WO2016172819A1 - 用于光信号交换的传输路径建立方法及装置 - Google Patents
用于光信号交换的传输路径建立方法及装置 Download PDFInfo
- Publication number
- WO2016172819A1 WO2016172819A1 PCT/CN2015/077488 CN2015077488W WO2016172819A1 WO 2016172819 A1 WO2016172819 A1 WO 2016172819A1 CN 2015077488 W CN2015077488 W CN 2015077488W WO 2016172819 A1 WO2016172819 A1 WO 2016172819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical switch
- transmission path
- optical signal
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0013—Construction using gating amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0049—Crosstalk reduction; Noise; Power budget
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0052—Interconnection of switches
- H04Q2011/0058—Crossbar; Matrix
Definitions
- the embodiments of the present invention relate to communication technologies, and in particular, to a method and an apparatus for establishing a transmission path for optical signal exchange.
- ASON Automatic Switched Optical Networks
- the core node of ASON is composed of optical cross-connect (OXC) devices, and OXC can realize flexible and effective management of ASON.
- OXC optical cross-connect
- the optical switch matrix is a core part of the OXC, which can implement functions such as dynamic optical transmission path management, ASON fault protection, and wavelength dynamic allocation, and solves the wavelength contention in the current complex network, improves the wavelength reuse rate, and performs ASON.
- Flexible configuration has important meanings.
- the optical switch matrix is usually composed of multiple optical switches with a certain topological structure.
- the optical signal entering the optical switch from the input port cannot be 100% output to the desired output port, and a part of the optical signal is output to the other output port of the optical switch. .
- this part of the optical signal is the crosstalk optical signal.
- a relatively large instantaneous crosstalk optical signal ie, dynamic crosstalk
- occurs on some output ports of the optical switch matrix during the transmission path switching process. thereby reducing the quality of communication.
- Embodiments of the present invention provide a transmission path establishing method and apparatus for optical signal exchange, so as to reduce dynamic crosstalk when establishing a transmission path used for transmitting optical signals in an optical switch matrix, so as to improve communication quality.
- an embodiment of the present invention provides a transmission path establishing apparatus for optical signal exchange. Establishing a transmission path for the optical signal exchange by changing a state of an optical switch in the optical switch matrix, the transmission path establishing means comprising:
- An external output port the external output port being connected to an internal output port of the optical switch matrix for outputting the optical signal after the exchange;
- an input port of the door device is connected to the external input port, an output port of the door device is connected to an internal input port of the optical switch matrix, and when the door device is in a closed state, it is prohibited Passing the optical signal through the door device; when the door device is in an open state, enabling the optical signal to pass through the door device;
- control module the input port of the control module is connected to the external input port, and configured to obtain a transmission path of the optical signal in the optical switch matrix according to the external input port and the external output port;
- the optical switch matrix includes the internal input port, a first optical switch, and the internal output port, the first optical switch is an optical switch through which the transmission path passes, and the optical switch matrix is used to exchange the optical switch matrix Optical signal, obtaining the exchanged optical signal;
- the control module is further configured to generate a first control signal for the gate device, the first control signal is configured to control the gate device to operate in the off state, and generate a second control signal to the first optical switch And the second control signal is configured to control the first optical switch to operate in a destination state; and generate a third control signal to the gate device, where the third control signal is used to control the gate device to operate in the Said open state.
- the transmission path establishing apparatus further includes a beam splitter, wherein the optical splitter is configured to divide a first power preset size from the optical signal An optical signal and a second optical signal, the first optical signal being transmitted to the control module, the second optical signal being transmitted to the gate device via a fiber delay line, when the control module is based on the external input
- the control module is specifically configured to:
- the gate device is a light gate, and the light gate uses a semiconductor optical amplifier and/or light switch.
- the state switching speed of the optical switch used as the light gate is faster than the light in the optical switch matrix The state of the switch is switched.
- the optical switch used as the light gate is integrated with the optical switch matrix .
- the gate device is a power equalizer.
- an embodiment of the present invention provides a transmission path establishing method for optical signal exchange, by establishing a transmission path for the optical signal exchange by changing a state of an optical switch in an optical switch matrix, where the optical signal passes The door device reaches the optical switch matrix, and when the door device operates in a closed state, prohibiting the optical signal from passing through the door device; when the door device is in an open state, enabling the optical signal to pass through
- the method for establishing a transmission path includes:
- a third control signal is generated to the gate device, and the third control signal is used to control the gate device to operate in the open state.
- the obtaining, by the external input port and the external output port of the optical signal, a transmission path of the optical signal in the optical switch matrix And before the first optical switch used by the transmission path, the transmission path establishing method further includes:
- the gate device is a light gate, and the light gate uses a semiconductor optical amplifier and/or light switch.
- the state switching speed of the optical switch used as the light gate is faster than that in the optical switch matrix The state of the optical switch is switched.
- the gate device is a power equalizer.
- an embodiment of the present invention provides a transmission path establishing apparatus for optical signal exchange, which establishes a transmission path for the optical signal exchange by changing a state of an optical switch in an optical switch matrix, where the optical signal passes The door device reaches the optical switch matrix, and when the door device operates in a closed state, prohibiting the optical signal from passing through the door device; when the door device is in an open state, enabling the optical signal to pass through a description device, the transmission path establishing device includes: a processor and a memory;
- the memory is configured to store an execution instruction, when the transmission path establishing device is in operation, the processor communicates with the memory, and the processor invokes the execution instruction in the memory for execution.
- a third control signal is generated to the gate device, and the third control signal is used to control the gate device to operate in the open state.
- the processor is further configured to:
- the door device is a light gate, and the light gate adopts a semiconductor optical amplifier and/or light switch.
- the state switching speed of the optical switch used as the light gate is faster than the light in the optical switch matrix The state of the switch is switched.
- the gate device is a power equalizer.
- the embodiment of the invention provides a method and a device for establishing a transmission path for optical signal exchange.
- the gate device is arranged before the optical switch matrix, that is, the optical signal reaches the optical switch matrix via the gate device, and the gate device and the optical switch matrix are time-divisionally adjusted.
- the working state of the first optical switch used for the optical signal transmission is used to reduce dynamic crosstalk when the optical signal is used to transmit the used transmission path in the optical switch matrix to improve communication quality.
- 1 is an exemplary diagram of an optical switch matrix of a 4 ⁇ 4 Banyan structure
- FIG. 2 is a diagram showing an example of the structure of a 2 ⁇ 2 optical switch of an MZI structure
- FIG. 3 is a schematic diagram of two working states of the optical switch
- FIG. 4 is a schematic diagram of crosstalk generated by a 2 ⁇ 2 optical switch operating in a crossed state
- 5 is a schematic diagram of static crosstalk generated by a 4 ⁇ 4 optical switch matrix
- FIG. 6 is a schematic diagram of dynamic crosstalk generated by a 4 ⁇ 4 optical switch matrix
- Embodiment 7 is a schematic structural diagram of Embodiment 1 of a transmission path establishing apparatus according to the present invention.
- Figure 8 is a diagram showing an example of an optical switch matrix of a 4 x 4 Benes structure
- Embodiment 9 is a schematic structural diagram of Embodiment 2 of a transmission path establishing apparatus according to the present invention.
- FIG. 10 is a schematic structural diagram of a control module in a transmission path establishing apparatus according to the present invention.
- FIG. 11 is a schematic structural diagram of a light gate in a transmission path establishing apparatus according to the present invention.
- Embodiment 3 of a transmission path establishing apparatus according to the present invention.
- FIG. 13 is a schematic structural diagram of Embodiment 4 of a transmission path establishing apparatus according to the present invention.
- Embodiment 14 is a flowchart of Embodiment 1 of a method for establishing a transmission path according to the present invention
- Embodiment 15 is a flowchart of Embodiment 2 of a method for establishing a transmission path according to the present invention
- FIG. 16 is a schematic structural diagram of Embodiment 5 of a transmission path establishing apparatus according to the present invention.
- the electrical exchange converts the received data packet into an electrical signal, analyzes the electrical signal to obtain the destination address of the data packet, and then exchanges the data packet to the output port pointed to by the destination address, and after being converted into an optical signal by electro-optical conversion. Issue and complete the exchange process.
- the traditional electric switch can not meet the continuous increase of switching capacity due to the limitations of technologies such as backplane and power consumption.
- the optical switch is more and more caused by its low energy consumption and large capacity.
- the optical switching technology is an optical switch matrix that transparently switches optical signals from one input port to any one of the output ports through an M ⁇ N optical switch matrix.
- M and N are both natural numbers, and M represents an input port in the optical switch matrix.
- the number of N the number of output ports in the optical switch matrix.
- optical switching technology can be divided into optical circuit switching, optical burst switching and optical packet switching. In practical applications, different optical switching schemes can be selected according to different application scenarios.
- the core component of the optical switching device is the optical switch matrix.
- An M ⁇ N optical switch matrix is usually constructed with a plurality of 2 ⁇ 2 optical switches in a certain topology.
- Figure 1 shows a 4 ⁇ 4 optical switch matrix of a Banyan structure consisting of 24 optical switches, where each 2 ⁇ 2 optical switch is used as a 1 ⁇ 2 or 2 ⁇ 1 optical switch for mutual The connection between the two.
- Figure 2 shows a conventional 2Z2 optical switch of the MZI structure, which works by applying different driving signals to the two electrodes, and the optical switches are in different working states.
- the main two operating states of the optical switch are called a cross state and one is a bar state.
- the optical switch in the cross state, establishes a transmission path from input port 1 to output port 2 and input port 2 to output port 1, and in the through state, the optical switch establishes input port 1 to output port 1 And the transmission path from input port 2 to output port 2.
- the transmission path is established by applying a suitable driving signal to each optical switch to operate in a cross state or a through state, thereby constructing a transmission path between an input port of the optical switch matrix and an output port.
- the 2 ⁇ 2 optical switch operates in a crossed state, the power of the optical signal input from the input port 1 is P1 (for example, 0 dBm), and the power of the optical signal input from the input port 2 is P2.
- the optical signal input to port 1 cannot be transmitted to output port 2, most of the optical signal P12 (for example, -5dBm) is transmitted to output port 2, and a small portion of signal P11 (for example, -20dBm) is transmitted to the output.
- Port 1; the optical signal entering the output port 2 will have the same phenomenon. Therefore, most of the power (P21) of the optical signal output from the output port 1 comes from the input port 2, and a small portion of the power (P11) comes from the input port.
- P21 and P12 in the output port are effective optical signals
- P11 and P22 are crosstalk optical signals. If P11 or P22 is too large, P21 and P12 will not be correctly received.
- crosstalk is an important indicator to measure the performance of optical switches.
- the size of crosstalk is the ratio of the power from the effective optical signal of the desired input port (such as P12) to the power of the crosstalk optical signal from other input ports (such as P22). to measure.
- the crosstalk optical signal on each optical switch output port continues to propagate along the topological path in the optical switch matrix, and its intensity gradually decreases. Therefore, the level of crosstalk is usually qualitatively measured by the series of crosstalk in the optical switch matrix. The higher the number of stages, the smaller the crosstalk.
- n (n is a positive integer) level crosstalk is defined as: a signal transmitted by an effective optical signal through an optical switch to an undesired output port becomes a level 1 crosstalk; and an n-level crosstalk signal is transmitted through an optical switch to The undesired output port becomes n+1-level crosstalk, and if the signal of the n-level crosstalk is transmitted to the desired output port through one optical switch, it is still n-level crosstalk.
- the crosstalk optical signal of the output port will be superimposed by several different levels of crosstalk optical signals, and can be divided into static crosstalk and dynamic crosstalk. The following describes the static crosstalk and dynamic crosstalk in the optical switch matrix.
- Static crosstalk refers to the crosstalk signal that appears at the output port of the optical switch matrix when the operating states of all optical switches in the optical switch matrix do not change. When each optical switch state is determined, the strength of the crosstalk optical signal for each output port can be determined.
- the size of the static crosstalk is related to the crosstalk size of a single optical switch and the currently established transmission path.
- the 4 ⁇ 4 optical switch matrix establishes input port 1 -> output port 2, input port 2 -> output port 3, input port 3 -> output port 4, input port 4 -> output port 1
- the transmission path is represented by a solid line, and the rest is represented by a broken line
- the optical switch for establishing the four transmission paths is represented by a real frame, and its working state is shown as 0 or 1 in FIG. 5, and “0” Indicates that the optical switch operates in the through state, "1" indicates that the optical switch operates in the cross state; and other optical switches are not used to establish the transmission path, which is called the idle optical switch (indicated by a dashed box in Figure 5), and the state of the idle optical switch It will randomly be in the cross state or the through state.
- Figure 5 shows the state of the idle optical switch.
- the effective optical signal in the output signal is from input port 4, and its transmission path is: optical switch 4 -> optical switch 8 -> optical switch 15 -> optical switch 21; crosstalk from input port 1
- the optical signal is a 2-level crosstalk, and its transmission path is: optical switch 1 -> optical switch 5 -> optical switch 13 -> optical switch 21;
- the crosstalk optical signal from input port 2 is a 3-level crosstalk, and its transmission path is : optical switch 2 -> optical switch 6 -> optical switch 13 -> optical switch 21;
- crosstalk optical signal from input port 3 is a 2-level crosstalk
- the transmission path is: optical switch 3 -> optical switch 7 -> light Switch 15 -> optical switch 21.
- level 1 crosstalk there is only one level 1 crosstalk in the upper arm output port of the optical switch 5 in FIG. 5, and for the optical switch 13, a level 2 crosstalk is superimposed on the output port of the upper arm by a level 2 crosstalk.
- a commonly used method for reducing static crosstalk in an optical switch matrix is to form an optical switch matrix with an excellent topology or to optimize the state of the idle optical switch.
- Dynamic crosstalk is when a transmission path in the optical switch matrix is switched. During the switching of the transmission path, a relatively large instantaneous crosstalk optical signal appears on some output ports.
- Figure 6 shows an example of dynamic crosstalk generation. As shown in FIG. 6, the current optical switch matrix establishes two transmission paths from input port 1 to output port 2 and input port 2 to output port 3. The optical switch 9 is assumed to be in a through state, and the optical signal passes through the light from the input port 1. Switch 1 -> Optical Switch 9 -> Optical Switch 17 -> Optical Switch 23 is transmitted to output port 3 for level 2 crosstalk.
- the operating states of the optical switch 1, the optical switch 9, and the optical switch 24 need to be adjusted from the through state to the intersecting state. Due to the process, there is a certain difference in the performance of each optical switch.
- the working states of the optical switches are not necessarily adjusted at the same time. For example, if the working state of the optical switch 1 is first adjusted, the optical switch 9 is Still in the through state, the approximate level 1 crosstalk from the input port 1 appears on the output port 3. After the working states of the three optical switches are adjusted, the crosstalk from the input port 1 is the level 2 crosstalk. . If this dynamic crosstalk is too large, the optical signal of the exchange will have a burst error, which will affect the performance of the system. Therefore, reducing dynamic crosstalk is also an important issue in optical switching systems.
- an embodiment of the present invention provides a method and an apparatus for establishing a transmission path for optical signal exchange, by setting a gate device before an optical switch matrix, that is, an optical signal reaches an optical switch matrix via a gate device, and a time-sharing gate device is provided.
- the operating state of the first optical switch used for the optical signal transmission in the optical switch matrix can reduce dynamic crosstalk to improve communication quality when the switching optical signal transmits the used transmission path in the optical switch matrix.
- FIG. 7 is a schematic structural diagram of Embodiment 1 of a transmission path establishing apparatus according to the present invention.
- Embodiments of the present invention provide a transmission path establishing apparatus for optical signal exchange, which establishes a transmission path of an optical signal by changing a state of an optical switch in an optical switch matrix.
- the transmission path establishing means 80 for optical signal exchange includes an external input port 81, an optical switch matrix 82, a control module 83, a gate device 84, and an external output port 85.
- the external input port 81 is used for input of an optical signal.
- the external output port 85 is coupled to an internal output port (not shown) of the optical switch matrix 82 for output of the switched optical signal.
- the input port of the gate device 84 is connected to the external input port 81, and the output port of the gate device 84 is connected to an internal input port (not shown) of the optical switch matrix 82.
- the gate device 84 is in the off state, the optical signal is disabled.
- the pass gate device 84 that enables the optical signal.
- the input port of the control module 83 is connected to the external input port 81 for rooting
- the transmission path of the optical signal in the optical switch matrix 82 is obtained according to the external input port 81 and the external output port 85.
- the optical switch matrix 82 includes the internal input port (not shown), a first optical switch (not shown), and the internal output port (not shown), the first optical switch being an optical switch through which the transmission path passes, light
- the switch matrix 82 is used to exchange optical signals to obtain the exchanged optical signals.
- the control module 83 is further configured to generate a first control signal for the gate device 84, the first control signal is used to control the gate device 84 to operate in a closed state; and generate a second control signal to the first optical switch, the second control signal is used for Controlling the first optical switch to operate in a target state; and generating a third control signal to the gate device 84 for controlling the gate device 84 to operate in an open state.
- This embodiment provides a structure of a transmission path establishing apparatus for optical signal exchange.
- the optical signal from the originating end that is, the optical signal to be exchanged, before the exchange, the control module 83 completes the optical identification reading according to the input optical signal, determines the external output port of the optical signal, and then calculates the transmission path to determine the transmission path.
- a first optical switch in the optical switch matrix used; finally, generating a control signal (including a first control signal, a second control signal, and a third control signal) to control the operating state of the first optical switch in the gate device 84 and the optical switch matrix , thereby establishing a corresponding optical signal transmission path.
- the optical signal is output through the external output port 85 through the transmission path established in the gate device 84 and the optical switch matrix 82.
- the introduced dynamic crosstalk can be reduced when the transmission path is established, which is explained below by way of an example.
- the optical switch matrix used in the practice of the present invention is the structure shown in FIG. Referring to FIG. 6 and FIG. 7, two input paths from input port 1 to output port 2 and input port 2 to output port 3 are currently established, and it is assumed that the idle optical switch 9 operates in the through state, and the input port 1 passes through the optical switch 1.
- the transmission path establishing process is such that the gate device 84 coupled to the input port (internal input port) 1 is first turned off, and the optical signal input to the input port (internal input port) 1 of the optical switch matrix is very small. For example, -20dBm; then adjust the state of the optical switch 1, the optical switch 9 and the optical switch 24, in the present invention, even if the optical switch 1 is adjusted before the optical switch 9 in this adjustment process, the output port (internal output port) The crosstalk from input port 1 on 3 is still level 2 crosstalk. After the states of the switching units 1, 9 and 24 are adjusted, the shutter is coupled to the input port (internal input port) 1 to be opened. After the link is established, the crosstalk from the input port (internal input port) 1 on output port 3 is still level 2 crosstalk. Therefore, throughout the transmission Dynamic crosstalk can be reduced during path establishment.
- the optical switch matrix 82 may be an M ⁇ N optical switch matrix of any of the existing topologies.
- the optical switch matrix of the Banyan structure shown in FIG. 1 may be used.
- the optical switch matrix of the Benes structure is given.
- FIG. 9 is a schematic structural diagram of Embodiment 2 of a transmission path establishing apparatus according to the present invention.
- the transmission path establishing means 80 may further include a beam splitter 86.
- the beam splitter 86 can be used to separate the first optical signal and the second optical signal of a preset power level from the optical signal.
- the first optical signal is transmitted to the control module 83, and the second optical signal is transmitted to the gate device 84 via the fiber delay line 87.
- This embodiment provides a structure of an optical switch control device for optical signal exchange.
- the optical signal from the originating end that is, the optical signal to be exchanged, firstly splits the first optical signal of the preset power, such as the optical signal of about 5% or 10% of the power of the optical signal, by the optical splitter 86 before performing optical switching. , enter the control module 83.
- the control module 83 when the control module 83 obtains the transmission path of the optical signal in the optical switch matrix 82 according to the external input port 81 and the external output port 85 of the optical signal, the control module 83 may be specifically configured to: according to the control module 83 and the external input.
- the connection port of the port 81 determines the external input port 81; reads the optical identification of the first optical signal; determines the external output port 85 according to the optical identification; and obtains the optical signal in the optical switch matrix 82 according to the external input port 81 and the external output port 85.
- the control module 83 can obtain the transmission path in a plurality of manners, and can refer to the determination method of the transmission path in the existing optical switch matrix, and details are not described herein again.
- the control module 83 may specifically include an optical identification reading unit 831, a transmission path calculation unit 832, and a control signal generating unit 833.
- the optical identifier reading unit 831 can be configured to determine the external input port 81 according to the connection port of the control module 83 and the external input port 81; read the optical identifier of the first optical signal; and determine the first light according to the optical identifier.
- the transmission path calculation unit 832 can be configured to obtain the transmission path of the optical signal in the optical switch matrix 82 according to the external input port 81 and the external output port 85.
- the control signal generating unit 833 can be configured to generate a control signal including a first control signal, a second control signal, and a third control signal.
- the door device can be a light door.
- the implementation of the light gate may be a semiconductor optical amplifier (SOA) and/or light switch.
- SOA semiconductor optical amplifier
- the number of light gates is the same as the number of internal input ports of the optical switch matrix, and the light gates are in one-to-one correspondence with the internal input ports of the optical switch matrix, that is, each internal input port of the optical switch matrix is set before A light door.
- SOA can amplify or absorb optical signals under different drive signals and has a fast adjustment speed that can operate on the order of nanoseconds (ns) or sub-nanoseconds.
- the gate device 84 is in a closed state equivalent to causing the SOA to absorb the optical signal, and the gate device is in an on state equivalent SOA amplified optical signal.
- the light door can also adopt the manner shown in FIG. As shown in FIG. 11, one input port and any one of the output ports of a 2 ⁇ 2 optical switch are suspended, and only one of the input ports is connected with the fiber delay line, and one of the output ports and the input port of the optical switch matrix. connection.
- the operation of the optical switch in the through state is equivalent to the operation of the shutter in the open state
- the operation in the cross state is equivalent to the state in which the shutter operates in the closed state
- the optical switch operates.
- the cross state is equivalent to the light gate operating in the open state
- the working in the through state is equivalent to the light gate operating in the closed state.
- the optical switch in the optical switch matrix adopts a thermo-optic switch, and the state adjustment time is on the order of microseconds ( ⁇ s), and the optical switch used as the light gate can adopt an electro-optical switch, and its state
- the adjustment time is on the order of nanoseconds (ns)
- the transmission path establishing means for optical switching may include a plurality of external input ports and a plurality of external output ports.
- the number of splitters and the number of gate devices may be the same as the number of external input ports, that is, each external input port independently corresponds to a splitter and a gate device.
- an optical switch used as a light gate can be integrated with the optical switch matrix.
- an optical switch used as a light gate and an optical switch in an optical switch matrix are integrated into one chip to improve device integration.
- the door device can be a power equalizer.
- the number of power equalizers is the same as the number of internal input ports of the optical switch matrix, and the power equalizer is in one-to-one correspondence with the internal input ports of the optical switch matrix, that is, before each internal input port of the optical switch matrix A power equalizer is set up.
- the existing power balancing device in the optical switching device can be utilized without adding a light gate and controlling power appropriately. Equalize the state of the device and the optical switch matrix to reduce dynamic crosstalk caused by the transmission path setup.
- Fig. 13 shows the structure of a transmission path establishing means including a power equalization function.
- the transmission path establishing device 10 includes a power equalizer 100, a control module 300, a power detecting module 400, an optical switch matrix 200, a beam splitter 500 and a beam splitter 600, and an optical fiber delay line 700, which are described herein with one optical signal exchange.
- the optical signal (the signal to be exchanged) input from the input port (external input port) 1 is first divided by the optical splitter 500 to a first optical signal of a preset power level, for example, an optical signal of about 10%, before entering the optical port.
- the control module 300, the optical identification reading unit 301 in the control module 300 completes the optical identification reading according to the input first optical signal, and determines an external output port of the first optical signal.
- the external output port is set as an output port. N; then, the transmission path calculation unit 302 in the control module 300 performs transmission path calculation to determine a first optical switch (not shown) in the optical switch matrix 200 used by the transmission path; finally, the power balance control signal generation unit 304 And the control signal generating unit 303 controls the states of the first optical switches in the power equalizer 100 and the optical switch matrix 200 according to a certain timing, thereby establishing a corresponding transmission path and power equalization of the optical signals.
- the power balance control signal generating unit 304 generates a control signal to the power equalizer 100 of the coupled input port (external input port) 1 to attenuate the input optical signal; the power detecting module 400 detects the output of the power equalizer 100 The power of the signal is lower than the set threshold.
- the power equalization control signal generating unit 304 triggers the control signal generating unit 303 to generate a control signal to the optical switch matrix 200, and controls the first optical switch to operate in the destination state. Finally, the first optical switch is to be operated.
- the power balance control signal generating unit 304 After the state adjustment is completed, the power balance control signal generating unit 304 generates a control signal to the power equalizer 100 coupled to the input port (external input port) 1 to amplify the input optical signal to a desired state, thereby completing the light. The power balance of the signal and the establishment of the transmission path.
- the optical signal first undergoes a certain delay through the fiber delay line 700; then, it is amplified to a desired intensity by the power equalizer 100; finally, the amplified optical signal passes through the transmission path established in the optical switch matrix 200, and then passes through the output port. N output.
- this embodiment utilizes an existing power equalizer and is easy to implement without adding additional hardware resources.
- FIG. 14 is a flowchart of Embodiment 1 of a method for establishing a transmission path for optical signal exchange according to the present invention.
- Embodiments of the present invention provide a transmission path establishing method for optical signal exchange, which establishes a transmission path of an optical signal by changing a state of an optical switch in an optical switch matrix.
- the optical signal reaches the optical switch matrix through the gate device.
- the gate device operates in the off state, the optical signal is prohibited from passing through the gate device; when the gate device is in the open state, the optical signal is enabled to pass through the gate device.
- the method can be performed by any of the transmission path establishing means for optical signal exchange in the embodiment of the present invention.
- the transmission path establishing method for optical signal exchange includes:
- the control module 83 acquires an output port (external output port) 85 of an optical signal input from an input port (external input port) 81; then, the control module 83 performs transmission path calculation to obtain an input port (external input port) a first optical switch (not shown) employed by the output port (external output port) 85; then, the control module 83 generates a first control signal to the gate device 84 to cause the gate device 84 to operate in a closed state, ie, the gate The device 84 blocks the input optical signal from being transmitted to the output port (external output port) 85, or causes the input optical signal to be transmitted to the output port (external output port) 85 with great loss; after the door device 84 is adjusted, the control The module 83 generates a second control signal to the optical switch matrix 82 to control the first optical switch to operate in the target state.
- control module 83 After the first optical switch state is adjusted, the control module 83 generates a third control signal to the gate device 84 to enable the gate.
- the device 84 operates in an on state, and the instant door device 84 transmits the input optical signal to the output port (external output port) 85 with minimal loss.
- the introduced dynamic crosstalk can be reduced in the process of establishing the transmission path.
- the embodiment of the invention sets the door device before the optical switch matrix, that is, the optical signal passes through the gate device Reaching the optical switch matrix, adjusting the operating state of the first optical switch used for the optical signal transmission in the gate device and the optical switch matrix in time to transmit the used transmission path when the optical signal is switched in the optical switch matrix Reduce dynamic crosstalk to improve communication quality.
- the transmission path establishing method may further include: separating the first optical signal and the second optical signal of the preset power size from the optical signal.
- S101 may include: determining an external input port according to a connection port of the control module and the external input port; reading an optical identifier of the first optical signal; determining an external output port according to the optical identifier; and according to the external input port and the external output port The transmission path of the optical signal in the optical switch matrix is obtained.
- the transmission path establishing means 80 can also use the optical splitter 86 to separate the first optical signal and the second optical signal of the preset power size from the optical signal input from the input port (external input port) 81.
- the first optical signal is transmitted to the control module 83 to cause the control module 83 to extract the optical identification from the first optical signal, thereby determining an output port (external output port) 85 of the optical signal.
- the present invention is not limited thereto, and the output ports of the optical signals may be determined by other methods, which are not enumerated here.
- the door device 84 may be a light door.
- the light gate can employ a semiconductor optical amplifier and/or an optical switch.
- the number of the light gates is the same as the number of internal input ports of the optical switch matrix, and the light gates are in one-to-one correspondence with the internal input ports of the optical switch matrix, that is, one light is set before each internal input port of the optical switch matrix. door.
- optical switch used as the optical switch and the optical switch in the optical switch matrix are independently designed, and the state switching speed of the optical switch using the light gate is faster than the state switching speed of the optical switch in the optical switch matrix, thereby Reduce the time it takes to establish a transmission path.
- the door device 84 can be a power equalizer.
- the number of power equalizers is the same as the number of internal input ports of the optical switch matrix, and the power equalizers are in one-to-one correspondence with the internal input ports of the optical switch matrix, that is, before each internal input port of the optical switch matrix Set up a power equalizer.
- Fig. 15 shows a transmission path establishing method for optical switching. As shown in Figure 15, the method includes:
- the optical identification reading unit 301 reads the optical identification of the first optical signal output by the optical signal input from the input port (external input port) 1 via the optical splitter 500, and determines the output port N of the first optical signal.
- the transmission path calculation unit 302 calculates the transmission path, and determines the first optical switch (not shown) employed by the optical switch matrix 200 to establish the input port (external input port) 1 to the output port N;
- the power balance control signal generating unit 304 Generating a control signal to the power equalizer 100 to attenuate the input second optical signal;
- the power detecting module 400 detects that the power of the signal output by the power equalizer 100 is lower than a set threshold, and the control signal generating unit 303 generates a control signal.
- the optical switch matrix 200 is controlled to operate the first optical switch in the target state; finally, after the first optical switch state adjustment is completed, the power equalization control signal generating unit 304 generates a control signal to the power equalizer 100 to amplify the input signal. Go to the desired state, thereby completing the power equalization of the optical signal input through the input port (external input port) 1 and its transmission path Legislation.
- FIG. 16 is a schematic structural diagram of Embodiment 5 of a transmission path establishing apparatus according to the present invention.
- Embodiments of the present invention provide a transmission path establishing apparatus for optical signal exchange, which establishes a transmission path for optical signal exchange by changing a state of an optical switch in an optical switch matrix, wherein the optical signal reaches the optical switch matrix through the gate device.
- the transmission path establishing means 160 includes a processor 161 and a memory 162.
- the memory 161 is used to store execution instructions.
- the processor 162 communicates with the memory 161, and the processor 162 calls the execution instructions in the memory 161 for performing the following operations:
- the embodiment of the present invention can reduce the introduced dynamic crosstalk in the process of establishing a transmission path.
- the embodiment of the present invention can reduce the introduced dynamic crosstalk in the process of establishing a transmission path.
- the processor 161 is further configured to: divide a first optical signal and a second optical signal of a preset power size from the optical signal; then when the processor 161 performs the external according to the optical signal
- the input port and the external output port are configured to: determine the external input port according to a connection port of the processor and the external input port when obtaining a transmission path of the optical signal in the optical switch matrix Reading an optical identifier of the first optical signal; determining the external output port according to the optical identifier; obtaining the optical signal in the optical switch matrix according to the external input port and the external output port The transmission path.
- the gate device may be a light gate or a power equalizer or the like.
- the light gate may employ a semiconductor optical amplifier and/or an optical switch or the like.
- the state switching speed of the optical switch used as the light gate is faster than the state switching speed of the optical switch in the optical switch matrix.
- the aforementioned program can be stored in a computer readable storage medium.
- the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明实施例提供一种用于光信号交换的传输路径建立方法及装置。本发明实施例通过在光开关矩阵之前设置门设备,即光信号经由门设备到达光开关矩阵,分时调整门设备与光开关矩阵中用于该光信号传输所使用的第一光开关的工作状态,以在建立光信号在光开关矩阵中传输所使用的传输路径时,可降低动态串扰,从而提高通信质量。
Description
本发明实施例涉及通信技术,尤其涉及一种用于光信号交换的传输路径建立方法及装置。
近年来,互联网业务呈爆炸式增长,人们对于网络的要求越来越多,随之对整个网络的组网方式、节点设计、管理和控制提出了新的要求。因此,一种智能化网络体系结构,即自动交换光网络(Automatic Switched Optical Networks,简称:ASON)成为当今研究的热点。
其中,ASON的核心节点由光交叉连接(Optical Cross-connect,简称:OXC)设备构成,通过OXC可实现对ASON灵活、有效地管理。进一步地,光开关矩阵是OXC的核心部分,它可实现动态光传输路径管理、ASON的故障保护、波长动态分配等功能,对解决目前复杂网络中的波长争用,提高波长重用率,进行ASON灵活配置均有重要的意义,其中,光开关矩阵通常情况下是由多个光开关以一定的拓扑结构构成的。
由于工艺的限制等原因,光开关不管工作在哪种状态,从输入端口进入光开关的光信号不可能100%输出到期望的输出端口,会有一部分光信号输出到该光开关的其它输出端口。此时,从其它输入端口的角度来说,这部分光信号即为串扰光信号。在实际应用中,当光开关矩阵中的某条传输路径进行切换时,在传输路径切换的过程中会导致光开关矩阵的某些输出端口上出现比较大的瞬时串扰光信号(即动态串扰),从而降低通信质量。
发明内容
本发明实施例提供一种用于光信号交换的传输路径建立方法及装置,以实现在建立光信号在光开关矩阵中传输所使用的传输路径时,降低动态串扰,以提高通信质量。
第一方面,本发明实施例提供一种用于光信号交换的传输路径建立装置,
通过改变光开关矩阵中光开关的状态来建立用于所述光信号交换的传输路径,所述传输路径建立装置包括:
外部输入端口,所述外部输入端口用于所述光信号的输入;
外部输出端口,所述外部输出端口与光开关矩阵的一内部输出端口连接,用于交换后的光信号的输出;
门设备,所述门设备的输入端口与所述外部输入端口连接,所述门设备的输出端口与所述光开关矩阵的一内部输入端口连接,当所述门设备工作于关闭状态时,禁止所述光信号的通过所述门设备;当所述门设备工作于开启状态时,使能所述光信号的通过所述门设备;
控制模块,所述控制模块的输入端口与所述外部输入端口连接,用于根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径;
所述光开关矩阵,包括所述内部输入端口、第一光开关和所述内部输出端口,所述第一光开关为所述传输路径经过的光开关,所述光开关矩阵用于交换所述光信号,获得所述交换后的光信号;
所述控制模块还用于生成第一控制信号给所述门设备,所述第一控制信号用于控制所述门设备工作在所述关闭状态;生成第二控制信号给所述第一光开关,所述第二控制信号用于控制所述第一光开关工作在目的状态;以及,生成第三控制信号给所述门设备,所述第三控制信号用于控制所述门设备工作在所述开启状态。
结合第一方面,在第一方面的第一种可能的实现方式中,所述传输路径建立装置还包括分光器,所述分光器用于从所述光信号中分出预设功率大小的第一光信号和第二光信号,所述第一光信号被传送至所述控制模块,所述第二光信号通过光纤延迟线被传送至所述门设备,当所述控制模块根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径时,所述控制模块具体用于:
根据所述控制模块与所述外部输入端口的连接端口,确定所述外部输入端口;
读取所述第一光信号的光标识;
根据所述光标识,确定所述外部输出端口;
根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述门设备为光门,所述光门采用半导体光放大器和/或光开关。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。
结合第一方面的第二种或第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述用作所述光门的光开关与所述光开关矩阵集成设置。
结合第一方面或第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述门设备为功率均衡器。
第二方面,本发明实施例提供一种用于光信号交换的传输路径建立方法,通过改变光开关矩阵中光开关的状态来建立用于所述光信号交换的传输路径,所述光信号通过门设备到达所述光开关矩阵,当所述门设备工作于关闭状态时,禁止所述光信号通过所述门设备;当所述门设备工作于开启状态时,使能所述光信号通过所述门设备,所述传输路径建立方法包括:
根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关;
生成第一控制信号给所述门设备,所述第一控制信号用于控制所述门设备工作在所述关闭状态;
然后,生成第二控制信号给所述第一光开关,所述第二控制信号用于控制所述第一光开关工作在目的状态;
再然后,生成第三控制信号给所述门设备,所述第三控制信号用于控制所述门设备工作在所述开启状态。
结合第二方面,在第二方面的第一种可能的实现方式中,所述根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关之前,所述传输路径建立方法还包括:
从所述光信号中分出预设功率大小的第一光信号和第二光信号;
所述根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关,包括:
根据控制模块与所述外部输入端口的连接端口,确定所述外部输入端口;
读取所述第一光信号的光标识;
根据所述光标识,确定所述外部输出端口;
根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述门设备为光门,所述光门采用半导体光放大器和/或光开关。
结合第二方面的第二种可能的实现方式中,在第二方面的第三种可能的实现方式中,用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述门设备为功率均衡器。
第三方面,本发明实施例提供一种用于光信号交换的传输路径建立装置,通过改变光开关矩阵中光开关的状态来建立用于所述光信号交换的传输路径,所述光信号通过门设备到达所述光开关矩阵,当所述门设备工作于关闭状态时,禁止所述光信号通过所述门设备;当所述门设备工作于开启状态时,使能所述光信号通过所述门设备,所述传输路径建立装置包括:处理器和存储器;
所述存储器,用于存储执行指令,当所述传输路径建立装置运行时,所述处理器与所述存储器之间通信,所述处理器调用所述存储器中的所述执行指令,用于执行以下操作:
根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关;
生成第一控制信号给所述门设备,所述第一控制信号用于控制所述门设备工作在所述关闭状态;
然后,生成第二控制信号给所述第一光开关,所述第二控制信号用于控制所述第一光开关工作在目的状态;
再然后,生成第三控制信号给所述门设备,所述第三控制信号用于控制所述门设备工作在所述开启状态。
结合第三方面,在第三方面的第一种可能的实现方式中,所述处理器还用于:
从所述光信号中分出预设功率大小的第一光信号和第二光信号;
则当所述处理器执行所述根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径,具体用于:
根据所述处理器与所述外部输入端口的连接端口,确定所述外部输入端口;
读取所述第一光信号的光标识;
根据所述光标识,确定所述外部输出端口;
根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述门设备为光门,所述光门采用半导体光放大器和/或光开关。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述门设备为功率均衡器。
本发明实施例提供一种用于光信号交换的传输路径建立方法及装置,通过在光开关矩阵之前设置门设备,即光信号经由门设备到达光开关矩阵,分时调整门设备与光开关矩阵中用于该光信号传输所使用的第一光开关的工作状态,以在建立光信号在光开关矩阵中传输所使用的传输路径时,可降低动态串扰,以提高通信质量。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面
描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为4×4的Banyan结构的光开关矩阵的示例图;
图2为MZI结构的2×2的光开关的结构示例图;
图3为光开关的两种工作状态的示意图;
图4为2×2的光开关工作在交叉状态所产生的串扰的示意图;
图5为4×4的光开关矩阵所产生的静态串扰示意图;
图6为4×4的光开关矩阵所产生的动态串扰示意图;
图7为本发明传输路径建立装置实施例一的结构示意图;
图8为4×4的Benes结构的光开关矩阵的示例图;
图9为本发明传输路径建立装置实施例二的结构示意图;
图10为本发明传输路径建立装置中控制模块的结构示意图;
图11为本发明传输路径建立装置中光门的结构示意图;
图12为本发明传输路径建立装置实施例三的结构示意图;
图13为本发明传输路径建立装置实施例四的结构示意图;
图14为本发明传输路径建立方法实施例一的流程图;
图15为本发明传输路径建立方法实施例二的流程图;
图16为本发明传输路径建立装置实施例五的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
当前,数据交互是由电交换机来完成的。电交换是将接收到的数据包进行光电转换为电信号,解析该电信号得到数据包的目的地址,之后,将数据包交换至目的地址所指向的输出端口,并经过电光转换为光信号后发出,完成交换过程。
然而传统的电交换机由于背板及能耗等技术的限制已不能满足交换容量持续增长的需求。此时,光交换机以其低能耗、大容量等特点引起越来越多
的关注,业界开始研究如何将光交换用于交换网络中。
光交换技术是一种通过M×N的光开关矩阵,将光信号透明的从一个输入端口交换到任意一个输出端口光交换,其中,M和N均为自然数,M表示光开关矩阵中输入端口的个数,N表示光开关矩阵中输出端口的个数。按照不同的交换颗粒度,光交换技术可分为光电路交换、光突发交换和光包交换,在实际应用中,可以根据的不同的应用场景选择不同的光交换方案。
光交换装置的核心器件是光开关矩阵。一个M×N的光开关矩阵通常情况下是由多个2×2的光开关以一定的拓扑结构构成。
如图1给出了由24个光开关构成的Banyan结构的4×4的光开关矩阵,其中,每个2×2的光开关被当做1×2或2×1的光开关用于相互之间的连接。
图2给出了一种常用的MZI结构的2×2的光开关,其工作原理为:通过施加不同的驱动信号到两个电极上,光开关就处于不同的工作状态。该光开关主要的两种工作状态一个称为交叉(cross)状态,一个为直通(bar)状态。如图3所示,在交叉状态中,光开关建立了输入端口1到输出端口2以及输入端口2到输出端口1的传输路径;而直通状态中,光开关建立了输入端口1到输出端口1以及输入端口2到输出端口2的传输路径。传输路径的建立就是给每个光开关施加合适的驱动信号使其工作在交叉状态或者直通状态,从而构建了光开关矩阵的某一输入端口到某一输出端口之间的传输路径。
如图4所示,2×2的光开关工作在交叉状态,从输入端口1输入的光信号的功率为P1(如为0dBm),从输入端口2输入的光信号的功率为P2。输入端口1的光信号不可能全部到传输到输出端口2,大部分的光信号P12(如为-5dBm)传输到输出端口2,小部分的信号P11(如为-20dBm)则会传输到输出端口1;输出端口2进入的光信号也会有同样的现象,因此,输出端口1输出的光信号的大部分的功率(P21)来自于输入端口2,小部分功率(P11)来自于输入端口1;而输出端口2输出的光信号的大部分的功率(P12)来自于输入端口1,小部分功率(P22)来自于输入端口2。而对于接收端来说,输出端口中的P21和P12才是有效光信号,P11和P22为串扰光信号,如果P11或者P22过大的话,就将导致P21和P12无法被正确接收。其中,串扰是衡量光开关的性能的一个重要指标,串扰的大小采用自期望输入端口的有效光信号到的功率(如P12)与来自其他输入端口的串扰光信号的功率(如P22)的比值来衡量。
当多个光开关构成光开关矩阵时,则每一个光开关输出端口上的串扰光信号会沿着光开关矩阵中的拓扑路径继续传播,其强度会慢慢变小。因此,光开关矩阵中通常用串扰的级数定性的衡量串扰的大小,级数越高表示串扰越小。其中,n(n为正整数)级串扰定义为:有效光信号通过1个光开关传输到非期望的输出端口的信号成为1级串扰;而一个n级串扰的信号通过1个光开关传输到非期望的输出端口成为n+1级串扰,如果是n级串扰的信号通过1个光开关传输到期望输出端口则仍为n级串扰。对于光开关矩阵来说其输出端口的串扰光信号将会是几个不同级数的串扰光信号叠加,且又可以分为静态串扰和动态串扰。下面就分别介绍光开关矩阵中的静态串扰和动态串扰。
静态串扰是指光开关矩阵中的所有的光开关的工作状态不改变时,在光开关矩阵的输出端口出现的串扰信号。当每个光开关状态确定,则每个输出端口的串扰光信号的强度就可以确定了。静态串扰的大小与单个光开关的串扰大小以及当前建立的传输路径相关。
如图5所示,4×4的光开关矩阵建立了输入端口1->输出端口2,输入端口2->输出端口3,输入端口3->输出端口4,输入端口4->输出端口1的传输路径,该四条传输路径采用实线表示,其余采用虚线表示,且用于建立四条传输路径的光开关采用实框表示,其工作状态如图5中的0或者1所示,“0”表示光开关工作于直通状态,“1”表示光开关工作于交叉状态;而其他的光开关不用于建立传输路径,称为空闲光开关(图5中采用虚框表示),空闲光开关的状态会随机的处于交叉状态或者直通状态,图5示例给出空闲光开关的状态。以输出端口1为例,其输出的信号中有效光信号来自输入端口4,其传输路径为:光开关4->光开关8->光开关15->光开关21;来自输入端口1的串扰光信号是一个2级串扰,其传输路径为:光开关1->光开关5->光开关13->光开关21;来自输入端口2的串扰光信号是一个3级串扰,其传输路径为:光开关2->光开关6->光开关13->光开关21;来自输入端口3的串扰光信号是一个2级串扰,其传输路径为:光开关3->光开关7->光开关15->光开关21。如图5中的光开关5的上臂输出端口中仅为一个1级串扰,而对于光开关13,其上臂的输出端口中为一个1级串扰叠加了一个2级串扰。目前常用的降低光开关矩阵中静态串扰的常用方法为将光开关以一个优良的拓扑结构构成光开关矩阵或者优化空闲光开关的状态。
动态串扰为当光开关矩阵中的某条传输路径进行切换时,在传输路径的切换的过程中会导致某些输出端口上出现比较大的瞬时串扰光信号。图6给出了动态串扰产生的一个例子。如图6所示,当前光开关矩阵建立了输入端口1到输出端口2以及输入端口2到输出端口3的两条传输路径,光开关9假定处于直通状态,则光信号自输入端口1通过光开关1->光开关9->光开关17->光开关23传输到输出端口3上为2级串扰。如果此时要建立输入端口1到输出端口4的传输路径,则需要将光开关1、光开关9以及光开关24的工作状态从直通状态调整为交叉状态。由于工艺导致每个光开关的性能存在一定的差异性,这几个光开关的工作状态不一定是在同一时间完成调整的,比如如果光开关1的工作状态最先完成调整,而光开关9仍然处于直通状态,此时则会在输出端口3上出现来自输入端口1的近似1级串扰,待这三个光开关的工作状态都调整好后,来自输入端口1的串扰则为2级串扰。如果这种动态串扰过大会导致交换的光信号出现突发错误,影响系统的性能。因此,降低动态串扰也是光交换系统中一个重要的问题。
基于上述说明,本发明实施例提供一种用于光信号交换的传输路径建立方法及装置,通过在光开关矩阵之前设置门设备,即光信号经由门设备到达光开关矩阵,分时调整门设备与光开关矩阵中用于该光信号传输所使用的第一光开关的工作状态,以在切换光信号在光开关矩阵中传输所使用的传输路径时,可降低动态串扰,以提高通信质量。
图7为本发明传输路径建立装置实施例一的结构示意图。本发明实施例提供一种用于光信号交换的传输路径建立装置,通过改变光开关矩阵中光开关的状态来建立光信号的传输路径。如图7所示,该用于光信号交换的传输路径建立装置80包括:外部输入端口81、光开关矩阵82、控制模块83、门设备84和外部输出端口85。
其中,外部输入端口81用于光信号的输入。外部输出端口85与光开关矩阵82的一内部输出端口(未示出)连接,用于交换后的光信号的输出。门设备84的输入端口与外部输入端口81连接,门设备84的输出端口与光开关矩阵82的一内部输入端口(未示出)连接,当门设备84工作于关闭状态时,禁止光信号的通过门设备84;当门设备84工作于开启状态时,使能光信号的通过门设备84。控制模块83的输入端口与外部输入端口81连接,用于根
据外部输入端口81和外部输出端口85获得光信号在光开关矩阵82中的传输路径。光开关矩阵82包括所述内部输入端口(未示出)、第一光开关(未示出)和所述内部输出端口(未示出),第一光开关为传输路径经过的光开关,光开关矩阵82用于交换光信号,获得所述交换后的光信号。控制模块83还用于生成第一控制信号给门设备84,该第一控制信号用于控制门设备84工作在关闭状态;生成第二控制信号给第一光开关,该第二控制信号用于控制第一光开关工作在目的状态;以及,生成第三控制信号给门设备84,该第三控制信号用于控制门设备84工作在开启状态。
本实施例给出一种用于光信号交换的传输路径建立装置的结构。来自发端的光信号,即待交换的光信号,在进行交换之前,控制模块83根据输入的光信号完成光标识读取,确定光信号的外部输出端口;然后计算传输路径,确定该传输路径所使用的光开关矩阵中第一光开关;最后,产生控制信号(包括第一控制信号、第二控制信号和第三控制信号),以控制门设备84和光开关矩阵中第一光开关的工作状态,从而建立相应的光信号传输路径。光信号通过门设备84及光开关矩阵82中建立的传输路径后经外部输出端口85输出。
通过传输路径建立装置80,在建立传输路径时可以降低引入的动态串扰,下面通过一个例子说明。
例如,本发明实施使用的光开关矩阵为图6所示的结构。参考图6和图7,当前已建立输入端口1到输出端口2以及输入端口2到输出端口3的两条传输路径,并假定空闲光开关9工作在直通状态,则输入端口1通过光开关1->光开关9->光开关17->光开关23传输到输出端口3上的信号为2级串扰。如果此时要建立输入端口1到输出端口4的传输路径,则需要将光开关1,光开关9以及光开关24的状态从直通状态调整为交叉状态。按照本发明传输路径建立过程为:先控制耦合到输入端口(内部输入端口)1的门设备84处于关闭状态,则在光开关矩阵的输入端口(内部输入端口)1输入的光信号就非常小,比如-20dBm;然后再调整光开关1,光开关9以及光开关24的状态,本发明中,即使这个调整过程中光开关1在光开关9之前先调整好,输出端口(内部输出端口)3上来自输入端口1的串扰仍为2级串扰。待开关单元1,9以及24的状态都调整好以后再将耦合到输入端口(内部输入端口)1上光门打开。链路建立后输出端口3上来自输入端口(内部输入端口)1的串扰仍为2级串扰。因此,在整个传输
路径建立的过程中可降低动态串扰。
在本发明实施例中,光开关矩阵82可以为现有任何一种拓扑结构的M×N的光开关矩阵,例如可以为如图1所示的Banyan结构的光开关矩阵,也可以为图8给出的Benes结构的光开关矩阵。
图9为本发明传输路径建立装置实施例二的结构示意图。在图7所示实施例的基础上,如图9所示,传输路径建立装置80还可以包括分光器86。分光器86可以用于从光信号中分出预设功率大小的第一光信号和第二光信号。其中,第一光信号被传送至控制模块83,第二光信号通过光纤延迟线87被传送至门设备84。
本实施例给出一种用于光信号交换的光开关控制装置的结构。来自发端的光信号,即待交换的光信号,在进行光交换之前,首先通过分光器86分出预设功率的第一光信号,例如光信号的功率的5%或10%左右的光信号,进入控制模块83。
该实施例中,当控制模块83根据光信号的外部输入端口81和外部输出端口85获得光信号在光开关矩阵82中传输路径时,控制模块83可以具体用于:根据控制模块83与外部输入端口81的连接端口,确定外部输入端口81;读取第一光信号的光标识;根据光标识,确定外部输出端口85;根据外部输入端口81和外部输出端口85获得光信号在光开关矩阵82中的所述传输路径。其中,控制模块83可通过多种方式获取传输路径,可参考现有的光开关矩阵中传输路径的确定方法,此处不再赘述。
一种示例中,如图10所示,控制模块83可以具体包括:光标识读取单元831、传输路径计算单元832和控制信号生成单元833。其中,光标识读取单元831可以用于根据控制模块83与外部输入端口81的连接端口,确定外部输入端口81;读取第一光信号的光标识;及,根据光标识,确定第一光信号的外部输出端口85。传输路径计算单元832可以用于根据外部输入端口81和外部输出端口85获得光信号在光开关矩阵82中的所述传输路径。控制信号生成单元833可以用于生成控制信号,该控制信号包括第一控制信号、第二控制信号和第三控制信号。
一种实施例中,门设备可以为光门。进一步地,光门的实现的方式可以采用半导体光放大器(Semiconductor Optical Amplifier,简称:SOA)和/或
光开关。其中,光门的个数与光开关矩阵的内部输入端口的个数相同,光门与光开关矩阵的内部输入端口一一对应,也就是说光开关矩阵的每一个内部输入端口的之前均设置一个光门。
SOA在不同的驱动信号下可以放大或吸收光信号,且具有很快的调整的速度,可以工作到纳秒(ns)或者亚纳秒的数量级。门设备84处于关闭状态等效为使SOA吸收光信号,门设备处于开启状态等效SOA放大光信号。
光开关用作光门时,光门还可以采用如图11所示的方式。如图11所示,将一个2×2的光开关的任意一个输入端口和任意一个输出端口悬空,只利用其中的一个输入端口和光纤延迟线连接,其中的一个输出端口和光开关矩阵的输入端口连接。在A和D连接方式中,光开关工作于直通状态等效为光门工作于开启状态,工作于交叉状态等效于光门工作于关闭的状态;在B和C连接方式中,光开关工作于交叉状态等效为光门工作于开启状态,工作于直通状态等效于光门工作于关闭状态。此外,为了降低传输路径建立的时间,可对用于光门的2×2光开关做一些特殊的设计,尽可能的降低其状态调整所需的时间,使得用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。例如,在某些应用场景中,光开关矩阵中的光开关采用热光开关,其状态调整的时间为微秒(μs)数量级,而用做光门的光开关就可以采用电光开关,其状态调整的时间为纳秒(ns)数量级,采用这种设计或者使用SOA可以使整个传输路径建立的时间远低于现有技术。
另外,如图12所示,用于光交换的传输路径建立装置可以包括多个外部输入端口和多个外部输出端口。该场景中,分光器的个数和门设备的个数可以与外部输入端口的个数相同,即每一外部输入端口独立的对应一分光器和一门设备。
进一步地,用作光门的光开关可以与光开关矩阵集成设置。例如,将用作光门的光开关和光开关矩阵中的光开关集成到一个芯片中,以提高装置集成度。
另一种实施例中,门设备可以为功率均衡器。其中,功率均衡器的个数与光开关矩阵的内部输入端口的个数相同,功率均衡器与光开关矩阵的内部输入端口一一对应,也就是说光开关矩阵的每一个内部输入端口的之前均设置一个功率均衡器。
在某些应用场景中,需要在光交换时提供功率均衡的功能,在这种情况下,可利用光交换设备中现有的功率均衡器件,而不需要增加光门,并通过适当的控制功率均衡器件以及光开关矩阵的状态来降低传输路径建立时带来的动态串扰。
图13示出包含功率均衡功能的传输路径建立装置的结构。传输路径建立装置10包括功率均衡器100,控制模块300,功率探测模块400,光开关矩阵200,分光器500和分光器600,以及光纤延迟线700,这里以其中一路光信号交换进行说明。自输入端口(外部输入端口)1输入的光信号(待交换信号),在进行交换之前,首先通过分光器500分出预设功率大小的第一光信号,例如10%左右的光信号,进入控制模块300,控制模块300中的光标识读取单元301根据输入的第一光信号完成光标识读取,确定该第一光信号的外部输出端口,此例中设定外部输出端口为输出端口N;然后,控制模块300中的传输路径计算单元302进行传输路径计算,确定该传输路径所使用的光开关矩阵200中第一光开关(未示出);最后,功率均衡控制信号生成单元304以及控制信号生成单元303按照一定的时序分别控制功率均衡器100和光开关矩阵200中第一光开关的状态,从而,建立相应的传输路径以及光信号的功率均衡。
具体地,功率均衡控制信号生成单元304产生控制信号给耦合输入端口(外部输入端口)1的功率均衡器100,使其衰减输入的光信号;待功率探测模块400探测到功率均衡器100输出的信号的功率低于设定的阈值,通过功率均衡控制信号生成单元304触发控制信号生成单元303产生控制信号给光开关矩阵200,控制第一光开关工作在目的状态;最后,待第一光开关的状态调整完成后,功率均衡控制信号生成单元304产生控制信号给耦合到输入端口(外部输入端口)1的功率均衡器100,使其放大输入的光信号到期望的状态,从而完成对该光信号的功率均衡以及传输路径的建立。
光信号先通过光纤延迟线700进行一定的延时;然后,通过功率均衡器100放大到期望的强度;最后,该放大后的光信号通过光开关矩阵200中建立的传输路径后,经输出端口N输出。
相较于门设备采用光门实现的实施例,该实施例利用现有的功率均衡器,不需要增加额外的硬件资源,易于实现。
图14为本发明用于光信号交换的传输路径建立方法实施例一的流程图。本发明实施例提供一种用于光信号交换的传输路径建立方法,通过改变光开关矩阵中光开关的状态来建立光信号的传输路径。该实施例中,光信号通过门设备到达光开关矩阵,当门设备工作于关闭状态时,禁止光信号通过该门设备;当门设备工作于开启状态时,使能光信号通过该门设备。该方法可以由本发明实施例任意用于光信号交换的传输路径建立装置执行。
如图14所示,该用于光信号交换的传输路径建立方法包括:
S101、根据光信号的外部输入端口和外部输出端口,获得该光信号在光开关矩阵中的传输路径及该传输路径所使用的第一光开关。
S102、生成第一控制信号给门设备,该第一控制信号用于控制门设备工作在关闭状态。
S103、生成第二控制信号给第一光开关,该第二控制信号用于控制第一光开关工作在目的状态。
S104、生成第三控制信号给门设备,该第三控制信号用于控制门设备工作在开启状态。
结合图7,首先,控制模块83获取从输入端口(外部输入端口)81输入的光信号的输出端口(外部输出端口)85;然后,控制模块83进行传输路径计算,获得输入端口(外部输入端口)81到输出端口(外部输出端口)85所采用的第一光开关(未示出);然后,控制模块83产生第一控制信号给门设备84,使门设备84工作在关闭状态,即门设备84阻止输入的光信号传输到输出端口(外部输出端口)85,或者使输入的光信号以很大的损耗传输到输出端口(外部输出端口)85;在门设备84调整好状态后,控制模块83再产生第二控制信号给光开关矩阵82,控制第一光开关工作在目的状态;最后,待第一光开关状态调整后,控制模块83产生第三控制信号给门设备84,使门设备84工作在开启状态,即时门设备84将输入的光信号以最小的损耗传输到输出端口(外部输出端口)85。
通过该用于光信号交换的传输路径建立方法,在传输路径建立的过程可以降低引入的动态串扰。具体实例可参考上文如图6对应的说明,此处不再赘述。
本发明实施例通过在光开关矩阵之前设置门设备,即光信号经由门设备
到达光开关矩阵,分时调整门设备与光开关矩阵中用于该光信号传输所使用的第一光开关的工作状态,以在切换光信号在光开关矩阵中传输所使用的传输路径时,刻降低动态串扰,从而提高通信质量。
在S101之前,该传输路径建立方法还可以包括:从光信号中分出预设功率大小的第一光信号和第二光信号。此时,S101可以包括:根据控制模块与外部输入端口的连接端口,确定外部输入端口;读取第一光信号的光标识;根据光标识,确定外部输出端口;根据外部输入端口和外部输出端口获得光信号在光开关矩阵中的传输路径。
具体地,结合图9,传输路径建立装置80还可以采用分光器86将从输入端口(外部输入端口)81输入的光信号中分出预设功率大小的第一光信号和第二光信号。其中,第一光信号被传送至控制模块83,以使控制模块83从第一光信号中提取光标识,从而确定这个光信号的输出端口(外部输出端口)85。但本发明不以此为限制,还可以通过其它方法确定光信号的输出端口,此处不一一列举。
在上述实施例中,门设备84可以为光门。进一步地,光门可以采用半导体光放大器和/或光开关。其中,光门的个数与光开关矩阵的内部输入端口的个数相同,光门与光开关矩阵的内部输入端口一一对应,即,光开关矩阵的每一个内部输入端口之前均设置一个光门。
更进一步地,分别独立设计用作所述光门的光开关和光开关矩阵中的光开关,使用作光门的光开关的状态切换速度快于光开关矩阵中的光开关的状态切换速度,从而降低传输路径建立所耗费的时间。
另外,门设备84可以为功率均衡器。其中,功率均衡器的个数与光开关矩阵的内部输入端口的个数相同,功率均衡器与光开关矩阵的内部输入端口一一对应,也就是说光开关矩阵的每一个内部输入端口之前均设置一个功率均衡器。
图15给出一种用于光交换的传输路径建立方法。如图15所示,该方法包括:
S201、根据输入的光信号的光标识,确定光信号的外部输出端口。
S202、根据光信号的外部输入端口和外部输出端口,获得该光信号在光开关矩阵中的传输路径及该传输路径所使用的第一光开关。
S203、生成第一控制信号给功率均衡器,该第一控制信号用于控制功率均衡器工作在关闭状态。
S204、生成第二控制信号给第一光开关,该第二控制信号用于控制第一光开关工作在目的状态。
S205、生成第三控制信号给功率均衡器,该第三控制信号用于控制功率均衡器工作在开启状态。
结合图13,首先,光标识读取单元301读取由输入端口(外部输入端口)1输入的光信号经分光器500输出的第一光信号的光标识,确定第一光信号的输出端口N;然后,传输路径计算单元302计算传输路径,确定光开关矩阵200建立输入端口(外部输入端口)1到输出端口N所采用的第一光开关(未示出);功率均衡控制信号生成单元304产生控制信号给功率均衡器100,使其衰减输入的第二光信号;待功率探测模块400探测到功率均衡器100输出的信号的功率低于设定的阈值,控制信号生成单元303产生控制信号给光开关矩阵200,控制第一光开关工作在目的状态;最后,待第一光开关状态调整完成后,功率均衡控制信号生成单元304产生控制信号给功率均衡器100,使其放大输入的信号到期望的状态,从而完成对经输入端口(外部输入端口)1输入的光信号的功率均衡以及其传输路径的建立。
图16为本发明传输路径建立装置实施例五的结构示意图。本发明实施例提供一种用于光信号交换的传输路径建立装置,通过改变光开关矩阵中光开关的状态来建立用于光信号交换的传输路径,其中,光信号通过门设备到达光开关矩阵,当门设备工作于关闭状态时,禁止光信号通过门设备;当门设备工作于开启状态时,使能光信号通过门设备。传输路径建立装置160包括:处理器161和存储器162。
其中,存储器161用于存储执行指令,当传输路径建立装置160运行时,处理器162与存储器161之间通信,处理器162调用存储器161中的执行指令,用于执行以下操作:
根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关;生成第一控制信号给所述门设备,所述第一控制信号用于控制所述门设备工作在所述关闭状态;然后,生成第二控制信号给所述第一光开关,所述第二控制信号
用于控制所述第一光开关工作在目的状态;再然后,生成第三控制信号给所述门设备,所述第三控制信号用于控制所述门设备工作在所述开启状态。
本发明实施例在传输路径建立的过程可以降低引入的动态串扰,具体实例可参考上文如图6对应的说明,此处不再赘述。
可选地,处理器161还可以用于:从所述光信号中分出预设功率大小的第一光信号和第二光信号;则当处理器161执行所述根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径时,可具体用于:根据所述处理器与所述外部输入端口的连接端口,确定所述外部输入端口;读取所述第一光信号的光标识;根据所述光标识,确定所述外部输出端口;根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径。
一种实现方式中,所述门设备可以为光门或功率均衡器等。进一步地,所述光门可采用半导体光放大器和/或光开关等。可选地,用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (16)
- 一种用于光信号交换的传输路径建立装置,通过改变光开关矩阵中光开关的状态来建立用于所述光信号交换的传输路径,其特征在于,所述传输路径建立装置包括:外部输入端口,所述外部输入端口用于所述光信号的输入;外部输出端口,所述外部输出端口与光开关矩阵的一内部输出端口连接,用于交换后的光信号的输出;门设备,所述门设备的输入端口与所述外部输入端口连接,所述门设备的输出端口与所述光开关矩阵的一内部输入端口连接,当所述门设备工作于关闭状态时,禁止所述光信号的通过所述门设备;当所述门设备工作于开启状态时,使能所述光信号的通过所述门设备;控制模块,所述控制模块的输入端口与所述外部输入端口连接,用于根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径;所述光开关矩阵,包括所述内部输入端口、第一光开关和所述内部输出端口,所述第一光开关为所述传输路径经过的光开关,所述光开关矩阵用于交换所述光信号,获得所述交换后的光信号;所述控制模块还用于生成第一控制信号给所述门设备,所述第一控制信号用于控制所述门设备工作在所述关闭状态;生成第二控制信号给所述第一光开关,所述第二控制信号用于控制所述第一光开关工作在目的状态;以及,生成第三控制信号给所述门设备,所述第三控制信号用于控制所述门设备工作在所述开启状态。
- 根据权利要求1所述的传输路径建立装置,其特征在于,所述传输路径建立装置还包括分光器,所述分光器用于从所述光信号中分出预设功率大小的第一光信号和第二光信号,所述第一光信号被传送至所述控制模块,所述第二光信号通过光纤延迟线被传送至所述门设备,当所述控制模块根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径时,所述控制模块具体用于:根据所述控制模块与所述外部输入端口的连接端口,确定所述外部输入端口;读取所述第一光信号的光标识;根据所述光标识,确定所述外部输出端口;根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径。
- 根据权利要求1或2所述的传输路径建立装置,其特征在于,所述门设备为光门,所述光门采用半导体光放大器和/或光开关。
- 根据权利要求3所述的传输路径建立装置,其特征在于,用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。
- 根据权利要求3或4所述的传输路径建立装置,其特征在于,所述用作所述光门的光开关与所述光开关矩阵集成设置。
- 根据权利要求1或2所述的传输路径建立装置,其特征在于,所述门设备为功率均衡器。
- 一种用于光信号交换的传输路径建立方法,通过改变光开关矩阵中光开关的状态来建立用于所述光信号交换的传输路径,其特征在于,所述光信号通过门设备到达所述光开关矩阵,当所述门设备工作于关闭状态时,禁止所述光信号通过所述门设备;当所述门设备工作于开启状态时,使能所述光信号通过所述门设备,所述传输路径建立方法包括:根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关;生成第一控制信号给所述门设备,所述第一控制信号用于控制所述门设备工作在所述关闭状态;然后,生成第二控制信号给所述第一光开关,所述第二控制信号用于控制所述第一光开关工作在目的状态;再然后,生成第三控制信号给所述门设备,所述第三控制信号用于控制所述门设备工作在所述开启状态。
- 根据权利要求7所述的传输路径建立方法,其特征在于,所述根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关之前,所述传输路径建立方法还包括:从所述光信号中分出预设功率大小的第一光信号和第二光信号;所述根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关,包括:根据控制模块与所述外部输入端口的连接端口,确定所述外部输入端口;读取所述第一光信号的光标识;根据所述光标识,确定所述外部输出端口;根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径。
- 根据权利要求7或8所述的传输路径建立方法,其特征在于,所述门设备为光门,所述光门采用半导体光放大器和/或光开关。
- 根据权利要求9所述的传输路径建立方法,其特征在于,用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。
- 根据权利要求7或8所述的传输路径建立方法,其特征在于,所述门设备为功率均衡器。
- 一种用于光信号交换的传输路径建立装置,通过改变光开关矩阵中光开关的状态来建立用于所述光信号交换的传输路径,其特征在于,所述光信号通过门设备到达所述光开关矩阵,当所述门设备工作于关闭状态时,禁止所述光信号通过所述门设备;当所述门设备工作于开启状态时,使能所述光信号通过所述门设备,所述传输路径建立装置包括:处理器和存储器;所述存储器,用于存储执行指令,当所述传输路径建立装置运行时,所述处理器与所述存储器之间通信,所述处理器调用所述存储器中的所述执行指令,用于执行以下操作:根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径及所述传输路径所使用的第一光开关;生成第一控制信号给所述门设备,所述第一控制信号用于控制所述门设备工作在所述关闭状态;然后,生成第二控制信号给所述第一光开关,所述第二控制信号用于控制所述第一光开关工作在目的状态;再然后,生成第三控制信号给所述门设备,所述第三控制信号用于控制 所述门设备工作在所述开启状态。
- 根据权利要求12所述的传输路径建立装置,其特征在于,所述处理器还用于:从所述光信号中分出预设功率大小的第一光信号和第二光信号;则当所述处理器执行所述根据所述光信号的外部输入端口和外部输出端口,获得所述光信号在所述光开关矩阵中的传输路径,具体用于:根据所述处理器与所述外部输入端口的连接端口,确定所述外部输入端口;读取所述第一光信号的光标识;根据所述光标识,确定所述外部输出端口;根据所述外部输入端口和所述外部输出端口获得所述光信号在所述光开关矩阵中的传输路径。
- 根据权利要求12或13所述的传输路径建立装置,其特征在于,所述门设备为光门,所述光门采用半导体光放大器和/或光开关。
- 根据权利要求14所述的传输路径建立装置,其特征在于,用作所述光门的光开关的状态切换速度快于所述光开关矩阵中的光开关的状态切换速度。
- 根据权利要求12或13所述的传输路径建立装置,其特征在于,所述门设备为功率均衡器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580077680.XA CN107431535B (zh) | 2015-04-27 | 2015-04-27 | 用于光信号交换的传输路径建立方法及装置 |
PCT/CN2015/077488 WO2016172819A1 (zh) | 2015-04-27 | 2015-04-27 | 用于光信号交换的传输路径建立方法及装置 |
US15/796,312 US10547920B2 (en) | 2015-04-27 | 2017-10-27 | Method and apparatus for establishing transmission path for exchanging optical signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/077488 WO2016172819A1 (zh) | 2015-04-27 | 2015-04-27 | 用于光信号交换的传输路径建立方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/796,312 Continuation US10547920B2 (en) | 2015-04-27 | 2017-10-27 | Method and apparatus for establishing transmission path for exchanging optical signal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016172819A1 true WO2016172819A1 (zh) | 2016-11-03 |
Family
ID=57197942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077488 WO2016172819A1 (zh) | 2015-04-27 | 2015-04-27 | 用于光信号交换的传输路径建立方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10547920B2 (zh) |
CN (1) | CN107431535B (zh) |
WO (1) | WO2016172819A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112929283A (zh) * | 2019-12-06 | 2021-06-08 | 中兴通讯股份有限公司 | 数据处理方法、装置、设备及存储介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111478977B (zh) * | 2020-05-14 | 2023-11-03 | 新疆北斗同创信息科技有限公司 | 一种多流媒体网络流量分析系统的工作方法 |
CN112769647B (zh) * | 2020-12-31 | 2023-06-27 | 江苏肯立科技股份有限公司 | 一种实现级联交换矩阵无阻塞通道切换的系统和方法 |
CN114363251B (zh) * | 2022-03-21 | 2022-07-08 | 之江实验室 | 一种面向Benes网络的低复杂度避障路由方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1392696A (zh) * | 2002-07-09 | 2003-01-22 | 华中科技大学 | 一种用于全光交换节点中的n×n光交换结构 |
CN101043271A (zh) * | 2007-04-26 | 2007-09-26 | 华为技术有限公司 | 一种光业务信号保护倒换方法、设备及系统 |
CN101594184A (zh) * | 2009-06-11 | 2009-12-02 | 青岛海信宽带多媒体技术有限公司 | 一种光线路终端 |
CN101621718A (zh) * | 2009-08-04 | 2010-01-06 | 复旦大学 | 基于n×n光开关矩阵的可调谐多环路多进制的光缓存器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6728016B1 (en) | 2000-06-05 | 2004-04-27 | Calient Networks, Inc. | Safe procedure for moving mirrors in an optical cross-connect switch |
JP4576756B2 (ja) * | 2001-06-19 | 2010-11-10 | 株式会社日立製作所 | 光信号切替え装置、および、その使用方法 |
CN100369395C (zh) * | 2003-04-25 | 2008-02-13 | 李志扬 | 适于全光网络的波长选择性光开关阵列及其方法 |
US7050668B2 (en) | 2003-06-19 | 2006-05-23 | Lucent Technologies Inc. | Methods and apparatus for control of optical switching arrays that minimize bright state switching |
US20060171386A1 (en) * | 2004-09-01 | 2006-08-03 | Interactic Holdings, Llc | Means and apparatus for a scaleable congestion free switching system with intelligent control III |
CN100589348C (zh) * | 2007-08-28 | 2010-02-10 | 北京交通大学 | 多波长并行缓存全光缓存器 |
JP5545753B2 (ja) * | 2010-12-20 | 2014-07-09 | 富士通テレコムネットワークス株式会社 | 光パケット交換システム |
EP3091677B1 (en) * | 2014-01-26 | 2018-04-04 | Huawei Technologies Co., Ltd. | Adaptive compensation control method, module and optical switching system |
US9768878B2 (en) * | 2015-05-18 | 2017-09-19 | Fujitsu Limited | Methods and systems for superchannel power pre-emphasis |
-
2015
- 2015-04-27 CN CN201580077680.XA patent/CN107431535B/zh active Active
- 2015-04-27 WO PCT/CN2015/077488 patent/WO2016172819A1/zh active Application Filing
-
2017
- 2017-10-27 US US15/796,312 patent/US10547920B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1392696A (zh) * | 2002-07-09 | 2003-01-22 | 华中科技大学 | 一种用于全光交换节点中的n×n光交换结构 |
CN101043271A (zh) * | 2007-04-26 | 2007-09-26 | 华为技术有限公司 | 一种光业务信号保护倒换方法、设备及系统 |
CN101594184A (zh) * | 2009-06-11 | 2009-12-02 | 青岛海信宽带多媒体技术有限公司 | 一种光线路终端 |
CN101621718A (zh) * | 2009-08-04 | 2010-01-06 | 复旦大学 | 基于n×n光开关矩阵的可调谐多环路多进制的光缓存器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112929283A (zh) * | 2019-12-06 | 2021-06-08 | 中兴通讯股份有限公司 | 数据处理方法、装置、设备及存储介质 |
WO2021110056A1 (zh) * | 2019-12-06 | 2021-06-10 | 中兴通讯股份有限公司 | 数据处理方法、装置、设备及存储介质 |
US11818057B2 (en) | 2019-12-06 | 2023-11-14 | Xi'an Zhongxing New Software Co. Ltd. | Method and apparatus for processing data, device, and storage medium |
CN112929283B (zh) * | 2019-12-06 | 2024-04-02 | 中兴通讯股份有限公司 | 数据处理方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20180054664A1 (en) | 2018-02-22 |
CN107431535B (zh) | 2020-04-03 |
US10547920B2 (en) | 2020-01-28 |
CN107431535A (zh) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016172819A1 (zh) | 用于光信号交换的传输路径建立方法及装置 | |
US20170099532A1 (en) | Network employing multi-endpoint optical transceivers | |
CN106464380A (zh) | 互连系统、装置和数据传输方法 | |
Shacham et al. | An experimental validation of a wavelength-striped, packet switched, optical interconnection network | |
Cheng et al. | Smart routing tables for integrated photonic switch fabrics | |
KR101909547B1 (ko) | 광 전송 시스템 및 전송 방법, 광 스위칭 장치 그리고 제어 방법 | |
Kitayama et al. | Optical packet and path switching intra-data center network: Enabling technologies and network performance with intelligent flow control | |
CN103986670A (zh) | 一种光交换芯片性能的获取方法 | |
Kanonakis et al. | SDN-controlled routing of elephants and mice over a hybrid optical/electrical DCN testbed | |
Zheng et al. | Low latency passive optical node for optical access network | |
Shacham et al. | A Wide-Band Nonblocking 2 x 2 Switching Node for a SPINet Network | |
Zhao et al. | Optical switching data center networks: understanding techniques and challenges | |
Wei et al. | Experimental demonstration of centralized control mechanism over all-optical network based on OpenFlow protocol | |
Vanderbauwhede et al. | A multiexit recirculating optical packet buffer | |
Satkunarajah et al. | Pre-configured backup protection with limited resource sharing in elastic optical networks | |
CN103338075B (zh) | 基于受激布里渊散射的光纤可控时延器 | |
Lai et al. | Cross-layer proactive packet protection switching | |
Yiannopoulos et al. | Multiple-input-buffer and shared-buffer architectures for optical packet-and burst-switching networks | |
CN106797272B (zh) | 一种光交换信号处理方法和装置 | |
WO2016106654A1 (zh) | Pic型光开关矩阵的路由配置方法及装置 | |
Cheng et al. | High speed optical flow switch architecture design and IDC application based on SDN technologies | |
Samadi et al. | Self-adaptive, multi-rate optical network for geographically distributed metro data centers | |
Moralis-Pegios et al. | Multicasting in a 256-Port Sub-$\mu\text {sec} $ Latency $\text {Hipo}\lambda\text {aos} $ Switch Architecture for Disaggregated DataCenters | |
US9031407B2 (en) | Bidirectional optical data packet switching interconection network | |
CN203289444U (zh) | 光纤可控时延器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15890199 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15890199 Country of ref document: EP Kind code of ref document: A1 |