WO2015105127A1 - 多層フィルム及びその製造方法 - Google Patents

多層フィルム及びその製造方法 Download PDF

Info

Publication number
WO2015105127A1
WO2015105127A1 PCT/JP2015/050270 JP2015050270W WO2015105127A1 WO 2015105127 A1 WO2015105127 A1 WO 2015105127A1 JP 2015050270 W JP2015050270 W JP 2015050270W WO 2015105127 A1 WO2015105127 A1 WO 2015105127A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
film
weight
copolymer hydride
polymer
Prior art date
Application number
PCT/JP2015/050270
Other languages
English (en)
French (fr)
Inventor
小原 禎二
淳 石黒
大輔 齋藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP15735356.6A priority Critical patent/EP3093141B1/en
Priority to JP2015556819A priority patent/JP6497322B2/ja
Priority to CN201580002919.7A priority patent/CN105813843B/zh
Publication of WO2015105127A1 publication Critical patent/WO2015105127A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92942Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0044Stabilisers, e.g. against oxydation, light or heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0055Resistive to light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a multilayer film including a film layer made of a resin composition in which a specific block copolymer hydride is mixed with an ultraviolet absorber, and a method for producing the same.
  • the hydrogenated block copolymer hydride is excellent in transparency, low birefringence, heat resistance, low hygroscopicity, etc., and the film obtained by extruding this is a polarizing liquid crystal display device. It has already been disclosed that it is useful as an optical film such as a film or a retardation film (Patent Documents 1 to 5).
  • polarizing films are arranged on both sides of a glass substrate that forms the surface of a liquid crystal panel.
  • a general polarizing film is configured by bonding a polarizer protective film using triacetyl cellulose or the like to both surfaces of a polarizer made of a dichroic material such as a polyvinyl alcohol film and iodine.
  • the polarizer protective film has a problem that when it is exposed to ultraviolet rays, decomposition is promoted, causing a decrease in strength, and at the same time, transparency is lowered due to discoloration. For this reason, the polarizer protective film is required to have ultraviolet absorption performance for the purpose of preventing the polarizer from being deteriorated by ultraviolet rays.
  • a method for imparting ultraviolet absorbing ability to a polarizer protective film a method of adding an ultraviolet absorber to a triacetyl cellulose film as a polarizer protective film is common.
  • triacetyl cellulose does not have sufficient heat-and-moisture resistance, and if a polarizing plate using a triacetyl cellulose film as a polarizer protective film is used at high temperature or high humidity, the performance as a polarizing plate such as degree of polarization and hue can be obtained. There was a problem of lowering.
  • Patent Document 6 discloses a multilayer film composed of an intermediate layer obtained by blending a specific block copolymer hydride with an ultraviolet absorber and an outer layer not containing the ultraviolet absorber.
  • JP 2002-53631 A (US2003 / 207983A1) JP 2002-105151 A (US2003 / 207983A1) JP 2003-114329 A WO2009 / 067290 (US2010 / 290117A1) WO2009 / 137278 (US2011 / 038045A1) JP 2011-13378 A
  • the present inventors tried to produce an optical film using the film disclosed in Patent Document 6, and on the other hand, a film having a small in-plane retardation can be obtained, but has hard and brittle properties. Therefore, it is confirmed that there is a problem that the tensile elongation is small, the film is easily cut when the film obtained by the melt extrusion molding method is wound, and cracks may occur when the film is wound and stored in a roll shape. It was.
  • the present invention has been made in view of such circumstances, and has a specific block copolymer weight suitable for an optical film having excellent ultraviolet shielding performance and mechanical strength, less surface roughness, and excellent surface shape. It aims at providing the multilayer film which consists of coalescence hydride, and its manufacturing method.
  • the present inventors have molded a resin composition in which a specific block copolymer hydride that hardly develops a phase difference is blended with a certain amount or more of an ultraviolet absorber.
  • an excellent ultraviolet ray is obtained. It has been found that a multilayer film having shielding performance and mechanical strength that is easy to handle can be obtained.
  • a specific block copolymer hydride and / or modified block copolymer which contains no UV absorber or contains a certain amount or less of UV absorber.
  • the following multilayer film (1) and method for producing the multilayer film (2) are provided.
  • the weight fraction of the entire polymer block [A] in the entire block copolymer is wA
  • the weight fraction of the entire polymer block [B] in the entire block copolymer is wB
  • Block copolymer [C] having a ratio (wA: wB) of 40:60 to 90:10
  • hydrogenated block copolymer [D] obtained by hydrogenating 90% or more of all unsaturated bonds 100 weight against On one side or both sides of a film [F] made of a resin composition [E] containing 1.0 to 10.0 parts by weight of an ultraviolet absorber
  • a multilayer film made of a specific block copolymer hydride having excellent ultraviolet shielding performance and mechanical strength, less surface roughness, and suitable for a planar optical film The manufacturing method is provided.
  • the multilayer film of the present invention is a resin composition in which 1.0 to 10.0 parts by weight of an ultraviolet absorber is blended with 100 parts by weight of a block copolymer hydride [D] described later [ A modified block in which an alkoxysilyl group is introduced into a block copolymer hydride [D ′] and / or a block copolymer hydride [D ′] on one or both sides of a film [F] made of E] A layer [F ′] composed of a resin composition [E ′] in which 0 part by weight or more and less than 1.0 part by weight of the ultraviolet absorber is blended with 100 parts by weight of the copolymer hydride [D ′′]. It becomes.
  • Block copolymer hydride [D] The block copolymer hydride [D] is mainly composed of at least two polymer blocks [A] having a repeating unit derived from an aromatic vinyl compound as a main component and a repeating unit derived from a chain conjugated diene compound. And at least one polymer block [B], When the weight fraction of the entire polymer block [A] in the entire block copolymer is wA, and the weight fraction of the entire polymer block [B] in the entire block copolymer is wB, wA and wB The block copolymer [C] having a ratio (wA: wB) of 40:60 to 90:10 is obtained by hydrogenating 90% or more of all unsaturated bonds.
  • Block copolymer [C] is a precursor of the block copolymer hydride [D] according to the present invention, and contains at least two polymer blocks [A] and at least one polymer block [B]. To do.
  • the polymer block [A] is composed mainly of a repeating unit derived from an aromatic vinyl compound (also referred to as “structural unit”; the same applies hereinafter).
  • the content of the repeating unit derived from the aromatic vinyl compound in the polymer block [A] is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more.
  • the polymer block [A] may contain a repeating unit other than the repeating unit derived from the aromatic vinyl compound. Examples of the component other than the repeating unit derived from the aromatic vinyl compound in the polymer block [A] include a repeating unit derived from a chain conjugated diene and / or a repeating unit derived from another vinyl compound.
  • the content is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less.
  • the repeating unit derived from the aromatic vinyl compound in the polymer block [A] is in the above range, the multilayer film of the present invention is preferable because of high heat resistance.
  • the plurality of polymer blocks [A] may be the same as or different from each other as long as the above range is satisfied.
  • the polymer block [B] has a repeating unit derived from a chain conjugated diene compound as a main component.
  • the content of the repeating unit derived from the chain conjugated diene compound in the polymer block [B] is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more.
  • the polymer block [B] may contain a repeating unit other than the repeating unit derived from the chain conjugated diene compound.
  • Components other than the repeating unit derived from the chain conjugated diene compound in the polymer block [B] include a repeating unit derived from an aromatic vinyl compound and / or a repeating unit derived from another vinyl compound.
  • the content is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less.
  • the repeating unit derived from the chain conjugated diene compound is in the above range, the multilayer film of the present invention is preferable because flexibility is improved.
  • the content of the repeating unit derived from the aromatic vinyl compound in the polymer block [B] increases, the birefringence developability of the film decreases, but the flexibility at low temperature tends to decrease.
  • the polymer blocks [B] may be the same as or different from each other as long as the above range is satisfied.
  • aromatic vinyl compound examples include styrene; ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, Styrenes having an alkyl group as a substituent such as 5-t-butyl-2-methylstyrene; Styrenes having a halogen atom as a substituent such as 4-monochlorostyrene, dichlorostyrene, 4-monofluorostyrene; 4-methoxy Styrenes having an alkoxy group as a substituent such as styrene and 3,5-dimethoxystyrene; styrenes having an aryl group as a substituent such as 4-phenylstyrene; and the like.
  • those having no polar group are preferable from the viewpoint of
  • chain conjugated diene compound those having no polar group are preferred from the viewpoint of hygroscopicity.
  • examples thereof include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like.
  • 1,3-butadiene and isoprene are particularly preferable because of industrial availability.
  • vinyl compounds include chain olefins, cyclic olefins, chain vinyl compounds, cyclic vinyl compounds, unsaturated cyclic acid anhydrides, and unsaturated imide compounds.
  • These vinyl compounds may have a nitrile group, an alkoxycarbonyl group, a carboxyl group, or a halogen atom as a substituent.
  • those having no polar group are preferable from the viewpoint of hygroscopicity, and chain olefins and cyclic olefins are more preferable.
  • Specific examples thereof include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-eicosene and 4-methyl.
  • Chain olefins such as 1-pentene and 4,6-dimethyl-1-heptene; cyclic olefins such as vinylcyclohexane; and the like, with chain olefins being more preferred, and ethylene and propylene being particularly preferred.
  • the number of polymer blocks [A] in the block copolymer [C] is usually 5 or less, preferably 4 or less, more preferably 3 or less, and the number of blocks [B] is usually 4 Hereinafter, it is preferably 3 or less, more preferably 2 or less.
  • the weight average molecular weights of the polymer blocks having the largest and smallest weight average molecular weights in the polymer block [A] are represented by Mw ( A1) and Mw (A2), and in the polymer block [B], when the weight average molecular weight of the polymer block having the largest and smallest weight average molecular weight is Mw (B1) and Mw (B2), respectively, Mw
  • the ratio of (A1) to Mw (A2) [Mw (A1) / Mw (A2)] and the ratio of Mw (B1) to Mw (B2) [Mw (B1) / Mw (B2)] are: Each is 2.0 or less, preferably 1.5 or less, more preferably 1.2 or less.
  • the elastic modulus of the block copolymer hydride [D] increases, and the glass transition temperature on the high temperature side also increases (the upper limit is 140 ° C.), however, the mechanical strength becomes weak, and there is a concern that the intermediate layer may be easily cut during film formation.
  • the polymer block [B] has a lower content than the polymer block [A], and when the ratio of Mw (B1) and Mw (B2) is increased, the molecular weight of the polymer block [B2] becomes too small.
  • the form of the block of the block copolymer [C] may be a chain type block or a radial type block, but a chain type block is preferred because of excellent mechanical strength.
  • the most preferred form of the block copolymer [C] is a triblock copolymer [[A]-[B]-[A]] in which the polymer block [A] is bonded to both ends of the polymer block [B], And a pentablock copolymer in which the polymer block [B] is bonded to both ends of the polymer block [A], and the polymer block [A] is bonded to the other end of the both polymer blocks [B]. [[A]-[B]-[A]-[B]].
  • the weight fraction of the whole polymer block [A] in the entire block copolymer is wA
  • the ratio of wA to wB is 40:60 to 90:10, preferably 50:50 to 85:15, more preferably 60:40 to 80:20 .
  • the molecular weight of the block copolymer [C] is a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, and is usually 30,000 to 200. , Preferably 40,000 to 150,000, more preferably 50,000 to 100,000. Further, the molecular weight distribution (Mw / Mn) of the block copolymer [C] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
  • a monomer mixture (a) containing an aromatic vinyl compound as a main component and a chain conjugated diene compound as a main component are contained by a method such as living anion polymerization.
  • the method of coupling the terminal of polymer block [B] with a coupling agent; etc. are mentioned.
  • the monomer mixture (a) contains an aromatic vinyl compound usually at 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more, and monomer components other than the aromatic vinyl compound are usually 10% by weight.
  • the content is preferably 5% by weight or less, more preferably 1% by weight or less.
  • the monomer mixture (b) contains a chain conjugated diene compound usually at 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more, and monomer components other than the chain conjugated diene compound. Usually, it contains 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less.
  • Block copolymer hydride [D] The hydride [D] of the block copolymer according to the present invention is such that the main chain and side chain carbon-carbon unsaturated bonds and the aromatic ring carbon-carbon unsaturated bonds of the block copolymer [C] are hydrogenated. Is obtained.
  • the hydrogenation rate is usually 90% or more, preferably 97% or more, more preferably 99% or more. The higher the hydrogenation rate, the better the light resistance and heat resistance of the molded film.
  • the hydrogenation rate of the block copolymer hydride [D] can be determined by measurement by 1 H-NMR.
  • the hydrogenation method and reaction mode of the unsaturated bond are not particularly limited, and may be carried out according to a known method, but a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction is preferable.
  • Examples of such hydrogenation methods include the methods described in WO2011 / 096389 pamphlet, WO2012 / 043708 pamphlet and the like.
  • the block copolymer hydride [D] obtained by the above method is recovered from the reaction solution after removing the hydrogenation catalyst and / or the polymerization catalyst from the reaction solution containing the block copolymer hydride [D]. be able to.
  • the form of the recovered block copolymer hydride [D] is not limited, it can usually be formed into a pellet shape and subjected to subsequent film forming.
  • the molecular weight of the block copolymer hydride [D] is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 35,000 to 200,000, preferably 40,000 to 150. , 000, more preferably 45,000 to 100,000.
  • the molecular weight distribution (Mw / Mn) of the block copolymer hydride [D] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. When Mw and Mw / Mn are within the above ranges, the heat resistance and mechanical strength of the formed film are maintained.
  • Resin composition [E] The resin composition [E] used in the present invention is usually 1.0 to 10.0 parts by weight, preferably 2.0 parts by weight of the ultraviolet absorber with respect to 100 parts by weight of the block copolymer hydride [D]. To 9.0 parts by weight, more preferably 3.0 to 8.0 parts by weight. If the blending amount of the ultraviolet absorber is within this range, it is possible to efficiently block ultraviolet rays when used as an optical film, the transparency in the visible light region is maintained, and the color tone is not deteriorated. preferable.
  • the resin composition [E] preferably has a transmittance at a wavelength of 380 nm of 8% or less, more preferably 4% or less, and particularly preferably 1% or less from the viewpoint of ultraviolet shielding.
  • Examples of the ultraviolet absorber used in the present invention include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid trihydrate, 2-hydroxy-4- Octyloxybenzophenone, 4-dodecaloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy Benzophenone UV absorbers such as benzophenone; Phenylsulcylate, 4-t-butylphenyl-2-hydroxybenzoate, phenyl-2-hydroxybenzoate, 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, Salicylic acid UV absorbers such as hexadecyl-3,5-di-t-butyl-4-hydroxybenzoate; 2- (2-
  • 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole, 2,2′- is preferable because of its excellent ultraviolet absorption at a wavelength of around 380 nm.
  • Methylenebis [4- (1,1,3,3-tetramethylbutyl) -6-[(2H-benzotriazol-2-yl) phenol]] and the like are preferable.
  • other compounding agents other than the ultraviolet absorber can be blended.
  • other compounding agents include light stabilizers, antioxidants, and antiblocking agents. These may be used alone or in combination of two or more.
  • As the light stabilizer a hindered amine light stabilizer is preferred.
  • the antioxidant include phosphorus antioxidants, phenol antioxidants, sulfur antioxidants and the like.
  • the amount of the antioxidant is usually 0.01 to 1 part by weight, preferably 0.05 to 0.9 part by weight, based on 100 parts by weight of the block copolymer hydride [D].
  • the amount is preferably 0.1 to 0.8 parts by weight. If the amount of the antioxidant is within this range, the heat resistance stability of the resin composition [E] is excellent, which is preferable.
  • antioxidants include pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3,9-bis ⁇ 2- [3- ( 3-tert-butyl-4-hydroxy-5-methylphenyl) proonyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5,5] undecane, 1,3,5- And trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene.
  • Examples of the method of blending the block copolymer hydride [D] with the UV absorber and other compounding agents include, for example, mixing the block copolymer hydride [D] with the UV absorber and other compounding agents. And a method of uniformly kneading the block copolymer hydride [D] in a molten state with a twin-screw kneader, a roll, a Brabender, an extruder, or the like.
  • Block copolymer hydride [D '] The block copolymer hydride [D ′] is mainly composed of at least two polymer blocks [A ′] mainly composed of a repeating unit derived from an aromatic vinyl compound and a repeating unit derived from a chain conjugated diene compound. And the weight fraction of the entire polymer block [A ′] in the entire block copolymer is wA ′, and the total polymer block [B ′] is composed of at least one polymer block [B ′].
  • the repeating units constituting the polymer block [A ′] and the polymer block [B ′] are the same as the polymer block [A] and the polymer block [B].
  • the block copolymer hydride [D ′] can be obtained by hydrogenating the block copolymer [C ′] in the same manner as the block copolymer [C].
  • the hydrogenation rate is usually 90% or more, preferably 97% or more, more preferably 99% or more.
  • the molecular weight of the block copolymer hydride [D ′] may be approximately the same as that of the block copolymer hydride [D].
  • the block copolymer [C ′] which is a precursor of the block copolymer hydride [D ′] accounts for the total weight of the block copolymer [A ′] in the entire block copolymer.
  • the ratio of wA ′ to wB ′ (wA ′: wB ′) is 40, where wA ′ is the rate and wB ′ is the weight fraction of the entire polymer block [B ′] in the entire block copolymer. : 60-80: 20, preferably 45: 55-70: 30, more preferably 50: 50-60: 40 are used.
  • the hydrogenated block copolymer [D ′] obtained by hydrogenating the block copolymer [C ′] has flexibility and mechanical strength when a film is formed. It is preferable because it is good.
  • Modified block copolymer hydride [D "] The modified block copolymer hydride [D ′′] is obtained by introducing an alkoxysilyl group into the block copolymer hydride [D ′].
  • the modified block copolymer hydride [D ′′] introduces an alkoxysilyl group by reacting the block copolymer hydride [D ′] with an ethylenically unsaturated silane compound in the presence of an organic peroxide.
  • the alkoxysilyl group may be bonded to the block copolymer hydride [D ′] via a divalent organic group such as an alkylene group or an alkyleneoxycarbonylalkylene group.
  • the introduction amount of the alkoxysilyl group is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0, based on 100 parts by weight of the modified block copolymer hydride [D ′′]. If the introduction amount of alkoxysilyl groups is too large, crosslinking of alkoxysilyl groups decomposed with a small amount of moisture before the melt molding into a desired shape proceeds, and gel is generated. In addition, the flowability at the time of melting is reduced, and the moldability is liable to occur, etc. If the amount of alkoxysilyl group introduced is too small, sufficient adhesion to a polyvinyl alcohol film or glass can be obtained. The introduction of an alkoxysilyl group can be confirmed by an IR spectrum, and the amount of alkoxysilyl group introduced is 1 H-NMR spectrum (when the amount introduced is small). In this case, the number of integration can be increased).
  • Examples of the ethylenically unsaturated silane compound include those copolymerized with an aromatic vinyl compound and a chain conjugated diene compound, and graft-polymerized with a block copolymer hydride [D ′] to form a block copolymer hydride [D]. There is no particular limitation as long as it introduces an alkoxysilyl group.
  • vinyltrialkoxysilanes such as vinyltrimethoxysilane and vinyltriethoxysilane
  • allyltrialkoxysilanes such as allyltrimethoxysilane and allyltriethoxysilane
  • alkyldialkoxys such as dimethoxymethylvinylsilane and diethoxymethylvinylsilane.
  • Silane Silane
  • styryltrialkoxysilane such as p-styryltrimethoxysilane
  • (meth) acryloxytrialkoxy such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyltrimethoxysilane Silane; and the like. These may be used alone or in combination of two or more.
  • the amount of the ethylenically unsaturated silane compound used is: The amount is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.3 to 3 parts by weight per 100 parts by weight of the block copolymer hydride [D ′].
  • peroxide those having a one-minute half-life temperature of 170 to 190 ° C. are preferably used.
  • t-butyl cumyl peroxide, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butyl peroxide, Di- (2-t-butylperoxyisopropyl) benzene or the like is preferably used.
  • the amount of peroxide used is usually 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, more preferably 0.2 parts per 100 parts by weight of the block copolymer hydride [D ′]. ⁇ 0.5 parts by weight.
  • the method for reacting the above block copolymer hydride [D ′] with an ethylenically unsaturated silane compound in the presence of a peroxide is not particularly limited.
  • an alkoxysilyl group can be introduced by kneading at a desired temperature for a desired time in a biaxial kneader.
  • the kneading temperature is usually 180 to 220 ° C, preferably 185 to 210 ° C, more preferably 190 to 200 ° C.
  • the heat kneading time is usually about 0.1 to 10 minutes, preferably about 0.2 to 5 minutes, more preferably about 0.3 to 2 minutes. What is necessary is just to knead
  • the molecular weight of the modified block copolymer hydride [D ′′] is substantially the same as the molecular weight of the block copolymer hydride [D ′] used as a raw material because the amount of alkoxysilyl groups introduced is small.
  • the reaction with the ethylenically unsaturated silane compound is carried out in the presence of a peroxide, a cross-linking reaction and a cleavage reaction of the polymer are also caused and the molecular weight distribution becomes large.
  • the molecular weight of the modified block copolymer hydride [D ′′] is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 30,000 to 300,000, preferably 40,000.
  • the molecular weight distribution (Mw / Mn) is preferably 3.5 or less, more preferably 2.5 or less, and particularly preferably 2.0. When Mw and Mw / Mn are within the above ranges, it is preferable because the mechanical strength of the multilayer film of the present invention is maintained.
  • Resin composition [E '] The block copolymer hydride [D ′] and / or the modified block copolymer hydride [D ′′] used in the present invention contains compounding agents such as an ultraviolet absorber, a light stabilizer, an antioxidant, Used as the resin composition [E ′].
  • the amount of the ultraviolet absorber contained in the resin composition [E ′] is 1 with respect to 100 parts by weight of the block copolymer hydride [D ′] and / or the modified block copolymer hydride [D ′′]. Less than 0.0 parts by weight.
  • the blending amount is usually 0.01 to less than 1.0 part by weight, preferably 0.05 to 0.6 part by weight, more preferably 0.1 to 0.4 part by weight.
  • the same ultraviolet absorber as that blended in the block copolymer hydride [D] may be used.
  • the blending amount of the ultraviolet absorber is 1.0 part by weight or more, if the multilayer film of the present invention is continuously extruded for a long time using an extruder, dirt easily adheres to the cast roll.
  • a compounding agent other than the ultraviolet absorber can be blended.
  • the compounding agent other than the ultraviolet absorber include the same light stabilizer, antioxidant, anti-blocking agent and the like as in the case of the block copolymer hydride [D]. These may be used alone or in combination of two or more.
  • the multilayer film of the present invention is formed by an extrusion molding method, it is desirable to add an antioxidant in order to prevent the eyes and eyes from adhering to the T-die.
  • the antioxidant include phosphorus antioxidants, phenol antioxidants, sulfur antioxidants and the like.
  • the blending amount of the antioxidant is usually 0.1 to 1 part by weight, preferably 100 parts by weight of the block copolymer hydride [D ′] and / or the modified block copolymer hydride [D ′′]. Is 0.2 to 0.9 parts by weight, more preferably 0.3 to 0.8 parts by weight.If the amount of the antioxidant is within this range, the multilayer film is extruded continuously for a long time.
  • the method of blending the block copolymer hydride [D] and / or the modified block copolymer hydride [D ′′] with an ultraviolet absorber and other compounding agents is the same as that of the block copolymer hydride [D]. Same as the case.
  • Multilayer film The multilayer film of the present invention is obtained by laminating a layer [F ′] made of a resin composition [E ′] on one or both sides of a film [F] made of a resin composition [E]. .
  • the film [F] made of the resin composition [E] is a layer that blocks ultraviolet rays.
  • the thickness is usually 10 to 200 ⁇ m, preferably 15 to 150 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the thickness of the film [F] is not less than the lower limit of the above range, for example, when used as a protective film for a polarizer, the ultraviolet shielding performance is enhanced.
  • the handleability such as prevention of damage to the polarizing film, is improved, and the thickness is not more than the upper limit, the thickness of the entire polarizing film can be suppressed, which is preferable.
  • the layer [F ′] made of the resin composition [E ′] is laminated on one or both surfaces of the film [F] and plays a role of improving the mechanical strength and flexibility of the multilayer film.
  • the layer [F ′] is formed so as to be in contact with the cast roll, so that the cast roll can be prevented from being soiled, and suitable for an optical film having excellent surface properties with little surface roughness. A multilayer film can be obtained.
  • the thickness of the layer [F ′] is usually 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m, more preferably 3 to 20 ⁇ m.
  • the thickness of the layer [F ′] is usually 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m, more preferably 3 to 20 ⁇ m.
  • phase difference Re in a film surface is 10 nm or less, and it is more preferable that it is 3 nm or less.
  • phase difference is 10 nm or less, color unevenness when incorporated in a liquid crystal display unit can be suppressed. In particular, color unevenness tends to be conspicuous in a large-screen liquid crystal display device, which is also suitable for such a large-screen display device.
  • the retardation in the film plane Re can be measured using a commercially available automatic birefringence meter.
  • the multilayer film of the present invention Since the multilayer film of the present invention has excellent ultraviolet shielding performance, it is used for automobiles, buildings, agricultural houses, etc., such as roofing materials, ceiling materials, wall materials, window materials; protective films for pharmaceuticals, foods, drinking water, etc.
  • the manufacturing method of the multilayer film of this invention is a method of manufacturing the multilayer film of this invention, Comprising:
  • the said resin composition [E '] is melt-extruded so that a cast roll surface may be touched. It is to be molded.
  • the layer [F ′] can be formed by melt extrusion molding the resin composition [E ′] so as to be in contact with the cast roll surface. According to the production method of the present invention, even when the multilayer film of the present invention is continuously formed for a long period of time, the resulting multilayer film is unlikely to be rough, and an excellent planar film can be obtained.
  • An extrusion laminate molding method in which the resin composition [E] is melt-extruded on a film made of the above to form a multilayer film of two types or two layers or two types and three layers can be applied.
  • the cast roll is extruded so that the layer [F ′] made of the resin composition [E ′] is in contact with the cast roll so that the layer made of the resin composition [E] is not in direct contact with the cast roll. .
  • the sheet molding conditions are appropriately selected depending on the molding method.
  • the resin temperature is usually in the range of 180 to 250 ° C., preferably 190 to 240 ° C., more preferably 200 to 230 ° C. Is appropriately selected.
  • the resin temperature is too low, the fluidity is deteriorated, and the surface smoothness of the molded multilayer sheet tends to be lowered. Also, the sheet extrusion speed cannot be increased, and industrial productivity tends to be inferior.
  • the block copolymer hydride [D], [D ′] and the modified block copolymer hydride [D ′′] are melted in an extruder and extruded from a die attached to the extruder. It is preferable to pass the molten resin through a gear pump or filter before using the gear pump, so that the uniformity of the resin extrusion amount can be improved and the thickness unevenness can be reduced. Moreover, by using a filter, it is possible to remove foreign substances in the resin and obtain a multilayer film suitable for optical use having an excellent appearance without defects.
  • Evaluation in this example is performed by the following method.
  • Mw Weight average molecular weight
  • Mw / Mn molecular weight distribution
  • the molecular weights of the block copolymer and the hydride of the block copolymer were measured at 38 ° C. as standard polystyrene equivalent values by GPC using THF as an eluent.
  • THF as an eluent.
  • HLC8020GPC manufactured by Tosoh Corporation was used.
  • Hydrogenation rate The hydrogenation rate of the main chain, side chain and aromatic ring of the block copolymer hydride was calculated by measuring a 1 H-NMR spectrum.
  • Film surface properties The surface appearance of the extruded film was visually observed and evaluated.
  • the polymerization conversion was 99.5%.
  • 25.0 parts of dehydrated isoprene was added to the reaction solution, and stirring was continued for 30 minutes. At this time, the polymerization conversion rate was 99.5%.
  • 37.5 parts of dehydrated styrene was further added and stirred for 60 minutes.
  • the polymerization conversion rate at this point was almost 100%.
  • 0.5 part of isopropyl alcohol was added to the reaction mixture to stop the reaction.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and then the phenolic antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate] (product name “Songnox 1010”, manufactured by Koyo Chemical Research Co., Ltd.) 1.0 part of xylene solution in which 0.1 part was dissolved was added and dissolved.
  • the above solution was filtered with a metal fiber filter (pore size 0.4 ⁇ m, manufactured by Nichidai Co., Ltd.) to remove minute solids, and then a cylindrical concentration dryer (product name “Contro”, Hitachi, Ltd.)
  • a metal fiber filter pore size 0.4 ⁇ m, manufactured by Nichidai Co., Ltd.
  • a cylindrical concentration dryer product name “Contro”, Hitachi, Ltd.
  • the product cyclohexane, xylene and other volatile components were removed from the solution at a temperature of 260 ° C. and a pressure of 0.001 MPa or less.
  • the molten polymer is continuously filtered at a temperature of 260 ° C.
  • pellets of block copolymer hydride [D1] were prepared by a pelletizer.
  • the pelletized block copolymer hydride [D1] had a weight average molecular weight (Mw) of 63,200, a molecular weight distribution (Mw / Mn) of 1.11 and a hydrogenation rate of almost 100%.
  • Block copolymer hydride [D2] production of block copolymer [C2] Styrene and isoprene were divided into 5 portions and the same as Reference Example 1 except that 30.0 parts of styrene, 7.5 parts of isoprene, 25.0 parts of styrene, 7.5 parts of isoprene and 30.0 parts of styrene were added in this order.
  • the polymerization reaction was carried out to stop the reaction.
  • Block copolymer [D'3] production of block copolymer [C'3] Styrene and isoprene were divided into 3 portions, 30.0 parts of styrene, 40.0 parts of isoprene and 30.0 parts of styrene were added in this order, and the polymerization was carried out by changing the 15% cyclohexane solution of n-butyllithium to 0.70 parts.
  • a polymerization reaction was performed in the same manner as in Reference Example 1 except that the reaction was started, and the reaction was stopped.
  • the resulting block-like block copolymer hydride [D′ 3] had a weight average molecular weight (Mw) of 63,100, a molecular weight distribution (Mw / Mn) of 1.12, and a hydrogenation rate of almost 100%. It was.
  • the obtained block-like block copolymer hydride [D′ 4] had a weight average molecular weight (Mw) of 64,000, a molecular weight distribution (Mw / Mn) of 1.12, and a hydrogenation rate of almost 100%. It was.
  • Example 1 The resin composition [E11] and the resin composition [E "3] obtained in Reference Example 6 were subjected to T-die type 2 type 3 layer film molding machine (T) having 2 single screw extruders equipped with 20 mm ⁇ screws. A sheet take-up machine having a die width of 300 mm) and a mirror-finished cast roll, the resin composition [E11] becomes the intermediate film [F11], and the resin composition [E ′′ 3] becomes the surface layer [F ′′ 3]. Thus, a multilayer film of two types and three layers was produced under the conditions of a resin temperature of 210 ° C., a T-die temperature of 200 ° C., and a cast roll temperature of 80 ° C.
  • the obtained multilayer film was a surface layer [F ′′ 3] / intermediate. It had a three-layer structure of film [F11] / surface layer [F ′′ 3], and the thickness of the obtained multilayer film was 5 ⁇ m / 30 ⁇ m / 5 ⁇ m.
  • the obtained multilayer sheet was used to evaluate the film surface properties, the in-plane retardation (Re) of the film, the ultraviolet shielding property, and the mechanical strength.
  • the film surface was observed after 2 hours from the start of film formation so that the film could be stably formed.
  • the results of evaluation are summarized in Table 2.
  • the obtained multilayer sheet was used to evaluate the film surface properties, the in-plane retardation (Re) of the film, the ultraviolet shielding property, and the mechanical strength.
  • the film surface was observed after 2 hours from the start of film formation so that the film could be stably formed.
  • the results of evaluation are summarized in Table 2.
  • Example 3 The same two-kind / three-layer film molding machine used in Example 1 is used so that the resin composition [E22] is the intermediate film [F22] and the resin composition [D2] is the surface layer [F′D2]. Then, a multilayer film of two types and three layers was manufactured. The obtained multilayer film had a three-layer structure of surface layer [F′D2] / intermediate film [F22] / surface layer [F′D2], and the thickness of the obtained multilayer film was 7 ⁇ m / 30 ⁇ m / 7 ⁇ m.
  • the obtained multilayer sheet was used to evaluate the film surface properties, the in-plane retardation (Re) of the film, the ultraviolet shielding property, and the mechanical strength.
  • Re in-plane retardation
  • the film surface property 2 hours or more passed from the start of film formation, and the film surface was observed when the film was stably formed. The results of evaluation are summarized in Table 2.
  • the multilayer film of the present invention has no film surface roughness, good surface properties, improved tensile elongation, makes the film difficult to break during film molding, has good workability, and sufficient ultraviolet light Shielding properties are shown (Examples 1 to 7).
  • the surface layer in which the amount of the ultraviolet absorber is less than the specific amount is not formed, the film surface is rough and the surface properties are poor (Comparative Examples 1 and 2).
  • the surface layer is formed, if the content of the polymer block derived from the chain conjugated diene compound is formed from a hydride of a block copolymer that is less than a specific amount, the film surface properties are good. The tensile elongation is small and the workability during film forming is inferior (Comparative Example 3).
  • the multilayer film of the present invention has excellent ultraviolet shielding performance, low phase difference, mechanical strength, has few surface defects and excellent surface shape, and is useful as an optical film such as a polarizer protective film for a polarizing film. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなる特定のブロック共重合体[C]の、全不飽和結合の90%以上を水素化したブロック共重合体水素化物[D]に対して紫外線吸収剤が配合されてなる樹脂組成物[E]からなるフィルム[F]の1面もしくは両面に、芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A']と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B']とからなる特定のブロック共重合体水素化物[D']及び/又はブロック共重合体水素化物[D']にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[D"]100重量部に対して紫外線吸収剤0重量部以上1.0重量部未満が配合された樹脂組成物[E']からなる層[F']が積層されてなる多層フィルム、及びその製造方法である。

Description

多層フィルム及びその製造方法
 本発明は、特定のブロック共重合体水素化物に紫外線吸収剤が配合された樹脂組成物からなるフィルム層を含む多層フィルム、及びその製造方法に関する。
 芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロックと、鎖状共役ジエン化合物由来の繰り返し単位を含む重合体ブロックからなるブロック共重合体の、芳香環及びジエン由来の二重結合を水素化したブロック共重合体水素化物は、透明性、低複屈折性、耐熱性、低吸湿性等に優れること、及び、このものを押出し成形することによって得られるフィルムは、液晶表示装置の偏光フィルムや位相差フィルム等の光学フィルムとして有用であることは既に開示されている(特許文献1~5)。
 液晶表示装置では、液晶パネル表面を形成するガラス基板の両側に偏光フィルムが配置される。一般的な偏光フィルムは、ポリビニルアルコール系フィルムとヨウ素等の二色性材料からなる偏光子の両面に、トリアセチルセルロース等を用いた偏光子保護フィルムを貼り合せて構成されている。
 偏光子保護フィルムは、紫外線に晒されると分解が促進され、強度低下を引き起こすと同時に、変色により透明度が低下するという問題を有する。そのため、偏光子保護フィルムには、偏光子を紫外線による劣化から防ぐ目的で、紫外線吸収性能が必要とされている。偏光子保護フィルムに紫外線吸収能を付与する方法としては、偏光子保護フィルムとしてのトリアセチルセルロースフィルム中に紫外線吸収剤を添加する方法が一般的である。
 しかしながら、トリアセチルセルロースは耐湿熱性が十分でなく、トリアセチルセルロースフィルムを偏光子保護フィルムとして用いた偏光板を、高温又は高湿下において使用すると、偏光度や色相等の偏光板としての性能が低下するという問題があった。
 一方、特許文献6には、特定のブロック共重合体水素化物に紫外線吸収剤を配合した中間層と、紫外線吸収剤を含まない外層とから構成される多層フィルムが開示されている。
特開2002-53631号公報(US2003/207983A1) 特開2002-105151号公報(US2003/207983A1) 特開2003-114329号公報 WO2009/067290号(US2010/290117A1) WO2009/137278号(US2011/038045A1) 特開2011-13378号公報
 かかる従来技術の下、本発明者らは、特許文献6に開示されたフィルムを用いて光学フィルムの製造を試みたところ、面内の位相差が小さいフィルムが得られる半面、硬く脆い物性を有するために引張り伸びが小さく、溶融押出し成形法により得たフィルムを巻き取る際にフィルムが切れ易く、また、ロール状に巻いて保管すると、クラックを生じる場合がある等の問題があることが確認された。
 本発明は、かかる実情に鑑みてなされたものであり、優れた紫外線遮蔽性能と機械的強度を有し、表面荒れが少なく面状の優れた、光学用フィルムに好適な、特定のブロック共重合体水素化物からなる多層フィルム、及び、その製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、位相差を発現し難い特定のブロック共重合体水素化物に、一定量以上の紫外線吸収剤を配合した樹脂組成物を成形して得られるフィルムに、機械的強度の良好な特定のブロック共重合体水素化物、及び/又はアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物からなる層を積層することにより、優れた紫外線遮蔽性能と取り扱いが容易な機械的強度とを有する多層フィルムが得られることを見出した。また、溶融押出し成形法によりフィルム成形物を得るに際し、紫外線吸収剤が配合されてない、若しくは、一定量以下の紫外線吸収剤が配合された特定のブロック共重合体水素化物及び/又は変性ブロック共重合体水素化物の層を介して、キャストロールにフィルムを押出し成形することにより、キャストロール表面に汚れが付着せず、表面状態が良く、面状の優れた光学用フィルムを長時間連続成形できることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)の多層フィルム、及び(2)の多層フィルムの製造方法が提供される。
(1)芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、
全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が40:60~90:10であるブロック共重合体[C]の、全不飽和結合の90%以上を水素化したブロック共重合体水素化物[D]100重量部に対して、
紫外線吸収剤1.0~10.0重量部が配合されてなる樹脂組成物[E]からなるフィルム[F]の1面もしくは両面に、
芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A’]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B’]とからなり、
全重合体ブロック[A’]のブロック共重合体全体に占める重量分率をwA’とし、全重合体ブロック[B’]のブロック共重合体全体に占める重量分率をwB’としたときに、wA’とwB’との比(wA’:wB’)が40:60~80:20であるブロック共重合体[C’]の、
全不飽和結合の90%以上を水素化したブロック共重合体水素化物[D’]
及び/又は、ブロック共重合体水素化物[D’]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[D”]100重量部に対して、
紫外線吸収剤0重量部以上1.0重量部未満が配合された樹脂組成物[E’]
からなる層[F’]が積層されてなる多層フィルム。
(2)前記層[F’]がキャストロール面に接するようにして溶融押出し成形する(1)記載の多層フィルムの製造方法。
 本発明によれば、優れた紫外線遮蔽性能と機械的強度を有し、表面荒れが少なく、面状の優れた光学用フィルムに好適な、特定のブロック共重合体水素化物からなる多層フィルム、及び、その製造方法が提供される。
 以下、本発明を、1)多層フィルム、及び、2)多層フィルムの製造方法に項分けして詳細に説明する。
1)多層フィルム
 本発明の多層フィルムは、後述するブロック共重合体水素化物[D]100重量部に対して、紫外線吸収剤1.0~10.0重量部が配合されてなる樹脂組成物[E]からなるフィルム[F]の1面もしくは両面に、ブロック共重合体水素化物[D’]及び/又は、ブロック共重合体水素化物[D’]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[D”]100重量部に対して、紫外線吸収剤0重量部以上1.0重量部未満が配合された樹脂組成物[E’]からなる層[F’]が積層されてなる。
1.ブロック共重合体水素化物[D]
 ブロック共重合体水素化物[D]は、芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、
全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が40:60~90:10であるブロック共重合体[C]の、全不飽和結合の90%以上を水素化して得られるものである。
(1)ブロック共重合体[C]
 ブロック共重合体[C]は、本発明に係るブロック共重合体水素化物[D]の前駆体であり、少なくとも2つの重合体ブロック[A]と、少なくとも1つの重合体ブロック[B]を含有する。
 重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位(「構造単位」ともいう。以下にて同じ。)を主成分とするものである。重合体ブロック[A]中の芳香族ビニル化合物由来の繰り返し単位の含有量は、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。
 また、重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位以外の繰り返し単位を含んでいてもよい。重合体ブロック[A]中の芳香族ビニル化合物由来の繰り返し単位以外の成分としては、鎖状共役ジエン由来の繰り返し単位及び/又はその他のビニル化合物由来の繰り返し単位が挙げられる。その含有量は、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。重合体ブロック[A]中の芳香族ビニル化合物由来の繰り返し単位が上記範囲にあると、本発明の多層フィルムは耐熱性が高くなるため好ましい。
 複数の重合体ブロック[A]同士は、上記の範囲を満足すれば互いに同じであっても、相異なっていても良い。
 重合体ブロック[B]は、鎖状共役ジエン化合物由来の繰り返し単位を主成分とするものである。重合体ブロック[B]中の鎖状共役ジエン化合物由来の繰り返し単位の含有量は、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。
 また、重合体ブロック[B]は、鎖状共役ジエン化合物由来の繰り返し単位以外の繰り返し単位を含んでいてもよい。重合体ブロック[B]中の鎖状共役ジエン化合物由来の繰り返し単位以外の成分としては、芳香族ビニル化合物由来の繰り返し単位及び/又はその他のビニル化合物由来の繰り返し単位が挙げられる。その含有量は、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。鎖状共役ジエン化合物由来の繰り返し単位が上記範囲にあると、本発明の多層フィルムは柔軟性が良好になるため好ましい。重合体ブロック[B]中の芳香族ビニル化合物由来の繰り返し単位の含有量が増加すると、フィルムの複屈折発現性は低下するが、低温での柔軟性が低下し易くなる。
 重合体ブロック[B]が複数ある場合には、重合体ブロック[B]同士は、上記の範囲を満足すれば互いに同じであっても、相異なっていても良い。
 芳香族ビニル化合物としては、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等のアルキル基を置換基として有するスチレン類;4-モノクロロスチレン、ジクロロスチレン、4-モノフルオロスチレン等のハロゲン原子を置換基として有するスチレン類;4-メトキシスチレン、3,5-ジメトキシスチレン等のアルコキシ基を置換基として有するスチレン類;4-フェニルスチレン等のアリール基を置換基として有するスチレン類;等が挙げられる。これらの中でも、吸湿性の観点から極性基を有しないものが好ましく、工業的な入手の容易さからスチレンが特に好ましい。
 鎖状共役ジエン系化合物としては、吸湿性の観点から極性基を有しないものが好ましい。例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等が挙げられる。これらの中でも、工業的な入手の容易さから1,3-ブタジエン、イソプレンが特に好ましい。
 その他のビニル系化合物としては、鎖状オレフィン、環状オレフィン、鎖状ビニル化合物、環状ビニル化合物、不飽和の環状酸無水物、及び不飽和イミド化合物等が挙げられる。これらのビニル化合物は、ニトリル基、アルコキシカルボニル基、カルボキシル基又はハロゲン原子を置換基として有していてもよい。これらの中でも、吸湿性の観点から極性基を有しないものが好ましく、鎖状オレフィン及び環状オレフィンがより好ましい。これらの具体例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテン等の鎖状オレフィン;ビニルシクロヘキサン等の環状オレフィン;等が挙げられ、鎖状オレフィンがさらに好ましく、エチレン、プロピレンが特に好ましい。
 ブロック共重合体[C]中の重合体ブロック[A]の数は、通常5個以下、好ましくは4個以下、より好ましくは3個以下であり、ブロック[B]の数は、通常4個以下、好ましくは3個以下、より好ましくは2個以下である。
 重合体ブロック[A]及び/又は重合体ブロック[B]が複数存在する場合、重合体ブロック[A]の中で、重量平均分子量が最大と最少の重合体ブロックの重量平均分子量をそれぞれMw(A1)及びMw(A2)とし、重合体ブロック[B]の中で、重量平均分子量が最大と最少の重合体ブロックの重量平均分子量をそれぞれMw(B1)及びMw(B2)としたとき、Mw(A1)とMw(A2)との比〔Mw(A1)/Mw(A2)〕、及び、Mw(B1)とMw(B2)との比〔Mw(B1)/Mw(B2)〕は、それぞれ2.0以下、好ましくは1.5以下、より好ましくは1.2以下である。
 Mw(A1)とMw(A2)の比が2を超えて非対象度が大きくなると、ブロック共重合体水素化物[D]の弾性率が高くなり、高温側のガラス転位温度も高く(上限は140℃)なるが、機械的強度は弱くなり、フィルム成形時に中間層が切れ易くなることが懸念される。
 また、重合体ブロック[B]は重合体ブロク[A]に比べて含有率が少なく、Mw(B1)とMw(B2)の比が大きくなると、重合体ブロック[B2]の分子量が小さくなり過ぎて重合体ブロック[A]と相分離し難くなり、例えばペンタブロックポリマーであってもトリブロックポリマーと同様の粘弾性挙動となり、しかも、高温側のガラス転位温度が低下し、耐熱性が低下することが懸念される。
 ブロック共重合体[C]のブロックの形態は、鎖状型ブロックでもラジアル型ブロックでも良いが、鎖状型ブロックであるものが、機械的強度に優れ好ましい。ブロック共重合体[C]の最も好ましい形態は、重合体ブロック[B]の両端に重合体ブロック[A]が結合したトリブロック共重合体〔[A]-[B]-[A]〕、及び、重合体ブロック[A]の両端に重合体ブロック[B]が結合し、更に、該両重合体ブロック[B]の他端にそれぞれ重合体ブロック[A]が結合したペンタブロック共重合体〔[A]-[B]-[A]-[B]-[A]〕である。
 ブロック共重合体[C]中の、全重合体ブロック[A]がブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]がブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)は、40:60~90:10、好ましくは50:50~85:15、より好ましくは60:40~80:20である。wAが高過ぎる場合は、本発明で使用するブロック共重合体水素化物[D]の耐熱性は高く、押出しフィルムの位相差は小さくなるが、柔軟性が低く、切断面でフィルムが割れ易くなる。また、wAが低過ぎる場合は、光学用フィルムとして耐熱性が不十分となるおそれがある。
 ブロック共重合体[C]の分子量は、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量(Mw)で、通常30,000~200,000、好ましくは40,000~150,000、より好ましくは50,000~100,000である。また、ブロック共重合体[C]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下である。
 Mwが30,000を下まわる場合は、得られるブロック共重合体水素化物[D]の機械的強度が弱くなり、成形したフィルムが切れ易くなる。一方、Mwが200,000を超える場合は、得られるブロック共重合体水素化物[D]の溶融粘度が高くなり、ブロック共重合体水素化物[D]の熱分解が少ない250℃以下の成形温度での溶融成形が困難となるおそれがある。また、Mwが大きくなると、水素化反応の時間も長くなるため、工業的に不利となる。
 ブロック共重合体[C]の製造方法としては、例えばリビングアニオン重合等の方法により、芳香族ビニル化合物を主成分として含有するモノマー混合物(a)と鎖状共役ジエン系化合物を主成分として含有するモノマー混合物(b)を交互に重合させる方法;芳香族ビニル化合物を主成分として含有するモノマー混合物(a)と鎖状共役ジエン系化合物を主成分として含有するモノマー混合物(b)を順に重合させた後、重合体ブロック[B]の末端同士を、カップリング剤によりカップリングさせる方法;等が挙げられる。
 前記モノマー混合物(a)は、芳香族ビニル化合物を、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上含み、芳香族ビニル化合物以外のモノマー成分を、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下含むものである。
 また、前記モノマー混合物(b)は、鎖状共役ジエン化合物を、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上含み、鎖状共役ジエン化合物以外のモノマー成分を、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下含むものである。
(2)ブロック共重合体水素化物[D]
 本発明に係るブロック共重合体水素化物[D]は、上記のブロック共重合体[C]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合を水素化して得られるものである。その水素化率は通常90%以上、好ましくは97%以上、より好ましくは99%以上である。水素化率が高いほど、成形したフィルムの耐光性、耐熱性が良好である。ブロック共重合体水素化物[D]の水素化率は、H-NMRによる測定において求めることができる。
 不飽和結合の水素化方法や反応形態等は特に限定されず、公知の方法にしたがって行えばよいが、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましい。このような水素化方法としては、例えば、WO2011/096389号パンフレット、WO2012/043708号パンフレット等に記載された方法を挙げることができる。
 上記した方法で得られるブロック共重合体水素化物[D]は、水素化触媒及び/又は重合触媒を、ブロック共重合体水素化物[D]を含む反応溶液から除去した後、反応溶液から回収することができる。回収されたブロック共重合体水素化物[D]の形態は限定されるものではないが、通常はペレット形状にして、その後のフィルムの成形加工に供することができる。
 ブロック共重合体水素化物[D]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常35,000~200,000、好ましくは40,000~150,000、より好ましくは45,000~100,000である。
また、ブロック共重合体水素化物[D]の分子量分布(Mw/Mn)を、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下にする。Mw及びMw/Mnが上記範囲となるようにすると、成形したフィルムの耐熱性や機械的強度が維持される。
2.樹脂組成物[E]
 本発明に使用する樹脂組成物[E]は、ブロック共重合体水素化物[D]100重量部に対して、紫外線吸収剤を、通常1.0~10.0重量部、好ましくは2.0~9.0重量部、より好ましくは3.0~8.0重量部配合して得られるものである。
 紫外線吸収剤の配合量がこの範囲内であれば、光学用フィルムにした場合に効率的に紫外線を遮断することができ、可視光領域の透明性は維持され、色調を悪化させることがないため好ましい。紫外線吸収剤の濃度が前記範囲の下限未満であると、波長380nm付近における光線透過率が大きくなり、本発明のフィルムを偏光板保護フィルムとして使用した場合に偏光板の偏光度が低下するおそれがある。また、紫外線吸収剤の含有量が前記範囲の上限を超えると、短波長側の光線透過率が小さくなり、フィルムの黄色味が強くなりすぎるおそれがある。
 前記樹脂組成物[E]は、紫外線遮蔽の観点からは波長380nmでの透過率が8%以下であることが好ましく、4%以下がさらに好ましく、1%以下であることが特に好ましい。
 本発明に用いる紫外線吸収剤としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸3水和物、2-ヒドロキシ-4-オクチロキシベンゾフェノン、4-ドデカロキシ-2-ヒドロキシベンゾフェノン、4-ベンジルオキシ-2-ヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;
フェニルサルチレート、4-t-ブチルフェニル-2-ヒドロキシベンゾエート、フェニル-2-ヒドロキシベンゾエート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等のサリチル酸系紫外線吸収剤;
2-(2-ヒドロキシ-5-メチルフェニル)2H-ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3,5-ジクミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、5-クロロ-2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタリミジルメチル)フェノール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-[(2H-ベンゾトリアゾール-2-イル)フェノール]]等のベンゾトリアゾール系紫外線吸収剤;
2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤;等が挙げられる。
 これらの中でも、波長380nm付近での紫外線吸収性に優れる点で、2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-[(2H-ベンゾトリアゾール-2-イル)フェノール]]等が好ましい。
 前記樹脂組成物[E]には、紫外線吸収剤以外のその他の配合剤を配合することができる。その他の配合剤としては、光安定剤、酸化防止剤、ブロッキング防止剤等が挙げられる。これらは1種単独で、あるいは2種以上を併用して配合してもよい。
 光安定剤としては、ヒンダードアミン系光安定剤が好ましい。例えば、分子構造中に、3,5-ジ-t-ブチル-4-ヒドロキシフェニル基、2,2,6,6-テトラメチルピペリジル基、あるいは、1,2,2,6,6-ペンタメチル-4-ピペリジル基等を有する化合物が挙げられる。
 酸化防止剤としては、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤等が挙げられる。酸化防止剤を用いる場合、その配合量は、ブロック共重合体水素化物[D]100重量部に対して、通常0.01~1重量部、好ましくは0.05~0.9重量部、より好ましくは0.1~0.8重量部である。酸化防止剤の量がこの範囲であれば、樹脂組成物[E]の耐熱安定性が優れるため、好ましい。
 酸化防止剤の具体例としては、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。
 ブロック共重合体水素化物[D]に、紫外線吸収剤及びその他の配合剤を配合する方法としては、例えば、ブロック共重合体水素化物[D]に紫外線吸収剤及びその他の配合剤を混合した後、二軸混錬機、ロール、ブラベンダー、押出機等でブロック共重合体水素化物[D]を溶融状態にして均一に混練する方法が挙げられる。
3.ブロック共重合体水素化物[D’]
 ブロック共重合体水素化物[D’]は、芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A’]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B’]とからなり、全重合体ブロック[A’]のブロック共重合体全体に占める重量分率をwA’とし、全重合体ブロック[B’]のブロック共重合体全体に占める重量分率をwB’としたときに、wA’とwB’との比(wA’:wB’)が40:60~80:20であるブロック共重合体[C’]の、全不飽和結合の90%以上を水素化して得られるものである。
 重合体ブロック[A’]、重合体ブロック[B’]を構成する繰り返し単位は、前記重合体ブロック[A]、重合体ブロック[B]と同様である。
 ブロック共重合体水素化物[D’]は、ブロック共重合体[C’]をブロック共重合体[C]と同様の方法により水素化することで得られる。その水素化率は、通常90%以上、好ましくは97%以上、より好ましくは99%以上である。水素化率が高いほど、成形したフィルムの耐光性、熱安定性が良好である。
 ブロック共重合体水素化物[D’]の分子量は、前記のブロック共重合体水素化物[D]と同程度であれば良い。
 本発明に使用するブロック共重合体水素化物[D’]は、その前駆体であるブロック共重合体[C’]が、全重合体ブロック[A’]がブロック共重合体全体に占める重量分率をwA’とし、全重合体ブロック[B’]がブロック共重合体全体に占める重量分率をwB’とした時に、wA’とwB’との比(wA’:wB’)は、40:60~80:20、好ましくは45:55~70:30、より好ましくは50:50~60:40であるものが使用される。wA’がこの範囲内にある場合は、ブロック共重合体[C’]を水素化して得られるブロック共重合体水素化物[D’]は、フィルムを成形した場合に柔軟性と機械的強度が良好であるため好ましい。
4.変性ブロック共重合体水素化物[D”]
 変性ブロック共重合体水素化物[D”]は、ブロック共重合体水素化物[D’]にアルコキシシリル基が導入されてなるものである。
 変性ブロック共重合体水素化物[D”]は、前記ブロック共重合体水素化物[D’]に、有機過酸化物の存在下でエチレン性不飽和シラン化合物と反応させることによりアルコキシシリル基を導入する方法;重合段階で、エチレン性不飽和シラン化合物を芳香族ビニル化合物及び/又は鎖状共役ジエン化合物と共重合させて得られたブロック共重合体を水素化する方法;等により得ることができる。
 アルコキシシリル基は、ブロック共重合体水素化物[D’]に、アルキレン基やアルキレンオキシカルボニルアルキレン基等の2価の有機基を介して結合していても良い。
 アルコキシシリル基の導入量は、通常、変性ブロック共重合体水素化物[D”]100重量部中に、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。アルコキシシリル基の導入量が多過ぎると、所望の形状に溶融成形する前に微量の水分等で分解されたアルコキシシリル基同士の架橋が進み、ゲルが発生したり、溶融時の流動性が低下して成形性が低下する等の問題を生じ易くなる。アルコキシシリル基の導入量が少な過ぎると、ポリビニルアルコール系フィルムやガラスとの十分な接着力が得られなくなるおそれがある。アルコキシシリル基が導入されたことは、IRスペクトルで確認することができる。また、アルコキシシリル基の導入量はH-NMRスペクトル(導入量が少ない場合は積算回数を増やす)にて算出することができる。
 エチレン性不飽和シラン化合物としては、芳香族ビニル化合物や鎖状共役ジエン化合物と共重合ものや、ブロック共重合体水素化物[D’]とグラフト重合し、ブロック共重合体水素化物[D]にアルコキシシリル基を導入するものであれば特に限定されない。具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン;アリルトリメトキシシラン、アリルトリエトキシシラン等のアリルトリアルコキシシラン;ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン等のアルキルジアルコキシシラン;p-スチリルトリメトキシシラン等のスチリルトリアルコキシシラン;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシトリアルコキシシラン;等が挙げられる。これらは、それぞれ単独で用いてもよいし、2種以上を組み合わせて使用してもよい。
 ブロック共重合体水素化物[D’]に、有機過酸化物の存在下でエチレン性不飽和シラン化合物を反応させてアルコキシシリル基を導入する場合は、エチレン性不飽和シラン化合物の使用量は、ブロック共重合体水素化物[D’]100重量部に対して、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。
 過酸化物としては、1分間半減期温度が170~190℃のものが好ましく使用される。例えば、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシド、ジ-(2-t一ブチルパーオキシイソプロピル)ベンゼン等が好適に用いられる。
 これらの過酸化物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて使用してもよい。
 過酸化物の使用量は、ブロック共重合体水素化物[D’]100重量部に対して、通常0.05~2重量部、好ましくは0.1~1重量部、より好ましくは0.2~0.5重量部である。
 上記のブロック共重合体水素化物[D’]とエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる方法は、特に限定されない。例えば、二軸混練機にて所望の温度で所望の時間混練することによりアルコキシシリル基を導入することができる。
 混練温度は、通常180~220℃、好ましくは185~210℃、より好ましくは190~200℃である。また、加熱混練時間は、通常0.1~10分、好ましくは0.2~5分、より好ましくは0.3~2分程度である。温度、滞留時間が上記範囲になるようにして、連続的に混練、押出しをすればよい。
 変性ブロック共重合体水素化物[D”]の分子量は、導入されるアルコキシシリル基の量が少ないため、原料として用いたブロック共重合体水素化物[D’]の分子量と実質的には変わらない。ただし、過酸化物の存在下でエチレン性不飽和シラン化合物と反応させるため、重合体の架橋反応、切断反応も併発し、分子量分布は大きくなる。
 変性ブロック共重合体水素化物[D”]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常30,000~300,000、好ましくは40,000~200,000、より好ましくは50,000~150,000である。また、分子量分布(Mw/Mn)は、好ましくは3.5以下、より好ましくは2.5以下、特に好ましくは2.0以下である。Mw及びMw/Mnが上記範囲となるようにすると、本発明の多層フィルムの機械的強度が維持されるため好ましい。
5.樹脂組成物[E’]
 本発明に使用するブロック共重合体水素化物[D’]及び/又は変性ブロック共重合体水素化物[D”]は、紫外線吸収剤、耐光安定剤、酸化防止剤等の配合剤を含有させ、樹脂組成物[E’]として使用する。
 樹脂組成物[E’]に含まれる紫外線吸収剤の量は、ブロック共重合体水素化物[D’]及び/又は変性ブロック共重合体水素化物[D”]の100重量部に対して、1.0重量部未満とする。
 紫外線吸収剤を含む場合、その配合量は、通常0.01~1.0重量部未満、好ましくは0.05~0.6重量部、より好ましくは0.1~0.4重量部である。
 紫外線吸収剤としては、ブロック共重合体水素化物[D]に配合したのと同様の紫外線吸収剤を使用すればよい。紫外線吸収剤の配合量が1.0重量部以上の場合は、押出し成形機を使用して本発明の多層フィルムを長時間連続で押出し成形すると、キャストロールに汚れが付着し易くなる。
 樹脂組成物[E’]には、紫外線吸収剤以外の配合剤を配合することができる。紫外線吸収剤以外の配合剤としては、ブロック共重合体水素化物[D]の場合と同様の光安定剤、酸化防止剤、ブロッキング防止剤等が挙げられる。これらは1種単独で、あるいは2種以上併用して配合してもよい。
 押出し成形法により、本発明の多層フィルムを成形する場合は、Tダイに目やにが付着するのを防止するために、酸化防止剤を配合することが望ましい。
 酸化防止剤としては、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤等が挙げられる。酸化防止剤の配合量は、ブロック共重合体水素化物[D’]及び/又は変性ブロック共重合体水素化物[D”]の100重量部に対して、通常0.1~1重量部、好ましくは0.2~0.9重量部、より好ましくは0.3~0.8重量部である。酸化防止剤の量がこの範囲であれば、長時間連続して多層フィルムを押し出し成形した場合に、Tダイの目やにの発生を低減することができるため好ましい。
 ブロック共重合体水素化物[D’]及び/又は変性ブロック共重合体水素化物[D”]に、紫外線吸収剤及びその他の配合剤を配合する方法は、ブロック共重合体水素化物[D]の場合と同様である。
 後述するように、ブロック共重合体水素化物[D]からなるフィルムの表面に、樹脂組成物[E’]からなる層を積層することにより、例えば、偏光子を形成するポリビニルアルコール系フィルムや液晶表示素子基板のガラス等との良好な接着性が得られるようになる。
6.多層フィルム
 本発明の多層フィルムは、樹脂組成物[E]からなるフィルム[F]の1面もしくは両面に、樹脂組成物[E’]からなる層[F’]が積層されてなるものである。
 樹脂組成物[E]からなるフィルム[F]は紫外線を遮蔽する層である。その厚みは、通常10~200μm、好ましくは15~150μm、より好ましくは20~100μmである。フィルム[F]の厚みを前記範囲の下限以上にすると、例えば、偏光子の保護フィルムとして使用した際に紫外線遮蔽性能が高くなる。また、偏光フィルムの破損防止等の取扱い性が向上し、また、上限以下にすることで偏光フィルム全体の厚さを抑制することができるため好ましい。
 樹脂組成物[E’]からなる層[F’]は、フィルム[F]の1面もしくは両面に積層し、多層フィルムの機械的強度、柔軟性を改善する役割を果たす。また、多層フィルムの押出し成形時に、層[F’]がキャストロールに接するように成形することにより、キャストロールの汚れ付着を防止でき、表面荒れが少なく面状の優れた光学用フィルムに好適な多層フィルムを得ることができる。
 層[F’]の厚みは、通常1~50μm、好ましくは2~30μm、より好ましくは3~20μmである。層[F’]の厚みを前記範囲の下限以上にすることで多層フィルムの柔軟性を高めることができる。また、層[F’]の厚みが50μmを超えると、多層フィルムの面内位相差が大きくなり過ぎ、また多層フィルムの厚さも厚くなり過ぎるおそれがある。
 本発明の多層フィルムを、偏光フィルムの偏光子保護フィルムとして用いる場合は、フィルム面内の位相差Reが10nm以下であることが好ましく、3nm以下であることがより好ましい。位相差が10nm以下であることにより、液晶表示ユニットに組み込んだ場合の色ムラを抑えることができる。特に大画面の液晶表示装置において色ムラが顕著に目立つ傾向にあるが、このような大画面の表示装置にも好適である。
 フィルム面内の位相差Reは、フィルム面内の主屈折率をNx、Nyとし、フィルムの厚さをdとすると、式:Re=(Nx-Ny)×dで求めることができる。フィルム面内の位相差Reは、市販の自動複屈折計を用いて測定することができる。
 本発明の多層フィルムは、優れた紫外線遮蔽性能を有するため、屋根材、天井材、壁材、窓材等の自動車、建築物、農業ハウス等の用途; 医薬品、食品、飲料水等の保護フィルム; 偏光フィルムの偏光子保護フィルム、輝度向上フィルム、透明導電フィルム、タッチパネル用基板、液晶基板、光拡散シート、プリズムシート等の液晶表示装置等に用いられる部材; ガラス板や透明プラスチック板等の表面に積層したり、複数のガラス板や透明プラスチック板等の間に介在させて、紫外線遮蔽物品;等に使用することもできる。
2)多層フィルムの製造方法
 本発明の多層フィルムの製造方法は、本発明の多層フィルムを製造する方法であって、前記樹脂組成物[E’]を、キャストロール面に接するようにして溶融押出し成形するものである。前記樹脂組成物[E’]を、キャストロール面に接するようにして溶融押出し成形することにより、前記層[F’]を形成することができる。本発明の製造方法によれば、本発明の多層フィルムを長時間連続で成形した場合であっても、得られる多層フィルムは表面荒れが生じ難く、面状の優れたフィルムを得ることができる。
 本発明の多層フィルムの製造方法に適用される成形法としては、特に制限は無いが、公知の2種3層多層共押出し成形法;溶融押出し法等で成形された樹脂組成物[E’]からなるフィルム上に、樹脂組成物[E]を溶融押出しして、2種2層あるいは2種3層の多層フィルムとする押出しラミネート成形法;等が適用できる。
 いずれの成形法においても、キャストロールには樹脂組成物[E’]からなる層[F’]が接触し、樹脂組成物[E]からなる層がキャストロールに直接接触しないように押出し成形する。
 シートの成形条件は、成形方法により適宜選択されるが、例えば溶融押出し成形法による場合は、樹脂温度は、通常180~250℃、好ましくは190~240℃、より好ましくは200~230℃の範囲で適宜選択される。樹脂温度が低過ぎる場合は、流動性が悪化し、成形された多層シートの表面平滑性が低下し易くなる。また、シートの押出し速度が上げられず工業生産性に劣る傾向がある。樹脂温度が高過ぎる場合は、ブロック共重合体水素化物[D]、[D’]、変性ブロック共重合体水素化物[D”]の熱安定性が不良となり、得られる多層フィルムの機械的強度が低下するおそれがある。
 本発明においては、ブロック共重合体水素化物[D]、[D’]、変性ブロック共重合体水素化物[D”]を押出機内で溶融させて、当該押出機に取り付けられたダイスから押出す前に、溶融状態の樹脂をギヤーポンプやフィルターに通すことが好ましい。ギヤーポンプを使用することにより、樹脂の押出量の均一性を向上させ、厚さむらを低減させることができる。
 また、フィルターを使用することにより、樹脂中の異物を除去し、欠陥の無い外観に優れた光学用に適した多層フィルムを得ることができる。
 本発明を、実施例を示しながら、さらに詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお部及び%は特に断りのない限り重量基準である。
 本実施例における評価は、以下の方法によって行う。
(1)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ブロック共重合体及びブロック共重合体水素化物の分子量は、THFを溶離液とするGPCによる標準ポリスチレン換算値として38℃において測定した。測定装置としては、東ソー社製HLC8020GPCを用いた。
(2)水素化率
 ブロック共重合体水素化物の主鎖、側鎖及び芳香環の水素化率は、H-NMRスペクトルを測定して算出した。
(3)フィルム表面性状
 押出しフィルムの表面外観を目視で観察し、評価した。フィルム表面の反射光を見て、曇りが見られない場合を○(良好)、曇りが見られた場合を×(不良)として評価した。
(4)フィルムの面内位相差(Re)
 自動複屈折計(製品名「KOBLA-21ADH」、王子計測機器社製)を使用して、押出しフィルムの幅方向に50mm間隔で1000mmに亘って測定した。全測定結果を平均して、積層フィルムの面内位相差Re値とした。
(5)紫外線遮蔽性
 紫外可視分光光度計(製品名「V-570」、日本分光社製)を使用して、波長380nm及び300nmでのフィルムの光線透過率を測定した。
(6)機械的強度
 オートグラフ(製品名「AGS-10KNX」、島津製作所社製)を使用して、フィルムの引張り特性を測定し、破断点の伸びが6%以上の場合を○(良好)、3%~6%未満の場合を△(適用可)、3%未満の場合を×(不良)として評価した。
[参考例1]
・ブロック共重合体水素化物[D1]の製造
(ブロック共重合体[C1]の製造)
 内部が充分に窒素置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン550部、脱水スチレン37.5部、及びn-ジブチルエーテル0.475部を入れた。全容を60℃で攪拌しながら、n-ブチルリチウムの15%シクロヘキサン溶液0.72部を加えて、重合を開始させた。n-ブチルリチウム溶液の滴下終了後、さらに、60℃で60分間全容を攪拌した。ガスクロマトグラフィーにより測定したこの時点で、重合転化率は99.5%であった。
 次に、反応液に脱水イソプレン25.0部を加え、そのまま30分間攪拌を続けた。この時点で重合転化率は99.5%であった。
 その後、更に、脱水スチレンを37.5部加え、60分間攪拌した。この時点での重合転化率はほぼ100%であった。
 ここで、反応混合物にイソプロピルアルコール0.5部を加えて、反応を停止させた。得られた重合体溶液中に含まれるブロック共重合体[C1]の重量平均分子量(Mw)は60,300、分子量分布(Mw/Mn)は1.05、wA:wB=75:25であった。
(ブロック共重合体水素化物[D1]の製造)
 次に、上記重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(製品名「E22U」、ニッケル担持量60%、日揮触媒化成社製)8.0部及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。水素化反応後のブロック共重合体水素化物[D1]の重量平均分子量(Mw)は63,800、分子量分布(Mw/Mn)は1.06であった。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](製品名「Songnox1010」、コーヨ化学研究所社製)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。
 次いで、上記溶液を、金属ファイバー製フィルター(孔径0.4μm、ニチダイ社製)にて、ろ過して微小な固形分を除去した後、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。連続して溶融ポリマーを、濃縮乾燥器に連結した孔径5μmのステンレス製焼結フィルターを備えたポリマーフィルター(富士フィルター社製)により、温度260℃でろ過した後、ダイから溶融ポリマーをストランド状に押出し、冷却後、ペレタイザーによりブロック共重合体水素化物[D1]のペレット96部を作製した。得られたペレット状のブロック共重合体水素化物[D1]の重量平均分子量(Mw)は63,200、分子量分布(Mw/Mn)は1.11、水素化率はほぼ100%であった。
[参考例2]
・ブロック共重合体水素化物[D2]の製造
(ブロック共重合体[C2]の製造)
 スチレンとイソプレンを5回に分け、スチレン30.0部、イソプレン7.5部、スチレン25.0部、イソプレン7.5部及びスチレン30.0部をこの順に加える以外は参考例1と同様にして重合反応を行い、反応を停止させた。得られたブロック共重合体[C2]の重量平均分子量(Mw)は61,600、分子量分布(Mw/Mn)は1.06、wA:wB=85:15であった。
(ブロック共重合体水素化物[D2]の製造)
 次に、上記重合体溶液を、参考例1と同様にして水素化反応を行った。水素化反応後のブロック共重合体水素化物[D2]の重量平均分子量(Mw)は65,300、分子量分布(Mw/Mn)は1.07であった。
 水素化反応終了後、参考例1と同様に酸化防止剤を添加した後、濃縮乾燥してブロック共重合体水素化物[D2]のペレット92部を作製した。得られたペレット状のブロック共重合体水素化物[D2]の重量平均分子量(Mw)は64,600、分子量分布(Mw/Mn)は1.12、水素化率はほぼ100%であった。
[参考例3]
・ブロック共重合体水素化物[D’3]の製造
(ブロック共重合体[C’3]の製造)
 スチレンとイソプレンを3回に分け、スチレン30.0部、イソプレン40.0部、スチレン30.0部をこの順に加え、n-ブチルリチウムの15%シクロヘキサン溶液を0.70部に変えて重合を開始する以外は参考例1と同様にして重合反応を行い、反応を停止させた。得られたブロック共重合体[C’3]の重量平均分子量(Mw)は60,200、分子量分布(Mw/Mn)は1.04、wA:wB=60:40であった。
(ブロック共重合体水素化物[D’3]の製造)
 次に、上記重合体溶液を、参考例1と同様にして水素化反応を行った。水素化反応後のブロック共重合体水素化物[D’3]の重量平均分子量(Mw)は63,700、分子量分布(Mw/Mn)は1.05であった。
 水素化反応終了後、参考例1と同様に酸化防止剤を添加した後、濃縮乾燥して、ブロック共重合体水素化物[D’3]のペレット95部を作製した。得られたペレット状のブロック共重合体水素化物[D’3]の重量平均分子量(Mw)は63,100、分子量分布(Mw/Mn)は1.12、水素化率はほぼ100%であった。
[参考例4]
・ブロック共重合体水素化物[D’4]の製造
(ブロック共重合体[C’4]の製造)
 スチレンとイソプレンを3回に分け、スチレン25.0部、イソプレン50.0部、スチレン25.0部をこの順に加え、n-ブチルリチウムの15%シクロヘキサン溶液を0.68部に変えて重合を開始する以外は参考例1と同様にして重合反応を行い、反応を停止させた。得られたブロック共重合体[C’4]の重量平均分子量(Mw)は61,100、分子量分布(Mw/Mn)は1.04、wA:wB=50:50であった。
(ブロック共重合体水素化物[D’4]の製造)
 次に、上記重合体溶液を、参考例1と同様にして水素化反応を行った。水素化反応後のブロック共重合体水素化物[D’4]の重量平均分子量(Mw)は64,700、分子量分布(Mw/Mn)は1.05であった。
 水素化反応終了後、参考例1と同様に酸化防止剤を添加した後、濃縮乾燥してブロック共重合体水素化物[D’4]のペレット92部を作製した。得られたペレット状のブロック共重合体水素化物[D’4]の重量平均分子量(Mw)は64,000、分子量分布(Mw/Mn)は1.12、水素化率はほぼ100%であった。
[参考例5]
・変性ブロック共重合体水素化物[D”3]の製造
 参考例3で得たブロック共重合体水素化物[D’3]のペレット100部に対して、ビニルトリメトキシシラン2.0部、及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(製品名「パーヘキサ(登録商標) 25B」、日油社製)0.2部を添加した。この混合物を、二軸押出機を用いて、樹脂温度200℃、滞留時間60~70秒で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル基を有する変性ブロック共重合体水素化物[D”3]のペレット95部を得た。
 得られたブロック共重合体水素化物[D”3]のペレット10部をシクロヘキサン100部に溶解させた後、脱水したメタノール400部中に注いで、変性ブロック共重合体水素化物[D”3]を凝固させ、濾別した後、25℃で真空乾燥して、変性ブロック共重合体水素化物[D”3]のクラム8.9部を単離した。
 このもののFT-IRスペクトルを測定したところ、1090cm-1にSi-OCH基、825cm-1と739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075cm-1、808cm-1及び766cm-1と異なる位置に観察された。また、H-NMRスペクトル(重クロロホルム中)では3.6ppmにメトキシ基のプロトンに基づく吸収帯が観察され、ピーク面積比からブロック共重合体水素化物[D’3]の100部に対して、ビニルトリメトキシシラン1.7部が結合したことが確認された。
[参考例6]
・紫外線吸収剤の配合
 参考例1で得られたブロック共重合体水素化物[D1]のペレット100部に、紫外線吸収剤である2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-p-クレゾール(SUMISORB(登録商標)300、住友化学社製)4.0部、及び2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(SUMISORB(登録商標)340、住友化学社製)4.0部を添加して、均一に混合した後、二軸押出機を用いて、樹脂温度210℃で押し出し、冷却後、ペレタイザーによりカッティングして樹脂組成物[E11]のペレット97部を得た。
 同様にして、参考例2~参考例5で得られたブロック共重合体水素化物[D1]、[D2]、[D’3]、[D’4]、及び変性ブロック共重合体水素化物[D”3]を使用し、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、及び2,4--ビス(α,α-ジメチルベンジル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール(製品名「TINUVIN(登録商標)234」、BASFジャパン社製)から選択した紫外線吸収剤を配合して、樹脂組成物[E12]、[E13]、[E14]、[E21]、[E22]、[E’3]、[E’4]及び[E”3]を調製した。得られた樹脂組成物の内訳を表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 参考例6で得られた樹脂組成物[E11]及び樹脂組成物[E”3]を、20mmφのスクリューを備えた単軸押出し機2機を有するTダイ式2種3層フィルム成形機(Tダイ幅300mm)、及び鏡面のキャストロールを備えたシート引取機を使用し、樹脂組成物[E11]が中間フィルム[F11]、樹脂組成物[E”3]が表層[F”3]となるようにして、樹脂温度210℃、Tダイ温度200℃、キャストロール温度80℃の条件で、2種3層の多層フィルムを製造した。得られた多層フィルムは、表層[F”3]/中間フィルム[F11]/表層[F”3]の三層構造を有し、得られた多層フィルムの厚みは5μm/30μm/5μmであった。
 得られた多層シートを使用して、フィルム表面性状、フィルムの面内位相差(Re)、紫外線遮蔽性、機械的強度の評価を行った。フィルム表面性状は、安定してフィルムが成形できるようになっているフィルム成形開始から2時間後のフィルム表面を観察した。評価の結果は表2にまとめて記載した。
[実施例2~実施例6]
 樹脂組成物[E12]、[E13]、[E14]、[E21]、[E22]、[E’3]、[E’4]、[E”3]及び[D1]を使用し、表2に記載した組合せで、実施例1と同様にして2種3層の多層フィルムをそれぞれ製造し、得られた多層シートのフィルムの表面性状、フィルムの面内位相差(Re)、紫外線遮蔽性、機械的強度の評価を行った。結果を表2に合せて記載した。
[比較例1]
 樹脂組成物[E11]のみを使用し、実施例1で使用したのと同じ2種3層フィルム成形機を使用して、中間フィルム、表層ともに樹脂組成物[E11]からなるフィルムを製造した。
 得られたフィルムは樹脂組成物[E11]のみからなり、フィルムの厚みは30μmであった。
 得られた多層シートを使用して、フィルム表面性状、フィルムの面内位相差(Re)、紫外線遮蔽性、機械的強度の評価を行った。フィルム表面性状は、安定してフィルムが成形できるようになっているフィルム成形開始から2時間後のフィルム表面を観察した。評価の結果は表2にまとめて記載した。
[比較例2]
 樹脂組成物[E22]のみを使用し、比較例1と同様にして、中間フィルム、表層ともに樹脂組成物[E22]からなるフィルムを製造した。得られたフィルムの厚みは30μmであった。
 得られた多層シートを使用して、比較例1と同様にしてフィルムの評価を行った。評価の結果は表2にまとめて記載した。
[比較例3]
 樹脂組成物[E22]が中間フィルム[F22]、樹脂組成物[D2]が表層[F’D2]となるようにして、実施例1で使用したのと同じ2種3層フィルム成形機を使用して、2種3層の多層フィルムを製造した。得られた多層フィルムは表層[F’D2]/中間フィルム[F22]/表層[F’D2の三層構造を有し、得られた多層フィルムの厚みは7μm/30μm/7μmであった。
 得られた多層シートを使用して、フィルム表面性状、フィルムの面内位相差(Re)、紫外線遮蔽性、機械的強度の評価を行った。フィルム表面性状は、フィルムの成形開始から2時間以上を経過し、安定してフィルムが成形できている時点でのフィルム表面を観察した。評価の結果は表2にまとめて記載した。
Figure JPOXMLDOC01-appb-T000002
 本実施例及び比較例の結果から以下のことがわかる。
 本発明の多層フィルムは、フィルム表面の荒れが無く、表面性状が良好であり、引張り伸び性が改善されてフィルムの成形加工時にフィルムが切れ難く、良好な作業性を有し、且つ十分な紫外線遮蔽性を示している(実施例1~7)。
 一方、紫外線吸収剤の量が特定量より少ない表面層を形成しない場合は、フィルム表面の荒れがあり、表面性状は不良である(比較例1、2)。
 また、表面層を形成する場合も、鎖状共役ジエン化合物由来の重合体ブロックの含有量が特定量よりも少ないブロック共重合体水素化物で形成された場合は、フィルム表面性状は良好であるが、引張り伸びが小さく、フィルム成形加工時の作業性が劣る(比較例3)。
 本発明の多層フィルムは、優れた紫外線遮蔽性能、低位相差、機械的強度を有し、表面欠陥が少なく面状が優れており、偏光フィルムの偏光子保護フィルム等の光学用フィルムとして有用である。

Claims (2)

  1.  芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、
    全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が40:60~90:10であるブロック共重合体[C]の、全不飽和結合の90%以上を水素化したブロック共重合体水素化物[D]100重量部に対して、紫外線吸収剤1.0~10.0重量部が配合されてなる樹脂組成物[E]からなるフィルム[F]の1面もしくは両面に、
    芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A’]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B’]とからなり、
    全重合体ブロック[A’]のブロック共重合体全体に占める重量分率をwA’とし、全重合体ブロック[B’]のブロック共重合体全体に占める重量分率をwB’としたときに、wA’とwB’との比(wA’:wB’)が40:60~80:20であるブロック共重合体[C’]の、全不飽和結合の90%以上を水素化したブロック共重合体水素化物[D’]及び/又は、ブロック共重合体水素化物[D’]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[D”]100重量部に対して、紫外線吸収剤0重量部以上1.0重量部未満が配合された樹脂組成物[E’]からなる層[F’]が積層されてなる多層フィルム。
  2.  前記層[F’]がキャストロール面に接するようにして溶融押出し成形する請求項1記載の多層フィルムの製造方法。
PCT/JP2015/050270 2014-01-09 2015-01-07 多層フィルム及びその製造方法 WO2015105127A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15735356.6A EP3093141B1 (en) 2014-01-09 2015-01-07 Multilayer film and method for producing same
JP2015556819A JP6497322B2 (ja) 2014-01-09 2015-01-07 多層フィルム及びその製造方法
CN201580002919.7A CN105813843B (zh) 2014-01-09 2015-01-07 多层膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014002553 2014-01-09
JP2014-002553 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015105127A1 true WO2015105127A1 (ja) 2015-07-16

Family

ID=53523952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050270 WO2015105127A1 (ja) 2014-01-09 2015-01-07 多層フィルム及びその製造方法

Country Status (4)

Country Link
EP (1) EP3093141B1 (ja)
JP (1) JP6497322B2 (ja)
CN (1) CN105813843B (ja)
WO (1) WO2015105127A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003713A1 (ja) * 2016-06-29 2018-01-04 日本ゼオン株式会社 導電性フィルム
JPWO2018003715A1 (ja) * 2016-06-30 2019-04-18 日本ゼオン株式会社 偏光板保護フィルム、偏光板及び表示装置
WO2020080202A1 (ja) 2018-10-17 2020-04-23 日本ゼオン株式会社 共重合体水素化物およびその製造方法、共重合体水素化物含有組成物、合わせガラス用中間膜、合わせガラス用中間膜積層体、封止材、光学フィルム、医療用成形体およびその製造方法、接着剤、ならびに、接合体およびその製造方法
JPWO2019131457A1 (ja) * 2017-12-26 2021-01-07 日本ゼオン株式会社 偏光板保護フィルム、偏光板及び表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201801746VA (en) * 2015-09-09 2018-04-27 Asahi Chemical Ind Film
KR20200101915A (ko) * 2017-12-28 2020-08-28 니폰 제온 가부시키가이샤 편광판용 적층체, 편광판, 편광판용 적층체 필름 롤, 편광판용 적층체의 제조 방법 및 편광판의 제조 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053631A (ja) 2000-08-04 2002-02-19 Nippon Zeon Co Ltd 新規なブロック共重合体及び光学式情報記録媒体
JP2002105151A (ja) 2000-09-29 2002-04-10 Nippon Zeon Co Ltd フィルム及びシート
JP2003114329A (ja) 2001-10-05 2003-04-18 Nippon Zeon Co Ltd 延伸フィルムの製造方法
US20030207983A1 (en) 2000-08-04 2003-11-06 Atsushi Sone Block copolymer, process for producing the same, and molded object
WO2009067290A1 (en) 2007-11-20 2009-05-28 Dow Global Technologies Inc. Optical compensation film
WO2009137278A1 (en) 2008-05-07 2009-11-12 Dow Global Technologies Inc. Near-zero optical retardation film
JP2010234547A (ja) * 2009-03-30 2010-10-21 Asahi Kasei Chemicals Corp 多層熱収縮性フィルム
JP2011013378A (ja) 2009-06-30 2011-01-20 Nippon Zeon Co Ltd フィルム
WO2011096389A1 (ja) 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
WO2012043708A1 (ja) 2010-09-29 2012-04-05 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用
JP2013132755A (ja) * 2011-12-26 2013-07-08 Nippon Zeon Co Ltd 多層シート及びその利用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011394A (ja) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd 積層フィルム及びその製造方法、並びに偏光板
CN103249746B (zh) * 2010-09-29 2015-05-06 日本瑞翁株式会社 具有烷氧基甲硅烷基的嵌段共聚物氢化物及其利用
JP2014506667A (ja) * 2011-01-28 2014-03-17 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 新規太陽光集光装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030207983A1 (en) 2000-08-04 2003-11-06 Atsushi Sone Block copolymer, process for producing the same, and molded object
JP2002053631A (ja) 2000-08-04 2002-02-19 Nippon Zeon Co Ltd 新規なブロック共重合体及び光学式情報記録媒体
JP2002105151A (ja) 2000-09-29 2002-04-10 Nippon Zeon Co Ltd フィルム及びシート
JP2003114329A (ja) 2001-10-05 2003-04-18 Nippon Zeon Co Ltd 延伸フィルムの製造方法
US20100290117A1 (en) 2007-11-20 2010-11-18 Dow Global Technologies Inc. Optical compensation film
WO2009067290A1 (en) 2007-11-20 2009-05-28 Dow Global Technologies Inc. Optical compensation film
US20110038045A1 (en) 2008-05-07 2011-02-17 Weijun Zhou Near-zero optical retardation film
WO2009137278A1 (en) 2008-05-07 2009-11-12 Dow Global Technologies Inc. Near-zero optical retardation film
JP2010234547A (ja) * 2009-03-30 2010-10-21 Asahi Kasei Chemicals Corp 多層熱収縮性フィルム
JP2011013378A (ja) 2009-06-30 2011-01-20 Nippon Zeon Co Ltd フィルム
WO2011096389A1 (ja) 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
WO2012043708A1 (ja) 2010-09-29 2012-04-05 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用
JP2013132755A (ja) * 2011-12-26 2013-07-08 Nippon Zeon Co Ltd 多層シート及びその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093141A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003713A1 (ja) * 2016-06-29 2018-01-04 日本ゼオン株式会社 導電性フィルム
KR20190022469A (ko) * 2016-06-29 2019-03-06 니폰 제온 가부시키가이샤 도전성 필름
JPWO2018003713A1 (ja) * 2016-06-29 2019-04-18 日本ゼオン株式会社 導電性フィルム
US11322269B2 (en) 2016-06-29 2022-05-03 Zeon Corporation Electrically conductive film
JP7070410B2 (ja) 2016-06-29 2022-05-18 日本ゼオン株式会社 導電性フィルム
KR102412042B1 (ko) * 2016-06-29 2022-06-21 니폰 제온 가부시키가이샤 도전성 필름
TWI801340B (zh) * 2016-06-29 2023-05-11 日本瑞翁股份有限公司 導電性膜
JPWO2018003715A1 (ja) * 2016-06-30 2019-04-18 日本ゼオン株式会社 偏光板保護フィルム、偏光板及び表示装置
JPWO2019131457A1 (ja) * 2017-12-26 2021-01-07 日本ゼオン株式会社 偏光板保護フィルム、偏光板及び表示装置
JP7226333B2 (ja) 2017-12-26 2023-02-21 日本ゼオン株式会社 偏光板保護フィルム、偏光板及び表示装置
WO2020080202A1 (ja) 2018-10-17 2020-04-23 日本ゼオン株式会社 共重合体水素化物およびその製造方法、共重合体水素化物含有組成物、合わせガラス用中間膜、合わせガラス用中間膜積層体、封止材、光学フィルム、医療用成形体およびその製造方法、接着剤、ならびに、接合体およびその製造方法
US11773193B2 (en) 2018-10-17 2023-10-03 Zeon Corporation Hydrogenated copolymer and method of producing the same, hydrogenated copolymer-containing composition, interlayer film for laminated glass, interlayer film laminate for laminated glass, sealing material, optical film, medical shaped article and method of producing the same, adhesive, and assembly and method of producing the same

Also Published As

Publication number Publication date
EP3093141A1 (en) 2016-11-16
JPWO2015105127A1 (ja) 2017-03-23
EP3093141A4 (en) 2017-08-23
EP3093141B1 (en) 2020-06-17
JP6497322B2 (ja) 2019-04-10
CN105813843B (zh) 2018-04-13
CN105813843A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
JP6497322B2 (ja) 多層フィルム及びその製造方法
JP6065221B2 (ja) 合わせガラス板
JP6295962B2 (ja) 樹脂組成物およびそれからなる成形体
JP7249926B2 (ja) 合わせガラス
US10005924B2 (en) Transparent adhesive sheet
US10532636B2 (en) Laminated glass for vehicle
US10816697B2 (en) Polarizing plate protective film, polarizing plate and display device
JP2017186229A (ja) 車両用合わせガラス
WO2018097146A1 (ja) 接着剤シート及び合わせガラス
JP6907946B2 (ja) 酸無水物基を有するブロック共重合体水素化物及びその利用
TWI788510B (zh) 堆疊薄膜及其製造方法以及偏光板
US20200301046A1 (en) Polarizing plate protection film, polarizing plate, and display device
JP2016204217A (ja) 複層ガラス
JP6229460B2 (ja) 薄膜ガラス積層体
WO2017199892A1 (ja) 多層フィルム
JP2018002763A (ja) アルコキシシリル基を有する変性ブロック共重合体水素化物及びその利用
WO2019058953A1 (ja) 熱可塑性樹脂シートおよび積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015735356

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735356

Country of ref document: EP