WO2011124107A1 - 光纤连接的检测方法和系统 - Google Patents

光纤连接的检测方法和系统 Download PDF

Info

Publication number
WO2011124107A1
WO2011124107A1 PCT/CN2011/071925 CN2011071925W WO2011124107A1 WO 2011124107 A1 WO2011124107 A1 WO 2011124107A1 CN 2011071925 W CN2011071925 W CN 2011071925W WO 2011124107 A1 WO2011124107 A1 WO 2011124107A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
information
connection
fiber
connection relationship
Prior art date
Application number
PCT/CN2011/071925
Other languages
English (en)
French (fr)
Inventor
李龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11765025.9A priority Critical patent/EP2557704B1/en
Priority to US13/639,251 priority patent/US8811816B2/en
Publication of WO2011124107A1 publication Critical patent/WO2011124107A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/22Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks comprising specially adapted graphical user interfaces [GUI]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for detecting an optical fiber connection.
  • BACKGROUND With the development of optical communication technologies, people are increasingly demanding the intelligentization of optical networks.
  • the International Telecommunication Union proposed the intelligent switched optical network technology. The basic idea is to introduce a control plane in the optical transmission network to realize the on-demand allocation of network resources, thereby realizing the intelligentization of the optical network.
  • the optical transport network management system has been transferred from the traditional network element level management system (EMS) to the network level network management system (Network
  • NMS Network Management System
  • the functions that the network-level network management system can implement include: network-wide fault analysis and fault location, comprehensive analysis of network performance, and provision of services based on wavelength or channel end-to-end configuration and management from the level of service operation and network management.
  • the above functions are all based on obtaining the fiber connection inside the network node in advance. In the related art, most of the acquisition of the internal fiber connection relationship of the network is manually configured one by one on the network management.
  • a primary object of the present invention is to provide a detection scheme for an optical fiber connection to at least solve one of the above problems.
  • a method of detecting an optical fiber connection includes the following steps: The board determines whether the connection information of the received downstream board, the connection information of the upstream board, and the connection information of the board are the current connection relationship information of the reported fiber.
  • the network management system If the current connection relationship information of the optical fiber is not reported, report it to the network management system.
  • the network management system generates the fiber-matched connection relationship information of all the currently installed boards according to the actual installation status of the board.
  • the matching connection relationship information determines whether the current fiber connection relationship information of the reported fiber is the correct fiber connection relationship; in the case of determining the correct fiber connection relationship, the network management system tag corresponds to the current connection relationship information of the fiber in the fiber matching connection relationship information.
  • the information of the current connection relationship of the optical fiber is displayed; otherwise, the network management system prompts the current connection relationship information of the optical fiber to be the wrong optical fiber connection relationship, and displays the optimal connection relationship information of the optical fiber.
  • the method further includes: the board is configured to determine the connection information of the received downstream board, the connection information of the upstream board, and the connection information of the board to be the current connection relationship information of the reported fiber.
  • the connection information of the board is sent to the downstream board periodically, and the connection information of the downstream board is received.
  • the board After the board receives the connection information of the upstream board, the board sends the connection information of the board to the board.
  • determining whether the current connection relationship information of the upper optical fiber is the correct optical fiber connection relationship according to the fiber matching connection relationship information includes: determining the optical port when the connection information of the optical port in the current connection relationship information of the optical fiber is empty The fiber connection without fiber connection or optical port has broken.
  • the method further includes: the network management system storing the matching connection relationship information of all the boards and the optical ports thereof. .
  • the network management system displays the optimal connection relationship information of the optical fiber, including: obtaining and displaying the optimal connection relationship information of the optical fiber according to the board type matching principle and/or the optical port type matching principle.
  • the network management system displays the optimal connection relationship information of the optical fiber, including: acquiring and displaying the optimal connection relationship information of the optical fiber according to the principle of the minimum distance of the board and/or the order of the optical port number.
  • the method further includes: The information about the current connection relationship between the optical fiber and the optical fiber optimal connection relationship is displayed to the user interface in the form of a graphical or text data table.
  • a fiber optic connection detecting system is also provided.
  • a fiber-optic connection detection system includes a single-board processing device and a network management device, wherein the single-board processing device includes: a determination module, configured to determine connection information of the received downstream board, and the upstream board Whether the connection information and the connection information of the board are the current connection information of the reported fiber; the reporting module is configured to determine the connection information of the downstream board, the connection information of the upstream board, and the board of the board. If the connection information is not the reported current connection relationship information of the optical fiber, the device is reported to the network management device.
  • the network management device includes: a generation module, configured to generate the fiber of all the currently installed boards according to the actual installation condition of the board.
  • the determining module is configured to determine, according to the fiber matching connection relationship information, whether the reported current fiber connection relationship information is a correct fiber connection relationship; and the processing module is configured to determine that the module determines the correct fiber connection relationship , marked in fiber matching connection Current connection information corresponding to the information on the relationship information of the optical fiber; at error determination module determines an optical fiber connection relationship, the optical fiber connection relationship information suggesting optimal current optical fiber connection relationship information is wrong optical fiber connection relationship, and displays.
  • the board processing device further includes: a board information module, configured to store connection information of the board, and send the information to the board output port monitoring module, the board input port monitoring module, and the judging module;
  • the port monitoring module is configured to send the connection information of the board to the downstream board periodically, and send the timing information to the judging module after receiving the connection information of the downstream board; and the board input port monitoring module is set to receive After the connection information of the upstream board is sent to the upstream board, the connection information of the received upstream board is sent to the judgment module.
  • the determining module is further configured to determine that the optical connection of the optical port without the optical fiber connection or the optical port has been broken when the connection information of the optical port in the current connection relationship information of the optical fiber is empty.
  • the present invention it is determined whether the current connection relationship information of the fiber bundles on the board is the correct fiber connection relationship according to the fiber matching connection relationship information of the board, and is determined in the case of determining the wrong fiber connection relationship.
  • the proposal of an effective fiber-optic matching connection solves the problem of increasing the cost of network construction and maintenance by manually configuring the fiber-optic connection by manual configuration of the fiber connection, and improving system performance and network stability.
  • FIG. 1 is a flow chart showing a method of detecting a fiber optic connection according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a structure of a fiber optic connection detecting system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of each module of the detection system of the preferred embodiment 1 of the present invention
  • FIG. 5 is a flowchart of a single-board output port monitoring module according to a preferred embodiment 1 of the present invention
  • 6 is a flowchart of a single board input port monitoring module according to a preferred embodiment 1 of the present invention
  • FIG. 7 is a flowchart of a board connection information module according to a preferred embodiment 1 of the present invention
  • FIG. 8 is a preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the optical fiber connection inside the network element of the WSON system according to the preferred embodiment 3 of the present invention.
  • 1 is a flow chart of a method for detecting a fiber optic connection according to an embodiment of the present invention.
  • the method includes the following steps: step S 102 to step 4 S S 106.
  • step S102 the board determines whether the connection information of the downstream board and the connection information of the upstream board and the connection information of the board are the current connection relationship information of the reported fiber, and the current connection relationship of the fiber that has not been reported. In the case of the information, the information is reported to the network management system.
  • step S104 the network management system generates the fiber-matching connection relationship information of all the currently installed boards according to the actual installation status of the board, and determines the connection relationship information according to the fiber matching connection relationship. Whether the current connection relationship information of the reported fiber is the correct fiber connection relationship; Step 4 gathers S 106 , in the case of determining the correct fiber connection relationship, the network management system marks the information corresponding to the current connection relationship information of the fiber in the fiber matching connection relationship information, and displays the current connection relationship information of the fiber; otherwise, the network The management system indicates that the current connection relationship information of the optical fiber is an incorrect optical fiber connection relationship, and displays the optimal connection relationship information of the optical fiber.
  • the network management system determines the report according to the fiber-optic matching connection relationship information of the board (ie, the optical fiber connection relationship information of all the optical interfaces). Whether the current connection relationship information of the optical fiber is the correct optical fiber connection relationship, and the optimal optical fiber connection relationship information is given in the case of determining the wrong optical fiber connection relationship, thereby solving the problem that the optical fiber connection is easily mismatched by manually configuring the optical fiber connection in the related art.
  • the problem of less allocation and increased network construction and maintenance costs increases system performance and network stability.
  • the board stores the connection information of the board, and the connection information of the board is periodically sent to the downstream board, and the connection information of the downstream board is received; and the board receives the upstream board. After the connection information is sent, the connection information of the board is sent to the upstream board.
  • the preferred embodiment can automatically obtain the actual optical fiber connection relationship of the optical network, and display the actual fiber connection relationship, thereby eliminating manual manual configuration operations on the network management, saving human resources and reducing system maintenance costs.
  • the network management system stores matching connection relationship information of all the boards and their optical ports.
  • the network management system can generate the fiber matching connection relationship information of all the currently installed boards according to the matching connection relationship information of all the boards and the optical interfaces of the board and the actual installation status of the board, and use the fiber to match the connection relationship.
  • the information is used to determine whether the reported current connection relationship information of the optical fiber is a correct connection relationship, and the implementation is simple and operability is strong.
  • step S104 when the connection information of the optical port in the current connection relationship information of the optical fiber is empty, it is determined that the optical fiber connection of the optical port is not broken or the optical connection of the optical port is broken.
  • the network management system may display the current connection relationship information of the optical fiber and the optimal connection relationship information of the optical fiber to the user interface in the form of a graphic or text data table.
  • the network management system acquires and displays the fiber according to the board type matching principle and/or the optical port type matching principle.
  • the optimal connection relationship information or, according to the principle of the minimum distance of the board and/or the order of the optical port number, sequentially obtain and display the optimal connection relationship information of the optical fiber.
  • FIG. 2 is a block diagram of a fiber optic connection detection system including a veneer processing device 21 and a network management device 22, in accordance with an embodiment of the present invention.
  • the single board processing device 21 includes a determining module 212 and an upper module 214.
  • the network management device 22 includes a generating module 222, a determining module 224, and a processing module 226. This will be explained below.
  • the board processing device 21 includes: a judging module 212, configured to determine whether the connection information of the received downstream board, the connection information of the upstream board, and the connection information of the board are the reported current connection relationship information of the optical fiber; 214, coupled to the determining module 212, configured to: when the determining module determines that the received connection information of the downstream board, the connection information of the upstream board, and the connection information of the board are not the reported current connection relationship information of the optical fiber,
  • the network management device 22 includes: a generating module 222, configured to generate optical fiber matching connection relationship information of all currently installed boards according to actual installation conditions of the board; determining module 224, coupled to the generating module
  • the 222 and the upper 4 ⁇ module 214 are configured to determine whether the current connection relationship information of the upper optical fiber is the correct optical fiber connection relationship according to the fiber matching connection relationship information; the processing
  • the latest optical fiber current connection relationship information is reported by the single-board processing device 21.
  • the network management device 22 determines, by the determining module 224, whether the current connection relationship information of the optical fiber reported by the single-board processing device 21 is determined according to the fiber-optic matching connection relationship information of the board (that is, the optical fiber connection relationship information of all the optical interfaces). For the correct fiber connection relationship, and in the case of determining the wrong fiber connection relationship, the fiber optimal connection relationship information (ie, the proposal of effective fiber matching connection) is given, and the fiber is manually configured in the related art.
  • connection information of the board may be a "connection packet" encapsulated by the attribute information including the optical interface usage information.
  • the single board processing device 21 further includes: a board information module 216, a board output port monitoring module 217, and a board input port monitoring module 218.
  • the board information module 216 is coupled to the board output port monitoring module 217, the board input port monitoring module 218, and the judging module 212, and is configured to store the connection information of the board and send it to the board output port monitoring module 217.
  • the board input port monitoring module 218 and the judging module 212; the board output port monitoring module 217 is coupled to the judging module 212, configured to periodically send the connection information of the board to the downstream board, and receive the downstream board.
  • the information is sent to the judging module 212, and the board input port monitoring module 218 is coupled to the judging module 212, and is configured to send the connection information of the board to the upstream board after receiving the connection information of the upstream board.
  • the timing information of the received upstream board is sent to the judging module 212.
  • the single-board output port monitoring module 217 and the single-board input port monitoring module 218 can automatically acquire the actual optical fiber connection relationship of the optical network, and the network management device 22 displays the actual fiber-optic connection relationship, thereby eliminating the need for the network management.
  • the manual manual configuration operation saves human resources and reduces the maintenance cost of the system.
  • the network management device 22 records the current correct fiber connection relationship, so as to confirm that the current fiber connection relationship is an effective connection, and which optical ports have been used, which is beneficial for making accurate judgments in subsequent operations. Real-time and effective reflection of the real state of the fiber connection, improving system efficiency and ease of use.
  • the board type matching principle and/or the optical port type matching principle are used. (For the matching board, the matching is performed according to the principle of the minimum distance, and the ports that can be matched are in accordance with the principle of the optical port number from small to large. Match) Obtain and display the optimal connection relationship information of the fiber.
  • the determining module 224 is further configured to determine that the optical port of the optical port has no fiber connection or the optical port has been broken when the connection information of the optical port in the current connection relationship information of the optical fiber is empty. Therefore, it is possible to quickly and effectively detect the fact that the fiber is broken, the one end of the single-board port is not easily detected, and the fault location function and efficiency of the system are improved.
  • the network management device 22 further includes: a storage module 228 coupled to the generating module 222, and configured to store matching connection relationship information of all the boards and their optical ports.
  • the network management device 22 can generate the fiber-matched connection relationship information of all the currently installed boards according to the matching connection relationship information of all the boards and the optical interfaces of the board and the actual installation status of the board, and use the fiber matching connection.
  • the relationship information is used to determine whether the reported current connection relationship information of the optical fiber is a correct connection relationship, and the implementation is simple and operability is strong.
  • the processing module 226 can also display the current connection relationship information of the optical fiber and the optimal connection relationship information of the optical fiber to the user interface in the form of a graphic or text data table. Specifically, it is also possible to distinguish the correct current connection relationship information of the optical fiber, the incorrect current connection relationship information of the optical fiber, and the recommended optimal connection relationship information of the optical fiber by using different colors.
  • the detection system of the optical fiber connection (hereinafter simply referred to as the continuous fiber) according to the preferred embodiment 1 of the present invention is to automatically acquire and display the optical connection relationship of the actual physical connection on the network management, and for the misconnection and the less connection The situation gives adviceal information.
  • 4 is a schematic diagram of each module of the detection system according to the preferred embodiment 1 of the present invention. The detection system is as shown in FIG.
  • the board includes: a board information module 216, a board output port monitoring module 217, and a board input port monitoring module. 218.
  • the board is connected to the information module 42 and the network management module 46. That is, after the actual physical board is installed and the fiber is connected, the input port monitoring module 218 and the output port monitoring module 217 of each board are monitored.
  • the "connection packet" information sent by the downstream board is sent to the board connection information module 42 together with the connection information of the board.
  • the board connection information module 42 connects the current fiber of the board.
  • the connection relationship is reported to the network management device 22, and the network management device 22 makes a judgment on the connection relationship according to the network management real-board connection relationship data table formed by the information of the actually installed board.
  • the network management device 22 It is displayed in the form of a graphic or text data table, and a suggestive connection relationship is given for the case of erroneous or less fiber. As shown in FIG. 4, the functions of the modules of the preferred embodiment 1 will be described in detail below.
  • the board information module 216 is used to store some attribute information of the board itself, including: the node ID of the NE to which the board belongs, the board address information, the board type information, and the optical interface attribute information.
  • the ID of the node ID of the NE to which the board belongs is used to mark the node ID of the NE where the board resides.
  • the address information of the board indicates the physical address of the board. You can use the common rack number.
  • Subrack number + slot number the encoding mode of the board
  • the board type information which means the function of the board (for example, amplifying board, service board, etc.)
  • optical interface attribute information indicating the board Attribute information of some optical interfaces, including the number of optical interfaces, the direction information of the optical interface, the serial number information of the optical interface, the wavelength information of the optical interface, the rate information of the optical interface, the usage information of the optical interface, and so on.
  • each part of the optical interface attribute information can be: Number of optical interfaces, indicating the number of input optical interfaces and output optical interfaces of the board; Direction information of the optical interface, indicating whether the optical interface belongs to the input interface or If the input interface has a fiber-optic connection, the board is identified as the downstream board in the fiber connection relationship. If the interface has an optical fiber connection, the board is identified as the upstream board in the fiber connection relationship.
  • the serial number information of the optical interface indicates the number sequence corresponding to each optical interface.
  • the wavelength information of the optical interface indicates the optical interface.
  • FIG. 5 is a flowchart of a board output port monitoring module according to a preferred embodiment 1 of the present invention. As shown in FIG. 5, the module performs the following processing: In step S502, the board output port monitoring module 217 sends the "connection packet" information to the downstream board by using the output optical port of the board (for example, every 3 seconds), where the information contained in the "connection packet" is included. It is the information stored in the board information module 216. The board output port monitoring module 217 modulates the connection packet information onto a fixed carrier and then transmits it through the main optical channel (the actual optical fiber).
  • the input interface monitoring module of the downstream board The 218 encapsulates some attribute information of the downstream board and the optical port of the downstream board into the "connection packet" form of the downstream board and sends it back.
  • Step S504 receiving a "connection packet” returned from the downstream board, and then demodulating and parsing it.
  • the "connection information packet" of the downstream board is sent to the board connection information module 42 together with the relevant connection information packet of the board. Specifically, if there is no fiber connection or broken fiber in the downstream, the response information monitored by the board output port monitoring module 217 is empty, and then the board output port monitoring module 217 also sends this information (the response is not received).
  • FIG. 6 is a flowchart of a board input port monitoring module according to a preferred embodiment 1 of the present invention. As shown in FIG. 6, the board input port monitoring module 218 makes all inputs of the board. The optical port timing (for example, every 3 seconds) monitors, receives, and responds to the "connection packet" sent by the upstream board. The module performs the following processing: Step S602: The board input port monitoring module 218 receives the "connection packet" sent by the upstream board, and demodulates it.
  • step S604 the upstream board responds with a "connection packet" of the board, and modulates the packet onto a fixed carrier, and then sends it out.
  • step S606 the "connection packet" of the upstream board and The board connection information module of the local board is sent to the board connection information module of the board. If all the input ports do not receive the "connection packet,” the board input port monitoring module 218 will also This information (the input port does not receive any "connection packet") is sent to the board connection information module of the board together with the connection information package of the board.
  • Step S702 receives a board input port monitoring module 218 and a board output port monitoring module. 217 "Connection packet" information sent.
  • Step S704 it is determined whether the information in the connection information packet is related information that has been reported to the network management device 22 last time. If yes, the board connection information module does not consider this information and does not report it to the network management device 22.
  • step S706 if the information contained in the packet is inconsistent with the last latest packet information, the latest fiber connection information is reported, and the latest fiber connection information is reported to the network management device 22 to update the network management.
  • the fiber optic connection database and fiber optic connections on device 22 display information.
  • the network management module 46 is a flowchart of the network management module according to the preferred embodiment 1 of the present invention. As shown in FIG. 8, the network management module 46 is a fiber connection reported to the board connection information module 42. The information is judged and checked. For the case of misconnection and less connection, a suggestive connection relationship is given in the case of other upstream and downstream boards and ports, and all the above results are given on the network management device 22. With the corresponding display.
  • the module performs the following processing: Step S801: A network of possible fiber association data of all the boards and all the optical ports thereof is stored in the database of the network management device 22.
  • Step S802 after all the real boards are automatically found on the network management device 22, the network management device 22 generates a new real board including all possible conditions according to the currently installed board type and all optical ports. Fiber connection relationship data table.
  • the network management device 22 receives the latest fiber-connected relationship of the actual board reported by the board connection information module 42.
  • Step S804 determining whether the input/output port of the board has a fiber connection. If the determination is yes, step S805 is performed, otherwise, step S806 is performed.
  • step S805 the connection fiber is searched for in the fiber-optic connection data table of the real-board (that is, whether the board or the port type mismatch exists).
  • the network management device 22 connects the fiber in the real-board fiber connection data table.
  • the corresponding board and optical port number are marked (indicating that the port already has the correct fiber connection information), and the correct connection information is displayed on the interface of the network management device 22 in the form of a graphic or data table.
  • the connection relationship is wrong. After determining that the connection is incorrect, you can find out again if there are other recommended connection ports or boards available in the actual board fiber connection data table.
  • the network management device 22 displays the erroneous connection relationship in the form of a special graph or data table on the interface of the network management device 22 (for example, the line color of the fiber connection is red); if so, the network The management device 22 gives a suggested optimal fiber connection relationship according to certain criteria.
  • a certain criterion can be: The board and the optical port are selected according to the matching of the type of the board and the type of the optical port is matched, that is, the recommended matching of the output optical port of the upstream board is performed first, and then the downstream board is performed. A suggested match for the input optical port. If the board is matched, the board is matched by the principle of the minimum distance. If there are multiple boards of the same type, the board is the same as the upstream board.
  • the lower part is the upstream board.
  • the left side is the upstream board and the right side is the downstream board.
  • the upper left is the upstream board, and the lower right is the downstream board; the upper right is the upstream board, and the lower left is the downstream board.
  • the principle is to select the corresponding matching board. For the case where multiple matching ports occur, follow the optical port number. In the order of the small-to-large sequence, the board and the associated optical port are not marked in the physical connection data table of the actual board. Step S806, when the board connection information is reported to the network.
  • the connection information packet of the management device 22 when only one end of the board has an optical fiber connection, it may be that the board has only one end of the board with the fiber connection, and the other end has no fiber connection.
  • the network management device 22 will also give the guidelines according to the guidelines described above.
  • One end of the fiber connection relationship is a recommended optimal fiber connection relationship, but the board and the associated optical port corresponding to the fiber connection relationship are not marked in the actual board fiber connection data table. For some service boards, It is necessary to further determine whether it is a service board that is only used for the uplink or the downlink.
  • the connection information packet of the network management device 22 When the following board connection information is reported to the connection information packet of the network management device 22, there is a case where there is no fiber connection relationship at both ends of the board (this case) It may be that the actual board has no fiber connection at both ends, or there may be a fiber connection, but the fiber is broken.
  • the network management tube does not consider these boards.
  • the preferred embodiment can not only automatically discover The actual fiber connection relationship eliminates the need to manually configure the fiber connection on the network management device 22, and for the actual misconnection and single
  • the check and warning information is also given, and the proposed fiber connection relationship is given, especially for the actual undetectable situation such as fiber break, which provides a good discovery and positioning function.
  • the preferred embodiment 2 is applied to the inside of the optical network.
  • the actual fiber connection relationship can be automatically found and the related content is prompted.
  • the detection flow of the optical fiber connection of the preferred embodiment 2 will be described in detail below.
  • the network management device 22 automatically discovers all the information of the real board, it and the possible connection data table of all the optical ports of all the boards existing on the network management device 22 are "intersection" to generate a solid-state board fiber connection relationship. data sheet.
  • the board input port monitoring module 218 and the output port monitoring module 217 respectively monitor and transmit corresponding "connection packet" information.
  • the board output port monitoring module 217 periodically (or periodically) sends the "connection packet” information about the attributes of the board and the actual connection status of the current board to the downstream board, and receives the response from the downstream board. After the "connection packet” is sent, the "connection packet” information of the response is sent to the board connection information module together with the "connection packet” of the board; the board input port monitoring module 218 periodically (or periodically) monitors And receiving the "connection packet” information sent by the upstream board, and responding to a "connection packet” information about the response information of the board, and also the "connection packet” information of the upstream board together with the board. The information about the connection information is reported to the board connection information module of the board.
  • the board connection information module 42 determines the board shown in the "connection packet" after receiving the "connection packet" information sent by the board input port monitoring module 218 and the board output port monitoring module 217. Whether the fiber connection relationship is the latest fiber connection relationship that has been reported to the network management device 22 last time. If yes, the network management device 22 is not reported (ie, the board connection information module does not consider this information); if not, the latest fiber connection relationship is reported to the network management device 22. When the network management module 46 receives the latest connection information reported by the board connection information module 42, the network management device 22 stores the possible connection data of all the boards and all optical ports of the network management device 22 in the database.
  • the various conditions of the single-board fiber connection are judged, corresponding to the correct fiber connection relationship, and the network management module 46 displays it on the interface of the network management device 22.
  • the board and the port corresponding to the connection information are marked in the real-board optical fiber connection relationship data table.
  • the network management device 22 gives a special display on the interface, and in the case where there are other available ports and boards, a suggestive optical fiber connection relationship is given.
  • the preferred embodiment not only saves a lot of human resources, but also improves the efficiency of the system and reduces the cost of system maintenance.
  • the intelligent switched optical network is connected by soft permanent (Soft).
  • FIG. 9 is a wavelength-switched optical network (Wavelength) according to a preferred embodiment 3 of the present invention.
  • Switched Optical Network is a schematic diagram of the fiber connection inside the system network element.
  • the network management device 22 can automatically discover the actual fiber connection relationship and the wrong fiber connection.
  • the relationship is related to the case where only one end has a fiber connection relationship, the corresponding prompt information is given, and a suggestive connection relationship is given.
  • the optical fiber connection between the OUT1 port of the board 1 and the IN2 port of the power distribution board 4 is correct.
  • the OUT1 port of the board 2 and the OUT8 port of the power distribution board 4 are amplified.
  • the connection relationship is incorrect.
  • the OUT1 port of the wavelength selection board 6 and the IN1 port of the amplification board 3 have no fiber connection.
  • the network management device 22 database has a list of all possible fiber data relationships of all the boards and their optical ports. After all the real board information is automatically found, the network management device 22 generates a new real-board optical fiber connection relationship data table according to the currently installed board type and all optical ports.
  • the board information module of each board generates the attribute information of the board and the optical port usage of the board, which is the information in the "connection packet" sent by the board. For example, the information in the board information module on the card 1 in slot 0-1-10 is as follows. Other boards are similar.
  • optical ports (IN1 port, IN2 port, OUT1 port, OUT2 port)
  • the IN1 port and the IN2 port of the optical interface are input ports, and the OUT1 port and OUT2 port are light transmission information outlets.
  • Optical multiplex section signal does not correspond to a specific wavelength
  • Optical multiplex section signal does not correspond to a specific rate
  • the IN1 port and the OUT1 port are in use (the fiber connection is detected), the IN2 usage and the OUT2 port are not in use, and the board output port monitoring module in the board modulates the board information of the board.
  • the board output port monitoring module in the board modulates the board information of the board.
  • the modulated information can be sent out through the actual optical fiber.
  • the upstream board After the upstream board sends out the fiber connection relationship of the board at the timing (for example, every 3 seconds), it will receive a response "connection packet" under normal conditions.
  • All the input optical ports monitor and receive the "connection packet" sent by the upstream board, and in the case of a normal fiber connection, respond to a "connection packet" containing information about the board.
  • the board output port detecting module 217 of the board 1 modulates the information about the board (as described above) onto a fixed carrier, and then passes through all the output ports of the board to the OUT1 port. And the OUT2 port is sent out. For the OUT1 port, the modulated information can be transmitted to the IN2 port of the peer power distribution board 4 due to the actual fiber connection.
  • the OUT1 port receives a "connection packet" from the IN2 port of the downstream board power distribution board 4.
  • the information packet contains some attribute information of the current power distribution board 4 and the usage of the input optical port.
  • the IN2 port is currently connected to the OUT1 port of the amplifier board 1.
  • the input optical ports IN1, IN3, and IN4 have no fiber connection, and are idle. ⁇ )
  • the IN1 port receives the "connection packet" information sent by the upstream board, and the order will be The information about the board is modulated and transmitted to a fixed carrier, that is, it responds to the "connection packet" information of the board.
  • the IN2 port does not listen to the "connection packet" information because there is no fiber connection. Then, zoom in.
  • the board information module 216 and the board input port monitoring module 218 and the board output port monitoring module 217 of the board 1 report the current attributes of the current board to the board connection information module 42 at a timing (for example, every 4 seconds).
  • the board connection information module 42 first determines whether the received connection information packet information is last reported to the network management device 22, and if so, reports, otherwise, Will not be reported. Since the connection information is reported for the first time, the above packet information is reported to the network management device 22.
  • connection packet received by the OUT1 port is sent by the OUT8 port of the power distribution board 4, and the connection information contained in the packet is the OUT1 port of the board 2 and the board.
  • the OUT8 port of the power distribution board 4 is connected.
  • the board information module 216 of the power distribution board 4 will contain all the current information of the board.
  • the output port information detecting module 217 of the power distribution board 4 modulates the information in the board information module 216 to A fixed carrier is sent up and then sent out through all the output optical ports (for example, the output optical port is OUT1 OUT8). Since only the OUT1 and OUT8 ports have fiber connection, the "connection packet" sent by these optical ports is sent.
  • the message is sent to the board and port connected to it, and the "Connection Packet" message is received.
  • the input port of the power distribution board 4 only listens to the "connection packet" information on the IN2 port, and the INI, IN3, and IN4 ports do not receive the connection packet, indicating that it is free and available without a fiber connection.
  • the board information module 216, the board input port detecting module 218, and the output port information detecting module 217 of the power distribution board 4 are respectively connected to the board of the information module 42 at a timing (for example, every 4 seconds). Information about the connection information between the local board and the upstream and downstream boards.
  • the board connection information module 42 first determines whether the received connection packet information is newly reported to the network management device 22 last time, and if it is, reports it, otherwise, it does not report. Since the connection information is reported for the first time, the board connection information module 42 reports the above packet information, which includes all the fiber connection relationships.
  • the wavelength selection board 6 also performs the process as described above.
  • the fiber connection relationship information is that the wavelength selection board 6 has only the fiber port connection relationship of the input port IN1 port, and the output port has no fiber connection relationship.
  • the network management device 22 After receiving the board attribute information and the fiber connection relationship information, the network management device 22 first compares the information with the information in the real-board optical fiber connection relationship data table, and finds the OUT1 port and power allocation of the amplified board 1.
  • the fiber connected to the IN2 port of the board 4 is connected, and the information such as the type of the board, the type of the optical port, and the information rate are matched, and exists in the data sheet of the solid-state board fiber connection relationship. Therefore, the network management device 22 determines that the optical fiber connection relationship is correct, and displays it in the form of a normal graphic or text data table on the interface of the network management device 22, and marks the board and the optical port corresponding to the optical fiber connection (indicating The OUT1 port of the amplifier board 1 and the IN2 port of the power distribution board 4 have a fiber connection relationship. These two ports are no longer available.
  • the network management device 22 finds that the board type matches, but the port type does not match, and the optical board connection relationship data table in the real board There is no such fiber connection relationship. Therefore, the network management device 22 gives a special display when displayed on its interface (for example, the displayed line color is red). Then, the network management device 22 performs the recommended fiber-optic connection matching according to the principle of the upstream board and the downstream board, so the first step is to zoom in.
  • the board 2 starts, and then according to the board type matching, the optical port type matching, the information rate matching, the minimum distance criterion (under the equidistant condition, according to the criteria described in the network management device 22 database) Look for the matching board and the available optical port.
  • the nearest matching board is the power distribution board 4, and the board has a port that matches the OUT1 port of the amplifier board 2. IN1 port, IN3 Mouth, IN4 mouth. For the case where there are multiple matching ports of the same type, the serial number of the ports is matched in order from small to large.
  • the network management device 22 matches the OUT1 port of the amplifying board 2 with the IN1 port of the power distribution board 4, and gives a suggestive fiber connection relationship, that is, amplifies the OUT1 port of the board 2 and the power distribution sheet.
  • the IN1 port of board 1 is connected.
  • the network management device 22 does not identify the board and the optical port corresponding to the proposed fiber connection relationship in the real-board fiber connection relationship data table.
  • the OUT1 port of the board in the reported connection packet has no fiber connection relationship, and then the network management device 22 performs the board type matching, the optical port type matching, the information rate matching, and the minimum distance criterion.
  • the network management device 22 connects the OUT1 port of the wavelength selection board 6 to the IN1 port of the amplification board 3, and displays it on the interface of the network management device 22 in a special graphic or text data table (for example, The color of the fiber connection is blue, etc.).
  • the preferred embodiment has automatically found out the actual fiber connection relationship, and analyzed, judged, and processed the correct, erroneous, and all cases in which only one end of the board has a fiber connection relationship.
  • the actual single-board fiber connection information is updated in real time to update the latest fiber connection relationship.
  • the network management device 22 gives a message prompt (for example, the automatic discovery of the error fiber is given a red display), and gives a suggestion if there are other available boards or ports.
  • the fiber connection relationship (for example, giving a blue display); for a board with only one end connection (for example, the upstream or downstream end, that is, the connection between the input port and the output port), there are also boards on it and other boards.
  • the embodiment can warn some fiber connection conditions that are not easily monitored by humans (for example, the occurrence of fiber breakage, etc.), and it is easy to detect and correct the fiber connection of the system, and can provide system intelligence. Sex, reduce the cost of human resources and system use and maintenance.
  • the embodiment of the present invention provides a method for detecting the optical fiber connection of the optical network, which is in the related art, and provides a physical fiber connection connection at the node. In the future, these connection letters can be automatically obtained on the network management device 22. This section describes how to check the actual fiber's misconnection, break, or the fact that the board has only one end connection.
  • the embodiment of the present invention is an important embodiment of the intelligentization of the optical network, and is also an important process for realizing the evolution of the SPC service of the optical network to the final SC service.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光纤连接的检测方法和系统,该方法包括以下步骤:单板判断接收到的下游单板的连接信息、上游单板的连接信息和本单板的连接信息是否为已上报的光纤当前连接关系信息,在不是已上报的光纤当前连接关系信息的情况下,将其上报给网络管理系统;网络管理系统根据单板实际的安装情况生成当前所有实际安装的单板的光纤匹配连接关系信息,并根据光纤匹配连接关系信息确定上报的光纤当前连接关系信息是否为正确的光纤连接关系;在确定为正确的光纤连接关系的情况下,显示光纤当前连接关系信息,否则,提示光纤当前连接关系信息为错误的光纤连接关系,并显示光纤最优连接关系信息。通过本发明提高了系统性能和网络的稳定性。

Description

光纤连接的检测方法和系统 技术领域 本发明涉及通信领域, 尤其涉及一种光纤连接的检测方法和系统。 背景技术 随着光通信技术的发展, 人们对光网络智能化的要求也越来越高。 国际 电信联盟于 2000年 3月提出了智能交换光网络技术, 其基本设想是在光传 送网中引入控制平面, 以实现网络资源的按需分配, 从而实现光网络的智能 化。 目前, 光传送网络管理系统已由传统的网元级网络管理系统 ( Element Management System,简称为 EMS ) 向网络级网络管理系统 ( Network
Management System, 简称为 NMS ) 进行演进。 网络级网管系统可以实现的 功能包括: 全网故障分析和故障定位、 全网性能综合分析、 从业务运营和网 络管理的层次为用户提供业务基于波长或通道的端到端配置和管理等。 而实 现上述功能都是建立在事先获取网络节点内部光纤连接的基础之上的。 在相关技术中, 网络内部光纤连接关系的获取大部分还是通过人工在网 管上一条一条地进行配置的。 但是, 通过网管手工配置光纤连接容易配错或 少配,特别是在网络维数大、 相同单板数量比较多、 端口数比较多的情况下, 出错的机率更大, 并且由于在网元比较多的情况下工作量比较大, 很难检查 出光纤连接关系配置出错的情况。 例如, 一个单点的四维可重构光分插复用 器 ( Reconfigurable Optical Add Drop Multiplexer, 简称为 ROADM ) 网元, 其内部光纤连接就有将近 70条左右, 如果网元增加至几十个或者更多个时, 仅靠人工在成百上千、 甚至更多条光纤连接中查找少量配错或少配的光纤连 接, 其工作量是非常巨大和繁瑣的。 并且, 通过网管手工配置也不易与实际 的光纤连接保持一致性、 不能自动同步更新,加大了网络建设和维护的费用。 发明内容 本发明的主要目的在于提供一种光纤连接的检测方案, 以至少解决上述 问题之一。 为了实现上述目的, 根据本发明的一个方面, 提供了一种光纤连接的检 测方法。 根据本发明的光纤连接的检测方法包括以下步骤: 单板判断接收到的下 游单板的连接信息、 上游单板的连接信息和本单板的连接信息是否为已上报 的光纤当前连接关系信息,在不是已上报的光纤当前连接关系信息的情况下, 将其上报给网络管理系统; 网络管理系统根据单板实际的安装情况生成当前 所有实际安装的单板的光纤匹配连接关系信息, 并根据光纤匹配连接关系信 息确定上报的光纤当前连接关系信息是否为正确的光纤连接关系; 在确定为 正确的光纤连接关系的情况下, 网络管理系统标记在光纤匹配连接关系信息 中与光纤当前连接关系信息对应的信息, 并显示光纤当前连接关系信息; 否 则, 网络管理系统提示光纤当前连接关系信息为错误的光纤连接关系, 并显 示光纤最优连接关系信息。 优选地, 单板判断接收到的下游单板的连接信息、 上游单板的连接信息 和本单板的连接信息是否为已上报的光纤当前连接关系信息之前, 该方法还 包括: 单板存储本单板的连接信息, 将本单板的连接信息定时发送给下游单 板, 并接收下游单板的连接信息; 以及单板在接收上游单板的连接信息之后 将本单板的连接信息发送给上游单板。 优选地, 才艮据光纤匹配连接关系信息确定上 4艮的光纤当前连接关系信息 是否为正确的光纤连接关系包括: 在光纤当前连接关系信息中的光口的连接 信息为空时, 确定光口没有光纤连接或光口的光纤连接已断裂。 优选地, 网络管理系统根据单板实际的安装情况生成当前所有实际安装 的单板的光纤匹配连接关系信息之前, 该方法还包括: 网络管理系统存储所 有单板及其光口的匹配连接关系信息。 优选地, 网络管理系统显示光纤最优连接关系信息包括: 根据单板类型 匹配原则和 /或光口类型匹配原则获取并显示光纤最优连接关系信息。 优选地, 网络管理系统显示光纤最优连接关系信息包括: 根据单板最小 距离原则和 /或光口号顺序原则依次获取并显示光纤最优连接关系信息。 优选地, 网络管理系统根据光纤匹配连接关系信息确定上报的光纤当前 连接关系信息是否为正确的光纤连接关系之后, 该方法还包括: 网络管理系 统将光纤当前连接关系信息与光纤最优连接关系信息以图形化或文本数据表 的形式显示到用户界面。 为了实现上述目的, 根据本发明的另一方面, 还提供了一种光纤连接的 检测系统。 根据本发明的一种光纤连接的检测系统, 包括单板处理装置和网络管理 装置, 其中, 单板处理装置包括: 判断模块, 设置为判断接收到的下游单板 的连接信息、 上游单板的连接信息和本单板的连接信息是否为已上报的光纤 当前连接关系信息; 上报模块, 设置为在判断模块确定接收到的下游单板的 连接信息、 上游单板的连接信息和本单板的连接信息不是已上报的光纤当前 连接关系信息的情况下, 将其上报给网络管理装置; 网络管理装置包括: 生成模块, 设置为根据单板实际的安装情况生成当 前所有实际安装的单板的光纤匹配连接关系信息; 确定模块, 设置为根据光 纤匹配连接关系信息确定上报的光纤当前连接关系信息是否为正确的光纤连 接关系; 处理模块,设置为在确定模块确定为正确的光纤连接关系的情况下, 标记在光纤匹配连接关系信息中与光纤当前连接关系信息对应的信息; 在确 定模块确定为错误的光纤连接关系的情况下, 提示光纤当前连接关系信息为 错误的光纤连接关系, 并显示光纤最优连接关系信息。 优选地, 单板处理装置还包括: 单板信息模块, 设置为存储本单板的连 接信息, 并将其发送给单板输出口监测模块、 单板输入口监测模块和判断模 块; 单板输出口监测模块,设置为将本单板的连接信息定时发送给下游单板, 以及在接收下游单板的连接信息后将其定时发送到判断模块; 以及单板输入 口监测模块, 设置为在接收上游单板的连接信息之后将本单板的连接信息发 送给上游单板, 并将接收到的上游单板的连接信息定时发送到判断模块。 优选地, 确定模块还设置为在光纤当前连接关系信息中的光口的连接信 息为空时, 确定光口没有光纤连接或光口的光纤连接已断裂。 通过本发明, 釆用才艮据单板的光纤匹配连接关系信息确定单板上 4艮的光 纤当前连接关系信息是否为正确的光纤连接关系, 并且在确定为错误的光纤 连接关系的情况下给出有效的光纤匹配连接的建议, 解决了在相关技术中通 过手工配置光纤连接容易配错、 少配而导致网络建设和维护的费用增加的问 题, 提高了系统性能和网络的稳定性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据本发明实施例的光纤连接的检测方法的流程图; 图 2是根据本发明实施例的光纤连接的检测系统的结构框图; 图 3是根据本发明优选实施例的光纤连接的检测系统的结构框图; 图 4是 居本发明优选实施例 1的检测系统的各模块的示意图; 图 5是根据本发明优选实施例 1的单板输出口监测模块的流程图; 图 6是根据本发明优选实施例 1的单板输入口监测模块的流程图; 图 7是根据本发明优选实施例 1的单板连接信息模块的流程图; 图 8是 居本发明优选实施例 1的网管处理模块的流程图; 图 9是才艮据本发明优选实施例 3的 WSON系统网元内部的光纤连接示意 图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的光纤连接的检测方法的流程图,如图 1所示, 该方法包括如下的步 4聚 S 102至步 4聚 S 106。 步骤 S 102,单板判断接收到的下游单板的连接信息和上游单板的连接信 息以及本单板的连接信息是否为已上报的光纤当前连接关系信息, 在不是已 上报的光纤当前连接关系信息的情况下, 将其上报给网络管理系统; 步骤 S 104, 网络管理系统根据单板实际的安装情况生成当前所有实际安 装的单板的光纤匹配连接关系信息, 并根据光纤匹配连接关系信息确定上报 的光纤当前连接关系信息是否为正确的光纤连接关系; 步 4聚 S 106 , 在确定为正确的光纤连接关系的情况下, 网络管理系统标记 在光纤匹配连接关系信息中与光纤当前连接关系信息对应的信息, 并显示光 纤当前连接关系信息; 否则, 网络管理系统提示光纤当前连接关系信息为错 误的光纤连接关系, 并显示光纤最优连接关系信息。 本实施例中,通过将最新的光纤当前连接关系信息上报给网络管理系统, 网络管理系统根据实际安装的单板的光纤匹配连接关系信息 (即, 所有光口 可能的光纤连接关系信息) 确定上报的光纤当前连接关系信息是否为正确的 光纤连接关系, 并且在确定为错误的光纤连接关系的情况下给出光纤最优连 接关系信息, 解决了在相关技术中通过手工配置光纤连接容易配错、 少配而 导致网络建设和维护的费用增加的问题, 提高了系统性能和网络的稳定性。 优选地, 在步骤 S 102之前, 单板存储本单板的连接信息, 将本单板的 连接信息定时发送给下游单板, 并接收下游单板的连接信息; 以及单板在接 收上游单板的连接信息之后将本单板的连接信息发送给上游单板。 本优选实施例可以自动获取光网络的内部实际的光纤连接关系, 显示实 际的光纤连接关系, 从而省去了在网管上人工地手动配置操作, 节约了人力 资源, 降低了系统的维护成本。 优选地, 在步骤 S 104之前, 网络管理系统存储所有单板及其光口的匹 配连接关系信息。 这样, 使得网络管理系统可以根据存储的所有单板及其光 口的匹配连接关系信息、 单板实际的安装情况生成当前所有实际安装的单板 的光纤匹配连接关系信息, 利用该光纤匹配连接关系信息来判断上报的光纤 当前连接关系信息是否为正确的连接关系, 实现简单、 可操作性强。 优选地, 在步骤 S 104中, 在光纤当前连接关系信息中的光口的连接信 息为空时, 确定光口没有光纤连接或光口的光纤连接已断裂。 可以通过该方 法快速、有效地检测出光纤断裂、单板端口一端少连等实际不易察觉的情况, 提高了系统的故障定位功能和效率。 优选地, 在步 4聚 S 104之后, 网络管理系统可以将光纤当前连接关系信 息与光纤最优连接关系信息以图形化或文本数据表的形式显示到用户界面。 优选地, 在步骤 S 106中, 在确定为错误的光纤连接关系的情况下, 网 络管理系统才艮据单板类型匹配原则和 /或光口类型匹配原则获取并显示光纤 最优连接关系信息; 或者, 根据单板最小距离原则和 /或光口号顺序原则依次 获取并显示光纤最优连接关系信息。 本优选实施例明确了在检测出错误的光纤连接关系的情况下, 网络管理 系统可以根据某种原则从光纤匹配连接关系信息中获取与该错误的光纤连接 关系相关的单板的光纤最优连接关系信息, 给出了维护人员有效的建议性的 单板连接关系, 有利于系统对光纤连接进行纠错, 降低了网络维护的费用。 对应于上述的实施例, 本发明提供了一种光纤连接的检测系统, 图 2是 根据本发明实施例的光纤连接的检测系统的结构框图, 该系统包括单板处理 装置 21和网络管理装置 22 ,单板处理装置 21包括判断模块 212和上 4艮模块 214 , 网络管理装置 22包括生成模块 222、 确定模块 224和处理模块 226。 下面对此进行说明。 单板处理装置 21包括: 判断模块 212 , 设置为判断接收到的下游单板的 连接信息、 上游单板的连接信息和本单板的连接信息是否为已上报的光纤当 前连接关系信息; 上报模块 214 , 耦合至判断模块 212 , 设置为在判断模块 确定接收到的下游单板的连接信息、 上游单板的连接信息和本单板的连接信 息不是已上报的光纤当前连接关系信息的情况下,将其上报给网络管理装置; 网络管理装置 22包括: 生成模块 222 , 设置为根据单板实际的安装情况 生成当前所有实际安装的单板的光纤匹配连接关系信息; 确定模块 224 , 耦 合至生成模块 222和上 4艮模块 214 , 设置为才艮据光纤匹配连接关系信息确定 上 4艮的光纤当前连接关系信息是否为正确的光纤连接关系; 处理模块 226 , 合至确定模块 224 , 设置为在确定模块 224确定为正确的光纤连接关系的 情况下, 标记在光纤匹配连接关系信息中与光纤当前连接关系信息对应的信 息; 在确定模块 224确定为错误的光纤连接关系的情况下, 提示光纤当前连 接关系信息为错误的光纤连接关系, 并显示光纤最优连接关系信息。 相关技术中, 使用人工在成百上千、 甚至更多条光纤连接中查找少量配 错或少配的光纤连接, 而本实施例中通过单板处理装置 21将最新的光纤当 前连接关系信息上报给网络管理装置 22 ,再由确定模块 224根据实际安装的 单板的光纤匹配连接关系信息 (即, 所有光口可能的光纤连接关系信息) 确 定单板处理装置 21上报的光纤当前连接关系信息是否为正确的光纤连接关 系, 并且在确定为错误的光纤连接关系的情况下给出光纤最优连接关系信息 (即,有效的光纤匹配连接的建议),解决了在相关技术中通过手工配置光纤 连接容易配错、 少配而导致网络建设和维护的费用增加的问题, 提高了系统 性能和网络的稳定性。 另外, 本优选实施例明确了在检测出错误的光纤连接关系的情况下, 网 络管理装置 22可以根据上述原则从光纤匹配连接关系信息中获取与该错误 的光纤连接关系相关的单板的光纤最优连接关系信息, 给出了维护人员有效 的建议性的单板连接关系, 有利于系统对光纤连接进行纠错, 降低了网络维 护的费用。 需要说明的是, 上述单板的连接信息, 可以是包括光接口使用信息的属 性信息封装成的 "连接信息包"。 图 3是根据本发明优选实施例的光纤连接的检测系统的结构框图。 优选地, 单板处理装置 21还包括: 单板信息模块 216、 单板输出口监测 模块 217和单板输入口监测模块 218。 单板信息模块 216 , 耦合至单板输出口监测模块 217、 单板输入口监测 模块 218和判断模块 212 , 设置为存储本单板的连接信息, 并将其发送给单 板输出口监测模块 217、 单板输入口监测模块 218和判断模块 212 ; 单板输 出口监测模块 217 , 耦合至判断模块 212 , 设置为将本单板的连接信息定时 发送给下游单板, 以及在接收下游单板的连接信息后将其定时发送到判断模 块 212 ; 以及单板输入口监测模块 218 , 耦合至判断模块 212 , 设置为在接收 上游单板的连接信息之后将本单板的连接信息发送给上游单板, 并将接收到 的上游单板的连接信息定时发送到判断模块 212。 本优选实施例通过单板输出口监测模块 217和单板输入口监测模块 218 可以自动获取光网络的内部实际的光纤连接关系, 网络管理装置 22显示实 际的光纤连接关系, 从而省去了在网管上人工地手动配置操作, 节约了人力 资源, 降低了系统的维护成本。 本优选实施例网络管理装置 22对当前正确的光纤连接关系故记录, 以 便于确认当前的光纤连接关系为有效连接, 以及哪些光口已经使用, 有利于 在后续的操作过程中做出准确的判断, 实时有效地反映了光纤连接的真实状 态, 提高了系统效率和易用性。 优选地, 才艮据单板类型匹配原则和 /或光口类型匹配原则 (其中, 对于可 以匹配的单板按照最小距离原则进行匹配, 对于可以匹配的端口按照光口号 由小到大顺序原则依次匹配) 获取并显示光纤最优连接关系信息。 优选地, 确定模块 224还设置为在光纤当前连接关系信息中的光口的连 接信息为空时, 确定光口没有光纤连接或光口的光纤连接已断裂。 从而可以 快速、 有效地检测出光纤断裂、 单板端口一端少连等实际不易察觉的情况, 提高了系统的故障定位功能和效率。 优选地, 网络管理装置 22还包括: 存储模块 228 , 耦合至生成模块 222 , 可以设置为存储所有单板及其光口的匹配连接关系信息。 这样, 使得网络管 理装置 22可以根据存储的所有单板及其光口的匹配连接关系信息、 单板实 际的安装情况生成当前所有实际安装的单板的光纤匹配连接关系信息, 利用 该光纤匹配连接关系信息来判断上报的光纤当前连接关系信息是否为正确的 连接关系, 实现简单、 可操作性强。 另外, 处理模块 226还可以将光纤当前连接关系信息与光纤最优连接关 系信息以图形化或文本数据表的形式显示到用户界面。 具体地, 也可以通过 用不同的颜色来区分正确的光纤当前连接关系信息、 错误的光纤当前连接关 系信息以及建议的光纤最优连接关系信息。 从而使得检测结果更加直观化, 有利于维护人员的实际操作, 提高了用户体验。 下面继续描述本发明的多个优选实施例, 这些优选实施例综合釆用了上 述多个实施例的技术方案。 优选实施例 1 才艮据本发明优选实施例 1的光纤连接 (在下文中简称为连纤) 的检测系 统是通过在网管上自动获取和显示实际物理连接的光纤关系, 并且对于错连 和少连的情况给予建议性的提示信息。 图 4是根据本发明优选实施例 1的检 测系统的各模块的示意图,该检测系统如图 4所示,包括:单板信息模块 216、 单板输出口监测模块 217、 单板输入口监测模块 218、 单板连接信息模块 42 和网管处理模块 46 , 即, 在实际的物理单板安装完毕以及光纤连接好之后, 每个单板内部的输入口监测模块 218和输出口监测模块 217都会监听上下游 单板所发送过来的"连接信息包"信息, 然后将此信息和本单板的连接信息一 起发送给单板连接信息模块 42; 单板连接信息模块 42将本单板现在的光纤 连接关系上报给网络管理装置 22 , 由网络管理装置 22根据实际安装单板的 信息所构成的网管实安板连接关系数据表对此连接关系做一判断, 对于正确 的连接关系, 网络管理装置 22上以图形或文本数据表的形式显示出来, 对 于错误连纤或少连纤的情况, 则给予一个建议性的连接关系。 如图 4所示, 下面对本优选实施例 1的各模块的功能做详细说明。
( 1 ) 单板信息模块 216 主要作用是存储单板自身的一些属性信息, 包括: 单板所属网元的节点 标识 ID, 单板地址信息, 单板类型信息, 光接口属性信息等。 其中, 单板所 属的网元的节点表识 ID, 主要用于标记单板所在网元的节点标识; 单板地址 信息, 即表示该单板的物理地址, 可以釆用常用的"机架号 +子架号 +槽位号,, 的编码方式; 单板类型信息, 即表示该单板的功能作用 (例如, 放大类单板、 业务类单板等);光接口属性信息,表示单板所包含的一些光接口的属性信息, 包括光接口的数目信息、 光接口的方向信息、 光接口的序号信息、 光接口的 波长信息、 光接口的速率信息、 光接口的使用信息等。 具体地, 光接口属性 信息中各部分所表示的含义可以是: 光接口的数目信息, 表示单板的输入光 接口和输出光接口的数量; 光接口的方向信息, 表示所属的光接口是输入接 口还是输出接口, 如果是输入接口有光纤连接关系, 则在此光纤连接关系中 标识该单板为下游单板, 如果是输出接口有光纤连接关系, 则在此光纤连接 关系中标识该单板为上游单板; 光接口的序号信息, 表示每个光接口所对应 的编号序列; 光接口的波长信息, 表示该光接口所对应的波长通道信息; 光 接口的速率信息, 表示该光接口所对应的承载速率是多少; 光接口的使用信 息, 表示目前该单板的输入接口和输出接口有哪些已经有光纤连接, 还有哪 些端口剩余可用。 可见, 本模块将单板自身的一些属性信息, 分别发给单板输入口监测模 块 218和单板输出口监测模块 217, 由它们将这些信息封装成"连接信息包" 发给上游或下游的具有连接关系的单板, 同时也将这些信息发送给本单板的 单板连接信息模块 42 , 提供光纤连接关系中本端所需的相关信息。
( 2 ) 单板输出口监测模块 217 图 5是根据本发明优选实施例 1的单板输出口监测模块的流程图, 如图 5所示, 该模块执行以下处理: 步骤 S502,单板输出口监测模块 217使单板的所用输出光口定时(例如, 每隔 3秒) 向下游单板发送"连接信息包"信息, 其中, "连接信息包"所包含 的信息就是单板信息模块 216中所存储的信息。 单板输出口监测模块 217将 连接信息包信息调制到一个固定的载波上面, 然后通过主光通道 (实际的光 纤) 发送出去, 如果下游有实际的光纤连接, 则下游单板的输入口监测模块 218会将下游单板的一些属性信息和下游单板此时的输入口光口情况等封装 成下游单板的"连接信息包"形式, 发送回来。 步骤 S504, 接收到下游单板的返回来的 "连接信息包", 然后将其解调并 解析出来。 步骤 S506, 将接收到下游单板的 "连接信息包 "同本单板的有关连接信息 包一起发给单板连接信息模块 42。 特殊地, 如果下游没有光纤连接或为断裂 的光纤, 则单板输出口监测模块 217监听到的响应信息为空, 然后单板输出 口监测模块 217也将此信息 (没有收到响应的 "连接信息包") 会同本单板的 有关连接信息包一起发送给本单板的单板连接信息模块 42。 ( 3 ) 单板输入口监测模块 218 图 6是根据本发明优选实施例 1的单板输入口监测模块的流程图, 如图 6所示, 单板输入口监测模块 218使单板的所有输入光口定时 (例如, 每隔 3秒)监听、 接收和响应上游单板所发送的"连接信息包"。 该模块执行以下 处理: 步骤 S602, 单板输入口监测模块 218接收到了上游单板所发送的"连接 信息包", 则将其解调下来。 步骤 S604, 给上游单板回应一个本单板的"连接信息包,,, 将此信息包调 制到一个固定的载波上面, 然后发送出去。 步骤 S606, 将上游单板的 "连接信息包 "和本地单板的有关连接信息包情 况一起发送给本单板的单板连接信息模块。 如果没有所有的输入光口都没有 收到"连接信息包,,, 则单板输入口监测模块 218也将此信息 (输入光口没有 收到任何"连接信息包") 连同本单板的有关连接信息包一起发送给本单板的 单板连接信息模块。
( 4 ) 单板连接信息模块 42 图 7是根据本发明优选实施例 1的单板连接信息模块的流程图, 如图 7 所示, 该模块执行以下处理: 步骤 S702,接收单板输入口监测模块 218和单板输出口监测模块 217所 发送过来的 "连接信息包"信息。 步骤 S704,判断连接信息包中的信息是否是上次已经上报给网络管理装 置 22的有关信息。 如果是则单板连接信息模块对此信息不予考虑, 不上报 给网络管理装置 22。 步骤 S706,如果信息包中包含的信息与上次最新上 ·ί艮的信息包信息不一 致, 则说明有最新的光纤连接信息, 将此最新的光纤连接信息上报给网络管 理装置 22 , 更新网络管理装置 22上的光纤连接数据库和光纤连接显示信息。
( 5 ) 网管处理模块 46 图 8是才艮据本发明优选实施例 1的网管处理模块的流程图,如图 8所示, 网管处理模块 46是对单板连接信息模块 42上报上来的光纤连接信息进行判 断、 检验, 对于错连和少连的情况, 在还有其它上下游单板和端口的情况下 给予一个建议性的连接关系, 并将上述的所有结果在网络管理装置 22上都 给以相应的显示。 该模块执行以下处理: 步骤 S801 , 在网络管理装置 22数据库中存储有一张所有单板及其所有 光口的可能连纤关系数据表。 步骤 S802, 在网络管理装置 22上自动发现所有的实安板后, 才艮据目前 实际安装的单板类型及其所有光口, 网络管理装置 22生成一个新的包括所 有可能情况的实安板光纤连接关系数据表。 步骤 S803 , 网络管理装置 22收到单板连接信息模块 42上报的实际单板 最新的连纤关系。 步骤 S804, 判断单板输入口 /输出口是否都有光纤连接。 如果判断为是, 执行步骤 S805 , 否则, 执行步骤 S806。 步骤 S805 , 在实安板光纤连接数据表中查找此连接光纤, (即, 判断是 否存在单板或端口类型不匹配现象)。 当查找到有此光纤连接可能时(即, 判 断结果为否), 网络管理装置 22就在实安板光纤连接数据表中将此条光纤连 接的对应单板和光口号故以标记 (表示该端口已经有正确的光纤连接信息), 并将此正确的连接信息在网络管理装置 22的界面上以图形或数据表格的形 式显示出来。 当在实安板光纤连接数据表中未能找到有此光纤连接可能时 (即, 判断结果为是), 说明此连接关系是错误的。 在确定此连接关系是错误的之后, 可以在实安板光纤连接数据表中再次 查找是否还有其他可用的建议性连接端口或单板。 如果没有, 则网络管理装 置 22将此错误的连接关系在网络管理装置 22的界面上以特殊的图形或数据 表格的形式显示出来(例如, 光纤连接的线条颜色为红色); 如果有, 则网络 管理装置 22按照某种准则给出一条建议性的最优的光纤连接关系。 其中, 某种准则可以是: 按照单板类型相匹配, 光口类型相匹配的原则进行单板和 光口的选择, 即, 先进行上游单板输出光口的建议性匹配, 后进行下游单板 的输入光口的建议性匹配。对于可以匹配的单板按照最小距离原则进行匹配, 如果出现多块相同类型的可匹配单板, 按照"上面为上游单板, 下面为下游单 板; 左面为上游单板, 右面为下游单板; 左上为上游单板, 右下为下游单板; 右上为上游单板, 左下为下游单板,,的原则选择相应的可匹配单板。对于出现 多个可匹配端口的情况,按照光口号由小到大的顺序依次匹配即可;)。但不对 此光纤连接关系所对应的单板和有关光口在实安板光纤连接数据表中故标 记。 步骤 S806 , 当单板连接信息上报网络管理装置 22的连接信息包中出现 单板只有一端有光纤连接的情况时 (此情况有可能是实际上就是单板只有一 端有光纤连接, 而另一端没有光纤连接。 也有可能是单板的输入口和输出口 都有光纤连接, 但是有一端的光纤是断裂的), 网络管理装置 22也会按照上 面所述的准则给没有光纤连接关系的一端一个建议性的最优的光纤连接关 系, 但不对此光纤连接关系所对应的单板和有关光口在实安板光纤连接数据 表中做标记。 对于某些业务板则还需进一步判断其是否是只用于上路或下路 的业务板。 当下面的单板连接信息上报网络管理装置 22的连接信息包中出现单板 两端都没有光纤连接关系的情况时 (此情况有可能是实际的单板两端确实没 有光纤连接情况, 也有可能是有光纤连接, 但光纤是断裂的情况), 网管对于 这些单板不予考虑。 釆用本优选实施例的不但可以自动发现实际的光纤连接关系, 省去了人 工手动在网络管理装置 22上配置光纤连接的操作, 而且对于实际错连和单 板端口一端少连的情况, 也给予校验和警示的信息, 并给以建议性的光纤连 接关系, 特别是对于光纤断裂等实际不易察觉的情况, 提供了很好的发现和 定位功能。 优选实施例 2 本优选实施例 2应用于光网络内部, 在实际的物理光纤连接好以后, 可 以自动发现实际的光纤连接关系, 并且对于相关的内容给予提示。 下面对本 优选实施例 2的光纤连接的检测流程进行详细说明。 首先, 可以按照上下游单板就近安装的原则, 安装实际的单板和实际的 光纤连接。 网络管理装置 22 自动发现所有的实安板信息后, 和网络管理装 置 22上固有的一个所有单板的所有光口的可能连纤关系数据表取"交集",生 成一个实安板光纤连接关系数据表。 然后, 由单板输入口监测模块 218和输出口监测模块 217分别监听和发 送对应的"连接信息包"信息。 其中, 单板输出口监测模块 217定时(或定期) 向下游单板发送有关本单板属性及当前单板光纤实际的连接情况的 "连接信 息包"信息,并且在接收到下游单板所响应的"连接信息包"后,将该响应的"连 接信息包"信息连同本单板的"连接信息包"一起发送给单板连接信息模块;单 板输入口监测模块 218定时(或定期)监听和接收上游单板所发送过来的 "连 接信息包"信息, 并回应一个有关本单板响应信息的"连接信息包"信息, 并且 也将上游单板的"连接信息包"信息连同本单板的"连接信息包"信息一起上报 给本单板的单板连接信息模块。 其次, 单板连接信息模块 42在接收到单板输入口监测模块 218和单板 输出口监测模块 217所发送过来的 "连接信息包"信息后, 判断"连接信息包" 中所示的单板光纤连接关系是否是上次已经上报给网络管理装置 22的最新 的光纤连接关系。 如果是, 则不上报给网络管理装置 22 (即, 单板连接信息 模块对此信息不予考虑); 如果不是, 则将此最新的光纤连接关系上报给网络 管理装置 22。 再次, 当网管处理模块 46接收到单板连接信息模块 42上报上来的最新 连纤信息时, 就按照网络管理装置 22数据库中存储的所有单板及其所有光 口的可能连纤关系数据表对单板光纤连接的各种情况——进行判断, 对应正 确的光纤连接关系, 网管处理模块 46将其在网络管理装置 22界面上正常显 示出来, 并且将此连接信息所对应的单板和端口在实安板光纤连接关系数据 表中做相应的标记。 对于光纤进行错连或少连的情况, 网络管理装置 22界 面上给予特殊的显示, 并且在还有其它可用端口和单板的情况下, 给以一个 建议性的光纤连接关系。 釆用本优选实施例不但节省了大量的人力资源, 提高了系统的效率, 降 低了系统维护的成本, 而且也是智能交换光网络由软永久连接 (Soft
Permanent Connection, 简称为 SPC )业务向交换连接( Swithched Connection, 简称为 SC ) 业务演进智能化的一个重要体现。 优选实施例 3 图 9是根据本发明优选实施例 3的波长交换光网络 (Wavelength
Switched Optical Network, 简称为 WSON)系统网元内部的光纤连接示意图, 如图 9所示, 釆用本优选实施例, 网络管理装置 22不但可以自动发现实际 的光纤连接关系, 而且对于错误的光纤连接关系和只有一端有光纤连接关系 的情况, 给予相应的提示信息, 并且给予一个建议性的连接关系。 例如, 在 图 9中放大单板 1的 OUT1口和功率分配单板 4的 IN2口之间的光纤连接关 系是正确的, 放大单板 2的 OUT1 口和功率分配单板 4的 OUT8口的光纤连 接关系是错误的, 波长选择单板 6的 OUT1 口和放大单板 3的 IN1 口没有光 纤连接关系。 下面对本优选实施例的处理过程详细进行说明。 在对单板进行规划和上下游单板按照就近原则进行安装完并且连好光纤 以后, 首先, 网络管理装置 22数据库中有一张所有单板及其光口的所有可 能连纤关系数据表, 在自动发现所有的实安板信息后, 根据目前实际安装的 单板类型及其所有光口, 网络管理装置 22生成一个新的实安板光纤连接关 系数据表。 同时, 每个单板中的单板信息模块会生成本单板的属性信息以及 现在单板的光口使用情况等, 即生成本单板所发送的"连接信息包"中的应有 信息。 例如, 0-1-10槽位上的放大单板 1中单板信息模块中的信息如下表, 其他单板与此类似。
单板属性名称 信息内容
单板所属网元的节点
10.10.10.1
标识 ID
单板地址信息 0-1-10 ( 0机架 1子架 10槽位)
单板类型信息 XX类放大单板
性 口 ¾光接口的数
4个光口 ( IN1 口、 IN2口、 OUT1 口、 OUT2口) 信属 4 目信息 光接口的方 IN1 口、 IN2口为输入口, OUT1 口、 OUT2口为光输 向信息 出口
光接口的序
无 (对于多个同类型端口用序号信息进行区分) 号信息
光接口的波
光复用段信号, 不对应具体波长
长信息
光接口的速
光复用段信号, 不对应具体速率
率信息
光接口的使 IN1 口和 OUT1 口在使用 (检测到有光纤连接), IN2 用情况 和 OUT2口没有在使用 然后, 单板中的单板输出口监测模块就将本单板的单板信息调制到某一 固定载波上,通过所有的输出光口发送出去,对于有光纤连接关系的输出口, 此已调信息能够通过实际的光纤发送出去, 而对于没有实际光纤连接关系的 输出口, 此已调信息是发送不出去的。 上游单板在定时 (例如, 每隔 3秒) 发送出去本单板的光纤连接关系以后,正常情况下会收到一个响应的"连接信 息包"。而所有的输入光口则监听和接收上游单板所发送过来的 "连接信息包,, 情况, 并在正常光纤连接的情况下, 回应一个包含本单板有关信息的"连接信 息包"。 在本优选实施例中, 放大单板 1的单板输出口检测模块 217会将本单板 的有关信息 (如上所述) 调制到一个固定的载波上面, 然后通过单板的所有 输出端口一 OUT1 口和 OUT2口发送出去。 对于 OUT1 口而言, 由于有实际 的光纤连接, 此已调信息能够传送到对端功率分配单板 4的 IN2口。 对于 OUT2口而言, 由于没有实际的光纤连接, 所以已调信息是发送不出去的。 另外, OUT1 口在发送出本单板的"连接信息包"以后, 会收到下游单板功率 分配单板 4的 IN2口所响应的一个 "连接信息包", 该信息包中包含了当前功 率分配单板 4的一些属性信息及输入光口的使用情况 (比如, IN2口当前与 放大单板 1的 OUT1 口相连, 其他输入光口 IN1、 IN3、 IN4没有光纤连接, 闲置可用;)。 对于输入口一 IN1和 IN2而言, IN1 口会收到上游单板发送过来 的 "连接信息包"信息, 并且会将本单板的有关信息调制到一个固定的载波上 面发送出去, 即响应一个本单板的"连接信息包"信息。 IN2口由于没有光纤 连接, 所以不会监听到"连接信息包"信息。 然后, 放大单板 1的单板信息模 块 216和单板输入口监测模块 218和单板输出口监测模块 217会分别定时(例 如, 每隔 4秒) 给单板连接信息模块 42上报目前单板的有关属性信息和接 收到的上下游连接信息包。 单板连接信息模块 42首先判断收到的连接信息 包信息是否是上次最新上报给网络管理装置 22的, 如果是就上报, 否则, 不予上报。 由于是首次上报连接信息, 所以会将上述信息包信息上报给网络 管理装置 22。 放大单板 2的情况与此类似, 只是其 OUT1 口收到的连接信息 包是功率分配单板 4的 OUT8口发送过来的, 并且信息包中包含的连接信息 是放大单板 2的 OUT1 口和功率分配单板 4的 OUT8口相连。 功率分配单板 4中的单板信息模块 216会包含本单板目前的所有应有信息, 然后, 功率分 配单板 4的输出口信息检测模块 217会将单板信息模块 216中的信息调制到 一个固定的载波上去, 然后通过所有的输出光口发送出去 (比如, 输出光口 为 OUT1 OUT8 )发送出去, 由于只有 OUT1、 OUT8口有光纤连接关系, 所以这些光口发送的 "连接信息包 "信息会发送到与之相连的单板和端口, 并 且会收到回应的"连接信息包"信息。 功率分配单板 4的输入口只有 IN2口会 监听到 "连接信息包"信息, INI、 IN3、 IN4口则不会收到连接信息包, 表明 其空闲可用没有光纤连接关系。 然后功率分配单板 4中的单板信息模块 216、 单板输入口检测模块 218和输出口信息检测模块 217会分别定时 (例如, 每 隔 4秒) 向其单板连接信息模块 42上 4艮目前本地单板和上下游单板的连接 信息包信息。 单板连接信息模块 42首先判断收到的连接信息包信息是否是 上次最新上报给网络管理装置 22的, 如果是就上报, 否则, 不予上报。 由 于是首次上报连接信息, 所以, 单板连接信息模块 42会上报上述信息包信 息, 其中就包括所有的光纤连接关系。 波长选择单板 6也会做如上面所述的 流程, 光纤连接关系信息是波长选择单板 6只有输入端口 IN1 口有光纤连接 关系, 而输出口没有光纤连接关系。 网络管理装置 22在收到上述的单板属性信息和光纤连接关系信息后, 首先将这些信息与实安板光纤连接关系数据表中的信息进行比较, 发现放大 单板 1的 OUT1 口与功率分配单板 4的 IN2口相连的这条光纤连接, 单板类 型、 光口类型、 信息速率等信息都匹配, 在实安板光纤连接关系数据表中存 在。 所以, 网络管理装置 22判断此光纤连接关系正确, 在网络管理装置 22 界面上以正常的图形或文本数据表格的形式显示出来, 并将此光纤连接所对 应的单板和光口故以标记 (表明放大单板 1的 OUT1 口与功率分配单板 4的 IN2口已经有光纤连接关系, 这两个口已经不可用了)。 而对于放大单板 2的 OUT1 口与功率分配单板 4的 OUT8口相连的这条光纤连接, 网络管理装置 22发现单板类型匹配, 但端口类型不匹配, 在实安板光纤连接关系数据表中 没有这种光纤连接关系。 所以, 网络管理装置 22在其界面上显示时会给予 特殊的显示 (例如, 显示的线条颜色为红色)。 然后, 网络管理装置 22再按 照先上游单板再下游单板的原则进行建议性的光纤连接匹配, 所以先从放大 单板 2开始, 然后再按照单板类型匹配、 光口类型匹配、 信息速率匹配、 最 小距离准则 (在等距条件下, 按照上面网络管理装置 22数据库中所介绍的 准则条件进行判断) 等原则下寻找可匹配的单板和可用的光口, 发现距离其 最近的可匹配单板是功率分配单板 4 , 并且该单板有与放大单板 2的 OUT1 口匹配的端口一 IN1 口、 IN3口、 IN4口。 对于有多个同类型的可匹配端口的 情况, 按照端口的序号由小到大依次进行匹配。 所以, 网络管理装置 22会 将放大单板 2的 OUT1 口与功率分配单板 4的 IN1 口进行匹配, 给予一个建 议性的光纤连接关系,即,将放大单板 2的 OUT1 口与功率分配单板 1的 IN1 口相连接。 但是, 网络管理装置 22不会对建议性的光纤连接关系所对应的 单板和光口在实安板光纤连接关系数据表中 #丈标己。 对于波长选择单板 6而 言, 上报的连接信息包中单板的 OUT1 口没有光纤连接关系, 然后网络管理 装置 22会按照单板类型匹配、 光口类型匹配、 信息速率匹配、 最小距离准 则 (在等距条件下, 按照上面网络管理装置 22数据库中所介绍的准则条件 进行判断) 等原则在实安板光纤连接数据信息表中自动搜索一个最优的光纤 连接匹配光纤, 结果发现放大单板 3的 IN1 口是一个最佳选择。 所以, 网络 管理装置 22会将波长选择单板 6的 OUT1 口与放大单板 3的 IN1 口进行相 连, 并且在网络管理装置 22界面上以特殊的图形或文本数据表格的方式显 示出来 (例如, 光纤连接的颜色为蓝色等)。 至此, 本优选实施例已经将实际的光纤连接关系自动发现完毕, 并且将 正确的、 错误的以及单板只有一端有光纤连接关系的所有情况都故出了相应 的分析、 判断和处理, 并显示实际的单板光纤连接信息, 实时同步更新最新 的光纤连接关系。 其中, 对于实际错连的光纤连接关系, 网络管理装置 22 给予信息提示(例如, 自动发现的错误连纤给予红色显示), 并且在还有其他 可用单板或端口的情况下, 给予一个建议性的光纤连接关系 (例如, 给予蓝 色显示); 对于只有一端连接关系 (例如, 上游端或下游端, 即, 输入口和输 出口连接关系) 的单板, 在它和其他单板都还有可用端口的情况下, 也给出 一个建议性的连接关系。 由此可见, 该实施例可以警示一些仅靠人工不易监 测出来的光纤连接状况(例如, 出现光纤的断裂等情况), 并且易于对系统的 光纤连接进行检错、 纠错, 可以提供系统的智能性, 降低人力资源和系统使 用、 维护的成本。 综上所述, 本发明实施例克月艮了相关技术中存在的不能自动获取光网络 内部光纤连接关系的缺陷, 提供了一种光纤连接的检测方案, 即, 在节点的 实际物理光纤连接好以后, 在网络管理装置 22上就能自动获取这些连接信 息, 校验实际光纤的错连、 断裂或者单板实际只有一端连接关系的情况, 并 且对于上述情况在单板还有可用端口连接的情况下, 给予一个建议性的连接 关系的方法。 因此, 本发明实施例是光网络智能化的重要体现, 也是实现光 网络的有关 SPC业务向最终的 SC业务演进的一个重要过程。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种光纤连接的检测方法, 包括以下步 4聚:
单板判断接收到的下游单板的连接信息、 上游单板的连接信息和 本单板的连接信息是否为已上报的光纤当前连接关系信息, 在不是已 上报的所述光纤当前连接关系信息的情况下, 将其上报给网络管理系 统;
所述网络管理系统才艮据单板实际的安装情况生成当前所有实际安 装的单板的光纤匹配连接关系信息, 并才艮据所述光纤匹配连接关系信 息确定上报的所述光纤当前连接关系信息是否为正确的光纤连接关 系;
在确定为正确的光纤连接关系的情况下, 所述网络管理系统标记 在所述光纤匹配连接关系信息中与所述光纤当前连接关系信息对应的 信息, 并显示所述光纤当前连接关系信息; 否则, 所述网络管理系统 提示所述光纤当前连接关系信息为错误的光纤连接关系, 并显示光纤 最优连接关系信息。
2. 根据权利要求 1所述的方法, 其中, 所述单板判断接收到的下游单板 的连接信息、 上游单板的连接信息和本单板的连接信息是否为已上报 的光纤当前连接关系信息之前, 还包括:
所述单板存储所述本单板的连接信息, 将所述本单板的连接信息 定时发送给所述下游单板, 并接收所述下游单板的连接信息; 以及 所述单板在接收上游单板的连接信息之后将所述本单板的连接信 息发送给所述上游单板。
3. 根据权利要求 2所述的方法, 其中, 根据所述光纤匹配连接关系信息 确定上报的所述光纤当前连接关系信息是否为正确的光纤连接关系包 括:
在所述光纤当前连接关系信息中的光口的连接信息为空时, 确定 所述光口没有光纤连接或所述光口的光纤连接已断裂。
4. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述网络管理系统 根据单板实际的安装情况生成当前所有实际安装的单板的光纤匹配连 接关系信息之前, 还包括:
所述网络管理系统存储所有单板及其光口的匹配连接关系信息。
5. 根据权利要求 4所述的方法, 其中, 所述网络管理系统显示光纤最优 连接关系信息包括:
才艮据单板类型匹配原则和 /或光口类型匹配原则获取并显示所述 光纤最优连接关系信息。
6. 根据权利要求 4所述的方法, 其中, 所述网络管理系统显示光纤最优 连接关系信息包括:
才艮据单板最小距离原则和 /或光口号顺序原则依次获取并显示所 述光纤最优连接关系信息。
7. 根据权利要求 4所述的方法, 其中, 所述网络管理系统根据所述光纤 匹配连接关系信息确定上 4艮的所述光纤当前连接关系信息是否为正确 的光纤连接关系之后, 还包括:
所述网络管理系统将所述光纤当前连接关系信息与光纤最优连接 关系信息以图形化或文本数据表的形式显示到用户界面。
8. —种光纤连接的检测系统, 包括单板处理装置和网络管理装置, 所述单板处理装置包括:
判断模块, 设置为判断接收到的下游单板的连接信息、 上游单板 的连接信息和本单板的连接信息是否为已上报的光纤当前连接关系信 息;
上报模块, 设置为在所述判断模块确定接收到的所述下游单板的 连接信息、 所述上游单板的连接信息和所述本单板的连接信息不是已 上报的所述光纤当前连接关系信息的情况下, 将其上报给所述网络管 理装置;
所述网络管理装置包括: 生成模块, 设置为根据单板实际的安装情况生成当前所有实际安 装的单板的光纤匹配连接关系信息; 确定模块, 设置为根据所述光纤匹配连接关系信息确定上报的所 述光纤当前连接关系信息是否为正确的光纤连接关系;
处理模块, 设置为在所述确定模块确定为正确的光纤连接关系的 情况下, 标记在所述光纤匹配连接关系信息中与所述光纤当前连接关 系信息对应的信息; 在所述确定模块确定为错误的光纤连接关系的情 况下, 提示所述光纤当前连接关系信息为错误的光纤连接关系, 并显 示光纤最优连接关系信息。
9. 根据权利要求 8所述的系统, 其中, 所述单板处理装置还包括: 单板信息模块, 设置为存储所述本单板的连接信息, 并将其发送 给单板输出口监测模块、 单板输入口监测模块和所述判断模块; 所述单板输出口监测模块, 设置为将所述本单板的连接信息定时 发送给所述下游单板, 以及在接收所述下游单板的连接信息后将其定 时发送到所述判断模块; 以及
所述单板输入口监测模块, 设置为在接收上游单板的连接信息之 后将所述本单板的连接信息发送给所述上游单板, 并将接收到的所述 上游单板的连接信息定时发送到所述判断模块。
10. 根据权利要求 8或 9所述的系统, 其中, 所述确定模块还设置为在所 述光纤当前连接关系信息中的光口的连接信息为空时, 确定所述光口 没有光纤连接或所述光口的光纤连接已断裂。
PCT/CN2011/071925 2010-04-08 2011-03-17 光纤连接的检测方法和系统 WO2011124107A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11765025.9A EP2557704B1 (en) 2010-04-08 2011-03-17 Method and system for detecting optical fibre connection
US13/639,251 US8811816B2 (en) 2010-04-08 2011-03-17 Method and system for detecting optical fibre connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010147962.1 2010-04-08
CN201010147962.1A CN101834663B (zh) 2010-04-08 2010-04-08 光纤连接的检测方法和系统

Publications (1)

Publication Number Publication Date
WO2011124107A1 true WO2011124107A1 (zh) 2011-10-13

Family

ID=42718609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071925 WO2011124107A1 (zh) 2010-04-08 2011-03-17 光纤连接的检测方法和系统

Country Status (4)

Country Link
US (1) US8811816B2 (zh)
EP (1) EP2557704B1 (zh)
CN (1) CN101834663B (zh)
WO (1) WO2011124107A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834663B (zh) * 2010-04-08 2015-05-20 中兴通讯股份有限公司 光纤连接的检测方法和系统
CN102130721B (zh) * 2011-03-16 2014-01-08 烽火通信科技股份有限公司 自动获取可重构光分插复用器节点内部连纤关系的方法
EP3223052B1 (en) * 2011-11-08 2023-08-30 Huawei Technologies Co., Ltd. Fiber recognition method, optical line terminal, and recognition system
CN102495918B (zh) * 2011-11-15 2018-05-22 深圳迈辽技术转移中心有限公司 绘制单板连纤图前单板坐标的分配方法和系统
CN102594450B (zh) * 2012-02-22 2015-06-03 中兴通讯股份有限公司 集群路由器光缆防插错的方法及装置
CN102907028B (zh) * 2012-08-07 2015-07-29 华为技术有限公司 获取可重构光分插复用设备内部连纤关系的方法及装置
CN103856258B (zh) * 2012-11-28 2017-02-01 华为技术有限公司 连纤检测方法和装置
CN103400163A (zh) * 2013-06-27 2013-11-20 杭州中恒电气股份有限公司 一种具有自纠错功能的光纤连接关系识别系统及方法
CN105530114A (zh) * 2014-10-23 2016-04-27 中兴通讯股份有限公司 光纤连纤处理方法及装置
CN105721956A (zh) * 2014-12-05 2016-06-29 中兴通讯股份有限公司 一种机架及通讯方法
CN106257866A (zh) * 2015-06-17 2016-12-28 中兴通讯股份有限公司 资源配置加载方法及装置
CN105634605B (zh) * 2016-01-07 2018-03-20 烽火通信科技股份有限公司 快速收集光纤互连信息的方法及装置
CN106209219A (zh) * 2016-06-28 2016-12-07 成都启源电子信息技术有限公司 光纤连接器插入损耗检测系统
CN105978623A (zh) * 2016-06-28 2016-09-28 成都启源电子信息技术有限公司 光纤连接器插入损耗计算系统
KR102062742B1 (ko) * 2017-07-21 2020-02-12 주식회사 유니콤넷 멀티 서비스 기능을 갖는 광통신 단말장치
JP6856493B2 (ja) * 2017-10-20 2021-04-07 Necプラットフォームズ株式会社 異常特定装置及び特定方法
CN108092796B (zh) * 2017-11-14 2021-05-28 烽火通信科技股份有限公司 一种光线路侧故障的拓扑直观显示方法及系统
CN112954721B (zh) * 2019-11-26 2023-05-16 中兴通讯股份有限公司 回传方法及单元、数据分配方法及控制器、网络系统和介质
CN113099322B (zh) * 2020-01-08 2022-07-29 华为技术有限公司 一种光纤连接的检测方法以及相关设备
CN113541795B (zh) * 2020-04-17 2022-04-15 烽火通信科技股份有限公司 一种波分系统osc通道单纤双向实现方法及设备
EP4037204B1 (en) * 2021-01-29 2024-01-31 Jio Platforms Limited System and method for automated identification of fiber capacity
CN114157350B (zh) * 2021-10-26 2023-02-03 武汉光迅信息技术有限公司 一种光纤错连检测方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728609A (zh) * 2004-07-27 2006-02-01 华为技术有限公司 一种检测多框设备连接方式的方法
CN1964283A (zh) * 2006-10-12 2007-05-16 中兴通讯股份有限公司 一种自动获取光网络节点内部连接关系的方法
CN101621722A (zh) * 2009-06-29 2010-01-06 中兴通讯股份有限公司 一种自动发现节点内部资源拓扑的方法及系统
CN101834663A (zh) * 2010-04-08 2010-09-15 中兴通讯股份有限公司 光纤连接的检测方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980736B1 (en) * 2002-01-03 2005-12-27 Mci, Inc. Verification of path integrity in optical switch network
WO2004010625A2 (en) * 2002-07-24 2004-01-29 Meriton Networks Inc. Automatic detection and resolution of fiber cabling errors in optical networks
US7668949B1 (en) * 2003-03-11 2010-02-23 Nortel Networks Limited Verification of configuration information in BGP VPNs
US20070183337A1 (en) * 2006-02-03 2007-08-09 International Business Machines Corporation FC-AL cabling management system
CN100561943C (zh) * 2006-11-22 2009-11-18 中兴通讯股份有限公司 一种光网络连接关系自动获取的方法
US20090129773A1 (en) * 2007-11-21 2009-05-21 Moshe Oron Method and apparatus for isolating a location of a fault in a passive optical network
CN101626315B (zh) * 2009-06-08 2012-06-06 中兴通讯股份有限公司 一种自动配置设备光纤连接的方法及网络管理系统
US8391707B2 (en) * 2009-11-13 2013-03-05 Verizon Patent And Licensing Inc. Maintenance friendly optical fiber switching system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728609A (zh) * 2004-07-27 2006-02-01 华为技术有限公司 一种检测多框设备连接方式的方法
CN1964283A (zh) * 2006-10-12 2007-05-16 中兴通讯股份有限公司 一种自动获取光网络节点内部连接关系的方法
CN101621722A (zh) * 2009-06-29 2010-01-06 中兴通讯股份有限公司 一种自动发现节点内部资源拓扑的方法及系统
CN101834663A (zh) * 2010-04-08 2010-09-15 中兴通讯股份有限公司 光纤连接的检测方法和系统

Also Published As

Publication number Publication date
CN101834663B (zh) 2015-05-20
US20130028594A1 (en) 2013-01-31
EP2557704B1 (en) 2018-04-25
CN101834663A (zh) 2010-09-15
EP2557704A1 (en) 2013-02-13
US8811816B2 (en) 2014-08-19
EP2557704A4 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2011124107A1 (zh) 光纤连接的检测方法和系统
CN101336530B (zh) 网络系统
EP3817298A1 (en) Data message detection method, device and system
CN101060370B (zh) 一种对pon终端管理的方法及系统
CN100525507C (zh) 光学交叉互联装置及网络
US20060221865A1 (en) Method and system for autonomous link discovery and network management connectivity of remote access devices
RU2009136529A (ru) Способ регистрации в сети, мобильная станция и сервер для управления абонентской информацией
JP2005341529A (ja) 光伝送システム,光送受信装置,光伝送装置および光波長チャンネル接続認識制御方法
US20090024725A1 (en) Method and apparatus to integrate and manage an optical network terminal and a broadband home router
US8670347B2 (en) Method, device and system for automatically discovering optical fibre connection within network element
US11689282B2 (en) Correcting traffic misconnections in optical communications networks
US10972309B2 (en) Method and device for automatically discovering cross-node service topology on transoceanic multiple section shared protection ring
US20070230458A1 (en) Communication Network, Communication Apparatus, Communication Control Method and Communication Control Program
CN100426752C (zh) 一种获知网元间连接关系的方法和系统
CN107786908B (zh) 一种建立路径的方法及装置
US20170373924A1 (en) Transmission apparatus, alarm transfer method and alarm transfer system
US10353851B2 (en) Systems and methods for implementing a physical-layer cross connect
CN111988682A (zh) 网络控制方法、装置和系统
WO2021244289A1 (zh) 一种光功率值的传输方法、系统以及相关设备
CN113395614B (zh) 一种无源光网络系统及数据传输方法
US10177840B2 (en) Communication apparatus, method of communication and communication system
JP6235644B2 (ja) 加入者線終端装置、収容局装置、及び警報送信方法
CN102546104B (zh) 一种采用通用成帧规程来传送网管信息的方法
WO2024054364A1 (en) Passive optical network
EP2073455B1 (en) Security management process of at least one VLAN of an ethernet network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13639251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011765025

Country of ref document: EP