构成。基座2-1为铝基座且涂覆有绝缘材料,基座2-1上安装线路板2-4,LED发光芯片2-2设置在线路板2-4上。所述灯罩2-3为一实体的透光陶瓷,由多晶AION制成。所述灯罩2-3与基座2-1直接接触并覆盖在基座2-1上,把LED发光芯片2-2和线路板2-4封装在内,所述配光面2-31设置在与LED发光芯片2-2对应的内表面,不与LED发光芯片2-2贴合,与基座上表面共同形成配光腔,导热面2-32分布于内表面的中央区域和边缘区域,与基座2-1上表面完全贴合从而实现透光及散热作用。基座2-1为非镂空结构,基座2-1外侧面设计有散热鳍片2-9,可以增大散热面积。多个LED发光单位可以组合形成一个照明系统使用。
实施例7
接下来结合图2-7、图2-8和图2-9对第7实施例进行具体描述。
所述LED照明装置可以为模块式LED照明装置,主要由发光模条2-6和框架2-7组合而成。所述模块式LED照明装置包含1个基座2-1,24个LED发光芯片2-2、8个灯罩2-3。基座2-1为铝基座且涂覆有绝缘材料,绝缘材料上面涂覆电路涂层,24个LED发光芯片2-2分成3个一组分别设置在涂有绝缘材料的基座2-1上,并通过电路涂层相互连接。所述电路涂层为导电铜浆。所述8个灯罩3为一实体的透光陶瓷,由YAG制成。外表面为半球型,分别覆盖在基座2-1上,每个灯罩2-3分别把3个对应的LED发光芯片2-2封装在内,所述配光面2-31设置在与LED发光芯片2-2对应的内表面,不与LED发光芯片2-2贴合,与基座上表面共同形成配光腔,导热面2-32分布于内表面的中央区域和边缘区域,与基座2-1上表面完全贴合从而实现透光及散热作用。基座2-1为非镂空结构,基座2-1外侧面设计有散热鳍片2-9,可以增大散热面积。9个发光模条2-6连接到框架2-7上形成一个完整的模块式LED照明装置系统,如图2-10所示。
实施例8
接下来结合图2-10和图2-11对第8实施例进行具体描述。
所述LED照明装置可以为LED球泡灯。该LED球泡灯主要包括基座2-1、12个LED发光芯片和高导热灯罩2-3。所述基座1为一上表面是曲面的陶瓷基座2-1,如图2-9、图2-10所示的形状,基座2-1上涂覆电路涂层,所述电路涂层为一种导电银钯合金浆体。基座2-1的中间开设第一散热通孔2-81,LED发光芯片2-2设置在基座2-1上表面除散热通孔以外的其他部分,并由电路涂层相互连接。所述灯罩2-3为一实体的透光陶瓷,由MgAl2O4制成。与基座2-1的第一散热通孔2-81对应的中间位置开设同样大小的第二散热通孔2-82,以实现空气流通。灯罩2-3与基座2-1接触的内表面为与基座2-1形状相对应的曲面。灯罩2-3与基座2-1直接接触并覆盖在基座2-1上,把LED发光单元2-2和电路涂层封装在内,所述配光面2-31设置在与LED发光芯片2-2对应的内表面,不与LED发光芯片2-2贴合,与基座上表面共同形成配光腔,导热面2-32分布于内表面的中央区域和边缘区域,与基座2-1上表面完全贴合从而实现透光及散热作用。基座2-1为全镂空结构,可以实现对流通风。电源腔2-5的壳体和基座2-1不连通。基座2-1与电源腔2-5的壳体用螺口方式连接,可以实现分别独立散热。
实施例9
接下来结合图2-12和图2-13对第9实施例进行具体描述。
所述LED照明装置,包括一个基座2-1、2-25个LED发光芯片、一个灯罩2-3构成。基座2-1为正方型陶瓷基座2-1,基座2-1上设置线路板2-4,LED发光芯片设置在线路板2-4上。所述灯罩2-3为一实体的透光陶瓷。该透光陶瓷为与基座2-1相对应的正方型,覆盖在基座2-1上,把所有LED发光芯片2-2和线路板2-4封装在内,所述配光面2-31设置在与LED发光芯片2-2对应的内表面,不与LED发光芯片2-2贴合,与基座上表面共同形成配光腔,导热面2-32分布于内表面的中央区域和边缘区域,与基座2-1上表面完全贴合从而实现透光及散热作用。
实施例10
接下来结合图2-19和图2-20对第10实施例进行具体描述。
所述LED照明装置可以为LED球泡灯。该LED球泡灯主要包括基座、36个LED发光芯片、线路板、高导热灯罩和电源腔。所述基座为一上表面是平面的陶瓷基座,线路板设置在基座上,LED发光芯片设置在线路板上。所述灯罩为一实体的透光塑料。所述灯罩与所述基座直接接触,把所述LED发光芯片和线路板包覆在内,所述配光面与所述基座上表面形成容置所述LED发光单元的配光腔,所述导热面分布于内表面的中央区域和边缘区域,与所述基座上表面紧密贴合,构成热流动通道。所述导热面的面积占整个 内表面投影面积的10%、40%或者55%。基座为非镂空结构,基座外侧面设计有散热鳍片。所述基座上留有可供导线穿过的电气孔,所述导线一端连接至线路板,另一端穿过电气孔连接至电源腔内的电源。电源腔由陶瓷制成,基座与电源腔固定连接,不和基座连通,可以实现分别独立散热。
上述第5实施例至第10实施例均可视为是第4实施例的变化例及优选例,且第5实施例至第10实施例之间均可视为互为变化例及优选例。
以上具体实施方式及实施例仅为方便说明本发明而并非加以限制,在不离本发明精神范畴,熟悉本行业技术人员所可作的各种简易变形与修饰,均仍应含括于本发明专利保护的范围内。

Claims (44)

  1. 一种涂覆式立体结构线路的制备方法,其特征在于,所述方法包括如下步骤:
    A、提供一基座,所述基座为一表面具有三维结构的物理实体;
    B、利用可编程的涂覆设备、手工涂覆或二者相结合的方式将线路层涂布于所述基座的表面,所述线路层为包含有金属材料的流质或粉末涂层,所述线路层的厚度为20μm以上;
    C、将涂覆有线路层的基座在100~1000℃高温烘焙至线路层烤干;
    D、降温后取得基座,所述基座上具备立体结构线路。
  2. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述基座为表面具有三维结构的柱状、块状、喇叭状或棱台状的物理实体。
  3. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述三维结构包括凸台、凹槽、拱形凸起、下沉结构中的一种或几种。
  4. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述基座的构成材料为附有绝缘材料的金属、高分子材料、耐热塑料或陶瓷。
  5. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述基座为一灯具基座。
  6. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述可编程的涂覆设备能够读取已经绘制好的CAD图纸自动绘制出线路层图形。
  7. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述可编程的涂覆设备能够通过单片机的编程直接绘制出所需要的线路层图形。
  8. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述可编程的涂覆设备为点胶机。
  9. 如权利要求8所述的涂覆式立体结构线路的制备方法,其特征在于,所述点胶机具有一注胶器。
  10. 如权利要求9所述的涂覆式立体结构线路的制备方法,其特征在于,所述注胶器具有X、Y、Z三个方向的自由度。
  11. 如权利要求9所述的涂覆式立体结构线路的制备方法,其特征在于,所述注胶器能够在X、Y、Z三个维度合成的路径上平滑移动。
  12. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述线路层为金属浆体。
  13. 如权利要求1所述的涂覆式立体结构线路的制备方法,其特征在于,所述降温方式包括晾晒、风干或仪器冷却。
  14. 一种不带线路板的LED球泡灯,包括球泡、发光芯片、灯具基座和灯头,其特征在于,所述灯具基座上具备立体结构线路,所述立体结构线路为通过涂覆工艺涂布在灯具基座表面的线路层,所述线路层的厚度满足球泡灯的电学指标。
  15. 如权利要求14所述的不带线路板的LED球泡灯,其特征在于,所述灯具基座为上表面具有三维结构的喇叭状陶瓷基座。
  16. 如权利要求14所述的不带线路板的LED球泡灯,其特征在于,其特征在于,所述三维结构包括凸台和拱形凸起。
  17. 如权利要求14所述的不带线路板的LED球泡灯,其特征在于,所述发光芯片焊接在灯具基座上。
  18. 如权利要求14所述的不带线路板的LED球泡灯,其特征在于,所述发光芯片的电极引脚与线路层接触。
  19. 如权利要求14所述的不带线路板的LED球泡灯,其特征在于,所述涂覆工艺通过可编程的涂覆设备、手工涂覆或二者相结合的方式实现。
  20. 如权利要求14所述的不带线路板的LED球泡灯,其特征在于,所述线路层为导电银浆。
  21. 如权利要求14所述的不带线路板的LED球泡灯,其特征在于,所述电学指标为线路层所能承受的最高电压及所能通过的最大电流。
  22. 如权利要求21所述的不带线路板的LED球泡灯,其特征在于,所述线路层的厚度为20μm以上。
  23. 一种不带线路板的电子器件,包括基材、电子元器件和外壳,其特征在于,所述基材上具备立体结构线路,所述立体结构线路为通过涂覆工艺涂布在基材表面的线路层,所述线路层的厚度满足电子器件的电学指标。
  24. 如权利要求23所述的不带线路板的电子器件,其特征在于,所述基材为表面具有三维结构的方形陶瓷基材。
  25. 如权利要求24所述的不带线路板的电子器件,其特征在于,所述三维结构包括凸台、凹槽及下拱结构。
  26. 如权利要求23所述的不带线路板的电子器件,其特征在于,所述电子元器件焊接在基材上。
  27. 如权利要求23所述的不带线路板的电子器件,其特征在于,所述电子元器件的电极引脚与线路层接触。
  28. 如权利要求23所述的不带线路板的电子器件,其特征在于,所述电学指标为线路层所能承受的最高电压及所能通过的最大电流。
  29. 如权利要求28所述的不带线路板的电子器件,其特征在于,所述线路层的厚度在20μm以上。
  30. 一种LED照明装置,包括:基座、LED发光单元、灯罩;其特征在于:
    LED发光单元设置在基座的上表面,灯罩与基座直接接触,把LED发光单元包覆在内;所述LED发光单元包含多个LED发光芯片和电路涂层,电路涂层直接涂覆在所述基座上表面,LED发光芯片直接设置在所述基座上表面,且LED发光芯片的电极引脚与电路涂层电连接;
    所述灯罩包括外表面和内表面,外表面为光线出射面,所述内表面包括配光面和导热面,所述配光面设置在内表面的与LED发光芯片对应的内表面区域上,配光面与LED发光芯片之间存在间隙,与基座上表面共同形成配光腔,所述导热面设置在内表面的与基座上安装LED发光芯片以外的部分或全部上表面所对应的内表面区域上,并与基座紧密贴合,导热面至少分布于内表面的中央区域和边缘区域。
  31. 根据权利要求30所述的LED照明装置,其特征在于,所述灯罩内表面仅由配光面和导热面构成。
  32. 根据权利要求30所述的LED照明装置,其特征在于,中央区域的面积占整个内表面投影面积的10-55%。
  33. 根据权利要求30所述的LED照明装置,其特征在于,所述灯罩采用透光陶瓷或者玻璃制成。
  34. 根据权利要求33所述的LED照明装置,其特征在于,所述透光陶瓷包含从PLZT、CaF2、Y2O3、YAG、多晶AION和MgAl2O4中的一种或几种的组合组成的组中选择的至少一种材料。
  35. 根据权利要求30所述的LED照明装置,其特征在于,所述电路涂层为包含有金属材料的流质或粉末涂层,所述电路涂层线路层的厚度为20μm以上。
  36. 根据权利要求35所述的LED照明装置,其特征在于,所述电路涂层的金属材料选自钼、锰、钨、银、金、铂、银钯合金、铜、铝、锡材料中的至少一种或几种的组合。
  37. 根据权利要求30所述的LED照明装置,其特征在于,基座的上表面为平面、曲面、或者多平面结合形状。
  38. 根据权利要求30所述的LED照明装置,其特征在于,灯罩外表面按照配光要求制成特定曲面形状,与基座接触的内表面为与基座上表面形状相对应的曲面形状。
  39. 根据权利要求30所述的LED照明装置,其特征在于,基座设置有第一散热通孔。
  40. 根据权利要求39所述的LED照明装置,其特征在于,灯罩设置有第二散热通孔,其中,第二散热通孔与第一散热通孔对应连通。
  41. 根据权利要求30所述的LED照明装置,其特征在于,基座为涂覆有绝缘层的金属基座、或者为由绝缘材料制成的基座。
  42. 根据权利要求39所述的LED照明装置,其特征在于,所述基座为镂空结构,其上的第一散热通孔通过基座的侧面与外界空气相通。
  43. 根据权利要求30所述的LED照明装置,其特征在于,所述基座为非镂空结构,基座的外侧面设置有散热鳍片。
  44. 根据权利要求30所述的LED照明装置,其特征在于,还包括电源腔,其中,电源腔不与基座相通,即电源腔的腔体与基座相隔离;电源腔的外壳体与基座通过卡插、卡接或者螺口方式相连接,能够实现分别独立散热。
PCT/CN2015/071639 2014-01-27 2015-01-27 一种led照明装置和灯罩、及其电路制备方法 WO2015110086A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2938049A CA2938049A1 (en) 2014-01-27 2015-01-27 Led lighting device and lamp shade, and circuit preparation method thereof
EP15740090.4A EP3102011A4 (en) 2014-01-27 2015-01-27 Led lighting apparatus, light shade, and circuit manufacturing method for the apparatus
JP2016548066A JP6343812B2 (ja) 2014-01-27 2015-01-27 コーティング式立体構造回路の製造方法、回路パネルを有しないled電球ランプおよび電子部品、led照明装置
KR1020167023575A KR20160133426A (ko) 2014-01-27 2015-01-27 Led조명기구와 전구커버 및 기타 전기회로 제조 방법
US15/114,831 US10208896B2 (en) 2014-01-27 2015-01-27 LED lighting device and lamp shade, and circuit preparation method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410040724.9A CN103796438A (zh) 2014-01-27 2014-01-27 涂覆式立体结构线路的制备方法及其应用
CN201410040726 2014-01-27
CN201410040724.9 2014-01-27
CN201410040726.8 2014-01-27
CN201410193097.2A CN104006317B (zh) 2014-01-27 2014-05-08 Led灯灯罩及led照明装置
CN201410193097.2 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015110086A1 true WO2015110086A1 (zh) 2015-07-30

Family

ID=53680853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071639 WO2015110086A1 (zh) 2014-01-27 2015-01-27 一种led照明装置和灯罩、及其电路制备方法

Country Status (6)

Country Link
US (1) US10208896B2 (zh)
EP (1) EP3102011A4 (zh)
JP (1) JP6343812B2 (zh)
KR (1) KR20160133426A (zh)
CA (1) CA2938049A1 (zh)
WO (1) WO2015110086A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109674A1 (zh) * 2014-01-27 2015-07-30 上海三思电子工程有限公司 Led照明装置
PL234410B1 (pl) 2016-12-23 2020-02-28 Sieron Aleksander Romuald Urządzenie do terapii
WO2018117880A1 (en) * 2016-12-23 2018-06-28 Sieron Aleksander Romuald Therapeutic device
JP7187835B2 (ja) * 2018-06-19 2022-12-13 昭和電工マテリアルズ株式会社 導体形成用組成物及びその製造方法、並びに、導体層を有する物品及びその製造方法
CN211063818U (zh) * 2019-07-25 2020-07-21 漳州立达信光电子科技有限公司 一种led灯具
US11408604B2 (en) * 2020-08-25 2022-08-09 Shanghai Sansi Electronic Engineering Co. Ltd. LED lamp with omnidirectional heat dissipation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737750A (zh) * 2008-11-12 2010-06-16 臣相科技实业股份有限公司 电气线路的复合散热体
CN201688222U (zh) * 2010-06-04 2010-12-29 沈李豪 一种具有双层灯罩的led灯泡
JP2011082074A (ja) * 2009-10-08 2011-04-21 Toshiba Lighting & Technology Corp 発光装置及び照明装置
CN102291927A (zh) * 2011-04-30 2011-12-21 深圳市易特照明有限公司 一种led灯陶瓷基板和led灯
TW201239250A (en) * 2011-03-18 2012-10-01 Han-Guang Chen High conductivity heat dissipation light emitting device and manufacture method thereof
CN103423617A (zh) * 2012-05-18 2013-12-04 元宏国际股份有限公司 发光二极管模块
CN103796438A (zh) * 2014-01-27 2014-05-14 上海三思电子工程有限公司 涂覆式立体结构线路的制备方法及其应用
CN103791439A (zh) * 2014-01-27 2014-05-14 上海三思电子工程有限公司 新型led照明装置
CN104006317A (zh) * 2014-01-27 2014-08-27 上海三思电子工程有限公司 Led灯灯罩及led照明装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353595A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd 電子回路部品及びその製造方法
JP2005050910A (ja) * 2003-07-30 2005-02-24 Seiko Epson Corp 回路基板及びその回路パターン形成方法
JP4031784B2 (ja) * 2004-07-28 2008-01-09 シャープ株式会社 発光モジュールおよびその製造方法
US8661660B2 (en) * 2005-09-22 2014-03-04 The Artak Ter-Hovhanissian Patent Trust Process for manufacturing LED lighting with integrated heat sink
US8427059B2 (en) * 2008-07-31 2013-04-23 Toshiba Lighting & Technology Corporation Lighting device
JP2010108768A (ja) * 2008-10-30 2010-05-13 Sharp Corp 光源ユニット及び照明装置
TW201031859A (en) * 2009-02-23 2010-09-01 Taiwan Green Point Entpr Co High efficiency luminous body
US8827508B2 (en) * 2009-10-22 2014-09-09 Thermal Solution Resources, Llc Overmolded LED light assembly and method of manufacture
DE102010001046A1 (de) * 2010-01-20 2011-07-21 Osram Gesellschaft mit beschränkter Haftung, 81543 Leuchtvorrichtung
DE102010001047A1 (de) * 2010-01-20 2011-07-21 Osram Gesellschaft mit beschränkter Haftung, 81543 Leuchtvorrichtung
WO2011124399A1 (de) * 2010-04-09 2011-10-13 Christian Bartenbach Led-lampe
DE102010043918B4 (de) * 2010-11-15 2016-05-12 Osram Gmbh Halbleiterlampe
JP5178930B1 (ja) * 2011-03-11 2013-04-10 株式会社東芝 照明装置
US10030863B2 (en) * 2011-04-19 2018-07-24 Cree, Inc. Heat sink structures, lighting elements and lamps incorporating same, and methods of making same
CN202092058U (zh) * 2011-04-30 2011-12-28 深圳市易特照明有限公司 一种led灯陶瓷基板和led灯
CN102809137A (zh) * 2011-06-01 2012-12-05 弘凯光电股份有限公司 灯具散热结构制造方法及灯具组件制造方法
KR101253199B1 (ko) * 2011-07-25 2013-04-10 엘지전자 주식회사 조명 장치
CN102261589B (zh) * 2011-07-28 2013-07-17 厦门立明光电有限公司 照明led灯
WO2013023487A1 (zh) * 2011-08-12 2013-02-21 Li Changxing 带散热配光装置的车船用led照明灯
JP2013055193A (ja) * 2011-09-02 2013-03-21 Harima Chemicals Group Inc 導電性金属膜の形成方法
CN103470968A (zh) * 2012-06-08 2013-12-25 李文雄 大发光角度的发光二极管灯芯及包含该灯芯的照明装置
JP2014002862A (ja) * 2012-06-15 2014-01-09 Toshiba Lighting & Technology Corp 口金付ランプおよび照明器具
US20140015405A1 (en) * 2012-07-12 2014-01-16 Elementech International Co., Ltd. Light emitting diode module
CN202955537U (zh) * 2012-12-04 2013-05-29 上海三思电子工程有限公司 可实现大角度发光的led球泡灯

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737750A (zh) * 2008-11-12 2010-06-16 臣相科技实业股份有限公司 电气线路的复合散热体
JP2011082074A (ja) * 2009-10-08 2011-04-21 Toshiba Lighting & Technology Corp 発光装置及び照明装置
CN201688222U (zh) * 2010-06-04 2010-12-29 沈李豪 一种具有双层灯罩的led灯泡
TW201239250A (en) * 2011-03-18 2012-10-01 Han-Guang Chen High conductivity heat dissipation light emitting device and manufacture method thereof
CN102291927A (zh) * 2011-04-30 2011-12-21 深圳市易特照明有限公司 一种led灯陶瓷基板和led灯
CN103423617A (zh) * 2012-05-18 2013-12-04 元宏国际股份有限公司 发光二极管模块
CN103796438A (zh) * 2014-01-27 2014-05-14 上海三思电子工程有限公司 涂覆式立体结构线路的制备方法及其应用
CN103791439A (zh) * 2014-01-27 2014-05-14 上海三思电子工程有限公司 新型led照明装置
CN104006317A (zh) * 2014-01-27 2014-08-27 上海三思电子工程有限公司 Led灯灯罩及led照明装置

Also Published As

Publication number Publication date
EP3102011A1 (en) 2016-12-07
EP3102011A4 (en) 2017-03-08
JP6343812B2 (ja) 2018-06-20
US10208896B2 (en) 2019-02-19
KR20160133426A (ko) 2016-11-22
US20160341368A1 (en) 2016-11-24
JP2017510974A (ja) 2017-04-13
CA2938049A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
WO2015110086A1 (zh) 一种led照明装置和灯罩、及其电路制备方法
CN102829346B (zh) Led灯及其制造方法
CN102454907B (zh) 发光二极管灯及其制造方法
CN105299484A (zh) 发光组件
CN103791439A (zh) 新型led照明装置
CN201555069U (zh) 高效散热型led灯具
KR101683255B1 (ko) DPM(Direct Pattern Method) 방식의 LED 조명등 제조 방법 및 이를 이용한 LED 조명 장치
CN103703308B (zh) 具有载体和封壳的照射设备
RU103892U1 (ru) Светодиодный модуль
CN101930932A (zh) Led发光模块制程方法
CN105065990B (zh) 一种led平面灯系统
CN201526828U (zh) 具有一体成型外观的发光二极管灯具结构
CN104006317B (zh) Led灯灯罩及led照明装置
CN103807622B (zh) 照明装置
CN202327707U (zh) 发光装置
CN101452917B (zh) 光源装置
CN204922548U (zh) 全发光高照度led灯泡
AU2017229070A1 (en) LED illumination device
JP6616050B1 (ja) 浮いた光源を有するランプ
CN207112412U (zh) 可替换模组led灯具
CN105276397A (zh) 全周光led灯具
CN204387748U (zh) 一种大角度led发光装置
WO2015159126A1 (en) Flexible led
CN220749925U (zh) 一种led面板
CN207778146U (zh) 一种防水散热的照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548066

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2938049

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15114831

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167023575

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015740090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740090

Country of ref document: EP