WO2011144051A2 - 数据传输方法、光线路终端和系统 - Google Patents

数据传输方法、光线路终端和系统 Download PDF

Info

Publication number
WO2011144051A2
WO2011144051A2 PCT/CN2011/074370 CN2011074370W WO2011144051A2 WO 2011144051 A2 WO2011144051 A2 WO 2011144051A2 CN 2011074370 W CN2011074370 W CN 2011074370W WO 2011144051 A2 WO2011144051 A2 WO 2011144051A2
Authority
WO
WIPO (PCT)
Prior art keywords
onu
coding
fec
algorithm
encoding
Prior art date
Application number
PCT/CN2011/074370
Other languages
English (en)
French (fr)
Other versions
WO2011144051A3 (zh
Inventor
董恩升
郑盛巍
聂世玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/074370 priority Critical patent/WO2011144051A2/zh
Priority to CN2011800006360A priority patent/CN102239652A/zh
Publication of WO2011144051A2 publication Critical patent/WO2011144051A2/zh
Publication of WO2011144051A3 publication Critical patent/WO2011144051A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a data transmission method, an optical line terminal, and a system. Background technique
  • the 10G EPON (Ethernet Passive Optical Network) uses the RS (Reed-Solomon) algorithm (255, 223) as the uplink and downlink FEC (Forward Error Correction) coding algorithm. And use the fixed FEC codeword format for uplink and downlink transmission. Due to the fixed use of RS (255, 223) for FEC encoding, the encoding efficiency of 10G EPON is only 87%. For fiber links, the actual available bandwidth in lOGbps data bandwidth is only 8.7Gbps. Although 10G EPON FEC coding can increase the optical power budget of the system, the coding gain that RS (255, 223) coding can provide cannot be satisfied in environments with large split ratio, long access distance, and poor line quality. The demand for optical power budget.
  • RS Random-Solomon
  • FEC Forward Error Correction
  • the prior art proposes an FEC encoding method between a 10G EPON OLT (Optical Line Terminal) and an ONU (Optical Network Unit), which can support FEC on/off (FEC encoding enable/disable). ) Configuration.
  • FEC is enabled
  • RS 255, 223
  • FEC encoding is not performed, which can eliminate FEC encoding overhead and improve uplink and downlink effective bandwidth, between coding gain and transmission efficiency. Make a compromise.
  • the FEC coding algorithm can only choose between enabling and disabling, with little room for adjustment and poor adaptation. Summary of the invention
  • Embodiments of the present invention provide a data transmission method, an optical line terminal, and a system, which implement adaptive selection of FEC coding, and adaptively adjust coding gain and coding overhead, thereby effectively improving network bandwidth utilization.
  • a data transmission method is applied to a 10G Ethernet passive optical network EPON, where the method includes: detecting a link quality with an optical network unit ONU; Determining a data block length according to the detection result, and determining a parameter of the Reed-Solomon RS coding algorithm according to the data block length;
  • the downlink data is subjected to FEC forward error correction coding by using an RS coding algorithm, and then sent to the ONU.
  • An optical line terminal OLT is applied to a 10G Ethernet passive optical network EPON, where the OLT includes: a detecting module, configured to detect a link quality between the optical network unit and the ONU;
  • An encoding module configured to determine a data block length according to the detection result, determine a parameter of a Reed-Solomon RS encoding algorithm according to the data block length, and use the RS encoding algorithm to perform downlink data according to parameters of the RS encoding algorithm Perform FEC forward error correction coding;
  • a sending module configured to send the FEC encoded downlink data to the ONU.
  • a data transmission system is applied to a 10G Ethernet passive optical network EPON.
  • the system includes: an optical line terminal OLT, configured to detect a link quality between an optical network unit and an ONU, and determine data according to the detection result. Block length, determining parameters of the Reed-Solomon RS coding algorithm according to the data block length, and performing FEC forward error correction coding on the downlink data by using the RS coding algorithm according to parameters of the RS coding algorithm, generating and a check block synchronization header corresponding to the RS encoding algorithm, adding the check block synchronization header before the FEC encoded downlink data, and then sending the check block synchronization header to the ONU;
  • the ONU is configured to receive, by the OLT, add the check block synchronization header and the FEC encoded downlink data, and search for a check block synchronization header, according to the check block synchronization header and the RS coding algorithm. Corresponding relationship, determining an RS coding algorithm corresponding to the searched block synchronization header, and decoding the FEC encoded downlink data according to the determined RS coding algorithm to obtain the downlink data.
  • the above data transmission method, optical line terminal and system provided by the embodiments of the present invention have the following beneficial effects: by detecting the link quality with the ONU, determining the length of the data block according to the detection result, determining the RS algorithm to perform FEC coding, and implementing the 10G
  • the adaptive selection FEC coding of the EPON system, as well as the adaptive adjustment of the coding gain and coding overhead overcomes the drawback that the prior art FEC coding algorithm can only select the poor adaptation between enabling and disabling, and effectively improves the network bandwidth. Utilization rate. DRAWINGS
  • FIG. 1 is a flowchart of a data transmission method according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a data transmission method according to Embodiment 2 of the present invention
  • 4 is a structural diagram of an OLT according to Embodiment 3 of the present invention
  • FIG. 5 is a structural diagram of an ONU provided in Embodiment 4 of the present invention.
  • FIG. 6 is a structural diagram of a data transmission system according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic diagram of implementing a physical sublayer of downlink data transmission according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram of an implementation of a physical sublayer of uplink data transmission according to Embodiment 5 of the present invention. detailed description
  • this embodiment provides a data transmission method, which is applied to a 10G Ethernet passive optical network EPON, and includes:
  • the above steps 101 to 103 can be performed by the OLT, and the RS coding algorithm is selected as the FEC coding algorithm.
  • the foregoing 103 may specifically include:
  • a check block sync header corresponding to the RS encoding algorithm is generated, and the check block sync header is added before the FEC encoded downlink data, and then sent to the ONU.
  • the foregoing method provided in this embodiment is a data sending method.
  • detecting the link quality with the ONU determining the length of the data block according to the detection result, determining the RS algorithm to perform FEC encoding, and implementing the adaptive selection FEC encoding of the 10G EPON system, As well as adaptively adjusting the coding gain and coding overhead, the prior art FEC coding algorithm can only overcome the defect of poor adaptation between enabling and disabling, and effectively improve the utilization of network bandwidth.
  • the embodiment further provides a data transmission method, which is applied to a 10G Ethernet passive optical network EPON, and includes:
  • 201 Receive FEC forward error correction encoded downlink data sent by the optical line terminal OLT;
  • 202 Search for a check block synchronization header in the FEC encoded downlink data;
  • the foregoing data receiving method may further include:
  • the above steps 201 to 204 can be performed by the ONU.
  • the foregoing method provided in this embodiment is a data receiving method. After receiving the FEC encoded downlink data, the check block synchronization header is searched to determine the corresponding RS algorithm for FEC decoding, and the adaptive FEC encoding of the 10G EPON system is implemented. The FEC decoding effectively improves the utilization of network bandwidth.
  • Example 2 After receiving the FEC encoded downlink data, the check block synchronization header is searched to determine the corresponding RS algorithm for FEC decoding, and the adaptive FEC encoding of the 10G EPON system is implemented.
  • the FEC decoding effectively improves the utilization of network bandwidth.
  • the embodiment provides a data transmission method, which is applied to a 10G Ethernet passive optical network EPON, and includes:
  • OLT detects a link error rate between the ONU and the ONU
  • the OLT can be connected to multiple ONUs, and the link between each OLT and the ONU may be different. Each link has its own link error rate.
  • the OLT detects the link error.
  • the code rate is the link error rate of the link between the ONUs with which it communicates.
  • the OLT selects a number in the preset range according to the link error rate as the number of correcting errors t, wherein the preset range is an integer ranging from 0 to 32;
  • the OLT calculates the data block length k according to the obtained correction error number t according to the following formula:
  • n is the codeword length
  • n 255
  • nk represents the check block length. The larger the value, the larger the coding overhead, and the smaller the value, the smaller the coding overhead.
  • t is preferably an integer multiple of 4.
  • the encoding algorithm is RS (255, 255), which is equivalent to FEC encoding prohibition, and data transmission does not need to be FEC encoded.
  • t takes other values, it is applicable to different environments. For example, if the currently detected chain The road error rate is large, indicating that the link quality is poor, and the coding overhead is increased, and a larger t value is obtained.
  • the OLT determines an RS encoding algorithm RS (255, k) according to the obtained data block length k, and performs FEC encoding on the downlink data by using the RS encoding algorithm;
  • the FEC encoded data includes: a downlink data and a data block synchronization header, and a parity block and a parity block synchronization header.
  • the block sync header is used by the ONU to identify downlink data
  • the check block sync header is used by the ONU to identify the check block.
  • the data block synchronization header and the check block synchronization header may be set as needed.
  • different RS coding algorithms correspond to different check block synchronization headers, and the OLT may preset one RS coding algorithm corresponding to each t value.
  • the corresponding check block synchronization header is used to facilitate the ONU to identify the check block under different RS coding algorithms.
  • the OLT generates a check block synchronization header corresponding to the RS (255, k), and adds the check block synchronization header before the FEC encoded downlink data, and then the OLT adds the check block synchronization header and the FEC is encoded.
  • the downlink data is sent to the ONU;
  • the ONU After receiving the check block synchronization header and the FEC encoded data, the ONU searches for the check block synchronization header, and determines, according to the correspondence between the check block synchronization header and the RS coding algorithm, the searched check block synchronization header correspondingly.
  • the RS coding algorithm in this embodiment, the OLT and the ONU may pre-store the correspondence between the RS coding algorithm and the check block synchronization header, including the corresponding t value, etc., to facilitate codec and data transmission.
  • the correspondence can be as shown in Table 1.
  • each t value corresponds to a different check block sync header, and each check block
  • the lengths of the sync headers are different, and the length varies with the length of the check block.
  • the length of the check block that is, the larger the nk, the larger the length of the check block sync header.
  • the coding gain, coding overhead, and available bandwidth are also listed in Table 1.
  • the coding gain refers to the difference between the signal-to-noise ratio of both the unused coding and the used coding under a certain error rate.
  • the coding overhead refers to the proportion of the FEC code length in the total length of the codeword. The data from Table 1 It can be seen that the larger the t value, the larger the coding overhead and the larger the coding gain.
  • the ONU searches for the check block synchronization header, and then searches for the searched check block in the correspondence between the pre-stored check block sync header and the t value.
  • the t value corresponding to the synchronization header is used to determine the corresponding RS coding algorithm, thereby performing FEC decoding of the downlink data.
  • the ONU decodes the received FEC encoded downlink data according to the determined RS coding algorithm to obtain the downlink data.
  • the above method may further include:
  • the OLT sends the parameters of the determined RS coding algorithm to the ONU through the grant frame GATE.
  • the ONU After receiving the authorization frame, the ONU obtains the parameters of the RS coding algorithm, and uses the RS coding algorithm to perform FEC on the uplink data according to the parameter. Encoding, and transmitting the FEC encoded uplink data to the OLT.
  • the parameter of the RS encoding algorithm sent to the ONU includes at least a data block length k, and may further include a codeword length n. For example, when the codeword length n is the default value of both the OLT and the ONU, only the data block length k can be transmitted.
  • the OLT may perform FEC decoding according to the RS encoding algorithm that has been granted to the ONU to obtain uplink data.
  • the OLT in this embodiment can also perform FEC encoding by using a standard RS (255, 223) encoding algorithm, so that the new RS encoding algorithm currently determined by the ONU is not required to be notified by the authorization information, and the ONU will use the standard FEC encoding algorithm to compile by default. decoding.
  • the OLT may add an FEC encoding type field to the GATE grant frame to carry the determined RS encoding algorithm, as represented by FEC_Type.
  • FEC_Type For example, the FEC encoding type field may be added to the number of grants or the flags of the GATE frame.
  • the FEC encoding type field may be added to other reserved extension bits. This is not specifically limited.
  • the foregoing method provided in this embodiment is for data transmission between the OLT and an ONU. In actual applications, the OLT usually performs data transmission with multiple ONUs. The process of data transmission is the same as that described in the foregoing method. However, the OLT will Burst Delimiter detection is performed on the received multiple uplink data, so as to distinguish which ONU the respective uplink data is from, which is not described in this embodiment.
  • the foregoing method provided in this embodiment detects the link quality between the ONU and the ONU through the OLT, determines the data block length according to the detection result, determines the RS algorithm to perform FEC coding, implements adaptive selection FEC coding of the 10G EPON system, and adaptively By adjusting the coding gain and coding overhead, the effective bandwidth can be varied from 8.7 Gbps to 10 Gbps, which effectively improves the utilization of network bandwidth.
  • the FEC algorithm can not only select RS (255, 223), but also other RS encoding algorithms of k value. Non-standard FEC encoding algorithms can be supported to accommodate a variety of application scenarios.
  • the embodiment provides an optical line terminal OLT, which is applied to a 10G Ethernet passive optical network EPON, and includes:
  • the detecting module 401 is configured to detect a link quality between the optical network unit ONU and the ONU;
  • the encoding module 402 is configured to determine a data block length according to the detection result, determine a parameter of the Reed-Solomon RS encoding algorithm according to the data block length, and use the RS encoding algorithm to perform downlink data according to the parameter of the RS encoding algorithm. Perform FEC forward error correction coding;
  • the sending module 403 is configured to send the FEC encoded downlink data to the ONU.
  • the detecting module 401 can be configured to: detect a link error rate between the ONU and the ONU.
  • the encoding module 402 can include:
  • a calculation unit for selecting a number within the preset range according to the detection result as the number of correction errors t, and calculating the data block length k according to the following formula:
  • the foregoing OLT may further include:
  • a generating module configured to generate a check block synchronization header corresponding to the RS encoding algorithm, and add the check block synchronization header before the FEC encoded downlink data
  • the sending module 403 is specifically configured to send the downlink data that is added by the check block synchronization header and FEC encoded to the ONU.
  • the sending module 403 is further configured to: send the parameter of the RS encoding algorithm to the ONU through the grant frame GATE, so that the ONU uses the RS encoding algorithm to perform FEC encoding on the uplink data.
  • the parameter of the RS encoding algorithm sent to the ONU includes at least a data block length k, and may further include a codeword length n. For example, when the codeword length n is the default value of both the OLT and the ONU, only the data block length k can be transmitted.
  • the foregoing OLT determines the link quality between the ONU and the ONU, determines the length of the data block according to the detection result, determines the RS algorithm to perform FEC encoding, implements adaptive selection FEC coding of the 10G EPON system, and adaptively adjusts
  • the coding gain and coding overhead can be varied from 8.7 Gbps to 10 Gbps, effectively improving the utilization of network bandwidth.
  • the FEC algorithm can not only select RS (255, 223), but also other RS encoding algorithms of k value. Non-standard FEC encoding algorithms can be supported to accommodate a variety of application scenarios.
  • the embodiment provides an optical network unit ONU, which is applied to a 10G Ethernet passive optical network EPON, and includes:
  • the receiving module 501 is configured to receive FEC forward error correction encoded downlink data sent by the optical line terminal OLT
  • the decoding module 502 is configured to search for the check block synchronization header in the FEC encoded downlink data. And determining, according to the correspondence between the check block synchronization header and the RS coding algorithm, the RS coding algorithm corresponding to the searched check block synchronization header, and decoding the FEC encoded downlink data according to the determined RS coding algorithm, to obtain The downlink data.
  • the receiving module 501 is further configured to: receive an authorization frame GATE sent by the OLT; correspondingly, the ONU further includes:
  • An encoding module configured to obtain the RS encoding algorithm from the authorization frame, and perform FEC encoding on the uplink data by using the RS encoding algorithm;
  • a sending module configured to send the FEC encoded uplink data to the OLT.
  • the ONU provided in the embodiment obtains the FEC-coded downlink data, searches the check block synchronization header to determine the corresponding RS algorithm to perform FEC decoding, and implements the FEC decoding after the adaptive FEC encoding of the 10G EPON system. Effectively improve the utilization of network bandwidth.
  • Example 5 Referring to FIG. 6, the embodiment provides a data transmission system, which is applied to a 10G Ethernet passive optical network EPON, and includes:
  • the optical line terminal OLT 601 is configured to detect a link quality with the ONU 602, determine a data block length according to the detection result, and determine a parameter of the RS coding algorithm according to the data block length, according to parameters of the RS coding algorithm, Performing FEC forward error correction coding on the downlink data by using the RS coding algorithm, generating a check block synchronization header corresponding to the RS coding algorithm, and adding the check block synchronization header before the FEC encoded downlink data, Then sent to the ONU 602;
  • the ONU 602 is configured to receive the added check block synchronization header sent by the OLT 601 and the FEC encoded downlink data, and search the check block synchronization header therein, according to the correspondence between the check block synchronization header and the RS encoding algorithm, Determining an RS coding algorithm corresponding to the searched check block synchronization header, and decoding the FEC encoded downlink data according to the determined RS coding algorithm to obtain the downlink data.
  • the OLT 601 is further configured to: send the parameter of the RS encoding algorithm to the ONU 602 by using an authorization frame; correspondingly, the ONU 602 is further configured to: receive the authorization frame, and obtain the location in the authorization frame.
  • the parameters of the RS encoding algorithm are used to perform FEC encoding on the uplink data according to the parameters of the RS encoding algorithm, and then send the uplink data to the OLT 601.
  • the OLT 601 can perform FEC decoding according to the RS encoding algorithm that has been granted to the ONU to obtain uplink data.
  • the OLT in this embodiment can also perform FEC encoding by using a standard RS (255, 2, 223) encoding algorithm, so that the new RS encoding algorithm currently determined by the ONU is not required to be notified by the authorization information, and the ONU uses the standard FEC encoding algorithm by default. Perform codec.
  • a standard RS 255, 2, 223 encoding algorithm
  • the OLT 601 in this embodiment may be the OLT in any of the embodiments provided in Embodiment 3, and has the same function, and details are not described herein again.
  • the ONU 602 in this embodiment may be the ONU described in Embodiment 1 or 2, and has the same functions, and details are not described herein again.
  • both the OLT and the ONU include the following layers: RS (Reconciliation Sublayer), PCS (Physical Code Sublayer), PMA (Physical Medium Attachment) sublayer, and PMD (Physical) Medium Dependent, physical media related) Sublayer.
  • the PCS sublayer of the OLT includes: an encoding module having the FEC encoding function, which is the same as the encoding module 402 in Embodiment 3, and details are not described herein.
  • the PCS sub-layer of the OLT also has other functions, such as Idle Deletion, 64B/66B encoding (Encode), Scramble encoding, and Gearbox, which are not used here. Too much explanation.
  • the PCS sub-layer of the ONU includes: an FEC Sync module, which has a FEC check block synchronization header search function, and an FEC decoding module, which has an FEC decoding function. The decoding process has been described in this embodiment, and details are not described herein.
  • the ONU's PCS sublayer also has other functions, such as serial-to-parallel conversion box, scrambling decoding, 64B/66B decoding (Decode), Idle Insertion, etc., which are not described here.
  • FIG. 8 a schematic diagram of an implementation of an uplink data transmission physical sublayer of the above system provided by this embodiment is shown.
  • the sub-layer partitioning of the OLT and the ONU is the same as that in FIG. 7.
  • the PCS sub-layer of the ONU includes an FEC encoding module, and has an FEC encoding function.
  • the encoding process has been described in this embodiment, and details are not described herein.
  • the PCS sublayer of the ONU has other functions, such as idle frame deletion, 64B/66B encoding, scrambling encoding, data detection (Data Detector), and serial-to-parallel conversion box, etc., which are not described here.
  • the PCS sublayer of the OLT includes an FEC Sync module, has an FEC check block synchronization header search function, and an FEC decoding module, and has an FEC decoding function.
  • the decoding process has been described in this embodiment, and details are not described herein again.
  • the PCS sublayer of the OLT has other functions, such as serial-to-parallel conversion box, scrambling decoding, 64B/66B decoding, idle frame insertion, etc., which are not described here.
  • the system provided by the embodiment detects the link quality between the ONU and the ONU through the OLT, determines the length of the data block according to the detection result, determines the RS algorithm to perform FEC coding, implements adaptive selection FEC coding of the 10G EPON system, and adaptively By adjusting the coding gain and coding overhead, the effective bandwidth can be varied from 8.7 Gbps to 10 Gbps, which effectively improves the utilization of network bandwidth.
  • the FEC algorithm can not only select RS (255, 223), but also other RS encoding algorithms of k value.
  • Non-standard FEC encoding algorithms can be supported to accommodate a variety of application scenarios.
  • all or part of the process of implementing the above embodiments can be completed by a computer program to instruct related hardware, and the program can be stored in a computer readable.
  • the program when executed, may include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read only memory (ROM) or a random access memory (RAM).
  • the functional units in the embodiments of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the storage medium mentioned above may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明公开了一种应用于10GEPON中的数据传输方法、OLT和系统,属于光通信领域。所述方法包括:对与ONU之间的链路质量进行检测;根据检测结果确定数据块长度,按照所述数据块长度确定RS编码算法的参数;根据所述RS编码算法的参数,用RS编码算法对下行链路数据进行FEC编码后,发送给所述ONU。OLT包括:检测模块、编码模块和发送模块。系统包括:OLT和ONU。本发明实现自适应选择FEC编码,提高了网络带宽的利用率。

Description

数据传输方法、 光线路终端和系统
技术领域
本发明涉及光通信领域, 特别涉及一种数据传输方法、 光线路终端和系统。 背景技术
10G EPON( Ethernet Passive Optical Network,以太网无源光网络)采用 RS( Reed-Solomon, 里德 -所罗门码) (255,223) 算法作为上行和下行 FEC (Forward Error Correction, 前向纠错) 编码算法, 并采用固定的 FEC 码字 (codeword) 格式进行上下行传输。 由于固定采用 RS (255,223) 进行 FEC编码, 10G EPON的编码效率仅为 87 %, 对于光纤链路来说, lOGbps 的数据带宽中实际可用带宽只有 8.7Gbps。 10G EPON FEC编码虽然能够增加系统的光功率预 算, 但在大分光比、 长接入距离、 较差的线路质量等环境恶劣的场合中, RS (255,223 )编码 所能提供的编码增益仍然不能满足光功率预算的需求。 而在分光比小、 接入距离短, 线路质 量良好等环境良好的场合中, RS (255,223)编码引入的编码增益又显著降低了可用带宽, 如 果不采用 FEC编码则又无法满足光功率的预算要求。
现有技术提出了一种 10G EPON OLT( Optical Line Terminal,光线路终端)和 ONU( Optical Network Unit, 光网络单元) 之间的 FEC编码方法, 可以支持 FEC on/off (FEC编码使能 /禁 止) 配置。 当配置为 FEC使能时, 采用 RS (255,223) 进行 FEC编码, 当配置为 FEC禁止 时, 不进行 FEC编码, 从而可以消除 FEC编码开销, 提高上下行有效带宽, 在编码增益和 传输效率之间进行折衷选择。
在实现本发明的过程中, 发明人发现上述现有技术至少具有以下缺点:
FEC编码算法只能在使能和禁止之间选择, 可调余地不大, 自适应较差。 发明内容
本发明实施例提供了一种数据传输方法、光线路终端和系统,实现自适应选择 FEC编码, 以及自适应调节编码增益和编码开销, 有效提高了网络带宽的利用率。
一种数据传输方法, 应用于 10G以太网无源光网络 EPON中, 所述方法包括: 对与光网络单元 ONU之间的链路质量进行检测; 根据检测结果确定数据块长度, 按照所述数据块长度确定里德-所罗门 RS编码算法的参 数;
根据所述 RS编码算法的参数, 用 RS编码算法对下行链路数据进行 FEC前向纠错编码 后, 发送给所述 ONU。
一种光线路终端 OLT, 应用于 10G以太网无源光网络 EPON中, 所述 OLT包括: 检测模块, 用于对与光网络单元 ONU之间的链路质量进行检测;
编码模块, 用于根据检测结果确定数据块长度, 按照所述数据块长度确定里德-所罗门 RS编码算法的参数, 根据所述 RS编码算法的参数, 用所述 RS编码算法对下行链路数据进 行 FEC前向纠错编码;
发送模块, 用于将 FEC编码后的下行链路数据发送给所述 ONU。
一种数据传输系统, 应用于 10G以太网无源光网络 EPON中, 所述系统包括: 光线路终端 OLT, 用于对与光网络单元 ONU之间的链路质量进行检测, 根据检测结果 确定数据块长度, 按照所述数据块长度确定里德-所罗门 RS编码算法的参数, 根据所述 RS 编码算法的参数, 用所述 RS编码算法对下行链路数据进行 FEC前向纠错编码, 生成与所述 RS编码算法对应的校验块同步头, 在所述 FEC编码后的下行链路数据前添加所述校验块同 步头, 然后发送给所述 ONU;
所述 ONU, 用于接收所述 OLT发来的添加所述校验块同步头且 FEC编码后的下行链路 数据, 并搜索校验块同步头, 根据校验块同步头与 RS编码算法的对应关系, 确定搜索到的 所述校验块同步头对应的 RS编码算法, 根据确定的所述 RS编码算法对所述 FEC编码后的 下行链路数据进行解码, 得到所述下行链路数据。
本发明实施例提供的上述数据传输方法、 光线路终端和系统具有如下有益效果: 通过检测与 ONU之间的链路质量,根据检测结果确定数据块长度从而确定 RS算法进行 FEC编码, 实现了 10G EPON系统的自适应选择 FEC编码, 以及自适应调节编码增益和编码 开销, 克服了现有技术 FEC编码算法只能在使能和禁止之间选择自适应较差的缺陷, 有效提 高了网络带宽的利用率。 附图说明
图 1是本发明实施例 1提供的一种数据传输方法流程图;
图 2是本发明实施例 1提供的另一种数据传输方法流程图;
图 3是本发明实施例 2提供的数据传输方法流程图; 图 4是本发明实施例 3提供的 OLT结构图;
图 5是本发明实施例 4提供的 ONU结构图;
图 6是本发明实施例 5提供的数据传输系统结构图;
图 7是本发明实施例 5提供的下行数据传输物理子层实现示意图;
图 8是本发明实施例 5提供的上行数据传输物理子层实现示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作进 一步地详细描述。
实施例 1
参见图 1,本实施例提供了一种数据传输方法, 应用于 10G以太网无源光网络 EPON中, 包括:
101: 对自身与 ONU之间的链路质量进行检测;
102: 根据检测结果确定数据块长度, 按照所述数据块长度确定里德-所罗门 RS编码算法 的参数;
103:根据该 RS编码算法的参数,用所述 RS编码算法对下行链路数据进行 FEC编码后, 发送给 ONU。
上述步骤 101至 103可以由 OLT来执行, 选择 RS编码算法作为 FEC编码算法, RS编 码算法通常可以表示为 RS (n, k), 其中, n表示码字长度, k表示数据块长度, n-k代表校 验块长度, 本实施例中, n=255, k是根据 OLT与 ONU之间的链路质量而定的, 是可变的。
可选地, 上述 103可以具体包括:
生成与所述 RS编码算法对应的校验块同步头, 在该 FEC编码后的下行链路数据前添加 该校验块同步头, 然后发送给 ONU。
本实施例提供的上述方法为数据发送方法, 通过检测与 ONU之间的链路质量, 根据检 测结果确定数据块长度从而确定 RS算法进行 FEC编码, 实现了 10G EPON系统的自适应选 择 FEC编码, 以及自适应调节编码增益和编码开销, 克服了现有技术 FEC编码算法只能在 使能和禁止之间选择自适应较差的缺陷, 有效提高了网络带宽的利用率。
参见图 2, 本实施例还提供了一种数据传输方法, 应用于 10G以太网无源光网络 EPON 中, 包括:
201: 接收光线路终端 OLT发来的 FEC前向纠错编码后的下行链路数据; 202: 在该 FEC编码后的下行链路数据中搜索校验块同步头;
203: 根据校验块同步头与 RS编码算法的对应关系, 确定搜索到的校验块同步头对应的 RS编码算法;
204: 根据确定的 RS编码算法对该 FEC编码后的下行链路数据进行解码,得到所述下行 链路数据。
可选地, 上述数据接收方法还可以包括:
接收 OLT发来的授权帧 GATE, 从该授权帧中获取所述 RS编码算法的参数, 根据该 RS 编码算法的参数, 使用该 RS编码算法对上行链路数据进行 FEC编码后发送给 OLT。
上述步骤 201至 204可以由 ONU来执行。
本实施例提供的上述方法为数据接收方法, 通过接收 FEC编码后的下行链路数据, 搜索 校验块同步头以确定对应的 RS算法进行 FEC解码,实现了 10G EPON系统的自适应 FEC编 码后的 FEC解码, 有效提高了网络带宽的利用率。 实施例 2
参见图 3,本实施例提供了一种数据传输方法, 应用于 10G以太网无源光网络 EPON中, 包括:
301: OLT检测与 ONU之间的链路误码率;
通常, OLT可以与多个 ONU之间相连, 与每个 ONU之间的链路可能都不相同, 每条链 路都有自己的链路误码率, 本实施例中 OLT检测的链路误码率是指与之进行通信的 ONU之 间的链路的链路误码率。
302: OLT根据该链路误码率在预设的范围内选择一个数作为纠正错误数 t, 其中, 预设 的范围为 0至 32的整数;
303: OLT根据已得到的纠正错误数 t, 按照如下公式计算数据块长度 k:
k=n-2X t;
其中, n为码字长度, 且 n=255, n-k代表校验块长度, 该值越大代表编码开销越大, 该 值越小代表编码开销越小。
本实施例中, 为了方便编码整合, 优选地, t为 4的整数倍。 当 t=0时, 编码算法为 RS (255,255), 相当于 FEC编码禁止, 数据传输无需进行 FEC编码。 当 t=32时, 达到最大编 码开销, 可以应用于环境恶劣的场合。 当 t=16时, 为 802.3av-2009标准定义的编码算法, 即 RS (255,223)。 当 t取其它值时, 分别适用于不同环境的场合。 例如, 如果当前检测到的链 路误码率较大, 说明链路质量较差, 则增大编码开销, 取较大的 t值, 如 t=32, 则 k=191, 得到 RS (255,191 ) 编码算法; 如果当前检测到的链路误码率较小, 说明链路质量较好, 则 减小编码开销, 取较小的 t值, 如 t=4, 则 k=247, 得到 RS (255,247) 编码算法。
304: OLT按照得到的数据块长度 k确定出 RS编码算法 RS (255, k), 用该 RS编码算 法对下行链路数据进行 FEC编码;
其中, FEC编码后的数据中包括: 下行链路数据和数据块同步头, 以及校验块和校验块 同步头。 数据块同步头用于 ONU识别下行链路数据, 校验块同步头用于 ONU识别校验块。 数据块同步头和校验块同步头可以根据需要设置, 本实施例中, 不同的 RS编码算法对应不 同的校验块同步头, OLT可以预先为每一种 t值对应的 RS编码算法设置一个对应的校验块同 步头, 以方便 ONU识别出不同 RS编码算法下的校验块。
305: OLT生成与 RS (255, k)对应的校验块同步头, 在 FEC编码后的下行链路数据前 添加该校验块同步头, 然后 OLT将添加校验块同步头且 FEC编码后的下行链路数据发送给 ONU;
306: ONU收到添加校验块同步头且 FEC编码后的数据后, 搜索校验块同步头, 根据校 验块同步头与 RS编码算法的对应关系, 确定搜索到的校验块同步头对应的 RS编码算法; 本实施例中, OLT和 ONU可以预先存储 RS编码算法与校验块同步头的对应关系, 包括 对应的 t值等等, 以方便编解码以及数据传输。 该对应关系可以如表 1所示。
表 1
Figure imgf000007_0001
表 1中的校验块同步头的取值仅是一种具体的实现方式, 当然也可以采用其它取值, 本 发明实施例对此不做具体限定。 其中, 每一个 t值都对应不同的校验块同步头, 每个校验块 同步头的长度都不相同, 该长度随校验块的长度而变化, 校验块的长度即 n-k越大, 则校验 块同步头的长度也越大。 例如, t=0, 无校验块和校验块同步头, 此时 FEC编码禁止; 当 t 不为 0时, 均为 FEC编码使能; 其中, t=4, 校验块长度为 1个 8字节, 校验块同步头为" 11 " 两个比特位; t=8,校验块长度为 2个 8字节,校验块同步头为" 11 11 "共四个比特位, 当 t=16 时, 为 802.3av-2009标准定义的编码算法 (255,223), 等等。
表 1中还列出了编码增益、 编码开销和可用带宽。 编码增益是指在一定误码率条件下未 使用编码和使用编码二者的信噪比之差, 编码开销是指 FEC编码码长在码字总长中所占的比 例, 从表 1中的数据可见, t值越大, 编码开销越大, 编码增益也越大。 可用带宽是指系统中 用于实际传输数据的带宽, 即系统总带宽减去编码开销后剩余的用于传输数据的实际带宽, 其跟随 t值的变化而变化, t值越高,可用带宽越小, t值越小,可用带宽越大。例如, 10G EPON 系统中, t=4时的可用带宽为 9.68Gbps, t=20时的可用带宽为 8.39Gbps等等。
本步骤中, ONU在收到的 FEC编码后的下行链路数据后, 搜索校验块同步头, 然后在 预先存储的校验块同步头与 t值的对应关系中查找搜索到的校验块同步头对应的 t值,从而确 定出对应的 RS编码算法, 以此进行下行链路数据的 FEC解码。
307: ONU根据确定出的 RS编码算法对收到的 FEC编码后的下行链路数据进行解码, 得到该下行链路数据。
进一步地, 上述方法还可以包括:
OLT将确定好的 RS编码算法的参数通过授权帧 GATE发送给 ONU, ONU收到该授权 帧后, 获取其中的 RS编码算法的参数, 根据该参数使用该 RS编码算法对上行链路数据进行 FEC编码, 并将 FEC编码后的上行链路数据发送给 OLT。 其中, 发送给 ONU的 RS编码算 法的参数至少包括数据块长度 k, 进一步地还可以包括码字长度 n。例如, 码字长度 n为 OLT 和 ONU双方默认的值时, 可以只发送数据块长度 k即可。
OLT在收到该 FEC编码后的上行链路数据后, 可以根据已授权给 ONU的 RS编码算法 进行 FEC 解码从而得到上行链路数据。 当然, 本实施例中的 OLT 也可以采用标准的 RS ( 255,223) 编码算法进行 FEC编码, 则无需通过授权信息告知 ONU当前确定的新 RS编码 算法, ONU就会默认使用标准的 FEC编码算法进行编解码。
本实施例中, 具体地, OLT可以在 GATE授权帧中增加一个 FEC编码类型字段, 来携带 已确定好的 RS编码算法,如用 FEC_Type来表示。例如,可以在 GATE帧的授权数目(Number of grants) 或标示域 (Flags) 中增加 FEC编码类型字段, 当然也可以在其他预留的扩展位中 增加该 FEC编码类型字段, 本发明实施例对此不做具体限定。 本实施例提供的上述方法为 OLT与一个 0NU之间进行数据传输, 实际应用中, OLT通 常与多个 ONU之间进行数据传输, 数据传输的过程与上述方法描述的过程相同, 不过, OLT 会对收到的多个上行链路数据进行突发定界 (Burst Delimiter)检测, 以此来区分各个上行链 路数据来自哪个 ONU, 本实施例对此不做过多说明。
本实施例提供的上述方法, 通过 OLT检测与 ONU之间的链路质量, 根据检测结果确定 数据块长度从而确定 RS算法进行 FEC编码,实现了 10G EPON系统的自适应选择 FEC编码, 以及自适应调节编码增益和编码开销, 有效带宽可以在 8.7Gbps~10Gbps间变化, 有效提高了 网络带宽的利用率。 与现有技术 FEC编码算法只能在使能和禁止之间选择相比, 克服了自适 应较差的缺陷, FEC算法不仅可以选择 RS (255,223 ), 还可以选择其它 k值的 RS编码算法, 可以支持非标准 FEC编码算法, 从而可以适应多种应用场景。 实施例 3
参见图 4, 本实施例提供了一种光线路终端 OLT, 应用于 10G以太网无源光网络 EPON 中, 包括:
检测模块 401, 用于对与光网络单元 ONU之间的链路质量进行检测;
编码模块 402, 用于根据检测结果确定数据块长度, 按照所述数据块长度确定里德 -所罗 门 RS编码算法的参数, 根据该 RS编码算法的参数, 用所述 RS编码算法对下行链路数据进 行 FEC前向纠错编码;
发送模块 403, 用于将 FEC编码后的下行链路数据发送给所述 ONU。
本实施例中, 检测模块 401可以用于: 检测与 ONU之间的链路误码率。
本实施例中, 编码模块 402可以包括:
计算单元,用于根据检测结果在预设的范围内选择一个数作为纠正错误数 t, 并按照如下 公式计算数据块长度 k:
k=n-2X t;
其中, n为码字长度, 且 n=255, 所述预设的范围为 0至 32的整数。
本实施例中, 上述 OLT还可以包括:
生成模块, 用于生成与所述 RS编码算法对应的校验块同步头, 在 FEC编码后的下行链 路数据前添加该校验块同步头;
相应地, 发送模块 403具体用于将添加所述校验块同步头且 FEC编码后的下行链路数据 发送给 ONU。 本实施例中, 发送模块 403还用于: 将所述 RS编码算法的参数通过授权帧 GATE发送 给 ONU, 使得 ONU使用该 RS编码算法对上行链路数据进行 FEC编码。其中, 发送给 ONU 的 RS编码算法的参数至少包括数据块长度 k, 进一步地还可以包括码字长度 n。 例如, 码字 长度 n为 OLT和 ONU双方默认的值时, 可以只发送数据块长度 k即可。
本实施例提供的 OLT上可以实施上述任一方法实施例中的方法,其具体实现过程详见方 法实施例, 这里不再赘述。
本实施例提供的上述 OLT, 通过检测与 ONU之间的链路质量, 根据检测结果确定数据 块长度从而确定 RS算法进行 FEC编码, 实现了 10G EPON系统的自适应选择 FEC编码, 以 及自适应调节编码增益和编码开销, 有效带宽可以在 8.7Gbps~10Gbps间变化, 有效提高了网 络带宽的利用率。 与现有技术 FEC编码算法只能在使能和禁止之间选择相比, 克服了自适应 较差的缺陷, FEC算法不仅可以选择 RS (255,223), 还可以选择其它 k值的 RS编码算法, 可以支持非标准 FEC编码算法, 从而可以适应多种应用场景。 实施例 4
参见图 5, 本实施例提供了一种光网络单元 ONU, 应用于 10G以太网无源光网络 EPON 中, 包括:
接收模块 501, 用于接收光线路终端 OLT发来的 FEC前向纠错编码后的下行链路数据; 解码模块 502, 用于在该 FEC编码后的下行链路数据中搜索校验块同步头, 根据校验块 同步头与 RS编码算法的对应关系, 确定搜索到的校验块同步头对应的 RS编码算法, 根据确 定的 RS编码算法对该 FEC编码后的下行链路数据进行解码, 得到所述下行链路数据。
本实施例中, 接收模块 501还用于: 接收 OLT发来的授权帧 GATE; 相应地, ONU还包 括:
编码模块, 用于从该授权帧中获取所述 RS编码算法, 使用该 RS编码算法对上行链路数 据进行 FEC编码;
发送模块, 用于将该 FEC编码后的上行链路数据发送给 OLT。
本实施例提供的上述 ONU, 通过接收 FEC编码后的下行链路数据, 搜索校验块同步头 以确定对应的 RS算法进行 FEC解码, 实现了 10G EPON系统的自适应 FEC编码后的 FEC 解码, 有效提高了网络带宽的利用率。 实施例 5 参见图 6,本实施例提供了一种数据传输系统, 应用于 10G以太网无源光网络 EPON中, 包括:
光线路终端 OLT 601, 用于对与 ONU 602之间的链路质量进行检测, 根据检测结果确定 数据块长度, 按照所述数据块长度确定 RS编码算法的参数, 根据该 RS编码算法的参数, 用 该 RS编码算法对下行链路数据进行 FEC前向纠错编码, 生成与该 RS编码算法对应的校验 块同步头, 在 FEC编码后的下行链路数据前添加该校验块同步头, 然后发送给 ONU 602;
ONU 602, 用于接收 OLT 601发来的添加校验块同步头且 FEC编码后的下行链路数据, 在其中搜索校验块同步头, 根据校验块同步头与 RS编码算法的对应关系, 确定搜索到的校 验块同步头对应的 RS编码算法, 根据确定的 RS编码算法对该 FEC编码后的下行链路数据 进行解码, 得到所述下行链路数据。
本实施例中, OLT 601还用于: 将所述 RS编码算法的参数通过授权帧发送给 ONU 602; 相应地, ONU 602还用于: 接收所述授权帧, 获取所述授权帧中的所述 RS编码算法的参数, 根据该 RS编码算法的参数使用所述 RS编码算法对上行链路数据进行 FEC编码后发送给 OLT 601。 OLT 601收到 ONU发来的 FEC编码后的上行链路数据后, 可以根据已授权给 ONU的 RS编码算法进行 FEC解码从而得到上行链路数据。 当然, 本实施例中的 OLT也可以采用标 准的 RS (255, 2,223) 编码算法进行 FEC编码, 则无需通过授权信息告知 ONU当前确定的 新 RS编码算法, ONU就会默认使用标准的 FEC编码算法进行编解码。
本实施例中的 OLT 601可以为实施例 3中提供的任一种实施方式下的 OLT, 具有相同的 功能, 此处不再赘述。 本实施例中的 ONU 602可以为实施例 1或 2中描述的 ONU, 具有相 同的功能, 此处不再赘述。
参见图 7, 为本实施例提供的上述系统的下行数据传输物理子层实现示意图。 图中, OLT 和 ONU均包括以下各层: RS( Reconciliation Sublayer,协调子层)、 PCS(Physical Code Sublayer, 物理编码子层)、 PMA (Physical Medium Attachment, 物理媒体附加) 子层和 PMD (Physical Medium Dependent, 物理介质相关) 子层。 OLT的 PCS子层包括: 编码模块, 具有 FEC编 码功能, 与实施例 3中的编码模块 402相同, 此处不赘述。 当然, OLT的 PCS子层还具有其 他功能, 如空闲帧删除 (Idle Deletion), 64B/66B编码 ( Encode )、 扰频 (Scramble) 编码、 以及串并转换盒(Gearbox)等, 此处不做过多说明。 ONU的 PCS子层包括: FEC Sync模块, 具有 FEC校验块同步头搜索功能, 以及 FEC解码模块, 具有 FEC解码功能, 解码过程已在 本实施例中描述过, 此处不赘述。 当然, ONU的 PCS子层还具有其他功能, 如串并转换盒、 扰频解码、 64B/66B解码 ( Decode )、 空闲帧插入 (Idle Insertion) 等, 此处不做过多说明。 参见图 8, 为本实施例提供的上述系统的上行数据传输物理子层实现示意图。其中, OLT 与 ONU的各个子层划分与图 7中的相同, ONU的 PCS子层包括 FEC编码模块, 具有 FEC 编码功能, 编码过程已在本实施例中描述过, 此处不再赘述。 此外, ONU的 PCS子层还具 有其他功能, 如空闲帧删除, 64B/66B编码、 扰频编码、 数据检测 (Data Detector)、 以及串 并转换盒等, 此处不做过多说明。 OLT的 PCS子层包括 FEC Sync模块, 具有 FEC校验块同 步头搜索功能, 以及 FEC解码模块, 具有 FEC解码功能, 解码过程已在本实施例中描述过, 不再赘述。 此外, OLT的 PCS子层还具有其他功能, 如串并转换盒、 扰频解码、 64B/66B解 码、 空闲帧插入等, 此处不做过多说明。
本实施例提供的上述系统, 通过 OLT检测与 ONU之间的链路质量, 根据检测结果确定 数据块长度从而确定 RS算法进行 FEC编码,实现了 10G EPON系统的自适应选择 FEC编码, 以及自适应调节编码增益和编码开销, 有效带宽可以在 8.7Gbps~10Gbps间变化, 有效提高了 网络带宽的利用率。 与现有技术 FEC编码算法只能在使能和禁止之间选择相比, 克服了自适 应较差的缺陷, FEC算法不仅可以选择 RS (255,223 ), 还可以选择其它 k值的 RS编码算法, 可以支持非标准 FEC编码算法, 从而可以适应多种应用场景。 最后需要说明的是, 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分 流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可读 取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储 介质可为磁碟、 光盘、 只读存储记忆体 (ROM) 或随机存储记忆体 (RAM) 等。
本发明实施例中的各功能单元可以集成在一个处理模块中, 也可以是各个单元单独物理 存在, 也可以两个或两个以上单元集成在一个模块中。 上述集成的模块既可以采用硬件的形 式实现, 也可以采用软件功能模块的形式实现。 所述集成的模块如果以软件功能模块的形式 实现并作为独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。 上述提 到的存储介质可以是只读存储器, 磁盘或光盘等。 上述的各装置或系统, 可以执行相应方法 实施例中的方法。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之 内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种数据传输方法, 应用于 10G以太网无源光网络 EP0N中, 其特征在于, 所述方 法包括:
对与光网络单元 ONU之间的链路质量进行检测;
根据检测结果确定数据块长度, 按照所述数据块长度确定里德-所罗门 RS编码算法的参 数;
根据所述 RS编码算法的参数, 用 RS编码算法对下行链路数据进行 FEC前向纠错编码 后, 发送给所述 ONU。
2、 根据权利要求 1所述的方法, 其特征在于, 对与光网络单元 ONU之间的链路质量进 行检测, 包括:
检测与所述 ONU之间的链路误码率。
3、 根据权利要求 1所述的方法, 其特征在于, 根据检测结果确定数据块长度, 包括: 根据检测结果在预设的范围内选择一个数作为纠正错误数 t,并按照如下公式计算数据块 长度 k:
k=n-2X t;
其中, 所述 n为码字长度, 且所述 n=255, 所述预设的范围为 0至 32的整数。
4、 根据权利要求 3所述的方法, 其特征在于, 所述 t为 4的整数倍。
5、 根据权利要求 1所述的方法, 其特征在于, 根据所述 RS编码算法的参数, 用 RS编 码算法对下行链路数据进行 FEC前向纠错编码后, 发送给所述 ONU, 包括:
根据所述 RS编码算法的参数, 用 RS编码算法对下行链路数据进行 FEC前向纠错编码; 生成与所述 RS编码算法对应的校验块同步头, 在所述 FEC编码后的下行链路数据前添 加所述校验块同步头, 然后发送给所述 ONU。
6、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
将所述 RS编码算法的参数通过授权帧 GATE发送给所述 ONU, 使得所述 ONU使用所 述 RS编码算法对上行链路数据进行 FEC编码。
7、 一种光线路终端 OLT, 应用于 10G以太网无源光网络 EPON中, 其特征在于, 所述 OLT包括:
检测模块, 用于对与光网络单元 ONU之间的链路质量进行检测;
编码模块, 用于根据检测结果确定数据块长度, 按照所述数据块长度确定里德-所罗门
RS编码算法的参数, 根据所述 RS编码算法的参数, 用所述 RS编码算法对下行链路数据进 行 FEC前向纠错编码;
发送模块, 用于将 FEC编码后的下行链路数据发送给所述 ONU。
8、 根据权利要求 7所述的 OLT, 其特征在于, 所述检测模块用于: 检测与所述 ONU之 间的链路误码率。
9、 根据权利要求 7所述的 OLT, 其特征在于, 所述编码模块包括:
计算单元,用于根据检测结果在预设的范围内选择一个数作为纠正错误数 t, 并按照如下 公式计算数据块长度 k:
k=n-2X t;
其中, 所述 n为码字长度, 且所述 n=255, 所述预设的范围为 0至 32的整数。
10、 根据权利要求 7所述的 OLT, 其特征在于, 所述 OLT还包括:
生成模块, 用于生成与所述 RS编码算法对应的校验块同步头, 在所述 FEC编码后的下 行链路数据前添加所述校验块同步头;
所述发送模块用于将添加所述校验块同步头且 FEC 编码后的下行链路数据发送给所述
11、 根据权利要求 7所述的 OLT, 其特征在于, 所述发送模块还用于: 将所述 RS编码 算法的参数通过授权帧 GATE发送给所述 ONU, 使得所述 ONU使用所述 RS编码算法对上 行链路数据进行 FEC编码。
12、 一种数据传输系统, 应用于 10G以太网无源光网络 EPON中, 其特征在于, 所述系 统包括:
光线路终端 OLT, 用于对与光网络单元 ONU之间的链路质量进行检测, 根据检测结果 确定数据块长度, 按照所述数据块长度确定里德-所罗门 RS编码算法的参数, 根据所述 RS 编码算法的参数, 用所述 RS编码算法对下行链路数据进行 FEC前向纠错编码, 生成与所述 RS编码算法对应的校验块同步头, 在所述 FEC编码后的下行链路数据前添加所述校验块同 步头, 然后发送给所述 ONU;
所述 ONU, 用于接收所述 OLT发来的添加所述校验块同步头且 FEC编码后的下行链路 数据, 并搜索校验块同步头, 根据校验块同步头与 RS编码算法的对应关系, 确定搜索到的 所述校验块同步头对应的 RS编码算法, 根据确定的所述 RS编码算法对所述 FEC编码后的 下行链路数据进行解码, 得到所述下行链路数据。
13、根据权利要求 12所述的系统, 其特征在于, 所述 OLT还用于: 将所述 RS编码算法 的参数通过授权帧发送给所述 ONU;
所述 ONU还用于: 接收所述授权帧, 获取所述授权帧中的所述 RS编码算法的参数, 根 据所述 RS编码算法的参数使用所述 RS编码算法对上行链路数据进行 FEC编码后发送给所 述 OLT。
PCT/CN2011/074370 2011-05-20 2011-05-20 数据传输方法、光线路终端和系统 WO2011144051A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/074370 WO2011144051A2 (zh) 2011-05-20 2011-05-20 数据传输方法、光线路终端和系统
CN2011800006360A CN102239652A (zh) 2011-05-20 2011-05-20 数据传输方法、光线路终端和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074370 WO2011144051A2 (zh) 2011-05-20 2011-05-20 数据传输方法、光线路终端和系统

Publications (2)

Publication Number Publication Date
WO2011144051A2 true WO2011144051A2 (zh) 2011-11-24
WO2011144051A3 WO2011144051A3 (zh) 2012-04-26

Family

ID=44888878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074370 WO2011144051A2 (zh) 2011-05-20 2011-05-20 数据传输方法、光线路终端和系统

Country Status (2)

Country Link
CN (1) CN102239652A (zh)
WO (1) WO2011144051A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015028094B1 (pt) 2013-05-07 2021-10-26 Huawei Technologies Co., Ltd Método e dispositivo de decodificação e de codificação de dados em larga escala e um sistema de comunicação
WO2015006908A1 (zh) * 2013-07-15 2015-01-22 华为技术有限公司 突发数据块中的空闲块idle的处理方法、设备及系统
CN109787709B (zh) * 2017-11-14 2022-04-19 中兴通讯股份有限公司 无源光网络,编解码确定方法及装置
CN112242871B (zh) * 2019-07-19 2023-03-28 上海诺基亚贝尔股份有限公司 用于光通信的方法、设备和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047470A (zh) * 2006-05-17 2007-10-03 华为技术有限公司 无源光网络中前向纠错功能的配置方法
EP2088707A1 (en) * 2008-02-07 2009-08-12 Nokia Siemens Networks Oy Method and device for processing data in an optical network and communication system comprising such device
CN101505202A (zh) * 2009-03-16 2009-08-12 华中科技大学 一种流媒体传输自适应纠错方法
CN101795174A (zh) * 2010-01-20 2010-08-04 华为技术有限公司 10g epon系统中的数据传输方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047470A (zh) * 2006-05-17 2007-10-03 华为技术有限公司 无源光网络中前向纠错功能的配置方法
EP2088707A1 (en) * 2008-02-07 2009-08-12 Nokia Siemens Networks Oy Method and device for processing data in an optical network and communication system comprising such device
CN101505202A (zh) * 2009-03-16 2009-08-12 华中科技大学 一种流媒体传输自适应纠错方法
CN101795174A (zh) * 2010-01-20 2010-08-04 华为技术有限公司 10g epon系统中的数据传输方法、装置及系统

Also Published As

Publication number Publication date
CN102239652A (zh) 2011-11-09
WO2011144051A3 (zh) 2012-04-26

Similar Documents

Publication Publication Date Title
US10476526B2 (en) Coding and decoding method and device, and system
US9209897B2 (en) Adaptive forward error correction in passive optical networks
KR101247178B1 (ko) 연속한 동일한 숫자 감소를 위한 방법 및 시스템
KR20120037037A (ko) 데이터를 부호화 및 복호화하기 위한 방법 및 장치
CN103201976A (zh) 聚合分组传输中的分组级擦除保护编码
JP7152488B2 (ja) データ符号化方法および装置、データ復号方法および装置、olt、onu、ならびにponシステム
US8560914B2 (en) Method and device for indicating an uncorrectable data block
JP2012517130A5 (zh)
US9787432B2 (en) Communications method, system, and apparatus for optical network system
KR20150142719A (ko) 단방향 데이터 송수신 시스템 및 방법
WO2011144051A2 (zh) 数据传输方法、光线路终端和系统
CN108093263B (zh) 一种自由空间光通信中基于最小失真优化的视频传输方法
WO2019085634A1 (zh) 以太网中处理数据的方法、物理层芯片及存储介质
Sinha A new energy efficient MAC protocol based on redundant radix for wireless networks
WO2019201316A1 (zh) 数据编译码方法和装置、olt、onu和pon系统
US8924810B1 (en) Method and apparatus for enhanced error correction
JP4878974B2 (ja) 送信装置及び通信システム
WO2018171595A1 (zh) 数据传输方法和光线路终端
JP6260788B2 (ja) データ通信システムにおける誤り訂正符号制御方法および装置
WO2013145650A1 (ja) データ通信システムにおける通信帯域制御方法および装置
WO2013185355A1 (zh) 数据处理方法、装置及系统
US20150326346A1 (en) System and method for setting downstream forward error correction code in time division multiplexing passive optical network
KR101690287B1 (ko) 데이터 중계 장치 및 이를 이용한 데이터 중계 방법
KR20050062339A (ko) Epon 망에서의 효율적인 fec 운용 제어 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000636.0

Country of ref document: CN

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11782968

Country of ref document: EP

Kind code of ref document: A2