WO2021244289A1 - 一种光功率值的传输方法、系统以及相关设备 - Google Patents

一种光功率值的传输方法、系统以及相关设备 Download PDF

Info

Publication number
WO2021244289A1
WO2021244289A1 PCT/CN2021/094545 CN2021094545W WO2021244289A1 WO 2021244289 A1 WO2021244289 A1 WO 2021244289A1 CN 2021094545 W CN2021094545 W CN 2021094545W WO 2021244289 A1 WO2021244289 A1 WO 2021244289A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
target
power value
optical fiber
output power
Prior art date
Application number
PCT/CN2021/094545
Other languages
English (en)
French (fr)
Inventor
范明惠
刘哲
冯江波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21817802.8A priority Critical patent/EP4149020A4/en
Publication of WO2021244289A1 publication Critical patent/WO2021244289A1/zh
Priority to US18/070,709 priority patent/US20230087547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0275Transmission of OAMP information using an optical service channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • This application relates to the field of optical fiber communication, and in particular to a method, system and related equipment for transmitting optical power values.
  • the upstream network device in order to achieve the purpose of operating and maintaining the optical fiber connected between the upstream network device and the downstream network device, the upstream network device is required to send the output power value of the optical signal output from the upstream network device to the downstream via the optical fiber.
  • Internet equipment When the upstream network equipment and the downstream network equipment are located in different data communication networks (DCN), in order to realize the transmission of the output power value, it is necessary to manually configure routing information in the upstream network equipment, and the routing information is used for Indicate the optical fiber connection relationship between the upstream network device and the downstream network device, and the upstream network device can send the output power value to the downstream network device indicated by the routing information based on the routing information.
  • DCN data communication networks
  • Embodiments of the present invention provide a method, system, and related equipment for transmitting an optical power value, which are used to improve the efficiency and accuracy of obtaining the output power value.
  • the present application provides a method for transmitting optical power values.
  • the method includes: a source network device obtains optical multiplex section link information, where the optical multiplex section link information is used to indicate the source network included in the optical multiplex section
  • the fiber connection relationship between any two adjacent network devices between the device and the target network device, and the source network device and the target network device are located in different data communication networks DCN; the source network device is based on the optical multiplex section chain
  • the path information determines the first output port of the source network device, and the first output port is connected to the downstream network device through a first optical fiber, and the downstream network device is the one indicated by the optical multiplex section link information and the source network device Connected network device; the source network device obtains the first output power value of the optical signal on the first output port; the source network device sends the first output power value to the downstream network device through the first optical fiber.
  • the source network device can automatically discover the target network device based on the optical multiplex section link information without manually inputting routing information, and then realize the operation and maintenance of the optical multiplex section. For example, the source network device sends the output power value to the downstream network device to detect the fiber attenuation of the optical fiber connected between any two adjacent network devices included in the optical multiplexing section, thereby improving the The efficiency and accuracy of fiber attenuation detection.
  • the source network device sending the first output power value to the downstream network device through the first optical fiber includes: the source network device sending the first light through the first optical fiber The monitoring channel OSC, wherein the first OSC carries the first output power value through a target bandwidth, and the target bandwidth is not occupied by the DCN channel.
  • the first output power value is transmitted through the target bandwidth of the first OSC, and the target bandwidth is not occupied by the DCN channel, which effectively avoids the influence of the transmission of the first output power value on the DCN channel of the first OSC. Improve the utilization of the bandwidth of the DCN channel.
  • the method further includes: It is assumed that a plurality of the first output power values are acquired within a time period; the source network device determines that the absolute value of the difference between two of the plurality of first output power values is greater than or equal to the first preset value.
  • the source network device can immediately send the first output power value to the downstream network device, so that the downstream network device can detect the fiber attenuation of the first fiber to determine whether the first fiber is Deterioration improves the timeliness of warning whether the first optical fiber is degraded.
  • the source network device determines that the absolute value of the difference between two of the plurality of first output power values is greater than or equal to the first preset
  • the value includes: the source network device determines that among the plurality of first output power values, the absolute value of the difference between the first output power value with the maximum value and the first output power value with the minimum value is greater than or equal to the first output power value.
  • a preset value is a preset value.
  • the source network device determines whether to immediately send the first output power value to the downstream network device based on the absolute value of the difference between the first output power value with the maximum value and the first output power value with the minimum value, which improves the Whether the first optical fiber is deteriorated is the accuracy of the detection.
  • the source network device sending the first output power value to the downstream network device through the first optical fiber includes: if the source network device determines the multiple first output powers Among the values, the absolute value of the difference between the first output power value with the maximum value and the first output power value with the minimum value is less than the first preset value, then the network device every second preset time period Sending the first output power value to the downstream network device, and the second preset time period is greater than the first preset time period.
  • the source network device can periodically The first output power value is sent to the downstream network device to reduce the data volume of the output power value sent by the source network device to the intermediate network device, and the amount of data that the intermediate network device needs to process.
  • the present application provides a method for transmitting an optical power value.
  • the method includes: a network device receives a second output power value from an upstream network device through a second optical fiber, where the second output power value is in the upstream network device
  • the power value of the optical signal obtained on the output port of the second optical fiber is the optical fiber connected between the input port of the network device and the upstream network device;
  • the network device determines the power value of the optical signal according to the input port and the optical multiplex section link information
  • the network device is the target network device indicated by the optical multiplex section link information, and the optical multiplex section link information is used to indicate any adjacent two between the source network device and the target network device included in the optical multiplex section
  • the fiber connection relationship between the network devices, and the source network device and the target network device are located in different data communication networks DCN; the network device obtains the input power value of the optical signal on the input port.
  • the network device will no longer communicate to other networks if it is determined to be the last network device (ie, the target network device) indicated by the optical multiplex section link information.
  • the device forwards the second output power value from the upstream network device to complete the detection of the optical fiber connected between any two adjacent network devices included in the optical multiplexing section.
  • the network device receiving the second output power value from the upstream network device through the second optical fiber includes: the network device receiving the second OSC through the second optical fiber, wherein the The second OSC carries the second output power value through the target bandwidth, and the target bandwidth is not occupied by the DCN channel.
  • the second output power value is transmitted through the target bandwidth of the second OSC of the second optical fiber, and the target bandwidth is not occupied by the DCN channel, which effectively avoids the transmission of the second output power value to the DCN channel of the second OSC.
  • the impact of the DCN channel has improved the utilization of the bandwidth of the DCN channel.
  • the method further includes: the network device at least according to the second output power value and the input power value The power value obtains the fiber attenuation of the second fiber.
  • the network device can pass through the second optical fiber (connected between the target network device and the upstream network device) included in the optical multiplexing section based on the second output power value and the input power value detected on the input port of the network device The attenuation of the optical fiber is detected.
  • the optical multiplexing section includes at least one intermediate network device connected between the source network device and the target network device, and the upstream network device is connected to the target network device
  • the method further includes: the network device receives a target optical fiber attenuation through the second optical fiber, and the target optical fiber attenuation is the optical fiber of the first optical fiber connected between the source network device and the intermediate network device Attenuation, and/or, the target optical fiber attenuation is the optical fiber attenuation of the optical fiber connected between two adjacent intermediate network devices.
  • the network equipment can receive the target optical fiber attenuation through the second optical fiber, so that the network equipment can obtain the optical fiber attenuation of the optical fiber connected between any two adjacent network equipment included in the optical multiplexing section, so as to realize the correction. Detection of optical multiplexing section.
  • the optical multiplexing section includes at least one intermediate network device connected between the source network device and the target network device, and the upstream network device is connected to the target network device
  • the method further includes: the network device receives the target input power value and the target output power value of the target optical fiber through the second optical fiber, where the target input power value is the power value of the optical signal input to the target optical fiber, The target output power value is the power value of the optical signal output from the target optical fiber, the target optical fiber is the first optical fiber connected between the source network device and the intermediate network device, and/or the target optical fiber is connected to the phase The optical fiber between two adjacent intermediate network devices; the network device obtains the optical fiber attenuation of the target optical fiber at least according to the target input power value and the target output power value.
  • the network equipment calculates the optical fiber loss of the optical fiber connected between any two adjacent network equipment included in the optical multiplexing section through the received target input power value and the target output power value, so as to realize the optical multiplexing Use segment detection.
  • the present application provides a network device, the network device is a source network device, and the network device includes: a processing unit configured to obtain optical multiplexing section link information, and the optical multiplexing section link information is used to indicate optical multiplexing
  • the fiber connection relationship between any adjacent two network devices between the source network device and the target network device included in the usage segment, and the source network device and the target network device are located in different data communication networks DCN; this processing The unit is further configured to determine the first output port of the source network device according to the optical multiplexing section link information, and the first output port is connected to the downstream network device through a first optical fiber, and the downstream network device is the optical multiplexing section
  • the network device connected to the source network device indicated by the link information; the processing unit is also used to obtain the first output power value of the optical signal on the first output port; the sending unit is used to pass the first optical fiber Sending the first output power value to the downstream network device.
  • the sending unit is specifically configured to send the first optical monitoring channel OSC through the first optical fiber, wherein the first OSC carries the first output power value through the target bandwidth , And the target bandwidth is not occupied by the DCN channel.
  • the processing unit is further configured to: obtain a plurality of the first output power values within a first preset time period; and determine which of the plurality of first output power values The absolute value of the difference between the two first output power values is greater than or equal to the first preset value.
  • the processing unit is specifically configured to: determine the first output power value having the maximum value and the first output power value having the minimum value among the plurality of first output power values.
  • the absolute value of the difference between the output power values is greater than or equal to the first preset value.
  • the sending unit is specifically configured to: if the source network device determines that among the plurality of first output power values, the first output power value having the largest value and the first output power value having the smallest value If the absolute value of the difference between the first output power value of the value is less than the first preset value, the first output power value is sent to the downstream network device every second preset time period, and the second preset time The period is greater than the first preset time period.
  • the present application provides a network device that includes: a receiving unit configured to receive a second output power value from an upstream network device through a second optical fiber, where the second output power value is in the upstream network The power value of the optical signal obtained on the output port of the device.
  • the second optical fiber is an optical fiber connected between the input port of the network device and the upstream network device;
  • the link information determines that the network device is the target network device indicated by the optical multiplex section link information, and the optical multiplex section link information is used to indicate any phase between the source network device included in the optical multiplex section and the target network device.
  • the fiber connection relationship between two adjacent network devices, and the source network device and the target network device are located in different data communication networks DCN; the processing unit is also used to obtain the input power value of the optical signal on the input port .
  • the receiving unit is specifically configured to: receive a second OSC through the second optical fiber, wherein the second OSC carries the second output power value through the target bandwidth, and the The target bandwidth is not occupied by the DCN channel.
  • the processing unit is further configured to obtain the fiber attenuation of the second optical fiber at least according to the second output power value and the input power value.
  • the optical multiplexing section includes at least one intermediate network device connected between the source network device and the target network device, and the upstream network device is connected to the target network device
  • the receiving unit is further configured to: receive a target optical fiber attenuation through the second optical fiber, where the target optical fiber attenuation is the optical fiber attenuation of the first optical fiber connected between the source network device and the intermediate network device
  • the target fiber loss is the fiber loss of the fiber connected between two adjacent intermediate network devices.
  • the optical multiplexing section includes at least one intermediate network device connected between the source network device and the target network device, and the upstream network device is connected to the target network device
  • the intermediate network equipment the receiving unit is also used to receive the target input power value and the target output power value of the target fiber through the second optical fiber, the target input power value is the power value of the optical signal input to the target fiber, the The target output power value is the power value of the optical signal output from the target optical fiber, the target optical fiber is the first optical fiber connected between the source network device and the intermediate network device, and/or the target optical fiber is connected to the adjacent
  • the processing unit is further configured to obtain the optical fiber loss of the target optical fiber at least according to the target input power value and the target output power value.
  • the present application provides a network device including a processor, a memory, and a transmitter.
  • the memory and the processor are interconnected through a line
  • the transmitter and the processor are interconnected through a line
  • instructions are stored in the memory
  • the processor is configured to execute the processing-related steps shown in any one of the foregoing first aspect
  • the transmitter is configured to execute the sending-related steps shown in any one of the foregoing first aspect.
  • the processor is configured to perform acquisition of optical multiplex section link information, and the optical multiplex section link information is used to indicate any two adjacent network devices between the source network device and the target network device included in the optical multiplex section And the source network device and the target network device are located in different data communication networks DCN; the processor is also configured to execute the step of determining the first network device of the source network device according to the optical multiplex section link information An output port, the first output port is connected to a downstream network device through a first optical fiber, and the downstream network device is a step of a network device connected to the source network device indicated by the optical multiplex section link information; the processor It is also used to perform the step of obtaining the first output power value of the optical signal on the first output port; the transmitter is used to perform the step of sending the first output power value to the downstream network device through the first optical fiber.
  • this application provides a network device, including: a processor, a memory, and a receiver;
  • the memory and the processor are interconnected through a line, the receiver and the processor are interconnected through a line, the memory is stored with instructions, and the processor is configured to execute any one of the above-mentioned second aspect
  • the receiver is configured to perform the receiving-related steps as shown in any one of the above-mentioned second aspects.
  • the receiver is configured to receive a second output power value from an upstream network device through a second optical fiber, where the second output power value is the power value of the optical signal obtained on the output port of the upstream network device, and
  • the second optical fiber is a step of connecting the optical fiber between the input port of the network device and the upstream network device;
  • the processor is used to execute the determination that the network device is the optical multiplex section chain according to the input port and the optical multiplex section link information
  • the target network device indicated by the path information, the optical multiplex section link information is used to indicate the fiber connection relationship between any two adjacent network devices between the source network device included in the optical multiplex section and the target network device,
  • the source network device and the target network device are located in different data communication networks DCN; the processor is also used to execute the step of obtaining the input power value of the optical signal on the input port.
  • the present application provides an optical communication system that includes at least a source network device and a target network device.
  • the source network device is as shown in any one of the foregoing third aspect
  • the target network device is as described in the foregoing first aspect. As shown in any of the four aspects.
  • an embodiment of the present application provides a digital processing chip.
  • the chip includes a processor, a memory, and a transmitter.
  • the memory and the processor are interconnected by a wire
  • the processor and the transmitter are interconnected by a wire
  • instructions are stored in the memory.
  • the processor and the transmitter are as shown in the fifth aspect.
  • an embodiment of the present application provides a digital processing chip.
  • the chip includes a processor, a memory, and a receiver.
  • the memory and the processor are interconnected by a wire
  • the processor and the receiver are interconnected by a wire
  • instructions are stored in the memory.
  • the processor and the receiver are shown in the sixth aspect.
  • the present application provides a readable storage medium, including instructions, which when run on a device, cause the device to execute the method as described in any one of the first aspect or the second aspect.
  • the present application provides a program product containing instructions that, when the instructions run on a device, cause the device to execute the method of any one of the above-mentioned first aspect or second aspect.
  • FIG. 1 is a structural example diagram of an embodiment of an optical multiplexing section provided by this application.
  • FIG. 2 is a flowchart of the steps of an embodiment of the optical power value transmission method provided by this application;
  • FIG. 3 is an example diagram of a partial structure of an embodiment of a source network device provided by this application.
  • FIG. 4 is an example diagram of the optical signal provided by this application being transmitted along different optical multiplexing sections
  • FIG. 5 is a structural example diagram of the source network equipment and the intermediate network equipment connected to each other included in the target optical multiplex section provided by this application;
  • Fig. 6 is a structural example diagram of the target network device and the connected intermediate network device provided by this application;
  • FIG. 7 is a flowchart of steps of another embodiment of the optical power value transmission method provided by this application.
  • FIG. 8 is a structural example diagram of an embodiment of a source network device provided by this application.
  • FIG. 9 is a structural example diagram of an embodiment of a target network device provided by this application.
  • FIG. 10 is a structural example diagram of an embodiment of a network device provided by this application.
  • FIG. 11 is a structural example diagram of another embodiment of a network device provided by this application.
  • optical power value transmission method shown in this application the following first describes the application scenarios of the optical power value transmission method shown in this application.
  • the method shown in this embodiment is applied to an optical multiplexing section (OMS) across two different DCNs.
  • OMS optical multiplexing section
  • the OMS includes multiple sequentially connected multiple network devices, and the optical signal sequentially passes through multiple network devices included in the OMS in the process of transmission within the OMS.
  • the specific number is not limited.
  • the example shown in FIG. 1 is taken as an example. It can be seen that the OMS includes five sequentially connected network devices (ie, network device 101 to network device 105) as an example for illustrative description.
  • the network device is an optical cross connect (OXC) device, an optical add drop multiplexer (OADM), or a fixed optical cross connect device.
  • Add drop multiplexer fixed optical add drop multiplexer, FOADM
  • reconfigurable optical add drop multiplexer reconfigurable optical add drop multiplexer, ROADM
  • the network device is an ROADM as an example for illustrative description.
  • the OMS includes a source network device 101, an intermediate network device 102, an intermediate network device 103, an intermediate network device 104, and a target network device 105 as an example for illustrative description.
  • the source network device 101 is used to connect client device A or The optical signal locally generated by the source network device 101 is transmitted to the target network device 105 via each intermediate network device (intermediate network devices 102, 103, and 104) included in the OMS, and the target network device 105 receives the optical signal from the source network device 101, Forward to client device B directly or after demodulation.
  • the source network device 101 and the target network device 105 included in the OMS include multiple intermediate network devices connected in sequence as an example for illustrative description.
  • the source network device 101 may also be Without forwarding via an intermediate network device, the optical signal is directly sent to the target network device 105.
  • the OMS shown in this embodiment across two different DCNs means that the source network device 101 and the target network device 105 shown in this embodiment are located in two different DCNs.
  • the source network device shown in this embodiment is 101.
  • the intermediate network device 102 and the intermediate network device 103 are located in the first DCN 110, and the intermediate network device 104 and the target network device 105 are located in the second DCN 120, and the first DCN 110 and the second DCN 120 are two different DCNs.
  • the purpose of using the optical power value transmission method provided by this application is how to automatically discover the target network device in the scenario where the OMS cross-DCN Including the operation and maintenance of the optical fiber connected between any two adjacent network devices.
  • the operation and maintenance shown in this application includes, but is not limited to, detecting the optical fiber connected between any two adjacent network devices included in the OMS to obtain the optical fiber attenuation, so that the optical fiber attenuation is not degraded to cause Before business transmission is damaged, early warning of fiber degradation is carried out to reduce the risk of fiber degradation failure, so as to save operation and maintenance costs and improve operation and maintenance efficiency.
  • the method shown in this application can detect the fiber attenuation of the optical fiber connected between the intermediate network device 102 and the intermediate network device 103, so as to determine the intermediate network device 102 and the intermediate network device 102 and Whether the optical fiber connected between the intermediate network devices 103 is deteriorated, broken, malfunctioned, or dirty.
  • the description of the operation and maintenance in this embodiment is an optional example, which is not specifically limited in this application.
  • the operation and maintenance shown in this embodiment is used to detect any two adjacent network devices included in the OMS
  • the optical fiber attenuation of the optical fiber connected therebetween will be exemplified as an example.
  • Step 201 The source network device obtains OMS link information.
  • FIG. 3 is the source provided in this embodiment.
  • WSS wavelength selective switches
  • N is equal to 9 as an example. That is, the source network device 300 shown in this embodiment includes 9 WSSs (that is, WSS301, WSS302 to WSS309) as an example.
  • WSS301 is connected to WSS302, WSS303 to WSS309 at different locations through optical fibers, and is used to transmit optical signals of the source network device 300 (for example, locally generated by the source network device 300) to other WSSs (ie, WSS302, WSS303 to WSS309) to achieve the purpose of transmitting the optical signal in different dimensional directions.
  • WSS301 transmits the optical signal to WSS302.
  • WSS301 transmits the optical signal. Transmitted to WSS303, where the first dimensional direction and the second dimensional direction are two different dimensional directions.
  • the WSS301 is connected to one or more service boards.
  • This embodiment does not limit the specific number of service boards.
  • the service boards are used to generate optical signals.
  • this embodiment takes the direct connection of optical fibers between WSS301 and WSS (that is, WSS302, WSS303 to WSS309) used to output optical signals from the source network device 300 and located at different locations as an example for exemplification.
  • WSS301 and WSS309 as examples, one or more WSSs can be connected between WSS301 and WSS309, and/or an optical amplifier for amplifying the energy of optical signals connected between WSS301 and WSS309, etc.
  • the device is not specifically limited in this embodiment.
  • the source network device 300 shown in this embodiment achieves the purpose of transmitting optical signals in 8 different dimensional directions through eight WSSs (that is, WSS302, WSS303 to WSS309) located at different positions.
  • the source network device shown in this embodiment can store multiple OMS link information. Different OMS link information is used to indicate different OMS. Specifically, the OMS indicated by the OMS link information includes the source network device. The OMS also includes the fiber connection relationship between any two adjacent network devices. It can be seen that the different OMS link information included in the source network device is used to indicate the transmission path of the optical signal along the different OMS. For a good understanding, the following description will be made with reference to FIG. 4, where FIG. 4 is an example diagram of the optical signal provided by this embodiment being transmitted along different OMSs.
  • the source network device 300 has stored three different OMS link information as an example for exemplification.
  • the three different OMS link information are used to indicate the optical signal along the three different OMS (as shown in FIG. 4). Show OMS401, OMS402 and OMS403) transmission path.
  • the OMS403 includes three network devices, namely the source network device 300, the intermediate network device 410, and the target network device 411 that are connected by optical fibers in sequence.
  • the description of the source network device, the intermediate network device, and the target network device For details, please refer to Figure 1 above, which will not be described in detail. It can be seen that the OMS link information used to indicate the OMS403 is used to indicate the transmission path of the optical signal along the source network device 300, the intermediate network device 410, and the target network device 411 in sequence.
  • Step 202 The source network device determines the first output port according to the OMS link information.
  • the purpose of the source network device performing the method shown in this embodiment is to perform operation and maintenance on the optical fiber connected between any two adjacent network devices included in the OMS.
  • the source network device shown in this embodiment can implement automatic operation and maintenance of the OMS indicated by the OMS link information based on the stored OMS link information, for example, in the case where the source network device has stored multiple OMS link information ,
  • the source network device can poll multiple OMS link information to perform the method shown in this embodiment to implement the operation and maintenance of each OMS.
  • the source network device can periodically perform each OMS link information
  • the method shown in this embodiment is used to implement the operation and maintenance of each OMS, which is not specifically limited in this embodiment.
  • the source network device can also randomly perform this implementation on multiple OMS link information.
  • the method shown in the example can realize random operation and maintenance of each OMS.
  • the source network device shown in this embodiment does not need to manually input routing information, but based on the stored OMS link information, it can automatically realize the connection between any two adjacent network devices included in the OMS.
  • the optical fiber operation and maintenance improves the efficiency and accuracy of optical fiber operation and maintenance.
  • the source network device shown in this embodiment may determine the first output port according to the target OMS link information to be operated and maintained, where the target OMS link information is multiple OMS link information stored by the source network device One of the target OMS link information is used to indicate the target OMS to be operated and maintained.
  • the source network device is connected to a downstream network device through a first optical fiber through the first output port, and the downstream network device is a network device included in the target OMS that is connected to the source network device, which is For a better understanding, the following is an exemplary description with reference to Figures 4 and 5, where Figure 5 is a structural example diagram of the interconnected source network equipment and intermediate network equipment included in the target OMS shown in this embodiment. The following describes the process of determining the first output port by the source network device:
  • the source network device determines the target OMS link information to be operated and maintained from the stored multiple OMS link information.
  • the target OMS link information is used to indicate the target OMS 403 shown in FIG. 4.
  • the source network device determines the first output port according to the target OMS link information.
  • the source network device 300 is connected to the downstream network device through the first output port, that is, the source network device 300 transmits the optical signal to the downstream network device through the first output port.
  • the downstream network equipment transmits to achieve the purpose of transmitting the optical signal in sequence along each network equipment included in the target OMS. It can be seen that the downstream network device is a network device that is directly connected to the source network device through an optical fiber indicated by the target OMS link information.
  • the target OMS is OMS403
  • the source network device 300 is connected to the intermediate network device 410 through the first output port.
  • the downstream network device is an intermediate network device connected to the source network device, and when the target OMS link information does not include an intermediate network device, the downstream network device The network device is the target network device.
  • the source network device 300 determines that the target OMS link information to be operated and maintained is used to indicate the target OMS403 shown in FIG.
  • the output port specifically, the WSS301 transmits the optical signal generated by the service board to the WSS309 connected to the first output port. After the transmission direction of the optical signal is deflected by WSS301 and WSS309, it can be transmitted from the source network via the first output port
  • the device 300 outputs, and then transmits along each network device included in the target OMS403 until it is transmitted to the target network device 411, so as to achieve the purpose of transmitting the optical signal along each network device included in the target OMS403.
  • the WSSs at different positions shown in this embodiment are used to transmit optical signals to different OMSs, so that the optical signals deflected in the transmission direction via the different WSSs can be output from the source network device in different dimensional directions.
  • the WSS309 is used to input the optical signal into the target OMS403 to be operated and maintained as an example for illustration:
  • an optical amplifier 501 and a fiber interface board (FIU) 502 are sequentially connected to the WSS309 through optical fibers.
  • the first output port shown in this embodiment may be the output port of the optical amplifier 501, that is, the optical signal from the WSS309 is transmitted to the intermediate network device 410 via the first output port of the optical amplifier 501.
  • the first output port shown in this embodiment may also be the FIU502, that is, the optical signal from the optical amplifier 501 is transmitted to the intermediate network device 410 via the FIU502.
  • the first output port is the optical amplifier 501.
  • the output port is taken as an example to illustrate.
  • Step 203 The source network device obtains the first output power value of the optical signal on the first output port.
  • the source network device 300 may obtain the optical signal output via the output port of the optical amplifier 501 The first output power value.
  • the source network device 300 may obtain the first output power value of the optical signal output via the output port of the FIU502.
  • Step 204 The source network device sends the first output power value to the intermediate network device through the first optical fiber.
  • the first optical fiber shown in this embodiment is connected to the optical fiber between the source network device 300 and the intermediate network device 410, and the source network device 300 transfers the first output power value through the first optical fiber. Transmitted to the intermediate network device 410.
  • the first optical fiber includes two sections, namely the optical fiber between the optical amplifier 501 and the FIU502 and the optical fiber connected between the FIU502 and the intermediate network device 410. If the first output port is the output port of the FIU502, the first optical fiber is an optical fiber connected between the FIU502 and the intermediate network device 410.
  • the source network device transmits a first optical supervisory channel (OSC) through the first optical fiber to send the first output power value to the intermediate network device.
  • OSC optical supervisory channel
  • the first OSC is used to transmit data for monitoring the transmission of optical signals between different network devices, that is, the main function of the first OSC is to monitor the transmission of optical signals between network devices.
  • the source network device 301 can transmit multiple optical signals with different wavelengths to the intermediate network device 410.
  • the source network device 301 transmits five optical signals to the intermediate network device 410, each having wavelengths ⁇ 1 and ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 .
  • ⁇ 2 , ⁇ 3 , ⁇ 4, and ⁇ 5 can be optical signals carrying services.
  • optical signals with a wavelength of ⁇ 1 that is, the first OSC
  • monitoring information, operation administration and maintenance (OAM) information, etc. can be transmitted through the first OSC.
  • the information (monitoring information, OAM information, etc.) to be transmitted through the first OSC is encapsulated into a data frame, and the data frame is modulated onto the first OSC.
  • the source network is shown in FIG. 5 as an example.
  • the device 300 encapsulates the information to be transmitted through the first OSC into a data frame, and modulates the data frame onto the first OSC.
  • the FIU 502 multiplexes the first OSC and the optical signal from the optical amplifier 501, it passes through the first optical fiber Transmit to the intermediate network device 410.
  • This embodiment does not limit the specific way of encapsulation.
  • the encapsulation may be Ethernet frame encapsulation.
  • the first output power value may be transmitted through the first OSC.
  • the source network device 300 encapsulates the first output power value into the first byte in the overhead area of the data frame, One byte occupies the target bandwidth of the first OSC.
  • This embodiment does not limit the number and specific location of the first byte, as long as both the source network device 300 and the intermediate network device 410 have determined that the first byte is used to carry the first output power value.
  • the overhead area of the data frame modulated on the first OSC shown in this embodiment includes the first byte and the second byte, and the first byte and the second byte Are different bytes included in the overhead area of the data frame, the first byte is used to carry the first output power value, and the second byte is occupied by the DCN channel Byte, it can be seen that the DCN channel does not occupy the target bandwidth. Wherein, the DCN channel occupies the second byte to transmit related information used to manage and/or maintain the network device. This embodiment does not limit the specific information transmitted by the DCN.
  • the advantage of using the target bandwidth of the first OSC to transmit the first output power value is that the intermediate network device only needs to analyze the first OSC to obtain the first output power when receiving various optical signals via the first optical fiber.
  • the FIU501 of the intermediate network device 410 demultiplexes the signal from the first optical fiber to obtain the optical signal for carrying the service (that is, the optical signal with ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 ) And a first OSC (that is, an optical signal with ⁇ 1 ) used to carry information such as the first output power value.
  • the first byte and the second byte shown in this embodiment are different from each other, so that the transmission of the first output power value does not occupy the DCN channel, so that the source network device 300 transmits the first output power value to the intermediate network During the transmission process of the device 410, there is no need to occupy the bandwidth of the DCN channel, which improves the utilization rate of the bandwidth of the DCN channel and avoids the influence of the transmission of the first output power value on the DCN channel.
  • Step 205 The intermediate network device obtains the first input power value of the optical signal on the input port.
  • the intermediate network device is an optical line amplifying device (optical line amplifier).
  • amplifier, OLA optical line amplifier
  • FIG. 5 The specific structure of the intermediate network device can be seen in FIG. 5. It should be clear that the description of the specific structure of the intermediate network device in this embodiment is an optional example and is not limited. .
  • the intermediate network device 410 includes FIU510, optical amplifier 511, and FIU512 connected by optical fibers in sequence.
  • FIU and optical amplifier For specific description of FIU and optical amplifier, please refer to the above description, and will not be repeated.
  • the source network device includes multiple output ports respectively connected to WSS (WSS302 to WSS309) located at different locations.
  • the optical signals are output from different output ports to make the optical signal edges different.
  • the intermediate network device only has one input port and one output port.
  • the intermediate network device does not need to change the transmission direction of the optical signal.
  • the intermediate network device is only used to transmit the optical signal input from the input port to the output port. In order to output from the intermediate network equipment, it can be seen that the intermediate network equipment is only used to realize the forwarding of optical signals.
  • the start point of the first optical fiber can be connected to the output port of the optical amplifier 501 or the output port of FIU502, and the end point of the first optical fiber can be connected to the input port of the FIU510 of the intermediate network device 410. It can also be connected to the input port of the optical amplifier 511 of the intermediate network device 410. In this embodiment, the end point of the first optical fiber is connected to the input port of the optical amplifier 511 as an example for illustration.
  • the FIU601 of the intermediate network device 411 The received optical signal is demultiplexed to obtain the optical signal used to carry the service and the first OSC.
  • the FIU 601 transmits the optical signal used to carry the service to the optical amplifier 602, and the intermediate network device 411 can obtain the first input power value of the optical signal used to carry the service on the input port of the optical amplifier 602.
  • Step 206 The intermediate network device obtains the optical fiber attenuation of the first optical fiber.
  • the intermediate network device shown in this embodiment can obtain the fiber loss of the first optical fiber according to the first output power value and the first input power value obtained on the input port of the intermediate network device.
  • the intermediate network device The fiber attenuation of the first fiber can be obtained according to Formula 1 as shown below:
  • Pout is the first output power value shown above
  • Pin is the first input power value obtained at the input port of the intermediate network device.
  • the target attenuation includes the inherent attenuation of FIU502, the inherent attenuation of FIU510, and the variable optical attenuator (VOA) connected between the optical amplifier 511 and FIU510. The sum of the attenuation values.
  • the intermediate network device obtains the fiber attenuation of the first optical fiber as an example for illustrative description.
  • the intermediate network device may also adjust the first output power value of the source network device and the intermediate network device's first output power value.
  • the first input power value obtained on the input port is sent to the target network device, and the target network device calculates the fiber attenuation of the first fiber according to the above formula 1. It can be seen that in this example, the target OMS The target network device can obtain the target input power value and the target output power value, and then calculate the fiber attenuation of the target fiber based on formula 1.
  • the target input power value is the power value of the optical signal input to the target optical fiber
  • the target output power value is the power value of the optical signal output from the target optical fiber
  • the target optical fiber is a device connected to the source network
  • the first optical fiber between the intermediate network device and the intermediate network device, and/or the target optical fiber is an optical fiber connected between any two adjacent intermediate network devices included in the target OMS.
  • Step 207 The intermediate network device obtains the second output power value on the output port.
  • Step 208 The intermediate network device sends the fiber attenuation of the first fiber and the second output power value to the target network device.
  • the intermediate network device sends the fiber attenuation of the first optical fiber and the second output power value acquired on the output port of the intermediate network device, please refer to the source network device sending to the intermediate network device shown in step 204 above.
  • the specific process of the first output power value will not be described in detail.
  • the intermediate network device and the target network device are connected through a second optical fiber.
  • the intermediate network device may combine the second output power value with the first optical fiber.
  • the fiber loss of an optical fiber is sent to the target network device through the third byte modulated on the second OSC, that is, the third byte of the second OSC has carried the second output power value and the fiber loss of the first fiber ,
  • the third byte occupies the target bandwidth of the second OSC.
  • the third byte please refer to the description of the first byte shown in step 204 above.
  • the first byte is modulated in the second OSC.
  • the position of the overhead area of the data frame on one OSC and the position of the third byte in the overhead area of the data frame modulated on the second OSC are the same as an example for illustration.
  • the first byte is The location of the overhead area of the data frame modulated on the first OSC and the location of the overhead area of the data frame modulated on the second OSC of the third byte may also be different.
  • the overhead area of the data frame modulated on the second OSC includes the third byte and the fourth byte, and the third byte and the fourth byte are the data frame
  • the bytes included in the overhead area are different from each other.
  • the fourth byte is the byte occupied by the DCN channel.
  • the target bandwidth shown in this embodiment is not occupied by the DCN channel.
  • the intermediate network device may transfer fiber loss and a second output power value different from the first optical fiber through the third byte to the target network device transmits a second OSC, e.g., having a second optical fiber for transmitting a second OSC ⁇ 1 and ⁇ 2 having a a second OSC, wherein the fiber attenuation ⁇ 1 having a third byte of the second OSC, an optical fiber for carrying a first, a third byte [lambda] 2 of the second OSC output power value for a second carrier.
  • a second OSC e.g., having a second optical fiber for transmitting a second OSC ⁇ 1 and ⁇ 2 having a a second OSC, wherein the fiber attenuation ⁇ 1 having a third byte of the second OSC, an optical fiber for carrying a first, a third byte [lambda] 2 of the second OSC output power value for a second carrier.
  • the downstream network device of the intermediate network device is the target network device as an example for illustrative description.
  • the downstream network device of the intermediate network device may also be another intermediate network device.
  • the number of intermediate network devices connected between the network device and the target network device is not limited.
  • the source network device 300 and the intermediate network device 410 are located in the first DCN, and the target network device is located in the second DCN. It can be seen that the DCN where the source network device 300 is located and the DCN where the target network device 411 is located are mutually connected. Are not the same.
  • the intermediate network device 410 and the target network device 411 are located in different DCNs, using the method shown in this embodiment, the intermediate network device 410 can transmit the third byte of the second OSC through the second optical fiber to The target network device 411 sends relevant information for detecting the target OMS (for example, the second output power value and the fiber attenuation of the first optical fiber).
  • the advantage of using the third byte of the second OSC for cross-DCN transmission is ,
  • the intermediate network device 410 sends relevant information for detecting the target OMS through the target bandwidth of the second OSC, without occupying the bandwidth of the DCN channel, and reducing the influence of the target bandwidth of the second OSC on the DCN channel of the second OSC.
  • the intermediate network device shown in this embodiment obtains the fiber attenuation of the first optical fiber and the second output power value, it can directly send to the target network device without storage and analysis, saving the intermediate network device’s cost. Resources, reducing the load on intermediate network equipment.
  • Step 209 The target network device receives the second output power value from the intermediate network device and the fiber attenuation of the first fiber.
  • FIG. 6 is a structural example diagram of the target network device and the connected intermediate network device shown in this embodiment.
  • the target network device 411 includes FIU601, optical amplifier 602, WSS603, WSS604, and service single board 605 that are sequentially connected via optical fibers.
  • FIU601, optical amplifier 602, WSS603, WSS604, and service single board 605 that are sequentially connected via optical fibers.
  • WSS603, WSS604, and service single board 605 that are sequentially connected via optical fibers.
  • the optical fiber connected between the intermediate network device 410 and the target network device 411 is a second optical fiber.
  • the starting point of the second optical fiber may be the output port of the optical amplifier 511 of the intermediate network device 410, or may be an intermediate network device
  • the output port of the FIU510, and the end of the second optical fiber is the input port of the target network device 411.
  • the input port can be the input port of the FIU601 of the target network device 411 or the input port of the optical amplifier 601.
  • the intermediate network device 410 transmits the second output power value and the optical fiber loss of the first optical fiber to the target network device 411 through the target bandwidth of the second OSC transmitted by the second optical fiber, and the target bandwidth of the second OSC of the second optical fiber
  • the target network device 411 may parse the second OSC to obtain the data frame. For a specific description of the data frame, please refer to the above step 204 for details, and will not be repeated.
  • the target network device 411 can obtain the second output power value carried by the third byte of the overhead area of the data frame and the fiber attenuation of the first fiber.
  • an intermediate network device is connected between the source network device and the target network device as an example.
  • the target network device can also pass through the first network device. 2.
  • the target bandwidth of the OSC receives the optical fiber attenuation of the optical fiber connected between any two adjacent intermediate network devices.
  • the target network device has stored multiple OMS link information.
  • the OMS link information is the target OMS link information.
  • the target network device can create in advance the correspondence between different input ports included in the target network device and different OMS link information, and when an input port receives an optical signal, it can be determined to correspond to the input port
  • the OMS link information is the target OMS link information.
  • the target network device 411 receives the optical signal from the intermediate network device 410 through the input port connected to the second optical fiber, and the target network device 411 can determine the OMS link information corresponding to the input port as the target OMS link information, the target OMS link information is used to indicate the target OMS403.
  • the target OMS link information used to indicate the target OMS403 please refer to the above step 202 for details, and the details are not repeated.
  • the target network device 411 can determine that the target network device 411 is the last network device in the target OMS403 according to the target OMS link information, and the target network device 411 is used to transfer the optical signal from the source network device 300 for carrying services Converted into an electrical signal for transmission to the corresponding client device. Specifically, the target network device 411 no longer forwards the optical signal from the intermediate network device 410 to other network devices again, that is, the target network device 411 receives the optical signal carrying the service After that, it is transmitted to the service single board 605 via FIU601, WSS603, and WSS604 in sequence. The service single board 605 is used to convert the optical signal carrying the service into an electrical signal for transmission to the corresponding client device.
  • Step 210 The target network device obtains the second input power value of the optical signal on the input port.
  • the target network device determines that the target network device is the last network device in the target OMS according to the target OMS link information, the target network device can be on the input port connected to the second optical fiber Obtain the second input power value of the optical signal.
  • Step 211 The target network device obtains the optical fiber attenuation of the second optical fiber.
  • the target network device can obtain the optical fiber loss of the second optical fiber according to the obtained second input power value and the second output power value from the intermediate network device.
  • the target network device obtains the optical fiber loss of the second optical fiber.
  • the intermediate network device obtains the optical fiber loss of the first optical fiber shown in step 207, and details are not described in detail.
  • the target network device shown in this embodiment receives the optical fiber loss of the first optical fiber connected between the source network device and the intermediate network device included in the target OMS, if the source network device and the target network device are connected If there are multiple intermediate network devices, the target network device also receives the optical fiber attenuation of the optical fiber connected between any two adjacent intermediate network devices, and the target network device receives the above-mentioned optical fiber attenuation.
  • the target network device can time stamp the attenuation of each optical fiber according to the time of receiving the attenuation of each optical fiber, which is used to indicate the time when the attenuation of each optical fiber is received.
  • the source network device can automatically discover the target network device based on the target OMS link information without manually inputting routing information, and then can obtain any neighboring information included in the target OMS
  • the optical fiber attenuation of the optical fiber connected before the two network devices improves the efficiency and accuracy of detecting the optical fiber attenuation.
  • Step 701 The source network device obtains OMS link information.
  • Step 702 The source network device determines the first output port according to the OMS link information.
  • step 701 to step 702 shown in this embodiment please refer to step 201 to step 202 shown in FIG. 2 for details, and details are not described in detail.
  • Step 703 The source network device obtains multiple first output power values within a first preset time period.
  • step 203 shown in FIG. 2 For the specific process for the source network device to obtain the first output power value shown in this embodiment, please refer to step 203 shown in FIG. 2 for details, and details are not described in detail. Compared with the above-mentioned step 203, the difference is that the source network device shown in this embodiment will preset the first preset time period, and this embodiment does not set the specific duration of the first preset time period. For limitation, for example, in this embodiment, the length of the first preset time period is 2 seconds as an example for illustration.
  • the source network device detects the optical power of the optical signal at the first output port N times to obtain multiple first output power values.
  • the specific value of N is not set in this embodiment. As a limitation, as long as N is a positive integer greater than or equal to 2, this embodiment takes the value of N as an example for illustration. It can be seen that the source network device shown in this embodiment continuously The first output power value of the optical signal on the first output port is detected five times, so that the source network device can obtain five first output power values within 2 seconds.
  • Step 704 The source network device determines whether the absolute value of the difference between the two first output power values is greater than or equal to the first preset value, if yes, execute step 705, and if not, execute step 706.
  • the source network device when the source network device has obtained N first output power values, it can be determined whether the absolute value of the difference between the two first output power values included in the N first output power values is Greater than or equal to the first preset value.
  • the source network device may make a difference between any two first output power values among the N first output power values, and optionally, the source network device may perform a difference on the N first output power values.
  • the first output power value with the maximum value and the first output power value with the minimum value are made difference.
  • the source network device determines the first output power value with the maximum value among the N first output power values. Whether the absolute value of the difference between the value and the first output power value having the minimum value is greater than or equal to the first preset value is exemplified as an example.
  • the source network device shown is preset with a first preset value.
  • This embodiment does not limit the specific size of the first preset value, as long as the first output power value with the maximum value and the first output power value with the minimum value are When the absolute value of the difference between the values is greater than or equal to the first preset value, it indicates that the risk of deterioration of the first optical fiber is relatively large, and the first output power value with the maximum value and the first output power value with the minimum value When the absolute value of the difference between the power values is less than the first preset value, it means that the risk of deterioration of the first optical fiber is relatively small.
  • the first preset value is 1dB (decibel) as an example. Exemplary description.
  • the source network device determines that the absolute value of the difference between the two first output power values is greater than or equal to the first preset value
  • the source network device is triggered to perform step 705.
  • the source network device determines that the absolute value of the difference between the two first output power values is less than the first preset value, it triggers the execution of step 706.
  • Step 705 The source network device sends the first output power value to the intermediate network device through the first optical fiber.
  • the source network device determines that the absolute value of the difference between the two first output power values is greater than or equal to the first preset value, it indicates that the risk of deterioration of the first optical fiber is relatively high. If large, the source network device immediately sends the first output power value to the intermediate network device.
  • the source network device may send any one of the N first output power values to the intermediate network device, and optionally, the source network device may send, among the N first output power values, The first output power value acquired at the last moment in the first preset time period is sent to the intermediate network device, etc., which is specifically not limited in this embodiment.
  • Step 706 The source network device sends the first output power value to the intermediate network device every second preset time period.
  • the source network device determines that the absolute value of the difference between the two first output power values is less than the first preset value, it indicates that the risk of deterioration of the first optical fiber is small, and the source network device does not need to
  • the first output power value is immediately sent to the intermediate network device, and the first output power value can be periodically sent to the intermediate network device.
  • the duration of the cycle is the second preset time period, so that the source network device will Send the first output power value to the intermediate network device for a second preset time period.
  • This embodiment does not limit the duration of the second preset time period, as long as the second preset time period is greater than the first preset time period, for example, the first preset time period is 2 seconds. Under the example, this embodiment takes the second preset time period of 5 seconds as an example for illustrative description. It can be seen that the source network device shown in this embodiment can send the output power to the intermediate network device every 5 seconds. Value to trigger the detection of the fiber attenuation of the first fiber by the intermediate network device.
  • Step 707 The intermediate network device obtains the first input power value of the optical signal on the input port.
  • the intermediate network device when the intermediate network device receives the first output power value from the source network device, the intermediate network device can obtain the first input power value, and the intermediate network device obtains the specific value of the first input power value.
  • the process please refer to step 205 shown in Figure 2 for details, and details are not described in detail.
  • Step 708 The intermediate network device obtains the optical fiber attenuation of the first optical fiber.
  • step 708 For the specific execution process of step 708 shown in this embodiment, please refer to step 206 shown in FIG. 2, and the details are not described in detail.
  • Step 709 The intermediate network device obtains multiple second output power values within the first preset time period.
  • the intermediate network device obtaining multiple second output power values within the first preset time period shown in this embodiment please refer to the above step 703 for the source network device obtaining multiple second output power values within the first preset time period.
  • the description of the first output power value will not be repeated in detail.
  • Step 710 The intermediate network device determines whether the absolute value of the difference between the two second output power values is greater than or equal to the first preset value, if yes, execute step 711, and if not, execute step 712.
  • step 710 For the specific execution process of step 710 shown in this embodiment, please refer to step 704, and details are not described in detail.
  • Step 711 The intermediate network device sends the optical fiber attenuation of the first optical fiber and the second output power value to the target network device through the second optical fiber.
  • Step 712 The intermediate network device sends the fiber attenuation of the first fiber and the second output power value to the target network device every second preset time period.
  • optical fiber loss of the first optical fiber sent by the intermediate network device shown in this embodiment to the target network device please refer to 208 shown in FIG. 2 for details, and details are not described in detail.
  • Step 713 The target network device receives the second output power value from the intermediate network device and the fiber attenuation of the first fiber.
  • Step 714 The target network device obtains the second input power value of the optical signal on the input port.
  • Step 715 The target network device obtains the optical fiber attenuation of the second optical fiber.
  • step 209 to step 211 shown in FIG. 2 For the description of the specific execution process of step 713 to step 715 shown in this embodiment, please refer to step 209 to step 211 shown in FIG. 2 for details, and details are not described in detail.
  • the source network device before the source network device sends the first output power value to the downstream network device, it is based on the difference between the two first output power values in the first preset time period.
  • the relationship between the absolute value of the difference and the first preset value can determine the degradation risk of the first fiber.
  • the source network device can immediately send the first output power value to the intermediate network device, so that the intermediate network device can attenuate the optical fiber of the first optical fiber Perform detection to determine whether the first optical fiber is degraded, and improve the timeliness of warning whether the first optical fiber is degraded.
  • the source network device can periodically The intermediate network device sends the first output power value, so as to reduce the data volume of the output power value sent by the source network device to the intermediate network device, and reduce the amount of data that the intermediate network device needs to process.
  • FIG. 8 is a structural example diagram of a source network device provided by this application, and the source network device 800 may include:
  • the processing unit 801 is configured to obtain optical multiplex section link information, where the optical multiplex section link information is used to indicate any two adjacent network devices between the source network device and the target network device included in the optical multiplex section
  • the fiber connection relationship between the two, and the source network device and the target network device are located in different data communication networks DCN;
  • the processing unit 801 is further configured to determine the first output port of the source network device according to the optical multiplexing section link information, and the first output port is connected to the downstream network device through a first optical fiber, and the The downstream network device is a network device connected to the source network device indicated by the optical multiplex section link information;
  • the processing unit 801 is further configured to obtain a first output power value of the optical signal on the first output port;
  • the sending unit 802 is configured to send the first output power value to the downstream network device through the first optical fiber.
  • the sending unit 802 is specifically configured to send a first optical monitoring channel OSC through the first optical fiber, where the first OSC carries the first output power value through a target bandwidth, and the target The bandwidth is not occupied by the DCN channel.
  • the processing unit 801 is further configured to: obtain a plurality of the first output power values within a first preset time period; and determine two of the plurality of first output power values.
  • the absolute value of the difference between the output power values is greater than or equal to the first preset value.
  • the processing unit 801 is specifically configured to determine the difference between the first output power value having the maximum value and the first output power value having the minimum value among the multiple first output power values The absolute value of the difference is greater than or equal to the first preset value.
  • the sending unit 802 is specifically configured to: if the source network device determines that among the multiple first output power values, the first output power value with the maximum value and the first output power value with the minimum value are If the absolute value of the difference between the output power values is less than the first preset value, the first output power value is sent to the downstream network device every second preset time period, and the second preset time The period is greater than the first preset time period.
  • FIG. 9 is a structural example diagram of the target network device provided by this application, and the target network device 900 may include:
  • the receiving unit 901 is configured to receive a second output power value from an upstream network device through a second optical fiber, where the second output power value is the power value of the optical signal obtained on the output port of the upstream network device, and
  • the second optical fiber is an optical fiber connected between the input port of the network device and the upstream network device;
  • the processing unit 902 is configured to determine, according to the input port and the optical multiplex section link information, that the network device is the target network device indicated by the optical multiplex section link information, and the optical multiplex section link information is used to indicate The fiber connection relationship between any two adjacent network devices between the source network device and the target network device included in the optical multiplex section, and the source network device and the target network device are located in different data communication networks DCN;
  • the processing unit 902 is further configured to obtain the input power value of the optical signal on the input port.
  • the receiving unit 901 is specifically configured to: receive a second OSC through the second optical fiber, wherein the second OSC carries the second output power value through a target bandwidth, and the target bandwidth is not Occupied by DCN channel.
  • the processing unit 902 is further configured to obtain the optical fiber loss of the second optical fiber at least according to the second output power value and the input power value.
  • the optical multiplexing section includes at least one intermediate network device connected between the source network device and the target network device, and the upstream network device is the intermediate network connected to the target network device Device, the receiving unit 901 is further configured to: receive a target optical fiber attenuation through the second optical fiber, where the target optical fiber attenuation is the amount of the first optical fiber connected between the source network device and the intermediate network device Optical fiber attenuation, and/or, the target optical fiber attenuation is the optical fiber attenuation of the optical fiber connected between two adjacent intermediate network devices.
  • the optical multiplexing section includes at least one intermediate network device connected between the source network device and the target network device, and the upstream network device is the intermediate network connected to the target network device
  • the receiving unit 901 is also configured to receive a target input power value and a target output power value of a target optical fiber through the second optical fiber, where the target input power value is the power value of the optical signal input to the target optical fiber, The target output power value is the power value of the optical signal output from the target optical fiber, and the target optical fiber is the first optical fiber connected between the source network device and the intermediate network device, and/or,
  • the target optical fiber is an optical fiber connected between two adjacent intermediate network devices;
  • the processing unit 902 is further configured to obtain the information of the target optical fiber at least according to the target input power value and the target output power value. Fiber attenuation.
  • FIG. 10 is a schematic structural diagram of a network device provided by this application.
  • the network device may include a processor 1001, a memory 1002, and a transmitter 1003.
  • the processor 1001, the memory 1002, and the transmitter 1003 are interconnected by wires.
  • the memory 1002 stores program instructions and data.
  • the memory 1002 stores the program instructions and data corresponding to the steps executed by the source network device in the aforementioned embodiments corresponding to FIG. 2 and FIG. 7.
  • the processor 1001 is configured to execute the processing-related steps performed by the source network device shown in any one of the embodiments in FIG. 2 and FIG. 7. Specifically, in FIG. 2, the processor 1001 is specifically configured to execute step 201, step 202, and step 203. As shown in FIG. 7, the processor 1001 is specifically configured to execute step 701, step 702, step 703, and step 704.
  • the sender 1003 is configured to execute the steps related to sending performed by the source network device shown in any of the embodiments in FIG. 2 and FIG. 7. Specifically, in FIG. 2, the transmitter 1003 is used to perform step 204, and in FIG. 7, the transmitter 1003 is used to perform step 705 and step 706.
  • FIG. 11 is a schematic structural diagram of a network device provided by this application.
  • the network device may include a processor 1101, a memory 1102, and a receiver 1103.
  • the processor 1101, the memory 1102, and the receiver 1103 are interconnected by wires.
  • the memory 1102 stores program instructions and data.
  • the memory 1102 stores the program instructions and data corresponding to the steps executed by the target network device in the foregoing embodiments corresponding to FIG. 2 and FIG. 7.
  • the processor 1101 is configured to execute the processing-related steps performed by the target network device shown in any one of the embodiments in FIG. 2 and FIG. 7. Specifically, in FIG. 2, the processor 1101 is specifically configured to perform step 210 and step 211, and as shown in FIG. 7, the processor 1101 is specifically configured to perform step 714 and step 715.
  • the receiver 1103 is configured to perform the steps related to receiving performed by the target network device as shown in any of the embodiments in FIG. 2 and FIG. 7. Specifically, in FIG. 2, the receiver 1103 is used to perform step 209, and in FIG. 7, the receiver 1103 is used to perform step 713.
  • the embodiment of the present application also provides a digital processing chip.
  • the digital processing chip integrates a circuit and one or more interfaces for realizing the functions of the above-mentioned processor 1001.
  • the digital processing chip can complete the method steps of any one or more of the foregoing embodiments.
  • no memory is integrated in the digital processing chip, it can be connected to an external memory through an interface.
  • the digital processing chip implements the actions performed by the source network device, the intermediate network device, or the target network device in the foregoing embodiment according to the program code stored in the external memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种光功率值的传输方法、系统以及相关设备,其用于提高获取输出功率值的效率和准确性,所述方法包括:源网络设备获取光复用段链路信息,光复用段链路信息用于指示光复用段所包括的源网络设备和目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且源网络设备和目标网络设备位于不同的数据通信网DCN;源网络设备根据光复用段链路信息确定源网络设备的第一输出端口,第一输出端口与下游网络设备之间通过第一光纤连接,下游网络设备为光复用段链路信息所指示的与源网络设备连接的网络设备;源网络设备在第一输出端口上获取光信号的第一输出功率值;源网络设备通过第一光纤向下游网络设备发送第一输出功率值。

Description

一种光功率值的传输方法、系统以及相关设备
本申请要求于2020年6月2日提交中国国家知识产权局、申请号为202010489217.9、申请名称为“一种光功率值的传输方法、系统以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信领域,尤其涉及一种光功率值的传输方法、系统以及相关设备。
背景技术
为保证光信号在上游网络设备和下游网络设备之间的成功传输,则需要对上游网络设备和下游网络设备之间所连接的光纤进行运维,例如,对光纤的光纤衰耗进行检测等。
现有技术中,为实现对上游网络设备和下游网络设备之间所连接的光纤进行运维的目的,则需要上游网络设备将光信号从上游网络设备输出的输出功率值经由该光纤发送给下游网络设备。在上游网络设备和下游网络设备位于不同的数据通信网(data communication network,DCN)的情况下,为实现输出功率值的传输,则需要人工在上游网络设备中配置路由信息,该路由信息用于指示上游网络设备和下游网络设备之间的光纤连接关系,则上游网络设备即可基于该路由信息向该路由信息指示的下游网络设备发送输出功率值。
但是,人工配置路由信息非常繁琐,降低了获取输出功率值的效率和准确性。
发明内容
本发明实施例提供了一种光功率值的传输方法、系统以及相关设备,其用于提高获取输出功率值的效率和准确性。
第一方面,本申请提供一种光功率值的传输方法,该方法包括:源网络设备获取光复用段链路信息,该光复用段链路信息用于指示光复用段所包括的该源网络设备和目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且该源网络设备和该目标网络设备位于不同的数据通信网DCN;该源网络设备根据该光复用段链路信息确定该源网络设备的第一输出端口,该第一输出端口与下游网络设备之间通过第一光纤连接,该下游网络设备为该光复用段链路信息所指示的与该源网络设备连接的网络设备;该源网络设备在该第一输出端口上获取光信号的第一输出功率值;该源网络设备通过该第一光纤向该下游网络设备发送该第一输出功率值。
可见,源网络设备在无需人工输入路由信息的情况下,即可基于光复用段链路信息自动发现目标网络设备,进而实现对光复用段的运维。例如,源网络设备向下游网络设备发送输出功率值,以检测光复用段上的所包括的任意相邻的两个网络设备之间所连接的光纤的光纤衰耗的检测等,从而提高了对光纤衰耗进行检测的效率和准确性。
基于第一方面,一种可选地实现方式中,该源网络设备通过该第一光纤向该下游网络设备发送该第一输出功率值包括:该源网络设备通过该第一光纤发送第一光监控信道OSC,其中,该第一OSC通过目标带宽承载该第一输出功率值,且该目标带宽未被DCN通道所占 用。
可见,通过第一OSC的目的带宽进行第一输出功率值的传输,而且该目标带宽未被DCN通道所占用,有效地避免了第一输出功率值的传输对第一OSC的DCN通道的影响,提高了DCN通道的带宽的利用率。
基于第一方面,一种可选地实现方式中,该源网络设备通过该第一光纤向该下游网络设备发送该第一输出功率值之前,该方法还包括:该源网络设备在第一预设时间段内获取多个该第一输出功率值;该源网络设备确定该多个第一输出功率值中的两个该第一输出功率值之间差的绝对值大于或等于第一预设值。
可见,源网络设备向下游网络设备发送第一输出功率值之前,若第一光纤的劣化风险比较高(即第一预设时间段内的两个第一输出功率值之间的差的绝对值大于或等于第一预设值),则源网络设备即可立即向下游网络设备发送第一输出功率值,以使下游网络设备对第一光纤的光纤衰耗进行检测,以确定第一光纤是否劣化,提高对第一光纤是否劣化的告警的及时性。
基于第一方面,一种可选地实现方式中,该源网络设备确定该多个第一输出功率值中的两个该第一输出功率值之间差的绝对值大于或等于第一预设值包括:该源网络设备确定该多个第一输出功率值中,具有最大值的该第一输出功率值和具有最小值的该第一输出功率值之间差的绝对值大于或等于该第一预设值。
可见,源网络设备基于具有最大值的该第一输出功率值和具有最小值的该第一输出功率值之间差的绝对值确定是否立即向下游网络设备发送第一输出功率值,提高了对第一光纤是否劣化进行检测的准确性。
基于第一方面,一种可选地实现方式中,该源网络设备通过该第一光纤向该下游网络设备发送该第一输出功率值包括:若该源网络设备确定该多个第一输出功率值中,具有最大值的该第一输出功率值和具有最小值的该第一输出功率值之间差的绝对值小于该第一预设值,则该网络设备每隔第二预设时间段向该下游网络设备发送该第一输出功率值,该第二预设时间段大于该第一预设时间段。
可见,若第一光纤的劣化风向比较低(即第一预设时间段内的两个第一输出功率值之间的差的绝对值小于第一预设值),则源网络设备可周期性的向下游网络设备发送第一输出功率值,以降低源网络设备向中间网络设备发送输出功率值的数据量,降低中间网络设备需要处理的数据量。
第二方面,本申请提供一种光功率值的传输方法,该方法包括:网络设备通过第二光纤接收来自上游网络设备的第二输出功率值,该第二输出功率值为在该上游网络设备的输出端口上获取到的光信号的功率值,该第二光纤为连接在该网络设备的输入端口和该上游网络设备之间的光纤;网络设备根据该输入端口和光复用段链路信息确定该网络设备为该光复用段链路信息所指示的目标网络设备,该光复用段链路信息用于指示光复用段所包括的源网络设备和该目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且该源网络设备和该目标网络设备位于不同的数据通信网DCN;该网络设备在该输入端口上获取光信号的输入功率值。
可见,网络设备基于输入端口和光复用段链路信息,在确定出其为光复用段链路信息所指示的最后一个网络设备(即目标网络设备)的情况下,网络设备不再向其他网络设备转发来自上游网络设备的第二输出功率值,以完成对光复用段所包括的任意相邻的两个网络设备之间所连接的光纤的检测。
基于第二方面,一种可选地实现方式中,该网络设备通过第二光纤接收来自上游网络设备的第二输出功率值包括:该网络设备通过该第二光纤接收第二OSC,其中,该第二OSC通过目标带宽承载该第二输出功率值,且该目标带宽未被DCN通道所占用。
可见,通过第二光纤的第二OSC的目标带宽进行第二输出功率值的传输,而且该目标带宽未被DCN通道占用,有效地避免了第二输出功率值的传输对第二OSC的DCN通道的影响,提高了DCN通道的带宽的利用率。
基于第二方面,一种可选地实现方式中,该网络设备在该输入端口上获取光信号的输入功率值之后,该方法还包括:该网络设备至少根据该第二输出功率值和该输入功率值获取该第二光纤的光纤衰耗。
可见,网络设备可基于第二输出功率值和在网络设备的输入端口上检测到的输入功率值,对光复用段所包括的通过第二光纤(连接在目标网络设备和上游网络设备之间)的光纤衰耗进行检测。
基于第二方面,一种可选地实现方式中,该光复用段包括连接在该源网络设备和该目标网络设备之间的至少一个中间网络设备,该上游网络设备为与该目标网络设备连接的该中间网络设备,该方法还包括:该网络设备通过该第二光纤接收目标光纤衰耗,该目标光纤衰耗为连接在该源网络设备和该中间网络设备之间的第一光纤的光纤衰耗,和/或,该目标光纤衰耗为连接在相邻的两个该中间网络设备之间的光纤的光纤衰耗。
可见,网络设备能够通过第二光纤接收目标光纤衰耗,进而使得网络设备能够获取到光复用段所包括的连接在任意相邻的两个网络设备之间的光纤的光纤衰耗,以实现对光复用段的检测。
基于第二方面,一种可选地实现方式中,该光复用段包括连接在该源网络设备和该目标网络设备之间的至少一个中间网络设备,该上游网络设备为与该目标网络设备连接的该中间网络设备,该方法还包括:该网络设备通过该第二光纤接收目标光纤的目标输入功率值和目标输出功率值,该目标输入功率值为光信号输入至该目标光纤的功率值,该目标输出功率值为光信号从该目标光纤输出的功率值,该目标光纤为连接在该源网络设备和该中间网络设备之间的第一光纤,和/或,该目标光纤为连接在相邻的两个该中间网络设备之间的光纤;该网络设备至少根据该目标输入功率值和该目标输出功率值获取该目标光纤的光纤衰耗。
可见,网络设备通过已接收到的目标输入功率值和目标输出功率值,计算出光复用段所包括的连接在任意相邻的两个网络设备之间的光纤的光纤衰耗,以实现对光复用段的检测。
第三方面,本申请提供了一种网络设备,该网络设备为源网络设备,该网络设备包括:处理单元,用于获取光复用段链路信息,该光复用段链路信息用于指示光复用段所包括的 该源网络设备和目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且该源网络设备和该目标网络设备位于不同的数据通信网DCN;该处理单元还用于,根据该光复用段链路信息确定该源网络设备的第一输出端口,该第一输出端口与下游网络设备之间通过第一光纤连接,该下游网络设备为该光复用段链路信息所指示的与该源网络设备连接的网络设备;该处理单元还用于,在该第一输出端口上获取光信号的第一输出功率值;发送单元,用于通过该第一光纤向该下游网络设备发送该第一输出功率值。本方面所示的有益效果的说明,请详见上述第一方面所示,不做赘述。
基于第三方面,一种可选地实现方式中,该发送单元具体用于,通过该第一光纤发送第一光监控信道OSC,其中,该第一OSC通过目标带宽承载该第一输出功率值,且该目标带宽未被DCN通道所占用。
基于第三方面,一种可选地实现方式中,该处理单元还用于:在第一预设时间段内获取多个该第一输出功率值;确定该多个第一输出功率值中的两个该第一输出功率值之间差的绝对值大于或等于第一预设值。
基于第三方面,一种可选地实现方式中,该处理单元具体用于:确定该多个第一输出功率值中,具有最大值的该第一输出功率值和具有最小值的该第一输出功率值之间差的绝对值大于或等于该第一预设值。
基于第三方面,一种可选地实现方式中,该发送单元具体用于:若该源网络设备确定该多个第一输出功率值中,具有最大值的该第一输出功率值和具有最小值的该第一输出功率值之间差的绝对值小于该第一预设值,则每隔第二预设时间段向该下游网络设备发送该第一输出功率值,该第二预设时间段大于该第一预设时间段。
第四方面,本申请提供了一种网络设备,该网络设备包括:接收单元,用于通过第二光纤接收来自上游网络设备的第二输出功率值,该第二输出功率值为在该上游网络设备的输出端口上获取到的光信号的功率值,该第二光纤为连接在该网络设备的输入端口和该上游网络设备之间的光纤;处理单元,用于根据该输入端口和光复用段链路信息确定该网络设备为该光复用段链路信息所指示的目标网络设备,该光复用段链路信息用于指示光复用段所包括的源网络设备和该目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且该源网络设备和该目标网络设备位于不同的数据通信网DCN;该处理单元还用于,在该输入端口上获取光信号的输入功率值。
基于第四方面,一种可选地实现方式中,该接收单元具体用于:通过该第二光纤接收第二OSC,其中,该第二OSC通过目标带宽承载该第二输出功率值,且该目标带宽未被DCN通道所占用。
基于第四方面,一种可选地实现方式中,该处理单元还用于:至少根据该第二输出功率值和该输入功率值获取该第二光纤的光纤衰耗。
基于第四方面,一种可选地实现方式中,该光复用段包括连接在该源网络设备和该目标网络设备之间的至少一个中间网络设备,该上游网络设备为与该目标网络设备连接的该中间网络设备,该接收单元还用于:通过该第二光纤接收目标光纤衰耗,该目标光纤衰耗为连接在该源网络设备和该中间网络设备之间的第一光纤的光纤衰耗,和/或,该目标光纤 衰耗为连接在相邻的两个该中间网络设备之间的光纤的光纤衰耗。
基于第四方面,一种可选地实现方式中,该光复用段包括连接在该源网络设备和该目标网络设备之间的至少一个中间网络设备,该上游网络设备为与该目标网络设备连接的该中间网络设备;该接收单元还用于,通过该第二光纤接收目标光纤的目标输入功率值和目标输出功率值,该目标输入功率值为光信号输入至该目标光纤的功率值,该目标输出功率值为光信号从该目标光纤输出的功率值,该目标光纤为连接在该源网络设备和该中间网络设备之间的第一光纤,和/或,该目标光纤为连接在相邻的两个该中间网络设备之间的光纤;该处理单元还用于,至少根据该目标输入功率值和该目标输出功率值获取该目标光纤的光纤衰耗。
第五方面,本申请提供了一种网络设备,包括处理器、存储器以及发送器,该存储器和该处理器通过线路互联,该发送器和该处理器通过线路互联,该存储器中存储有指令,该处理器用于执行如上述第一方面任一项所示的与处理相关的步骤,该发送器用于执行如上述第一方面任一项所示的与发送相关的步骤。
具体地,该处理器用于执行获取光复用段链路信息,该光复用段链路信息用于指示光复用段所包括的该源网络设备和目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且该源网络设备和该目标网络设备位于不同的数据通信网DCN的步骤;该处理器还用于执行根据该光复用段链路信息确定该源网络设备的第一输出端口,该第一输出端口与下游网络设备之间通过第一光纤连接,该下游网络设备为该光复用段链路信息所指示的与该源网络设备连接的网络设备的步骤;该处理器还用于执行在该第一输出端口上获取光信号的第一输出功率值的步骤;该发送器用于执行通过该第一光纤向该下游网络设备发送该第一输出功率值的步骤。
第六方面,本申请提供了一种网络设备,包括:处理器、存储器以及接收器;
所述存储器和所述处理器通过线路互联,所述接收器和所述处理器通过线路互联,所述存储器中存储有指令,所述处理器用于执行如上述第二方面任一项所示的与处理相关的步骤,所述接收器用于执行如上述第二方面任一项所示的与接收相关的步骤。
具体地,该接收器用于执行通过第二光纤接收来自上游网络设备的第二输出功率值,该第二输出功率值为在该上游网络设备的输出端口上获取到的光信号的功率值,该第二光纤为连接在该网络设备的输入端口和该上游网络设备之间的光纤的步骤;该处理器用于执行根据该输入端口和光复用段链路信息确定该网络设备为该光复用段链路信息所指示的目标网络设备,该光复用段链路信息用于指示光复用段所包括的源网络设备和该目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且该源网络设备和该目标网络设备位于不同的数据通信网DCN的步骤;该处理器还用于执行在该输入端口上获取光信号的输入功率值的步骤。
第七方面,本申请提供了一种光通信系统,该光通信系统至少包括源网络设备和目标网络设备,该源网络设备如上述第三方面任一项所示,该目标网络设备如上述第四方面任一项所示。
第八方面,本申请实施例提供了一种数字处理芯片,芯片包括处理器、存储器和发送 器,存储器和处理器通过线路互联,该处理器和该发送器通过线路互联,存储器中存储有指令,处理器和该发送器如第五方面所示。
第九方面,本申请实施例提供了一种数字处理芯片,芯片包括处理器、存储器和接收器,存储器和处理器通过线路互联,该处理器和该接收器通过线路互联,存储器中存储有指令,处理器和该接收器如第六方面所示。
第十方面,本申请提供了一种可读存储介质,包括指令,当该指令在装置上运行时,使得装置执行如上述第一方面或第二方面任一项该的方法。
第十一方面,本申请提供了一种包含指令的程序产品,当该指令在装置上运行时,使得该装置执行如上述第一方面或第二方面任一项该的方法。
附图说明
图1为本申请所提供的光复用段的一种实施例结构示例图;
图2为本申请所提供的光功率值的传输方法的一种实施例步骤流程图;
图3为本申请所提供的源网络设备的一种实施例局部结构示例图;
图4为本申请所提供的光信号沿不同的光复用段进行传输的示例图;
图5为本申请所提供目标光复用段所包括的相互连接的源网络设备和中间网络设备的结构示例图;
图6为本申请所提供的目标网络设备和所连接的中间网络设备的结构示例图;
图7为本申请所提供的光功率值的传输方法的另一种实施例步骤流程图;
图8为本申请所提供的源网络设备的一种实施例结构示例图;
图9为本申请所提供的目标网络设备的一种实施例结构示例图;
图10为本申请所提供的网络设备的一种实施例结构示例图;
图11为本申请所提供的网络设备的另一种实施例结构示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中出现的术语“和/或”,可以是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
为更好的理解本申请所示的光功率值的传输方法,以下首先对本申请所示的光功率值的传输方法所应用的场景进行说明。本实施例所示的方法应用于跨两个不同的DCN的光复 用段(optical multiplexing section,OMS)中。
具体地,该OMS包括多个依次连接的多个网络设备,光信号在OMS内进行传输的过程中依次经过OMS所包括的多个网络设备,本实施例对OMS所包括依次连接的网络设备的具体数量不做限定,本实施例以图1所示为例,可见,该OMS包括5个依次连接的网络设备(即网络设备101至网络设备105)为例进行示例性说明。
本实施例对网络设备的具体设备类型不做限定,例如,该网络设备为光交叉连接设备(optical cross connect,OXC)设备、光分插复用器(optical add drop multiplexer,OADM)、固定光分插复用器(fixed optical add drop multiplexer,FOADM)或可重构光分插复用器(reconfigurable optical add drop multiplexer,ROADM)等。本实施例以网络设备为ROADM为例进行示例性说明。
本实施例以OMS包括源网络设备101、中间网络设备102、中间网络设备103、中间网络设备104以及目标网络设备105为例进行示例性说明,其中,源网络设备101用于将客户设备A或源网络设备101本地产生的光信号经由OMS所包括的各个中间网络设备(中间网络设备102、103以及104)传输至目标网络设备105,目标网络设备105接收到来自源网络设备101的光信号,直接或解调后转发给客户设备B。本实施例以该OMS所包括的源网络设备101和目标网络设备105之间,包括多个依次连接的中间网络设备为例进行示例性说明,在其他示例中,该源网络设备101也可在不经由中间网络设备转发的情况下,直接将光信号向目标网络设备105发送。
本实施例所示的OMS跨两个不同的DCN是指,本实施例所示的源网络设备101和目标网络设备105位于两个不同的DCN,具体地,本实施例所示以源网络设备101、中间网络设备102以及中间网络设备103位于第一DCN110,而中间网络设备104和目标网络设备105位于第二DCN120,且第一DCN110与第二DCN120为两个互不相同的DCN。
基于上述所示的OMS的说明,采用本申请所提供的光功率值的传输方法的目的在于,如何在OMS跨DCN的场景下,源网络设备能够自动发现目标网络设备,进而能够实现对OMS所包括的任意相邻的两个网络设备之间所连接的光纤的运维。本申请所示的运维包括但不限于对该OMS所包括的任意相邻的两个网络设备之间所连接的光纤进行检测,以获取光纤衰耗,从而便于在光纤衰耗未劣化至导致业务传输受损前,对光纤劣化进行预警,以降低光纤劣化故障风险,以节省运维成本,提升运维效率。如图1所示的示例,通过本申请所示的方法能够检测到中间网络设备102和中间网络设备103之间所连接的光纤的光纤衰耗,从而根据该光纤衰耗判断中间网络设备102和中间网络设备103之间所连接的光纤是否劣化、出现断裂、故障或脏污等情况。本实施例对运维的说明为可选地示例,具体在本申请中不做限定,如下所示以本实施例所示的运维为检测OMS内所包括的任意相邻的两个网络设备之间所连接的光纤的光纤衰耗为例进行示例性说明。
以下结合图2所示对本实施例所提供的光功率值的传输方法的具体执行过程进行说明:
步骤201、源网络设备获取OMS链路信息。
为更好的理解本实施例所示的OMS链路信息,首先结合图3所示对本实施例所提供的源网络设备的结构进行示例性说明,其中,图3为本实施例所提供的源网络设备的一种实 施例局部结构示例图,如图3所示,本实施例所示的源网络设备包括N个波长选择开关(wavelength selective switch,WSS),本实施例对N的具体取值不做限定,如图3所示以该N等于9为例进行示例性说明,即本实施例所示的源网络设备300包括9个WSS为例(即WSS301、WSS302至WSS309)。其中,WSS301通过光纤分别与位于不同位置处的WSS302、WSS303至WSS309连接,用于将源网络设备300光信号(例如,由源网络设备300本地产生的)向位于不同位置处的其他WSS(即WSS302、WSS303至WSS309)发送,以实现对光信号沿不同维度方向进行传输的目的。例如,若源网络设备300需要将光信号沿第一维度方向进行传输,则WSS301将光信号传输至WSS302,若源网络设备300需要将光信号沿第二维度方向进行传输,则WSS301将光信号传输至WSS303,其中,第一维度方向和第二维度方向为互不相同的两个维度方向。
可选地,该WSS301连接一个或多个业务单板,本实施例对业务单板的具体数量不做限定,该业务单板用于产生光信号。
需明确地是,本实施例以WSS301和用于将光信号从源网络设备300输出且位于不同位置处的WSS(即WSS302、WSS303至WSS309)之间通过光纤直接连接为例进行示例性说明,在其他示例中,以WSS301和WSS309为例,WSS301和WSS309之间还可连接一个或多个WSS,和/或连接在WSS301和WSS309之间的用于对光信号的能量进行放大的光放大器等器件,具体在本实施例中不做限定。
可见,通过本实施例所示的源网络设备300所包括的两个WSS,实现对光信号沿不同的维度方向的灵活调度。即图3所示的源网络设备300通过位于不同位置处的八个WSS(即WSS302、WSS303至WSS309)实现对光信号沿8个不同的维度维度方向进行传输的目的。
本实施例所示的源网络设备可存储多个OMS链路信息,不同的OMS链路信息用于指示不同的OMS,具体地,该OMS链路信息所指示的OMS均包括所述源网络设备,该OMS还包括任意相邻的两个网络设备之间的连纤关系,可见,源网络设备所包括的不同的OMS链路信息用于指示光信号沿不同的OMS进行传输的路径,为更好的理解,以下结合图4所示进行说明,其中,图4为本实施例所提供的光信号沿不同的OMS进行传输的示例图。
图4所示以源网络设备300已存储三个不同的OMS链路信息为例进行示例性说明,三个不同的OMS链路信息用于指示光信号沿不同的三个OMS(如图4所示的OMS401、OMS402以及OMS403)进行传输的路径。以OMS403为具体的示例,该OMS403包括三个网络设备,即依次通过光纤连接的源网络设备300、中间网络设备410和目标网络设备411,对源网络设备、中间网络设备以及目标网络设备的说明,具体可参见上述图1所示,具体不做赘述。可见,用于指示OMS403的OMS链路信息,用于指示光信号依次沿源网络设备300、中间网络设备410以及目标网络设备411进行传输的路径。
步骤202、源网络设备根据OMS链路信息确定第一输出端口。
所述源网络设备执行本实施例所示的方法的目的在于,对OMS所包括的任意相邻的两个网络设备之间所连接的光纤进行运维,对运维的说明,请详见上述所示,具体不做赘述。本实施例所示的源网络设备能够基于已存储的OMS链路信息实现对OMS链路信息所指示的OMS的自动运维,例如,在源网络设备已存储多个OMS链路信息的情况下,所述源网络设 备可对多个OMS链路信息轮询执行本实施例所示的方法以实现对各个OMS的运维,又如,源网络设备可周期性地对各个OMS链路信息执行本实施例所示的方法以实现对各个OMS的运维等,具体在本实施例中不做限定,例如,在其他场景下,源网络设备也可随机对多个OMS链路信息执行本实施例所示的方法以实现对各个OMS的随机运维等。
可见,本实施例所示的源网络设备无需人工输入路由信息,而是基于已存储的OMS链路信息,即可自动实现对OMS内所包括的任意相邻的两个网络设备之间所连接的光纤的运维,提高了对光纤进行运维的效率和准确性。
本实施例所示的源网络设备可根据待运维的目标OMS链路信息确定第一输出端口,其中,所述目标OMS链路信息为所述源网络设备所存储的多个OMS链路信息中的一个,且所述目标OMS链路信息用于指示待运维的目标OMS。其中,所述源网络设备通过所述第一输出端口与下游网络设备之间通过第一光纤连接,所述下游网络设备为该目标OMS所包括的与所述源网络设备连接的网络设备,为更好的理解,以下结合图4和图5所示进行示例性说明,其中,图5为本实施例所示的目标OMS所包括的相互连接的源网络设备和中间网络设备的结构示例图,以下对源网络设备确定第一输出端口的过程进行说明:
首先,源网络设备在已存储的多个OMS链路信息中确定待运维的目标OMS链路信息,例如,该目标OMS链路信息用于指示图4所示的目标OMS403。
其次,源网络设备根据目标OMS链路信息确定第一输出端口,其中,源网络设备300通过该第一输出端口与下游网络设备连接,即源网络设备300经由该第一输出端口将光信号向下游网络设备传输,以实现光信号沿目标OMS所包括的各个网络设备依次进行传输的目的。可见,该下游网络设备为目标OMS链路信息所指示的与源网络设备通过光纤直接连接的网络设备。在目标OMS为OMS403的情况下,则源网络设备300通过第一输出端口与中间网络设备410连接。
可见,在目标OMS链路信息包括中间网络设备的情况下,则该下游网络设备为与源网络设备连接的中间网络设备,在目标OMS链路信息不包括中间网络设备的情况下,则该下游网络设备为目标网络设备。
例如,结合图3至图4所示,在源网络设备300确定待运维的目标OMS链路信息用于指示图4所示的目标OMS403的情况下,即可确定该目标OMS403对应的第一输出端口,具体地,该WSS301将业务单板所产生的光信号传输至与第一输出端口连接的WSS309,光信号的传输方向经由WSS301和WSS309的偏转后,能够经由第一输出端口从源网络设备300输出,进而沿目标OMS403所包括的各个网络设备进行传输,直至传输至目标网络设备411,从而实现光信号沿目标OMS403所包括的各个网络设备进行传输的目的。
以下进一步结合图5所示对第一输出端口进行说明:
本实施例所示的位于不同位置处的WSS用于将光信号传输至不同的OMS内,以使经由不同的WSS偏转了传输方向的光信号,能够以不同的维度方向从源网络设备输出。本实施例以WSS309用于将光信号输入至待运维的目标OMS403内为例进行示例性说明:
本实施例中,与WSS309依次通过光纤连接有光放大器501和光纤线路接口板(fiber interface board,FIU)502。
可选地,本实施例所示的第一输出端口可为该光放大器501的输出端口,即来自WSS309的光信号经由光放大器501的第一输出端口向中间网络设备410传输。可选地,本实施例所示的第一输出端口还可为该FIU502,即来自光放大器501的光信号经由FIU502向中间网络设备410传输,本实施例以第一输出端口为光放大器501的输出端口为例进行示例性说明。
步骤203、源网络设备在第一输出端口上获取光信号的第一输出功率值。
可选地,继续如图5所示,在源网络设备300确定第一输出端口为光放大器501的输出端口的情况下,则源网络设备300可获取光信号经由光放大器501的输出端口输出的第一输出功率值。可选地,在源网络设备300确定第一输出端口为FIU502的输出端口的情况下,则源网络设备300可获取光信号经由FIU502的输出端口输出的第一输出功率值。
步骤204、源网络设备通过第一光纤向中间网络设备发送第一输出功率值。
继续如图4和图5所示,本实施例所示的第一光纤连接在源网络设备300和中间网络设备410之间的光纤,源网络设备300通过该第一光纤将第一输出功率值传输至中间网络设备410。具体地,若第一输出端口为光放大器501的输出端口,则第一光纤包括两段,即光放大器501和FIU502之间的光纤以及连接在FIU502和中间网络设备410之间的光纤。若第一输出端口为FIU502的输出端口,则第一光纤为连接在FIU502和中间网络设备410之间的光纤。
以下对源网络设备具体是如何发送该第一输出功率值的进行说明:
可选地,源网络设备通过第一光纤传输第一光监控信道(optical supervisory channel,OSC),以向中间网络设备发送该第一输出功率值。其中,第一OSC用于传输对光信号在不同的网络设备之间传输的过程进行监控的数据,即第一OSC的主要功能是监控光信号在网络设备之间传输的情况。
具体地,源网络设备301可向中间网络设备410传输多路具有不同波长的光信号,例如,源网络设备301向中间网络设备410传输五路光信号,分别具有的波长为λ 1、λ 2、λ 3、λ 4以及λ 5。其中,λ 2、λ 3、λ 4以及λ 5可为承载业务的光信号,为监控承载业务的光信号的传输的过程,则可通过具有波长为λ 1的光信号(即第一OSC)对传输情况进行监控。为实现第一OSC的监控功能,则可通过第一OSC传递监控信息,操作维护管理(operation administration and maintenance,OAM)信息等。
本实施例中,将待通过第一OSC传输的信息(监控信息、OAM信息等)封装成数据帧,并将该数据帧调制到第一OSC上,继续以图5所示为例,源网络设备300将待通过第一OSC传输的信息封装成数据帧,并将该数据帧调制到第一OSC上,FIU502将第一OSC和来自光放大器501的光信号进行复用后,通过第一光纤向中间网络设备410进行传输。本实施例对封装的具体方式不做限定,例如,该封装可为以太帧封装。
本实施例中,可通过第一OSC传输第一输出功率值,具体地,所述源网络设备300将第一输出功率值封装至该数据帧的开销区中的第一字节中,该第一字节占用第一OSC的目标带宽。本实施例对第一字节的数量和具体位置不做限定,只要源网络设备300和中间网络设备410均已确定该第一字节用于承载第一输出功率值即可。
可选地,本实施例所示的已调制在第一OSC上的数据帧的开销区中包括所述第一字节和第二字节,所述第一字节和所述第二字节为所述数据帧的开销区中所包括的互不相同的字节,所述第一字节用于承载所述第一输出功率值,而所述第二字节为被DCN通道所占用的字节,可见,所述DCN通道未占用所述目标带宽。其中,所述DCN通道通过占用第二字节以传输用于对网络设备进行管理和/或维护的相关信息,本实施例对DCN所传输的具体信息不做限定。
采用第一OSC的目标带宽传输第一输出功率值的优势在于,中间网络设备在接收到经由第一光纤的各路光信号的情况下,仅需对第一OSC进行解析以获取第一输出功率值,继续结合上述示例,中间网络设备410的FIU501对来自第一光纤的信号进行解复用以获取用于承载业务的光信号(即具有λ 2、λ 3、λ 4以及λ 5的光信号)以及用于承载第一输出功率值等信息的第一OSC(即具有λ 1的光信号)。本实施例所示的第一字节和第二字节互不相同,从而使得第一输出功率值的传输不会占用DCN通道,从而使得源网络设备300在将第一输出功率值向中间网络设备410传输的过程中,无需占用DCN通道的带宽,提高了DCN通道的带宽的利用率,而且避免了第一输出功率值的传输对DCN通道的影响。
步骤205、中间网络设备在输入端口上获取光信号的第一输入功率值。
本实施例对中间网络设备的设备类型不做限定,只要中间网络设备能够将来自源网络设备的光信号向目标网络设备转发即可,本实施例以中间网络设备为光线路放大设备(optical line amplifier,OLA)为例进行示例性说明,中间网络设备的具体结构可参见图5所示,需明确的是,本实施例对中间网络设备的具体结构的说明为可选地示例,不做限定。
如图5所示可知,中间网络设备410包括依次通过光纤连接的FIU510、光放大器511以及FIU512,对FIU和光放大器的具体说明请详见上述所示,不做赘述。由上述图3所示的说明可知,源网络设备包括多个分别与位于不同位置处的WSS(WSS302至WSS309)连接的输出端口,光信号从不同的输出端口输出,即可使得光信号沿不同的方向进行传输,而中间网络设备仅具有一个输入端口和一个输出端口,中间网络设备无需对光信号的传输方向进行改变,中间网络设备仅用于将从输入端口输入的光信号传输至输出端口,以从中间网络设备输出,可见,中间网络设备仅用于实现对光信号的转发。
由上述所示可知,第一光纤的起点可连接在光放大器501的输出端口,也可连接在FIU502的输出端口,该第一光纤的终点可连接在中间网络设备410的FIU510的输入端口上,也可连接在中间网络设备410的光放大器511的输入端口上,本实施例以第一光纤的终点连接在光放大器511的输入端口上为例进行示例性说明,例如,中间网络设备411的FIU601将已接收到的光信号进行解复用以获取用于承载业务的光信号以及第一OSC,对用于承载业务的光信号以及第一OSC的具体说明,请详见步骤204所示,具体不做赘述,FIU601将用于承载业务的光信号向光放大器602传输,中间网络设备411即可在光放大器602的输入端口上获取用于承载业务的光信号的第一输入功率值。
步骤206、中间网络设备获取第一光纤的光纤衰耗。
本实施例所示的中间网络设备根据第一输出功率值以及在中间网络设备的输入端口上 获取到的第一输入功率值,即可获取第一光纤的光纤衰耗,具体地,中间网络设备可根据如下所示的公式1获取第一光纤的光纤衰耗:
公式1:第一光纤的光纤衰耗=Pout-Pin-目标衰减。
其中,Pout为上述所示的第一输出功率值,Pin为在中间网络设备的输入端口上获取到的第一输入功率值,如图5所示,若第一光纤的起点为光放大器501的输出端口,终点为光放大器511的输入端口,则该目标衰减包括FIU502的固有衰减、FIU510的固有衰减、连接在光放大器511和FIU510之间的可调光衰减器(variable optical attenuator,VOA)的衰减值的和。
本实施例中,由中间网络设备获取第一光纤的光纤衰耗为例进行示例性说明,在其他示例中,也可由中间网络设备将源网络设备的第一输出功率值以及在中间网络设备的输入端口上获取到的第一输入功率值,向目标网络设备发送,进而由目标网络设备根据上述所示的公式1计算出第一光纤的光纤衰耗,可见,在此种示例下,目标OMS的目标网络设备能够获取目标输入功率值和目标输出功率值,进而基于公式1所示计算出目标光纤的光纤衰减。其中,所述目标输入功率值为光信号输入至目标光纤的功率值,所述目标输出功率值为光信号从所述目标光纤输出的功率值,所述目标光纤为连接在所述源网络设备和所述中间网络设备之间的第一光纤,和/或,所述目标光纤为连接在所述目标OMS所包括的任意相邻的两个所述中间网络设备之间的光纤。
步骤207、中间网络设备在输出端口上获取第二输出功率值。
本实施例中,中间网络设备在输出端口上获取第二输出功率值的具体说明,可参见步骤203所示的源网络设备在第一输出端口上获取光信号的第一输出功率值的具体说明,不做赘述。
步骤208、中间网络设备将第一光纤的光纤衰耗以及第二输出功率值向目标网络设备发送。
本实施例中,中间网络设备发送第一光纤的光纤衰耗以及中间网络设备的输出端口上获取的第二输出功率值的过程,可参见上述步骤204所示的源网络设备向中间网络设备发送第一输出功率值的具体过程,不做赘述。
本实施例中,中间网络设备和目标网络设备之间通过第二光纤连接,可选地,若第二光纤传输一个第二OSC的情况下,则中间网络设备可将第二输出功率值和第一光纤的光纤衰耗通过已调制在该第二OSC上的第三字节向目标网络设备发送,即第二OSC的第三字节已承载第二输出功率值和第一光纤的光纤衰耗,该第三字节占用第二OSC的目的带宽,对第三字节的说明,请参见上述步骤204所示的第一字节的说明,本实施例以第一字节在已调制在第一OSC上的数据帧的开销区的位置和第三字节在已调制在第二OSC上的数据帧的开销区的位置相同为例进行示例性说明,在其他示例中,第一字节在已调制在第一OSC上的数据帧的开销区的位置和第三字节在已调制在第二OSC上的数据帧的开销区的位置也可不同。
本实施例中,已调制在第二OSC上的数据帧的开销区中包括所述第三字节和第四字节,所述第三字节和所述第四字节为所述数据帧的开销区中所包括的互不相同的字节,该第四 字节为DCN通道所占用的字节,对第四字节的具体说明,请详见上述所示的对第二字节的说明,可见,本实施例所示的目标带宽未被DCN通道所占用。
还可选地,在第二光纤用于传输两个或两个以上的第二OCS的情况下,其中,第二光纤所传输的多个第二OSC分别具有不同的波长,中间网络设备可将第二输出功率值和第一光纤的光纤衰耗通过不同的第二OSC的第三字节向目标网络设备发送,例如,第二光纤用于传输具有λ 1的第二OSC和具有λ 2的第二OSC,其中,具有λ 1的第二OSC的第三字节用于承载第一光纤的光纤衰耗,具有λ 2的第二OSC的第三字节用于承载第二输出功率值。
本实施例中,以中间网络设备的下游网络设备为目标网络设备为例进行示例性说明,在其他示例中,中间网络设备的下游网络设备还可为另一中间网络设备,本实施例对源网络设备和目标网络设备之间所连接的中间网络设备的数量不做限定,对其他中间网络设备执行本实施例所示的方法的过程,请详见步骤205至步骤208所示,具体不做赘述。
本实施例中,源网络设备300和中间网络设备410位于第一DCN内,而目标网络设备位于第二DCN内,可见,源网络设备300所位于的DCN和目标网络设备411所位于的DCN互不相同。在中间网络设备410和目标网络设备411位于不同的DCN内的情况下,采用本实施例所示的方法,中间网络设备410能够通过第二光纤所传输的第二OSC的第三字节,向目标网络设备411发送用于对目标OMS进行检测的相关信息(例如第二输出功率值以及第一光纤的光纤衰耗等信息),采用第二OSC的第三字节进行跨DCN的传输优势在于,中间网络设备410通过第二OSC的目的带宽发送用于对目标OMS进行检测的相关信息,无需占用DCN通道的带宽,降低了第二OSC的目标带宽对第二OSC的DCN通道的影响。
本实施例所示的中间网络设备在获取到第一光纤的光纤衰耗以及第二输出功率值的情况下,无需进行存储和分析,即可直接向目标网络设备发送,节省了中间网络设备的资源,降低了对中间网络设备的负载。
步骤209、目标网络设备接收来自中间网络设备的第二输出功率值以及第一光纤的光纤衰耗。
为更好的理解,以下结合图6所示进行说明,其中,图6为本实施例所示的目标网络设备和所连接的中间网络设备的结构示例图。
本实施例中,目标网络设备411包括依次通过光纤连接的FIU601、光放大器602、WSS603、WSS604以及业务单板605,具体说明,请参见图5所示的对源网络设备300的结构的说明,不做赘述。
中间网络设备410和目标网络设备411之间所连接的光纤为第二光纤,可选地,该第二光纤的起点可为中间网络设备410的光放大器511的输出端口,也可为中间网络设备的FIU510的输出端口,而该第二光纤的终点为目标网络设备411的输入端口,该输入端口可为目标网络设备411的FIU601的输入端口,也可为光放大器601的输入端口,本实施例以第二光纤的起点为中间网络设备410的光放大器511的输出端口,且以第二光纤的终点为目标网络设备411的光放大器601的输入端口为例进行示例性说明。
中间网络设备410通过该第二光纤所传输的第二OSC的目标带宽,向目标网络设备411传输第二输出功率值以及第一光纤的光纤衰耗,对第二光纤的第二OSC的目标带宽的说明, 请详见上述所示的对第一光纤所传输的第一OSC的目标带宽的说明,请详见步骤204所示,具体不做赘述。目标网络设备411可对第二OSC进行解析以获取数据帧,对数据帧的具体说明,请详见上述步骤204所示,不做赘述。目标网络设备411即可获取该数据帧的开销区的第三字节所承载的第二输出功率值以及第一光纤的光纤衰耗。本实施例以源网络设备和目标网络设备之间连接一个中间网络设备为例,在源网络设备和目标网络设备之间连接有多个中间网络设备的情况下,则目标网络设备还可通过第二OSC的目标带宽接收任意相邻的两个中间网络设备之间所连接的光纤的光纤衰耗。
本实施例中,目标网络设备已存储多个OMS链路信息,对OMS链路信息的具体说明请详见上述步骤201所示,不做赘述。本实施例中,在目标网络设备通过输入端口接收来自中间网络设备的已承载第二输出功率值以及第一光纤的光纤衰耗的光信号的情况下,目标网络设备确定与该输入端口对应的OMS链路信息为目标OMS链路信息。具体地,目标网络设备可预先创建目标网络设备所包括的不同的输入端口和不同的OMS链路信息的对应关系,在一个输入端口接收到光信号的情况下,即可确定与该输入端口对应的OMS链路信息为目标OMS链路信息。
以图4所示为例,目标网络设备411通过与第二光纤所连接的输入端口接收来自中间网络设备410光信号,目标网络设备411即可确定与该输入端口对应的OMS链路信息为目标OMS链路信息,该目标OMS链路信息用于指示目标OMS403,对用于指示目标OMS403的目标OMS链路信息的说明,请详见上述步骤202所示,具体不做赘述。
该目标网络设备411根据该目标OMS链路信息即可确定目标网络设备411为目标OMS403内的最后一个网络设备,该目标网络设备411用于将来自源网络设备300的用于承载业务的光信号转换为电信号以传输至对应的客户设备,具体地,该目标网络设备411不再将来自中间网络设备410的光信号再次向其他网络设备转发,即目标网络设备411接收到承载业务的光信号后,依次经由FIU601、WSS603、WSS604传输至业务单板605,该业务单板605用于将承载业务的光信号转换为电信号以传输至对应的客户设备。
步骤210、目标网络设备在输入端口上获取光信号的第二输入功率值。
本实施例中,在目标网络设备根据目标OMS链路信息,确定该目标网络设备为目标OMS内的最后一个网络设备的情况下,该目标网络设备即可在与第二光纤连接的输入端口上获取光信号的第二输入功率值。
步骤211、目标网络设备获取第二光纤的光纤衰耗。
目标网络设备即可根据已获取到的第二输入功率值以及来自中间网络设备的第二输出功率值,获取第二光纤的光纤衰耗,其中,目标网络设备获取第二光纤的光纤衰耗的过程,请参见步骤207所示的中间网络设备获取第一光纤的光纤衰耗的过程,具体不做赘述。
可选地,本实施例所示的目标网络设备接收目标OMS所包括的源网络设备和中间网络设备之间所连接的第一光纤的光纤衰耗,若源网络设备和目标网络设备之间连接有多个中间网络设备,则目标网络设备还接收任意相邻的两个中间网络设备之间所连接的光纤的光纤衰耗,则目标网络设备在接收到上述的各个光纤衰耗的情况下,目标网络设备可根据接收各个光纤衰耗的时刻,为各个光纤衰耗打上时间戳,用于指示接收到各个光纤衰耗的时 间。
可见,采用本实施例所示的方法,源网络设备在无需人工输入路由信息的情况下,即可基于目标OMS链路信息自动发现目标网络设备,进而能够获取目标OMS所包括的任意相邻的两个网络设备之前所连接的光纤的光纤衰耗,从而提高了对光纤衰耗进行检测的效率和准确性。
以下结合图7所示对本申请所提供的光功率值的传输方法的另一种执行过程进行说明,本实施例所示的方法能够及时对连接在目标OMS内的任意相邻的两个网络设备之间的光纤劣化进行告警,具体执行过程请详见如下所示:
步骤701、源网络设备获取OMS链路信息。
步骤702、源网络设备根据OMS链路信息确定第一输出端口。
本实施例所示的步骤701至步骤702的具体执行过程,请详见图2所示的步骤201至步骤202所示,具体不做赘述。
步骤703、源网络设备在第一预设时间段内获取多个第一输出功率值。
本实施例所示的源网络设备获取第一输出功率值的具体过程,请详见图2所示的步骤203所示,具体不做赘述。相对于上述所示的步骤203的不同之处在于,本实施例所示的源网络设备会预先设置第一预设时间段,本实施例对第一预设时间段的具体持续时间长度不做限定,例如,本实施例以该第一预设时间段的长度为2秒为例进行示例性说明。
所述源网络设备在该第一预设时间段内,N次对光信号在第一输出端口的光功率进行检测以获取多个第一输出功率值,本实施例对N的具体取值不做限定,只要N为大于或等于2的正整数即可,本实施例以N的取值为5为例进行示例性说明,可见,本实施例所示的源网络设备在2秒内,连续5次检测光信号在第一输出端口上的第一输出功率值,以使所述源网络设备能够在2秒内获取到5个第一输出功率值。
步骤704、源网络设备判断两个第一输出功率值之间差的绝对值是否大于或等于第一预设值,若是,则执行步骤705,若否,则执行步骤706。
本实施例所示,在源网络设备已获取N个第一输出功率值的情况下,即可判断N个第一输出功率值所包括的两个第一输出功率值之间差的绝对值是否大于或等于该第一预设值。可选地,所述源网络设备可对N个第一输出功率值中的任意两个第一输出功率值做差,还可选地,所述源网络设备可对N个第一输出功率值中,将具有最大值的第一输出功率值和具有最小值的第一输出功率值做差,本实施例以源网络设备判断N个第一输出功率值中,具有最大值的第一输出功率值和具有最小值的第一输出功率值之间差的绝对值是否大于或等于所述第一预设值为例进行示例性说明。
所示的源网络设备预先设置第一预设值,本实施例对第一预设值的具体大小不做限定,只要在具有最大值的第一输出功率值和具有最小值的第一输出功率值之间的差的绝对值大于或等于该第一预设值时,则说明第一光纤的劣化的风险比较大,而在具有最大值的第一输出功率值和具有最小值的第一输出功率值之间的差的绝对值小于该第一预设值时,则说明第一光纤的劣化的风险比较小即可,本实施例以该第一预设值为1dB(分贝)为例进行示例性说明。
可见,在源网络设备判断出两个第一输出功率值之间的差的绝对值大于或等于所述第一预设值,则触发所述源网络设备执行步骤705。在源网络设备判断出两个第一输出功率值之间的差的绝对值小于该第一预设值,则触发执行步骤706。
步骤705、源网络设备通过第一光纤向中间网络设备发送第一输出功率值。
本实施例中,在所述源网络设备判断出两个第一输出功率值之间的差的绝对值大于或等于所述第一预设值的情况下,则说明第一光纤劣化的风险较大,则源网络设备立即将第一输出功率值向中间网络设备发送。
可选地,源网络设备可将N个第一输出功率值中的任意一个第一输出功率值向中间网络设备发送,还可选地,源网络设备可将N个第一输出功率值中,在所述第一预设时间段内最后时刻所获取到的第一输出功率值向中间网络设备发送等,具体在本实施例中不做限定。
步骤706、源网络设备每隔第二预设时间段向中间网络设备发送第一输出功率值。
在所述源网络设备判断出两个第一输出功率值之间的差的绝对值小于所述第一预设值的情况下,则说明第一光纤劣化的风险较小,则源网络设备无需立即将第一输出功率值向中间网络设备发送,而且可周期性的向中间网络设备发送第一输出功率值,该周期的持续时间为第二预设时间段,从而使得源网络设备每隔该第二预设时间段向中间网络设备发送所述第一输出功率值。
本实施例对第二预设时间段的持续时间不做限定,只要该第二预设时间段大于所述第一预设时间段即可,例如,在第一预设时间段为2秒的示例下,本实施例以该第二预设时间段为5秒为例进行示例性说明,可见,本实施例所示的源网络设备可每隔5秒向中间网络设备发送一次所述输出功率值,以触发中间网络设备对第一光纤的光纤衰耗的检测。
步骤707、中间网络设备在输入端口上获取光信号的第一输入功率值。
本实施例中,在中间网络设备接收到来自源网络设备的第一输出功率值的情况下,中间网络设备即可进行第一输入功率值的获取,中间网络设备获取第一输入功率值的具体过程,请详见图2所示的步骤205所示,具体不做赘述。
步骤708、中间网络设备获取第一光纤的光纤衰耗。
本实施例所示的步骤708的具体执行过程,请参见图2所示的步骤206所示,具体不做赘述。
步骤709、中间网络设备在第一预设时间段内获取多个第二输出功率值。
本实施例所示的中间网络设备在第一预设时间段内获取多个第二输出功率值的说明,请参见上述步骤703所示的源网络设备在第一预设时间段内获取多个第一输出功率值的说明,具体不做赘述。
步骤710、中间网络设备判断两个第二输出功率值之间差的绝对值是否大于或等于第一预设值,若是,则执行步骤711,若否,则执行步骤712。
本实施例所示的步骤710的具体执行过程,请参见步骤704所示,具体不做赘述。
步骤711、中间网络设备通过第二光纤向目标网络设备发送第一光纤的光纤衰耗以及第二输出功率值。
步骤712、中间网络设备每隔第二预设时间段向目标网络设备发送第一光纤的光纤衰耗以及第二输出功率值。
本实施例所示的中间网络设备向目标网络设备发送第一光纤的光纤衰耗的具体说明,请详见图2所示的208所示,具体不做赘述。
本实施例所示的中间网络设备向目标网络设备发送第二输出功率值的具体过程,请参见上述步骤705至步骤706所示的源网络设备向中间网络设备发送第一输出功率值的过程,具体不做赘述。
步骤713、目标网络设备接收来自中间网络设备的第二输出功率值以及第一光纤的光纤衰耗。
步骤714、目标网络设备在输入端口上获取光信号的第二输入功率值。
步骤715、目标网络设备获取第二光纤的光纤衰耗。
本实施例所示的步骤713至步骤715的具体执行过程的说明,请详见图2所示的步骤209至步骤211所示,具体不做赘述。
采用本实施例所示的方法,以源网络设备为例,源网络设备向下游网络设备发送第一输出功率值之前,基于第一预设时间段内的两个第一输出功率值之间的差的绝对值与第一预设值的大小关系,即可确定第一光纤的劣化风险的高低,若第一光纤的劣化风险比较高(即第一预设时间段内的两个第一输出功率值之间的差的绝对值大于或等于第一预设值),则源网络设备即可立即向中间网络设备发送第一输出功率值,以使中间网络设备对第一光纤的光纤衰耗进行检测,以确定第一光纤是否劣化,提高对第一光纤是否劣化的告警的及时性。若第一光纤的劣化风向比较低(即第一预设时间段内的两个第一输出功率值之间的差的绝对值小于第一预设值),则源网络设备可周期性的向中间网络设备发送第一输出功率值,以降低源网络设备向中间网络设备发送输出功率值的数据量,降低中间网络设备需要处理的数据量。
前述对本申请提供的光功率值的传输方法的流程进行了说明,下面基于前述的方法,对本申请提供的源网络设备进行详细说明。其中,图8为本申请提供的源网络设备的一种结构示例图,该源网络设备800可以包括:
处理单元801,用于获取光复用段链路信息,所述光复用段链路信息用于指示光复用段所包括的所述源网络设备和目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且所述源网络设备和所述目标网络设备位于不同的数据通信网DCN;
所述处理单元801还用于,根据所述光复用段链路信息确定所述源网络设备的第一输出端口,所述第一输出端口与下游网络设备之间通过第一光纤连接,所述下游网络设备为所述光复用段链路信息所指示的与所述源网络设备连接的网络设备;
所述处理单元801还用于,在所述第一输出端口上获取光信号的第一输出功率值;
发送单元802,用于通过所述第一光纤向所述下游网络设备发送所述第一输出功率值。
本实施例所示的源网络设备800执行光功率值的传输方法的有益效果的说明,请详见上述图2或图7所示,具体在本实施例中不做赘述。
可选地,所述发送单元802具体用于,通过所述第一光纤发送第一光监控信道OSC, 其中,所述第一OSC通过目标带宽承载所述第一输出功率值,且所述目标带宽未被DCN通道所占用。
可选地,所述处理单元801还用于:在第一预设时间段内获取多个所述第一输出功率值;确定所述多个第一输出功率值中的两个所述第一输出功率值之间差的绝对值大于或等于第一预设值。
可选地,所述处理单元801具体用于:确定所述多个第一输出功率值中,具有最大值的所述第一输出功率值和具有最小值的所述第一输出功率值之间差的绝对值大于或等于所述第一预设值。
可选地,所述发送单元802具体用于:若所述源网络设备确定所述多个第一输出功率值中,具有最大值的所述第一输出功率值和具有最小值的所述第一输出功率值之间差的绝对值小于所述第一预设值,则每隔第二预设时间段向所述下游网络设备发送所述第一输出功率值,所述第二预设时间段大于所述第一预设时间段。
下面基于前述的方法,对本申请提供的目标网络设备进行详细说明。其中,图9为本申请提供的目标网络设备的一种结构示例图,该目标网络设备900可以包括:
接收单元901,用于通过第二光纤接收来自上游网络设备的第二输出功率值,所述第二输出功率值为在所述上游网络设备的输出端口上获取到的光信号的功率值,所述第二光纤为连接在所述网络设备的输入端口和所述上游网络设备之间的光纤;
处理单元902,用于根据所述输入端口和光复用段链路信息确定所述网络设备为所述光复用段链路信息所指示的目标网络设备,所述光复用段链路信息用于指示光复用段所包括的源网络设备和所述目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且所述源网络设备和所述目标网络设备位于不同的数据通信网DCN;
所述处理单元902还用于,在所述输入端口上获取光信号的输入功率值。
本实施例所示的目标网络设备900执行光功率值的传输方法的有益效果的说明,请详见上述图2或图7所示,具体在本实施例中不做赘述。
可选地,所述接收单元901具体用于:通过所述第二光纤接收第二OSC,其中,所述第二OSC通过目标带宽承载所述第二输出功率值,且所述目标带宽未被DCN通道所占用。
可选地,所述处理单元902还用于:至少根据所述第二输出功率值和所述输入功率值获取所述第二光纤的光纤衰耗。
可选地,所述光复用段包括连接在所述源网络设备和所述目标网络设备之间的至少一个中间网络设备,所述上游网络设备为与所述目标网络设备连接的所述中间网络设备,所述接收单元901还用于:通过所述第二光纤接收目标光纤衰耗,所述目标光纤衰耗为连接在所述源网络设备和所述中间网络设备之间的第一光纤的光纤衰耗,和/或,所述目标光纤衰耗为连接在相邻的两个所述中间网络设备之间的光纤的光纤衰耗。
可选地,所述光复用段包括连接在所述源网络设备和所述目标网络设备之间的至少一个中间网络设备,所述上游网络设备为与所述目标网络设备连接的所述中间网络设备;所述接收单元901还用于,通过所述第二光纤接收目标光纤的目标输入功率值和目标输出功率值,所述目标输入功率值为光信号输入至所述目标光纤的功率值,所述目标输出功率值 为光信号从所述目标光纤输出的功率值,所述目标光纤为连接在所述源网络设备和所述中间网络设备之间的第一光纤,和/或,所述目标光纤为连接在相邻的两个所述中间网络设备之间的光纤;所述处理单元902还用于,至少根据所述目标输入功率值和所述目标输出功率值获取所述目标光纤的光纤衰耗。
图10为本申请提供的一种网络设备的结构示意图。该网络设备可以包括处理器1001、存储器1002和发送器1003。该处理器1001、存储器1002和发送器1003通过线路互联。其中,存储器1002中存储有程序指令和数据。
存储器1002中存储了前述图2以及图7对应的实施方式中,由源网络设备执行的步骤对应的程序指令以及数据。处理器1001用于执行前述图2以及图7中任一实施例所示的由源网络设备执行的与处理相关的步骤。具体地,在图2中,处理器1001具体用于执行步骤201、步骤202以及步骤203,在图7所示,处理器1001具体用于执行步骤701、步骤702、步骤703以及步骤704。发送器1003用于执行前述图2以及图7中任意实施例所示的由源网络设备执行的与发送相关的步骤。具体地,在图2中,发送器1003用于执行步骤204,在图7中,发送器1003用于执行步骤705以及步骤706。
图11为本申请提供的一种网络设备的结构示意图。该网络设备可以包括处理器1101、存储器1102和接收器1103。该处理器1101、存储器1102和接收器1103通过线路互联。其中,存储器1102中存储有程序指令和数据。
存储器1102中存储了前述图2以及图7对应的实施方式中,由目标网络设备执行的步骤对应的程序指令以及数据。处理器1101用于执行前述图2以及图7中任一实施例所示的由目标网络设备执行的与处理相关的步骤。具体地,在图2中,处理器1101具体用于执行步骤210以及步骤211,在图7所示,处理器1101具体用于执行步骤714以及步骤715。接收器1103用于执行前述图2以及图7中任意实施例所示的由目标网络设备执行的与接收相关的步骤。具体地,在图2中,接收器1103用于执行步骤209,在图7中,接收器1103用于执行步骤713。
本申请实施例还提供一种数字处理芯片。该数字处理芯片中集成了用于实现上述处理器1001的功能的电路和一个或者多个接口。当该数字处理芯片中集成了存储器时,该数字处理芯片可以完成前述实施例中的任一个或多个实施例的方法步骤。当该数字处理芯片中未集成存储器时,可以通过接口与外置的存储器连接。该数字处理芯片根据外置的存储器中存储的程序代码来实现上述实施例中源网络设备、中间网络设备或目标网络设备执行的动作。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种光功率值的传输方法,其特征在于,所述方法包括:
    源网络设备获取光复用段链路信息,所述光复用段链路信息用于指示光复用段所包括的所述源网络设备和目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且所述源网络设备和所述目标网络设备位于不同的数据通信网DCN;
    所述源网络设备根据所述光复用段链路信息确定所述源网络设备的第一输出端口,所述第一输出端口与下游网络设备之间通过第一光纤连接,所述下游网络设备为所述光复用段链路信息所指示的与所述源网络设备连接的网络设备;
    所述源网络设备在所述第一输出端口上获取光信号的第一输出功率值;
    所述源网络设备通过所述第一光纤向所述下游网络设备发送所述第一输出功率值。
  2. 根据权利要求1所述的方法,其特征在于,所述源网络设备通过所述第一光纤向所述下游网络设备发送所述第一输出功率值包括:
    所述源网络设备通过所述第一光纤发送第一光监控信道OSC,其中,所述第一OSC通过目标带宽承载所述第一输出功率值,且所述目标带宽未被DCN通道所占用。
  3. 根据权利要求1或2所述的方法,其特征在于,所述源网络设备通过所述第一光纤向所述下游网络设备发送所述第一输出功率值之前,所述方法还包括:
    所述源网络设备在第一预设时间段内获取多个所述第一输出功率值;
    所述源网络设备确定所述多个第一输出功率值中的两个所述第一输出功率值之间差的绝对值大于或等于第一预设值。
  4. 根据权利要求3所述的方法,其特征在于,所述源网络设备确定所述多个第一输出功率值中的两个所述第一输出功率值之间差的绝对值大于或等于第一预设值包括:
    所述源网络设备确定所述多个第一输出功率值中,具有最大值的所述第一输出功率值和具有最小值的所述第一输出功率值之间差的绝对值大于或等于所述第一预设值。
  5. 根据权利要求3或4所述的方法,其特征在于,所述源网络设备通过所述第一光纤向所述下游网络设备发送所述第一输出功率值包括:
    若所述源网络设备确定所述多个第一输出功率值中,具有最大值的所述第一输出功率值和具有最小值的所述第一输出功率值之间差的绝对值小于所述第一预设值,则所述网络设备每隔第二预设时间段向所述下游网络设备发送所述第一输出功率值,所述第二预设时间段大于所述第一预设时间段。
  6. 一种光功率值的传输方法,其特征在于,所述方法包括:
    网络设备通过第二光纤接收来自上游网络设备的第二输出功率值,所述第二输出功率值为在所述上游网络设备的输出端口上获取到的光信号的功率值,所述第二光纤为连接在所述网络设备的输入端口和所述上游网络设备之间的光纤;
    网络设备根据所述输入端口和光复用段链路信息确定所述网络设备为所述光复用段链路信息所指示的目标网络设备,所述光复用段链路信息用于指示光复用段所包括的源网络设备和所述目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且所述源网络设备和所述目标网络设备位于不同的数据通信网DCN;
    所述网络设备在所述输入端口上获取光信号的输入功率值。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备通过第二光纤接收来自上游网络设备的第二输出功率值包括:
    所述网络设备通过所述第二光纤接收第二OSC,其中,所述第二OSC通过目标带宽承载所述第二输出功率值,且所述目标带宽未被DCN通道所占用。
  8. 根据权利要求6或7所述的方法,其特征在于,所述网络设备在所述输入端口上获取光信号的输入功率值之后,所述方法还包括:
    所述网络设备至少根据所述第二输出功率值和所述输入功率值获取所述第二光纤的光纤衰耗。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,所述光复用段包括连接在所述源网络设备和所述目标网络设备之间的至少一个中间网络设备,所述上游网络设备为与所述目标网络设备连接的所述中间网络设备,所述方法还包括:
    所述网络设备通过所述第二光纤接收目标光纤衰耗,所述目标光纤衰耗为连接在所述源网络设备和所述中间网络设备之间的第一光纤的光纤衰耗,和/或,所述目标光纤衰耗为连接在相邻的两个所述中间网络设备之间的光纤的光纤衰耗。
  10. 根据权利要求6至8任一项所述的方法,其特征在于,所述光复用段包括连接在所述源网络设备和所述目标网络设备之间的至少一个中间网络设备,所述上游网络设备为与所述目标网络设备连接的所述中间网络设备,所述方法还包括:
    所述网络设备通过所述第二光纤接收目标光纤的目标输入功率值和目标输出功率值,所述目标输入功率值为光信号输入至所述目标光纤的功率值,所述目标输出功率值为光信号从所述目标光纤输出的功率值,所述目标光纤为连接在所述源网络设备和所述中间网络设备之间的第一光纤,和/或,所述目标光纤为连接在相邻的两个所述中间网络设备之间的光纤;
    所述网络设备至少根据所述目标输入功率值和所述目标输出功率值获取所述目标光纤的光纤衰耗。
  11. 一种网络设备,其特征在于,所述网络设备为源网络设备,所述网络设备包括:
    处理单元,用于获取光复用段链路信息,所述光复用段链路信息用于指示光复用段所包括的所述源网络设备和目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且所述源网络设备和所述目标网络设备位于不同的数据通信网DCN;
    所述处理单元还用于,根据所述光复用段链路信息确定所述源网络设备的第一输出端口,所述第一输出端口与下游网络设备之间通过第一光纤连接,所述下游网络设备为所述光复用段链路信息所指示的与所述源网络设备连接的网络设备;
    所述处理单元还用于,在所述第一输出端口上获取光信号的第一输出功率值;
    发送单元,用于通过所述第一光纤向所述下游网络设备发送所述第一输出功率值。
  12. 根据权利要求11所述的网络设备,其特征在于,
    所述发送单元具体用于,通过所述第一光纤发送第一光监控信道OSC,其中,所述第一OSC通过目标带宽承载所述第一输出功率值,且所述目标带宽未被DCN通道所占用。
  13. 根据权利要求11或12所述的网络设备,其特征在于,所述处理单元还用于:
    在第一预设时间段内获取多个所述第一输出功率值;
    确定所述多个第一输出功率值中的两个所述第一输出功率值之间差的绝对值大于或等于第一预设值。
  14. 根据权利要求13所述的网络设备,其特征在于,所述处理单元具体用于:
    确定所述多个第一输出功率值中,具有最大值的所述第一输出功率值和具有最小值的所述第一输出功率值之间差的绝对值大于或等于所述第一预设值。
  15. 根据权利要求13或14所述的网络设备,其特征在于,所述发送单元具体用于:
    若所述源网络设备确定所述多个第一输出功率值中,具有最大值的所述第一输出功率值和具有最小值的所述第一输出功率值之间差的绝对值小于所述第一预设值,则每隔第二预设时间段向所述下游网络设备发送所述第一输出功率值,所述第二预设时间段大于所述第一预设时间段。
  16. 一种网络设备,其特征在于,所述网络设备包括:
    接收单元,用于通过第二光纤接收来自上游网络设备的第二输出功率值,所述第二输出功率值为在所述上游网络设备的输出端口上获取到的光信号的功率值,所述第二光纤为连接在所述网络设备的输入端口和所述上游网络设备之间的光纤;
    处理单元,用于根据所述输入端口和光复用段链路信息确定所述网络设备为所述光复用段链路信息所指示的目标网络设备,所述光复用段链路信息用于指示光复用段所包括的源网络设备和所述目标网络设备之间任意相邻的两个网络设备之间的连纤关系,且所述源网络设备和所述目标网络设备位于不同的数据通信网DCN;
    所述处理单元还用于,在所述输入端口上获取光信号的输入功率值。
  17. 根据权利要求16所述的网络设备,其特征在于,所述接收单元具体用于:
    通过所述第二光纤接收第二OSC,其中,所述第二OSC通过目标带宽承载所述第二输出功率值,且所述目标带宽未被DCN通道所占用。
  18. 根据权利要求16或17所述的网络设备,其特征在于,所述处理单元还用于:
    至少根据所述第二输出功率值和所述输入功率值获取所述第二光纤的光纤衰耗。
  19. 根据权利要求16至18任一项所述的网络设备,其特征在于,所述光复用段包括连接在所述源网络设备和所述目标网络设备之间的至少一个中间网络设备,所述上游网络设备为与所述目标网络设备连接的所述中间网络设备,所述接收单元还用于:
    通过所述第二光纤接收目标光纤衰耗,所述目标光纤衰耗为连接在所述源网络设备和所述中间网络设备之间的第一光纤的光纤衰耗,和/或,所述目标光纤衰耗为连接在相邻的两个所述中间网络设备之间的光纤的光纤衰耗。
  20. 根据权利要求16至18任一项所述的网络设备,其特征在于,所述光复用段包括连接在所述源网络设备和所述目标网络设备之间的至少一个中间网络设备,所述上游网络设备为与所述目标网络设备连接的所述中间网络设备;
    所述接收单元还用于,通过所述第二光纤接收目标光纤的目标输入功率值和目标输出功率值,所述目标输入功率值为光信号输入至所述目标光纤的功率值,所述目标输出功率 值为光信号从所述目标光纤输出的功率值,所述目标光纤为连接在所述源网络设备和所述中间网络设备之间的第一光纤,和/或,所述目标光纤为连接在相邻的两个所述中间网络设备之间的光纤;
    所述处理单元还用于,至少根据所述目标输入功率值和所述目标输出功率值获取所述目标光纤的光纤衰耗。
  21. 一种网络设备,其特征在于,包括:处理器、存储器以及发送器;
    所述存储器和所述处理器通过线路互联,所述发送器和所述处理器通过线路互联,所述存储器中存储有指令,所述处理器用于执行如权利要求1至5中任一项所述的与处理相关的步骤,所述发送器用于执行如权利要求1至5中任一项所述的与发送相关的步骤。
  22. 一种网络设备,其特征在于,包括:处理器、存储器以及接收器;
    所述存储器和所述处理器通过线路互联,所述接收器和所述处理器通过线路互联,所述存储器中存储有指令,所述处理器用于执行如权利要求6至10中任一项所述的与处理相关的步骤,所述接收器用于执行如权利要求6至10中任一项所述的与接收相关的步骤。
  23. 一种光通信系统,其特征在于,所述光通信系统至少包括源网络设备和目标网络设备,所述源网络设备如权利要求11至15任一项所示,所述目标网络设备如权利要求16至20任一项所示。
  24. 一种可读存储介质,包括指令,当所述指令在装置上运行时,使得所述装置执行如权利要求1至10中任一项所述的方法。
  25. 一种包含指令的程序产品,当所述指令在装置上运行时,使得所述装置执行如权利要求1至10中任一项所述的方法。
PCT/CN2021/094545 2020-06-02 2021-05-19 一种光功率值的传输方法、系统以及相关设备 WO2021244289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21817802.8A EP4149020A4 (en) 2020-06-02 2021-05-19 METHOD AND SYSTEM FOR TRANSMITTING AN OPTICAL POWER VALUE AND ASSOCIATED DEVICE
US18/070,709 US20230087547A1 (en) 2020-06-02 2022-11-29 Optical power value transmission method and system, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010489217.9 2020-06-02
CN202010489217.9A CN113765583B (zh) 2020-06-02 2020-06-02 一种光功率值的传输方法、系统以及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/070,709 Continuation US20230087547A1 (en) 2020-06-02 2022-11-29 Optical power value transmission method and system, and related device

Publications (1)

Publication Number Publication Date
WO2021244289A1 true WO2021244289A1 (zh) 2021-12-09

Family

ID=78782718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094545 WO2021244289A1 (zh) 2020-06-02 2021-05-19 一种光功率值的传输方法、系统以及相关设备

Country Status (4)

Country Link
US (1) US20230087547A1 (zh)
EP (1) EP4149020A4 (zh)
CN (1) CN113765583B (zh)
WO (1) WO2021244289A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2432143A1 (en) * 2010-09-21 2012-03-21 ADVA AG Optical Networking A method and apparatus for performing an automatic power adjustment for an optical signal
CN105959059A (zh) * 2016-04-20 2016-09-21 山东信通电子股份有限公司 Pon网络光链路损耗在线精确测量方法
US10038494B1 (en) * 2017-02-02 2018-07-31 Infinera Corporation Proactive multi-layer mechanisms to protect packet-optical transport networks
US20200099455A1 (en) * 2017-05-27 2020-03-26 Huawei Technologies Co., Ltd. Optical power compensation method and device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202468A1 (en) * 2003-04-14 2004-10-14 Gordon Harney Lightpath exerciser for optical networks
CN101043288B (zh) * 2006-03-20 2011-09-21 中兴通讯股份有限公司 一种光复用层功率优化系统及其方法
US8116625B2 (en) * 2009-03-04 2012-02-14 Ciena Coporation Methods and systems for detecting small span loss changes in fiber optic networks
ES2623913T3 (es) * 2011-12-28 2017-07-12 Huawei Technologies Co., Ltd. Método y equipo para balancear el funcionamiento de enlaces
CN107154830B (zh) * 2016-03-02 2019-03-15 中卫大河云联网络技术有限公司 一种创建逻辑光纤以及逻辑光纤信号流的方法和装置
CN107800558B (zh) * 2016-09-05 2022-04-29 中兴通讯股份有限公司 故障确定、信息发送方法及装置、源端设备、宿端设备
CN108768579B (zh) * 2018-05-17 2019-11-05 烽火通信科技股份有限公司 一种基于光通道路径的纤缆光功率自动调整方法及系统
CN109672493B (zh) * 2018-11-27 2020-09-08 北京市天元网络技术股份有限公司 确定波分设备路径的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2432143A1 (en) * 2010-09-21 2012-03-21 ADVA AG Optical Networking A method and apparatus for performing an automatic power adjustment for an optical signal
CN105959059A (zh) * 2016-04-20 2016-09-21 山东信通电子股份有限公司 Pon网络光链路损耗在线精确测量方法
US10038494B1 (en) * 2017-02-02 2018-07-31 Infinera Corporation Proactive multi-layer mechanisms to protect packet-optical transport networks
US20200099455A1 (en) * 2017-05-27 2020-03-26 Huawei Technologies Co., Ltd. Optical power compensation method and device

Also Published As

Publication number Publication date
EP4149020A4 (en) 2023-11-08
CN113765583A (zh) 2021-12-07
US20230087547A1 (en) 2023-03-23
CN113765583B (zh) 2022-12-30
EP4149020A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
US6907006B1 (en) Method and apparatus for detecting faults in IP packet communication
US7447398B2 (en) Optical crossconnect apparatus
CA2644683C (en) Pon system and terminal operation registering method
EP3151457A2 (en) Packet routing using optical supervisory channel data for an optical transport system
US7787763B2 (en) System and method for protecting optical light-trails
US20090161689A1 (en) Pluggable Module with Integrated Data Analysis Function
JP6235158B2 (ja) 光バーストトランスポートネットワーク、ノード、伝送方法及びコンピュータ記憶媒体
JP2020048177A (ja) Roadmサービス側の光ファイバ接続をマッチングさせるための装置および方法
US8737834B2 (en) Method and system for optical performance monitoring in ethernet passive optical networks
US20120076497A1 (en) Method and Apparatus for Loading, Detecting, and Monitoring Channel-Associated Optical Signals
WO2011124107A1 (zh) 光纤连接的检测方法和系统
US11838048B2 (en) SD-FEC defect propagation across regeneration nodes in support of single and multi-carrier super channel protection in ROADM networks
US10797824B2 (en) Fast restoration using SDFEC defects in coherent optical networks
JP6829678B2 (ja) バースト中継システム及びプログラム
US20090060499A1 (en) Apparatus and method for monitoring quality of optical signal
WO2021244289A1 (zh) 一种光功率值的传输方法、系统以及相关设备
US20010022875A1 (en) Optical cross-connect apparatus, and its signal monitoring method
CN111970048A (zh) 一种多功能的光监控信道模块及其运行方法
US10298440B2 (en) Transmission apparatus, alarm transfer method and alarm transfer system
JP2018174366A (ja) 通信装置および通信方法
EP1496635A2 (en) Method and system for management of directly connected optical components
WO2021185066A1 (zh) 一种标定插入损耗的方法以及相关设备
WO2023273840A1 (zh) 光信噪比检测方法、装置及计算机存储介质
CN117856885A (zh) 一种运维方法、光通信设备以及光通信系统
CN116112071A (zh) 应用于otn网络的备用光通道性能检测方法及性能检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021817802

Country of ref document: EP

Effective date: 20221205

NENP Non-entry into the national phase

Ref country code: DE