CN102014315B - 一种用于光密集波分复用的波长快速稳定方法 - Google Patents

一种用于光密集波分复用的波长快速稳定方法 Download PDF

Info

Publication number
CN102014315B
CN102014315B CN201010281729.2A CN201010281729A CN102014315B CN 102014315 B CN102014315 B CN 102014315B CN 201010281729 A CN201010281729 A CN 201010281729A CN 102014315 B CN102014315 B CN 102014315B
Authority
CN
China
Prior art keywords
apc
optical module
tec
wavelength
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010281729.2A
Other languages
English (en)
Other versions
CN102014315A (zh
Inventor
李虎成
胡朝阳
王安斌
鲁妹玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Source Photonics Chengdu Co Ltd
Original Assignee
Source Photonics Chengdu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Source Photonics Chengdu Co Ltd filed Critical Source Photonics Chengdu Co Ltd
Priority to CN201010281729.2A priority Critical patent/CN102014315B/zh
Priority to US13/020,740 priority patent/US8606111B2/en
Publication of CN102014315A publication Critical patent/CN102014315A/zh
Application granted granted Critical
Publication of CN102014315B publication Critical patent/CN102014315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13295Wavelength multiplexing, WDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1332Logic circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种用于光密集波分复用的波长快速稳定方法及其控制电路,其可以针对性地控制时序和过冲,尤其是优化了APC和TEC的控制算法以及电吸收调制器EA的控制算法,从而真正控制这一瞬态过程;在本发明中,提出了一种软件和电路相结合的低成本方法,通过优化APC、EA和TEC的控制算法,以及结合硬件电路的优化,可以实现波长的快速稳定;采用本发明的方法,在上电过程中,波长的变化非常小,从而确保消除与避免了密集波分系统中信道之间的串扰。

Description

一种用于光密集波分复用的波长快速稳定方法
技术领域
本发明涉及光通信网络,特别是一种用于光密集波分复用的波长快速稳定方法。 
背景技术
光通信网络采用了有着巨大带宽资源和优异传输性能的光纤介质,随着波分复用(WDM)技术和掺铒光纤放大器(EDFA)的广泛应用,一根光纤已经能够传输数十倍Tbit/s的光信息。目前世界上一级光通信运营商已经在他们的骨干光网络里部署了大量的密集波分(DWDM)光传输系统,去缓解越来越多的对于图像和即时通讯的大量需求。为了更有效的利用光传输系统的频谱效率和光纤带宽,更多的运营商也开始在城域网尝试应用40Gb/s和相应的100Gb/s密集波分光传输产品。这些尝试不仅可以充分提高路由互连的效率,也可以将现有的光通信系统的容量成倍的增加。基于这些独一无二的优势以及系统运营商的大量需求,密集波分光模块也赢得了光通信供应商投入大量的资源去开发。 
然而,随着通信业务量的急剧增加,复用信道之间的间隔也越来越小,从而光纤非线性物理效应会导致信道之间的串扰,降低了信号的质量,影响了传输距离;另外,构成光交叉连接节点的器件也不可能实现光信道之间的完全隔离,使得邻近信道的信号耦合和泄露到本不该去的信道,也导致了信道之间的串扰。尽管目前已经有技术可以去抑制或者避免邻近信道间的串扰,然而,如何实现密集波分光模块在上电过程中减小或者抑制邻近信道间的串扰,一直是个难以解决的问题,尤其是针对速率在10Gb/s以上的光模块,例如10Gb/s DWDM XFP。这些光模块采用了致冷的电吸收调制激光器(EML)去实现光模块工作在更高的速率和更长的传输距离。在上电过程中,波长的瞬态变化是一个半导体激光器的本征物理特性,因此无法真正的避免这一过程发生。目前,有一些光模块厂家采用了加入一个光开关,或者类似光开关的光器件在上电过程中保持关闭状态直到波长稳定到目标波长范围,但是这将极大增加了光模块成本以及制约了其使用的范围。鉴于目前光模块的发展方向是低成本和小尺寸,采用这一方案是不可行的。 
图1展示了一个10Gb/s DWDM XFP光模块的硬件原理框图,采用了一个致冷的DWDM EML TOSA,微处理器(MCU)通过一个TEC控制电路去调整和控制激光器的输出光波长,从而达到满足符合ITU制定的密集波分波长的标准。然而,采用传统的TEC控制电路和APC控制电路,无法满足密集波分复用系统对于DWDM XFP光模块快速波长稳定的要求。图2就是一个典型的DWDM XFP光模块在上电过程中的波长变化瞬态过程。在这个上电的瞬态过程中,其波长的变化超过了0.4nm的范围。对于ITU制定100GHz/50GHz的密集波分标准,其对应的信道间隔只有大约0.8nm 和0.4nm,因此我们可以看出采用传统的温度控制电路(TEC)控制电路和光功率控制电路(APC)会产生严重的信道之间的串扰,导致密集波分系统中传输信号品质的大大下降。 
发明内容
基于半导体激光器的工作原理,对于在EML激光器中使用的分布光栅半导体激光器(DFB-LD),1毫安的偏置电流变化会导致0.008nm的波长变化;同样激光器管芯1oC的温度变化,会导致0.1nm的波长变化。因此,在上电过程中,或者是激光器关断与重启的过程中,激光器的偏置电流会产生一个瞬态的过冲,然后是稳态的电流增加,这一过程会改变激光器的输出波长。同时,由于激光器温度的变化,TEC的致冷或加热也会急剧改变波长。在本专利中,我们提出了一种软件和电路相结合的低成本方法,测试证明,这一方法可以将光模块在上电过程中波长的变化量减小3~5倍,达到了密集波分系统中对光模块波长快速稳定的要求。 
为了减小和抑制在这一瞬态过程中发生的剧烈波长变化,本专利发明的控制电路针对性地控制时序和过冲,尤其是优化了APC和TEC的控制算法以及电吸收调制器(EA)的控制算法,从而真正控制这一瞬态过程。这一可控的瞬态过程,实现了满足不同标准的要求,例如XFP MSA要求2ms的启动时间,以及ITU DWDM标准对于波长间隔的要求。 
优化底层软件的流程和算法也是一个关键的步骤。本专利阐述了通过优化APC、EA和TEC的控制算法,以及结合硬件电路的优化,可以实现波长的快速稳定。进一步,采用软件实现的APC控制算法,结合以上阐述的硬件电路,可以进一步优化波长快速稳定的性能。 
DWDM光模块,在所述DWDM光模块内设置一激光器偏置电流控制电路,并优化前述APC和TEC的控制算法以及前述电吸收调制器EA的控制算法;在所述DWDM光模块内,在微处理器和所述激光器偏置电流控制电路之间,设置有上电过冲压制电路。 
基于上面本专利阐述的方法,我们进行了一些测试。图5和图6分别展示了采用硬件电路和软硬件相结合的方法,我们可以看出,采用本专利发明的方法,在上电过程中,波长的变化非常小,从而确保消除与避免了密集波分系统中信道之间的串扰。 
附图说明
图1为DWDM光模块原理框图; 
图2为典型的上电过程中光模块波长变化图;
图3本专利发明的激光器偏置电流和致冷控制电路;
图4底层软件采用的算法流程框图;
图5上电过程中光模块波长变化测试结果--采用本专利发明的电路;
图6上电过程中光模块波长变化测试结果--采用软件和硬件相结合的方法。
具体实施方式
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。 
为了减小和抑制在这一瞬态过程中发生的剧烈波长变化,本专利发明的控制电路针对性地控制时序和过冲,尤其是优化了APC和TEC的控制算法以及电吸收调制器(EA)的控制算法,从而真正控制这一瞬态过程。这一可控的瞬态过程,实现了满足不同标准的要求,例如XFP MSA要求2ms的启动时间,以及ITU DWDM标准对于波长间隔的要求。 
优化底层软件的流程和算法也是一个关键的步骤。本专利阐述了通过优化APC、EA和TEC的控制算法,以及结合硬件电路的优化,可以实现波长的快速稳定。进一步,采用软件实现的APC控制算法,结合以上阐述的硬件电路,可以进一步优化波长快速稳定的性能。该用于光密集波分复用的波长快速稳定方法,其特征在于以下步骤: 
a)  在DWDM光模块内设置一激光器偏置电流控制电路;
b)  优化APC和TEC的控制算法以及电吸收调制器EA的控制算法;
c)  采用软件实现的APC控制算法,结合所述的激光器偏置电流控制电路的硬件电路,对DWDM光模块内进行优化处理。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种用于光密集波分复用的波长快速稳定方法,其特征在于以下步骤:
a)在DWDM光模块内设置一激光器偏置电流控制电路; 
b)优化APC和TEC的控制算法以及电吸收调制器EA的控制算法;
c)采用软件实现的APC控制算法,结合所述的激光器偏置电流控制电路的硬件电路,对DWDM光模块内进行优化处理;
优化底层软件的流程和算法包括以下步骤:
1)首先是上电和初始化;
2)对接口进行控制配置;
3)判断是否是波长快速模式,如是,进入EA、APC、TEC控制,并通过所述EA、APC、TEC控制与定时器的结合,进入监测模式;
4)在进行上述判断是否是波长快速模式时,如否,则直接通过所述EA、APC、TEC控制进入监测模式。
2.一种应用所述权利要求1所述用于光密集波分复用的波长快速稳定方法的DWDM光模块,其特征在于:在所述DWDM光模块内设置一激光器偏置电流控制电路,并优化前述APC和TEC的控制算法以及前述电吸收调制器EA的控制算法。
3.根据权利要求2所述的应用所述权利要求1所述用于光密集波分复用的波长快速稳定方法的DWDM光模块,其特征在于:在所述DWDM光模块内,在微处理器和所述激光器偏置电流控制电路之间,设置有上电过冲压制电路。
CN201010281729.2A 2010-09-15 2010-09-15 一种用于光密集波分复用的波长快速稳定方法 Active CN102014315B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201010281729.2A CN102014315B (zh) 2010-09-15 2010-09-15 一种用于光密集波分复用的波长快速稳定方法
US13/020,740 US8606111B2 (en) 2010-09-15 2011-02-03 Method, circuitry and apparatus for outputting a stable optical signal in a dense wavelength division multiplexing device during fast changes of operating conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010281729.2A CN102014315B (zh) 2010-09-15 2010-09-15 一种用于光密集波分复用的波长快速稳定方法

Publications (2)

Publication Number Publication Date
CN102014315A CN102014315A (zh) 2011-04-13
CN102014315B true CN102014315B (zh) 2014-03-12

Family

ID=43844297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010281729.2A Active CN102014315B (zh) 2010-09-15 2010-09-15 一种用于光密集波分复用的波长快速稳定方法

Country Status (2)

Country Link
US (1) US8606111B2 (zh)
CN (1) CN102014315B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10260990B2 (en) * 2013-06-12 2019-04-16 Corning Incorporated Multi-wavelength DMD measurement apparatus and methods
CN103390856B (zh) * 2013-07-15 2015-12-09 北京时代民芯科技有限公司 一种控制激光器驱动电路上电阶段输出电流稳定性的方法
CN104362504B (zh) * 2014-11-11 2017-07-28 索尔思光电(成都)有限公司 一种光过冲的控制电路及控制光过冲的方法
CN106684703B (zh) * 2017-03-08 2019-12-31 成都优博创通信技术股份有限公司 Twdm onu波长控制方法及其系统与关断深度控制电路
US10180542B2 (en) * 2017-03-19 2019-01-15 Avago Technologies International Sales Pte. Limited Control device and method for controlling biasing of multiple light sources of multiple channels of a multi-channel optical communications module
CN109617616B (zh) * 2018-12-27 2022-11-01 成都蓉博通信技术有限公司 一种可调谐突发光模块及其实现方法
WO2021076462A1 (en) * 2019-10-16 2021-04-22 Panasonic intellectual property Management co., Ltd Cold-start acceleration for wavelength-beam-combining laser resonators
US11099339B1 (en) * 2020-06-30 2021-08-24 Ciena Corporation Management interface handler to expedite module boot time in pluggable optical modules
CN115085817B (zh) * 2021-03-10 2024-04-05 青岛海信宽带多媒体技术有限公司 一种光模块和光模块tec断电保护方法
CN115133997B (zh) * 2021-03-24 2024-05-03 青岛海信宽带多媒体技术有限公司 一种光模块及降低光模块功耗的调试方法
US11906874B1 (en) * 2023-04-07 2024-02-20 Intraaction Corp Acousto-optic deflector and methods of fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076387A2 (en) * 1999-08-13 2001-02-14 Marconi Communications Limited Methods of controlling a laser in a WDM application
CN101369713A (zh) * 2008-09-16 2009-02-18 中兴通讯股份有限公司 一种实现光模块波长锁定的控制装置和方法
CN101592762A (zh) * 2009-06-05 2009-12-02 中兴通讯股份有限公司 一种光模块及其控制方法
CN201413415Y (zh) * 2009-05-19 2010-02-24 深圳市易飞扬通信技术有限公司 一种波长可控的dwdm sfp

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985896A (en) * 1985-03-29 1991-01-15 Canon Kabushiki Kaisha Laser driving device
US6580531B1 (en) * 1999-12-30 2003-06-17 Sycamore Networks, Inc. Method and apparatus for in circuit biasing and testing of a modulated laser and optical receiver in a wavelength division multiplexing optical transceiver board
US7269191B2 (en) * 2002-02-12 2007-09-11 Finisar Corporation Control circuit for optoelectronic module with integrated temperature control
US20050135756A1 (en) 2003-12-19 2005-06-23 Chao Zhang Bi-directional optical transceiver module having automatic-restoring unlocking mechanism
US7650077B2 (en) 2005-10-25 2010-01-19 Source Photonics Santa Clara, Inc. Multi-data-rate optical transceiver
US7183540B2 (en) 2005-03-17 2007-02-27 Fiberxon Inc. Apparatus for measuring photo diodes' temperature dependence
JP5352042B2 (ja) * 2005-10-12 2013-11-27 日本オクラロ株式会社 波長可変光送信器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076387A2 (en) * 1999-08-13 2001-02-14 Marconi Communications Limited Methods of controlling a laser in a WDM application
CN101369713A (zh) * 2008-09-16 2009-02-18 中兴通讯股份有限公司 一种实现光模块波长锁定的控制装置和方法
CN201413415Y (zh) * 2009-05-19 2010-02-24 深圳市易飞扬通信技术有限公司 一种波长可控的dwdm sfp
CN101592762A (zh) * 2009-06-05 2009-12-02 中兴通讯股份有限公司 一种光模块及其控制方法

Also Published As

Publication number Publication date
US20120063782A1 (en) 2012-03-15
CN102014315A (zh) 2011-04-13
US8606111B2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
CN102014315B (zh) 一种用于光密集波分复用的波长快速稳定方法
US9485048B2 (en) Methods and devices for space-time multi-plane optical networks
CN102934376A (zh) 具有多用途光学驱动能力的主机设备
WO2018214851A1 (en) Polarization insensitive micro ring modulator
Wang et al. Demonstration of a lossless monolithic 16 x16 QW SOA switch
CN105393476A (zh) 访问内存的系统、装置及方法
US9698900B2 (en) Optical network unit and method for controlling the unit
Ganbold et al. A large-scale optical circuit switch using fast wavelength-tunable and bandwidth-variable filters
CN112383357B (zh) 一种空分复用光交换节点的功率均衡装置
Kraemer et al. High extinction ratio and low crosstalk C and L-band photonic integrated wavelength selective switching
Zami et al. Benchmarking of opaque versus transparent core WDM networks featuring 400ZR+ QSFP-DD or CFP2 interfaces
Ueda et al. Demonstration of 1,440× 1,440 fast optical circuit switch for datacenter networking
Egorov Next generation ROADM architecture and design
Shimizu et al. 0.73-W extremely low-power-consumption optical amplifier repeater for 10G-EPON systems
JP2022549184A (ja) 並列oバンド増幅器
Matsumoto et al. Experimental demonstration of a SDM node with low power consumption MC-EDFA and SPOC-based WSS arrays
Mukit et al. Experimental assessment of C-and L-band photonic integrated SOA-based-1× 8 wavelength selective switch
Fukamachi et al. 95 ºC uncooled and high power 25-Gbps direct modulation of InGaAlAs ridge waveguide DFB laser
WO2021238688A1 (zh) 集群光源和产生集群光源的方法
Wale Photonic integration challenges for next-generation networks
Feris et al. Extended passive optical pod interconnect for small mono-site data centers
Xu et al. Power consumption comparison between point-to-point WDM and OTDM systems
Feris et al. Pulse Amplitude Modulation applied to Extended Passive Optical Pod Interconnect, for small energy-aware data centers
Yanagimachi et al. 8× 48 transponder aggregator subsystem using silicon switch modules for flexible photonic network
Hino et al. Demonstration of transponder aggregator based on silicon photonics for multi-degree color/direction-independent ROADM system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant