WO2015161473A1 - 一种优化光通信网络性能的方法及装置 - Google Patents

一种优化光通信网络性能的方法及装置 Download PDF

Info

Publication number
WO2015161473A1
WO2015161473A1 PCT/CN2014/076061 CN2014076061W WO2015161473A1 WO 2015161473 A1 WO2015161473 A1 WO 2015161473A1 CN 2014076061 W CN2014076061 W CN 2014076061W WO 2015161473 A1 WO2015161473 A1 WO 2015161473A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
communication network
optical communication
noise
optical
Prior art date
Application number
PCT/CN2014/076061
Other languages
English (en)
French (fr)
Inventor
周恩波
张森
黄延穗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480000503.7A priority Critical patent/CN105210313B/zh
Priority to PCT/CN2014/076061 priority patent/WO2015161473A1/zh
Publication of WO2015161473A1 publication Critical patent/WO2015161473A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control

Definitions

  • the fiber-optic network link of RFA (Raman fiber amplifier) is shown in Figure 1. After the signal is modulated at the origin, the signal power is attenuated due to the loss of the fiber during transmission. The Raman fiber amplifier amplifies and finally The signal is transmitted to the receiving end for demodulation. If the Raman fiber amplifier has a lower noise figure and the smaller the nonlinear distortion of the signal during transmission, the further the signal can be transmitted without electrical relay.
  • FIG. 2 is a schematic diagram showing the structure of a second-order reverse-pumped Raman fiber amplifier in the prior art, a second-order reverse-pumped Raman fiber amplifier, pumping pumpl and pump2 to form first-order pump light.
  • pump3 forms a second-order pump light.
  • Pu pumpl is 1427nm laser
  • pump2 is 1453 ⁇ laser
  • ump3 is 1360 ⁇ laser
  • um l and ump2 form first-order pump light and signal light frequency offset nearly doubled Stokes frequency
  • first-order pump When light propagates through the fiber, the signal light can be amplified by Raman scattering; the second-order pump light formed by pump3 and the signal light are shifted by nearly twice the Stokes frequency, and the signal light propagates through the fiber through the pump.
  • the amplified signal light is obtained after amplification of the first-stage pump light and the second-order pump light.
  • the method of using the second-order pump power of the multi-stage Raman fiber amplifier is set to be much larger than the first-order pump power, but this The method can only ensure that the OSNR after signal transmission is high, and the BER (bit error, bit error rate) of the signal cannot be guaranteed, and the total pump power is too large, which may adversely affect the security of the network. Summary of the invention
  • the first aspect provides an apparatus for optimizing performance of an optical communication network, where the apparatus includes: a data collection unit, configured to collect network state information of an optical communication network, where the optical communication network includes at least one multi-stage Raman amplifier;
  • a calculating unit configured to calculate, by using the target nonlinear noise figure enhancement factor ⁇ , the plurality of sets of target NFs and the target L eff , a plurality of equivalent optical signal to noise ratios OSM3 ⁇ 4 of the optical communication network, the multiple groups NF L eff target and target in each group and the target NF L eff corresponding to a certain optical equivalent SNR 0 SN;
  • An optimization unit configured to select a maximum equivalent light from the plurality of equivalent optical signal-to-noise ratios (OWR)
  • OSM3 ⁇ 4 adjusts the pump power of the at least one multi-stage Raman fiber amplifier according to the power value in the pump power combination corresponding to the maximum equivalent optical signal-to-noise ratio OSM3 ⁇ 4.
  • a re-optimization unit when collecting the amplified spontaneous emission ASE optical power reported by the optical communication network
  • the data collecting unit collects: the signal light wavelength and the number of wavelengths, Signal modulation pattern, signal modulation rate, span length, number of spans, fiber Rayleigh scattering coefficient, fiber loss factor, number of Raman pump lasers in each stage of the amplifier, and pump direction as the network state of the optical communication network information.
  • a system for optimizing the performance of an optical communication network comprising an optical transmitter, an optical receiver, and optical communication formed by at least one multi-stage Raman amplifier connected between the optical transmitter and the optical receiver Network, the system also includes:
  • the at least one multi-stage Raman fiber amplifier sets the pump power of its own pump lasers based on the received power value.
  • a method for optimizing performance of an optical communication network including at least one multi-stage Raman amplifier, the method comprising:
  • the method further includes:
  • the method when the difference ⁇ is greater than a set threshold, the method further includes:
  • the network state information includes: a signal light wavelength and a wavelength existing in the optical communication network Number, signal modulation pattern, signal modulation rate, span length, number of spans, fiber Rayleigh scattering coefficient, fiber loss factor, number of Raman pump lasers in each stage of the amplifier, and pump direction.
  • the foregoing one or more technical solutions in the embodiments of the present application have at least the following technical effects:
  • the method and apparatus provided by the embodiments of the present invention solve the problem that the existing Raman optical fiber amplification system only considers the optical signal-to-noise ratio after signal transmission.
  • the problem of BER cannot be guaranteed.
  • the solution provided by the invention can make the BER satisfy the demand condition after the signal is transmitted through the link, and the link BER does not require the total pump power to be the maximum when the demand condition is met, thereby avoiding the safety of the Raman fiber amplifier application to the system.
  • FIG. 2 is a schematic structural diagram of a second-order reverse-pumped Raman fiber amplifier in the prior art
  • FIG. 3 is a schematic structural diagram of an apparatus for optimizing performance of an optical communication network according to an embodiment of the present invention
  • the single-wave 193.4THZ signal light is transmitted in a 100km SSMF (Standard Single Mode Fiber), the SSMF fiber Rayleigh scattering coefficient is -78dB, and the signal light is output at -2dBm and -2dBm.
  • the signal light is amplified by a second-order Raman fiber amplifier in which pumpl and pump2 form first-order pump light, pump3 forms second-order pump light; pump1 is 1427nm laser, and pump2 is 1453nm laser , pump3 is a 1360nm laser.
  • the case of three pump power combinations (a, b, and c) is given below, where the pump power combination refers to the combination of the corresponding powers of the three lasers in the second-order Raman fiber amplifier.
  • An embodiment of the present invention provides an apparatus for optimizing performance of an optical communication network, where the apparatus specifically includes: a data collection unit, configured to collect network state information of the optical communication network, where the optical communication network includes at least one multi-stage Raman amplifier;
  • a calculating unit configured to utilize the target nonlinear noise figure enhancement factor ⁇ , the plurality of sets of target NFs , and a target L eff ,
  • the device provided by the embodiment of the invention solves the problem that the optical communication network system using the Raman fiber amplification in the prior art only considers the optical signal-to-noise ratio after signal transmission and cannot guarantee the BER.
  • the solution provided by the invention can make the BER meet the demand after the signal is transmitted through the link, and the link BER satisfies the requirement without requiring the total pump power to be maximum, thereby avoiding the poor safety of the Raman fiber amplifier application. influences.
  • the specific implementation may be: acquiring a nonlinear noise figure enhancement factor ⁇ corresponding to the optical communication network with different state information, and acquiring multiple multi-stage Raman fiber amplifiers included in the optical communication network corresponding to different pump power combinations
  • the nonlinear noise figure enhancement factor ⁇ of the optical communication network that acquires different state information in this embodiment can be implemented by simulation.
  • P ⁇ represents the optical power transmitted in the forward (+) or backward (-);
  • ⁇ ( ⁇ ) represents the Rayleigh scattering coefficient of light at frequency V;
  • two terms with hv represent the change in optical power due to spontaneous emission ,
  • a data collection unit 301 configured to collect network state information of an optical communication network, where the optical communication network includes at least one multi-stage Raman amplifier;
  • the data collecting unit 401 collects the optical communication network: the wavelength and the number of the signal light, the signal modulation pattern, the signal modulation rate, the length of the span, the number of spans, and the Rayleigh scattering coefficient of the optical fiber.
  • the fiber loss coefficient, the number of Raman pump lasers in each stage of the amplifier, and the pump direction are used as network state information of the optical communication network.
  • the default value may be called.
  • Fiber Rayleigh scattering coefficient For example: Fiber Rayleigh scattering coefficient.
  • the enhancement factor determining unit 302 is configured to determine, according to the network state information, a target nonlinear noise figure enhancement factor ⁇ corresponding to the optical communication network;
  • the state of the optical communication network affects the amplification effect of the multi-stage Raman amplifier. Therefore, in the solution provided by the embodiment of the present invention, first, a state of the optical communication network that needs to be optimized is determined.
  • the calculating unit 304 is configured to calculate, by using the target nonlinear noise figure enhancement factor ⁇ , the plurality of sets of target NFs and the target L eff , a plurality of equivalent optical signal-to-noise ratios OSNR of the optical communication network: q p t
  • the target NF and the target L eff of the plurality of sets of target NFs and the target L eff correspond to an equivalent optical signal-to-noise ratio (OSNR).
  • OSNR equivalent optical signal-to-noise ratio
  • the first of the first optical communication network is calculated.
  • the specific formula of the equivalent optical signal-to-noise ratio OSNR can be obtained by:
  • P Wi is the equivalent nonlinear noise of the link
  • is the ASE accumulated by the link
  • the equivalent nonlinear noise of the link is proportional to the cube of the fiber input power of each span signal.
  • the specific formula for calculating the first equivalent optical signal to noise ratio OSNR 0 J of the optical communication network may be:
  • the optimizing unit 305 is configured to select, from the plurality of equivalent optical signal-to-noise ratios OSM3 ⁇ 4, a maximum equivalent optical signal-to-noise ratio (3 ⁇ 4w3 ⁇ 4) according to the pump power combination corresponding to the maximum equivalent optical signal-to-noise ratio (3 ⁇ 4w3 ⁇ 4) The power value of the pump power of the at least one multi-stage Raman fiber amplifier is adjusted.
  • the preset condition is to compare a plurality of sets of target NFs and a plurality of equivalent optical signal-to-noise ratios corresponding to the target L eff 3 ⁇ 4w3 ⁇ 4, and select an equivalent optical signal-to-noise ratio.
  • the largest OSNR is the equivalent optical signal-to-noise ratio OSNR in an optimized optical communication network.
  • the optical communication network can be optimized once, because the above parameters are only the first optimization based on the data obtained by simulation and experiment, but since the real-time situation of the optical communication network has a certain impact on the performance of the network, Therefore, in the solution provided by the embodiment of the present invention, the optical communication network is further optimized in the solution provided by the foregoing optimization process, which may not be achieved in a plurality of times.
  • the apparatus further includes:
  • the re-optimization unit 306 when collecting the amplified spontaneous emission ASE optical power P ASE reported by the optical communication network, the signal output optical power, and the equivalent nonlinear noise according to the obtained ⁇ , signal a fiber optic power and an equivalent nonlinear noise P NL , determining a current equivalent optical signal to noise ratio OSNR eq of the optical communication network, and obtaining a difference ⁇ between the OSNR eq and the maximum equivalent optical signal to noise ratio OSNR And if the difference ⁇ is less than or equal to the set threshold, stopping adjusting the pump power of the optical communication network.
  • a single-wave signal (frequency of 193.4 ⁇ ) of 32G baud rate 16QAM modulation format is transmitted in an optical communication network with a fiber power of -2dBm.
  • the optical fiber of the optical communication network is in the following three cases:
  • the scattering coefficients are -82dB, -79dB and -76dB, respectively.
  • different power combinations corresponding to different NF and L eff are specifically as follows: 1.
  • the multi-stage Raman fiber amplifier in the optical communication network It consists of 1360nm laser, 1427nm laser and 1453nm laser.
  • the laser selects different power combinations, it will correspond to different NF and L eff :
  • Rayleigh scattering coefficient is -82dB in single-wave scene, different power combinations Corresponding to different NF and L eff are shown in Table 2:
  • step 403 of the embodiment multiple sets of target NF and target L eff are determined from the corresponding relationship by using multiple sets of pump power combinations.
  • the numbers in the column of each laser in Table 2 are selected for each laser. Power, the combination of the three powers in each row forms a set of pump power combinations. It can be seen that there are 15 sets of pump power combinations in Table 2, corresponding to 15 sets of target NF and target L eff .
  • the corresponding equivalent optical signal-to-noise ratio (OSM) can be calculated by formula (6). In the example shown in Table 2, 15 equivalent optical signal-to-noise ratios (OSNR) are corresponding. .
  • the parameters shown in Table 2 can be seen:
  • the Rayleigh scattering coefficient is -79dB
  • the multi-order Raman fiber amplifier in the optical communication network is composed of 1360nm laser, 1427nm laser and 1453nm laser.
  • the laser selects different power combinations, it will correspond to different NF and L eff:
  • Rayleigh scattering coefficient is -79dB when the single-wave scene, corresponding to different NF and L eff as shown in table 3 in the case shown in various combinations of power:
  • the specific parameters of the three fiber Rayleigh scattering coefficients can be seen: When the Rayleigh scattering coefficient is -82dB, the second-order pump power takes 1.4W (total power 1.076W). Good; when the Rayleigh scattering coefficient is -79dB, the second-order pump power is 0.5W (total power 0.823W). The link performance is best. When the Rayleigh scattering coefficient is -76dB, the second-order pump power is 0W. The total performance of the link (total power 0.682W) is the best.
  • the optical communication network is: 5 wavelength signals of 32G baud rate 16QAM modulation format (signal frequency range is 193.3THZ to 193.5THz, channel spacing 50GHz).
  • the input power per channel is -2dBm.
  • the fiber is inserted through 20 spans, single span.
  • the length of the optical fiber is 100 km; the optical fiber of the optical communication network is in the following three cases: the fiber Rayleigh scattering coefficients are -82 dB, -79 dB, and -76 dB, respectively (wherein the Rayleigh scattering coefficient is equivalent to the network state information).
  • different power combinations corresponding to different NF and L eff are specifically the following:
  • the multi-order Raman fiber amplifier in the optical communication network is composed of 1360nm laser, 1427nm laser and 1453nm laser. When the laser selects different power combinations, it will correspond to different NF.
  • L eff The Rayleigh scattering coefficient is -82dB. In the single-wave scene, the different NF and L eff for different power combinations are shown in Table 5: Rayleigh scattering coefficient is -82dB
  • the Rayleigh scattering coefficient is -82dB
  • the second-order pump power is 1.4W (total power 1.428W)
  • the Rayleigh scattering coefficient is -79dB
  • the multi-order Raman fiber amplifier in the optical communication network is composed of 1360nm laser, 1427nm laser and 1453nm laser. When the laser selects different power combinations, it will correspond to different NF.
  • L eff In the single-wave scenario where the Rayleigh scattering coefficient is -79 dB, the different NF and L eff for different power combinations are shown in Table 6:
  • the Rayleigh scattering coefficient is -79dB
  • the second-order pump power is 0.5W (total power 0.827W)
  • the Rayleigh scattering coefficient is -76dB
  • the generator consists of a 1360nm laser, a 1427nm laser, and a 1453nm laser.
  • the laser selects different power combinations, it will correspond to different NF and L eff :
  • the Rayleigh scattering coefficient is -76dB
  • the power combination is different in a single-wave scenario.
  • the corresponding different NF and L eff are shown in Table 7:
  • the specific parameters of the three fiber Rayleigh scattering coefficients can be seen:
  • the second-order pump power is 1.4W (total power 1.428W).
  • the second-order pump power is 0.5W (total power 0.827W).
  • the link performance is best.
  • the second-order pump power is taken as 0W ( The total power of 0.686W) is the best performance of the link.
  • the device provided by the embodiment of the invention solves the problem that the existing Raman fiber amplifying system only considers the optical signal-to-noise ratio after signal transmission and cannot guarantee the BER.
  • the solution provided by the invention can make the BER meet the demand after the signal is transmitted through the link, and the link BER satisfies the requirement without requiring the total pump power to be the largest, thereby avoiding the poor safety of the Raman fiber amplifier application. influences.
  • the present invention also provides a system for optimizing the performance of an optical communication network, the system comprising an optical communication network 401, wherein the optical communication network includes an optical transmitter 401a, an optical receiver 401b, and the connection At least one multi-stage Raman amplifier 401c between the optical transmitter and the optical receiver, the system further comprising:
  • Optimizing device 402 which is connected to each of the optical transmitter 401a, the optical receiver 40lb, and the at least one multi-stage Raman amplifier 401c; for collecting the optical communication network Network state information; and determining, according to the network state information, a target nonlinear noise coefficient enhancement factor ⁇ corresponding to the optical communication network; and determining the target nonlinear noise coefficient enhancement factor ⁇ , the multi-stage Raman amplifier Corresponding relationship between the pump power combination and the noise figure NF, and the corresponding relationship between the pump power combination and L eff , obtaining multiple groups corresponding to the plurality of sets of pump power combinations under the target nonlinear noise figure enhancement factor ⁇ a target NF and a target L eff ; using the target nonlinear noise figure enhancement factor ⁇ , the plurality of sets of target NFs and the target L eff , calculating a plurality of equivalent optical signal-to-noise ratios OSNR of the optical communication network, NF plurality of sets of target and the target L eff each group of the target and the target NF
  • the at least one multi-stage Raman fiber amplifier 401c sets the pump power of its own pump lasers based on the received power value.
  • the specific optimization mode of the optical communication network 401 in the embodiment is the same as that of the device for optimizing the performance of the optical communication network provided in the first embodiment, and details are not described herein again.
  • an embodiment of the present invention further provides a method for optimizing performance of an optical communication network, where the optical communication network includes at least one multi-stage Raman amplifier, and the method includes:
  • the correspondence between different state information of the optical communication network and the nonlinear noise coefficient enhancement factor ⁇ may be first established by using simulation, etc.; then, under a specific nonlinear noise figure enhancement factor ⁇ , a sufficient amount is provided.
  • the corresponding Raman fiber amplifier has a corresponding noise figure NF and a nonlinear effective length L eff of the fiber transmission link under different pump power combinations.
  • the specific implementation may be: acquiring a nonlinear noise figure enhancement factor ⁇ corresponding to the optical communication network with different state information, and acquiring multiple multi-stage Raman fiber amplifiers included in the optical communication network corresponding to different pump power combinations
  • the nonlinear noise figure enhancement factor ⁇ of the optical communication network that acquires different state information in this embodiment can be implemented by simulation.
  • a link contains M wavelengths and N identical spans. Each wave is input to the fiber origin with the same power.
  • the cumulative ASE of the link can be obtained. (Amplified spontaneous emission, amplified spontaneous emission) and the distribution of steady and fixed signal optical power in each span, the nonlinear effective length of the link can also be obtained.
  • the numerical equation is as follows:
  • the method for optimizing the performance of the optical communication network specifically includes:
  • Step 502 Determine, according to the network state information, a target nonlinear noise figure enhancement factor ⁇ corresponding to the optical communication network;
  • Step 503 Determine a correspondence between a pump power combination of the multi-stage Raman amplifier and a noise figure NF under the target nonlinear noise figure enhancement factor ⁇ , and a correspondence between the pump power combination and L eff , and obtain The plurality of sets of target NF and the target L eff corresponding to the plurality of sets of pump power combinations under the target nonlinear noise figure enhancement factor ⁇ ;
  • the plurality of sets of target and the target NF L eff each group of the target and the target NF L eff light corresponding to an equivalent SNR OSNR.
  • the plurality of equivalent optical signal-to-noise ratios OSNRZ of the optical communication network are calculated by using the target nonlinear noise coefficient enhancement factor ⁇ , the plurality of sets of target NFs, and the target L eff , including :
  • Step 505 Select a maximum equivalent optical signal to noise ratio from the plurality of equivalent optical signal to noise ratios OSM3 ⁇ 4
  • OSNR q p t, adjusting the pump power of the at least one multi-stage Raman fiber amplifier according to the power value in the pump power combination corresponding to the maximum equivalent optical signal-to-noise ratio 3 ⁇ 4w3 ⁇ 4.
  • the first optical communication network can be optimized once, because the above parameters are only the first optimization based on the simulation and experimental data, but the real-time situation of the optical communication network scene will cause certain performance on the network.
  • the first optical communication network is further optimized and adjusted in order to achieve a better optimization effect.
  • the foregoing one or more technical solutions in the embodiments of the present application have at least the following technical effects:
  • the method and apparatus provided by the embodiments of the present invention solve the problem that the existing Raman optical fiber amplification system only considers the optical signal-to-noise ratio after signal transmission. The best and not the best BER problem.
  • the BER can be optimized after the optical signal is transmitted through the link of the optical communication network, and the total PF is not required at the best link BER, thereby avoiding the application of the Raman fiber amplifier.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及网络技术领域,尤其涉及一种优化光通信网络性能的方法及装置,该方法包括:收集光通信网络的网络状态信息;根据所述网络状态信息确定所述光通信网络对应的目标非线性噪声系数增强因子α;获得目标α下的多组泵浦功率组合对应的多组目标NF和目标L eff;利用所述目标α、目标NF和目标L eff,计算得到所述光通信网络的多个等效光信噪比 OSNR eq opt ;从所述 OSNR eq opt 中,选择最大的 OSNR eq opt 按照所述最大的 OSNR eq opt 对应的泵浦功率组合中的功率值调整所述至少一个多阶拉曼光纤放大器。通过本发明提供的方案可以使得信号经过链路传输以后BER满足需求条件,另外链路BER满足需求条件的时候并不要求总的泵浦功率最大,从而避免了拉曼光纤放大器应用对系统安全性的不良影响。

Description

一种优化光通信网络性能的方法及装置 技术领域
本发明涉及网络技术领域, 尤其涉及一种优化光通信网络性能的方法及 装置。 背景技术
RFA ( Raman fiber amplifier, 拉曼光纤放大器) 的光纤网络链路如图 1 所示, 信号在发端被调制后在传输过程中由于光纤的损耗, 信号功率被衰减, 经过拉曼光纤放大器放大, 最后信号传输到收端进行解调。 如果拉曼光纤放 大器的噪声指数越小, 并且信号在传输过程中受到的非线性畸变 (distortion ) 越小, 那么信号能够无电中继传输的距离就越远。
拉曼光纤放大器具有增益带宽大、 低噪声和高饱和输出功率等优点, 是 超大容量、 超长距离波分复用光纤通信系统的关键器件。 其中, 釆用多个泵 浦激光器的多阶拉曼光纤放大器还可以实现信号在宽带范围内的增益平坦以 及对信号进行多阶拉曼放大, 对于进一步降低噪声有很大好处。
如图 2所示为现有技术中一个二阶反向泵浦的拉曼光纤放大器的结构示 意图, 一个二阶反向泵浦的拉曼光纤放大器, 泵浦 pumpl和 pump2形成一阶 泵浦光, pump3形成二阶泵浦光。 叚设 pumpl为 1427nm激光器, pump2为 1453匪激光器, ump3为 1360匪激光器, um l和 ump2形成的一阶泵 浦光与信号光的频率偏移近一倍斯托克斯频率, 一阶泵浦光在光纤中传播时, 通过拉曼散射可以放大信号光; pump3 形成的二阶泵浦光与信号光的频率偏 移近两倍斯托克斯频率, 信号光在光纤中传播时, 通过泵浦一阶泵浦光以及 二阶泵浦光的放大处理后得到放大后的信号光。
现有技术中, 虽然二阶拉曼光纤放大器的泵浦功率越高对应 RFA的 NF ( Noise figure, 噪声系数)越低, 但是通过信号光在光纤链路传输的功率演 化可以看出,二阶拉曼泵浦功率高的时候光纤传输链路的 Leff ( effective length, 非线性有效长度)也越大, 从而引入的非线性噪声也越大。
现有技术中, 为了降低多阶拉曼光纤放大器的噪声指数, 釆用的方式是: 将多阶拉曼光纤放大器的二阶泵浦光功率设置为比一阶泵浦功率大很 多, 但是这种方式只能保证信号传输之后的 OSNR高, 不能保证信号的 BER ( biterror, 误码率), 而且总的泵浦功率太大会对网络的安全性造成不良的影 响。 发明内容
本发明实施例提供一种优化光通信网络性能的方法及装置, 用以解决现 有技术光通信网络中多阶拉曼光纤放大器的二阶泵浦光功率设置方案不能保 证信号的误码率最好的问题。
第一方面, 提供一种优化光通信网络性能的装置, 该装置包括: 数据收集单元, 用于收集光通信网络的网络状态信息, 其中, 该光通信 网络中包括至少一个多阶拉曼放大器;
增强因子确定单元, 用于根据所述网络状态信息确定所述光通信网络对 应的目标非线性噪声系数增强因子 α;
目标参数获取单元, 用于确定所述目标非线性噪声系数增强因子 α下的, 所述多阶拉曼放大器的泵浦功率组合与噪声系数 NF的对应关系,以及所述泵 浦功率组合与 Leff的对应关系, 获得所述目标非线性噪声系数增强因子 α下的 多组泵浦功率组合对应的多组目标 NF和目标 Leff
计算单元, 用于利用所述目标非线性噪声系数增强因子 α、所述多组目标 NF 和目标 Leff , 计算得到所述光通信网络的多个等效光信噪比 OSM¾ , 所 述多组目标 NF和目标 Leff 中的每一组目标 NF和目标 Leff对应一个等效光信 噪比0 SN
优化单元, 用于从所述多个等效光信噪比 OWR 中, 选择最大的等效光 信噪比 OSM¾ ,按照所述最大的等效光信噪比 OSM¾ 对应的泵浦功率组合中 的功率值, 调整所述至少一个多阶拉曼光纤放大器的泵浦功率。
结合第一方面, 在第一种可能的实现方式中, 计算确定单元还用于利用 公式:
Figure imgf000005_0001
计算所述等效光信噪比 OSNR ; 其中, 2为普朗克常量, V为信号频率, β。为 光信噪比 0SNR定义的噪声带宽, G为所述多阶拉曼光纤放大器的增益, N 为所述第一光通信网络中的放大器个数。
结合第一方面, 或者第一方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 该装置进一步包括:
再优化单元, 当收集所述光通信网络上报的放大的自发辐射 ASE光功率
PASE、 信号出纤光功率和等效非线性噪声 根据获得的 ^ 、 信号出纤光 功率和等效非线性噪声 pNL , 确定所述光通信网络当前的等效光信噪比 0SNReq , 并获取该 0SNReq与所述最大的等效光信噪比 0SNR 的差值 ε, 如果所 述差值 ε小于等于设定阔值, 则停止调整所述光通信网络的泵浦功率。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 当所述差值 ε大于设定阔值,所述再优化单元还用于计算确定所述光通信网络 的等效非线性噪声 PNl是否大于 2倍所述光通信网络的链路累积的 ASE噪声 PASE , 若是, 则减小所述至少一个多阶拉曼放大器的二阶泵浦光功率; 否则 增大所述至少一个多阶拉曼放大器的的二阶泵浦光功率。
结合第一方面, 或者第一方面的第一至三种可能的实现方式, 在第四种 可能的实现方式中, 所述数据收集单元收集所述光通信网络的: 信号光波长 和波长数目、 信号调制码型、 信号调制速率、 跨段长度、 跨段数目、 光纤瑞 利散射系数、 光纤损耗系数、 各级放大器中拉曼泵浦激光器数目和泵浦方向 作为所述光通信网络的网络状态信息。 第二方面, 提供一种优化光通信网络性能的系统, 该系统包括光发射机、 光接收机以及连接在所述光发射机和光接收机之间的至少一个多阶拉曼放大 器形成的光通信网络, 该系统还包括:
优化装置, 该优化装置与所述光发射机、 光接收机以及所述至少一个多 阶拉曼放大器中的每个多阶拉曼放大器连接; 用于收集该光通信网络的网络 状态信息; 并根据所述网络状态信息确定所述光通信网络对应的目标非线性 噪声系数增强因子 α; 确定所述目标非线性噪声系数增强因子 α下的, 所述多 阶拉曼放大器的泵浦功率组合与噪声系数 NF的对应关系,以及所述泵浦功率 组合与 Leff的对应关系, 获得所述目标非线性噪声系数增强因子 α 下的多组 泵浦功率组合对应的多组目标 NF和目标 Leff; 利用所述目标非线性噪声系数 增强因子 α、 所述多组目标 NF和目标 Leff , 计算得到所述光通信网络的多个 等效光信噪比 OSNR:q pt , 所述多组目标 NF和目标 Leff 中的每一组目标 NF和 目标 Leff对应一个等效光信噪比 0SNR t 从所述多个等效光信噪比 OSNR 中, 选择最大的等效光信噪比 OSM¾ , 将所述最大的等效光信噪比 OSM¾ 对应的 泵浦功率组合中的功率值发送到所述至少一个多阶拉曼光纤放大器;
所述至少一个多阶拉曼光纤放大器根据接收到的功率值设置自身各泵浦 激光器的泵浦功率。
第一方面, 提供一种优化光通信网络性能的方法, 光通信网络中包括至 少一个多阶拉曼放大器, 该方法包括:
收集所述光通信网络的网络状态信息;
根据所述网络状态信息确定所述光通信网络对应的目标非线性噪声系数 增强因子 α;
确定所述目标非线性噪声系数增强因子 α下的, 所述多阶拉曼放大器的 泵浦功率组合与噪声系数 NF的对应关系,以及所述泵浦功率组合与 Leff的对 应关系, 获得所述目标非线性噪声系数增强因子 α下的多组泵浦功率组合对 应的多组目标 NF和目标 Leff; 利用所述目标非线性噪声系数增强因子 α、所述多组目标 NF和目标 Leff , 计算得到所述光通信网络的多个等效光信噪比 OSNR0 , 所述多组目标 NF和 目标 Leff 中的每一组目标 NF和目标 Leff对应一个等效光信噪比 0SNR
从所述多个等效光信噪比 OSNR 中, 选择最大的等效光信噪比 OSNR , 按照所述最大的等效光信噪比 OSM¾ 对应的泵浦功率组合中的功率值, 调整 所述至少一个多阶拉曼光纤放大器的泵浦功率。
结合第二方面, 在第一种可能的实现方式中, 所述利用所述目标非线性 噪声系数增强因子 α、 所述多组目标 NF和目标 Leff , 计算得到所述光通信网 络的多个等效光信噪比 OSNR , 包括:
利用公式: 计
Figure imgf000007_0001
算所述等效光信噪比 0SNR:Jp
其中, 2为普朗克常量, V为信号频率, β。为光信噪比 OSNR定义的噪声 带宽, G为所述多阶拉曼光纤放大器的增益, N为所述光通信网络中的放大器 个数。
结合第二方面, 或者第二方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 调整所述至少一个多阶拉曼光纤放大器的泵浦功率之后, 该 方法进一步包括:
收集所述光通信网络上报的放大的自发辐射 ASE光功率 PASE、 信号出纤 光功率和等效非线性噪声 PNL
根据获得的 ^ 、 信号出纤光功率和等效非线性噪声 确定所述光通 信网络当前的等效光信噪比 wR^ ,并获取该 wR^与所述最大的等效光信噪 比 OWR f的差值 ε, 如果所述差值 ε小于等于设定阔值, 则停止调整所述光通 信网络的泵浦功率。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 当所述差值 ε大于设定阔值时, 该方法进一步包括:
计算确定所述光通信网络的等效非线性噪声 PNL是否大于 2倍所述光通信 网络的链路累积的 ASE噪声 若是, 则减小所述至少一个多阶拉曼放大 器的二阶泵浦光功率; 否则增大所述至少一个多阶拉曼放大器的的二阶泵浦 光功率。
结合第二方面, 或者第二方面的第一至三种可能的实现方式, 在第四种 可能的实现方式中, 所述网络状态信息包括: 所述光通信网络中存在的信号 光波长和波长数目、 信号调制码型、 信号调制速率、 跨段长度、 跨段数目、 光纤瑞利散射系数、 光纤损耗系数、 各级放大器中拉曼泵浦激光器数目和泵 浦方向。
本申请实施例中的上述一个或多个技术方案, 至少具有如下的技术效果: 本发明实施例所提供的方法和装置, 解决了现有拉曼光纤放大系统只考 虑信号传输之后光信噪比而不能保证 BER的问题。 通过本发明提供的方案可 以使得信号经过链路传输以后 BER满足需求条件,另外链路 BER满足需求条 件的时候并不要求总的泵浦功率最大, 从而避免了拉曼光纤放大器应用对系 统安全性的不良影响。 附图说明
图 1为现有技术中光纤网络链路的结构示意图;
图 2为现有技术中一个二阶反向泵浦的拉曼光纤放大器的结构示意图; 图 3 为本发明实施例提供的一种优化光通信网络性能的装置的结构示意 图;
图 4为本发明实施提供的一种优化光通信网络性能的系统的结构示意图; 图 5为本发明实施提供的一种优化光通信网络性能的方法的流程示意图。 具体实施方式
虽然二阶拉曼泵浦功率越高对应 RFA的噪声指数越低, 但是通过信号在 光纤链路传输的功率演化可以看出, 二阶拉曼泵浦功率高的时候光纤传输链 路的非线性有效长度( Leff )也越大, 从而引入的非线性噪声也越大。 以下通 过具体的实例对 RFA的 NF、 Leff与泵浦功率组合的对应关系进行说明:
当单波 193.4THZ信号光在 100km的 SSMF ( Standard Single Mode Fiber, 标准单模光纤) 中传输, 且该 SSMF的光纤瑞利散射系数为 -78dB, 信号光以 -2dBm输入和 -2dBm输出, 该信号光通过一个二阶拉曼光纤放大器进行放大 处理, 所述二阶拉曼光纤放大器中 pumpl和 pump2形成一阶泵浦光, pump3 形成二阶泵浦光; pumpl为 1427nm激光器, pump2为 1453nm激光器, pump3 为 1360nm激光器。 以下给出三种泵浦功率组合的情况( a、 b和 c ), 其中, 泵浦功率组合是指所述二阶拉曼光纤放大器中三个激光器对应功率形成的组 合。 该实例中, 在 a、 b、 c 三种泵浦功率组合下对应的非线性有效长度
Leff =—\L P(z)dz
po 和 NF会是不同的值, 具体如表 1所示:
Figure imgf000009_0001
表 1
从表 1可以看出,二阶泵浦光功率越大,二阶拉曼光纤放大器的 NF越低; 所以对于一条由相同的多个 RFA组成链路来说, 传输后的 OSNR ( OSNR Optical Signal-to-Noise Ratio, 光信噪比)越高。 但是二阶泵浦光功率越大, 信号在光纤中的非线性有效长度越大, 信号受到的非线性畸变就会越严重。
本发明实施例提供一种优化光通信网络性能的装置, 该装置具体包括: 数据收集单元, 用于收集光通信网络的网络状态信息, 其中, 该光通信 网络中包括至少一个多阶拉曼放大器;
增强因子确定单元, 用于根据所述网络状态信息确定所述光通信网络对 应的目标非线性噪声系数增强因子 α
目标参数获取单元, 用于确定所述目标非线性噪声系数增强因子 α下的, 所述多阶拉曼放大器的泵浦功率组合与噪声系数 NF的对应关系,以及所述泵 浦功率组合与 Leff的对应关系, 获得所述目标非线性噪声系数增强因子 α 下 的多组泵浦功率组合对应的多组目标 NF和目标 Leff
计算单元, 用于利用所述目标非线性噪声系数增强因子 α、所述多组目标 NF 和目标 Leff ,
Figure imgf000010_0001
, 所 述多组目标 NF和目标 Leff 中的每一组目标 NF和目标 Leff对应一个等效光信 噪比0 SN
优化单元, 用于从所述多个等效光信噪比 OSNR 中, 选择最大的等效光 信噪比 OSNR ,按照所述最大的等效光信噪比 OSNR 对应的泵浦功率组合中 的功率值, 调整所述至少一个多阶拉曼光纤放大器的泵浦功率。
本发明实施例所提供的装置, 解决了现有技术中使用拉曼光纤放大的光 通信网络系统只考虑信号传输之后的光信噪比而不能保证 BER的问题。 通过 本发明提供的方案可以使得信号经过链路传输以后 BER满足需求, 并且链路 BER满足需求的同时并不要求总的泵浦功率最大, 从而避免了拉曼光纤放大 器应用对系统安全性的不良影响。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 实施例一
如图 3 所示, 本发明实施例提供一种优化光通信网络性能的装置, 该装 置具体包括:
本发明实施例中, 可以首先利用仿真等方式建立光通信网络的不同状态 信息与非线性噪声系数增强因子 α的对应关系; 然后在特定的非线性噪声系 数增强因子 α下, 提供足量的多阶拉曼光纤放大器在不同泵浦功率组合下对 应的噪声系数 NF和光纤传输链路的非线性有效长度 Leff 。 具体实现可以是: 获取不同状态信息的光通信网络对应的非线性噪声系数增强因子 α , 并 获取所述光通信网络中包括的多个多阶拉曼光纤放大器在不同泵浦功率组合 下对应的噪声系数 NF和光纤传输链路的非线性有效长度 Leff ,保存不同状态 信息对应的非线性噪声系数增强因子 α; 以及在每个状态信息下的泵浦功率组 合与噪声系数 NF、 Leff的对应关系。
保存不同状态信息对应的非线性噪声系数增强因子 α; 以及在每个状态信 息下的泵浦功率组合与噪声系数 NF、 Leff的对应关系之后, 在具体应用中, 可以将保存的对应关系直接存储到优化光通信网络性能的装置中; 也可以存 储在可以与所述优化光通信网络性能的装置通信的其他设备中, 使得优化光 通信网络性能的装置需要使用所述对应关系的时候可以通过一定的方式获取 到。
在该实施例中获取不同状态信息的光通信网络的非线性噪声系数增强因 子 α, 可以是通过仿真的方式实现的。
因为,拉曼光纤放大器在不同泵浦功率下的 NF以及 Leff可以通过计算机 仿真或者解如下数值方程获取。 解数值方程的原理如下:
假设一条链路包含 M个波长, N个完全相同的跨段, 各波以相同功率输 入光纤发端, 通过解信号光和各泵浦光在光纤内的数值方程, 可以求出链路 的累积 ASE ( amplified spontaneous emission, 放大的自发 ί畐射)和稳、定后的 信号光功率在各跨段内的分布, 也可以得出链路的非线性有效长度, 数值方 程如下:
P± (z, ζ) + P+ (z, ζ) \ Ρ± (z, v) + hv [Ρ+- {ζ, ζ) + ρ-+ {ζ, ζ)] [\ +
Figure imgf000012_0001
其中 P ±表示 前向 (+ )或者后向 (- )传输的光功率; γ (ν)表示频率 V 的光的瑞利散射系数; 带有 hv 的两项表示因自发辐射引起的光功率变化,
1
1 + - ( -v
e τ 反应了温度(Τ )对拉曼自发辐射的影响。
上式中, 将信号光和泵浦光不加区 这样 对于输入光纤的任意光波, 无论功率大小, 波长如何分布, 波长连续的或者 分立, 都可以在一个数学模型中将功率分布求解出来。
根据上述公式求出各波长信号光和噪声的功率分布, 可以求出各跨段对 应的非线性有效长度 Leff和拉曼光纤放大器的 NF。 因为多阶拉曼光纤放大 中的每阶功率不相同则会对应不同的非线性有效长度 Leff和拉曼光纤放大器 的 NF, 所以本发明实施例所提供的方法, 可以通过上述计算仿真等方式确定 多阶拉曼光纤放大器的每组功率组合与非线性有效长度 Leff和拉曼光纤放大 器的 NF的对应关系。
基于上述得到的对应关系, 本发明实施例提供的优化光通信网络性能的 装置具体包括:
数据收集单元 301 , 用于收集光通信网络的网络状态信息, 其中, 该光通 信网络中包括至少一个多阶拉曼放大器;
因为收集了不同状态信息的光通信网络的非线性噪声系数增强因子 α,即 通过仿真等方式确定了不同网络状态信息对应的非线性噪声系数增强因子 α。 所以在具体优化某一个光通信网络时, 就可以收集所述光通信网络的网络状 态信息, 从而可以根据所保存的状态信息与非线性噪声系数增强因子 α的对 应关系, 确定所述待优化光通信网络的非线性噪声系数增强因子 α。
在本发明实施例中, 所述数据收集单元 401 收集所述光通信网络的: 信 号光波长和波长数目、 信号调制码型、 信号调制速率、 跨段长度、 跨段数目、 光纤瑞利散射系数、 光纤损耗系数、 各级放大器中拉曼泵浦激光器数目和泵 浦方向作为所述光通信网络的网络状态信息。
在具体的实现中, 如果上述参数中的某一个或者是某几个没有釆集到, 可以调用缺省值。 例如: 光纤瑞利散射系数。
增强因子确定单元 302,用于才艮据所述网络状态信息确定所述光通信网络 对应的目标非线性噪声系数增强因子 α;
在具体的应用环境中, 光通信网络的状态会影响到多阶拉曼放大器的放 大效果, 所以在本发明实施例提供的方案中, 首先确定需要优化的光通信网 络是怎样的一个状态。
目标参数获取单元 303 ,用于确定所述目标非线性噪声系数增强因子 α下 的, 所述多阶拉曼放大器的泵浦功率组合与噪声系数 NF的对应关系, 以及所 述泵浦功率组合与 Leff的对应关系,获得所述目标非线性噪声系数增强因子 α 下的多组泵浦功率组合对应的多组目标 NF和目标 Leff
计算单元 304 , 用于利用所述目标非线性噪声系数增强因子 α、 所述多组 目标 NF和目标 Leff ,计算得到所述光通信网络的多个等效光信噪比 OSNR:q pt , 所述多组目标 NF和目标 Leff 中的每一组目标 NF和目标 Leff对应一个等效光 信噪比 OSNR ; 在本发明实施例中, 计算所述第一光通信网络的第一等效光信噪比 OSNR 的具体公式可以通过以下方式获得:
因为光通信网络中链路的拉曼光纤放大器的噪声指数越低,收端的 0SNR 越高, 但是非线性有效长度越长, 信号收到的非线性畸变影响越大, 只有权 衡非线性效应和收端 ASE噪声才能使得信号传输后的 BER最好。因此在调整 拉曼泵浦激光器的时候, 仅考虑信号传输后的 OSNR高还不够, 更需要通过 调整各泵浦波长功率大小实现链路 BER最好。
对于无色散补偿的链路, 非线性噪声可以等效为高斯噪声, 则链路的等 效光信噪比 ( OSW^是衡量信号传输之后 BER好坏的唯一指标)可以 表示为 Eq.(l)式:
OSNR = ^≤ ^
rNL rASE (1)
其中 为收端信号光功率, PWi为链路等效非线性噪声, ^为链路累积 的 ASE, 而链路的等效非线性噪声又正比于各跨段信号入纤功率的立方, 可 以表示为 k为该系统的非线性噪声系数, 与链路的非线性有效长度 平方成正比关系, 即t = «Leff 2 , «为非线性噪声系数增强因子, 《是一个与系 统参数(波长数目、 信号码型、 信号速率、 光纤类型等)相关的常数。
要使得收端 OSNReq最大,对 Eq.(l)式两边取倒数,然后再对信号功率求 导等于 0时, 对应的等效光信噪比最大。 SNReq
Figure imgf000014_0001
可以得到
Figure imgf000014_0002
对于一个各跨段完全一样的链路, 链路的累积 ASE噪声可以表示为
Ρ舰 二 hvB G- W (4) 其中 2为普朗克常量, V为信号频率, β。为 OSNR定义的噪声带宽, ITU 规范通常为 12.5 GHz, G为放大器的增益, N为放大器的个数。 由 (3)式可以 确定链路的最佳入纤光功率 和在该放大器配置下 (对应特定的 NF和 1^ )传 输后的最佳等效光信噪比 OSNR:Jp
Figure imgf000015_0001
所以根据上述公式的推导过程, 可以确定计算所述光通信网络的第一等 效光信噪比 OSNR0J的具体公式可以是:
Figure imgf000015_0002
优化单元 305 ,用于从所述多个等效光信噪比 OSM¾ 中,选择最大的等效 光信噪比 ¾w¾ ,按照所述最大的等效光信噪比 ¾w¾ 对应的泵浦功率组合 中的功率值, 调整所述至少一个多阶拉曼光纤放大器的泵浦功率。
因为不同的泵浦功率组合下拉曼光纤放大器的 NF不一样, 信号的 1^也 不一样, 系统对应的最佳等效光信噪比也不一样。 因此调整拉曼光纤放大系 统泵浦光功率的原则应保证链路的等效光信噪比 OSNReq最高, 而不是传输 后的光信噪比最高。 所以本发明实施例中, 所述预设条件则是将多组目标 NF 和目标 Leff所对应的多个等效光信噪比 ¾w¾ 进行比较, 选择等效光信噪比
OSNR 中最大的作为优化光通信网络中的等效光信噪比 OSNR 。
经过上述装置结构可以对所述光通信网络进行一次优化操作, 因为上述 参数只是根据仿真和实验所得的数据进行的初次优化, 但是因为光通信网络 的实时情况会对网络的性能造成一定的影响, 所以上述优化过程在很多时候 并不能达到的最优的效果, 为了达到更好的优化效果, 本发明实施例所提供 的方案中还对所述光通信网络进行二次优化, 具体该可以是:
当所述多阶拉曼光纤放大器中的每个都按照所述第二泵浦功率组合中规 定的每阶功率设置自身各泵浦激光器所需的驱动电流值之后, 该装置还进一 步包括:
再优化单元 306 , 当收集所述光通信网络上报的放大的自发辐射 ASE光 功年 PASE、 信号出纤光功率和等效非线性噪声 根据获得的 ^ 、 信号出 纤光功率和等效非线性噪声 PNL, 确定所述光通信网络当前的等效光信噪比 OSNReq , 并获取该 OSNReq与所述最大的等效光信噪比 OSNR 的差值 ε, 如果所 述差值 ε小于等于设定阔值, 则停止调整所述光通信网络的泵浦功率。
在该实施例中, 当所述差值 ε 大于设定阔值且调节次数小于最大调节次 数, 即之前的优化操作都没有达到预期的效果, 并且还没有达到预设的调节 次数, 所以为了达到更好的优化效果还可做进一步的优化, 其中优化的方式 可以是以下: 所述再优化单元 306还用于计算确定所述光通信网络的等效非线性噪声 PWi是否大于 2倍所述光通信网络的链路累积的 ASE噪声 若是, 则减 小所述至少一个多阶拉曼放大器的二阶泵浦光功率; 否则增大所述至少一个 多阶拉曼放大器的的二阶泵浦光功率。
为了更详细的说明本发明实施例所提供的方案, 以下通过两个场景的优 化表明本申请实施例所提供方案的作用:
场景一、 单波场景:
其中, 32G波特率 16QAM调制格式的单波信号 (频率为 193.4ΤΗζ )在 每跨入纤光功率为 -2dBm 的光通信网络中传输, 该光通信网络的光纤为以下 三种情况: 光纤瑞利散射系数分别为 -82dB、 -79dB 和 -76dB。 则在每种光纤 参数下, 不同的功率组合对应不同的 NF和 Leff 具体会是以下情况: 一、 当瑞利散射系数为 -82dB的场景下, 光通信网络中的多阶拉曼光纤放 大器由 1360nm激光器、 1427nm激光器和 1453nm激光器组成, 当激光器选 择不同的功率组合的情况下会对应不同的 NF 和 Leff : 瑞利散射系数为 -82dB 时单波场景下, 不同的功率组合的情况下对应不同的 NF和 Leff如表 2所示:
瑞利散射系数为 -82dB
1360nm 1427nm 1453nm NF Leff OSNReq power ( W) power ( W) power ( W) (dB) (km) (dB)
1.4 0.0159 0.0106 -4.75 39.81 25.34
1.3 0.0159 0.0165 -4.64 38.94 25.33 1.2 0.0159 0.0262 -4.50 37.84 25.32
1.1 0.0159 0.0416 -4.34 36.52 25.32
1 0.0159 0.0651 -4.17 35.16 25.31
0.9 0.0159 0.0976 -3.99 33.83 25.30
0.8 0.0159 0.1394 -3.82 32.67 25.29
0.7 0.0159 0.1891 -3.66 31.65 25.28
0.6 0.0159 0.2457 -3.52 30.79 25.26
0.5 0.0159 0.3076 -3.39 30.06 25.25
0.4 0.0159 0.3738 -3.28 29.44 25.23
0.3 0.0159 0.4432 -3.17 28.90 25.21
0.2 0.0159 0.5157 -3.07 28.45 25.19
0.1 0.0159 0.5901 -2.98 28.04 25.18
0 0.0159 0.6669 -2.90 27.70 25.16
表 2
即本实施例步骤 403 中利用多组泵浦功率组合从所述对应关系中对应确 定多组目标 NF和目标 Leff ,在表 2中每个激光器所在列中的数字为每个激光 器所选择的功率, 每一行中三个功率的组合在一起即形成一组泵浦功率组合。 可见表 2中共有 15组泵浦功率组合, 对应 15组目标 NF和目标 Leff 。 根据泵浦功率组合确定对应的 NF和 Leff后, 则可通过公式(6 )计算对 应的等效光信噪比 OSM , 在表 2 所示的实例中对应 15 个等效光信噪比 OSNR 。 根据从表格中所给出的 15个等效光信噪比 OSNR 中选择一个最大的等效 光信噪比 OS ¾ , 则表 2所示的参数可见: 当瑞利散射系数为 -82dB时, 二阶 泵浦功率取 1.4W (总功率 1.076W ), OSNR° =25.34的链路的性能最好。 二、 当瑞利散射系数为 -79dB的场景下, 光通信网络中的多阶拉曼光纤放 大器由 1360nm激光器、 1427nm激光器和 1453nm激光器组成, 当激光器选 择不同的功率组合的情况下会对应不同的 NF和 Leff: 瑞利散射系数为 -79dB 时单波场景下, 不同的功率组合的情况下对应不同的 NF和 Leff如表 3所示:
Figure imgf000017_0001
1.4 0.0159 0.0109 -4.03 39.71 24.87
1.3 0.0159 0.0168 -3.94 38.84 24.87
1.2 0.0159 0.0265 -3.84 37.77 24.88
1.1 0.0159 0.0420 -3.72 36.48 24.90
1 0.0159 0.0654 -3.59 35.14 24.93
0.9 0.0159 0.0979 -3.46 33.84 24.95
0.8 0.0159 0.1395 -3.33 32.66 24.97
0.7 0.0159 0.1892 -3.22 31.64 24.98
0.6 0.0159 0.2454 -3.11 30.77 24.99
0.5 0.0159 0.3073 -3.01 30.05 24.99
0.4 0.0159 0.3735 -2.91 29.44 24.99
0.3 0.0159 0.4432 -2.83 28.91 24.99
0.2 0.0159 0.5157 -2.75 28.45 24.98
0.1 0.0159 0.5901 -2.68 28.04 24.97
0 0.0159 0.6663 -2.61 27.68 24.96 表 3
从表 3 所示的参数可见: 当瑞利散射系数为 -79dB 时, 二阶泵浦功率取 0.5W (总功率 0.823W ), OSNR:Jp =24.99的链路的性能最好。 三、 当瑞利散射系数为 -76dB的场景下, 光通信网络中的多阶拉曼光纤放 大器由 1360nm激光器、 1427nm激光器和 1453nm激光器组成, 当激光器选 择不同的功率组合的情况下会对应不同的 NF和 Leff: 瑞利散射系数为 -76dB 时单波场景下, 不同的功率组合的情况下对应不同的 NF和 Leff如表 4所示:
瑞利散射系数为 -76dB
1360nm 1427nm 1453nm N (dB) OSNReq power ( W) power ( W) power ( W) (km) (dB)
1.4 0.0159 0.0115 -2.04 39.39 23.56
1.3 0.0159 0.0174 -1.99 38.63 23.58
1.2 0.0159 0.0272 -1.93 37.63 23.63
1.1 0.0159 0.0426 -1.91 36.39 23.70
1 0.0159 0.0658 -1.88 35.08 23.79
0.9 0.0159 0.0982 -1.86 33.80 23.89
0.8 0.0159 0.1394 -1.85 32.62 23.98
0.7 0.0159 0.1891 -1.82 31.63 24.06
0.6 0.0159 0.2457 -1.80 30.79 24.12
0.5 0.0159 0.3075 -1.77 30.07 24.17
0.4 0.0159 0.3732 -1.75 29.43 24.22
0.3 0.0159 0.4432 -1.72 28.92 24.25
0.2 0.0159 0.5150 -1.70 28.44 24.28
0.1 0.0159 0.5900 -1.67 28.05 24.30
0 0.0159 0.6663 -1.64 27.69 24.32 表 4
从表 4 所示的参数可见: 当瑞利散射系数为 -76dB 时, 二阶泵浦功率取 0W (总功率 0.682W ), OWR =24.32链路的性能最好。
在上述单波场景下三种光纤瑞利散射系数的具体参数值可以看出: 当瑞利散射系数为 -82dB时, 二阶泵浦功率取 1.4W (总功率 1.076W )链 路的性能最好; 当瑞利散射系数为 -79dB时, 二阶泵浦功率取 0.5W (总功率 0.823W )链路的性能最好; 当瑞利散射系数为 -76dB时, 二阶泵浦功率取 0W (总功率 0.682W )链路的性能最好。
场景二: WDM ( 5波)仿真场景
光通信网络为: 32G波特率 16QAM调制格式的 5个波长信号(信号频率 范围为 193.3THZ 到 193.5THz, 信道间隔 50GHz )在每跨单波输入功率为 -2dBm入纤经过 20跨, 单跨光纤长度 100km; 该光通信网络的光纤为以下三 种情况: 光纤瑞利散射系数分别为 -82dB、 -79dB 和 -76dB (其中所述瑞利散 射系数等同于所述网络状态信息)。 则在每种光纤参数下, 不同的功率组合对 应不同的 NF和 Leff具体会是以下情况:
一、 当瑞利散射系数为 -82dB的场景下, 光通信网络中的多阶拉曼光纤放 大器由 1360nm激光器、 1427nm激光器和 1453nm激光器组成当激光器选择 不同的功率组合的情况下会对应不同的 NF和 Leff: 瑞利散射系数为 -82dB时 单波场景下, 不同的功率组合的情况下对应不同的 NF和 Leff如表 5所示: 瑞利散射系数为 -82dB
1360nm 1427nm 1453nm N (dB) Leff(km)
power (W) power (W) power (W)
1.4 0.0159 0.0111 -4.69 39.61 25.20
1.3 0.0159 0.0172 -4.58 38.79 25.19
1.2 0.0159 0.0272 -4.44 37.63 25.18
1.1 0.0159 0.0433 -4.28 36.34 25.18
1 0.0159 0.0673 -4.11 35.00 25.17
0.9 0.0159 0.1004 -3.94 33.70 25.17
0.8 0.0159 0.1426 -3.78 32.55 25.16
0.7 0.0159 0.1926 -3.62 31.55 25.15 0.6 0.0159 0.2495 -3.49 30.71 25.13
0.5 0.0159 0.3114 -3.36 29.99 25.12
0.4 0.0159 0.3776 -3.25 29.38 25.10
0.3 0.0159 0.4476 -3.14 28.87 25.08
0.2 0.0159 0.5201 -3.05 28.41 25.06
0.1 0.0159 0.5945 -2.96 28.01 25.05
0 0.0159 0.6708 -2.88 27.65 25.03
表 5
从表 5 所示的参数可见: 当瑞利散射系数为 -82dB 时, 二阶泵浦功率取 1.4W (总功率 1.428W ), OSNR =25.20的链路的性能最好。 二、 当瑞利散射系数为 -79dB的场景下, 光通信网络中的多阶拉曼光纤放 大器由 1360nm激光器、 1427nm激光器和 1453nm激光器组成当激光器选择 不同的功率组合的情况下会对应不同的 NF和 Leff: 瑞利散射系数为 -79dB时 单波场景下, 不同的功率组合的情况下对应不同的 NF和 Leff如表 6所示:
Figure imgf000020_0001
表 6
从表 6 所示的参数可见: 当瑞利散射系数为 -79dB 时, 二阶泵浦功率取 0.5W (总功率 0.827W ), OSNReT=24.86链路的性能最好。 三、 当瑞利散射系数为 -76dB的场景下, 光通信网络中的多阶拉曼光纤放 大器由 1360nm激光器、 1427nm激光器和 1453nm激光器组成当激光器选择 不同的功率组合的情况下会对应不同的 NF和 Leff: 瑞利散射系数为 -76dB时 单波场景下, 不同的功率组合的情况下对应不同的 NF和 Leff如表 7所示:
Figure imgf000021_0001
从表 7 所示的参数可见: 当瑞利散射系数为 -76dB 时, 二阶泵浦功率取 0W (总功率 0.686W ), OWR =24.19链路的性能最好。
在上述 WDM场景下三种光纤瑞利散射系数的具体参数值可以看出: 当瑞利散射系数为 -82dB时, 二阶泵浦功率取 1.4W (总功率 1.428W ) 链路的性能最好; 当瑞利散射系数为 -79dB时, 二阶泵浦功率取 0.5W (总功 率 0.827W )链路的性能最好; 当瑞利散射系数为 -76dB时, 二阶泵浦功率取 0W (总功率 0.686W )链路的性能最好。
本发明实施例所提供的装置, 解决了现有拉曼光纤放大系统只考虑信号 传输之后的光信噪比而不能保证 BER的问题。 通过本发明提供的方案可以使 得信号经过链路传输以后 BER满足需求,并且链路 BER满足需求的同时并不 要求总的泵浦功率最大, 从而避免了拉曼光纤放大器应用对系统安全性的不 良影响。 实施例二
如图 4所示, 本发明还提供一种优化光通信网络性能的系统, 该系统该 系统包括光通信网络 401 , 其中该光通信网络包括光发射机 401a、 光接收机 401b 以及连接在所述光发射机和光接收机之间的至少一个多阶拉曼放大器 401c, 该系统还包括:
优化装置 402 , 该优化装置 402与所述光发射机 401a, 光接收机 40 lb以 及所述至少一个多阶拉曼放大器 401c中的每个多阶拉曼放大器连接; 用于收 集该光通信网络的网络状态信息; 并根据所述网络状态信息确定所述光通信 网络对应的目标非线性噪声系数增强因子 α;确定所述目标非线性噪声系数增 强因子 α下的,所述多阶拉曼放大器的泵浦功率组合与噪声系数 NF的对应关 系, 以及所述泵浦功率组合与 Leff的对应关系,获得所述目标非线性噪声系数 增强因子 α下的多组泵浦功率组合对应的多组目标 NF和目标 Leff;利用所述 目标非线性噪声系数增强因子 α、 所述多组目标 NF和目标 Leff , 计算得到所 述光通信网络的多个等效光信噪比 OSNR , 所述多组目标 NF和目标 Leff 中 的每一组目标 NF和目标 Leff对应一个等效光信噪比 0 ;从所述多个等效 光信噪比 OWR 中,选择最大的等效光信噪比 0¾W¾ ,将所述最大的等效光信 噪比 OSNI 对应的泵浦功率组合中的功率值发送到所述至少一个多阶拉曼 光纤放大器;
所述至少一个多阶拉曼光纤放大器 401c根据接收到的功率值设置自身各 泵浦激光器的泵浦功率。
该实施例中所述优化装置 402对所述光通信网络 401 的具体优化方式与 实施例一所提供的优化光通信网络性能的装置相同, 此处不再赘述。
实施例三
如图 5 所示, 本发明实施例还提供一种优化光通信网络性能的方法, 光 通信网络中包括至少一个多阶拉曼放大器, 该方法包括: 本发明实施例中, 可以首先利用仿真等方式建立光通信网络的不同状态 信息与非线性噪声系数增强因子 α的对应关系; 然后在特定的非线性噪声系 数增强因子 α下, 提供足量的多阶拉曼光纤放大器在不同泵浦功率组合下对 应的噪声系数 NF和光纤传输链路的非线性有效长度 Leff 。 具体实现可以是: 获取不同状态信息的光通信网络对应的非线性噪声系数增强因子 α , 并 获取所述光通信网络中包括的多个多阶拉曼光纤放大器在不同泵浦功率组合 下对应的噪声系数 NF和光纤传输链路的非线性有效长度 Leff ,保存不同状态 信息对应的非线性噪声系数增强因子 α; 以及在每个状态信息下的泵浦功率组 合与噪声系数 NF、 Leff的对应关系。
在该实施例中获取不同状态信息的光通信网络的非线性噪声系数增强因 子 α, 可以是通过仿真的方式实现的。
因为,拉曼光纤放大器在不同泵浦功率下的 NF以及 Leff可以通过计算机 仿真或者解如下数值方程获取。 解数值方程的原理如下:
假设一条链路包含 M个波长, N个完全相同的跨段, 各波以相同功率输 入光纤发端, 通过解信号光和各泵浦光在光纤内的数值方程, 可以求出链路 的累积 ASE ( amplified spontaneous emission, 放大的自发 ί畐射)和稳、定后的 信号光功率在各跨段内的分布, 也可以得出链路的非线性有效长度, 数值方 程如下:
Figure imgf000023_0001
其中 P ±表示 前向 (+ )或者后向 (- )传输的光功率; γ (ν)表示频率 V 的光的瑞利散射系数; 带有 hv 的两项表示因自发辐射引起的光功率变化,
Figure imgf000023_0002
反应了温度(T )对拉曼自发辐射的影响。 上式中, 将信号光和泵浦光不加区别的用同一个方程形式来表达, 这样 对于输入光纤的任意光波, 无论功率大小, 波长如何分布, 波长连续的或者 分立, 都可以在一个数学模型中将功率分布求解出来。
根据上述公式求出各波长信号光和噪声的功率分布, 可以求出各跨段对 应的非线性有效长度 Leff和拉曼光纤放大器的 NF。 因为多阶拉曼光纤放大器 中的每阶功率不相同则会对应不同的非线性有效长度 Leff和拉曼光纤放大器 的 NF , 所以本发明实施例所提供的方法, 可以通过上述计算仿真等方式确定 多阶拉曼光纤放大器的每组功率组合与非线性有效长度 Leff和拉曼光纤放大 器的 NF的对应关系。
基于上述得到的对应关系, 本发明实施例提供的优化光通信网络性能的 方法具体包括:
步骤 501 , 收集所述光通信网络的网络状态信息;
其中, 所述网络状态信息包括: 所述光通信网络中存在的信号光波长和 波长数目、 信号调制码型、 信号调制速率、 跨段长度、 跨段数目、 光纤瑞利 散射系数、 光纤损耗系数、 各级放大器中拉曼泵浦激光器数目和泵浦方向。
步骤 502 ,根据所述网络状态信息确定所述光通信网络对应的目标非线性 噪声系数增强因子 α;
步骤 503 , 确定所述目标非线性噪声系数增强因子 α下的, 多阶拉曼放大 器的泵浦功率组合与噪声系数 NF的对应关系,以及所述泵浦功率组合与 Leff 的对应关系, 获得所述目标非线性噪声系数增强因子 α下的多组泵浦功率组 合对应的多组目标 NF和目标 Leff
步骤 504 , 利用所述目标非线性噪声系数增强因子 α、 所述多组目标 NF 和目标 Leff , 计算得到所述光通信网络的多个等效光信噪比 ,
Figure imgf000024_0001
所述多 组目标 NF和目标 Leff 中的每一组目标 NF和目标 Leff对应一个等效光信噪比 OSNR . 本发明实施例中, 所述利用所述目标非线性噪声系数增强因子 α、所述多 组目标 NF 和目标 Leff , 计算得到所述光通信网络的多个等效光信噪比 OSNRZ , 包括:
利用公式: 计
Figure imgf000025_0001
算所述等效光信噪比 OSNR:Jp
其中, 2为普朗克常量, V为信号频率, β。为光信噪比 OSNR定义的噪声 带宽, G为所述多阶拉曼光纤放大器的增益, N为所述光通信网络中的放大器 个数。
步骤 505 ,从所述多个等效光信噪比 OSM¾ 中,选择最大的等效光信噪比
OSNR:q pt,按照所述最大的等效光信噪比 ¾w¾ 对应的泵浦功率组合中的功率 值, 调整所述至少一个多阶拉曼光纤放大器的泵浦功率。
经过上述方法可以对所述第一光通信网络进行一次优化操作, 因为上述 参数只是根据仿真和实验所得的数据进行的初次优化, 但是因为光通信网络 场景的实时情况会对网络的性能造成一定的影响, 所以上述优化过程在很多 时候并不能达到的最优的效果, 为了达到更好的优化效果, 本发明实施例所 提供的方案中还对所述第一光通信网络进行二次优化, 调整所述至少一个多 阶拉曼光纤放大器的泵浦功率之后, 该方法进一步包括:
收集所述光通信网络上报的放大的自发辐射 ASE光功率 PASE、 信号出纤 光功率和等效非线性噪声 PNL
根据获得的 ^ 、 信号出纤光功率和等效非线性噪声 确定所述光通 信网络当前的等效光信噪比 wR^ ,并获取该 wR^与所述最大的等效光信噪 比 OWR f的差值 ε, 如果所述差值 ε小于等于设定阔值, 则停止调整所述光通 信网络的泵浦功率。 在该实施例中, 当所述差值 ε 大于设定阔值且调节次数小于最大调节次 数, 即之前的优化操作都没有达到预期的效果, 并且还没有达到预设的调节 次数, 所以为了达到更好的优化效果还可做进一步的优化, 其中优化的方式 可以是以下:
计算确定所述光通信网络的等效非线性噪声 PNL是否大于 2倍所述光通信 网络的链路累积的 ASE噪声 若是, 则减小所述至少一个多阶拉曼放大 器的二阶泵浦光功率; 否则增大所述至少一个多阶拉曼放大器的的二阶泵浦 光功率。
本申请实施例中的上述一个或多个技术方案, 至少具有如下的技术效果: 本发明实施例所提供的方法和装置, 解决了现有拉曼光纤放大系统只考 虑信号传输之后光信噪比最好而不能保证 BER最好的问题。 通过本发明提供 的方案可以使得光信号经过光通信网络的链路传输以后 BER达到最佳, 另外 链路 BER最好的时候并不要求总的泵浦功率最大, 从而避免了拉曼光纤放大 器应用对系统安全性的不良影响。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单 元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本申请各个实施例所述 方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存 储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以对本申请的技术方案进行了详细介绍, 但 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想, 不应理解 为对本发明的限制。 本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种优化光通信网络性能的装置, 其特征在于, 该装置包括: 数据收集单元, 用于收集光通信网络的网络状态信息, 其中, 该光通信 网络中包括至少一个多阶拉曼放大器;
增强因子确定单元, 用于根据所述网络状态信息确定所述光通信网络对 应的目标非线性噪声系数增强因子 α; 目标参数获取单元, 用于确定所述目标非线性噪声系数增强因子 α下的, 所述多阶拉曼放大器的泵浦功率组合与噪声系数 NF的对应关系,以及所述泵 浦功率组合与 Leff的对应关系, 获得所述目标非线性噪声系数增强因子 α下的 多组泵浦功率组合对应的多组目标 NF和目标 L "e(ff
计算单元, 用于利用所述目标非线性噪声系数增强因子 α、所述多组目标 NF和目标 1^ , 计算得到所述光通信网络的多个等效光信噪比 OSM¾ , 所述 多组目标 NF和目标 Leff中的每一组目标 NF和目标 Leff对应一个等效光信噪比
OSNRZ . 优化单元, 用于从所述多个等效光信噪比 OWR 中, 选择最大的等效光 信噪比 OWR^,按照所述最大的等效光信噪比 OWR^对应的泵浦功率组合中 的功率值, 调整所述至少一个多阶拉曼光纤放大器的泵浦功率。
2、 如权利要求 1所述的装置, 其特征在于, 计算确定单元还用于利用公 式: 计
Figure imgf000028_0001
算所述等效光信噪比 OSM¾ ; 其中, 2为普朗克常量, V为信号频率, β。为光 信噪比 0SNR定义的噪声带宽, G为所述多阶拉曼光纤放大器的增益, N为 所述第一光通信网络中的放大器个数。
3、如权利要求 1或 2任一所述的装置, 其特征在于, 该装置进一步包括: 再优化单元, 当收集所述光通信网络上报的放大的自发辐射 ASE光功率 PASE、 信号出纤光功率和等效非线性噪声 根据获得的 ^ 、 信号出纤光 功率和等效非线性噪声 pNL , 确定所述光通信网络当前的等效光信噪比 OSNReq , 并获取该 0¾W 与所述最大的等效光信噪比 OWR^的差值 ε, 如果所 述差值 ε小于等于设定阔值, 则停止调整所述光通信网络的泵浦功率。
4、如权利要求 3所述的装置, 其特征在于, 当所述差值 ε大于设定阔值, 所述再优化单元还用于计算确定所述光通信网络的等效非线性噪声 PWi是否 大于 2倍所述光通信网络的链路累积的 ASE噪声 若是, 则减小所述至 少一个多阶拉曼放大器的二阶泵浦光功率; 否则增大所述至少一个多阶拉曼 放大器的的二阶泵浦光功率。
5、 如权利要求 1~4任一所述的装置, 其特征在于, 所述数据收集单元收 集所述光通信网络的: 信号光波长和波长数目、 信号调制码型、 信号调制速 率、 跨段长度、 跨段数目、 光纤瑞利散射系数、 光纤损耗系数、 各级放大器 中拉曼泵浦激光器数目和泵浦方向作为所述光通信网络的网络状态信息。
6、一种优化光通信网络性能的系统, 其特征在于,该系统包括光发射机、 光接收机以及连接在所述光发射机和光接收机之间的至少一个多阶拉曼放大 器形成的光通信网络, 该系统还包括:
优化装置, 该优化装置与所述光发射机、 光接收机以及所述至少一个多 阶拉曼放大器中的每个多阶拉曼放大器连接; 用于收集该光通信网络的网络 状态信息; 并根据所述网络状态信息确定所述光通信网络对应的目标非线性 噪声系数增强因子 α; 确定所述目标非线性噪声系数增强因子 α下的, 所述多 阶拉曼放大器的泵浦功率组合与噪声系数 NF的对应关系,以及所述泵浦功率 组合与 Leff的对应关系, 获得所述目标非线性噪声系数增强因子 α下的多组泵 浦功率组合对应的多组目标 NF和目标 Leff; 利用所述目标非线性噪声系数增 强因子 α、 所述多组目标 NF和目标 Leff , 计算得到所述光通信网络的多个等 效光信噪比 OSNR , 所述多组目标 NF和目标 Leff中的每一组目标 NF和目标 Leff对应一个等效光信噪比0^^^ ; 从所述多个等效光信噪比 a¾w¾ 中, 选择 最大的等效光信噪比 OSM¾ , 将所述最大的等效光信噪比 OSM¾ 对应的泵浦 功率组合中的功率值发送到所述至少一个多阶拉曼光纤放大器;
所述至少一个多阶拉曼光纤放大器根据接收到的功率值设置自身各泵浦 激光器的泵浦功率。
7、 一种优化光通信网络性能的方法, 光通信网络中包括至少一个多阶拉 曼放大器, 其特征在于, 该方法包括:
收集所述光通信网络的网络状态信息;
根据所述网络状态信息确定所述光通信网络对应的目标非线性噪声系数 增强因子 α;
确定所述目标非线性噪声系数增强因子 α下的, 所述多阶拉曼放大器的 泵浦功率组合与噪声系数 NF的对应关系, 以及所述泵浦功率组合与 Leff的对 应关系, 获得所述目标非线性噪声系数增强因子 α下的多组泵浦功率组合对 应的多组目标 NF和目标 ;
利用所述目标非线性噪声系数增强因子 α、 所述多组目标 NF和目标 Leff , 计算得到所述光通信网络的多个等效光信噪比 OSNR0 , 所述多组目标 NF和 目标 Leff中的每一组目标 NF和目标 Leff对应一个等效光信噪比 0SNR
从所述多个等效光信噪比 OSNR 中, 选择最大的等效光信噪比 OSNR , 按照所述最大的等效光信噪比 OSM¾ 对应的泵浦功率组合中的功率值, 调整 所述至少一个多阶拉曼光纤放大器的泵浦功率。
8、 如权利要求 7所述的方法, 其特征在于, 所述利用所述目标非线性噪 声系数增强因子 α、 所述多组目标 NF和目标 Leff , 计算得到所述光通信网络 的多个等效光信噪比 OSNR , 包括:
利用公式:
Figure imgf000031_0001
算所述等效光信噪比 OSNR:Jp
其中, 2为普朗克常量, V为信号频率, β。为光信噪比 OSNR定义的噪声 带宽, G为所述多阶拉曼光纤放大器的增益, N为所述光通信网络中的放大器 个数。
9、 如权利要求 7或 8任一所述的方法, 其特征在于, 调整所述至少一个 多阶拉曼光纤放大器的泵浦功率之后, 该方法进一步包括:
收集所述光通信网络上报的放大的自发辐射 ASE光功率 PASE、 信号出纤 光功率和等效非线性噪声 PNL
根据获得的 ^ 、 信号出纤光功率和等效非线性噪声 确定所述光通 信网络当前的等效光信噪比 wR^ ,并获取该 wR^与所述最大的等效光信噪 比 OWR f的差值 ε, 如果所述差值 ε小于等于设定阔值, 则停止调整所述光通 信网络的泵浦功率。
10、如权利要求 9所述的方法, 其特征在于, 当所述差值 ε大于设定阔值 时, 该方法进一步包括:
计算确定所述光通信网络的等效非线性噪声 PNL是否大于 2倍所述光通信 网络的链路累积的 ASE噪声 若是, 则减小所述至少一个多阶拉曼放大 器的二阶泵浦光功率; 否则增大所述至少一个多阶拉曼放大器的的二阶泵浦 光功率。
11、 如权利要求 7至 10任一所述的方法, 其特征在于, 所述网络状态信 息包括: 所述光通信网络中存在的信号光波长和波长数目、 信号调制码型、 信号调制速率、 跨段长度、 跨段数目、 光纤瑞利散射系数、 光纤损耗系数、 各级放大器中拉曼泵浦激光器数目和泵浦方向。
PCT/CN2014/076061 2014-04-23 2014-04-23 一种优化光通信网络性能的方法及装置 WO2015161473A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480000503.7A CN105210313B (zh) 2014-04-23 2014-04-23 一种优化光通信网络性能的方法及装置
PCT/CN2014/076061 WO2015161473A1 (zh) 2014-04-23 2014-04-23 一种优化光通信网络性能的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076061 WO2015161473A1 (zh) 2014-04-23 2014-04-23 一种优化光通信网络性能的方法及装置

Publications (1)

Publication Number Publication Date
WO2015161473A1 true WO2015161473A1 (zh) 2015-10-29

Family

ID=54331610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076061 WO2015161473A1 (zh) 2014-04-23 2014-04-23 一种优化光通信网络性能的方法及装置

Country Status (2)

Country Link
CN (1) CN105210313B (zh)
WO (1) WO2015161473A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631862A (zh) * 2017-03-15 2018-10-09 中兴通讯股份有限公司 中继配置方法、装置及网络管理系统
WO2019072203A1 (zh) * 2017-10-11 2019-04-18 中兴通讯股份有限公司 中继配置方法、服务器及计算机可读存储介质
CN111416665A (zh) * 2019-01-07 2020-07-14 中国移动通信有限公司研究院 一种光纤通信方法、装置、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454583B2 (en) 2016-04-22 2019-10-22 Huawei Technologies Co., Ltd System and method for communication network service connectivity
CN108964753B (zh) * 2018-06-27 2021-02-26 武汉光迅科技股份有限公司 一种拉曼光纤放大器的最大增益获取方法和装置
CN112187351A (zh) * 2020-09-21 2021-01-05 西安工程大学 紫外光实验信号及其仿真信号的信噪比计算方法
CN114499679B (zh) * 2022-01-25 2023-08-25 上海交通大学 多波段拉曼放大器设计方法及系统
CN114499667B (zh) * 2022-01-28 2023-06-13 上海交通大学 单纤双向光纤链路中双向光放大器增益的优化装置与方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418416A (zh) * 2000-03-16 2003-05-14 西门子公司 喇曼放大器装置
CN1639931A (zh) * 2002-07-31 2005-07-13 皮雷利&C·有限公司 多级拉曼放大器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912084B2 (en) * 2002-08-20 2005-06-28 Lucent Technologies Inc. Method and apparatus for controlling pump powers of broadband raman amplifiers used in optical transmission systems
EP1905139B1 (de) * 2005-07-07 2009-06-24 Nokia Siemens Networks Gmbh & Co. Kg Mehrstufiger faserverstärker und verfahren zur anpassung einer pumpleistung eines mehrstufigen faserverstärkers
IL174669A (en) * 2006-03-30 2011-10-31 Eci Telecom Ltd Method for regulating osnr in a given fiber optic transmission line
CN101145838A (zh) * 2006-09-13 2008-03-19 中兴通讯股份有限公司 一种求取dwdm系统光信噪比的方法
US8817365B2 (en) * 2012-07-19 2014-08-26 Finisar Israel Ltd. Hybrid optical amplifier with optimized noise figure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418416A (zh) * 2000-03-16 2003-05-14 西门子公司 喇曼放大器装置
CN1639931A (zh) * 2002-07-31 2005-07-13 皮雷利&C·有限公司 多级拉曼放大器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631862A (zh) * 2017-03-15 2018-10-09 中兴通讯股份有限公司 中继配置方法、装置及网络管理系统
WO2019072203A1 (zh) * 2017-10-11 2019-04-18 中兴通讯股份有限公司 中继配置方法、服务器及计算机可读存储介质
CN109660298A (zh) * 2017-10-11 2019-04-19 中兴通讯股份有限公司 一种中继配置方法、服务器及计算机可读存储介质
EP3696996A4 (en) * 2017-10-11 2021-07-21 ZTE Corporation RELAY, SERVER, AND COMPUTER-READABLE STORAGE MEDIA CONFIGURATION PROCESS
CN109660298B (zh) * 2017-10-11 2022-08-05 中兴通讯股份有限公司 一种中继配置方法、服务器及计算机可读存储介质
CN111416665A (zh) * 2019-01-07 2020-07-14 中国移动通信有限公司研究院 一种光纤通信方法、装置、设备及存储介质
CN111416665B (zh) * 2019-01-07 2022-04-15 中国移动通信有限公司研究院 一种光纤通信方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN105210313A (zh) 2015-12-30
CN105210313B (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2015161473A1 (zh) 一种优化光通信网络性能的方法及装置
US10003429B2 (en) Optical transmission device that transmits wavelength division multiplexed optical signal and optical transmission system
JP4671478B2 (ja) 波長多重光通信システムおよび波長多重光通信方法
US9172475B2 (en) Method and apparatus for equalizing link performance
EP2880790B1 (en) Method of optimizing optical signal quality in an optical communications link, optical network element and optical communications link
US8055129B2 (en) Alien wavelength channel balancing and line amplifier optimization
WO2012119495A1 (zh) 光功率调节方法和装置
US20140029937A1 (en) Method, apparatus, and system for monitoring and adjusting optical power
US20180145747A1 (en) Optical transmission characteristic measurement device and method
US20040047020A1 (en) Pre-emphasized optical communication
CN115296732A (zh) 光传输系统和光传输系统的配置参数优化方法
US7145718B2 (en) Control method of optical fiber amplifier and optical transmission system
Souza et al. Accurate and scalable quality of transmission estimation for wideband optical systems
US9001413B2 (en) Control circuit, control method, and transmission system
CA2524832A1 (en) Method for pre-emphasizing an optical multiplex signal
Chang et al. 15 Tb/s unrepeatered transmission over 409.6 km using distributed raman amplification and ROPA
US20040086279A1 (en) Wavelength-division multiplexing optical transmission system and repeater station therein
Olonkins et al. Equalization of EDFA Gain spectrum and increase of OSNR through introducing a hybrid Raman-EDFA solution
CA2632137C (en) Method, apparatus and data carrier for compensating for channel depletion of a multi-channel signal in an optical link or optical network
US8989585B2 (en) Free space optical communications link node, network and method of transmitting traffic
JP2008153558A (ja) 光伝送システム及びその信号スペクトラム補正方法
WO2024061049A1 (en) Method and system for improving performance in an optical link
WO2023169655A1 (en) Controller device and method for amplifier configuration in an ultra-wideband optical network
US20220416897A1 (en) Optical amplifier, receiver, optical transmission system, and optical amplifier design method
Makwana et al. Evaluation of a 4-Channel WDM-PON System with Erbium-Doped Fiber Amplifier for High Bandwidth Applications.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890136

Country of ref document: EP

Kind code of ref document: A1