WO2015109556A1 - 一种适配补偿控制的方法、模块和光交换系统 - Google Patents

一种适配补偿控制的方法、模块和光交换系统 Download PDF

Info

Publication number
WO2015109556A1
WO2015109556A1 PCT/CN2014/071455 CN2014071455W WO2015109556A1 WO 2015109556 A1 WO2015109556 A1 WO 2015109556A1 CN 2014071455 W CN2014071455 W CN 2014071455W WO 2015109556 A1 WO2015109556 A1 WO 2015109556A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
compensation value
optical switch
signal
Prior art date
Application number
PCT/CN2014/071455
Other languages
English (en)
French (fr)
Inventor
李帅兵
马会肖
杨小玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480070026.1A priority Critical patent/CN105874735A/zh
Priority to PCT/CN2014/071455 priority patent/WO2015109556A1/zh
Priority to KR1020167023155A priority patent/KR101849484B1/ko
Priority to EP14880090.7A priority patent/EP3091677B1/en
Publication of WO2015109556A1 publication Critical patent/WO2015109556A1/zh
Priority to US15/218,812 priority patent/US9807479B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0039Electrical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/005Arbitration and scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/0058Crossbar; Matrix

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a method, a module, and an optical switching system for adapting compensation control.
  • optical switches are attracting more and more attention due to their low energy consumption and large capacity.
  • the core of the optical switch is the optical switch switching matrix.
  • the optical switch switching matrix is usually composed of a number of optical switching units with certain rules.
  • the establishment of switching paths is achieved by changing the state of these optical switching units.
  • FIG. 1 shows a technical solution for solving the problem of link power imbalance.
  • part of the data of the optical packet passes through the optical switch, and after photoelectric conversion into an electrical signal, it enters the optical packet receiving device.
  • a detection control unit at the optical packet receiving device end configured to detect various parameter values of a signal of a part of the data of the exchanged optical packet, such as: average power, density of the packet, extinction ratio (ER: ER) value and The switch switches the time, etc., and then these parameter values are sent to the information collection unit.
  • the peak power calculation unit calculates the peak power of the optical packet based on the information in the information collection unit, and then transmits the peak power of the optical packet to the control unit.
  • the control unit determines that the peak power of the optical packet is less than a preset value, instructing the upper-level switch to adjust the transmit power of the transmitting end or adjust the gain of the amplifier of the optical packet switching device of the current level, The power of the optical packet is compensated.
  • An embodiment of the present invention provides a method, a module, and an optical switching system for adapting compensation control, which can quickly determine a compensation value of an optical packet before the optical packet is exchanged, so that after the optical packet is compensated according to the compensation value, The purpose of equalizing the optical signal at the receiving end of the optical switch is achieved.
  • an embodiment of the present invention provides a method for adapting compensation control, where the method includes:
  • optical tag information of the optical signal where the optical tag information carries the destination receiving end information of the optical signal;
  • the preset compensation value of each optical switch unit is a preset power compensation value of each optical switch unit; and the optical switch compensation value is light.
  • the switching power compensation value; the optical switch compensation value of the number specifically includes: an optical switching power compensation value of the optical signal;
  • the method also includes:
  • the power compensation value of the optical signal is used, and the power compensation value of the optical signal is used for power compensation of the optical signal.
  • the method before the obtaining the optical label information of the optical signal, the method further includes:
  • the preset compensation value of each optical switch unit is the each light.
  • a preset phase compensation value of the switch unit; the optical switch compensation value is an optical switch phase compensation value; an optical switch compensation value of the optical signal, the optical switch compensation value is used to compensate the optical signal, including: an optical signal
  • the optical switch phase compensation value, the phase compensation value of the optical signal is used for phase compensation of the optical signal.
  • the preset compensation value of each optical switch unit is the each light a preset polarization state compensation value of the switch unit;
  • the optical switch compensation value is an optical switch Polarization compensation value;
  • Determining an optical switch compensation value of the optical signal, where the optical switch compensation value is used to compensate for the optical signal including:
  • the optical switch polarization state compensation value of the optical signal is used, and the polarization state compensation value of the optical signal is used to perform polarization state compensation on the optical signal.
  • the destination receiving end information includes the destination receiving port number
  • Determining the optical switch compensation value of the optical signal specifically includes:
  • the preset optical switch configuration table includes a correspondence relationship between a transmission port number, a destination receiving port number, and an optical switch compensation value of the optical switch switching matrix.
  • the method further includes:
  • the method further includes: Detecting a value compensated by the optical signal and an output value transmitted to a destination receiving end of the optical switch switching matrix;
  • the present invention provides an adaptation compensation control module, an acquisition unit, a first determination unit, and a second determination unit;
  • the acquiring unit is configured to acquire optical label information of an optical signal, where the optical label information carries information of a destination receiving end of the optical signal;
  • the first determining unit is configured to determine, according to the destination receiving end information of the optical signal, an exchange path of the optical signal in the optical switch switching matrix; preset a compensation value, and determine an optical switch compensation value of the optical signal, The optical switch compensation value is used to compensate for the optical signal.
  • the preset compensation value of each optical switch unit is a preset power compensation value of each optical switch unit; and the optical switch compensation value is light. a switching power compensation value; a preset power compensation value of the element, determining an optical switching power compensation value of the optical signal;
  • the module further includes: a power compensation value determining unit;
  • the power compensation value determining unit is configured to determine a sum of a link power compensation value of the optical signal and the optical switch power compensation value as a power compensation value of the optical signal, and power compensation of the optical signal The value is used to power compensate the optical signal.
  • the module further includes: a photoelectric conversion unit, a signal splitting unit, a power detecting unit, an optical signal power determining unit, and a link power compensation value determining unit. ;
  • the photoelectric conversion unit is configured to perform photoelectric conversion on an optical signal of a preset proportional power in the optical signal to obtain an electrical signal;
  • the signal branching unit is configured to divide the electrical signal into a first electrical signal and a second electrical signal, wherein the first electrical signal accounts for a first ratio of the electrical signal, and the second electrical signal accounts for Describe a second ratio of electrical signals;
  • the power detecting unit is configured to detect a power value of the first road electrical signal
  • the optical signal power determining unit is configured to: according to the power value of the first road electrical signal of each link, the first a ratio and a preset ratio, obtaining a power value of the optical signal
  • the link power compensation value determining unit is configured to obtain a link power compensation value of the optical signal according to the optical signal power value and a preset target power value;
  • the acquiring unit is specifically configured to read optical label information of the optical signal from the second electrical signal.
  • the preset compensation value of each optical switch unit is the each light.
  • a preset phase compensation value of the switch unit is an optical switch phase compensation value;
  • a preset phase compensation value, determining an optical switch phase compensation value of the optical signal, and a phase compensation value of the optical signal is used Phase compensation is performed on the optical signal.
  • the preset compensation value of each optical switch unit is the each light.
  • the optical switch compensation value is a preset polarization state compensation value of the optical switch; and determining an optical switch polarization state compensation value of the optical signal, where the optical signal is The polarization state compensation value is used to perform polarization state compensation on the optical signal.
  • the destination receiving end information includes the destination receiving port number
  • the second determining unit is specifically configured to use the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix as an index, and match with a preset optical switch configuration table to determine The optical switch compensation value of the optical signal;
  • the preset optical switch configuration table includes a correspondence relationship between a transmission port number, a destination receiving port number, and an optical switch compensation value of the optical switch switching matrix.
  • the module further includes: a first detecting unit, a first obtaining unit, and a first correcting unit, according to the fifth possible implementation manner;
  • the first detecting unit is configured to detect an output value of the optical signal transmitted to a destination receiving end of the optical switch switching matrix
  • the first obtaining unit is configured to obtain a difference between an output value of the destination receiving end and a preset target value of the optical signal
  • the first correcting unit is configured to: if the difference is greater than a preset correction threshold, the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, In the preset optical switch configuration table, the optical switch compensation value of the optical signal is corrected.
  • the module further includes: a second detecting unit, a second obtaining unit, and a second correcting unit, according to the fifth possible implementation manner;
  • the second detecting unit is configured to detect a value compensated by the optical signal and an output value transmitted to a destination receiving end of the optical switch switching matrix;
  • the second obtaining unit is configured to obtain a difference between the compensated value of the optical signal and the output value of the destination receiving end;
  • the second correcting unit is configured to: if the difference is greater than a preset correction threshold, the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, In the preset optical switch configuration table, the optical switch compensation value of the optical signal is corrected.
  • the present invention provides an optical switching system, including: an optical switch switching matrix, an adaptive compensation control module and an adaptation compensation module as provided above;
  • the adaptive compensation control module is configured to send an optical switch compensation value of the optical signal to the adaptive compensation module;
  • the adaptive compensation module is configured to receive an optical switch compensation value of the optical signal sent by the adaptive compensation control module, and compensate the optical signal according to an optical switch compensation value of the optical signal, and
  • the optical signal is sent to the optical switch switching matrix, and the optical switch switching matrix is configured to receive the compensated optical signal sent by the adaptive compensation module, and perform optical switching on the compensated optical signal.
  • An embodiment of the present invention provides a method for adapting compensation control, the method comprising: acquiring optical tag information of an optical signal, where the optical tag information carries information of a destination receiving end of the optical signal; The destination receiving end information determines an exchange path of the optical signal in the optical switch switching matrix; determining an optical switch compensation value of the optical signal according to a preset compensation value of each optical switching unit on the switching path, The optical switch compensation value is used to compensate for the optical signal.
  • the optical switching path of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link, since the optical switching unit included in each switching path is determined, the optical switching can be performed according to the optical switching
  • the preset compensation value of each optical switch unit on the path determines the compensation value of the optical signal, and does not need to measure the compensation value of the optical packet through the feedback loop, which can quickly determine the compensation value of the optical packet before the optical packet is exchanged. Therefore, after the optical packet is compensated according to the compensation value, the optical signal at the receiving end of the optical switch is equalized.
  • FIG. 2 is a schematic structural diagram of an optical switching system according to an embodiment of the present invention
  • 3 is a schematic structural diagram of a 4*4 optical optical switching matrix
  • FIG. 4 is a schematic flowchart of a method for adapting compensation control according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a method for optical signal power compensation control according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for optical signal phase compensation control according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of a method for adapting compensation control according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a power compensation module according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method for adapting compensation control according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for adapting compensation control according to an embodiment of the present invention
  • FIG. 12 is a schematic flowchart of a method for adapting compensation control according to an embodiment of the present invention
  • FIG. 13 is a schematic flowchart of a method for adapting compensation control according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram 2 of an adaptive compensation control module according to an embodiment of the present invention
  • FIG. 15 is a schematic structural diagram 3 of an adaptive compensation control module according to an embodiment of the present invention
  • FIG. 17 is a schematic structural diagram 5 of an adaptive compensation control module according to an embodiment of the present invention
  • FIG. 18 is a schematic structural diagram 6 of an adaptive compensation control module according to an embodiment of the present invention.
  • the power compensation value of the optical packet signal of each link is calculated by using a part of the exchanged data of the optical packet, that is, the receiving device end of the optical switch switching matrix is exchanged. The data is detected and then fed back to the front end of the optical switch switching matrix through the feedback loop.
  • the embodiment of the present invention provides an optical switching system. As shown in FIG. 2, the optical switching system includes: an adaptation compensation control module 21, an adaptation compensation module 22, and an optical switch switching matrix 23.
  • the adaptive compensation control module 21 is configured to obtain optical tag information of the optical signal, where the optical tag information carries the destination receiving end information of the optical signal;
  • the adaptive compensation module 22 is configured to receive an optical switch compensation value of the optical signal sent by the adaptive compensation control module 21, and compensate the optical signal according to an optical switch compensation value of the optical signal, And transmitting the optical signal to the optical switch switching matrix 23.
  • the optical switch switching matrix 23 is configured to receive the compensated optical signal sent by the adaptive compensation module 22, and perform optical switching on the compensated optical signal.
  • the adaptive compensation control module 21 may further generate the optical signal after the switching path of the optical switch switching matrix 23 is determined.
  • the exchange path of the optical signal controls the signal.
  • the adaptive compensation module 22 compensates the optical signal and transmits the compensated optical signal to the optical switch switching matrix 23
  • the optical switch switching matrix 23 drives the corresponding light according to the switched path control signal.
  • the switching unit directly exchanges the compensated optical signals.
  • the optical signal input to the optical switching system is a signal transmitted from the upper switching node or the user side to the optical switching system.
  • the optical switch fabric 23 is generally an N*N matrix having N transmit ports and N receive ports, and includes a plurality of optical switch units connected according to a certain rule between the transmit port and the receive port.
  • the 4*4 optical switch switching matrix shown in FIG. corresponding to the N transmit ports and the N receive ports of the optical switch fabric 23, the optical switch system can optically exchange optical signals of the N links in parallel.
  • the optical signals of each link are respectively branched to the adaptive compensation control module 21 and the adaptive compensation module 22.
  • the adaptive compensation control module 21 determines the optical switch compensation value of the optical signal transmitted on the link 1-N, and then transmits the optical switch compensation value of the optical signal transmitted on the link 1-N to the adaptive compensation module 22. After receiving the optical switch compensation value of the optical signal transmitted on the link 1-N, the adaptation compensation module 22 compensates the optical signal of the link 1-N input to the adaptation compensation module 22, and then links the link. The compensated optical signals on 1-N are correspondingly sent to the corresponding transmit ports of the optical switch switching matrix 23. The optical switch switching matrix 23 directly switches the optical signals of the compensated links 1 -N to the corresponding receiving ports through the corresponding transmitting ports.
  • a 4*4 optical switch fabric 30, as depicted in FIG. 3, includes 24 optical switch units, 4 transmit ports, and 4 receive ports.
  • the optical signals of the links 1-4 are directly exchanged from the transmitting ports 1-4 to different receiving ports after being compensated by the adaptive compensation module 22.
  • the optical switch unit passes through the compensated optical signal in each of the links, the optical switch unit passes through the optical switch unit of the optical switch switching matrix.
  • the optical switch switching unit included in the switching path of the transmitting port to the receiving port is determined.
  • the switching path from the transmitting port 1 to the receiving port 2 includes an optical switch unit K1, an optical switch unit ⁇ 2, an optical switch unit ⁇ 7, and an optical switch unit ⁇ 8.
  • the switching path from the transmitting port 2 to the receiving port 1 includes an optical switch unit ⁇ 5, an optical switch unit ⁇ 6, an optical switch unit ⁇ 3, and an optical switch unit ⁇ 4.
  • the optical switching system receives the optical signal at the receiving port, and needs to convert the optical signal into an electrical signal before receiving the optical signal.
  • the signal power received by the receiving port of the optical switching system is too small, the nonlinearity of the photoelectric conversion system and the like may cause the optical signal to be unable to be converted; if the received optical signal power is too large, the photoelectric conversion module may be damaged.
  • the optical signal power received by each receiving port of the optical switching system is kept within a certain range, that is, the optical signal power received by each receiving port is balanced. Sex.
  • the phase or polarization state of the optical signal also changes due to different performance of different optical switching units, which may cause the receiving port.
  • the optical signal is decoded incorrectly.
  • the optical switching system also needs to compensate for parameters such as the phase or polarization state of the optical signal.
  • the optical switching system provided by the embodiment of the present invention is suitable for compensating various parameters of optical signals such as power, phase, and polarization states.
  • the embodiments of the present invention describe power, phase, and polarization states, but are not limited. The present invention can only compensate for the above three parameters.
  • the compensation value of the other performance parameters of the optical signal is determined by the method of the adaptive compensation control provided by the embodiment of the present invention, and the other performance parameters of the optical signal are compensated and exchanged by the switching system provided by the embodiment of the present invention. All are within the scope of protection of the present invention.
  • the following describes in detail the method for the compensation control module 21 to compensate and control the optical signal.
  • the adaptation compensation module 21 in the optical switching system reference may be made to the description of the following embodiments.
  • the embodiment of the present invention provides a method for adapting compensation control. As shown in FIG. 4, the method includes:
  • optical tag information of an optical signal where the optical tag information carries destination receiving end information of the optical signal.
  • the optical signal is an optical signal transmitted from a different link to the optical switching system. Specifically, based on the optical switching system shown in FIG. 2, after the optical signal of each optical fiber link is transmitted to the optical switching system, the optical signal of each link is split into two optical signals by an optical splitter, where the input
  • the optical signal to the adaptive compensation control module 21 is assumed to be the first optical signal
  • the optical signal input to the adaptive compensation module 22 is assumed to be the second optical signal.
  • the second optical signal of the N links is input to the adaptive compensation control mode 21 block for photoelectric conversion to obtain an electrical signal.
  • the adaptation compensation module 21 reads the optical label information of each link optical signal from the electrical signal of each link, and the optical label information of the optical signal of each link carries the packet length of the optical signal. Information and destination receiver information. The destination receiving end information is specifically a destination receiving port number. It should be noted that, in the optical switching system, the adaptive compensation control module 21 obtains the optical label information of the optical signals of each link in parallel, and can quickly determine the optical label information of each link optical signal. In theory, the adaptive compensation control module 21 can also acquire optical signals in series. The optical tag information for capturing parallel or serial optical signals is not specifically limited in the embodiment of the present invention. It should be noted that the adaptation compensation control module 21 may also directly extract the all-optical label from the second optical signal without performing photoelectric conversion. In this regard, the embodiment of the present invention is not specifically limited.
  • the optical signal may specifically be an optical burst packet in an optical switching system, or may be an optical packet.
  • the optical switch switching path of the optical signal can then be determined according to Table 1.
  • each optical switch unit has a certain insertion loss to the optical signal, so the optical signal will be lost through the optical switch switching matrix 23, and the optical switch compensation value is for the optical switch exchange.
  • the matrix compensates for the loss produced by the signal.
  • the value of the insertion loss parameter of each optical switch is time-invariant, and the measurement can be kept unchanged for a long time. After the measurement of the insertion loss parameter value of each optical switch unit is obtained, the insertion loss value of each optical switch unit can be used as the preset compensation value of each of the optical switch units.
  • the insertion loss referred to as insertion loss, refers to a certain loss of signal at some point in the transmission system due to the insertion of components or devices.
  • the measurement signal can use the continuous mode signal during the measurement, so the measurement method and the measurement tool can follow the continuous mode measurement method, thereby avoiding the sudden elimination. Signaling measurement.
  • the measurement method for the continuous mode is a well-known technique in the art, and will not be described in detail in the embodiment of the present invention.
  • the optical switch unit included in the exchange path can be determined according to the optical switch switching path. Accordingly, the optical switch compensation value of the optical signal can be determined based on a preset compensation value of the optical switch unit included in the switching path.
  • the correspondence of the optical switch units is not limitative.
  • the adaptive compensation control module 21 can also use other forms to represent the optical switching unit included in the switching path and the switching path, which is not specifically limited in this embodiment of the present invention. Exemplarily, if the port number of the destination receiving port of the optical signal of the link 1 is 2, the optical signal of the link 1 is compensated by the adaptive compensation module and then input to the transmitting port 1, and the optical signal of the link 1 can be determined.
  • the switching path is an exchange path 2 including an optical switch unit 1, an optical switch unit 2, an optical switch unit 7, and an optical switch unit 8. Then, the sum of the preset compensation values of the above four optical switch units is calculated, and the sum of the preset compensation values of the four optical switch units is used as the optical switch compensation value of the optical signal of the link 1.
  • the preset compensation value may be at least one of the following: a preset power compensation value, a preset phase compensation value, and a preset polarization state compensation value.
  • the optical switch compensation value may be at least one of the following: an optical switch power compensation value, an optical switch phase compensation value, and an optical switch polarization state compensation value.
  • the adaptive compensation control module 21 determines the optical switch compensation value of the N links
  • the optical switch compensation value of the N link optical signals is sent to the adaptive compensation module 22, so that the adaptive compensation module 22 compensates the optical signals of the N links according to the optical switch compensation values of the N link optical signals.
  • a method for controlling power compensation of the optical signal provided by the embodiment of the present invention, as shown in FIG. 5, specifically includes:
  • optical label information of an optical signal where the optical label information carries information of a destination receiving end of the optical signal.
  • optical label information of an optical signal where the optical label information carries information about a destination receiving end of the optical signal.
  • the optical switch phase compensation value is used for phase compensation of the optical signal.
  • the polarization states of the optical signals may change due to different performances of different optical switches, which may cause decoding errors of the destination receiving end.
  • the polarization state of the optical signal on each link can also be compensated.
  • the phase of each link can be compensated by using an adjustable phase shifter array.
  • optical label information of an optical signal where the optical label information carries information of a destination receiving end of the optical signal.
  • An embodiment of the present invention provides a method for adapting compensation control, the method comprising: acquiring optical tag information of an optical signal, where the optical tag information carries information of a destination receiving end of the optical signal; The destination receiving end information determines an exchange path of the optical signal in the optical switch switching matrix; determining an optical switch compensation value of the optical signal according to a preset compensation value of each optical switching unit on the switching path, The optical switch compensation value is used to compensate for the optical signal.
  • the optical switching path of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link, since the optical switching unit included in each switching path is determined, the optical switching can be performed according to the optical switching
  • the preset compensation value of each optical switch unit on the path determines the compensation value of the optical signal, and does not need to measure the compensation value of the optical packet through the feedback loop, which can quickly determine the compensation value of the optical packet before the optical packet is exchanged. Therefore, after the optical packet is compensated according to the compensation value, the optical signal at the receiving end of the optical switch is equalized.
  • An embodiment of the present invention provides a method for adapting compensation control. As shown in FIG. 8, the method includes:
  • optical tag information of an optical signal where the optical tag information carries information about a destination receiving end of the optical signal.
  • the optical switch power compensation value of the optical signal is determined.
  • the optical switch unit included in the exchange path of the optical signal in the optical switch switching matrix is determined. According to the preset power of each optical switch unit on the switching path The compensation value determines the optical switching power compensation value of the optical signal.
  • the power compensation value of each optical switch unit is preset in the adaptive compensation control module 21, and the optical switch unit included in each switching path.
  • the optical switch switching matrix uses the 4*4 switching matrix shown in Figure 3. If the destination receiving port number of the optical signal of link 1 is 2, the destination receiving port number of the optical signal of link 2 is 4, the chain. The destination receiving port number of the optical signal of the road 3 is 1, and the destination receiving port number of the optical signal of the link 4 is 3.
  • the switching paths of the links 1-4 are 2, 8, 9, 15, respectively.
  • the optical switching units respectively included in the four switching paths are: Switching path 2: Optical switch unit 1, 2, 7, 8
  • Switching path 8 Optical switch unit 5, 17, 18, 22
  • Switching path 9 Optical switch unit 13, 9, 10, 4
  • Switching path 15 Optical switch unit 19, 23, 21, 16.
  • the optical switch power compensation value of the link 1-4 optical signal can be calculated.
  • the link power compensation value is a compensation value for the loss of the optical signal on the link from the upper switching node or the user side to the optical switching system.
  • the link power compensation value of each link may be preset. It should be noted that, especially for a link with a relatively short transmission distance and a low rate, the transmission loss of the link can be considered as a certain value, so the link power compensation value of each link can be preset based on this.
  • the link power compensation value of each link may also be a compensation value obtained after comparing the power of the optical signal with the target power of the optical signal in real time.
  • the sum of the link power compensation value of each link and the optical switch compensation value may be used as the power compensation value of the optical signal.
  • the adaptive compensation module 22 may perform power amplification compensation on the optical signal by using the power amplifier driving unit and the amplifier array.
  • the power compensation module shown in FIG. 9 includes an amplifier driving unit and an amplifier array.
  • the amplifier driving unit receives the indication of the power compensation control module 21, and according to the power compensation value of the optical signal, drives the amplifier corresponding to each link in the amplifier array through the amplifier driving unit to perform corresponding power amplification compensation on the optical signal.
  • the amplifier array can use a semiconductor optical amplifier (English: Semiconductor Optical Amplifier, SOA for short) or a burst mode of an optical fiber amplifier (English: Erbium-Doped Fiber Amplifier, EDFA for short).
  • An embodiment of the present invention provides a method for adapting compensation control, the method comprising: acquiring optical tag information of an optical signal, where the optical tag information carries information of a destination receiving end of the optical signal; The destination receiving end information determines an exchange path of the optical signal in the optical switch switching matrix; determining an optical switching power compensation value of the optical signal according to a preset power compensation value of each optical switching unit on the switching path; And determining, by the sum of the link power compensation value of the optical signal and the optical switch power compensation value, a power compensation value of the optical signal, where a power compensation value of the optical signal is used to perform power on the optical signal make up.
  • the optical switching path of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link, since the optical switching unit included in each switching path is determined, the optical switching can be performed according to the optical switching
  • the preset compensation value of each optical switch unit on the path determines the compensation value of the optical signal, and does not need to measure the compensation value of the optical packet through the feedback loop, which can quickly determine the compensation value of the optical packet before the optical packet is exchanged. So that after the optical packet is compensated according to the compensation value, the optical signal of the optical switch receiving end is equalized; and considering the link loss, the optical signal of each link can be made. The compensation is more accurate.
  • the method performs photoelectric conversion on the optical signal to obtain an electrical signal, and then divides the electrical signal into two electrical signals, one for extracting Optical label information, used to measure the power of an optical signal.
  • the embodiment of the present invention provides a method for adapting compensation control, as shown in the figure.
  • the method includes:
  • the optical signal of each link is split into two optical signals by a splitter.
  • the first optical signal is input to the adaptive compensation control module 21, wherein the second optical signal is input to the adaptive compensation module 22, and the compensation module 22 is adapted.
  • the electrical signal of the first optical signal After photoelectric conversion of the first optical signal, the electrical signal of the first optical signal is obtained.
  • the ratio of the power of the first optical signal to the power value of the optical signal is a preset ratio.
  • the sum of the power values of the first optical signal and the second optical signal is the power value of the optical signal.
  • the electrical signal is divided into a first electrical signal and a second electrical signal.
  • the first electrical signal occupies a first ratio of the electrical signal
  • the second electrical signal occupies a second ratio of the electrical signal.
  • the electrical signal can be shunted by using components such as a power splitter.
  • the first ratio and the second ratio may be any ratio of the optical signal power, and the sum of the first ratio and the second ratio is one hundred percent. As the first ratio can be any ratio of the optical signal power, and the sum of the first ratio and the second ratio is one hundred percent. As the first ratio can be any ratio of the optical signal power, and the sum of the first ratio and the second ratio is one hundred percent. As the first ratio can
  • the second ratio is 90%.
  • the embodiment of the present invention specifically does not limit the first ratio and the second ratio.
  • the power value of the first electrical signal may be recorded as ⁇ , and the first ratio may be recorded as ⁇ , the preset ratio If it is denoted as F, the power value C of the optical signal can be calculated by using formula 1):
  • the power value A of the first electrical signal is O.lmW
  • the first ratio B is 10%
  • the preset ratio F is 10%
  • ⁇ The power value C of the optical signal is calculated by Equation 1) to be 10 mW.
  • the link power compensation value E of the optical signal can be calculated by using Equation 2):
  • E D-C*(l-F) 2) wherein the preset target power value of the optical signal is denoted as D.
  • D the preset target power value of the optical signal
  • the link power compensation value is calculated by the formula 2) to be llmW.
  • the optical tag information of the optical signal is read from the second electrical signal, where the optical tag information carries the destination receiving end information of the optical signal. 1007. Determine, according to the destination receiving end information of the optical signal, an exchange path of the optical signal in an optical switch switching matrix.
  • the optical tag information is read and the power of the optical signal is measured, it is necessary to perform photoelectric conversion on the optical signal.
  • the optical signal of the first path can obtain an electrical signal by one photoelectric conversion, and then the power splitter can be used to convert the optical signal of the first path of each link.
  • the electrical signal is divided into two electrical signals, namely a first electrical signal and a second electrical signal, which are respectively used for reading optical tag signals, I. and power value detection.
  • the first optical signal of each link can be first divided into two optical signals by using the optical splitter, and then the optical signals of the two optical signals are respectively converted. , reading of optical tag information, and power detection of optical signals.
  • a method for adapting compensation control according to an embodiment of the present invention, wherein the intersection of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link.
  • the compensation value of the optical signal can be determined according to the preset compensation value of each optical switching unit on the optical switching path, without measuring through the feedback loop
  • the compensation value of the optical packet can quickly determine the compensation value of the optical packet before the optical packet is exchanged, so that the optical packet is compensated according to the compensation value, and the optical signal of the optical switch receiving end is equalized.
  • the compensation of the optical signal of each link can be made more accurate. Further, if only one photoelectric conversion is used before extracting the optical tag information and measuring the power of the optical signal, the system power can be reduced and the system performance can be improved.
  • the optical port may be transmitted to the optical switch matrix transmission port number and the destination receiving port number that is directly switched to the optical signal transmission to the optical switching matrix, and the preset is queried.
  • the optical switch configuration table obtains a light-on-light compensation value of the optical signal.
  • an embodiment of the present invention provides a method for adapting compensation control, where the method includes:
  • optical tag information of an optical signal where the optical tag information carries information about a destination receiving end of the optical signal.
  • the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, and matched with a preset optical switch configuration table to determine optical switch compensation of the optical signal. value.
  • the preset optical switch configuration table includes a corresponding relationship between a transmit port number, a destination receive port number, and an optical switch offset value of the optical switch switch matrix.
  • the 4*4 structure optical switch switching matrix 30 shown in FIG. 3 is taken as an example, wherein the optical switch switching matrix 30 includes 24 optical switch units, and each piece can be determined according to a preset compensation value of each optical switch unit.
  • the preset compensation value of the switching path specifically, the preset optical switch configuration table can be as shown in Table 2: Table 2
  • the optical switch compensation value of the port number 1 of the link 1 matching the destination receiving end is All, and the link number of the link 2 matching the destination receiving end is The optical switch compensation value of 2 is A22, and the optical switch compensation value of link 3 matching to the destination receiving end is 3 A33, The optical switch compensation value of port 4 matching the destination number of link 4 is A44.
  • the preset optical switch configuration table may further include: an index entry formed by the destination receiving end corresponding to each sending port, and an optical switch compensation value of each receiving port optical signal.
  • the 4*4 optical switch switching matrix shown in FIG. 3 is used as an example, and the index entry format of the preset optical switch configuration table is:
  • the preset optical switch configuration table is shown in Table 3:
  • the destination receiving port of the optical signal of link 1 is 2, the port of the destination receiving end of link 2 is 3, and the port of the destination receiving end of the optical signal of link 3 is 1, the chain The destination port of the optical signal of the path 4 is 4, and the generated index number is 2314. According to the index number, it is queried in Table 2, and the optical switch compensation value of the optical signal exchanged directly from the transmission port 1 is A12.
  • the optical switch compensation value of the optical signal transmitted by the transmission port 2 is A23
  • the optical switch compensation value of the optical signal exchanged directly from the transmission port 3 is A31
  • the optical switch compensation value of the optical signal exchanged directly from the transmission port 4 is A44.
  • the optical switch compensation value may include at least one of an optical switch power compensation value, an optical switch phase compensation value, and an optical switch polarization state compensation value.
  • a method for adapting compensation control since the switching path of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link, because each optical switching path includes an optical switch If the unit is determined, the compensation value of the optical signal may be determined according to a preset compensation value of each optical switch unit on the optical switching path, and the compensation value of the optical packet is not required to be measured through the feedback loop, which can be performed in the optical packet.
  • the compensation value of the optical packet is quickly determined before the exchange, so that the optical packet is compensated according to the compensation value, and the optical signal at the receiving end of the optical switch is equalized.
  • the adaptive compensation control module is pre-configured with an optical switch configuration table, the optical switch compensation value of the optical signal can be quickly queried.
  • the embodiment of the present invention provides a method for adapting compensation control. As shown in FIG. 12, the method includes:
  • optical tag information of an optical signal where the optical tag information carries destination receiving end information of the optical signal.
  • the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, and matched with a preset optical switch configuration table to determine an optical switch compensation value of the optical signal. .
  • the output value may specifically be the power, phase, and polarization of the optical signal. At least one parameter in the state.
  • the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, and the preset optical switch configuration table is used.
  • the optical switch compensation value of the optical signal is corrected.
  • the steps 1201 - 1203 refer to the description of the steps 401 - 403, which will not be further described in the embodiment of the present invention.
  • the optical switch configuration table of Table 2 is taken as an example, and the preset optical switch compensation value is a preset optical switch power compensation value.
  • the optical signal power outputted by the destination receiving port 1 is 2 mW
  • the optical signal power outputted by the destination receiving port 2 is 1.8 mW
  • the optical signal power outputted by the destination receiving port 3 is 1.5 mW
  • the optical signal power output by the port 4 is 1.4. mW.
  • the port number of the destination receiving end of the optical signal of the link 1 is 1, the port number of the destination receiving end of the optical signal of the link 2 is 2, and the port number of the destination receiving end of the optical signal of the link 3 is 3.
  • the port number of the destination receiving end of the optical signal of the link 4 is 4.
  • the default target power value of link 1-4 is 2mW
  • the preset correction threshold is 0.4mW.
  • the difference of link 1 is OmW
  • the difference of link 2 is 0.2mW
  • the difference of link 3 is 0.5
  • the difference between mW and link 4 is 0.6mW.
  • the difference between the link 3 and the link 4 is greater than the preset correction threshold, and the optical switch compensation value of the destination end of the link 3 is corrected to A33+0.5mW, and the optical switch of the link 4 destination receiving end is 4 The value is corrected to A44+0.6mW.
  • a method for adapting compensation control according to an embodiment of the present invention since the switching path of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link, because each optical switching path includes an optical switch If the unit is determined, the compensation value of the optical signal may be determined according to a preset compensation value of each optical switch unit on the optical switching path, and the compensation value of the optical packet is not required to be measured through the feedback loop, which can be performed in the optical packet.
  • the optical switch configuration table can be updated in real time according to the change of the optical switch performance, thereby further improving the signal balance of each receiving end of the optical switch switching matrix.
  • An embodiment of the present invention provides a method for adapting compensation control. As shown in FIG. 13, the method includes:
  • the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, and matched with a preset optical switch configuration table to determine an optical switch compensation value of the optical signal. .
  • the value compensated by the optical signal is specifically a compensation value pair of the optical signal sent by the adaptation compensation module 22 according to the adaptation compensation control module.
  • the output value after the compensation of the optical signal may specifically be at least one of a power, a phase, or a polarization state.
  • the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, where the preset is In the optical switch configuration table, the optical switch compensation value of the optical signal is corrected.
  • the optical switch configuration table of Table 2 is taken as an example, and the preset optical switch compensation value is a preset optical switch power compensation value.
  • the optical signal power outputted by the destination receiving port 1 is 2 mW
  • the optical signal power output by the destination receiving port 2 is 1.8 mW
  • the optical signal power output by the destination receiving port 3 is 1.5 mW
  • the optical signal power output by the port 4 is 1.4 mW.
  • the power value of the optical signal of link 1 is 2.4mW
  • the power value of the optical signal of link 2 is 2.4mW
  • the power value of the optical signal of link 3 is 2.4mW.
  • the power value is 2.4 mW, wherein the port number of the destination receiving end of the optical signal of the link 1 is 1, and the port number of the destination receiving end of the optical signal of the link 2 is 2, and the optical signal of the link 3 The port number of the destination receiving end is 3, and the port number of the destination receiving end of the optical signal of the link 4 is 4.
  • the preset correction threshold is 0.6 mW
  • the difference of link 1 is 0.4 mW
  • the difference of link 2 is 0.6 mW
  • the difference of link 3 is 0.9 mW
  • the difference of link 4 is lmW.
  • the difference between the link 3 and the link 4 is greater than the preset correction threshold, and the optical switch compensation value of the destination end of the link 3 is corrected to A33+0.9mW, and the optical switch of the link 4 destination receiving end is 4 The value is corrected to A44+lmW.
  • a method for adapting compensation control according to an embodiment of the present invention since the switching path of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link, because each optical switching path includes an optical switch If the unit is determined, the compensation value of the optical signal may be determined according to a preset compensation value of each optical switch unit on the optical switching path, and the compensation value of the optical packet is not required to be measured through the feedback loop, which can be performed in the optical packet.
  • the compensation value of the optical packet is quickly determined before the exchange, so that the optical packet is compensated according to the compensation value, and the optical signal is balanced at the receiving end of the optical switch; and the optical switch configuration can be updated in real time according to the change of the optical switch performance.
  • the table further improves the signal balance of each receiving end of the optical switch switching matrix.
  • the embodiment of the present invention provides an adaptation compensation control module, which is applicable to the optical switching system of FIG. 2, as shown in FIG. 14, the module includes: an obtaining unit 1401, a first determining unit 1402 and a second determining unit 1403.
  • the acquiring unit 1401 is configured to acquire optical label information of an optical signal, where the optical label information carries information of a destination receiving end of the optical signal.
  • the acquiring unit 1401 may read the optical tag information of the optical signal from the electrical signal converted by the optical signal.
  • the acquiring unit 1401 may also directly extract the all-optical tag from the second path optical signal.
  • the optical tag information of each optical signal of the link read by the acquiring unit 1401 carries packet length information and destination receiving end information of the optical signal.
  • the destination receiving end information is specifically a destination receiving port number.
  • the acquiring unit 1401 obtains the optical label information of the optical signals of each link in parallel, and can quickly determine the optical label information of each link optical signal. In theory, the acquiring unit 1401 can also acquire the optical signal in series.
  • the optical label information of the optical signal captured in parallel or serially is not specifically limited in the embodiment of the present invention.
  • the optical signal may specifically be an optical burst packet in an optical switching system, or may be an optical packet.
  • the optical signal is an optical signal transmitted from a different link to the optical switching system.
  • the first determining unit 1402 is configured to determine, according to the destination receiving end information of the optical signal, an exchange path of the optical signal in the optical switch switching matrix. After the first determining unit 1402 determines the destination receiving port number of the optical signal, that is, the receiving port number of the optical switch switching matrix, the optical signal of each link is input to the optical switch switching matrix through the adaptive compensation module 22. The corresponding transmission port can determine the transmission port number of the optical signal. The optical switch switching path of the optical signal can then be determined according to Table 1.
  • the second determining unit 1403 is configured to determine an optical switch compensation value of the optical signal according to a preset compensation value of each optical switch unit on the switching path, where the optical switch compensation value is used to The optical signal is compensated.
  • each optical switch unit has a certain insertion loss to the optical signal, so the optical signal will be lost through the optical switch switching matrix 23, and the optical switch compensation value is for the optical switch exchange.
  • the matrix compensates for the loss produced by the signal.
  • the value of the insertion loss parameter of each optical switch is time-invariant, and the measurement can be kept unchanged for a long time. After the measurement of the insertion loss parameter value of each optical switch unit is obtained, the insertion loss value of each optical switch unit may be used as a preset compensation value of each of the optical switch units.
  • the insertion loss refers to a certain loss of the signal due to the insertion of components or devices somewhere in the transmission system.
  • the measurement signal can use the continuous mode signal during the measurement, so the measurement method and the measurement tool can follow the continuous mode measurement method, thereby avoiding the sudden elimination. Signaling measurement. Since the measurement method of the continuous mode is a well-known technique in the art, the embodiment of the present invention will not be described again.
  • the second determining unit 1403 can determine the optical switch unit included in the switching path according to the optical switch switching path. Accordingly, the second determining unit 1403 can determine the optical switch compensation value of the optical signal based on the preset compensation value of the optical switch unit included in the switching path.
  • the correspondence of the optical switch units is not limitative.
  • the optical switch unit included in the exchange path and the exchange path may be used in other forms, which is not specifically limited in the embodiment of the present invention.
  • the preset compensation value may be at least one of the following: a preset power compensation value, a preset phase compensation value, and a preset polarization state compensation value.
  • the optical switch compensation value may be at least one of the following: an optical switch power compensation value, an optical switch phase compensation value, and an optical switch polarization state compensation value.
  • the preset compensation value of each optical switch unit may include each of the optical switch
  • the second determining unit 1403 is specifically configured to determine an optical switch power compensation value of the optical signal according to a preset power compensation value of each optical switch unit on the switching path. Specifically, considering that in the coherent system, after the optical signals are exchanged through the optical switch switching matrix 23, the phase of the optical signal changes due to the different performance of the different optical switching units, which may cause the decoding error of the destination receiving end. In order to improve the accuracy of decoding at the receiving end of the switch and reduce the bit error rate, the phase of the optical signal on each link can also be compensated.
  • the preset compensation value of each optical switch unit is a preset phase compensation value of each optical switch unit
  • the optical switch compensation value is an optical switch phase compensation value.
  • the second determining unit 1403 is configured to determine an optical switch phase compensation value of the optical signal according to a preset phase compensation value of each optical switch unit on the switching path, where the phase compensation value of the optical signal is used. Phase compensation is performed on the optical signal.
  • the polarization states of the optical signals may change due to different performances of different optical switches, which may cause decoding errors of the destination receiving end.
  • the preset compensation value of each optical switch unit is the each light.
  • the optical switch compensation value is a polarization state compensation value of the optical switch;
  • the second determining unit 1403 is configured to determine, according to a preset polarization state compensation value of each optical switch unit on the switching path, an optical switch polarization state compensation value of the optical signal, and a polarization state of the optical signal.
  • the compensation value is used to compensate the polarization of the optical signal.
  • the module further includes: a power compensation value determining unit 1404.
  • the second determining unit 1403 is specifically configured to determine an optical switch power compensation value of the optical signal according to a preset power compensation value of each optical switch unit on the switching path.
  • the power compensation value determining unit 1404 is configured to determine a sum of a link power compensation value of the optical signal and the optical switch power compensation value as a power compensation value of the optical signal, and a power of the optical signal. The compensation value is used to power compensate the optical signal.
  • the method first photoelectrically converts the optical signal to obtain an electrical signal, and then divides the electrical signal into two electrical signals, one for The optical tag information is extracted, and one way is used to measure the power of the optical signal.
  • the module further includes: a photoelectric conversion unit 1405, a signal splitting unit 1406, a power detecting unit 1407, an optical signal power determining unit 1408, and a link power compensation value determining unit 1409.
  • the photoelectric conversion unit 1405 is configured to perform photoelectric conversion on an optical signal of a preset proportional power in the optical signal to obtain an electrical signal.
  • the signal dividing unit 1406 is configured to divide the electrical signal into a first electrical signal. And a second electrical signal, the first electrical signal occupies a first ratio of the electrical signal, and the second electrical signal occupies a second ratio of the electrical signal.
  • the power detecting unit 1407 is configured to detect a power value of the first road electrical signal.
  • the optical signal power determining unit 1408 is configured to obtain a power value of the optical signal according to a power value of the first electrical signal of each link, the first ratio, and a preset ratio.
  • the link power compensation value determining unit 1409 is configured to obtain a link power compensation value of the optical signal according to the optical signal power value and a preset target power value.
  • the acquiring unit 1401 is specifically configured to read optical tag information of the optical signal from the second electrical signal.
  • the optical port may be transmitted to the optical switch matrix transmission port number and the destination receiving port number that is directly switched to the optical signal transmission to the optical switching matrix, and the preset is queried.
  • the optical switch configuration table obtains a light-on-light compensation value of the optical signal.
  • the destination receiving end information includes the destination receiving port number.
  • the second determining unit 1403 is specifically configured to use the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix as an index, and match with a preset optical switch configuration table to determine The optical switch compensation value of the optical signal.
  • the optical parameters of the optical switch change due to temperature changes, aging of the optical switch, etc., and the insertion loss of the optical switch to the optical signal changes after the optical signal is exchanged by the optical switch.
  • the preset optical switch configuration table needs to be updated.
  • the module is also included The first detecting unit 1410, the first obtaining unit 141 1 and the first correcting unit 1412; the first detecting unit 1410, configured to detect an output value of the optical signal transmitted to the destination receiving end of the optical switch switching matrix
  • the first obtaining unit 141 1 is configured to obtain a difference between an output value of the destination receiving end and a preset target value of the optical signal;
  • the first correcting unit 1412 is configured to: if the difference is greater than a preset correction threshold, the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, In the preset optical switch configuration table, the optical switch compensation value of the optical signal is corrected.
  • the module further includes: a second detecting unit 1413, a second obtaining unit 1414, and a second correcting unit 1415.
  • the second detecting unit 1413 is configured to detect the compensated value of the optical signal and the output value of the destination receiving end of the optical switch switching matrix; the second obtaining unit 1414 is configured to obtain the optical signal. a difference between the compensated value and the output value of the destination receiving end;
  • the second correcting unit 1415 is configured to: if the difference is greater than a preset correction threshold, the transmission port number and the destination receiving port number transmitted by the optical signal to the optical switch switching matrix are indexed, In the preset optical switch configuration table, the optical switch compensation value of the optical signal is corrected.
  • the acquisition unit of the module is obtained
  • the optical tag information of the optical signal where the optical tag information carries the information of the destination receiving end of the optical signal; the first determining unit determines the optical switch of the optical signal according to the destination receiving end information of the optical signal.
  • the optical switching path of the optical signal in the optical switching matrix can be determined according to the destination receiving end information of each link, since the optical switching unit included in each switching path is determined, the optical switching can be performed according to the optical switching
  • the preset compensation value of each optical switch unit on the path determines the compensation value of the optical signal, and does not need to measure the compensation value of the optical packet through the feedback loop, which can quickly determine the compensation value of the optical packet before the optical packet is exchanged. Therefore, after the optical packet is compensated according to the compensation value, the optical signal at the receiving end of the optical switch is equalized.
  • the above functions can be allocated according to needs. It is completed by different functional modules, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the unit described above refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically Separately, the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple nodes. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

本发明提供了一种适配补偿控制的方法、模块和光交换系统,能够在光包进行交换前快速的确定光包的补偿值,以使得根据所述补偿值对光包进行补偿后,达到光交换机接收端光信号均衡的目的。该方法包括:获取光信号的光标签信息,所述光标签信息携带有所述光信号的目的接收端信息;根据所述光信号的目的接收端信息确定所述光信号的在光开关交换矩阵中的交换通路;根据所述交换通路上每个光开关单元的预设补偿值,确定所述光信号的光开关补偿值,所述光开关补偿值用于对所述光信号进行补偿。该方法适用于光通信技术领域。

Description

一种适配补偿控制的方法、 模块和光交换系统 技术领域 本发明涉及光通信技术领域, 尤其涉及一种适配补偿控制的方法、 模块和光交换系统。
背景技术 光交换机以其低能耗, 大容量等特点引起越来越多的关注。 光交换 机的核心是光开关交换矩阵, 光开关交换矩阵通常情况下是由很多的光 开关单元以一定的规则构成。 在光交换机中, 交换通路的建立都是通过 改变这些光开关单元的状态实现的。 然而受工艺限制, 无论哪种光开关 技术都很难制作出两个性能完全相同的光开关单元, 进而造成不同光开 关单元对信号产生的损耗也不一样。 因此, 级联了多级光开关单元的交 换通路, 必然对信号产生不同的损耗。 综上可知, 由于光开关交换矩阵自身的缺陷, 在进行光交换之后,在 同一个接收端口接收到的光信号的参数, 如功率、 相位和偏振态等必然 存在较大的差异。 这种差异将增加后续信号处理的难度, 增大系统的误 码率。 图 1给出了一种解决链路功率不均衡问题的技术方案, 在该技术方 案中, 光包的一部分数据通过光交换机后, 经过光电转换为电信号后, 进入光包接收装置。 光包接收装置端的检测控制单元, 用于探测交换的 光包的一部分数据的信号的各项参数值, 如: 平均功率、 包的密度、 消 光比 (英文: Extinction Ratio , 简称: ER ) 值和开关切换时间等, 然后 将这些参数值送入信息收集单元。 峰值功率计算单元根据信息收集单元 中的信息计算得到光包的峰值功率, 然后将光包的峰值功率发送给控制 单元。 该控制单元确定光包的峰值功率小于预设值时, 则指示上级交换 机调整发送端的发射功率或调整本级光包交换装置的放大器的增益, 对 光包的功率进行补偿。
然而釆用这种方式, 因需要根据交换的光包的一部分数据的信号的 参数值计算光信号的补偿值, 存在一定的延时, 不能快速的对光信号进 行补偿。 发明内容
本发明的实施例提供一种适配补偿控制的方法、模块和光交换系统, 能够在光包进行交换前快速的确定光包的补偿值, 以使得根据所述补偿 值对光包进行补偿后, 达到光交换机接收端光信号均衡的目的。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 本发明实施例提供了一种适配补偿控制的方法, 该方法 包括:
获取光信号的光标签信息, 所述光标签信息携带有所述光信号的目 的接收端信息;
根据所述光信号的目的接收端信息确定所述光信号的在光开关交换 矩阵中的交换通路; 号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿。
在第一种可能的实施方式中, 结合第一方面, 所述每个光开关单元 的预设补偿值为所述每个光开关单元的预设功率补偿值; 所述光开关补 偿值为光开关功率补偿值; 号的光开关补偿值具体包括: 光信号的光开关功率补偿值;
该方法还包括:
将所述光信号的链路功率补偿值和所述光开关功率补偿值之和, 确 定为所述光信号的功率补偿值, 所述光信号的功率补偿值用于对所述光 信号进行功率补偿。
在第二种可能的实施方式中, 根据第一种可能的实施方式, 在所述 获取光信号的光标签信息之前, 该方法还包括:
对所述光信号中预设比例功率的光信号进行光电转换,获得电信号; 将所述电信号分为第一路电信号和第二路电信号, 第一路电信号占 所述电信号的第一比例, 第二路电信号占所述电信号的第二比例;
检测所述第一路电信号的功率值;
根据所述第一路电信号的功率值、 所述第一比例和预设比例, 获得 所述光信号的功率值;
根据所述光信号的功率值和预设目标功率值, 获得所述光信号的链 路功率补偿值;
所述获取光信号的光标签信息具体包括:
从所述第二路电信号中读取所述光信号的光标签信息。
在第三种可能的实施方式中, 结合第一方面或根据第一种可能的实 施方式至第二种可能的实施方式, 所述每个光开关单元的预设补偿值为 所述每个光开关单元的预设相位补偿值; 所述光开关补偿值为光开关相 位补偿值; 光信号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿 包括: 光信号的光开关相位补偿值, 所述光信号的相位补偿值用于对所述光信 号进行相位补偿。
在第四种可能的实施方式中, 结合第一方面或根据第一种可能的实 施方式至第二种可能的实施方式, 所述每个光开关单元的预设补偿值为 所述每个光开关单元的预设偏振态补偿值; 所述光开关补偿值为光开关 偏振态补偿值;
Figure imgf000006_0001
确定所述 光信号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿 包括:
Figure imgf000006_0002
述光信号的光开关偏振态补偿值, 所述光信号的偏振态补偿值用于对所 述光信号进行偏振态补偿。
在第五种可能的实施方式中, 结合第一方面或根据第一种可能的实 施方式至第四种可能的实施方式, 所述目的接收端信息包括所述目的接 收端口号;
Figure imgf000006_0003
确定所述 光信号的光开关补偿值具体包括:
以所述光信号传输至所述光开关交换矩阵的发送端口号和所述目的 接收端口号为索引, 与预设的光开关配置表进行匹配, 确定所述光信号 的光开关补偿值;
所述预设的光开关配置表包含有所述光开关交换矩阵的发送端口 号、 目的接收端口号和光开关补偿值的——对应关系。
在第六种可能的实施方式中, 根据第五种可能的实施方式, 该方法 还包括:
检测所述光信号传输至所述光开关交换矩阵的目的接收端的输出 值;
获得所述目的接收端的输出值和所述光信号的预设目标值的差值; 若所述差值大于预设修正阈值, 以所述光信号传输至所述光开关交 换矩阵的发送端口号和所述目的接收端口号为索引, 在所述预设的光开 关配置表中, 对所述光信号的光开关补偿值进行修正。
在第七种可能的实施方式中, 根据第五种可能的实施方式, 该方法 还包括: 检测所述光信号补偿后的值和传输至所述光开关交换矩阵的目的接 收端的输出值;
获得所述光信号补偿后的值和所述目的接收端的输出值的差值; 若所述差值大于预设修正阈值, 以所述光信号传输至所述光开关交 换矩阵的发送端口号和所述目的接收端口号为索引, 在所述预设的光开 关配置表中, 对所述光信号的光开关补偿值进行修正。
第二方面, 本发明提供了一种适配补偿控制模块, 获取单元、 第一 确定单元和第二确定单元;
所述获取单元, 用于获取光信号的光标签信息, 所述光标签信息携 带有所述光信号的目的接收端的信息;
所述第一确定单元, 用于根据所述光信号的目的接收端信息确定所 述光信号在光开关交换矩阵中的交换通路; 预设补偿值, 确定所述光信号的光开关补偿值, 所述光开关补偿值用于 对所述光信号进行补偿。
在第一种可能的实施方式中, 结合第二方面, 所述每个光开关单元 的预设补偿值为所述每个光开关单元的预设功率补偿值; 所述光开关补 偿值为光开关功率补偿值; 元的预设功率补偿值, 确定所述光信号的光开关功率补偿值;
该模块还包括: 功率补偿值确定单元;
所述功率补偿值确定单元, 用于将所述光信号的链路功率补偿值和 所述光开关功率补偿值之和, 确定为所述光信号的功率补偿值, 所述光 信号的功率补偿值用于对所述光信号进行功率补偿。
在第二种可能的实施方式中, 根据第一种可能的实施方式, 该模块 还包括: 光电转换单元、 信号分路单元、 功率检测单元、 光信号功率确 定单元和链路功率补偿值确定单元; 所述光电转换单元, 用于对所述光信号中预设比例功率的光信号进 行光电转换, 获得电信号;
所述信号分路单元, 用于将所述电信号分为第一路电信号和第二路 电信号, 第一路电信号占所述电信号的第一比例, 第二路电信号占所述 电信号的第二比例;
所述功率检测单元, 用于检测所述第一路电信号的功率值; 所述光信号功率确定单元, 用于根据所述每条链路的第一路电信号 的功率值、 所述第一比例和预设比例, 获得所述光信号的功率值;
所述链路功率补偿值确定单元, 用于根据所述光信号功率值和预设 目标功率值, 获得所述光信号的链路功率补偿值;
所述获取单元, 具体用于从所述第二路电信号中读取所述光信号的 光标签信息。
在第三种可能的实施方式中, 结合第二方面或根据第一种可能的实 施方式至第二种可能的实施方式, 所述每个光开关单元的预设补偿值为 所述每个光开关单元的预设相位补偿值, 所述光开关补偿值为光开关相 位补偿值; 的预设相位补偿值, 确定所述光信号的光开关相位补偿值, 所述光信号 的相位补偿值用于对所述光信号进行相位补偿。
在第四种可能的实施方式中, 结合第二方面或根据第一种可能的实 施方式至第二种可能的实施方式, 所述每个光开关单元的预设补偿值为 所述每个光开关单元的预设偏振态补偿值; 所述光开关补偿值为光开关 偏振态补偿值; 的预设偏振态补偿值, 确定所述光信号的光开关偏振态补偿值, 所述光 信号的偏振态补偿值用于对所述光信号进行偏振态补偿。
在第五种可能的实施方式中, 结合第二方面或根据第一种可能的实 施方式至第四种可能的实施方式, 所述目的接收端信息包括所述目的接 收端口号;
所述第二确定单元, 具体用于以所述光信号传输至所述光开关交换 矩阵的发送端口号和所述目的接收端口号为索引, 与预设的光开关配置 表进行匹配, 确定所述光信号的光开关补偿值;
所述预设的光开关配置表包含有所述光开关交换矩阵的发送端口 号、 目的接收端口号和光开关补偿值的——对应关系。
在第六种可能的实施方式中, 根据第五种可能的实施方式, 该模块 还包括: 第一检测单元、 第一获得单元和第一修正单元;
所述第一检测单元, 用于检测所述光信号传输至所述光开关交换矩 阵的目的接收端的输出值;
所述第一获得单元, 用于获得所述目的接收端的输出值和所述光信 号的预设目标值的差值;
所述第一修正单元, 用于若所述差值大于预设修正阈值, 以所述光 信号传输至所述光开关交换矩阵的发送端口号和所述目的接收端口号为 索引, 在所述预设的光开关配置表中, 对所述光信号的光开关补偿值进 行修正。
在第七种可能的实施方式中, 根据第五种可能的实施方式, 该模块 还包括: 第二检测单元、 第二获得单元和第二修正单元;
所述第二检测单元, 用于检测所述光信号补偿后的值和传输至所述 光开关交换矩阵的目的接收端的输出值;
所述第二获得单元, 用于获得所述光信号补偿后的值和所述目的接 收端的输出值的差值;
所述第二修正单元, 用于若所述差值大于预设修正阈值, 以所述光 信号传输至所述光开关交换矩阵的发送端口号和所述目的接收端口号为 索引, 在所述预设的光开关配置表中, 对所述光信号的光开关补偿值进 行修正。
第三方面, 本发明提供了一种光交换系统, 该光交换系统包括: 光 开关交换矩阵、 如上述提供的一种适配补偿控制模块和适配补偿模块; 其中, 所述适配补偿控制模块, 用于将所述光信号的光开关补偿值 发送给所述适配补偿模块;
所述适配补偿模块, 用于接收所述适配补偿控制模块发送的所述光 信号的光开关补偿值; 根据所述光信号的光开关补偿值, 对所述光信号 进行补偿, 并将所述光信号发送至所述光开关交换矩阵; 所述光开关交换矩阵, 用于接收所述适配补偿模块发送的补偿后的 光信号, 将所述补偿后的光信号进行光交换。 本发明实施例提供了一种适配补偿控制的方法, 该方法包括: 获取光信号的光标签信息, 所述光标签信息携带有所述光信号的目的接 收端信息; 根据所述光信号的目的接收端信息确定所述光信号的在光开 关交换矩阵中的交换通路; 根据所述交换通路上每个光开关单元的预设 补偿值, 确定所述光信号的光开关补偿值, 所述光开关补偿值用于对所 述光信号进行补偿。 基于该技术方案, 由于根据每条链路的目的接收 端信息可确定该光信号在光交换矩阵中的交换通路, 由于每条交换 通路包含的光开关单元是确定的, 则可根据该光交换通路上的每个 光开关单元的预设补偿值确定该光信号的补偿值, 不需要通过反馈 回路测量光包的补偿值, 这能够在光包进行交换前快速的确定光包 的补偿值, 以使得根据所述补偿值对光包进行补偿后, 达到光交换 机接收端光信号均衡的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为现有技术提供的光包功率补偿的结构示意图;
图 2为本发明实施例提供的一种光交换系统结构示意图; 图 3为一种 4*4的光开光交换矩阵结构示意图; 图 4 为本发明实施例提供的一种适配补偿控制的方法流程示意图
图 5为本发明实施例提供的一种光信号功率补偿控制的方法流程示 意图; 图 6为本发明实施例提供的一种光信号相位补偿控制的方法流程示 意图; 图 7为本发明实施例提供的一种光信号偏振态补偿控制的方法流程 示意图; 图 8 为本发明实施例提供的一种适配补偿控制的方法流程示意图
图 9为本发明实施例提供的一种功率补偿模块结构示意图; 图 10 为本发明实施例提供的一种适配补偿控制的方法流程示意图
图 1 1 为本发明实施例提供的一种适配补偿控制的方法流程示意图 四; 图 12 为本发明实施例提供的一种适配补偿控制的方法流程示意图 五;
图 13 为本发明实施例提供的一种适配补偿控制的方法流程示意图
图 14为本发明实施例提供的一种适配补偿控制模块结构示意图二; 图 15为本发明实施例提供的一种适配补偿控制模块结构示意图三; 图 16为本发明实施例提供的一种适配补偿控制模块结构示意图四; 图 17为本发明实施例提供的一种适配补偿控制模块结构示意图五; 图 18为本发明实施例提供的一种适配补偿控制模块结构示意图六。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。 如图 1所示, 现有技术中,每条链路的光包信号的功率补偿值, 是釆用光包的一部分已交换的数据计算获得, 即光开关交换矩阵的 接收装置端对已交换数据进行检测获得, 然后通过反馈回路反馈到 光开关交换矩阵的前端。 这本身对于光包信号功率补偿造成了一定 的时延, 且还需要复杂的反馈回路。 本发明实施例提供了一种光交换系统, 如图 2所示, 该光交换 系统包括: 适配补偿控制模块 21、 适配补偿模块 22、 光开关交换 矩阵 23。
其中, 适配补偿控制模块 21 , 用于获取光信号的光标签信息, 所 述光标签信息携带有所述光信号的目的接收端信息;
根据所述光信号的目的接收端信息确定所述光信号的在光开关交换 矩阵中的交换通路; 根据所述交换通路上每个光开关单元的预设补偿值, 确定所述光信 号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿; 将所述光信号的光开关补偿值发送给所述适配补偿模块 22。 其中, 适配补偿模块 22 , 用于接收所述适配补偿控制模块 21发 送的所述光信号的光开关补偿值; 根据所述光信号的光开关补偿值, 对 所述光信号进行补偿, 并将所述光信号发送至所述光开关交换矩阵 23。 光开关交换矩阵 23 , 用于接收所述适配补偿模块 22发送的补 偿后的光信号, 将所述补偿后的光信号进行光交换。 需要说明的是, 适配补偿控制模块 21 在确定所述光信号的光 开关补偿值的过程中, 在确定了所光信号在所述光开关交换矩阵 23 的交换通路后, 还可以据此生成所述光信号的交换通路控制信号。 在所述适配补偿模块 22 对所述光信号进行补偿, 并将补偿的光信 号发送至所述光开关交换矩阵 23后, 所述光开关交换矩阵 23根据 该交换通路控制信号驱动相应的光开关单元, 将补偿后的光信号直 通交换。
其中, 输入至所述光交换系统的光信号是从上级交换节点, 或 者用户侧传输至该光交换系统的信号。
具体的, 该光开关交换矩阵 23通常为 N*N矩阵, 其具有 N个 发送端口和 N个接收端口, 在所述发送端口和接收端口之间包括按 照一定规则连接的多个光开关单元, 例如图 3所示的 4*4光开关交 换矩阵。 对应于光开关交换矩阵 23 的 N个发送端口和 N个接收端 口, 该光交换系统能够对 N条链路的光信号并行的进行光交换。 对于分别来自于上级交换节点, 或者用户侧的 N条链路的光信 号, 每条链路的光信号分别被分路至适配补偿控制模块 21 和适配 补偿模块 22。 其中适配补偿控制模块 21确定链路 1 -N上传输的光 信号的光开关补偿值, 然后将链路 1 -N上传输的光信号的光开关补 偿值发送至该适配补偿模块 22。 该适配补偿模块 22在接收到链路 1 -N上传输的光信号的光开关补偿值后, 对输入至适配补偿模块 22 的链路 1 -N的光信号进行补偿, 然后将链路 1 -N上的补偿后的光信 号对应的发送至光开关交换矩阵 23 相应的发送端口。 该光开关交 换矩阵 23 通过相应的发送端口将补偿后的链路 1 -N 的光信号直通 交换至的相应的接收端口。
其中, 需要说明的是, 每条链路的光信号通过适配补偿模块 22 进行补偿后, 相应的输入至该光开关交换矩阵 23的一个发送端口。 即图 3 中所示, 链路 1 的光信号通过所述适配补偿模块 22补偿后 传输至发送端口 1 , 链路 2的光信号通过所述适配补偿模块 22补偿 后传输至发送端口 2 , 链路 3的光信号通过所述适配补偿模块 22补 偿后传输至发送端口 3 , 链路 4的光信号通过所述适配补偿模块 22 补偿后传输至发送端口 4。 示例性的, 如图 3所示描述的 4*4光开关交换矩阵 30, 该光开 关交换矩阵 30 包括有 24个光开关单元, 4个发送端口和 4个接收 端口。链路 1-4的光信号在经过适配补偿模块 22进行补偿后分别从 发送端口 1-4直通交换至不同的接收端口。 其中, 虽然每条链路经过补偿后的光信号在光开关交换矩阵中 直通交换时经过的光开关单元不同, 然而在每条链路的光信号经过 光开关交换矩阵的发送端口和接收端口确定的情况下, 该发送端口 到接收端口的交换通路包括的光开关交换单元是确定的。 例如, 从 发送端口 1 直通交换至接收端口 2 的交换通路包括有光开关单元 Kl、 光开关单元 Κ2、 光开关单元 Κ7、 光开关单元 Κ8。 从发送端 口 2直通交换至接收端口 1 的交换通路包括有光开关单元 Κ5、光开 关单元 Κ6、 光开关单元 Κ3、 光开关单元 Κ4。 对于图 3所示的 4*4光开关交换矩阵 30可以有 16条交换通路, 每条交换通路包括有确定的光开关单元。 示例性的, 可参见表 1所 示。 表 1 交换通路号 发送端口 接收端口 包含的光开关单元
1 1 1 K1 , Κ2, Κ3, Κ4
2 1 2 K1 , Κ2, Κ7, Κ8
3 1 3 Kl , K14, K15, K16
4 1 4 Kl , K14, K18, Κ22
5 2 1 Κ5, Κ6, Κ3, Κ4
6 2 2 Κ5, Κ6, Κ7, Κ8
7 2 3 Κ5, K17, K15, K16
8 2 4 Κ5, K17, K18, Κ22
9 3 1 K13, Κ9, K10, Κ4 10 3 2 K13, K9, K12, K8
11 3 3 K13, Κ20, K21 , K16
12 3 4 K13, Κ20, Κ24, Κ22
13 4 1 K19, Kll , K10, Κ4
14 4 2 K19, K11 , K12, Κ8
15 4 3 K19, Κ23, K21 , K16
16 4 4 K19, Κ23, Κ24, Κ22 需要说明的是, 光交换系统在接收端口接收到光信号, 在对光 信号进行接收处理之前, 需要将光信号转化为电信号。 然而, 若光 交换系统的接收端口接收到的信号功率过小, 光电转换系统的非线 性等因素, 造成该光信号无法进行转换; 若接收到的光信号功率过 大, 则会损坏光电转化模块。 基于此, 为了能够对光信号进行正常 的光电转化以及后续处理, 需要保证光交换系统的每个接收端口接 收的光信号功率保持在一定范围内, 即保证每个接收端口接收的光 信号功率均衡性。 进一步的, 对于相干系统或偏振复用系统中, 光 信号经过光开关交换矩阵交换后, 由于不同的光开关单元其性能不 同, 光信号的相位或偏振态也会发生变化, 这会造成接收端口对该 光信号解码错误。 在这种情况下, 可能该光交换系统还需要对光信 号的相位或偏振态等参数进行补偿。 基于此, 本发明实施例提供的 光交换系统适用于对功率、 相位和偏振态等光信号的各项参数进行 补偿, 当然本发明实施例以功率、 相位和偏振态进行说明, 但并不 限制本发明仅能对以上三个参数进行补偿。 凡是釆用本发明实施例 提供的适配补偿控制的方法确定光信号的其它性能参数的补偿值 的, 以及釆用本发明实施例提供的交换系统对光信号的其它性能参 数进行补偿交换的, 都在本发明的保护范围内。 基于图 2所示的光交换系统架构图为例,参考上述的详细描述, 以下详细说明适配补偿控制模块 21对光信号进行补偿控制的方法, 其中, 光交换系统中的适配补偿模块 21 的说明可参考下述实施例 的描述。 具体的, 本发明实施例提供了一种适配补偿控制的方法, 如图 4所示, 该方法包括:
401、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端信息。 其中, 所述光信号为来自不同链路传输至光交换系统的光信 号。 具体的, 基于图 2所示的光交换系统, 所述每条光纤链路的光 信号传输至光交换系统后, 通过分光器将每条链路的光信号分为两 路光信号, 其中输入至适配补偿控制模块 21 的光信号假设为第一 路光信号, 输入至适配补偿模块 22的光信号假设为第二路光信号。 N 条链路的第二路光信号输入至适配补偿控制模 21 块进行光电转 换, 得到电信号。 所述适配补偿模块 21 从每条链路的电信号读取 每条链路光信号的光标签信息, 所述每条链路光信号的光标签信息 中携带有所述光信号的包长度信息和目的接收端信息。 其中, 所述 目的接收端信息具体为目的接收端口号。 需要说明的是, 在光交换系统中, 所述适配补偿控制模块 21 并行获取各个链路的光信号的光标签信息, 可以快速确定每条链路 光信号的光标签信息。 从理论上将, 所述适配补偿控制模块 21 也 可以串行的获取光信号, 本发明实施例对于釆取并行还是串行获取 光信号的光标签信息不作具体限定。 需要说明的是, 所述适配补偿控制模块 21 也可以不进行光电 转换, 直接从第二路光信号中提取全光标签。 对此, 本发明实施例 不作具体限制。 其中, 所述光信号具体可以是光交换系统中的光突发包, 也可 是光分组包。
402、 根据所述光信号的目的接收端信息确定所述光信号的在光开 关交换矩阵中的交换通路。 在确定所述光信号的目的接收端口号, 即光开关交换矩阵的接 收端口号后, 由于每条链路的光信号经过适配补偿模块 22 输入至 光开关交换矩阵相应的发送端口, 则可确定光信号的发送端口号。 然后根据表 1可确定所述光信号的光开关交换通路。
述光信号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补
需要说明的是, 每个光开关单元对光信号具有一定的插入损 耗, 所以光信号经过光开关交换矩阵 23 直通交换后会对信号产生 损耗, 所述光开关补偿值则是针对上述光开关交换矩阵对信号产生 的损耗进行的补偿。 而每个光开关的插损参数值具有非时变性, ― 旦测量获得可在很长一段时间内保持不变。 在测量获得每个光开关 单元的插损参数值后, 可将每个光开关单元的插损值作为所述每个 光开关单元的预设补偿值。 需要说明的是, 插入损耗, 简称为插损, 是指在传输系统的某 处由于元件或器件的插入而使得信号产生一定的损耗。 即在光开关 交换矩阵中, 由于插入了光开关单元, 对直通交换的信号的功率、 相位和偏振态等产生了一定的损耗。 需要说明的是, 为了降低所述光开关插损参数值的测量难度, 测量时测量信号可釆用连续模式的信号, 因此测量方法和测量工具 都可沿用连续模式的测量方法, 从而避免了突发信号的测量。 因连 续模式的测量方法是本领域公知技术, 本发明实施例对此不再赘 述。
的, 则根据光开关交换通路可确定该交换通路包括的光开关单元。 据此根据该交换通路上包括的光开关单元的预设的补偿值, 可确定 所述光信号的光开关补偿值。 光开关单元的对应关系, 并非限制性的说明。 适配补偿控制模块 21 也可以釆用其它形式表示交换通路及交换通路包含的光开关单元, 本发明实施例对此不作具体限制。 示例性的, 若链路 1 的光信号的目的接收端口的端口号为 2 , 链路 1 的光信号经过适配补偿模块补偿后输入至发送端口 1 , 则可 确定链路 1 的光信号的交换通路为交换通路 2 , 其中包括光开关单 元 1、 光开关单元 2、 光开关单元 7和光开关单元 8。 然后计算以上 四个光开关单元的预设补偿值的和, 将该四个光开关单元的预设补 偿值的和作为链路 1 的光信号的光开关补偿值。 当然, 所述预设补偿值可以是以下中至少一项: 预设功率补偿 值、 预设相位补偿值和预设偏振态补偿值。 相应的, 所述光开关补偿值可以是以下中至少一项: 光开关功 率补偿值、 光开关相位补偿值和光开关偏振态补偿值。 所述适配补偿控制模块 21 确定 N条链路的光开关补偿值后, 向所述适配补偿模块 22发送该 N条链路光信号的光开关补偿值, 以使得所述适配补偿模块 22根据 N条链路光信号的光开关补偿值, 对该 N条链路的光信号进行补偿。 具体的, 考虑到光信号经过光开关交换矩阵 23 产生的功率损 耗, 本发明实施例提供的一种光信号功率补偿控制的方法, 如图 5 所示, 具体包括:
501、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端的信息;
502、 根据所述光信号的目的接收端信息确定所述光信号的在光开 关交换矩阵中的交换通路;
定所述光信号的光开关功率补偿值, 所述光开关功率补偿值用于对所述 光信号进行功率补偿。 具体的, 考虑到在相干系统中, 光信号经过光开关交换矩阵 23 交换后, 由于不同的光开关单元其性能不同, 光信号的相位会发生 变化, 这会造成目的接收端解码错误。 为了提高交换机接收端解码 的准确性, 降低误码率, 还可以针对每个链路上的光信号的相位进 行补偿。 本发明实施例提供的一种光信号相位补偿控制的方法, 如 图 6所示, 具体包括:
601、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端的信息;
602、 根据所述光信号的目的接收端信息确定所述光信号的在光开 关交换矩阵中的交换通路;
定所述光信号的光开关相位补偿值, 所述光开关相位补偿值用于对所述 光信号进行相位补偿。 具体的, 在偏振复用系统中, 光信号经过光开关交换矩阵 23 交换后, 由于不同的光开关其性能不同, 光信号的偏振态会发生变 化, 这会造成目的接收端解码错误。 为了提高交换机接收端解码的 准确性, 降低误码率, 还可以针对每个链路上的光信号的偏振态进 行补偿。 具体的, 可以釆用可调相移器阵列对每条链路的相位进行 补偿。 本发明实施例提供的一种光信号偏振态补偿控制的方法, 如图 7所示, 具体包括:
701、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端的信息;
702、 根据所述光信号的目 的接收端信息确定所述光信号的在 光开关交换矩阵中的交换通路;
703、 确定所述光信号的光开关偏振态补偿值, 所述光信号的偏振态补偿值用 于对所述光信号进行偏振态补偿。 本发明实施例提供了一种适配补偿控制的方法, 该方法包括: 获取光信号的光标签信息, 所述光标签信息携带有所述光信号的目的接 收端信息; 根据所述光信号的目的接收端信息确定所述光信号的在光开 关交换矩阵中的交换通路; 根据所述交换通路上每个光开关单元的预设 补偿值, 确定所述光信号的光开关补偿值, 所述光开关补偿值用于对所 述光信号进行补偿。 基于该技术方案, 由于根据每条链路的目的接收 端信息可确定该光信号在光交换矩阵中的交换通路, 由于每条交换 通路包含的光开关单元是确定的, 则可根据该光交换通路上的每个 光开关单元的预设补偿值确定该光信号的补偿值, 不需要通过反馈 回路测量光包的补偿值, 这能够在光包进行交换前快速的确定光包 的补偿值, 以使得根据所述补偿值对光包进行补偿后, 达到光交换 机接收端光信号均衡的目的。
考虑到光交换机的每个接收端的功率均衡性, 在对光信号进行 功率补偿时, 还需要考虑光信号从上级交换节点或用户侧传输至该 光交换系统的链路上的功率损耗, 基于此本发明实施例提供了一种 适配补偿控制的方法, 如图 8所示, 该方法包括:
801、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端信息。
802、 根据所述光信号的目的接收端信息确定所述光信号的在光开 关交换矩阵中的交换通路。
定所述光信号的光开关功率补偿值。
具体的, 在确定了所述光信号在光开关交换矩阵中的交换通路中 包括的光开关单元。根据所述交换通路上每个光开关单元预设的功率 补偿值, 则可确定所述光信号的光开关功率补偿值。 其中, 基于图 2 所示的光交换系统图, 适配补偿控制模块 21 中预设有每个光开关单元功率补偿值, 以及每条交换通路包括的光 开关单元。 例如, 光开关交换矩阵釆用图 3所示的 4*4的交换矩阵, 若链路 1 的光信号的目的接收端口号为 2, 链路 2的光信号的目的 接收端口号为 4, 链路 3 的光信号的目的接收端口号为 1, 链路 4 的光信号的目的接收端口号为 3, 则参考表 1, 链路 1-4的交换通路 分别为 2, 8, 9, 15。 这四条交换通路分别包括的光开关单元为: 交换通路 2: 光开关单元 1, 2, 7, 8
交换通路 8: 光开关单元 5, 17, 18, 22 交换通路 9: 光开关单元 13, 9, 10, 4
交换通路 15: 光开关单元 19, 23, 21, 16。
根据每个光开关单元预设的功率补偿值, 则可计算出链路 1-4 光信号的光开关功率补偿值。
804、 将所述光信号的链路功率补偿值和所述光开关功率补偿值之 和, 确定为所述光信号的功率补偿值, 所述光信号的功率补偿值用于对 所述光信号进行功率补偿。
需要说明的是, 所述链路功率补偿值是指针对从上级交换节 点、 或用户侧至本光交换系统的链路上对光信号产生的损耗的补偿 值。 其中, 每条链路的链路功率补偿值可以是预设的。 需要说明的 是, 尤其对于传输距离较近, 速率较低的链路, 链路的传输损耗可 以认为是一定的, 所以可以基于此预设每条链路的链路功率补偿 值。
当然每条链路的链路功率补偿值也可以是实时的对光信号的 功率测量后, 与所述光信号的目标功率比较后获得的补偿值。 所述每条链路的链路功率补偿值和所述光开关补偿值之和, 即 可作为所述光信号的功率补偿值。 需要说明的, 根据所述光信号的功率补偿值, 适配补偿模块 22 可以釆用功率放大器驱动单元和放大器阵列对所述光信号进行功 率放大补偿。 具体的, 如图 9所示的功率补偿模块, 包括放大器驱动单元和 放大器阵列。 其中放大器驱动单元接收功率补偿控制模块 21 的指 示, 根据所述光信号的功率补偿值, 通过放大器驱动单元驱动放大 器阵列中对应每条链路的放大器, 对光信号进行相应的功率放大补 偿。 其中 , 所述放大器阵列可釆用半导体光放大器 ( 英文: Semiconductor Optical Amplifier , 简称: SOA ) 或突发模式的掺何 光纤放大器 (英文: Erbium-Doped Fiber Amplifier , 简称: EDFA ) 等。
本发明实施例提供了一种适配补偿控制的方法, 该方法包括: 获取光信号的光标签信息, 所述光标签信息携带有所述光信号的目 的接收端的信息; 根据所述光信号的目的接收端信息确定所述光信号的 在光开关交换矩阵中的交换通路; 根据所述交换通路上每个光开关单元 的预设功率补偿值, 确定所述光信号的光开关功率补偿值; 将所述光信 号的链路功率补偿值和所述光开关功率补偿值之和, 确定为所述光信号 的功率补偿值, 所述光信号的功率补偿值用于对所述光信号进行功率补 偿。 基于此技术方案, 由于根据每条链路的目的接收端信息可确定 该光信号在光交换矩阵中的交换通路, 由于每条交换通路包含的光 开关单元是确定的, 则可根据该光交换通路上的每个光开关单元的 预设补偿值确定该光信号的补偿值, 不需要通过反馈回路测量光包 的补偿值, 这能够在光包进行交换前快速的确定光包的补偿值, 以 使得根据所述补偿值对光包进行补偿后, 达到光交换机接收端光信 号均衡的目的; 同时考虑到链路损耗, 能够使每条链路的光信号的 补偿更为准确。
其中, 为了快速对光信号进行功率补偿, 且减小系统功耗, 该 方法将所述光信号进行光电转换后获得电信号, 再将所述电信号分 为两路电信号, 一路用于提取光标签信息, 一路用于测量光信号的 功率。
具体的, 本发明实施例提供了一种适配补偿控制的方法, 如图
10所示, 该方法包括:
1001、 对所述光信号中预设比例功率的光信号进行光电转换, 获得电信号。
基于图 2所示的光交换系统图, 每条链路的光信号通过分光器 被分为两路光信号。 其中第一路光信号输入至适配补偿控制模块 21 , 其中第二路光信号输入至适配补偿模块 22 , 适配补偿模块 22
在对第一路光信号进行光电转换后, 获得第一路光信号的电信 号。 其中, 所述第一路光信号的功率与所述光信号的功率值的比值 为预设比例。 所述第一路光信号和第二路光信号的功率值之和为所 述光信号的功率值。
1002、 将所述电信号分为第一路电信号和第二路电信号。
其中, 第一路电信号占所述电信号的第一比例, 第二路电信号 占所述电信号的第二比例。 在获得所述第一路光信号的电信号后, 将所述第一路光信号的 电信号分为两路, 其中每条链路的第一路电信号用于确定每条链路 的光信号的功率值, 第二路电信号用于确定每条链路的光信号的光 标签信息。
具体的, 可以釆用功分器等元器件对所述电信号进行分路。 其中, 所述第一比例和第二比例可以是所述光信号功率的任意 比例, 所述第一比例和第二比例之和为百分之百。 如第一比例可以
10% , 那么第二比例为 90%。 本发明实施例对于第一比例和第二比 例值具体不作限定。
1003、 检测所述第一路电信号的功率值。 需要说明的是, 可以对所述第一路电信号的电流或电压进行检 测获得所述每条链路的第一路电信号的功率值。
1004、 根据所述第一路电信号的功率值、 所述第一比例和预设 比例, 获得所述光信号的功率值。
在检测得到所述每条链路的第一路电信号的功率值后, 所述第 一路电信号的功率值可记为 Α, 所述第一比例可以记为 Β, 所述预 设比例记为 F, 则可釆用公式 1 ) 计算光信号的功率值 C:
C=A/ ( B*F) 1 ) 例如, 所述第一路电信号的功率值 A为 O.lmW, 所述第一比例 B为 10%, 所述预设比例 F为 10%, 釆用公式 1 ) 计算所述光信号 的功率值 C为 10mW。
1005、 根据所述光信号功率值和预设目标功率值, 获得所述光 信号的链路功率补偿值。 在获得所述光信号的功率值 C后, 可釆用公式 2) 计算所述光 信号的链路功率补偿值 E:
E= D-C*(l-F) 2) 其中, 所述光信号的预设目标功率值记为 D。 例如, 所述预设目标功率值 D为 20mW, 则釆用公式 2) 计算 所述链路功率补偿值为 llmW。
1006、 从所述第二路电信号中读取光信号的光标签信息, 所述 光标签信息携带有所述光信号的目的接收端信息。 1007、 根据所述光信号的目的接收端信息确定所述光信号的在 光开关交换矩阵中的交换通路。
1008、 根据所述交换通路上每个光开关单元的预设功率补偿 值, 确定所述光信号的光开关功率补偿值。 需要说明的是, 步骤 1003 - 1005获取所述光信号的链路功率补 偿值, 和步骤 1006- 1007确定所述光信号的光开关功率补偿值的过 程是不区分先后顺序, 可以并行执行的。 当然, 所述链路功率补偿 值和所述光开关功率补偿值两个过程也可以有先后顺序执行, 但不 限定先后顺序, 即可先获得所述光开关功率补偿值, 也可先获得所 述链路功率补偿值。 本发明实施例旨在获得所述链路功率补偿值和 所述光开关功率补偿值, 对于先后顺序不作具体限定。
1009、 将所述光信号的链路功率补偿值和所述光开关功率补偿 值之和, 确定为所述光信号的功率补偿值, 所述光信号的功率补偿 值用于对所述光信号进行功率补偿。
其中, 步骤 1006- 1009 的详细说明可参考上述实施例中步骤 801 -804的描述, 本发明实施例在此不再赘述。 需要说明的是, 由于在读取光标签信息以及测量光信号的功率 时, 需要对光信号进行光电转化。 为了减小系统功率, 提高系统性 能, 所述第一路的光信号可以通过一次光电转换获得电信号后, 然 后釆用功分器可将所述每条链路的第一路的光信号转换后的电信 号分为两路电信号, 即第一路电信号和第二路电信号, 再分别用于 读取光标签信, I.和功率值的检测。
当然, 在不考虑减小系统功率的前提下, 每条链路的第一路光 信号也可以先釆用光分器先被分为两路光信号, 再分别对两路光信 号进行光电转换, 进行光标签信息的读取, 以及光信号的功率检测。 基于本发明实施例提供的一种适配补偿控制的方法, 由于根据 每条链路的 目 的接收端信息可确定该光信号在光交换矩阵中的交 换通路, 由于每条交换通路包含的光开关单元是确定的, 则可根据 该光交换通路上的每个光开关单元的预设补偿值确定该光信号的 补偿值, 不需要通过反馈回路测量光包的补偿值, 这能够在光包进 行交换前快速的确定光包的补偿值, 以使得根据所述补偿值对光包 进行补偿后, 达到光交换机接收端光信号均衡的目的。 同时考虑到 链路损耗, 能够使每条链路的光信号的补偿更为准确。 进一步的, 若在提取光标签信息和测量光信号的功率前, 仅釆用了一次光电转 换, 从而能够减小系统功率, 提高系统性能。
其中, 为了快速获得所述光信号的光开关补偿值, 可根据所述 光信号传输至光交换矩阵发送端口号和直通交换至光信号传输至 光交换矩阵的目的接收端口号, 查询预设的光开关配置表获得所述 光信号的光开光补偿值。 具体的, 如图 1 1 所示, 本发明实施例提 供了一种适配补偿控制的方法, 该方法包括:
1 101、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端信息。
1 102、 根据所述光信号的目的接收端信息确定所述光信号的在 光开关交换矩阵中的交换通路。
1 103、 以所述光信号传输至所述光开关交换矩阵的发送端口号 和所述目的接收端口号为索引, 与预设的光开关配置表进行匹配, 确定所述光信号的光开关补偿值。 其中, 所述预设的光开关配置表包含有所述光开关交换矩阵的 发送端口号、 目的接收端口号和光开关补偿值的——对应关系。
示例性的, 以图 3 所示的 4*4结构光开关交换矩阵 30为例, 其中光开关交换矩阵 30包括 24个光开关单元, 根据每个光开关单 元的预设补偿值可确定每条交换通路的预设补偿值, 具体的, 所述 预设的光开关配置表可以如表 2所示: 表 2
Figure imgf000027_0001
若, 所述链路 1 的光信号的目的接收端的端口号为 1, 所述链 路 2的光信号的目的接收端的端口号为 2, 所述链路 3 的光信号的 目的接收端的端口号为 3, 所述链路 4 的光信号的目的接收端的端 口号为 4, 链路 1 匹配到目的接收端的端口号为 1 的光开关补偿值 为 All, 链路 2 匹配到目的接收端的端口号为 2的光开关补偿值为 A22, 链路 3 匹配到目的接收端的端口号为 3 的光开关补偿值为 A33, 链路 4 匹配到目的接收端的端口号为 4 的光开关补偿值为 A44。
可选的, 所述预设的光开关配置表还可以是包括: 各发送端口 对应的目的接收端组成的索引项, 每个接收端口光信号的光开关补 偿值。
示例性的, 以图 3所示的 4*4光开关交换矩阵为例, 所述预设 的光开关配置表的索引项格式为:
Figure imgf000028_0002
所述预设的光开关配置表如表 3所示:
Figure imgf000028_0001
索引项 光开关补偿值 发送端口
1 2 3 4
1234 All A22 A33 A44
1243 All A22 A34 A43
1324 All A23 A32 A44
1342 All A23 A34 A42
1432 All A24 A33 A42
1423 All A24 A32 A43
2341 A12 A23 A34 A41
2314 A12 A23 A31 A44
2431 A12 A24 A33 A41
2413 A12 A24 A31 A43 2134 A12 A21 A33 A44
2143 A12 A21 A34 A43
3412 A13 A24 A31 A42
3421 A13 A24 A32 A41
3214 A13 A22 A31 A44
3241 A13 A22 A34 A41
3124 A13 A21 A32 A44
3142 A13 A21 A34 A42
4123 A14 A21 A32 A43
4132 A14 A21 A33 A42
4213 A14 A22 A31 A43
4231 A14 A22 A33 A41
4312 A14 A23 A31 A42
4321 A14 A23 A32 A41 举例来说, 若链路 1 的光信号的目的接收端的端口为 2, 链路 2 的目的接收端的端口为 3, 链路 3 的光信号的目的接收端的端口 为 1, 链路 4 的光信号的目的接收端的端口为 4, 则生成的索引号 为 2314, 根据此索引号在表 2中查询, 得到从发送端口 1直通交换 的光信号的光开关补偿值为 A12, 从发送端口 2直通交换的光信号 的光开关补偿值为 A23、 从发送端口 3直通交换的光信号的光开关 补偿值为 A31, 从发送端口 4直通交换的光信号的光开关补偿值为 A44。 其中, 所述光开关补偿值可以包括光开关功率补偿值、 光开关 相位补偿值和光开关偏振态补偿值至少一项。 其中, 步骤 1 101、 1 102 的详细描述可参考步骤 401 和 402 的 描述, 本发明实施例对此不再赘述。 基于本发明实施例提供的一种适配补偿控制的方法, 由于根据 每条链路的 目 的接收端信息可确定该光信号在光交换矩阵中的交 换通路, 由于每条交换通路包含的光开关单元是确定的, 则可根据 该光交换通路上的每个光开关单元的预设补偿值确定该光信号的 补偿值, 不需要通过反馈回路测量光包的补偿值, 这能够在光包进 行交换前快速的确定光包的补偿值, 以使得根据所述补偿值对光包 进行补偿后, 达到光交换机接收端光信号均衡的目的。 同时, 由于 适配补偿控制模块预设有光开关配置表, 能够快速查询到光信号的 光开关补偿值。
其中, 由于温度的变化、 光开关老化等原因使得光开关的光学 参数会发生变化, 光信号经过光开关的交换后, 光开关对光信号产 生的插损也会发生变化。 为了对光信号进行准确补偿, 所述预设的 光开关配置表需要进行更新。 具体的, 本发明实施例提供了一种适 配补偿控制的方法, 如图 12所示, 该方法包括:
1201、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端信息。
1202、 根据所述光信号的目的接收端信息确定所述光信号的在 光开关交换矩阵中的交换通路。
1203、 以所述光信号传输至所述光开关交换矩阵的发送端口号 和所述目的接收端口号为索引, 与预设的光开关配置表进行匹配, 确定所述光信号的光开关补偿值。
1204、 检测所述光信号传输至所述光开关交换矩阵的目的接收 端的输出值。 其中, 所述输出值具体可以是所述光信号的功率、 相位和偏振 态中的至少一项参数。
1205、 获得所述目的接收端的输出值和所述光信号的预设目标 值的差值。
1206、 若所述差值大于预设修正阈值, 以所述光信号传输至所 述光开关交换矩阵的发送端口号和所述目的接收端口号为索引, 在 所述预设的光开关配置表中, 对所述光信号的光开关补偿值进行修 正。 其中, 步骤 1201 - 1203的详细描述可参考步骤 401 -403的描述, 本发明实施例对此不再赘述。 示例性的, 结合表 2的光开关配置表为例进行说明, 所述预设 的光开关补偿值为预设的光开关功率补偿值。 若目的接收端口 1输 出的光信号功率为 2mW , 目 的接收端口 2 输出的光信号功率为 1 .8mW , 目的接收端口 3输出的光信号功率为 1 .5mW , 端口 4输出 的光信号功率为 1.4mW。 其中所述链路 1 的光信号的目的接收端的 端口号为 1 , 所述链路 2 的光信号的目的接收端的端口号为 2 , 所 述链路 3 的光信号的目的接收端的端口号为 3 , 所述链路 4的光信 号的目的接收端的端口号为 4。链路 1 -4的预设目标功率值为 2mW , 预设修正阈值为 0.4mW , 则链路 1 的差值为 OmW , 链路 2 的差值 为 0.2mW , 链路 3 的差值为 0.5mW , 链路 4 的差值为 0.6mW。 其 中链路 3和链路 4的差值大于预设修正阈值, 则链路 3 目的接收端 为 3 的光开关补偿值修正为 A33+0.5mW , 链路 4 目的接收端为 4 的光开关补偿值修正为 A44+0.6mW。 基于本发明实施例提供的一种适配补偿控制的方法, 由于根据 每条链路的 目 的接收端信息可确定该光信号在光交换矩阵中的交 换通路, 由于每条交换通路包含的光开关单元是确定的, 则可根据 该光交换通路上的每个光开关单元的预设补偿值确定该光信号的 补偿值, 不需要通过反馈回路测量光包的补偿值, 这能够在光包进 行交换前快速的确定光包的补偿值, 以使得根据所述补偿值对光包 进行补偿后, 达到光交换机接收端光信号均衡的目的; 且能够根据 光开关性能的变化, 实时更新光开关配置表, 进一步提升光开关交 换矩阵的每个接收端的信号均衡性。
进一步的, 为了更为准确的对所述预设的光开关配置表进行更 新, 还需要检测所述光信号进行补偿后的输出值, 将所述进行补偿 后的输出值和所述光信号在目的接收端的输出值进行比较, 以此确 定是否进行更新。 本发明实施例提供了一种适配补偿控制的方法, 如图 13所示, 该方法包括:
1301、 获取光信号的光标签信息, 所述光标签信息携带有所述 光信号的目的接收端信息。
1302、 根据所述光信号的目的接收端信息确定所述光信号的在 光开关交换矩阵中的交换通路。
1303、 以所述光信号传输至所述光开关交换矩阵的发送端口号 和所述目的接收端口号为索引, 与预设的光开关配置表进行匹配, 确定所述光信号的光开关补偿值。
1304、 检测所述光信号补偿后的值和传输至所述光开关交换矩 阵的目的接收端的输出值。 需要说明的是, 参考图 2所示的光交换系统, 所述光信号补偿 后的值具体为所述适配补偿模块 22 根据所述适配补偿控制模块发 送的所述光信号的补偿值对光信号补偿后的输出值。 具体的, 所述光信号补偿后的值具体可以功率、 相位或偏振态 中至少一项。
1305、 获得所述光信号补偿后的值和所述目的接收端的输出值 的差值。
1306、 若所述差值大于预设修正阈值, 以所述光信号传输至所述光 开关交换矩阵的发送端口号和所述目的接收端口号为索引, 在所述预设 的光开关配置表中, 对所述光信号的光开关补偿值进行修正。 其中, 步骤 1301-1303的详细描述可参考步骤 401-403的描述, 本发明实施例对此不再赘述。 示例性的, 结合表 2的光开关配置表为例进行说明, 所述预设 的光开关补偿值为预设的光开关功率补偿值。 若目的接收端口 1输 出的光信号功率为 2mW, 目 的接收端口 2 输出的光信号功率为 1.8mW, 目的接收端口 3输出的光信号功率为 1.5mW, 端口 4输出 的光信号功率为 1.4mW。 链路 1 的光信号补偿后功率值为 2.4mW, 链路 2的光信号补偿后功率值为 2.4mW, 链路 3的光信号补偿后功 率值为 2.4mW, 链路 4的光信号补偿后功率值为 2.4mW, 其中所述 链路 1 的光信号的目的接收端的端口号为 1, 所述链路 2的光信号 的目的接收端的端口号为 2, 所述链路 3 的光信号的目的接收端的 端口号为 3, 所述链路 4 的光信号的目的接收端的端口号为 4。 其 中, 预设修正阈值为 0.6mW, 则链路 1 的差值为 0.4mW, 链路 2的 差值为 0.6mW, 链路 3 的差值为 0.9mW, 链路 4的差值为 lmW。 其中链路 3和链路 4的差值大于预设修正阈值, 则链路 3 目的接收 端为 3的光开关补偿值修正为 A33+0.9mW, 链路 4 目的接收端为 4 的光开关补偿值修正为 A44+lmW。 基于本发明实施例提供的一种适配补偿控制的方法, 由于根据 每条链路的 目 的接收端信息可确定该光信号在光交换矩阵中的交 换通路, 由于每条交换通路包含的光开关单元是确定的, 则可根据 该光交换通路上的每个光开关单元的预设补偿值确定该光信号的 补偿值, 不需要通过反馈回路测量光包的补偿值, 这能够在光包进 行交换前快速的确定光包的补偿值, 以使得根据所述补偿值对光包 进行补偿后, 达到光交换机接收端光信号均衡的目的; 且能够根据 光开关性能的变化, 实时更新光开关配置表, 进一步提升光开关交 换矩阵的每个接收端的信号均衡性。 本发明实施例提供了一种适配补偿控制模块, 该适配补偿控制 模块适用于图 2所述的光交换系统中, 如图 14所示, 该模块包括: 获取单元 1401、 第一确定单元 1402和第二确定单元 1403。 所述获取单元 1401 , 用于获取光信号的光标签信息, 所述光标 签信息携带有所述光信号的目的接收端的信息。 具体的, 所述获取单元 1401 可以从所述光信号转换的电信号 读取所述光信号的光标签信息。 所述获取单元 1401 也可以直接从 第二路光信号中提取全光标签。对此, 本发明实施例不作具体限制。 所述获取单元 1401 读取的每条链路光信号的光标签信息中携 带有所述光信号的包长度信息和目的接收端信息。 其中, 所述目的 接收端信息具体为目的接收端口号。 需要说明的是, 所述获取单元 1401 并行获取各个链路的光信 号的光标签信息, 可以快速确定每条链路光信号的光标签信息。 从 理论上将, 所述获取单元 1401 也可以串行的获取光信号, 本发明 实施例对于釆取并行还是串行获取光信号的光标签信息不作具体 限定。 其中, 所述光信号具体可以是光交换系统中的光突发包, 也可 是光分组包。 其中, 所述光信号为来自不同链路传输至光交换系统的光信 号。
所述第一确定单元 1402 ,用于根据所述光信号的目的接收端信 息确定所述光信号在光开关交换矩阵中的交换通路。 在所述第一确定单元 1402确定所述光信号的目的接收端口号, 即光开关交换矩阵的接收端口号后, 由于每条链路的光信号经过适 配补偿模块 22 输入至光开关交换矩阵相应的发送端口, 则可确定 光信号的发送端口号。 然后根据表 1可确定所述光信号的光开关交 换通路。 所述第二确定单元 1403 ,用于根据所述交换通路上的每个光开 关单元的预设补偿值, 确定所述光信号的光开关补偿值, 所述光开 关补偿值用于对所述光信号进行补偿。 需要说明的是, 每个光开关单元对光信号具有一定的插入损 耗, 所以光信号经过光开关交换矩阵 23 直通交换后会对信号产生 损耗, 所述光开关补偿值则是针对上述光开关交换矩阵对信号产生 的损耗进行的补偿。 而每个光开关的插损参数值具有非时变性, ― 旦测量获得可在很长一段时间内保持不变。 在测量获得每个光开关 单元的插损参数值后, 可将每个光开关单元的插损值作为所述每个 光开关单元的预设补偿值。 需要说明的是, 插入损耗, 简称为插损, 是指在传输系统的某 处由于元件或器件的插入而使得信号产生一定的损耗。 即在光开关 交换矩阵中, 由于插入了光开关单元, 对直通交换的信号的功率、 相位和偏振态等产生了一定的损耗。 需要说明的是, 为了降低所述光开关插损参数值的测量难度, 测量时测量信号可釆用连续模式的信号, 因此测量方法和测量工具 都可沿用连续模式的测量方法, 从而避免了突发信号的测量。 因连 续模式的测量方法是本领域公知技术, 本发明实施例对此不再赘 述。
的, 则所述第二确定单元 1403 根据光开关交换通路可确定该交换 通路包括的光开关单元。 据此根据该交换通路上包括的光开关单元 的预设的补偿值, 所述第二确定单元 1403 可确定所述光信号的光 开关补偿值。
光开关单元的对应关系, 并非限制性的说明。 也可以釆用其它形式 表示交换通路及交换通路包含的光开关单元, 本发明实施例对此不 作具体限制。 当然, 所述预设补偿值可以是以下中至少一项: 预设功率补偿 值、 预设相位补偿值和预设偏振态补偿值。 相应的, 所述光开关补偿值可以是以下中至少一项: 光开关功 率补偿值、 光开关相位补偿值和光开关偏振态补偿值。
具体的, 考虑到光信号经过光开关交换矩阵 23 产生的功率损 耗, 所述每个光开关单元的预设补偿值可以包括所述每个光开关单
所述第二确定单元 1403 ,具体用于根据所述交换通路上的每个 光开关单元的预设功率补偿值, 确定所述光信号的光开关功率补偿 值。 具体的, 考虑到在相干系统中, 光信号经过光开关交换矩阵 23 交换后, 由于不同的光开关单元其性能不同, 光信号的相位会发生 变化, 这会造成目的接收端解码错误。 为了提高交换机接收端解码 的准确性, 降低误码率, 还可以针对每个链路上的光信号的相位进 行补偿。 可选的, 所述每个光开关单元的预设补偿值为所述每个光 开关单元的预设相位补偿值, 所述光开关补偿值为光开关相位补偿 值。
所述第二确定单元 1403 ,具体用于根据所述交换通路上每个光 开关单元的预设相位补偿值, 确定所述光信号的光开关相位补偿 值, 所述光信号的相位补偿值用于对所述光信号进行相位补偿。
具体的, 在偏振复用系统中, 光信号经过光开关交换矩阵 23 交换后, 由于不同的光开关其性能不同, 光信号的偏振态会发生变 化, 这会造成目的接收端解码错误。 为了提高交换机接收端解码的 准确性, 降低误码率, 还可以针对每个链路上的光信号的偏振态进 行补偿。 可选的, 所述每个光开关单元的预设补偿值为所述每个光 开关单元的预设偏振态补偿值; 所述光开关补偿值为光开关偏振态 补偿值;
所述第二确定单元 1403 ,具体用于根据所述交换通路上每个光 开关单元的预设偏振态补偿值, 确定所述光信号的光开关偏振态补 偿值, 所述光信号的偏振态补偿值用于对所述光信号进行偏振态补 偿。
考虑到光交换机的每个接收端的功率均衡性, 在对光信号进行 功率补偿时, 还需要考虑光信号从上级交换节点或用户侧传输至该 光交换系统的链路上的功率损耗。 具体的, 如图 15 所示, 该模块 还包括: 功率补偿值确定单元 1404。 其中, 所述第二确定单元 1403 , 具体用于根据所述交换通路上 的每个光开关单元的预设功率补偿值, 确定所述光信号的光开关功 率补偿值。
所述功率补偿值确定单元 1404 ,用于将所述光信号的链路功率 补偿值和所述光开关功率补偿值之和, 确定为所述光信号的功率补 偿值, 所述光信号的功率补偿值用于对所述光信号进行功率补偿。
其中, 为了快速对光信号进行功率补偿, 且减小系统功耗, 该 方法将所述光信号先进行光电转换后获得电信号, 再将所述电信号 分为两路电信号, 一路用于提取光标签信息, 一路用于测量光信号 的功率。具体的,如图 16所示,该模块还包括: 光电转换单元 1405、 信号分路单元 1406、功率检测单元 1407、光信号功率确定单元 1408 和链路功率补偿值确定单元 1409。 所述光电转换单元 1405 ,用于对所述光信号中预设比例功率的 光信号进行光电转换, 获得电信号。
所述信号分路单元 1406 ,用于将所述电信号分为第一路电信号 和第二路电信号, 第一路电信号占所述电信号的第一比例, 第二路 电信号占所述电信号的第二比例。 所述功率检测单元 1407 , 用于检测所述第一路电信号的功率 值。
所述光信号功率确定单元 1408 ,用于根据所述每条链路的第一 路电信号的功率值、 所述第一比例和预设比例, 获得所述光信号的 功率值。
所述链路功率补偿值确定单元 1409 ,用于根据所述光信号功率 值和预设目标功率值, 获得所述光信号的链路功率补偿值。 所述获取单元 1401 ,具体用于从所述第二路电信号中读取所述 光信号的光标签信息。
其中, 为了快速获得所述光信号的光开关补偿值, 可根据所述 光信号传输至光交换矩阵发送端口号和直通交换至光信号传输至 光交换矩阵的目的接收端口号, 查询预设的光开关配置表获得所述 光信号的光开光补偿值。 具体的, 所述目的接收端信息包括所述目 的接收端口号。
所述第二确定单元 1403 ,具体用于以所述光信号传输至所述光 开关交换矩阵的发送端口号和所述目的接收端口号为索引, 与预设 的光开关配置表进行匹配, 确定所述光信号的光开关补偿值。
端口号、 目的接收端口号和光开关补偿值的——对应关系。
其中, 由于温度的变化、 光开关老化等原因使得光开关的光学 参数会发生变化, 光信号经过光开关的交换后, 光开关对光信号产 生的插损也会发生变化。 为了对光信号进行准确补偿, 所述预设的 光开关配置表需要进行更新。 具体的, 如图 17 所示, 该模块还包 括: 第一检测单元 1410、 第一获得单元 141 1和第一修正单元 1412 ; 所述第一检测单元 1410 ,用于检测所述光信号传输至所述光开 关交换矩阵的目的接收端的输出值; 所述第一获得单元 141 1 ,用于获得所述目的接收端的输出值和 所述光信号的预设目标值的差值;
所述第一修正单元 1412 , 用于若所述差值大于预设修正阈值, 以所述光信号传输至所述光开关交换矩阵的发送端口号和所述目 的接收端口号为索引, 在所述预设的光开关配置表中, 对所述光信 号的光开关补偿值进行修正。
进一步的, 为了更为准确的对所述预设的光开关配置表进行更 新, 还需要检测所述光信号进行补偿后的输出值, 将所述进行补偿 后的输出值和所述光信号在目的接收端的输出值进行比较, 以此确 定是否进行更新。 可选的, 如图 18 所示, 该模块还包括: 第二检 测单元 1413、 第二获得单元 1414和第二修正单元 1415。
所述第二检测单元 1413 ,用于检测所述光信号补偿后的值和传 输至所述光开关交换矩阵的目的接收端的输出值; 所述第二获得单元 1414 ,用于获得所述光信号补偿后的值和所 述目的接收端的输出值的差值;
所述第二修正单元 1415 , 用于若所述差值大于预设修正阈值, 以所述光信号传输至所述光开关交换矩阵的发送端口号和所述目 的接收端口号为索引, 在所述预设的光开关配置表中, 对所述光信 号的光开关补偿值进行修正。 具体的, 以上关于所述适配补偿控制模块的详细描述可以参考 适配补偿控制的方法实施例的描述, 本发明实施例在此不再赘述。 本发明实施例提供了一种适配补偿控制模块, 该模块包括: 获 取单元、 第一确定单元和第二确定单元。 该模块的所述获取单元获 取光信号的光标签信息, 所述光标签信息携带有所述光信号的目的 接收端的信息; 所述第一确定单元根据所述光信号的目的接收端信 息确定所述光信号的在光开关交换矩阵中的交换通路; 所述第二确 信号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿。 基于该技术方案, 由于根据每条链路的目的接收端信息可确定该光 信号在光交换矩阵中的交换通路, 由于每条交换通路包含的光开关 单元是确定的, 则可根据该光交换通路上的每个光开关单元的预设 补偿值确定该光信号的补偿值, 不需要通过反馈回路测量光包的补 偿值, 这能够在光包进行交换前快速的确定光包的补偿值, 以使得 根据所述补偿值对光包进行补偿后, 达到光交换机接收端光信号均 衡的目的。 通过以上的实施方式的描述, 所属领域的技术人员可以清楚地 了解到, 为描述的方便和简洁, 仅以上述各功能模块的划分进行举 例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的功 能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成 以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具 体工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘 述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置 实施例仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一 种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单 元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽 略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦 合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信 连接, 可以是电性, 机械或其它的形式。 所述作为分离部件说明的单元可以是或者也可以不是物理上 分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即 可以位于一个地方, 或者也可以分布到多个节点上。 可以根据实际 的需要选择其中的部分或者全部单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以 上单元集成在一个单元中。 上述集成的单元既可以釆用硬件的形式 实现, 也可以釆用软件功能单元的形式实现。 所述集成的单元如果以软件功能单元的形式实现并作为独立 的产品销售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出 贡献的部分或者该技术方案的全部或部分可以以软件产品的形式 体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网 络设备等) 或处理器 ( processor ) 执行本发明各个实施例所述方法 的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只 读存储器 ( ROM , Read-Only Memory ) 、 随机存取存储器 ( RAM , Random Access Memory ) 、 磁碟或者光盘等各种可以存储程序代码 的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种适配补偿控制的方法, 其特征在于, 该方法包括:
获取光信号的光标签信息, 所述光标签信息携带有所述光信号的目 的接收端信息;
根据所述光信号的目的接收端信息确定所述光信号的在光开关交换 矩阵中的交换通路; 号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿。
2、 根据权利要求 1所述的方法, 其特征在于, 所述每个光开关单元 的预设补偿值为所述每个光开关单元的预设功率补偿值; 所述光开关补 偿值为光开关功率补偿值; 号的光开关补偿值具体包括: 光信号的光开关功率补偿值;
该方法还包括:
将所述光信号的链路功率补偿值和所述光开关功率补偿值之和, 确 定为所述光信号的功率补偿值, 所述光信号的功率补偿值用于对所述光 信号进行功率补偿。
3、 根据权利要求 2所述的方法, 其特征在于, 在所述获取光信号的 光标签信息之前, 该方法还包括:
对所述光信号中预设比例功率的光信号进行光电转换, 获得电信号; 将所述电信号分为第一路电信号和第二路电信号, 第一路电信号占 所述电信号的第一比例, 第二路电信号占所述电信号的第二比例;
检测所述第一路电信号的功率值;
根据所述第一路电信号的功率值、 所述第一比例和预设比例, 获得 所述光信号的功率值; 根据所述光信号的功率值和预设目标功率值, 获得所述光信号的链 路功率补偿值;
所述获取光信号的光标签信息具体包括:
从所述第二路电信号中读取所述光信号的光标签信息。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述每个光 开关单元的预设补偿值为所述每个光开关单元的预设相位补偿值; 所述 光开关补偿值为光开关相位补偿值; 光信号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿 包括: 光信号的光开关相位补偿值, 所述光信号的相位补偿值用于对所述光信 号进行相位补偿。
5、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述每个光 开关单元的预设补偿值为所述每个光开关单元的预设偏振态补偿值; 所 述光开关补偿值为光开关偏振态补偿值; 光信号的光开关补偿值, 所述光开关补偿值用于对所述光信号进行补偿 包括: 述光信号的光开关偏振态补偿值, 所述光信号的偏振态补偿值用于对所 述光信号进行偏振态补偿。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述目的接 收端信息包括所述目的接收端口号; 光信号的光开关补偿值具体包括:
以所述光信号传输至所述光开关交换矩阵的发送端口号和所述目的 接收端口号为索引, 与预设的光开关配置表进行匹配, 确定所述光信号 的光开关补偿值;
所述预设的光开关配置表包含有所述光开关交换矩阵的发送端口 号、 目的接收端口号和光开关补偿值的——对应关系。
7、 根据权利要求 6所述的方法, 其特征在于, 该方法还包括: 检测所述光信号传输至所述光开关交换矩阵的目的接收端口的输出 值;
获得所述目的接收端的输出值和所述光信号的预设目标值的差值; 若所述差值大于预设修正阈值, 以所述光信号传输至所述光开关交 换矩阵的发送端口号和所述目的接收端口号为索引, 在所述预设的光开 关配置表中, 对所述光信号的光开关补偿值进行修正。
8、 根据权利要求 6所述的方法, 其特征在于, 该方法还包括: 检测所述光信号补偿后的值和传输至所述光开关交换矩阵的目的接 收端的输出值;
获得所述光信号补偿后的值和所述目的接收端的输出值的差值; 若所述差值大于预设修正阈值, 以所述光信号传输至所述光开关交 换矩阵的发送端口号和所述目的接收端口号为索引, 在所述预设的光开 关配置表中, 对所述光信号的光开关补偿值进行修正。
9、 一种适配补偿控制模块, 其特征在于, 该模块包括: 获取单元、 第一确定单元和第二确定单元;
所述获取单元, 用于获取光信号的光标签信息, 所述光标签信息携 带有所述光信号的目的接收端的信息;
所述第一确定单元, 用于根据所述光信号的目的接收端信息确定所 述光信号在光开关交换矩阵中的交换通路; 预设补偿值, 确定所述光信号的光开关补偿值, 所述光开关补偿值用于 对所述光信号进行补偿。
10、 根据权利要求 9所述的模块, 其特征在于, 所述每个光开关单 补偿值为光开关功率补偿值; 元的预设功率补偿值, 确定所述光信号的光开关功率补偿值;
该模块还包括: 功率补偿值确定单元;
所述功率补偿值确定单元, 用于将所述光信号的链路功率补偿值和 所述光开关功率补偿值之和, 确定为所述光信号的功率补偿值, 所述光 信号的功率补偿值用于对所述光信号进行功率补偿。
1 1、 根据权利要求 10所述的模块, 其特征在于, 该模块还包括: 光 电转换单元、 信号分路单元、 功率检测单元、 光信号功率确定单元和链 路功率补偿值确定单元;
所述光电转换单元, 用于对所述光信号中预设比例功率的光信号进 行光电转换, 获得电信号;
所述信号分路单元, 用于将所述电信号分为第一路电信号和第二路 电信号, 第一路电信号占所述电信号的第一比例, 第二路电信号占所述 电信号的第二比例;
所述功率检测单元, 用于检测所述第一路电信号的功率值; 所述光信号功率确定单元, 用于根据所述每条链路的第一路电信号 的功率值、 所述第一比例和预设比例, 获得所述光信号的功率值;
所述链路功率补偿值确定单元, 用于根据所述光信号功率值和预设 目标功率值, 获得所述光信号的链路功率补偿值;
所述获取单元, 具体用于从所述第二路电信号中读取所述光信号的 光标签信息。
12、 根据权利要求 9- 1 1任一项所述的模块, 其特征在于, 所述每个 述光开关补偿值为光开关相位补偿值; 的预设相位补偿值, 确定所述光信号的光开关相位补偿值, 所述光信号 的相位补偿值用于对所述光信号进行相位补偿。
13、 根据权利要求 9- 1 1任一项所述的模块, 其特征在于, 所述每个
所述光开关补偿值为光开关偏振态补偿值;
的预设偏振态补偿值, 确定所述光信号的光开关偏振态补偿值, 所述光 信号的偏振态补偿值用于对所述光信号进行偏振态补偿。
14、 根据权利要求 9- 13任一项所述的模块, 其特征在于, 所述目的 接收端信息包括所述目的接收端口号;
所述第二确定单元, 具体用于以所述光信号传输至所述光开关交换 矩阵的发送端口号和所述目的接收端口号为索引, 与预设的光开关配置 表进行匹配, 确定所述光信号的光开关补偿值;
所述预设的光开关配置表包含有所述光开关交换矩阵的发送端口 号、 目的接收端口号和光开关补偿值的——对应关系。
15、 根据权利要求 14所述的模块, 其特征在于, 该模块还包括: 第一检测单元、 第一获得单元和第一修正单元;
所述第一检测单元, 用于检测所述光信号传输至所述光开关交换矩 阵的目的接收端的输出值;
所述第一获得单元, 用于获得所述目的接收端的输出值和所述光信 号的预设目标值的差值;
所述第一修正单元, 用于若所述差值大于预设修正阈值, 以所述光 信号传输至所述光开关交换矩阵的发送端口号和所述目的接收端口号为 索引, 在所述预设的光开关配置表中, 对所述光信号的光开关补偿值进 行修正。
16、 根据权利要求 14所述的模块, 其特征在于, 该模块还包括: 第二检测单元、 第二获得单元和第二修正单元; 所述第二检测单元, 用于检测所述光信号补偿后的值和传输至所述 光开关交换矩阵的目的接收端的输出值;
所述第二获得单元, 用于获得所述光信号补偿后的值和所述目的接 收端的输出值的差值;
所述第二修正单元, 用于若所述差值大于预设修正阈值, 以所述光 信号传输至所述光开关交换矩阵的发送端口号和所述目的接收端口号为 索引, 在所述预设的光开关配置表中, 对所述光信号的光开关补偿值进 行修正。
17、 一种光交换系统, 其特征在于, 该光交换系统包括: 光开关交 换矩阵、 如权利要求 9- 16任一项所述的适配补偿控制模块和适配补偿模 块;
其中, 所述适配补偿控制模块, 用于将所述光信号的光开关补偿值 发送给所述适配补偿模块;
所述适配补偿模块, 用于接收所述适配补偿控制模块发送的所述光 信号的光开关补偿值; 根据所述光信号的光开关补偿值, 对所述光信号 进行补偿, 并将所述光信号发送至所述光开关交换矩阵;
所述光开关交换矩阵, 用于接收所述适配补偿模块发送的补偿后的光 信号, 将所述补偿后的光信号进行光交换。
PCT/CN2014/071455 2014-01-26 2014-01-26 一种适配补偿控制的方法、模块和光交换系统 WO2015109556A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480070026.1A CN105874735A (zh) 2014-01-26 2014-01-26 一种适配补偿控制的方法、模块和光交换系统
PCT/CN2014/071455 WO2015109556A1 (zh) 2014-01-26 2014-01-26 一种适配补偿控制的方法、模块和光交换系统
KR1020167023155A KR101849484B1 (ko) 2014-01-26 2014-01-26 적응형 보상 제어 방법, 모듈 및 광 스위칭 시스템
EP14880090.7A EP3091677B1 (en) 2014-01-26 2014-01-26 Adaptive compensation control method, module and optical switching system
US15/218,812 US9807479B2 (en) 2014-01-26 2016-07-25 Adaptive compensation control method and module, and optical switching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071455 WO2015109556A1 (zh) 2014-01-26 2014-01-26 一种适配补偿控制的方法、模块和光交换系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/218,812 Continuation US9807479B2 (en) 2014-01-26 2016-07-25 Adaptive compensation control method and module, and optical switching system

Publications (1)

Publication Number Publication Date
WO2015109556A1 true WO2015109556A1 (zh) 2015-07-30

Family

ID=53680660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071455 WO2015109556A1 (zh) 2014-01-26 2014-01-26 一种适配补偿控制的方法、模块和光交换系统

Country Status (5)

Country Link
US (1) US9807479B2 (zh)
EP (1) EP3091677B1 (zh)
KR (1) KR101849484B1 (zh)
CN (1) CN105874735A (zh)
WO (1) WO2015109556A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431535B (zh) * 2015-04-27 2020-04-03 华为技术有限公司 用于光信号交换的传输路径建立方法及装置
CN107742924B (zh) * 2017-11-08 2023-11-14 江苏第二师范学院 智能电网接入分布式自适应节点及系统
KR102485277B1 (ko) * 2021-11-17 2023-01-04 연세대학교 산학협력단 무선 광통신에서 릴레이 노드를 위한 양방향 적응적 파워 조절 장치와 방법 및 이를 구비하는 릴레이 노드
KR102583746B1 (ko) * 2022-04-08 2023-09-26 연세대학교 산학협력단 릴레이 기반 무선 광통신의 다중 파장 기반 다중 방향 적응형 전력 조절 장치와 방법 및 이를 구비하는 릴레이 노드
CN115799098B (zh) * 2022-11-15 2023-10-03 之江实验室 一种芯片的校准方法、装置、存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013429A1 (en) * 2002-07-19 2004-01-22 Marcus Duelk Power equalization in optical switches
CN1790072A (zh) * 2004-12-17 2006-06-21 日立通讯技术株式会社 可变色散补偿装置、光传输系统和色散补偿量的设定方法
CN101005330A (zh) * 2006-12-30 2007-07-25 电子科技大学 基于串行排列光正交码标签的光分组交换方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724393A (en) * 1995-02-17 1998-03-03 Lucent Technologies Inc. Method and apparatus compensating for effects of digital loss insertion in signal transmissions between modems
US6545781B1 (en) * 1998-07-17 2003-04-08 The Regents Of The University Of California High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion
US6525850B1 (en) * 1998-07-17 2003-02-25 The Regents Of The University Of California High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion
CN1185820C (zh) * 2002-07-09 2005-01-19 华中科技大学 一种用于全光交换节点中的n×n光交换结构
US7457547B2 (en) * 2004-11-08 2008-11-25 Optium Australia Pty Limited Optical calibration system and method
US7218818B2 (en) 2004-12-17 2007-05-15 Hitachi Communication Technologies, Ltd. Dispersion compensation device and dispersion compensation method
JP5688346B2 (ja) 2011-09-02 2015-03-25 富士通テレコムネットワークス株式会社 光パケット交換システムおよびピークパワー制御方法
CN102377725B (zh) * 2011-12-07 2014-06-04 东南大学 一种基于ofdm子载波的光标签处理方法及光分组交换方法
EP3081969B1 (en) * 2013-12-27 2018-02-21 Huawei Technologies Co., Ltd. Optical signal control method, and optical switch matrix control method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013429A1 (en) * 2002-07-19 2004-01-22 Marcus Duelk Power equalization in optical switches
CN1790072A (zh) * 2004-12-17 2006-06-21 日立通讯技术株式会社 可变色散补偿装置、光传输系统和色散补偿量的设定方法
CN101005330A (zh) * 2006-12-30 2007-07-25 电子科技大学 基于串行排列光正交码标签的光分组交换方法

Also Published As

Publication number Publication date
KR20160113659A (ko) 2016-09-30
KR101849484B1 (ko) 2018-05-28
EP3091677B1 (en) 2018-04-04
US20160337729A1 (en) 2016-11-17
EP3091677A4 (en) 2016-12-28
US9807479B2 (en) 2017-10-31
CN105874735A (zh) 2016-08-17
EP3091677A1 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2015109556A1 (zh) 一种适配补偿控制的方法、模块和光交换系统
US10396891B2 (en) Client protection switch in optical pluggable transceivers activated through fast electrical data squelch
ES2770706T3 (es) Método y dispositivo para descubrir la topología de la red
CN102014315B (zh) 一种用于光密集波分复用的波长快速稳定方法
EP2890063B1 (en) Method and apparatus for determining energy-efficient routing
WO2016173324A1 (zh) 一种光信噪比监测的方法及装置
WO2012075902A1 (zh) 一种检测光信噪比的方法和装置
WO2013189422A2 (zh) 光接收装置及方法、光收发一体模块
CN103023815B (zh) 聚合链路负载分担方法及装置
WO2015161473A1 (zh) 一种优化光通信网络性能的方法及装置
US9722695B2 (en) Optical network unit and optical detecting method
US20150032815A1 (en) Message forwarding in data center network
US10447599B2 (en) Packet forwarding method, system, and apparatus
WO2016172819A1 (zh) 用于光信号交换的传输路径建立方法及装置
CN105490741A (zh) 检测环回链路的方法、装置以及光线路终端、光网络终端
TWI469567B (zh) 具有省電功能的交換機及其省電方法
US20220263749A1 (en) Communication apparatus and communication method
WO2011144051A2 (zh) 数据传输方法、光线路终端和系统
CN112217569B (zh) 一种功率调节方法、装置及存储介质
WO2018018603A1 (zh) 用户设备ue和信道质量测量方法
WO2011032392A1 (zh) 一种无源光网络的光功率检测方法、设备和系统
WO2024104200A1 (zh) 动态功耗管理系统
WO2016095111A1 (zh) 一种光交换信号处理方法和装置
JP2004349848A (ja) 光データ伝送ネットワーク及び光データ伝送ネットワークの伝送速度制御方法
WO2021244289A1 (zh) 一种光功率值的传输方法、系统以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014880090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880090

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167023155

Country of ref document: KR

Kind code of ref document: A