WO2015109777A1 - 液晶取向剂、液晶取向层、它们的制法和液晶显示面板 - Google Patents

液晶取向剂、液晶取向层、它们的制法和液晶显示面板 Download PDF

Info

Publication number
WO2015109777A1
WO2015109777A1 PCT/CN2014/082008 CN2014082008W WO2015109777A1 WO 2015109777 A1 WO2015109777 A1 WO 2015109777A1 CN 2014082008 W CN2014082008 W CN 2014082008W WO 2015109777 A1 WO2015109777 A1 WO 2015109777A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
cation exchange
crystal aligning
exchange resin
Prior art date
Application number
PCT/CN2014/082008
Other languages
English (en)
French (fr)
Inventor
吴俊�
占红明
田超
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/429,052 priority Critical patent/US9488868B2/en
Publication of WO2015109777A1 publication Critical patent/WO2015109777A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents

Definitions

  • Liquid crystal aligning agent Liquid crystal aligning agent, liquid crystal alignment layer, method for producing the same, and liquid crystal display panel
  • the embodiment of the present invention relates to a liquid crystal aligning agent, a liquid crystal alignment layer formed of the liquid crystal aligning agent, a method for producing the same, and a liquid crystal display panel including the liquid crystal alignment layer.
  • LCD Liquid Crystal Display
  • the LCD display depends on the arrangement of different liquid crystal molecules after the anisotropic treatment of the substrate surface film. Among them, the liquid crystal molecular layer is the most important part to change the state of light polarization.
  • a liquid crystal aligning agent comprising a polyimide precursor, a cation exchange resin, and a solvent.
  • a method for preparing a liquid crystal aligning agent according to an embodiment of the present invention comprising:
  • liquid crystal alignment layer formed of the liquid crystal alignment agent of the embodiment of the present invention.
  • a method for preparing a liquid crystal alignment layer according to an embodiment of the present invention comprising:
  • P1 coating the liquid crystal aligning agent of the embodiment of the invention on the surface of the substrate;
  • P3 The cured layer on the substrate is subjected to rubbing orientation to form a liquid crystal alignment layer.
  • liquid crystal display panel comprising the liquid crystal alignment layer of the embodiment of the present invention.
  • the liquid crystal aligning agent, the liquid crystal aligning layer, the preparation method thereof, and the liquid crystal display panel provided in the embodiment of the present invention are different from the conventional liquid crystal aligning agent in that the cation exchange is added to the liquid crystal aligning agent in the embodiment of the present invention. Resin.
  • the cation exchange resin added to the alignment layer can be polymerized on the one hand
  • the ions remaining in the imide precursor react to prevent metal ions from being transferred to the liquid crystal layer during voltage shift; on the other hand, the metal ions carried by the liquid crystal itself can be chemically adsorbed, and the metal ions are bound by the liquid crystal layer.
  • the possibility of polarization of the liquid crystal molecules is thereby reduced.
  • FIG. 1 is a flow chart of a method for preparing a liquid crystal aligning agent according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for preparing a liquid crystal alignment layer according to an embodiment of the present invention
  • Fig. 3 is a view showing the detection of metal ion concentration in the liquid crystal panel of the embodiment of the present invention under the action of an electric field. detailed description
  • liquid crystal aligning agent the liquid crystal alignment layer, the preparation method thereof, and the liquid crystal display panel of the examples of the present invention will be described in detail below with reference to the accompanying drawings.
  • a liquid crystal aligning agent comprising a polyimide precursor, a cation exchange resin, and a solvent.
  • polyimide precursor may also be referred to as "polyimide aligning agent” and refers to a precursor solution for forming an alignment layer in an LCD, which mainly comprises polyimide (PI). ) compounds and other monomers and solvents.
  • the monomer may be any monomer known in the art to be suitable for use in a polyimide precursor, such as pyromellitic dianhydride (PMDA), 2,2-bis[4-(4-aminobenzene).
  • Oxy)phenyl]propane BAPP
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride hydrogenated PMDA
  • p-phenylenediamine etc.
  • the solvent may be any solvent known in the art to be suitable for use in a polyimide precursor, such as N-mercaptopyrrolidone (NMP), dimercaptoacetamide (DMA), and the like.
  • NMP N-mercaptopyrrolidone
  • DMA dimercaptoacetamide
  • the polyimide-based compound may be a reaction product of an aromatic diamine and an aromatic tetracarboxylic acid or an anhydride or ester derivative thereof, and has a molecular weight of usually 30,000 to 100,000.
  • the usable aromatic diamine may be p-phenylenediamine or the like
  • the usable aromatic tetracarboxylic acid or its anhydride or ester derivative may be pyromellitic dianhydride or the like.
  • the polyimide-based compound which can be used in the examples of the present invention can be prepared by a method known to those skilled in the art or a suitable commercially available product can be used.
  • the polyimide-based compound can be produced by reacting an aromatic diamine and an aromatic tetracarboxylic acid or an anhydride or ester derivative thereof in a solvent such as N-decylpyrrolidone or the like.
  • Polyamic acid the latter is formed by heating dehydration polymerization to form a polyimide.
  • Commercially available polyamido compounds useful in the examples of the present invention The material may be SE-4110, SE-150, SE-610, etc. produced by Nissan Corporation.
  • the polyimide precursor has strong heat resistance, affinity with liquid crystals, mechanical strength, and excellent electrical properties. It can be used in most liquid crystal display panels to prevent film peeling or friction damage caused by friction after film formation.
  • cation exchange resin means an insoluble polymer compound having a network structure with exchangeable cations.
  • Cation exchange resins are mostly made by organic synthesis methods. The common raw materials are styrene or acrylic acid, and a skeleton having a three-dimensional three-dimensional network structure is formed by polymerization, and finally different types of chemically active groups are introduced into the skeleton ( It is usually made of an acidic group).
  • the cation exchange resin contains one (or several) chemically reactive groups which exchange functional groups which are capable of dissociating certain cations in aqueous solution while adsorbing other cations originally present in the solution.
  • the cation exchange resin is mainly composed of two types of styrene-based and acrylic-based resins, and may be polymerized from other organic monomers, such as a phenolic system, an epoxy system, a vinylpyridine system, a urea-formaldehyde system or the like.
  • a cation exchange resin was added to the polyimide precursor. After the polyimide precursor is polymerized and solidified into a layer and then subjected to rubbing orientation, the cation exchange resin can chemically adsorb the metal ions present in the polyimide precursor liquid crystal layer or the liquid crystal layer to reduce the polarization of the liquid crystal. The possibility.
  • the cation exchange resin which can be used in the examples of the present invention may be, for example, a polystyrene-based cation exchange resin having the following structural formula (I):
  • the R group is an acidic group
  • n is a degree of polymerization
  • the repeating unit is _[CH2CH(C6H4R)]-.
  • the R group can be one selected from the group consisting of -S03H, -COOH, or -COSH.
  • Fraction of polystyrenesulfonic acid cation exchange resin having the above structural formula The sub-amount may be about 184*n (where n is the degree of polymerization), the density may be 0.7-0.9 g/ml, and the ion exchange equivalent may be 0.7-4.2 mmol/g.
  • the above cation exchange resin is a polystyrene strong acid cation resin containing a large amount of strongly acidic groups, and it is easy to displace ⁇ + in the liquid crystal layer, and is strongly acidic.
  • the cation exchange resin can undergo displacement reaction with most of the metal ions in the liquid crystal molecular layer, and the correlation equation is as follows:
  • the negatively charged groups contained in the body are better able to adsorb other cations in the solution, such as metal ions.
  • the above cation exchange resin is a polystyrene-based weakly acidic cationic resin containing a large amount of weakly acidic groups, which can be substituted with H + in the liquid crystal layer to be acidic.
  • X-COOH is weakly acidic and can only undergo displacement reactions with weakly basic metal ions in the liquid crystal molecular layer. The relevant equation is as follows:
  • the remaining negatively charged groups can bind to other cations in the solution, such as metal ions, but the acidity of such resins tends to be weak.
  • polystyrene-based cation exchange resin is only one example of a cation exchange resin which can be used in the present invention, and other suitable cation exchange resins can also be used in the present invention.
  • the solvent which can be used in the examples of the present invention may be one selected from the group consisting of N-mercapto-2-pyrrolidone, Y-butyrolactone, dimercaptophthalamide, dimercaptoacetamide, tetrahydrofuran and butoxyethanol. Or several.
  • the cation exchange resin is added to the liquid crystal aligning agent in the examples of the present invention.
  • the polyimide precursor in the liquid crystal aligning agent is polymerized to form a long-chain molecule and solidified into a layer, and the cured layer is subjected to rubbing orientation to form a liquid crystal alignment layer
  • the cation exchange resin added to the alignment layer can be polymerized on the one hand
  • the ions remaining in the imide precursor react to prevent metal ions from being transferred to the liquid crystal layer during voltage shift; on the other hand, the metal ions carried by the liquid crystal itself can be chemically adsorbed, and the metal ions are bound by the liquid crystal layer.
  • the resin of the alignment layer thereby reducing the possibility of polarization of liquid crystal molecules.
  • the density of the cation exchange resin may be smaller than the density of the polyimide precursor.
  • the cation exchange resin can be suspended in the liquid crystal aligning agent, and the three-dimensional network structure can better form a stable suspension system with the long-chain molecules formed by the polymerization of the polyimide precursor liquid, thereby ensuring the solidification of the suspension system to form liquid crystal.
  • the cation exchange resin can better chemically adsorb metal ions in the polyimide precursor or liquid crystal layer.
  • the parts by weight of the polyimide precursor solution, the cation exchange resin and the solvent may be:
  • Polyimide precursor 20-40 parts;
  • the cation exchange resin can be better suspended in the long-chain molecules formed by the polyimide precursor to ensure that the cation exchange resin better adsorbs ions in the liquid crystal. Further, it is to be noted that since the cation exchange resin itself is chemically and physically stable, it does not affect orientation or liquid crystal alignment, and does not deflect under an electric field.
  • a method of preparing the liquid crystal aligning agent comprising:
  • the weight fraction of the polyimide precursor may be 20-40 parts, preferably 25 parts.
  • the solvent used may be, for example, a mixture of an initiating solvent and a soluble solvent, wherein the initiating solvent may be a mixture of N-mercapto-2-pyrrolidone and Y-butyrolactone, and is dissolved.
  • the solvent may be butoxyethanol.
  • the N-mercapto-2-pyrrolidone may be 20-35 parts by weight, the Y-butyrolactone may be 120-140 parts by weight, and the butoxyethanol may be 20-25 parts by weight; , N-mercapto-2-pyrrolidone may be 24-30 parts by weight, Y-butyrolactone may be 125-135 parts by weight, and butoxyethanol may be 22-24 parts by weight; further preferred The N-mercapto-2-pyrrolidone may be 27 parts by weight, the Y-butyrolactone may be 130 parts by weight, and the butoxyethanol may be 23 parts by weight.
  • the cation exchange resin may be used in an amount of from 1 to 3 parts by weight, preferably 3 parts by weight. It will be understood that those skilled in the art can specifically determine the amount of use of the cation exchange resin within the above content range based on the concentration of metal ions contained in the liquid crystal layer.
  • the above steps S1 to S3 can be carried out at a temperature of from room temperature to 60 ° C and a protective atmosphere. The temperature is preferably room temperature.
  • the protective atmosphere can be nitrogen or argon, preferably nitrogen.
  • the above steps S1 to S3 are carried out under anhydrous conditions.
  • the preparation method of the liquid crystal aligning agent as described above has the advantages of being simple and easy to handle. Further, the liquid crystal aligning agent prepared therefrom can effectively reduce the possibility of polarization of liquid crystal molecules, avoiding the occurrence of residual images on the display screen of the liquid crystal display panel, thereby improving the performance of the liquid crystal alignment layer.
  • a liquid crystal alignment layer formed of the liquid crystal alignment agent of the embodiment of the present invention Since the cation exchange resin is added to the liquid crystal aligning agent of the embodiment of the present invention, the cation exchange resin can form a more stable composite structure with the long-chain molecules formed by polymerization and solidification of the polyimide precursor through the three-dimensional network structure thereof, thereby Reduce the possibility of polarization of liquid crystal molecules.
  • the liquid crystal alignment layer formed of the liquid crystal aligning agent of the embodiment of the present invention can effectively prevent polarization of liquid crystal molecules, thereby improving the performance of the liquid crystal alignment layer.
  • a method of preparing the liquid crystal alignment layer comprising:
  • P1 coating the liquid crystal aligning agent of the embodiment of the invention on the surface of the substrate;
  • P3 The cured layer on the substrate is subjected to rubbing orientation to form a liquid crystal alignment layer.
  • the liquid crystal aligning agent may be applied in a thickness of 700 to 1200 ⁇ .
  • step P2 curing can be carried out by first pre-baking in an oven at a temperature of 80 to 150 ° C (preferably 120 ° C) for 50 to 200 seconds (preferably 130 to 150 seconds), followed by 180 A main baking of 12,000 seconds is carried out at a temperature of ⁇ 240 ° C (preferably 220 ° C).
  • the direction of the rubbing orientation may be a horizontal rubbing orientation or an angled rubbing orientation.
  • the CF and TFT liquid crystal display devices for the ADS display mode have a horizontal rubbing orientation
  • the TN mode CF and TFT liquid crystal display devices have a 45° rubbing orientation.
  • the above steps P1 and P3 can be carried out at a temperature of from room temperature to 75 ° C and in the presence of a protective atmosphere. It is preferably carried out under the conditions of room temperature and a nitrogen atmosphere to avoid introduction of other impurities and decomposition of the liquid crystal at a high temperature.
  • the liquid crystal alignment layer prepared as described above can effectively prevent liquid crystal polarization from occurring in the liquid crystal molecule layer, and further avoids image sticking of the display image.
  • the method is simple and easy to operate, and can effectively improve the display performance of the liquid crystal display panel.
  • liquid crystal display panel comprising the liquid crystal alignment layer of the embodiment of the present invention. Since the liquid crystal alignment layer can effectively prevent polarization of the liquid crystal, applying it to the liquid crystal display panel can avoid residual images on the display screen of the liquid crystal display panel, and effectively improve the display performance of the liquid crystal display panel.
  • Example 1 In order to better explain the liquid crystal aligning agent, the liquid crystal alignment layer, the method for preparing the same, and the liquid crystal display panel of the examples of the present invention, the following detailed description will be given by way of specific examples.
  • Example 2 In order to better explain the liquid crystal aligning agent, the liquid crystal alignment layer, the method for preparing the same, and the liquid crystal display panel of the examples of the present invention, the following detailed description will be given by way of specific examples.
  • the cation exchange resin in the embodiment of the present invention is exemplified by a polystyrene cation exchange resin, but the cation exchange resin in the embodiment of the present invention is not limited to a polystyrene cation exchange resin.
  • Ion exchange resins can also be made from other organic monomers, such as acrylics, phenolics, epoxies, vinylpyridines, ureas, etc., as long as they can play a role in cation exchange, adsorb metal ions, reduce liquid crystal generation. The possibility of polarization is sufficient.
  • a polyimide precursor (Nissan SE-6414) was weighed at room temperature, and then 20 parts of N-mercapto-2-pyrrolidone, 120 parts of ⁇ -butyrolactone, and 20 parts of butoxyethanol were added thereto. Stir until the polyimide precursor is completely dissolved. Subsequently, 1 part of a polystyrene cation acid exchange resin was added and stirred uniformly, thereby forming a liquid crystal aligning agent 1.
  • the chemical structural formula of the polystyrenesulfonic acid cation exchange resin used therein is as follows: .
  • the polystyrenesulfonic acid cation exchange resin has a molecular weight of 184 * n, wherein n is a degree of polymerization, and in the present embodiment, the value of n is 30.
  • the cation exchange resin had a density of 0.8 g/ml and an ion exchange equivalent of 3 mmol/g.
  • the surface of the glass substrate (8.5 line glass, size 2.2 m 2.5 m, thickness 0.7 mm) was coated with the liquid crystal aligning agent 1 as described above, and the coating thickness was 1200 ⁇ . Subsequently, the liquid crystal aligning agent 1 was cured into a layer by first pre-baking in an oven at 120 ° C for 130 seconds, followed by main baking at 200 ° C for 12,000 seconds. The film layer cured as above was subjected to horizontal rubbing orientation, whereby the liquid crystal alignment layer 1 was formed.
  • a polyimide precursor (Nissan SE-6414) was weighed at room temperature, and then 27 parts of N-mercapto-2-pyrrolidone, 130 parts of ⁇ -butyrolactone, and 23 parts of butoxyethanol were added. Stir to completely dissolve the polyimide precursor. Subsequently, 2 parts of a polystyrene carboxylic acid cation exchange resin was added and stirred uniformly, thereby forming a liquid crystal aligning agent 2.
  • the styrene carboxylate cation exchange resin has a molecular weight of 148 * n, wherein n is a degree of polymerization, and in the present embodiment, the value of n is 30.
  • the cation exchange resin had a density of 0.85 g/ml and an ion exchange equivalent of 2.5 mmol/g.
  • the liquid crystal aligning agent 2 (coating thickness: 1200 A) prepared as above was applied on the surface of a glass substrate (8.5 line glass, size: 2.2 m x 2.5 m, thickness: 0.7 mm). Subsequently, the liquid crystal aligning agent 2 was cured into a layer by first pre-baking in an oven at 120 ° C for 150 seconds, followed by main baking at 220 ° C for 12,000 seconds. The film layer cured as above is subjected to horizontal rubbing orientation, thereby forming the liquid crystal alignment layer 2.
  • a polyimide precursor (Nissan SE-6414) was weighed at room temperature; then 35 parts of N-mercapto-2-pyrrolidone, 140 parts of ⁇ -butyrolactone and 25 parts of butoxyethanol were added. Stir to completely dissolve the polyimide precursor. Subsequently, 3 parts of a polystyrene citrate cation exchange resin was added and stirred uniformly, thereby forming a liquid crystal aligning agent 3.
  • the chemical structural formula of the polystyrene cation acid exchange resin is as follows: .
  • the polystyrene citrate cation exchange resin has a molecular weight of 164 * n, wherein n is a degree of polymerization, and in the present embodiment, the value of n is 30.
  • the cation exchange resin had a density of 0.9 g/ml and an ion exchange equivalent of 2 mmol/g.
  • the liquid crystal aligning agent 3 (coating thickness: 1200 A) prepared as above was applied on the surface of a glass substrate (8.5 line glass, size 2.2 m 2.5 m, thickness 0.7 mm). Subsequently, the liquid crystal aligning agent 3 was cured into a layer by first pre-baking in an oven at 120 ° C for 140 seconds, followed by main baking at 220 ° C for 12,000 seconds. The film layer cured as above is subjected to horizontal rubbing orientation, thereby forming the liquid crystal alignment layer 3.
  • Example 4 Preparation of Liquid Crystal Display Panel with Liquid Crystal Alignment Layer
  • the coating conditions were spin coating using an excess of the liquid crystal aligning agent, raised to 800 r/min for 5 seconds for 5 seconds, and then raised to 1600 r/min for 5 seconds for 5 seconds.
  • the liquid crystal aligning agent was cured by baking at 180 ° C for 30 min to form a film layer having a thickness of 1200 ⁇ .
  • Example 5 Performance Test
  • the liquid crystal display panels A, B, C, and D with the liquid crystal alignment layer prepared in Example 4 were sequentially tested using the liquid crystal characteristic test system 6254 of Dongyang Precision Measurement System (Shanghai) Co., Ltd.
  • the current between the liquid crystal cells is tested by applying different frequencies and different voltages to the upper and lower ITO electrodes of the small liquid crystal test box, and then further tested by software calculation to (1) ion density (ID) measurement; (2) residual Residual Direct Current and voltage holding ratio (VHR). Based on the measured values, the concentration of metal ions in the liquid crystal display panel was calculated. The results are shown in Table 1. Metal ion concentration in the liquid crystal display panel
  • the liquid crystal display panel is loaded with positive and negative voltages respectively. After the current in the liquid crystal panel is stably outputted, symmetric current detection patterns are maintained on both sides of the positive and negative voltages.
  • the current in the LCD panel is stable first after the output. After a period of time, there is a significant drop. The current after the drop continues to be stable. After a period of time, the current will have a slight fluctuation, that is, the slope shown by the peak 1. Line area.
  • the concentration of the metal ions in the liquid crystal display panel was obtained, that is, the ion concentrations of the eight, B, C, and D were 32 pC, 21 pC, 22 pC, and 24 pC, respectively.
  • the concentration of metal ions in the liquid crystal display panel having the liquid crystal alignment layer formed by curing the liquid crystal aligning agent added with the cation exchange resin of the embodiment of the present invention is remarkably lower than that of the liquid crystal alignment layer containing no cation exchange resin.
  • the concentration of metal ions in the liquid crystal display panel is remarkably lower than that of the liquid crystal alignment layer containing no cation exchange resin.
  • the cation exchange resin is added to the liquid crystal aligning agent provided in the present embodiment.
  • the cation exchange resin can better adsorb the metal present in the polyimide precursor liquid crystal layer or the liquid crystal layer by chemical action after forming a stable suspension system by long-chain molecules formed by polymerization of the polyimide precursor liquid through its three-dimensional network structure. Ions, not only prevent metal ions from being transferred to the liquid crystal layer when the voltage is shifted, The metal ions in the liquid crystal layer can also be bound to the resin of the alignment layer, which reduces the possibility of polarization of the liquid crystal, thereby greatly improving the display performance of the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种可防止液晶分子发生极化的液晶取向剂,其包括聚酰亚胺前驱液、阳离子交换树脂和溶剂。还提供了由该液晶取向剂形成的液晶取向层、该液晶取向剂和液晶取向层的制备方法和包括该液晶取向层的液晶显示面板。

Description

液晶取向剂、 液晶取向层、 它们的制法和液晶显示面板 技术领域
本发明的实施例涉及一种液晶取向剂, 由该液晶取向剂形成的液晶取向 层, 它们的制备方法, 以及包括该液晶取向层的液晶显示面板。 背景技术
液晶显示器 (Liquid Crystal Display, 简称 LCD)是显示领域内最具发展活 力的电子产品。 它具有驱动电压低、 功耗低、 重量轻、 不含有害射线等显著 优点。 LCD显示依赖于基板表面膜各向异性处理后的不同液晶分子的排列。 其中, 液晶分子层是改变光线偏光状态最重要的部分。
在 LCD 的生产中, 由于诸多外界因素不可避免地会在液晶分子层中引 入少量的金属离子, 使得液晶分子层中的极性端极易被金属离子吸附。 当液 晶分子的极性端被金属离子吸附后, 液晶分子两端的极性差异会随之减小。 当施加电场后, 液晶分子层会因两端极性相似而失去偏转, 从而使液晶分子 发生极化, 导致液晶面板出现残像。
为了防止液晶分子发生极化, 目前釆用的方法多是从电路的角度出发, 通过在液晶面板的驱动电路中增加特殊的功能电路, 来控制液晶分子层中金 属离子避免朝向同一方向聚集。 但在实现上述方法时, 发明人发现, 由于电 路设计只能对金属离子的偏转进行诱导, 不能从根本上改善液晶分子两端极 性的差异性, 当电路中一旦出现了不正常的电源供应或是不正常的控制信号 输出时, 就会对金属离子的偏转产生干扰, 不可避免地造成液晶分子发生极 化。
基于以上背景和需求, 本发明人开发了一种液晶取向剂, 通过防止液晶 分子发生极化的方式, 改善甚至解决了在施加电场时液晶面板出现残像的问 题。 发明内容
根据本发明的一个实施方式, 提供了一种液晶取向剂, 所述液晶取向剂 包括聚酰亚胺前驱液、 阳离子交换树脂和溶剂。
在本发明的另一个实施方式中, 提供了一种本发明实施例的液晶取向剂 的制备方法, 所述方法包括:
S1 : 称取适量的聚酰亚胺前驱液;
S2: 加入足量的溶剂, 搅拌, 使聚酰亚胺前驱液完全溶解; 和
S3: 再加入阳离子交换树脂, 使其均勾分布在所述聚酰亚胺前驱液中, 形成液晶取向剂。
在本发明的另一个实施方式中, 提供了一种液晶取向层, 所述液晶取向 层由本发明实施例的液晶取向剂形成。
在本发明的另一个实施方式中, 提供了一种本发明实施例的液晶取向层 的制备方法, 所述方法包括:
P1 : 在基板表面涂覆本发明实施例的液晶取向剂;
P2: 对液晶取向剂进行固化成层; 和
P3: 对基板上已固化的层进行摩擦取向, 形成液晶取向层。
在本发明的另一个实施方式中, 提供了一种液晶显示面板, 所述液晶显 示面板包括本发明实施例的液晶取向层。
本发明实施例中提供的液晶取向剂、 液晶取向层、 它们的制备方法、 液 晶显示面板, 与现有的液晶取向剂相比不同的是, 本发明实施例在液晶取向 剂中加入了阳离子交换树脂。 当液晶取向剂中的聚酰亚胺前驱液聚合形成长 链分子并固化成层, 对已固化的层进行摩擦取向形成液晶取向层后, 加入在 取向层中的阳离子交换树脂一方面可与聚酰亚胺前驱液中残留的离子发成反 应, 防止在电压偏移时金属离子转移到液晶层中; 另一方面还可化学吸附液 晶本身所带有的金属离子, 使金属离子由液晶层束缚在取向层的树脂中, 从 而减少液晶分子极化的可能。 附图说明
图 1为本发明实施例的液晶取向剂制备方法的流程图;
图 2为本发明实施例的液晶取向层制备方法的流程图;
图 3 为在电场作用下本发明实施例的液晶面板内的金属离子浓度检测 图。 具体实施方式
下面结合附图对本发明实施例的液晶取向剂、 液晶取向层、 它们的制备 方法、 液晶显示面板进行详细描述。
在本发明的一个实施方式中, 提供了一种液晶取向剂, 所述液晶取向剂 包括聚酰亚胺前驱液、 阳离子交换树脂和溶剂。
如本文所用的, 术语 "聚酰亚胺前驱液"也可称为 "聚酰亚胺取向剂" , 是指用于形成 LCD中取向层的前体溶液, 其主要包含聚酰亚胺 (PI)类化合物 及其它单体和溶剂。 所述单体可以为本领域已知适合用于聚酰亚胺前驱液中 的任何单体, 诸如均苯四曱酸二酐 (PMDA)、 2,2-双 [4-(4-氨基苯氧基)苯基]丙 烷 (BAPP)、 1,2,4,5-环己烷四曱酸二酐 (氢化 PMDA)和对苯二胺等,优选 PMDA 和对苯二胺。 所述溶剂可为本领域已知适合用于聚酰亚胺前驱液中的任何溶 剂, 诸如, N-曱基吡咯烷酮 (NMP)、 二曱基乙酰胺 (DMA)等。 所述聚酰亚胺 类化合物可以是芳香族二元胺和芳香族四羧酸或其酸酐或酯衍生物的反应产 物, 其分子量一般为 30,000到 100,000之间。 在本发明实施例中, 可用的芳 香族二元胺可为对苯二胺等, 可用的芳香族四羧酸或其酸酐或酯衍生物可为 均苯四曱酸二酐等。 可用于本发明实施例中的聚酰亚胺类化合物可通过本领 域技术人员已知的方式制备或可釆用合适的市售产品。 例如, 所述聚酰亚胺 类化合物可通过如下方式制备: 将芳香族二元胺和芳香族四羧酸或其酸酐或 酯衍生物在溶剂 (诸如, N-曱基吡咯烷酮等)中反应生成聚酰胺酸, 后者通过 加热脱水聚合生成聚酰亚胺。 可用于本发明实施例中的市售聚亚酰胺类化合 物可为 Nissan公司生产的 SE-4110、 SE-150、 SE-610等。 聚酰亚胺前驱液具 有较强的耐热性、 与液晶的亲和性、 机械强度以及优良的电学性能。 其可用 于大部分的液晶显示面板中, 以防止成膜后在进行摩擦时造成的膜剥离或摩 擦损伤。
如本文所用的, 术语 "阳离子交换树脂" 是指带有可交换阳离子的、 具 有网状结构的不溶性高分子化合物。 阳离子交换树脂大多由有机合成方法制 成, 其常用原料为苯乙烯或丙烯酸 (酯), 并通过聚合反应生成具有三维空间 立体网络结构的骨架,最后在骨架上导入不同类型的化学活性基团 (通常为酸 性基团)而制成。 阳离子交换树脂中含有一种 (或几种)化学活性基团, 即可交 换官能团, 其在水溶液中能解离出某些阳离子, 同时吸附溶液中原来存有的 其他阳离子。 阳离子交换树脂在类型上主要为苯乙烯系和丙烯酸系两大类, 除此以外, 还可由其他有机单体聚合制成, 如酚醛系、 环氧系、 乙烯吡啶系、 脲醛系等。在本申请实施例中,在聚酰亚胺前驱液中加入了阳离子交换树脂。 在将聚酰亚胺前驱液聚合并固化成层然后对其进行摩擦取向之后, 阳离子交 换树脂可通过化学作用吸附聚酰亚胺前驱液或液晶层中存在的金属离子, 以 减少液晶发生极化的可能性。
可用于本发明实施例中的阳离子交换树脂可为, 例如, 具有以下结构通 式( I )的聚苯乙烯类阳离子交换树脂:
Figure imgf000005_0001
其中, R基团为酸性基团, n为聚合度, 并且在 10 ~ 50范围内, 其重复 单元为 _[CH2CH(C6H4R)] -。 在一个方面, R基团可为选自 -S03H、 -COOH 或 -COSH中的一种。具有以上结构通式的聚苯乙烯磺酸阳离子交换树脂的分 子量可为约 184 * n (其中 n为聚合度), 密度可为 0.7-0.9 g/ml, 且离子交换当 量可为 0.7 ~ 4.2 mmol/g。
为简便起见, 将上述重复单元中的
Figure imgf000006_0001
记为 X基团。
当 R为- S03H时,上述阳离子交换树脂为聚苯乙烯类强酸性阳离子树脂, 其含有大量的强酸性基团, 容易在液晶层中置换出 Η+, 呈强酸性。 此时, 所述阳离子交换树脂可与液晶分子层中绝大多数的金属离子发生置换反应, 相关方程式如下:
2X-S03H+Ca2+→Ca (X-S03)2+2H+
X-S03H+K+→ X-S03K+H+
X-S03H+Na+→ X-S03Na+H+
2X-S03H+Cu2+→Cu (X-S03)2+2H+
当树脂解离后, 本体所含的负电基团能够较好地吸附溶液中的其他阳离 子, 如金属离子。
当 R为 -COOH和 -COSH时, 上述阳离子交换树脂为聚苯乙烯类弱酸性 阳离子树脂, 其包含大量的弱酸性基团, 能在液晶层中置换出 H+而呈酸性。 相比而言, X-COOH的酸性较弱, 只能够与液晶分子层中的弱碱性金属离子 发生置换反应, 相关方程式如下:
2X-COOH+Ca2+→ Ca (X-COO)2+2H+
2X-COOH+Mg2+→Mg (X-COO)2 +2H+
2X-COOH+Cu2+→Cu (X-COO)2+2H+。 而 X-COSH的酸性弱于 -S03H, 而稍强于 -COOH, 除了能够与液晶分子 层中的弱碱性金属离子发生置换反应外, 还能与碱性稍强的金属离子发生置 换反应, 相关方程式如下:
2X-COSH+Ca2+→Ca (X-COS)2+2H+
2X-COSH+Mg2+→ Mg (X-COS)2 +2H+
2X-COSH+Cu2+→Cu (X-COS)2+2H+
X-COSH+Na+→ X-COSNa+H+
当树脂解离后, 余下的负电基团能够与溶液中的其他阳离子吸附结合, 如金属离子, 但这类树脂的酸性往往较弱。
本领域技术人员应理解的是, 上述聚苯乙烯类阳离子交换树脂仅为可用 于本发明的阳离子交换树脂的一个例子, 在本发明中还可使用其它合适的阳 离子交换树脂。
可用于本发明实施例中的溶剂可为选自 N-曱基 -2-吡咯烷酮、 Y -丁内酯、 二曱基曱酰胺、 二曱基乙酰胺、 四氢呋喃和丁氧基乙醇中的一种或几种。
与现有的液晶取向剂相比不同的是, 本发明实施例在液晶取向剂中加入 了阳离子交换树脂。 当液晶取向剂中的聚酰亚胺前驱液聚合形成长链分子并 固化成层, 对已固化的层进行摩擦取向形成液晶取向层后, 加入在取向层中 的阳离子交换树脂一方面可与聚酰亚胺前驱液中残留的离子发成反应, 防止 在电压偏移时金属离子转移到液晶层中; 另一方面还可化学吸附液晶本身所 带有的金属离子, 使金属离子由液晶层束缚到取向层的树脂中, 从而减少液 晶分子极化的可能。
另外, 为使液晶分子的极性端可以得到更好的保护, 在本发明实施例的 液晶取向剂中, 所述阳离子交换树脂的密度可小于所述聚酰亚胺前驱液的密 度。 这样阳离子交换树脂可悬浮于液晶取向剂中, 并通过其三维网络结构可 更好地与聚酰亚胺前驱液聚合形成的长链分子形成稳定的悬浮体系, 从而可 确保悬浮体系在固化形成液晶取向层后, 阳离子交换树脂可更好地化学吸附 聚酰亚胺前驱液或液晶层中的金属离子。 在本发明的进一步的实施方式中, 所述聚酰亚胺前驱液、 阳离子交换树 脂和溶剂的重量份可分别为:
聚酰亚胺前驱液: 20-40份;
阳离子交换树脂: 1-3份; 和
溶剂: 160-200份。
在这个配比下, 可使阳离子交换树脂更好地悬浮于聚酰亚胺前驱液形成 的长链分子中, 以保证阳离子交换树脂更好地吸附液晶中的离子。 另外, 需 要说明的是, 由于阳离子交换树脂本身的化学性质以及物理性质稳定, 所以 不会影响取向或液晶排列, 也不会在电场下偏转。
在本发明的另一个实施方式中, 还提供了所述液晶取向剂的制备方法, 所述方法包括:
S1 : 称取适量的聚酰亚胺前驱液;
S2: 加入足量的溶剂, 搅拌, 使聚酰亚胺前驱液完全溶解; 和
S3: 再加入阳离子交换树脂, 使其均勾分布在所述聚酰亚胺前驱液中, 形成液晶取向剂。
在步骤 S1中, 聚酰亚胺前驱液的重量份可为 20-40份, 优选 25份。 在步骤 S2 中, 所用的溶剂可为, 例如, 引发性溶剂和溶解性溶剂的混 合物, 其中所述引发性溶剂可为 N-曱基 -2-吡咯烷酮和 Y -丁内酯的混合物, 且溶解性溶剂可为丁氧基乙醇。 其中, N-曱基 -2-吡咯烷酮重量份可为 20-35 份, Y -丁内酯的重量份可为 120-140份,丁氧基乙醇的重量份可为 20-25份; 优选的, N-曱基 -2-吡咯烷酮重量份可为 24-30份, Y -丁内酯的重量份可为 125-135份, 丁氧基乙醇的重量份可为 22-24份; 进一步优选的, N-曱基 -2- 吡咯烷酮重量份可为 27份, Y -丁内酯的重量份可为 130份, 丁氧基乙醇的 重量份可为 23份。
在步骤 S3中, 阳离子交换树脂的重量份可为 1-3份, 优选 3份。 可以理 解的是, 本领域技术人员可根据液晶层中含有的金属离子的浓度来具体地确 定所述阳离子交换树脂在上述含量范围内的使用量。 另外, 上述步骤 SI ~ S3可在室温至 60 °C的温度和存在保护气氛的条件 下进行。 所述温度优选为室温。 所述保护气氛可为氮气或氩气, 优选氮气。 优选地, 上述步骤 SI ~ S3在无水条件下进行。
如上所述的液晶取向剂的制备方法具有简单、 易操作的优点。 且由其制 备得到的液晶取向剂还可有效地减少液晶分子发生极化的可能性, 避免液晶 显示面板的显示画面出现残像, 从而提高液晶取向层的性能。
在本发明的另一个实施方式中, 还提供了一种液晶取向层, 所述液晶取 向层由本发明实施例的液晶取向剂形成。 由于在本发明实施例的液晶取向剂 中加入了阳离子交换树脂, 使得阳离子交换树脂通过其三维网状结构可与聚 酰亚胺前驱液聚合固化形成的长链分子形成更稳定的复合结构, 从而减少液 晶分子极化的可能。 由本发明实施例的液晶取向剂形成的液晶取向层, 可有 效地避免液晶分子发生极化, 从而提高液晶取向层的性能。
在本发明的另一个实施方式中, 还提供了所述液晶取向层的制备方法, 所述方法包括:
P1 : 在基板表面涂覆本发明实施例的液晶取向剂;
P2: 对液晶取向剂进行固化成层; 和
P3: 对基板上已固化的层进行摩擦取向, 形成液晶取向层。
在步骤 P1中, 液晶取向剂的涂覆厚度可为 700 ~ 1200A。
在步骤 P2中,固化可通过如下方式进行:首先在烘箱中在 80 ~ 150°C (优 选 120 °C)的温度下进行 50 ~ 200秒 (优选 130 ~ 150秒)的预烘, 随后在 180 ~ 240°C(优选 220 °C)的温度下进行 12,000秒的主烘。
在步骤 P3中, 摩擦取向的方向可为水平摩擦取向或成角度的摩擦取向。 例如, 对于 ADS显示模式的 CF和 TFT液晶显示装置为水平摩擦取向, 而 对于 TN模式的 CF和 TFT液晶显示装置为 45° 摩擦取向。
上述步骤 P1和 P3可在室温至 75°C的温度和存在保护气氛的条件下进 行。 优选在室温和氮气保护气氛的条件下进行, 以避免引入其它杂质以及液 晶在高温下的分解。 如上所述制备的液晶取向层可有效地避免液晶分子层发生液晶极化, 并 进一步避免了显示画面发生残像。 所述方法简便、 易操作, 可有效地提高液 晶显示面板的显示性能。
在本发明的另一个实施方式中, 还提供了一种液晶显示面板, 所述液晶 显示面板包括本发明实施例的液晶取向层。 由于所述液晶取向层可有效地避 免液晶发生极化, 将其运用到液晶显示面板中, 可避免液晶显示面板的显示 画面出现残像, 有效地提高液晶显示面板的显示性能。
为了更好说明本发明实施例的液晶取向剂、 液晶取向层、 它们的制备方 法和液晶显示面板, 下面以具体实施例进行详细说明。 实施例
本领域技术人员应理解, 本发明实施例中的阳离子交换树脂以聚苯乙烯 类阳离子交换树脂为例进行详细说明, 但本发明实施例中的阳离子交换树脂 并不限于聚苯乙烯类阳离子交换树脂。 离子交换树脂还可由其他有机单体聚 合制成, 如丙烯酸 (酯)类、 酚醛类、 环氧类、 乙烯吡啶类、 脲醛类等, 只要 能起到阳离子交换作用, 吸附金属离子, 减少液晶发生极化的可能性即可。 实施例 1
液晶取向剂 1的制备
于室温称取聚酰亚胺前驱液 (Nissan SE-6414) 20份, 然后向其中加入 N- 曱基 -2-吡咯烷酮 20份、 γ -丁内酯 120份和丁氧基乙醇 20份。搅拌直至聚酰 亚胺前驱液完全溶解。 随后加入聚苯乙婦横酸阳离子交换树脂 1份并搅拌均 匀, 由此形成液晶取向剂 1。 其中所用的聚苯乙烯磺酸阳离子交换树脂的化 学结构式如下:
Figure imgf000011_0001
所述聚苯乙烯磺酸阳离子交换树脂的分子量为 184 * n,其中 n为聚合度, 在本实施例中, n值为 30。 所述阳离子交换树脂的密度为 0.8g/ml, 离子交换 当量为 3 mmol/g。 液晶取向层 1的制备
在玻璃基板 (8.5代线玻璃, 尺寸为 2.2 m 2.5m, 厚度为 0.7mm)的表面 涂覆如上制成的液晶取向剂 1, 涂覆厚度为厚度 1200 A。 随后通过如下方式 将液晶取向剂 1固化成层: 首先在烘箱中在 120 °C预烘 130秒, 随后在 200°C 进行 12,000秒的主烘。 对如上固化的膜层进行水平摩擦取向, 由此形成液晶 取向层 1。 实施例 2
液晶取向剂 2的制备
于室温称取聚酰亚胺前驱液 (Nissan SE-6414) 30份, 然后加入 N-曱基 -2- 吡咯烷酮 27份、 γ-丁内酯 130份和丁氧基乙醇 23份。 搅拌, 使聚酰亚胺前 驱液完全溶解。 随后加入聚苯乙烯羧酸阳离子交换树脂 2份并搅拌均匀, 由 此形成液晶取向剂 2。
其中所用的聚苯乙烯羧酸阳离子交换树脂的化学结构式如下:
Figure imgf000012_0001
所述苯乙烯羧酸阳离子交换树脂的分子量为 148 * n, 其中 n为聚合度, 在本实施例中, n值为 30。 所述阳离子交换树脂的密度为 0.85 g/ml, 离子交 换当量为 2.5 mmol/g。 液晶取向层 2的制备
在玻璃基板 (8.5代线玻璃, 尺寸为 2.2m x 2.5m, 厚度为 0.7 mm)的表面 上涂覆如上制得的液晶取向剂 2 (涂覆厚度为 1200A)。 随后通过如下方式将 液晶取向剂 2固化成层: 首先在烘箱中在 120°C预烘 150秒,随后在 220°C进 行 12,000秒的主烘。 对如上固化的膜层进行水平摩擦取向, 由此形成液晶取 向层 2。 实施例 3
液晶取向剂 3的制备
于室温称取聚酰亚胺前驱液 (Nissan SE-6414) 40份; 然后加入 N-曱基 -2- 吡咯烷酮 35份、 γ -丁内酯 140份和丁氧基乙醇 25份。 搅拌, 使聚酰亚胺前 驱液完全溶解。 随后加入聚苯乙烯巯酸阳离子交换树脂 3份并搅拌均匀, 由 此形成液晶取向剂 3。
所述聚苯乙烯巯酸阳离子交换树脂的化学结构式如下:
Figure imgf000013_0001
所述聚苯乙烯巯酸阳离子交换树脂的分子量为 164 * n,其中 n为聚合度, 在本实施例中, n值为 30。 所述阳离子交换树脂的密度为 0.9 g/ml, 离子交 换当量为 2 mmol/g。 液晶取向层 3的制备
在玻璃基板 (8.5代线玻璃, 尺寸为 2.2 m 2.5 m, 厚度为 0.7 mm)的表面 上涂覆如上制得的液晶取向剂 3 (涂覆厚度为 1200A)。 随后通过如下方式将 液晶取向剂 3固化成层: 首先在烘箱中在 120°C预烘 140秒,随后在 220°C进 行 12,000秒的主烘。 对如上固化的膜层进行水平摩擦取向, 由此形成液晶取 向层 3。 实施例 4 带有液晶取向层的液晶显示面板的制备
分别制备 4块无薄膜晶体管的小型液晶显示面板, 其尺寸为 10 mm * 10 mm。将现有技术中未加入阳离子交换树脂的普通液晶取向剂 (对照)以及实施 例 1 ~ 3中制得的液晶取向剂 1、液晶取向剂 2和液晶取向剂 3分别旋涂在这 四块液晶显示面板上。 涂覆条件为使用过量的液晶取向剂进行旋涂, 经 5秒 升到 800 r/min并保持 10秒,再经 5秒升到 1600r/min并保持 20秒。在 180 °C 烘焙 30 min将液晶取向剂固化形成膜层, 其厚度为 1200A。 随后将如上形成 的液晶取向剂固化膜层进行水平摩擦取向, 由此形成带有液晶取向层的液晶 显示面板 、 B、 C D。 实施例 5 性能测试 利用东扬精测系统 (上海)有限公司液晶特性测试系统 6254对实施例 4中 制得的带有液晶取向层的液晶显示面板 A、 B、 C和 D依次进行测试。 通过 在小型液晶测试盒的上下 ITO电极施加不同频率和不同电压, 测试液晶盒之 间的电流, 然后进一步通过软件计算来测试 (1)离子密度 (Ion Density,简称 ID) 测量; (2)残留直流分量 (Residual Direct Current)和电压保持率 (VHR)。 根据测 得的数值, 计算液晶显示面板中的金属离子浓度, 结果见表 1。 液晶显示面板中的金属离子浓度
Figure imgf000014_0001
如图 3所示, 分别对液晶显示面板加载正负电压, 在液晶面板内的电流 稳定输出后, 正负电压两侧保持着对称的电流检测图形。 液晶显示面板内的 电流在输出后首先保持稳定, 一段时间后, 有一个明显的下降, 下降后的电 流继续保持稳定, 一段时间后, 电流会有一个微小的波动, 即峰 1所示的斜 线区域。 通过计算峰 1所示区域的面积, 得到液晶显示面板内的金属离子浓 度, 即八、 B、 C、 D的离子浓度分别为 32 pC、 21 pC、 22 pC、 24 pC。
由上表 1可知, 带有由本发明实施例的加入阳离子交换树脂的液晶取向 剂固化形成的液晶取向层的液晶显示面板内的金属离子浓度明显低于其中的 液晶取向层不含阳离子交换树脂的液晶显示面板内的金属离子浓度。
这是由于本实施例提供的液晶取向剂中添加了阳离子交换树脂。 阳离子 交换树脂通过其三维网络结构在与聚酰亚胺前驱液聚合形成的长链分子形成 稳定的悬浮体系后, 能够更好地通过化学作用吸附聚酰亚胺前驱液或液晶层 中存在的金属离子, 不但可以防止在电压偏移时金属离子转移到液晶层中, 还可将液晶层中的金属离子束缚在取向层的树脂中, 减少了液晶发生极化的 可能性, 从而大大地提高了液晶显示面板的显示性能。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式 的限定。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做 出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。 而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围。
本申请要求于 2014年 1月 21 日递交的中国专利申请第 201410028509.7 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种液晶取向剂, 包括聚酰亚胺前驱液、 阳离子交换树脂和溶剂。
2、根据权利要求 1所述的液晶取向剂,其中所述阳离子交换树脂具有 结构通式( I ):
Figure imgf000016_0001
( I )
其中, R基团为酸性基团, 且
n为 10 ~ 50。
3、根据权利要求 2所述的液晶取向剂,其中所述 R基团为选自 -S03H、 -COOH或 -COSH中的一种。
4、 根据权利要求 1 ~ 3中任一项所述的液晶取向剂, 其中所述阳离子 交换树脂的密度小于所述聚酰亚胺前驱液的密度。
5、 根据权利要求 1 ~ 4中任一项所述的液晶取向剂, 其中所述聚酰亚 胺前驱液、 阳离子交换树脂和溶剂的重量份分别为,
聚酰亚胺前驱液: 20-40份;
阳离子交换树脂: 1-3份; 和
溶剂: 160-200份。
6、 根据权利要求 1 ~ 5中任一项所述的液晶取向剂, 其中所述溶剂为 选自 N-曱基 -2-吡咯烷酮、 Y -丁内酯、 二曱基曱酰胺、 二曱基乙酰胺、 四 氢呋喃和丁氧基乙醇中的一种或几种。
7、 一种如权利要求 1 ~ 6任一项所述的液晶取向剂的制备方法, 其中 所述方法包括:
S1 : 称取适量的聚酰亚胺前驱液;
S2: 加入溶剂, 搅拌, 使聚酰亚胺前驱液完全溶解; 和
S3:再加入阳离子交换树脂,使其均勾分布在所述聚酰亚胺前驱液中, 形成液晶取向剂。
8、 一种液晶取向层, 其中所述液晶取向层由权利要求 1 ~ 6任一项所 述或通过权利要求 7所述方法制成的液晶取向剂形成。
9、一种如权利要求 8所述的液晶取向层的制备方法,其中所述方法包 括:
P1 : 在基板表面涂覆如权利要求 1 ~ 6任一项所述或通过权利要求 7 所述方法制成的液晶取向剂;
P2: 对液晶取向剂进行固化成层; 和
P3: 对基板上已固化的层进行摩擦取向, 形成液晶取向层。
10、 一种液晶显示面板, 其中所述液晶显示面板包括权利要求 8 所述 或根据权利要求 9所述方法制成的液晶取向层。
PCT/CN2014/082008 2014-01-21 2014-07-11 液晶取向剂、液晶取向层、它们的制法和液晶显示面板 WO2015109777A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,052 US9488868B2 (en) 2014-01-21 2014-07-11 Liquid crystal aligning agent, liquid crystal aligning layer, methods of preparing the same, and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410028509.7 2014-01-21
CN201410028509.7A CN103820130B (zh) 2014-01-21 2014-01-21 液晶取向剂、液晶取向层及其制备方法、液晶显示面板

Publications (1)

Publication Number Publication Date
WO2015109777A1 true WO2015109777A1 (zh) 2015-07-30

Family

ID=50755429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082008 WO2015109777A1 (zh) 2014-01-21 2014-07-11 液晶取向剂、液晶取向层、它们的制法和液晶显示面板

Country Status (3)

Country Link
US (1) US9488868B2 (zh)
CN (1) CN103820130B (zh)
WO (1) WO2015109777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069133A1 (ja) * 2015-10-20 2017-04-27 日産化学工業株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820130B (zh) * 2014-01-21 2015-07-08 北京京东方显示技术有限公司 液晶取向剂、液晶取向层及其制备方法、液晶显示面板
CN106483709A (zh) * 2017-01-03 2017-03-08 京东方科技集团股份有限公司 彩膜基板、阵列基板和显示装置
US11270686B2 (en) * 2017-03-28 2022-03-08 International Business Machines Corporation Deep language and acoustic modeling convergence and cross training
CN107474437A (zh) * 2017-09-01 2017-12-15 苏州罗格特光电科技有限公司 一种宽低温聚酰亚胺薄膜材料的制备方法
JP7317592B2 (ja) * 2018-08-08 2023-07-31 Tianma Japan株式会社 液晶パネルの表示品位低下の評価方法及びその装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080718A (ja) * 2000-09-07 2002-03-19 Sumitomo Bakelite Co Ltd 絶縁膜用樹脂組成物およびこれを用いた絶縁膜
CN101760203A (zh) * 2009-12-08 2010-06-30 武汉工业学院 一种提纯液晶材料的方法
CN102626661A (zh) * 2012-04-11 2012-08-08 中国地质大学(武汉) 一种强酸型聚苯乙烯阳离子交换树脂、其制备方法及其应用
CN102828054A (zh) * 2012-09-03 2012-12-19 四川长虹电器股份有限公司 酸浸-阳离子交换树脂吸附工艺从废液晶板回收铟的方法
CN102850546A (zh) * 2011-06-30 2013-01-02 达兴材料股份有限公司 聚酰胺酸树脂与聚酰亚胺树脂的纯化方法
CN103820130A (zh) * 2014-01-21 2014-05-28 北京京东方显示技术有限公司 液晶取向剂、液晶取向层及其制备方法、液晶显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105224A (en) * 1979-02-06 1980-08-12 Hitachi Ltd Liquid crystal display element
JPH01281419A (ja) * 1988-05-09 1989-11-13 Seiko Epson Corp 液晶パネル
JPH05107525A (ja) * 1991-10-15 1993-04-30 Fujitsu Ltd 液晶表示素子
JPH0651315A (ja) * 1992-07-28 1994-02-25 Fujitsu Ltd 強誘電性液晶表示装置およびその製造方法
KR100637115B1 (ko) * 1999-09-22 2006-10-20 삼성에스디아이 주식회사 액정표시소자
KR101748247B1 (ko) * 2010-05-10 2017-06-16 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 표시 소자 및, 이에 포함된 중합체
KR101945053B1 (ko) * 2011-07-07 2019-02-01 스미또모 가가꾸 가부시키가이샤 광반응성 액정 배향제, 및 액정 배향 소자 및 그의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080718A (ja) * 2000-09-07 2002-03-19 Sumitomo Bakelite Co Ltd 絶縁膜用樹脂組成物およびこれを用いた絶縁膜
CN101760203A (zh) * 2009-12-08 2010-06-30 武汉工业学院 一种提纯液晶材料的方法
CN102850546A (zh) * 2011-06-30 2013-01-02 达兴材料股份有限公司 聚酰胺酸树脂与聚酰亚胺树脂的纯化方法
CN102626661A (zh) * 2012-04-11 2012-08-08 中国地质大学(武汉) 一种强酸型聚苯乙烯阳离子交换树脂、其制备方法及其应用
CN102828054A (zh) * 2012-09-03 2012-12-19 四川长虹电器股份有限公司 酸浸-阳离子交换树脂吸附工艺从废液晶板回收铟的方法
CN103820130A (zh) * 2014-01-21 2014-05-28 北京京东方显示技术有限公司 液晶取向剂、液晶取向层及其制备方法、液晶显示面板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069133A1 (ja) * 2015-10-20 2017-04-27 日産化学工業株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JPWO2017069133A1 (ja) * 2015-10-20 2018-08-09 日産化学工業株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2021140186A (ja) * 2015-10-20 2021-09-16 日産化学株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Also Published As

Publication number Publication date
US9488868B2 (en) 2016-11-08
US20160026042A1 (en) 2016-01-28
CN103820130B (zh) 2015-07-08
CN103820130A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2015109777A1 (zh) 液晶取向剂、液晶取向层、它们的制法和液晶显示面板
KR101616143B1 (ko) 액정 배향 처리제 및 그것을 사용한 액정 표시 소자, 그리고 신규한 디아민
TWI422616B (zh) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
JP4013052B2 (ja) 液晶配向処理剤および液晶表示素子
TWI439519B (zh) A liquid crystal alignment agent and a liquid crystal alignment film and a liquid crystal display device using the same
JP5751171B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
TW200842464A (en) Liquid crystal aligning agent, liquid crystal alignment film using the same, and liquid crystal display element
TW200922974A (en) Liquid crystal-aligning agent, and method for production of liquid crystal alignment film
WO2013041017A1 (zh) 预聚物、取向膜及其制备方法、液晶显示装置
JP7067555B2 (ja) 組成物、液晶配向膜、位相差板、偏光板、配向膜の製造方法及び液晶素子
TWI477534B (zh) 液晶配向劑、液晶配向膜、液晶顯示元件、聚醯胺酸及化合物
TWI694291B (zh) 液晶配向劑、液晶元件的製造方法、液晶配向膜、液晶元件及化合物
TW200846451A (en) Liquid crystal alignment agent and liquid crystal display element
CN110734771B (zh) 液晶取向剂、液晶取向膜及液晶显示元件
CN107880902B (zh) 液晶配向剂、液晶配向膜以及液晶显示组件
KR102319584B1 (ko) 블록화된 이소시아네이트기를 갖는 중합체를 함유하는 액정 배향제, 액정 배향막, 및 액정 표시 소자
TW201636377A (zh) 液晶取向劑、液晶取向膜以及液晶元件
JP2008191337A (ja) 液晶配向剤および液晶表示素子
TWI786195B (zh) 液晶配向劑、液晶元件的製造方法、液晶配向膜及液晶元件
TW201815893A (zh) Boa基板或附有bcs之基板塗布用液晶配向劑及液晶顯示元件
TWI596201B (zh) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2017185430A1 (zh) 液晶取向剂、二胺化合物以及聚酰胺酸
JP6680362B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
CN106010584B (zh) 液晶配向剂、液晶配向膜以及液晶显示元件
TWI529199B (zh) 液晶配向劑及液晶顯示元件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14429052

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880055

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC 8 EPO FORM 1205A DATED 12-12-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14880055

Country of ref document: EP

Kind code of ref document: A1