WO2023273840A1 - 光信噪比检测方法、装置及计算机存储介质 - Google Patents

光信噪比检测方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2023273840A1
WO2023273840A1 PCT/CN2022/098224 CN2022098224W WO2023273840A1 WO 2023273840 A1 WO2023273840 A1 WO 2023273840A1 CN 2022098224 W CN2022098224 W CN 2022098224W WO 2023273840 A1 WO2023273840 A1 WO 2023273840A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
power
noise ratio
width
optical signal
Prior art date
Application number
PCT/CN2022/098224
Other languages
English (en)
French (fr)
Inventor
贾殷秋
施鹄
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22831660.0A priority Critical patent/EP4346122A1/en
Publication of WO2023273840A1 publication Critical patent/WO2023273840A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q

Definitions

  • the present application relates to the technical field of optical performance detection, and in particular to an optical signal-to-noise ratio detection method, device and computer storage medium.
  • Optical Transport Network (OTN) technology is a new type of optical transmission technology that can realize functions such as transmission, switching, and multiplexing of signals of various granularities.
  • the optical transport network has important requirements for the survivability of services. There will be a large number of idle optical path resources in the optical transport network to provide recovery path resources for faulty services.
  • the current mainstream optical path performance detection technology is based on detecting the performance parameters of the service optical signal in the optical path, such as optical power, optical signal noise ratio (Optical Signal Noise Ratio, OSNR) and other parameters, to realize the performance evaluation of the detection optical path.
  • OSNR optical Signal Noise Ratio
  • WSS wavelength selective switches
  • Embodiments of the present application provide an optical signal-to-noise ratio detection method, device, and computer storage medium, and realize optical signal-to-noise ratio detection of idle channels by adjusting the signal width of a detection light source.
  • an embodiment of the present application provides an optical signal-to-noise ratio detection method, which is applied to an optical signal-to-noise ratio detection system.
  • the optical signal-to-noise ratio detection system includes a detection light source set The output end is connected to the line side port of the originating site, and the optical signal-to-noise ratio detection method includes: adjusting the detection light source to be in a state of spontaneous emission; adjusting the signal width of the detection light source according to the spectral bandwidth of the channel to be tested to be the first Width, to obtain the total power of the channel at the optical performance monitoring point of the receiving station, the channel to be tested is an idle channel from the line side port of the sending station to the line side port of the receiving station, and the first width Not greater than the spectral bandwidth of the channel to be tested; adjust the signal width of the detection light source to a second width, and obtain the noise power at the optical performance monitoring point of the receiving end site, and the second width is smaller than the first width and the center frequency of the signal
  • the embodiment of the present application provides an optical signal-to-noise ratio detection method, which is applied to an optical signal-to-noise ratio detection system.
  • the optical signal-to-noise ratio detection system includes a detection light source set The output end is connected to the line side port of the remote site, and the optical signal-to-noise ratio detection method includes: adjusting the detection light source to be in a state of spontaneous emission; adjusting the signal width of the detection light source to be the first according to the spectral bandwidth of the channel to be tested Width, to obtain the total power of the first channel at the optical performance monitoring point of the originating station and the total power of the second channel at the optical performance monitoring point of the receiving station, and the channel to be measured is from the line side port of the originating station to the The free channel of the line side port of the receiving station, the first width is not greater than the spectral bandwidth of the channel to be tested; the signal width of the detection light source is adjusted to the second width, and the optical performance monitoring of the sending station is obtained.
  • an embodiment of the present application provides an optical signal-to-noise ratio detection system, including at least one processor and a memory used to communicate with the at least one processor; Instructions executed by a processor, the instructions are executed by the at least one processor, so that the at least one processor can execute the optical signal-to-noise ratio detection method as described in the first aspect or execute the method as described in the second aspect Optical signal-to-noise ratio detection method.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer execute the The optical signal-to-noise ratio detection method or execute the optical signal-to-noise ratio detection method as described in the second aspect.
  • the optical signal-to-noise ratio detection method provided in the embodiment of the present application has at least the following beneficial effects: the optical signal-to-noise ratio detection in the embodiment of the present application is applied to the idle service path, and the detection light is provided for the channel to be tested through the detection light source, and the detection light source is changed at the same time
  • the waveform and the total channel power and noise power monitored by the optical performance monitoring point of the receiving site can be used to calculate the optical signal-to-noise ratio of the channel to be tested, so as to realize the optical performance monitoring of idle service paths and greatly improve network maintenance and management.
  • the embodiment of the present application adjusts the signal width of the detection light source based on the spectral bandwidth of the channel to be tested, which can better suit the environment of the channel to be tested in the transmission service state, thereby obtaining More accurate OSNR results.
  • Fig. 1 is an overall method flow chart of an optical signal-to-noise ratio detection method provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of channel power at the first width provided by an embodiment of the present application
  • Fig. 3 is a schematic diagram of channel power provided by an embodiment of the present application under the second width
  • Fig. 4 is a flow chart of adjusting the working state of the detection light source provided by an embodiment of the present application.
  • Fig. 5 is a flow chart of calculating the optical signal-to-noise ratio of the channel to be tested under the directly connected idle port provided by one embodiment of the present application;
  • FIG. 6 is a flow chart of calculating the optical signal-to-noise ratio of the channel to be tested under a non-directly connected idle port provided by an embodiment of the present application;
  • Fig. 7 is an overall method flowchart of an optical signal-to-noise ratio detection method provided by an embodiment of the present application.
  • Fig. 8 is a flow chart of calculating the optical signal-to-noise ratio of the channel to be tested in the case of a remote site provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a network structure provided in Example 1 of the present application.
  • FIG. 10 is a schematic diagram of a network structure provided in Example 2 of the present application.
  • FIG. 11 is a schematic diagram of a network structure provided in Example 3 of this application.
  • Optical transport network OTN inherits the advantages of Synchronous Digital Hierarchy (SDH) network and Wavelength Division Multiplexing (DWM) network, and Qijuyou has the advantages of large capacity and good management and control mechanism.
  • SDH Synchronous Digital Hierarchy
  • DWM Wavelength Division Multiplexing
  • OTN can realize functions such as transmission, switching, and multiplexing of signals of various granularities.
  • OTN can support a variety of upper-layer services and protocols, and is an important networking technology for bearer optical networks.
  • OTN realizes the improvement of the transmission capacity of a single optical fiber by combining different wavelengths in a specified optical fiber and transmitting them simultaneously.
  • the combined signals of different wavelengths are amplified by the optical amplifier equipment in the site when passing through the site to increase the transmission distance.
  • the optical amplifier equipment also amplifies the noise signal during the process of amplifying the signal, so that the signal is , the noise signal becomes very large.
  • optical performance monitoring is introduced to the optical communication network, and OSNR is a very important indicator in optical performance detection.
  • OSNR is the ratio of optical signal power to noise power within an effective bandwidth of 0.1nm.
  • the embodiment of the present application provides an optical signal-to-noise ratio detection method, which provides a detection method for detecting the OSNR of an idle channel to be tested.
  • the optical performance monitoring technology is used at the receiving end site The signal power and noise power of the channel to be tested are detected respectively, so as to calculate the OSNR of the channel to be tested, and realize the optical performance monitoring of the idle channel.
  • the embodiment of the present application provides a detection method for optical signal-to-noise ratio, which is applied to an optical signal-to-noise ratio detection system.
  • the optical signal-to-noise ratio detection method for the line side port of the site includes but not limited to the following steps S100, S200, S300 and S400.
  • Step S100 adjusting the detection light source to be in a state of spontaneous emission.
  • an additional detection light source is connected to the channel to be tested to provide an optical signal for measurement. Since the detection light source does not need to actually carry services, the noise signal is generated in the spontaneous emission state, and the noise signal is used as the initial optical signal for OSNR measurement.
  • the idle channel corresponds to an idle port in the current site in hardware, and the idle port can be an uplink port or a loopback port of an optical switch (such as an optical filter), an input port of a multiplexer such as a coupling device, or The loopback port, the upper port of Arrayed Waveguide Grating (AWG) devices, etc.
  • the idle channel corresponding to a certain wavelength channel on the optical path does not carry services, which means that the wavelength channel does not carry services only at the monitoring time, or it can also indicate that the wavelength channel is not arranged to carry services and is completely idle.
  • the judgment of the idle channel can be determined by the inspector according to the actual service opening situation, or can be automatically judged by detecting whether there is a service message on the wavelength channel, which is not limited here.
  • the detection light source it can be composed of different hardware methods.
  • the detection light source directly uses a tunable laser light source to generate laser light corresponding to the center wavelength of the channel to be tested, but the tunable laser light source can only generate laser light with a center wavelength at a time.
  • the detection light source is composed of a spontaneous emission source and an optical filter. The output end of the spontaneous emission source is connected to the input end of the optical filter, and the output end of the optical filter is connected to the idle port.
  • the spontaneous emission The source can be an Erbium Doped Fiber Application Amplifier (EDFA).
  • EDFA Erbium Doped Fiber Application Amplifier
  • the input end of the EDFA is not connected to the input source, and the EDFA is placed in the state of Amplified Spontaneous Emission (ASE), so that multiple channels can be covered
  • the noise source, and the optical filter can be AWG, WSS and other multiplexing and demultiplexing devices with filtering functions, which are used for wavelength channel selection of EDFA.
  • Step S200 adjust the signal width of the detection light source to the first width according to the spectral bandwidth of the channel to be tested, and obtain the total power of the channel at the optical performance monitoring point of the receiving site, and the channel to be tested is from the line side port of the transmitting site to the receiving site In the idle channel of the line side port, the first width is not greater than the spectral bandwidth of the channel to be tested;
  • Step S300 adjust the signal width of the detection light source to the second width, and obtain the noise power at the optical performance monitoring point of the receiving end site, the second width is smaller than the first width and the center frequency of the signal corresponding to the second width is corresponding to the signal of the first width The center frequency is staggered.
  • the embodiment of this application defines that the two ends of the channel to be tested are the line-side port of the originating site and the line-side port of the receiving site, excluding the service on/off at the equipment side of the originating site, and the service on/off at the equipment side of the receiving site. Therefore, the OSNR of the channel to be tested in the embodiment of the present application actually refers to the OSNR between the optical performance monitoring points of two sites.
  • the optical signal can only collect the power of the current channel at the optical performance detection point.
  • the embodiment of this application adopts the method of changing the waveform of the detection light source, and measures the current channel at both sides of the receiving end site , so as to calculate the signal optical power of the channel to be tested.
  • the signal width of the detection light source is set as the first width according to the spectral width of the channel to be tested, so that the detection light source fills the corresponding spectral width of the channel to be measured with an optical signal of a corresponding width, so that The scene of the total channel power measured at the optical performance monitoring point of the receiving site is close to the scene when the channel under test actually carries services, and it is also convenient to change the signal width of the detection light source to obtain the noise power.
  • step S300 change the signal width of the detection light source to the second width, because the second width is smaller than the first width, so the operation of step S300 actually narrows the detection light source, so that only a certain width in the channel to be tested
  • the remaining wavelength channels outside the width are shielded by optical filters, so that after the optical signal of the second width passes through each amplifier device of the channel to be tested and arrives at the receiving end site, the remaining wavelength channels will present a noise floor, then in The power of these wavelength channels measured at the optical performance monitoring point of the receiving station is the noise power, as shown in Figure 2 and Figure 3, which are the waveform diagrams under the first width and the second width respectively.
  • the first width can be set to be equal to the spectral width of the channel to be tested, so that the detection light source can fill the entire channel to be tested, and the total power of the channel obtained is more accurate, or it can be set to be slightly smaller than the channel to be tested
  • the spectrum width of at this time, the first width is determined according to empirical values, so that the subsequent measurement of OSNR shall prevail.
  • the second width can be set according to the network architecture where the channel to be tested is located. For example, in a 100G optical transmission system, two adjacent channels used to carry services are separated by 100 GHz, and the spectral width of the optical channel is 50 GHz.
  • the optical filter can If the signal width is set to 12.5GHz, there will be 37.5GHz free positions in 50GHz for measuring the noise floor, and the width of 12.5GHz can be selected to measure the noise power. It can be understood that, in order to measure OSNR by noise power, the center frequency of the signal at the second width is shifted relative to the center frequency of the signal at the first width, so that the center frequency of the signal at the optical performance monitoring point corresponds to the first width channel for data monitoring.
  • the optical performance monitoring point can be realized by the optical performance monitoring module (Optical Performance Monitoring, OPM).
  • OPM optical Performance Monitoring
  • OPM can be realized in many ways, such as a diffraction-based structure consisting of volume gratings and array detectors, and an interference-based structure using tunable optical filter (Tunable optical filter, TOF) technology, which will not be discussed here. limited.
  • Step S400 determine the optical signal-to-noise ratio of the channel to be tested according to the total channel power and the noise power.
  • the signal optical power can be obtained by subtracting the two. According to the calculation formula of the signal optical power and noise power and the corresponding OSNR, the channel to be tested can be obtained. OSNR.
  • OSNR (total channel power-noise power)/noise power corresponding to 0.1 nm spectral width.
  • B och to represent the first width
  • B noise to represent the second width
  • B 0.1 to represent the spectral width of 0.1nm
  • P och to represent the total power of the channel
  • P noise to represent the noise power
  • the detection light source is given for the idle channel to be tested, and the signal width of the detection light source is changed at the same time, so that the total channel power and noise power of the channel to be tested can be obtained at the optical performance detection point of the receiving end station, and thus calculated OSNR of the channel under test.
  • the spectral width of the channel to be tested can be selected to a larger value. For example, at a width of 50 GHz, the embodiment of the present application can still provide detection light that fills the spectral width. In fact, it simulates that the channel to be tested is in a multi-wavelength environment. environment, so the measured OSNR is more suitable for actual business scenarios.
  • the OSNR calculated by the above formula does not necessarily represent the OSNR value of the channel to be tested.
  • the obtained OSNR may include the distance between the add port on the device side and the port on the line side.
  • the OSNR calculated by the above formula is subtracted from the OSNR between the add port on the device side and the port on the line side to obtain the OSNR of the channel to be tested. Since it involves detecting the position of the light source, this part of the OSNR correction content will be described in detail below according to different positions of the detected light source.
  • the power of the spontaneous radiation source can be adjusted. Referring to Figure 4, it can be achieved through the following steps:
  • Step S110 placing the spontaneous emission source in a state of spontaneous emission
  • Step S120 adjusting the spontaneous radiation power of the spontaneous radiation source to be the same as the service access power of the channel to be tested.
  • the channel to be tested carries services
  • the service access power adjust the power of the spontaneous radiation source in the ASE state to be the same as the service access power.
  • the received power at this time is similar to the received power of the channel under test in the bearer service scenario, so the calculation of OSNR based on the received power at this time can accurately reflect the actual bearer service scenario. OSNR.
  • the output end of the detection light source When the output end of the detection light source is directly connected to the line-side port of the originating site, the output end of the detection light source can be connected to the line-side port of the originating site end-to-end through a single optical fiber. At this time, the detection light source does not pass through the line-side port of the originating site. Port on the device side.
  • step S400 the OSNR calculation in step S400 is realized through the following steps, with reference to Fig. 5:
  • Step S410 determining the signal optical power of the channel to be tested according to the total channel power and the noise power
  • Step S420 determine the optical signal-to-noise ratio of the channel to be tested according to the spectral bandwidth, signal optical power and noise power of the channel to be tested.
  • the signal optical power of the channel to be tested Since the total channel power detected at the receiving end site is the superposition of signal optical power and noise power, the signal optical power can be obtained by simply subtracting the noise power from the total channel power, and then The OSNR of the channel to be tested can be obtained according to the above OSNR calculation formula.
  • the OSNR service indicates the OSNR of the actual transmission path of the service
  • the OSNR to be tested indicates the OSNR of the channel to be tested
  • the OSNR uplink indicates the OSNR from the equipment-side uplink port of the originating site to the line-side port of the originating site
  • the OSNR downlink indicates the OSNR of the receiving site OSNR of the device-side drop from the line-side port to the receiving site.
  • the output end of the detection light source is connected to the line side port of the origination site through the add port of the originating site, it means that there is no free port on the line side at this time, but there is a free add port on the device side, and the detection light source can be directly connected into the onboard port.
  • step S400 the OSNR calculation in step S400 is realized through the following steps, with reference to Fig. 6:
  • Step S430 determining the signal optical power of the channel to be tested according to the total channel power and the noise power
  • Step S440 obtaining the on-link optical signal-to-noise ratio from the device-side add port of the originating site to the line-side port of the originating site;
  • step S450 the optical signal-to-noise ratio of the channel to be tested is determined according to the spectral bandwidth of the channel to be tested, the optical signal-to-noise ratio of the uplink, the signal optical power, and the noise power.
  • the signal optical power of the channel to be tested Since the total channel power detected at the receiving end site is the superposition of signal optical power and noise power, the signal optical power can be obtained by simply subtracting the noise power from the total channel power. Then according to the above OSNR calculation formula, the OSNR between the on-line port on the equipment side of the originating site and the line-side port on the receiving site can be obtained.
  • This OSNR includes the OSNR of the channel to be tested and the on-line port on the equipment side of the originating site to the originating end.
  • the OSNR between the line-side ports of the site, so the OSNR of the channel to be tested is calculated by the following formula:
  • OSNR to be tested indicates the OSNR of the channel to be tested
  • OSNR 1 indicates the OSNR between the device-side onboard port of the originating site and the line-side port of the receiving site
  • OSNR uplink indicates the distance between the equipment-side onboard port of the originating site and the originating site OSNR of the port on the line side.
  • the OSNR of the downlink from the line side port of the receiving site to the device side drop of the receiving site can be added to OSNR 1 , as shown in the following formula:
  • the OSNR service indicates the OSNR of the actual transmission path of the service
  • the OSNR drop indicates the OSNR of the line side port of the receiving site to the equipment side drop of the receiving site.
  • OSNR on- road and OSNR off-road can obtain the OSNR values of these segments through conventional means during the station opening stage or the operation and maintenance stage, and will not be described in detail here.
  • the OSNR from the add port on the equipment side of the originating site to the line-side port at the originating site may be It is composed of multiple segments of OSNR.
  • the OSNR of the downlink from the line side port of the receiving site to the device side of the receiving site may also be composed of multiple segments of OSNR, which is determined according to the actual device connection method of the site.
  • the detection light source is set at the originating site, and is directly or indirectly connected to the line-side port of the originating site locally.
  • the idle port of the station is used for measurement on the channel to be tested. Therefore, the embodiment of the present application also provides an OSNR detection method, which is applied to an OSNR detection system.
  • the OSNR detection system includes a detection light source arranged at a remote site, and the output end of the detection light source is connected to the remote site.
  • the line side port, the optical signal to noise ratio detection method includes but not limited to the following steps S500, step S600, step S700 and step S800, with reference to Figure 7:
  • Step S500 adjusting the detection light source to be in a spontaneous emission state
  • the detection light source is set at a remote site.
  • the remote site has an idle port connected to the detection light source.
  • the idle port of the remote site is a line side port and is connected to the line side port of the first site through an optical cable.
  • the detection light source is placed in a state of spontaneous emission.
  • the detection light source in the embodiment of the present application can also be composed of a spontaneous emission source and an optical filter, the output end of the spontaneous emission source is connected to the input end of the optical filter, and the output end of the optical filter is connected to the idle port.
  • the spontaneous emission source and the optical filter reference may be made to the description of step S100, which will not be repeated here.
  • Step S600 adjust the signal width of the detection light source to the first width according to the spectral bandwidth of the channel to be tested, and obtain the total power of the first channel at the optical performance monitoring point of the originating station and the second channel at the optical performance monitoring point of the receiving station Total power, the channel to be tested is an idle channel from the line side port of the originating site to the line side port of the receiving site, and the first width is not greater than the spectral bandwidth of the channel to be tested;
  • Step S700 adjust the signal width of the detected light source to the second width, obtain the first noise power at the optical performance monitoring point of the originating station and the second noise power at the optical performance monitoring point of the receiving station, and the second width is smaller than the first width and the center frequency of the signal corresponding to the second width is staggered from the center frequency of the signal corresponding to the first width;
  • Step S800 determine the optical signal-to-noise ratio of the channel to be tested according to the total power of the first channel, the total power of the second channel, the first noise power and the second noise power.
  • the OSNR of the channel to be tested needs to be calculated according to the OSNRs of the paths at both ends.
  • the first site and the second site each have an optical performance monitoring point.
  • the signal width of the detection light source is the first width, respectively obtain the total power of the first channel at the optical performance monitoring point of the originating site and the total power of the second channel at the optical performance monitoring point of the receiving site, and then Adjust the signal width of the detection light source to the second width, respectively obtain the first noise power at the optical performance monitoring point of the originating station and the second noise power at the optical performance monitoring point of the receiving station, thus obtaining two
  • the first set of data is the total power of the first channel and the first noise power between the remote site and the originating site
  • the second set of data is the total power of the second channel and the second noise between the remote site and the receiving site
  • the OSNR from the line side port of the remote site to the line side port of the originating site can be obtained according to the above OSNR calculation formula.
  • the line side port of the originating site can be obtained according to the above OSNR calculation formula.
  • the OSNR of the line side port of the receiving station can be determined by subtracting the OSNR obtained from the two sets of data to determine the OSNR of the channel to be tested, as follows:
  • OSNR to be tested indicates the OSNR of the channel to be tested
  • OSNR 2 indicates the OSNR from the line-side port of the remote site to the line-side port of the originating site
  • OSNR 3 indicates the line from the line-side port of the remote site to the receiving site OSNR of side ports.
  • Step S810 determining the first signal power from the line side port of the remote site to the line side port of the originating site according to the total power of the first channel and the first noise power;
  • Step S820 determining the second signal power from the line-side port of the remote site to the line-side port of the receiving site according to the total power of the second channel and the second noise power;
  • Step S830 Determine the optical signal-to-noise ratio of the channel to be tested according to the spectral bandwidth, the first signal power, the first noise power, the second signal power, and the second noise power of the channel to be tested.
  • the calculation method of determining the OSNR between the line side port of the remote site and the line side port of the originating site can refer to step S400.
  • the second signal power and the second noise power of the channel to be tested can also refer to step S400 for determining the OSNR from the line side port of the remote site to the line side port of the receiving site, and the detailed calculation process will not be expanded here.
  • the OSNR service indicates the OSNR of the actual transmission path of the service
  • the OSNR uplink indicates the OSNR from the equipment-side uplink port of the originating site to the line-side port of the originating site
  • the OSNR downlink indicates the line-side port of the receiving site to the equipment side of the receiving site Bottom line OSNR.
  • the path from the add port to the line side port can pass through multiple components, such as several amplifier devices, several optical filters, etc., so the OSNR It may be composed of multiple segments of OSNR.
  • the OSNR of the line side port of the receiving site to the device side of the receiving site may also be composed of multiple segments of OSNR, which is determined according to the actual device connection method of the site.
  • the measurement of the channel to be tested from the remote site is realized, and the problem that the OSNR of the channel to be tested cannot be measured because the site has no idle ports is solved.
  • the total channel power and noise power of the channel to be tested can be obtained by adjusting the width of the detection light source, and the signal optical power of the channel to be tested can be obtained.
  • the OSNR of the test channel realizes the optical performance monitoring of the idle service path, which greatly improves the network maintenance and management capabilities.
  • this example needs to measure the OSNR of the idle channel from the originating station A to the receiving station C through the pass-through station B.
  • the detection light source uses an EDFA-type optical amplifier OA and wavelength selection
  • the switches are represented by OA#41 and WSS#41 respectively in FIG. 9 , and WSS#41 is directly connected to the line-side port of originating station A.
  • center frequency of the idle channel to be tested is 192.1 THz and the width is 50 GHz.
  • Measure the total power of the channel operate WSS#41, assign the light with a center frequency of 192.1THz and a width of 50GHz to the D2 port of WSS#41, read the power spectrum from the OPM at the receiving end site B, and obtain a center frequency of 192.1THz,
  • the channel power with a width of 50 GHz is the total power of the channel, denoted as P och
  • the first width set by WSS#41 in this step is equal to the spectrum width of the channel to be tested
  • the OPM is set at the output end of OA#61 at the receiving end site B ;
  • Measure the noise power operate WSS#41, assign the light with a center frequency of 192.0875GHz and a width of 12.5GHz to the D2 port of WSS#41, read the power spectrum from the OPM at the receiving end site B, and obtain a center frequency of 192.1125GHz,
  • the channel power with a width of 12.5 GHz is the noise power, denoted as P noise , it can be seen that the second width set by WSS#41 in this step is 12.5 GHz.
  • the OSNR calculated by the above formula is the OSNR between the line side port of the originating station A and the line side port of the receiving station C. to be tested .
  • Example 2 the difference between Example 2 and Example 1 is that there is no free port on the line side of the originating site A, but there are idle ports on the add port on the device side, and the detection light source is connected to the originating site A idle ports among the add ports on the device side.
  • the detection light source also uses an EDFA-type optical amplifier OA and a wavelength selection switch, which are represented by OA#41 and WSS#41 in Figure 10, and the D1 port of WSS#41 is connected to the device-side add port of the originating station A. It is the A3 port of WSS#32.
  • center frequency of the idle channel to be tested is 192.1 THz and the width is 50 GHz.
  • OSNR 1 the OSNR between the device-side add port of the originating site A and the line-side port of the receiving site C can be obtained, which is denoted as OSNR 1 .
  • OSNR 1 already includes the OSNR of the uplink part of the originating site A, it is only necessary to obtain the OSNR of the downlink part of the receiving site C:
  • Example 3 the difference between Example 3 and Example 1 is that the detection light source is connected to an idle port at the remote site D, and the idle port is the line side port of the remote site D. Also measure the OSNR of the idle channel from the originating station A to the receiving station C after passing through the passthrough station B.
  • the detection light source uses an EDFA-type optical amplifier OA and a wavelength selection switch.
  • OA#41 and WSS are respectively used #41 indicates that WSS#41 is directly connected to the line-side port of remote site D.
  • center frequency of the idle channel to be tested is 192.1 THz and the width is 50 GHz.
  • the OSNR between the line side port of the remote site D and the line side port of the originating site A can be obtained, denoted as OSNR 2
  • the line side port of the remote site D to the receiving end The OSNR between the line-side ports of station B is denoted as OSNR 3 .
  • the OSNR of the channel to be tested can be determined by subtracting the two obtained OSNRs, as follows:
  • An embodiment of the present application also provides an optical signal-to-noise ratio detection system, including at least one processor and a memory for communicating with the at least one processor; the memory stores instructions that can be executed by the at least one processor, and the instructions are Execution by at least one processor, so that at least one processor can execute the aforementioned optical signal-to-noise ratio detection method.
  • control processor and memory in the optical signal-to-noise ratio detection system can be connected through a bus.
  • memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk memory, flash memory device, or other non-transitory solid-state storage devices.
  • the memory may include memory located remotely relative to the control processor, and these remote memories may be connected to the optical signal-to-noise ratio detection system through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above device structure does not constitute a limitation on the optical signal-to-noise ratio detection system, and may include more or less components, or combine some components, or arrange different components.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, the above-mentioned control processor Execution can cause the above-mentioned one or more control processors to execute the optical signal-to-noise ratio detection method in the above-mentioned method embodiment, for example, execute the method steps S100 to S400 in FIG. 1 and the method step S110 in FIG. 4 described above. to step S120, method step S410 to step S420 in FIG. 5, method step S430 to step S450 in FIG. 6, method step S500 to step S800 in FIG. 7, and method step S810 and step S830 in FIG.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种光信噪比检测方法、装置及计算机存储介质,其中,光信噪比检测方法包括调整检测光源处于自发辐射状态(S100);根据待测通道的频谱带宽调整检测光源的信号宽度为第一宽度,获取收端站点的光学性能监测点处的通道总功率(S200);调整检测光源的信号宽度为第二宽度,获取收端站点的光学性能监测点处的噪声功率(S300),第二宽度小于第一宽度且两者对应信号的中心频率错开;根据通道总功率和噪声功率确定待测通道的光信噪比(S400)。

Description

光信噪比检测方法、装置及计算机存储介质
相关申请的交叉引用
本申请基于申请号为202110719881.2、申请日为2021年6月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光学性能检测技术领域,尤其涉及一种光信噪比检测方法、装置及计算机存储介质。
背景技术
光传送网(Optical Transport Network,OTN)技术是一种新型光传送技术,可以实现多种粒度的信号的传输、交换、复用等功能。光传送网对于业务的生存性有重要的要求,在光传送网中会存在大量空闲的光路资源,为故障业务提供恢复路径资源。
目前主流的光路性能检测技术,均是基于检测光路中业务光信号的性能参数,如光功率、光信噪比(Optical Signal Noise Ratio,OSNR)等参数,实现对检测光路的性能评估。然而,在光传送网的空闲通道中没有业务光信号,空闲通道经过的光开关和波长选择开关(Wavelength Selective Switch,WSS)等器件也是关闭状态。这种情况下,现有的技术无法对这些空闲通道进行光性能监测。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种光信噪比检测方法、装置及计算机存储介质,通过调整检测光源的信号宽度来实现对空闲通道的光信噪比检测。
第一方面,本申请实施例提供了一种光信噪比检测方法,应用于光信噪比检测系统,所述光信噪比检测系统包括设置在发端站点的检测光源,所述检测光源的输出端连接所述发端站点的线路侧端口,所述光信噪比检测方法包括:调整所述检测光源处于自发辐射状态;根据待测通道的频谱带宽调整所述检测光源的信号宽度为第一宽度,获取收端站点的光学性能监测点处的通道总功率,所述待测通道为所述发端站点的线路侧端口到所述收端站点的线路侧端口的空闲通道,所述第一宽度不大于所述待测通道的频谱带宽;调整所述检测光源的信号宽度为第二宽度,获取所述收端站点的光学性能监测点处的噪声功率,所述第二宽度小于所述第一宽度且所述第二宽度对应信号的中心频率与所述第一宽度对应信号的中心频率错开;根据所述通道总功率和所述噪声功率确定所述待测通道的光信噪比。
第二方面,本申请实施例提供了一种光信噪比检测方法,应用于光信噪比检测系统,所述光信噪比检测系统包括设置在异地站点的检测光源,所述检测光源的输出端连接所述异地站点的线路侧端口,所述光信噪比检测方法包括:调整所述检测光源处于自发辐射状态;根据待测通道的频谱带宽调整所述检测光源的信号宽度为第一宽度,获取发端站点的光学性能 监测点处的第一通道总功率以及收端站点的光学性能监测点处的第二通道总功率,所述待测通道为所述发端站点的线路侧端口到所述收端站点的线路侧端口的空闲通道,所述第一宽度不大于所述待测通道的频谱带宽;调整所述检测光源的信号宽度为第二宽度,获取所述发端站点的光学性能监测点处的第一噪声功率以及所述收端站点的光学性能监测点处的第二噪声功率,所述第二宽度小于所述第一宽度且所述第二宽度对应信号的中心频率与所述第一宽度对应信号的中心频率错开;根据所述第一通道总功率、所述第二通道总功率、所述第一噪声功率和所述第二噪声功率确定所述待测通道的光信噪比。
第三方面,本申请实施例提供了一种光信噪比检测系统,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如第一方面所述的光信噪比检测方法或执行如第二方面所述的光信噪比检测方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如第一方面所述的光信噪比检测方法或执行如第二方面所述的光信噪比检测方法。
本申请实施例提供的光信噪比检测方法,至少具有如下有益效果:本申请实施例的光信噪比检测应用于空闲业务路径,通过检测光源为待测通道提供检测光,同时改变检测光源的波形以及利用收端站点的光学性能监测点监测到的通道总功率和噪声功率,计算出待测通道的光信噪比,实现对空闲业务路径的光学性能监测,极大提升网络维护和管理能力;本申请实施例相对于现有的光学性能监测方案,基于待测通道的频谱带宽对检测光源的信号宽度进行调整,能够更好地切合待测通道在传输业务状态下的环境,从而得到更加准确的光信噪比结果。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的示例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的光信噪比检测方法的整体方法流程图;
图2是本申请一个实施例提供的第一宽度下通道功率的示意图;
图3是本申请一个实施例提供的第二宽度下通道功率的示意图;
图4是本申请一个实施例提供的调整检测光源的工作状态的流程图;
图5是本申请一个实施例提供的直连空闲端口下计算待测通道的光信噪比的流程图;
图6是本申请一个实施例提供的非直连空闲端口下计算待测通道的光信噪比的流程图;
图7是本申请一个实施例提供的光信噪比检测方法的整体方法流程图;
图8是本申请一个实施例提供的异地站点情况下计算待测通道的光信噪比的流程图;
图9是本申请示例一提供的网络结构示意图;
图10是本申请示例二提供的网络结构示意图;
图11是本申请示例三提供的网络结构示意图本申请。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
光传送网OTN继承了同步数据体系(Synchronous Digital Hierarchy,SDH)网络和波分复用(Wavelength Division Multiplexing,DWM)网络的优势,齐聚友大容量和管控机制良好的优势。OTN可以实现多种粒度的信号的传输、交换、复用等功能。同时,OTN可以支持多种上层业务和协议,是承载光网络重要的组网技术。
OTN通过在一根指定的光纤中,组合不同的波长并同时进行传输,实现单条光纤传输容量的提升。不同波长的组合信号在经过站点时由站点中的光放大器设备进行功率放大,增加传输距离,光放大器设备在放大信号的过程中同样将噪声信号放大,使得信号在经过多个光放大器设备放大后,噪声信号变得非常大,为了监测和控制站点的信号的质量,对光通信网络引入了光学性能监测,其中OSNR就是光学性能检测中非常重要的一项指标。
OSNR是在有效带宽为0.1nm内光信号功率与噪声功率的比值,通过在站点处选择特定波长通道进行测量,可以得到该站点的该波长通道在光放大器设备输出的光信号功率与噪声功率,从而评估该波长通道在站点间的信道质量。由此可知,为了得到光信号功率与噪声功率,需要对业务路径上的业务光信号进行监测,无法监测没有业务光信号的空闲通道;而OTN为了保证业务的生存性,预留了大量空闲的光路资源,为故障业务提供恢复路径资源,由于无法提前预知空闲通道的光学性能指标,当业务真正发生故障,并切换到这些空闲通道上后,业务无法成功恢复,造成业务长时间中断,严重影响网络的服务质量。
基于此,本申请实施例提供了一种光信噪比检测方法,为检测空闲的待测通道的OSNR提供了一种检测手段,通过改变检测光源的波形,利用光学性能监测技术在收端站点分别检测出待测通道的信号功率和噪声功率,从而计算出待测通道的OSNR,实现对空闲通道的光性能监测。
参照图1,本申请实施例提供了一种光信噪比检测方法,应用于光信噪比检测系统,光信噪比检测系统包括设置在发端站点的检测光源,检测光源的输出端连接发端站点的线路侧端口,光信噪比检测方法包括但不限于以下步骤S100、步骤S200、步骤S300和步骤S400。
步骤S100,调整检测光源处于自发辐射状态。
为了对空闲通道进行OSNR测量,本申请实施例将额外的检测光源接入到待测通道,提供用于测量的光信号。由于检测光源并不需要真正承载业务,因此采用自发辐射状态生成噪声信号,将该噪声信号作为初始光信号进行OSNR测量。
可以理解的是,空闲通道在硬件上对应当前站点中的空闲端口,该空闲端口可以是光开关(如光滤波器)的上路口或者环回口、耦合器件类的合波器的输入口或者环回口、阵列波导光栅(Arrayed Waveguide Grating,AWG)类器件的上路口等等。另外,空闲通道在光路上对应某一波长通道没有承载业务,表示该波长通道仅在监测时刻没有承载业务,还可以表示该波长通道没有安排承载业务,完全处于闲置状态。对于空闲通道的判断,可以是检测人员根据实际的业务开通情况确定,也可以通过检测该波长通道上是否有业务报文的方式来自动判断,在此不作限定。
对于检测光源,可以由不同的硬件方式组成,例如,检测光源直接采用可调谐的激光光源,产生待测通道对应中心波长的激光,但是可调谐的激光光源一次只能产生一个中心波长的激光,存在一定的局限性,又例如,检测光源由自发辐射源和光滤波器组成,自发辐射源的输出端连接光滤波器的输入端,光滤波器的输出端连接到该空闲端口,其中,自发辐射源可以采用掺饵光纤放大器(Erbium Doped Fiber Application Amplifier,EDFA),此时EDFA的输入端不接输入源,并将EDFA置于自发辐射(Amplified Spontaneous Emission,ASE)状态,可以得到覆盖多个通道的噪声源,而光滤波器可以是AWG、WSS等各种具有滤波功能的合分波器件,用于对EDFA进行波长通道选择。
步骤S200,根据待测通道的频谱带宽调整检测光源的信号宽度为第一宽度,获取收端站点的光学性能监测点处的通道总功率,待测通道为发端站点的线路侧端口到收端站点的线路侧端口的空闲通道,第一宽度不大于待测通道的频谱带宽;
步骤S300,调整检测光源的信号宽度为第二宽度,获取收端站点的光学性能监测点处的噪声功率,第二宽度小于第一宽度且第二宽度对应信号的中心频率与第一宽度对应信号的中心频率错开。
本申请实施例限定待测通道的两端分别是发端站点的线路侧端口和收端站点的线路侧端口,不包括发端站点设备侧的业务上下路,也不包括收端站点设备侧的业务上下路,因此本申请实施例中待测通道的OSNR实际上是指两个站点的光学性能监测点之间的OSNR。
一般地,光信号在光学性能检测点处只能采集到当前通道的功率,为了得到待测通道的OSNR,本申请实施例采用了改变检测光源的波形方法,在收端站点两侧测定当前通道的功率,从而计算得到待测通道的信号光功率。具体来说,在步骤S200中,根据待测通道的频谱宽度设定检测光源的信号宽度为第一宽度,目的在于使得检测光源以相应宽度的光信号填充待测通道对应的频谱宽度,从而使得收端站点的光学性能监测点处测得通道总功率的场景贴近待测通道实际承载业务时的场景,也便于后续改变检测光源的信号宽度来获得噪声功率。然后,在步骤S300中,改变检测光源的信号宽度为第二宽度,因为第二宽度小于第一宽度,因此步骤S300的操作实际上将检测光源收窄,使得待测通道中仅某一宽度下具有光信号,该宽度以外的其余波长通道由光滤波器屏蔽,这样,第二宽度的光信号经过待测通道的各个放大器设备到达收端站点后,其余波长通道会呈现出噪底,那么在收端站点的光学性能监测点处测量得到的这些波长通道的功率即为噪声功率,可参照图2和图3所示,分别是第一宽度下和第二宽度下的波形图。
值得注意的是,第一宽度可以设定为等于待测通道的频谱宽度,这样可以使检测光源填满整个待测通道,所得的通道总功率更加准确,也可以设定为稍小于待测通道的频谱宽度,此时第一宽度根据经验值来确定,以便于后续测量OSNR为准。第二宽度可以根据待测通道所在的网络架构进行设定,例如在100G光传输系统中,用于承载业务的相邻两个通道之间相隔100GHz,光通道谱宽为50GHz,光滤波器可以将信号宽度设置为12.5GHz,那么在50GHz中就有37.5GHz的空闲位置用于测量噪底,可以选择其中12.5GHz的宽度来测量噪声功率。可以理解的是,为了通过噪声功率测量OSNR,第二宽度下信号的中心频率相对第一宽度下信号的中心频率发生偏移,从而在光学性能监测点对第一宽度下信号的中心频率对应的通道进行数据监测。
可以理解的是,光学性能监测点可以采用光学性能监测模块(Optical Performance  Monitoring,OPM)实现,随着可重构光分插复用器(Reconfigurable Optical Add-Drop Multiplexer,ROADM)技术成熟,OPM广泛应用于在线通道光功率监测,为OSNR等光学性能指标的测量提供了方便。OPM的实现可以有多种,例如基于衍射型的结构,由体光栅和阵列探测器组成,又如基于干涉型的结构,采用可调谐光滤波器(Tunable optical filter,TOF)技术,在此不作限定。
步骤S400,根据通道总功率和噪声功率确定待测通道的光信噪比。
通过上述步骤S200和步骤S300得到的通道总功率和噪声功率后,两者相减即可得到信号光功率,根据信号光功率和噪声功率以及相应的OSNR的计算公式,即可得到待测通道的OSNR。
其中,OSNR=(通道总功率-噪声功率)/0.1nm谱宽对应的噪声功率。用B och表示第一宽度,B noise表示第二宽度,B 0.1表示0.1nm的谱宽,P och表示通道总功率,P noise表示噪声功率,则OSNR可以通过下式计算得到:
Figure PCTCN2022098224-appb-000001
通过上述步骤,为空闲的待测通道给定检测光源,同时改变检测光源的信号宽度,使得在收端站点的光学性能检测点处能够得到待测通道的通道总功率和噪声功率,从而计算得到待测通道的OSNR。其中,待测通道的频谱宽度可以选择较大的数值,例如在50GHz宽度下,本申请实施例仍能提供填满频谱宽度的检测光,实际上模拟了待测通道处于多波长环境下承载业务的环境,因此测得的OSNR更加贴合实际业务场景。
值得注意的是,上式计算所得的OSNR并不一定代表待测通道的OSNR值,根据检测光源在收端站点接入的位置不同,所得的OSNR可能包含了设备侧上路端口到线路侧端口之间的OSNR,此时上式计算所得的OSNR减去设备侧上路端口到线路侧端口之间的OSNR,才能得到待测通道的OSNR。由于涉及检测光源的位置,这部分的OSNR修正内容将在下面按照不同的检测光源的位置进行详细说明。
基于上述整体方案,为了能够进一步贴合待测通道的实际业务场景,可以对自发辐射源的功率进行调整,参照图4,具体可以通过以下步骤实现:
步骤S110,将自发辐射源置于自发辐射状态;
步骤S120,调整自发辐射源的自发辐射功率与待测通道的业务接入功率相同。
考虑待测通道在承载业务的场景下需要设定的功率,即业务接入功率,将处于ASE状态的自发辐射源的功率调整到与业务接入功率相同,这样,基于光信号在待测通道中传输的功率特性,对于收端站点,此时接收到的功率与待测通道在承载业务场景下接收到功率相近,因此根据此时接收到的功率计算OSNR能够准确反映承载业务场景下的实际OSNR。
可以理解的是,在发端站点设置检测光源连接发端站点的线路侧端口,分为直连端口和非直连端口两种情况,下面分别针对这两种连接方式进行具体说明。
(1)检测光源的输出端直连发端站点的线路侧端口的情况,检测光源的输出端可以通过单条光纤端对端连接到发端站点的线路侧端口,此时检测光源并不经过发端站点的设备侧端口。
在上述情况下,步骤S400中的OSNR计算通过以下步骤实现,参照图5:
步骤S410,根据通道总功率和噪声功率确定待测通道的信号光功率;
步骤S420,根据待测通道的频谱带宽、信号光功率和噪声功率确定待测通道的光信噪比。
首先确定待测通道的信号光功率,由于收端站点处检测到的通道总功率是信号光功率和噪声功率的叠加,因此通过简单的通道总功率减去噪声功率即可得到信号光功率,然后按照上述OSNR计算公式即可得到待测通道的OSNR。
由于业务在OTN中需要经过设备侧的上下路端口,包括发端站点的设备侧上路端口到发端站点的线路侧端口以及收端站点的线路侧端口到收端站点的设备侧下路这两段,为了得到业务在实际传输路径中的OSNR值,对上述得到的OSNR进行修正:
Figure PCTCN2022098224-appb-000002
其中,OSNR 业务表示业务实际传输路径的OSNR,OSNR 待测表示待测通道的OSNR,OSNR 上路表示发端站点的设备侧上路端口到发端站点的线路侧端口的OSNR,OSNR 下路表示收端站点的线路侧端口到收端站点的设备侧下路的OSNR。
(2)检测光源的输出端通过发端站点的上路端口连接到发端站点的线路侧端口的情况,表示此时线路侧没有空闲端口,但是在设备侧存在空闲的上路端口,可以将检测光源直连接入到该上路端口。
在上述情况下,步骤S400中的OSNR计算通过以下步骤实现,参照图6:
步骤S430,根据通道总功率和噪声功率确定待测通道的信号光功率;
步骤S440,获取发端站点的设备侧上路端口到发端站点的线路侧端口的上路光信噪比;
步骤S450,根据待测通道的频谱带宽、上路光信噪比、信号光功率和噪声功率确定待测通道的光信噪比。
同样地,首先确定待测通道的信号光功率,由于收端站点处检测到的通道总功率是信号光功率和噪声功率的叠加,因此通过简单的通道总功率减去噪声功率即可得到信号光功率,然后按照上述OSNR计算公式可得到从发端站点的设备侧上路端口到收端站点的线路侧端口之间的OSNR,这个OSNR包含了待测通道的OSNR和发端站点的设备侧上路端口到发端站点的线路侧端口之间的OSNR,因此待测通道的OSNR通过下式计算:
Figure PCTCN2022098224-appb-000003
其中,OSNR 待测表示待测通道的OSNR,OSNR 1表示从发端站点的设备侧上路端口到收端站点的线路侧端口之间的OSNR,OSNR 上路表示发端站点的设备侧上路端口到发端站点的线路侧端口的OSNR。
为了得到业务在实际传输路径中的OSNR值,可以在OSNR 1上加上收端站点的线路侧端口到收端站点的设备侧下路的OSNR,如下式所示:
Figure PCTCN2022098224-appb-000004
其中,OSNR 业务表示业务实际传输路径的OSNR,OSNR 下路表示收端站点的线路侧端口到收端站点的设备侧下路的OSNR。
可以理解的是,上述OSNR 上路和OSNR 下路可以在开站阶段或者运维阶段,通过常规手段获取到这些分段的OSNR值,在此不详细展开说明。
另一方面,上路端口到线路侧端口之间可以经过多个组件,例如经过若干个放大器设备、若干个光过滤器等,因此发端站点的设备侧上路端口到发端站点的线路侧端口的OSNR可能由多段OSNR构成,同理,收端站点的线路侧端口到收端站点的设备侧下路的OSNR也可能由多 段OSNR构成,具体根据站点的实际设备连接方式确定。
根据上述两个OSNR的测量场景可知,检测光源均设置在发端站点,在本地直接或者间接地连接到发端站点的线路侧端口,但在一些情况下,发端站点本地并没有空闲端口,需要通过异地站点的空闲端口对待测通道进行测量。因此,本申请实施例还提供了一种光信噪比检测方法,应用于光信噪比检测系统,光信噪比检测系统包括设置在异地站点的检测光源,检测光源的输出端连接异地站点的线路侧端口,光信噪比检测方法包括但不限于以下步骤S500、步骤S600、步骤S700和步骤S800,参照图7:
步骤S500,调整检测光源处于自发辐射状态;
本申请实施例中检测光源设置于异地站点,异地站点具有连接到检测光源的空闲端口,异地站点的空闲端口为线路侧端口并通过光缆线路连接到第一站点的线路侧端口。同样地,为了得到覆盖多个通道的光信号,将检测光源置于自发辐射状态。
可以理解的是,本申请实施例中的检测光源同样可以由自发辐射源和光滤波器组成,自发辐射源的输出端连接光滤波器的输入端,光滤波器的输出端连接到该空闲端口,至于自发辐射源和光滤波器采用何种硬件设备,可以参照步骤S100部分的说明,在此不重复一次。
步骤S600,根据待测通道的频谱带宽调整检测光源的信号宽度为第一宽度,获取发端站点的光学性能监测点处的第一通道总功率以及收端站点的光学性能监测点处的第二通道总功率,待测通道为发端站点的线路侧端口到收端站点的线路侧端口的空闲通道,所述第一宽度不大于所述待测通道的频谱带宽;
步骤S700,调整检测光源的信号宽度为第二宽度,获取发端站点的光学性能监测点处的第一噪声功率以及收端站点的光学性能监测点处的第二噪声功率,第二宽度小于第一宽度且第二宽度对应信号的中心频率与第一宽度对应信号的中心频率错开;
步骤S800,根据第一通道总功率、第二通道总功率、第一噪声功率和第二噪声功率确定待测通道的光信噪比。
本申请实施例由于无法直接将发端站点作为测量起点,因此需要根据两端路径的OSNR来计算得到待测通道的OSNR,具体来说,第一站点和第二站点均各自具备光学性能监测点,从异地站点出发,将检测光源的信号宽度设置为第一宽度,分别在发端站点的光学性能监测点获得第一通道总功率和在收端站点的光学性能监测点获得第二通道总功率,然后调整检测光源的信号宽度为第二宽度,分别在发端站点的光学性能监测点获得第一噪声功率和在收端站点的光学性能监测点获得第二噪声功率,这样就得到从异地站点出发的两组数据,第一组数据是异地站点到发端站点之间的第一通道总功率和第一噪声功率,第二组数据是异地站点到收端站点之间的第二通道总功率和第二噪声功率,根据第一组数据按照上述OSNR计算公式可以得到从异地站点的线路侧端口到发端站点的线路侧端口的OSNR,根据第二组数据按照上述OSNR计算公式可以得到发端站点的线路侧端口到收端站点的线路侧端口的OSNR,将两组数据得到的OSNR相减即可确定待测通道的OSNR,如下式:
Figure PCTCN2022098224-appb-000005
其中,OSNR 待测表示待测通道的OSNR,OSNR 2表示从异地站点的线路侧端口到发端站点的线路侧端口之间的OSNR,OSNR 3表示从异地站点的线路侧端口到收端站点的线路侧端口的OSNR。
参照图8,上述计算过程可以通过以下步骤执行:
步骤S810,根据第一通道总功率和第一噪声功率确定异地站点的线路侧端口到发端站点的线路侧端口的第一信号功率;
步骤S820,根据第二通道总功率和第二噪声功率确定异地站点的线路侧端口到收端站点的线路侧端口的第二信号功率;
步骤S830,根据待测通道的频谱带宽、第一信号功率、第一噪声功率、第二信号功率和第二噪声功率确定待测通道的光信噪比。
其中,根据待测通道的频谱带宽、第一信号功率和第一噪声功率确定从异地站点的线路侧端口到发端站点的线路侧端口之间的OSNR的计算方式可以参照步骤S400,同样地,根据待测通道的频谱带宽、第二信号功率和第二噪声功率确定从异地站点的线路侧端口到收端站点的线路侧端口的OSNR也可以参照步骤S400,在此不展开详细的计算过程。
同样地,为了表示业务实际传输路径的OSNR,需要考虑发端站点的设备侧上路端口到发端站点的线路侧端口之间的OSNR以及收端站点的线路侧端口到收端站点的设备侧下路端口之间的OSNR,因此,根据业务实际传输路径修改上述OSNR:
Figure PCTCN2022098224-appb-000006
其中,OSNR 业务表示业务实际传输路径的OSNR,OSNR 上路表示发端站点的设备侧上路端口到发端站点的线路侧端口的OSNR,OSNR 下路表示收端站点的线路侧端口到收端站点的设备侧下路的OSNR。
可以理解的是,上路端口到线路侧端口之间可以经过多个组件,例如经过若干个放大器设备、若干个光过滤器等,因此发端站点的设备侧上路端口到发端站点的线路侧端口的OSNR可能由多段OSNR构成,同理,收端站点的线路侧端口到收端站点的设备侧下路的OSNR也可能由多段OSNR构成,具体根据站点的实际设备连接方式确定。
通过本申请实施例在异地站点测量OSNR的方法,实现了从异地站点对待测通道的测量,解决了因为站点没有空闲端口而无法测量待测通道的OSNR的问题。
无论在本地站点还是异地站点对待测通道的OSNR进行测量,通过调整检测光源的宽度来分别获得待测通道的通道总功率和噪声功率,可以获得待测通道的信号光功率,从而计算的到待测通道的OSNR,实现对空闲业务路径的光学性能监测,极大提升网络维护和管理能力。
下面以实际三个示例对本申请实施例的光信噪比检测方法进行说明:
示例一:本地端口直连测量OSNR:
参照图9给出的网络线路配置图,本示例需要测量发端站点A,经过穿通站点B,到收端站点C的空闲通道的OSNR,硬件方面,检测光源采用EDFA类型的光放大器OA以及波长选择开关,在图9中分别以OA#41和WSS#41表示,WSS#41直连到发端站点A的线路侧端口。
假设空闲的待测通道的中心频率为192.1THz,宽度为50GHz。
WSS#41的D2口与WSS#21的A2口连接,将检测光源从WSS#21接入到线路侧方向#2;
打通待测通道上的各个光放大器和波长选择开关,对于WSS#51、WSS#52,将中心频率192.1THz,宽度为50GHz的光,指派到相连的端口;
测量通道总功率:操作WSS#41,将中心频率192.1THz,宽度为50GHz的光,指派到WSS#41的D2口,从收端站点B处的OPM读取功率谱,获得中心频率192.1THz,宽度为50GHz的通 道功率,为通道总功率,记作P och,本步骤中WSS#41设置的第一宽度等于待测通道的频谱宽度,OPM设置在收端站点B的OA#61的输出端;
测量噪声功率:操作WSS#41,将中心频率192.0875GHz,宽度为12.5GHz的光,指派到WSS#41的D2口,从收端站点B处的OPM读取功率谱,获得中心频率192.1125GHz,宽度为12.5GHz的通道功率,为噪声功率,记作P noise,可知,本步骤中WSS#41设置的第二宽度为12.5GHz。
根据上述通道总功率和噪声功率,确定待测通道的OSNR,代入下式即可,
Figure PCTCN2022098224-appb-000007
其中,B och为50GHz,B noise为12.5GHz,B 0.1为12.5GHz,本示例中通过上式计算得到的OSNR为发端站点A的线路侧端口到收端站点C的线路侧端口之间的OSNR 待测
根据业务实际传输路径修正OSNR:对于业务光而言,如果从发端站点A到收端站点C,还需要经过发端站点A的上路部分和收端站点C的下路部分。目前,业界已有多种方法获取上下路部分的OSNR,这里不做展开。假定发端站点A的上路部分的OSNR为OSNR 上路,收端站点C下路部分的OSNR为OSNR 下路,则修正后的从发端站点A的上路端口(业务板端口)到收端站点C的下路端口(业务板端口)之间的OSNR 业务如下:
Figure PCTCN2022098224-appb-000008
示例二,本地端口非直连测量OSNR:
参照图10给出的网络线路配置图,示例二与示例一之间的区别在于,发端站点A的线路侧没有空闲端口,但是设备侧上路端口存在空闲端口,将检测光源接入到发端站点A的设备侧上路端口中的空闲端口。硬件方面,检测光源同样采用EDFA类型的光放大器OA以及波长选择开关,在图10中分别以OA#41和WSS#41表示,WSS#41的D1口连接到发端站点A的设备侧上路端口,即WSS#32的A3口。
假设空闲的待测通道的中心频率为192.1THz,宽度为50GHz。
按照前述示例一的方式分别测出两个功率值,根据OSNR计算公式可以得到发端站点A的设备侧上路端口到收端站点C的线路侧端口之间的OSNR,记作OSNR 1
根据业务实际传输路径修正OSNR:由于OSNR 1已经包含了发端站点A上路部分的OSNR,因此只需要再获取收端站点C下路部分的OSNR即可:
Figure PCTCN2022098224-appb-000009
示例三,异地端口接入测量OSNR:
参照图11给出的网络线路配置图,示例三与示例一之间的区别在于,检测光源在异地站点D接入空闲端口,该空闲端口是异地站点D的线路侧端口。同样测量发端站点A,经过穿通站点B,到收端站点C的空闲通道的OSNR,硬件方面,检测光源采用EDFA类型的光放大器OA以及波长选择开关,在图11中分别以OA#41和WSS#41表示,WSS#41直连到异地站点D的线路侧端口。
假设空闲的待测通道的中心频率为192.1THz,宽度为50GHz。
按照前述示例一的方式,根据OSNR计算公式可以得到异地站点D的线路侧端口到发端站点A的线路侧端口之间的OSNR,记作OSNR 2,以及得到异地站点D的线路侧端口到收端站点B的线路侧端口之间的OSNR,记作OSNR 3
将所得的两个OSNR相减即可确定待测通道的OSNR,如下式:
Figure PCTCN2022098224-appb-000010
根据业务实际传输路径修正OSNR:对于业务光而言,如果从发端站点A到收端站点C,还需要经过发端站点A的上路部分和收端站点C的下路部分,假定发端站点A的上路部分的OSNR为OSNR 上路,收端站点C下路部分的OSNR为OSNR 下路,则修正后的从发端站点A的上路端口(业务板端口)到收端站点C的下路端口(业务板端口)之间的OSNR 业务如下:
Figure PCTCN2022098224-appb-000011
本申请实施例的还提供了一种光信噪比检测系统,包括至少一个处理器和用于与至少一个处理器通信连接的存储器;存储器存储有能够被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行前述的光信噪比检测方法。
以光信噪比检测系统中的控制处理器和存储器可以通过总线连接为例。存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于控制处理器远程设置的存储器,这些远程存储器可以通过网络连接至光信噪比检测系统。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,上述装置结构并不构成对光信噪比检测系统的限定,可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例的还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,上述控制处理器执行,可使得上述一个或多个控制处理器执行上述方法实施例中的光信噪比检测方法,例如,执行以上描述的图1中的方法步骤S100至步骤S400、图4中的方法步骤S110至步骤S120、图5中的方法步骤S410至步骤S420、图6中的方法步骤S430至步骤S450、图7中的方法步骤S500至步骤S800以及图8中的方法步骤S810和步骤S830。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移 除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请方案的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种光信噪比检测方法,应用于光信噪比检测系统,所述光信噪比检测系统包括设置在发端站点的检测光源,所述检测光源的输出端连接所述发端站点的线路侧端口,所述光信噪比检测方法包括:
    调整所述检测光源处于自发辐射状态;
    根据待测通道的频谱带宽调整所述检测光源的信号宽度为第一宽度,获取收端站点的光学性能监测点处的通道总功率,所述待测通道为所述发端站点的线路侧端口到所述收端站点的线路侧端口的空闲通道,所述第一宽度不大于所述待测通道的频谱带宽;
    调整所述检测光源的信号宽度为第二宽度,获取所述收端站点的光学性能监测点处的噪声功率,所述第二宽度小于所述第一宽度且所述第二宽度对应信号的中心频率与所述第一宽度对应信号的中心频率错开;
    根据所述通道总功率和所述噪声功率确定所述待测通道的光信噪比。
  2. 根据权利要求1所述的光信噪比检测方法,其中,所述检测光源包括自发辐射源和光滤波器,所述自发辐射源的输出端连接所述光滤波器的输入端。
  3. 根据权利要求2所述的光信噪比检测方法,其中,所述自发辐射源为掺铒光纤放大器,所述光滤波器为波长选择开关。
  4. 根据权利要求3所述的光信噪比检测方法,其中,所述调整所述检测光源处于自发辐射状态,包括:
    将所述自发辐射源置于自发辐射状态;
    调整所述自发辐射源的自发辐射功率与待测通道的业务接入功率相同。
  5. 根据权利要求1所述的光信噪比检测方法,其中,所述检测光源的输出端直连所述发端站点的线路侧端口,所述根据所述通道总功率和所述噪声功率确定所述待测通道的光信噪比,包括:
    根据所述通道总功率和所述噪声功率确定所述待测通道的信号光功率;
    根据所述待测通道的频谱带宽、所述信号光功率和所述噪声功率确定所述待测通道的光信噪比。
  6. 根据权利要求1所述的光信噪比检测方法,其中,所述检测光源的输出端通过所述发端站点的设备侧上路端口连接到所述发端站点的线路侧端口,所述根据所述通道总功率和所述噪声功率确定所述待测通道的光信噪比,包括:
    根据所述通道总功率和所述噪声功率确定所述待测通道的信号光功率;
    获取所述发端站点的设备侧上路端口到所述发端站点的线路侧端口的上路光信噪比;
    根据所述待测通道的频谱带宽、所述上路光信噪比、所述信号光功率和所述噪声功率确定所述待测通道的光信噪比。
  7. 一种光信噪比检测方法,应用于光信噪比检测系统,所述光信噪比检测系统包括设置在异地站点的检测光源,所述检测光源的输出端连接所述异地站点的线路侧端口,所述光信噪比检测方法包括:
    调整所述检测光源处于自发辐射状态;
    根据待测通道的频谱带宽调整所述检测光源的信号宽度为第一宽度,获取发端站点的光 学性能监测点处的第一通道总功率以及收端站点的光学性能监测点处的第二通道总功率,所述待测通道为所述发端站点的线路侧端口到所述收端站点的线路侧端口的空闲通道,所述第一宽度不大于所述待测通道的频谱带宽;
    调整所述检测光源的信号宽度为第二宽度,获取所述发端站点的光学性能监测点处的第一噪声功率以及所述收端站点的光学性能监测点处的第二噪声功率,所述第二宽度小于所述第一宽度且所述第二宽度对应信号的中心频率与所述第一宽度对应信号的中心频率错开;
    根据所述第一通道总功率、所述第二通道总功率、所述第一噪声功率和所述第二噪声功率确定所述待测通道的光信噪比。
  8. 根据权利要求7所述的光信噪比检测方法,其中,所述根据所述第一通道总功率、所述第二通道总功率、所述第一噪声功率和所述第二噪声功率确定所述待测通道的光信噪比,包括:
    根据所述第一通道总功率和所述第一噪声功率确定所述异地站点的线路侧端口到所述发端站点的线路侧端口的第一信号功率;
    根据所述第二通道总功率和所述第二噪声功率确定所述异地站点的线路侧端口到所述收端站点的线路侧端口的第二信号功率;
    根据所述待测通道的频谱带宽、所述第一信号功率、所述第一噪声功率、所述第二信号功率和所述第二噪声功率确定所述待测通道的光信噪比。
  9. 一种光信噪比检测系统,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至6中任意一项所述的光信噪比检测方法或执行如权利要求7至8中任意一项所述的光信噪比检测方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于使计算机执行如权利要求1至6中任意一项所述的光信噪比检测方法或执行如权利要求7至8中任意一项所述的光信噪比检测方法。
PCT/CN2022/098224 2021-06-28 2022-06-10 光信噪比检测方法、装置及计算机存储介质 WO2023273840A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831660.0A EP4346122A1 (en) 2021-06-28 2022-06-10 Optical signal-to-noise ratio measurement method and apparatus, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110719881.2 2021-06-28
CN202110719881.2A CN115603803A (zh) 2021-06-28 2021-06-28 光信噪比检测方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2023273840A1 true WO2023273840A1 (zh) 2023-01-05

Family

ID=84690031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098224 WO2023273840A1 (zh) 2021-06-28 2022-06-10 光信噪比检测方法、装置及计算机存储介质

Country Status (3)

Country Link
EP (1) EP4346122A1 (zh)
CN (1) CN115603803A (zh)
WO (1) WO2023273840A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345582A (zh) * 2008-08-26 2009-01-14 中兴通讯股份有限公司 一种密集波分复用系统的光信号监测方法及监测装置
CN102763350A (zh) * 2012-05-02 2012-10-31 华为技术有限公司 一种波长通道光性能监测的方法、系统和节点设备
CN104052544A (zh) * 2014-07-07 2014-09-17 工业和信息化部电信传输研究所 一种光信噪比监测方法和装置
CN110048770A (zh) * 2019-05-08 2019-07-23 武汉邮电科学研究院有限公司 一种基于roadm网络的带内光信噪比监测方法及模块
WO2021009754A1 (en) * 2019-07-14 2021-01-21 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Optical communication system using mode-locked frequency comb and all-optical phase encoding for spectral and temporal encrypted and stealthy transmission, and for optical processing-gain applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345582A (zh) * 2008-08-26 2009-01-14 中兴通讯股份有限公司 一种密集波分复用系统的光信号监测方法及监测装置
CN102763350A (zh) * 2012-05-02 2012-10-31 华为技术有限公司 一种波长通道光性能监测的方法、系统和节点设备
CN104052544A (zh) * 2014-07-07 2014-09-17 工业和信息化部电信传输研究所 一种光信噪比监测方法和装置
CN110048770A (zh) * 2019-05-08 2019-07-23 武汉邮电科学研究院有限公司 一种基于roadm网络的带内光信噪比监测方法及模块
WO2021009754A1 (en) * 2019-07-14 2021-01-21 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Optical communication system using mode-locked frequency comb and all-optical phase encoding for spectral and temporal encrypted and stealthy transmission, and for optical processing-gain applications

Also Published As

Publication number Publication date
EP4346122A1 (en) 2024-04-03
CN115603803A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US10404365B2 (en) Path computation based on dynamic performance monitoring systems and methods in optical networks
EP2475113B1 (en) Method and device for detecting in-band optical signal to noise ratio
JP3670583B2 (ja) 波長分割多重システムにおいて信号損失を検出するための方法およびシステム
US20100266275A1 (en) Optical Network Testing
US20120148234A1 (en) Methods and node entities in optical networks
US8494360B2 (en) In-service optical network testing
WO2019179320A1 (en) Method and system for controlling channel replacement and spectral occupancy
US10389437B2 (en) Device and method for measuring optical signal-to-noise ratio
US6968131B2 (en) Topology discovery in optical WDM networks
US10797818B1 (en) Dynamic data-driven power scaling in an optical node and network
JP6497439B2 (ja) 通信装置、通信方法、及び、通信システム
WO2010048982A1 (en) Method and apparatus for determining a signal transfer characteristic along a light path in an optical network
EP3580864B1 (en) System and method of providing dark section free transport networks
Kaeval et al. Characterization of the optical spectrum as a service
WO2023273840A1 (zh) 光信噪比检测方法、装置及计算机存储介质
JP2019503120A (ja) Wdmネットワークにおける信号品質の高速な探査
EP1134925A2 (en) Optical transmission system including performance optimization
US20240235672A1 (en) Optical signal-to-noise ratio measurement method and apparatus, and computer storage medium
US6847440B2 (en) Method for measuring the optical signal-to-noise ratios OSNR in a wavelength division multiplex (WDM) transmission system
WO2023082801A1 (zh) 应用于otn网络的备用光通道性能检测方法及性能检测系统
Fishman et al. The rollout of optical networking: LambdaXtreme® national network deployment
WO2023124950A1 (zh) 光信噪比的测量方法和系统
JP4867718B2 (ja) 光通信システムにおける光信号対雑音比測定方法及び該測定方法を使用した光信号対雑音比測定装置
Fei Impacts of physical layer impairments on optical network performance
Fee et al. Optical performance monitoring in the MCI network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18572438

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023579847

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022831660

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022831660

Country of ref document: EP

Effective date: 20231228

NENP Non-entry into the national phase

Ref country code: DE