WO2015105081A1 - 電力変換装置及び三相交流電源装置 - Google Patents
電力変換装置及び三相交流電源装置 Download PDFInfo
- Publication number
- WO2015105081A1 WO2015105081A1 PCT/JP2015/050080 JP2015050080W WO2015105081A1 WO 2015105081 A1 WO2015105081 A1 WO 2015105081A1 JP 2015050080 W JP2015050080 W JP 2015050080W WO 2015105081 A1 WO2015105081 A1 WO 2015105081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- power
- voltage
- circuit
- conversion device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/126—Arrangements for reducing harmonics from ac input or output using passive filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a three-phase AC power supply device that generates AC power from DC power and performs system interconnection with a three-phase AC system, and a power conversion device used therefor. It also relates to a power converter in the opposite direction (three-phase AC system to DC).
- electric power generated with direct current by a solar power generation panel can be grid-connected to a commercial AC system via a power conditioner that is a power converter.
- Grid interconnection is possible for a three-phase AC system as well as a single-phase AC system (see, for example, Patent Document 1 (FIG. 2)).
- FIG. 24 is an example of a circuit diagram of a power conversion device used when a DC power source is connected to a three-phase AC system.
- the power conversion device 200 generates AC power based on the DC power received from the photovoltaic power generation panel 201 as a DC power supply, and supplies the power to the three-phase AC system 220.
- the power conversion apparatus 200 includes a capacitor 202, a booster circuit 203, a smoothing circuit 205 that smoothes the voltage of the DC bus 204, a three-phase inverter circuit 207, three sets of AC reactors 208 to 210, and capacitors 211 to 213. It has.
- the smoothing circuit 205 is formed by connecting capacitors 206 in two series for securing withstand voltage performance and in six parallels for securing capacity.
- the capacitance of the smoothing circuit as a whole is, for example, several mF.
- the solar power generation panel 201, the capacitor 202, and the booster circuit 203 are provided in this example in three systems, and are connected in parallel to the DC bus 204.
- the input voltage from one solar power generation panel 201 is DC 200 V and the current is 30 A, one system can generate 6 kW of power and 18 kW of power as a whole.
- the line voltage of the three-phase AC system 220 is 400V.
- the booster circuit 203 performs MPPT (Maximum Power Point Tracking) control for obtaining an optimum operating point with respect to the output of the photovoltaic power generation panel 201.
- the output of the booster circuit 203 is smoothed by the large-capacity smoothing circuit 205 and becomes the voltage of the DC bus 204.
- the three-phase inverter circuit 207 By switching this voltage by the three-phase inverter circuit 207, a three-phase AC voltage including a high-frequency component is generated.
- the high frequency component is removed by the AC reactors 208 to 210 and the capacitors 211 to 213, and a waveform that can be connected to the three-phase AC system 220 is obtained.
- the voltage of the DC bus 204 needs a peak value of AC 400V or more, and is about 566V at 400 ⁇ ⁇ 2, but it is set to 600V with some margin.
- the voltage of the DC bus 204 is 600 V
- the switching element in the three-phase inverter circuit 207 is turned off, a voltage greatly exceeding 600 V is applied to the switching element due to resonance caused by the stray inductance and the capacitance of the switching element. Therefore, for example, in order to reliably prevent the dielectric breakdown of the switching element, a withstand voltage performance of 1200 V that is twice the voltage of the DC bus is required.
- the smoothing circuit 205 also requires a withstand voltage performance of 1200 V
- the configuration of FIG. 18 requires a withstand voltage performance of 600 V for each capacitor.
- the main object of the present invention is to reduce power loss associated with conversion in a power converter provided between direct current and three-phase alternating current.
- the present invention is a power conversion device that converts power between a direct current unit and a three-phase alternating current, wherein the electric power is transmitted between the direct current unit and the first phase of the three-phase alternating current via a first reactor.
- a first phase conversion device that performs the conversion of the first phase
- a second phase conversion device that performs power conversion between the direct current unit and the second phase of the three-phase alternating current via a second reactor
- the direct current unit A third phase conversion device that converts power through a third reactor with the third phase of the three-phase alternating current, the first phase conversion device, the second phase conversion device, and the third phase conversion.
- a control unit for controlling the device Each of the first phase conversion device, the second phase conversion device, and the third phase conversion device includes a DC / DC conversion circuit and a single-phase power conversion circuit, and the control unit includes the first phase conversion device, For each of the second phase converter and the third phase converter, when the absolute value of the AC voltage target value exceeds the DC voltage of each DC unit, the DC / DC conversion circuit is operated to operate the voltage target.
- the single-phase power conversion circuit is made to perform only necessary polarity inversion while the absolute value of the value is established, and when the absolute value of the voltage target value is lower than the DC voltage, the DC / DC conversion circuit The voltage target value is established by stopping the operation and operating the single-phase power conversion circuit.
- the present invention is also a three-phase AC power supply device connected to a three-phase AC, wherein the first phase of the three-phase AC is a first phase based on a DC power source and a DC power input from the DC power source.
- a first phase converter that supplies AC power via a reactor, and a second phase that supplies AC power to the second phase of the three-phase AC via a second reactor based on DC power input from the DC power source.
- a third phase converter for supplying AC power to the third phase of the three-phase AC via a third reactor based on DC power input from the DC power source; and the first phase A control unit that controls the conversion device, the second phase conversion device, and the third phase conversion device;
- Each of the first phase conversion device, the second phase conversion device, and the third phase conversion device includes a DC / DC conversion circuit and a single-phase power conversion circuit, and the control unit includes the first phase conversion device, For each of the second phase conversion device and the third phase conversion device, when the absolute value of the AC voltage target value to be output exceeds the input DC voltage, the DC / DC conversion circuit is operated to operate the DC / DC conversion circuit.
- the absolute value of the voltage target value is generated and the single-phase power conversion circuit performs only necessary polarity reversal.
- the absolute value of the voltage target value is lower than the input DC voltage, the DC / DC The operation of the DC conversion circuit is stopped and the single phase power conversion circuit is operated to generate the voltage target value.
- the power conversion device and the three-phase AC power supply device of the present invention it is possible to reduce power loss accompanying conversion.
- FIG. 5 is a graph showing an example of a result obtained by simulation of a booster circuit voltage target value obtained by a control processing unit in feedback control and a booster circuit voltage detection value when controlled according to the booster circuit voltage.
- FIG. It is a figure which shows an example of an inverter output voltage command value.
- (A) is a graph comparing a booster circuit carrier wave and a booster circuit reference wave, and (b) is a drive waveform for driving the switching element Qb generated by the booster circuit control unit.
- (A) is a graph comparing the inverter circuit carrier and the inverter circuit reference wave
- (b) is a drive waveform for driving the switching element Q1 generated by the inverter circuit controller
- (c) is It is a drive waveform for driving the switching element Q3 which the inverter circuit control part produced
- (A) is the graph which showed the AC waveform output from the single phase inverter circuit, the system phase power supply, and the both-ends voltage of an AC reactor, each voltage waveform
- (b) shows the current waveform which flows into an AC reactor. It is the shown graph.
- FIG. 3 is a circuit diagram in which a DC unit is shared and an insulation transformer is provided and three-phase three-wire connection is made. It is an example of the circuit diagram of the conventional power converter device used when connecting to a three-phase alternating current system from a direct current power supply.
- the gist of the embodiment of the present invention includes at least the following.
- a first phase conversion device for converting power a second phase conversion device for converting power between the direct current unit and the second phase of the three-phase alternating current via a second reactor, and the direct current
- a control unit for controlling the phase conversion device
- Each of the first phase conversion device, the second phase conversion device, and the third phase conversion device includes a DC / DC conversion circuit and a single-phase power conversion circuit, and the control unit includes the first phase conversion device, For each of the second phase converter and the third phase converter, when the absolute value of the AC voltage target value exceeds the DC voltage of each DC unit, the DC / DC conversion circuit is operated to operate the voltage target.
- the single-phase power conversion circuit is made to perform only necessary polarity inversion while the absolute value of the value is established, and when the absolute value of the voltage target value is lower than the DC voltage, the DC / DC conversion circuit
- the voltage target value is established by stopping the operation and operating the single-phase power conversion circuit.
- each converter performs the following operation.
- the DC / DC conversion circuit and the single-phase power conversion circuit operate alternately with respect to high-frequency switching, and when one of the DC / DC conversion circuit and the single-phase power conversion circuit is performing high-frequency switching operation, the other stops high-frequency switching.
- the voltage of the DC bus is reduced as compared with the case where the voltage (line voltage) is supplied by a single three-phase inverter.
- the voltage reduction of the DC bus provides the following advantages.
- a switching element having a lower withstand voltage performance has a lower on-resistance, so that conduction loss can be reduced.
- an output smoothing capacitor is provided in the subsequent stage of each of the first reactor, the second reactor, and the third reactor, and the DC / DC conversion circuit
- a smoothing capacitor is provided, and for each of the first phase conversion device, the second phase conversion device, and the third phase conversion device, the control unit includes: The output current target value obtained based on the input power value from the corresponding direct current power source and the phase voltage value of the three-phase alternating current, and the alternating current based on the current target value of the DC / DC conversion circuit obtained from the following equation Control power output, Ia * is the output current target value, Vinv * is a voltage target value of the single-phase power conversion circuit, Ca is the capacitance of the output smoothing capacitor, Va is a voltage value of the phase voltage of the three-phase alternating current, C is the capacitance of the smoothing capacitor provided between the DC / DC conversion circuit and the single-phase power conversion circuit; Vo * is a voltage target value of the
- the control unit can control each converter to output AC power having a voltage phase advanced several times from the voltage phase of the phase voltage of the three-phase AC system.
- the phase of the voltage across each reactor (first, second, third) The phase can be advanced by approximately 90 degrees with respect to the voltage phase of the three-phase AC system.
- the current phase of each reactor is delayed by 90 degrees with respect to the voltage phase, the current phase of the AC power output through each reactor is substantially synchronized with the phase voltage phase of the three-phase AC system. .
- it is possible to output AC power having a current phase substantially in phase with respect to each phase voltage of the three-phase AC system and thus it is possible to suppress a reduction in the power factor of the AC power.
- the control unit uses the voltage target value Vinv * of the single-phase power converter circuit as the voltage target value of the DC / DC converter circuit.
- Vinv * Va + s LaIinv *
- La is an inductance common to the first reactor, the second reactor, and the third reactor.
- the DC unit is provided in a first phase corresponding to the first phase, the second phase, and the third phase, respectively.
- the DC unit may be constituted by a DC unit, a second DC unit, and a third DC unit, and each DC unit may be independent of each other without sharing both positive and negative poles.
- the electrical specifications of each DC unit may not be complete. For example, three DC units having different voltages can be used.
- the DC unit is a common unit for the first phase, the second phase, and the third phase
- An insulation transformer may be provided between each of the first phase conversion device, the second phase conversion device, the third phase conversion device, and each phase of the three-phase AC system.
- the capacity of the DC unit can be set to an appropriate amount without waste.
- the power conversion device and the three-phase AC system are either one of a three-phase four-wire connection and a three-phase three-wire connection. They can be connected to each other depending on the connection form. As a result, even if the three-phase AC system is a three-phase four-wire system having a neutral point or a three-phase three-wire system having no neutral point, it can be connected to the power converter. .
- this is a three-phase AC power supply device connected to a three-phase AC system, and is based on a DC power source and a DC power input from the DC power source.
- the AC power is supplied to the second phase of the three-phase AC system via the second reactor.
- a control unit that controls the first phase conversion device, the second phase conversion device, and the third phase conversion device
- Each of the first phase conversion device, the second phase conversion device, and the third phase conversion device includes a DC / DC conversion circuit and a single-phase power conversion circuit
- the control unit includes the first phase conversion device, For each of the second phase conversion device and the third phase conversion device, when the absolute value of the AC voltage target value to be output exceeds the input DC voltage, the DC / DC conversion circuit is operated to operate the DC / DC conversion circuit.
- the absolute value of the voltage target value is generated and the single-phase power conversion circuit performs only necessary polarity reversal.
- the absolute value of the voltage target value is lower than the input DC voltage, the DC / DC The operation of the DC conversion circuit is stopped and the single-phase power conversion circuit is operated to generate the voltage target value.
- the above three-phase AC power supply device has the same effects as the power conversion device of (1).
- the DC power source includes a first DC power source provided corresponding to the first phase, the second phase, and the third phase
- the DC power supply is constituted by a DC power supply and a third DC power supply, and each DC power supply may be independent from each other and share neither positive or negative pole.
- This configuration is suitable for three-phase four-wire connection (Y connection) between the power converter and the three-phase AC system.
- the DC power supply is a single power supply common to the first phase, the second phase, and the third phase, and the first phase conversion
- An insulation transformer may be provided between the device, the second phase conversion device, the third phase conversion device, and each phase of the three-phase AC system. This configuration is suitable for a three-phase three-wire connection (delta connection) between the power converter and the three-phase AC system.
- the first phase converter, the second phase converter, the third phase converter, and the three-phase AC system are: They can be connected to each other by either one of the three-phase four-wire connection and the three-phase three-wire connection.
- the three-phase AC system is a three-phase four-wire system having a neutral point or a three-phase three-wire system having no neutral point, it is connected to the first to third converters. can do.
- each of the first DC power supply, the second DC power supply, and the third DC power supply tracks the sun. It may be a concentrating solar power generation panel that operates. In this case, it is possible to perform relatively stable high-output power generation during the day while suppressing power loss.
- the three-phase AC power supply device of (7) may be linked to the three-phase AC system. (13) The three-phase AC power supply device of (7) can also output three-phase AC.
- FIG. 1 is a circuit diagram showing a three-phase AC power supply device 100 connected to the three-phase AC system 3.
- the three-phase AC power supply device 100 includes a power conversion device 1P and, for example, three sets of photovoltaic power generation panels 2 as DC power sources (first DC power source, second DC power source, and third DC power source).
- the three sets of photovoltaic power generation panels 2 are independent of each other and do not share both positive and negative poles.
- the power conversion device 1P is configured by three sets of conversion devices (first phase conversion device, second phase conversion device, and third phase conversion device) 1 provided corresponding to each phase of three-phase alternating current.
- the converter 1 converts the DC power input from the photovoltaic power generation panel 2 into AC power and supplies the AC power to the three-phase AC system 3.
- the three sets of converters 1 supply AC power to each phase 3p (the first phase u, the second phase v, and the third phase w) with respect to the neutral point N of the three-phase AC system 3 with a phase voltage. Supply.
- the phase voltage is about 231 V (400 V / ⁇ 3).
- Each converter 1 outputs the phase voltage, as the voltage of the DC bus L B, are necessary about 327V ((400V / ⁇ 3) ⁇ ⁇ 2). This means that in comparison with the case of supplying the three-phase line voltage of AC system 3 (400V) with a single three-phase inverter, the voltage of the DC bus L B is reduced (566V ⁇ 327V). Therefore, the withstand voltage performance of the switching element and other electronic devices is not required to be 1200V, and is approximately 600V.
- FIG. 2 is a diagram showing the internal circuit of one conversion device 1 in FIG. 1 in more detail.
- a photovoltaic power generation panel 2 as a DC power source is connected to the input end of the converter 1, and a system phase power source 3p (three-phase AC phase voltage) is connected to the output end.
- This converter 1 performs the grid connection operation which converts the DC power generated by the photovoltaic power generation panel 2 into AC power and outputs it to the grid phase power supply 3p.
- the converter 1 is a booster circuit (DC / DC converter circuit) 10 to which the DC power output from the photovoltaic power generation panel 2 is applied, and the power supplied from the booster circuit 10 is converted into AC power and output to the system phase power supply 3p.
- a single-phase inverter circuit (single-phase power conversion circuit) 11 The booster circuit 10 and the single-phase inverter circuit 11 are controlled by the control unit 12.
- the control unit 12 can control any of the three sets of conversion devices 1.
- the booster circuit 10 includes a DC reactor 15 and switching elements Qa and Qb made of, for example, FETs (Field Effect Transistors), and constitutes a boost chopper circuit.
- An IGBT Insulated Gate Bipolar Transistor
- a first voltage sensor 17, a first current sensor 18, and a capacitor 26 for smoothing are provided.
- the first voltage sensor 17 detects the DC input voltage detection value Vg (DC input voltage value) of the DC power output from the photovoltaic power generation panel 2 and input to the booster circuit 10, and outputs it to the control unit 12.
- the first current sensor 18 detects a booster circuit current detection value Iin (DC input current value) that is a current flowing through the DC reactor 15 and outputs it to the control unit 12. Note that a current sensor may be further provided in front of the capacitor 26 in order to detect the DC input current detection value Ig.
- the control unit 12 has a function of calculating the input power Pin from the DC input voltage detection value Vg and the booster circuit current detection value Iin and performing MPPT (Maximum Power Point Tracking) control on the photovoltaic power generation panel 2. is doing.
- the switching elements Qa and Qb of the booster circuit 10 are alternately turned on by high-frequency PWM control during the boosting operation.
- the switching element Qa is turned on and Qb is turned off.
- the period for performing the high-frequency switching operation with the single-phase inverter circuit 11 is controlled to be switched alternately. Therefore, the booster circuit 10 outputs power to the single-phase inverter circuit 11 with the boosted voltage during the period during which the switching operation is performed, and the photovoltaic power generation panel 2 outputs during the period during which the switching operation is stopped.
- the DC power voltage input to the booster circuit 10 is output to the single-phase inverter circuit 11 without being boosted.
- a smoothing capacitor 19 (smoothing capacitor) is connected between the booster circuit 10 and the single-phase inverter circuit 11.
- the single-phase inverter circuit 11 includes switching elements Q1 to Q4 made of, for example, IGBT. These switching elements Q1 to Q4 constitute a full bridge circuit. Each of the switching elements Q1 to Q4 is connected to the control unit 12, and can be controlled by the control unit 12. The control unit 12 performs PWM control of the operations of the switching elements Q1 to Q4. Thereby, the single-phase inverter circuit 11 converts the power supplied from the booster circuit 10 into AC power.
- the conversion device 1 includes a filter circuit 21 between the single-phase inverter circuit 11 and the system phase power supply 3p.
- the filter circuit 21 includes an AC reactor 22 and a capacitor 23 (output smoothing capacitor) provided at a subsequent stage of the AC reactor 22.
- the filter circuit 21 has a function of removing high-frequency components included in the AC power output from the single-phase inverter circuit 11. The AC power from which the high frequency component has been removed by the filter circuit 21 is applied to the system phase power supply 3p.
- the booster circuit 10 and the single-phase inverter circuit 11 convert the DC power output from the photovoltaic power generation panel 2 into AC power, and output the converted AC power to the system phase power supply 3p via the filter circuit 21. To do.
- the filter circuit 21 is connected to a second current sensor 24 for detecting an inverter current detection value Iinv (current flowing through the AC reactor 22), which is a current value output from the single-phase inverter circuit 11. Furthermore, a second voltage sensor 25 for detecting a voltage value (system voltage detection value Va) on the system phase power supply 3p side is connected between the filter circuit 21 and the system phase power supply 3p.
- the second current sensor 24 and the second voltage sensor 25 output the detected system voltage detection value Va (AC system voltage value) and the inverter current detection value Iinv to the control unit 12.
- the second current sensor 24 may be provided before the capacitor 23 as shown in the figure, but may be provided after the capacitor 23.
- the control unit 12 controls the booster circuit 10 and the single-phase inverter circuit 11 based on the system voltage detection value Va and the inverter current detection value Iinv and the above-described DC input voltage detection value Vg and the booster circuit current detection value Iin. .
- the voltage of the DC bus L B is reduced.
- the voltage reduction of the DC bus L B, the switching loss of the switching elements Q1 ⁇ Q4, Qa is reduced.
- the iron loss of the reactor (DC reactor 15, AC reactor 22) in the converter 1 becomes small.
- the switching elements Q1 ⁇ Q4, Qa, capacitor 19 for Qb and smooth, which is connected to the DC bus L B is also made available as low withstand voltage performance.
- a switching element having a lower withstand voltage performance has a lower on-resistance, so that conduction loss can be reduced.
- FIG. 14 and FIG. 15 are waveform diagrams simply showing the characteristics of the operation of the conversion device 1. Although both figures show the same contents, FIG. 14 particularly displays the amplitude relationship from the DC input to the AC output so that it is easy to see, and FIG. 15 particularly displays the control timing so that it can be easily seen.
- the upper part of FIG. 14 and the left column of FIG. 15 are waveform diagrams showing the operation of a conventional converter that is not the minimum modulation method, for comparison. Further, the lower part of FIG. 14 and the right column of FIG. 15 are waveform diagrams showing the operation of the minimum modulation type conversion apparatus 1 (FIG. 2).
- the lower minimum modulation scheme of Figure 14 the absolute value of the voltage target value V AC of the AC waveform, in accordance with the comparison result of the DC voltage V DC is input, single-phase step-up circuit 10 in FIG. 2
- the inverter circuit 11 operates.
- the booster circuit 10 stops (“ST” in the figure), and V AC ⁇ V DC (or V AC > V DC )
- the booster circuit 10 performs a boosting operation (“OP” in the figure).
- the output of the booster circuit 10 is smoothed by the capacitor 19 (FIG. 2), the DC bus L B, appears as voltage V B illustrated.
- the single-phase inverter circuit 11 when V AC ⁇ V DC (or V AC ⁇ V DC ), according to the comparison result between the absolute value of the voltage target value V AC and the DC voltage V DC , High frequency switching is performed (“OP” in the figure), and when V AC ⁇ V DC (or V AC > V DC ), the high frequency switching is stopped (“ST” in the figure).
- the single-phase inverter circuit 11 has the switching elements Q1 and Q4 turned on, Q2 and Q3 are turned off, the switching elements Q1 and Q4 are turned off, and the Q2 and Q3 are turned on. By selecting this, only the necessary polarity inversion is performed.
- the output of the single-phase inverter circuit 11 is smoothed by the filter circuit 21, and a desired AC output is obtained.
- the booster circuit 10 and the single-phase inverter circuit 11 alternately perform high-frequency switching operations, and when the booster circuit 10 performs a boost operation, phase inverter circuit 11 stops the high-frequency switching is performed only the necessary polarity inversion with respect to the voltage of the DC bus L B. Conversely, when the single-phase inverter circuit 11 to perform high frequency switching, the boost circuit 10 is allowed to pass through the voltage is stopped, path L in (Fig. 2).
- the number of times of switching of the switching elements Q1 to Q4, Qa, Qb is reduced as a whole, and the switching loss correspondingly. Is greatly reduced.
- the frequency of the high frequency switching is, for example, 20 kHz, while the polarity inversion switching in the single phase inverter circuit 11 is 100 Hz or 120 Hz, which is twice the commercial frequency. That is, the polarity inversion frequency is very small compared to the high frequency switching frequency, and therefore, the switching loss is small.
- the iron loss of the reactor (DC reactor 15, AC reactor 22) is reduced. Furthermore, since the capacitor 19 is sufficient to smooth the switching high frequency, the capacitor 19 does not need the smoothing action of the low-frequency AC component that is three times the system frequency. Therefore, a capacitor having a low capacitance (for example, 10 ⁇ F or 22 ⁇ F) can be used.
- FIG. 16 is a diagram showing a procedure for generating a three-phase AC voltage.
- the control unit 12 determines that the output phases of the conversion devices are (2/3) ⁇ from each other. Control to shift. As a result, the same three-phase AC voltage as shown in the figure can be output as in the three-phase AC system.
- Grid connection of power converters In order to perform grid connection, it is necessary to control the output current phase so that the converter 1 of each phase sends power to the three-phase AC system 3 in a state of a power factor of 1. That is, not only the voltage that matches the voltage phase of the system phase power supply 3p but also the voltage phase of the system phase power supply 3p and the current phase output from the corresponding converter 1 need to match each other.
- FIG. 3 is a block diagram of the control unit 12.
- the control unit 12 functionally includes a control processing unit 30, a booster circuit control unit 32, an inverter circuit control unit 33, and an averaging processing unit 34.
- a part or all of the functions of the control unit 12 may be configured by a hardware circuit, or part or all of the functions may be realized by causing a computer (computer program) to be executed by a computer.
- Software (computer program) for realizing the function of the control unit 12 is stored in a storage device (not shown) of the computer.
- the booster circuit control unit 32 controls the switching elements Qa and Qb of the booster circuit 10 based on the command value and the detection value given from the control processing unit 30, and supplies the power of the current corresponding to the command value to the booster circuit 10. Output. Further, the inverter circuit control unit 33 controls the switching elements Q1 to Q4 of the single-phase inverter circuit 11 based on the command value and the detection value given from the control processing unit 30, and supplies the current power corresponding to the command value. The single phase inverter circuit 11 is made to output.
- the control processing unit 30 is provided with a DC input voltage detection value Vg, a booster circuit current detection value Iin, a system voltage detection value Va, and an inverter current detection value Iinv.
- the control processing unit 30 calculates the input power Pin and its average value ⁇ Pin> from the DC input voltage detection value Vg and the booster circuit current detection value Iin.
- the control processing unit 30 sets the DC input current command value Ig * (described later) based on the input power average value ⁇ Pin> to perform MPPT control on the photovoltaic power generation panel 2, and
- Each of the phase inverter circuits 11 has a function of feedback control.
- the DC input voltage detection value Vg and the booster circuit current detection value Iin are given to the averaging processing unit 34 and the control processing unit 30.
- the averaging processor 34 samples the DC input voltage detection value Vg and the booster circuit current detection value Iin given from the first voltage sensor 17 and the first current sensor 18 at predetermined time intervals set in advance, respectively. And the averaged DC input voltage detection value Vg and booster circuit current detection value Iin are provided to the control processing unit 30.
- FIG. 4 is a graph showing an example of results obtained by simulating changes with time in the DC input voltage detection value Vg and the booster circuit current detection value Iin. Further, the DC input current detection value Ig is a current value detected on the input side from the capacitor 26. As shown in FIG. 4, it can be seen that the DC input voltage detection value Vg, the booster circuit current detection value Iin, and the DC input current detection value Ig fluctuate in a cycle of 1 ⁇ 2 of the system voltage.
- the reason why the DC input voltage detection value Vg and the DC input current detection value Ig fluctuate periodically is as follows. That is, the booster circuit current detection value Iin varies greatly from approximately 0 A to the peak value in a half cycle of the AC cycle according to the operations of the booster circuit 10 and the single-phase inverter circuit 11. Therefore, the fluctuation component cannot be completely removed by the capacitor 26, and the DC input current detection value Ig becomes a pulsating flow including a component that fluctuates in a half cycle of the AC cycle. On the other hand, the output voltage of the photovoltaic power generation panel changes depending on the output current. For this reason, the periodic fluctuation occurring in the DC input voltage detection value Vg is 1 ⁇ 2 period of AC power output from the converter 1.
- the averaging processing unit 34 averages the DC input voltage detection value Vg and the booster circuit current detection value Iin in order to suppress the influence due to the above-described periodic fluctuation.
- FIG. 5 is a diagram illustrating an aspect when the DC input voltage detection value Vg performed by the averaging processing unit 34 is averaged.
- the averaging processing unit 34 samples a given DC input voltage detection value Vg a plurality of times at predetermined time intervals ⁇ t in a period L from a certain timing t1 to a timing t2 (in the drawing, Black spot timing), and an average value of the obtained DC input voltage detection values Vg is obtained.
- the averaging processing unit 34 sets the period L to a length that is 1 ⁇ 2 of the periodic length of the system phase power supply 3p.
- the averaging processing unit 34 sets the time interval ⁇ t to a period that is sufficiently shorter than the length of 1 ⁇ 2 cycle of the system phase power supply 3p.
- the averaging processing unit 34 obtains the average value of the DC input voltage detection value Vg, which periodically fluctuates in synchronization with the cycle of the system phase power supply 3p, with high accuracy while shortening the sampling period as much as possible. Can do.
- the sampling time interval ⁇ t can be set to, for example, 1/100 to 1/1000 of the cycle of the system phase power supply 3p, 20 microseconds to 200 microseconds, or the like.
- the averaging processing unit 34 can store the period L in advance, or can acquire the system voltage detection value Va from the second voltage sensor 25 and set the period L based on the period of the system phase power supply 3p. You can also Here, the period L is set to 1 ⁇ 2 of the cycle length of the system phase power supply 3p. However, if the period L is set to at least 1 ⁇ 2 period of the system phase power supply 3p, the DC input The average value of the voltage detection value Vg can be obtained with high accuracy. As described above, the DC input voltage detection value Vg periodically fluctuates by a length of 1 ⁇ 2 of the cycle length of the system phase power supply 3p by the operations of the booster circuit 10 and the single-phase inverter circuit 11. is there.
- the period L is set to an integral multiple of 1/2 period of the system phase power supply 3p, such as 3 or 4 times 1/2 period of the system phase power supply 3p. do it.
- the voltage fluctuation can be grasped in units of cycles.
- the booster circuit current detection value Iin also periodically fluctuates in a half cycle of the system phase power supply 3p, like the DC input voltage detection value Vg. Therefore, the averaging processing unit 34 also obtains an average value of the booster circuit current detection value Iin by a method similar to the DC input voltage detection value Vg shown in FIG.
- the control processing unit 30 sequentially obtains the average value of the DC input voltage detection value Vg and the average value of the booster circuit current detection value Iin for each period L.
- the averaging processing unit 34 gives the average value of the obtained DC input voltage detection value Vg and the average value of the boost circuit current detection value Iin to the control processing unit 30.
- the averaging processing unit 34 performs the average value of the DC input voltage detection value Vg (DC input voltage average value ⁇ Vg>) and the average value of the boost circuit current detection value Iin (boost circuit current average). Value ⁇ Iin>), and the control processing unit 30 uses these values to control the booster circuit 10 and the single-phase inverter circuit 11 while performing MPPT control on the photovoltaic power generation panel 2.
- the control unit 12 boosts the output from the photovoltaic power generation panel 2 with the DC input voltage average value ⁇ Vg> obtained by removing the fluctuation component due to the operation of the converter 1 and the boosting
- the circuit current average value ⁇ Iin> can be obtained with high accuracy.
- MPPT control can be performed suitably and it can suppress effectively that the power generation efficiency of the photovoltaic power generation panel 2 falls.
- the DC power voltage (DC input voltage detection value Vg) or current (boost circuit current detection value Iin) output from the photovoltaic power generation panel 2 varies.
- the fluctuation cycle substantially coincides with a half cycle of AC power output from the single-phase inverter circuit 11 (a half cycle of the system phase power supply 3p).
- each of the DC input voltage detection value Vg and the booster circuit current detection value Iin is AC.
- the control processing unit 30 sets the DC input current command value Ig * based on the above-described input power average value ⁇ Pin>, and based on the set DC input current command value Ig * and the above value, the booster circuit Command values for 10 and the single-phase inverter circuit 11 are obtained.
- the control processing unit 30 has a function of giving the obtained command value to the booster circuit control unit 32 and the inverter circuit control unit 33 and performing feedback control of the booster circuit 10 and the single-phase inverter circuit 11 respectively.
- FIG. 6 is a control block diagram for explaining feedback control of the booster circuit 10 and the single-phase inverter circuit 11 by the control processing unit 30.
- the control processing unit 30 includes a first calculation unit 41, a first adder 42, a compensator 43, and a second adder 44 as functional units for controlling the single-phase inverter circuit 11.
- the control processing unit 30 includes a second calculation unit 51, a third adder 52, a compensator 53, and a fourth adder 54 as functional units for controlling the booster circuit 10.
- FIG. 7 is a flowchart showing control processing of the booster circuit 10 and the single-phase inverter circuit 11.
- Each functional unit illustrated in FIG. 6 controls the booster circuit 10 and the single-phase inverter circuit 11 by executing the processing illustrated in the flowchart illustrated in FIG.
- control processing of the booster circuit 10 and the single-phase inverter circuit 11 will be described with reference to FIG.
- control processing unit 30 obtains the current input power average value ⁇ Pin> (step S9) and compares it with the input power average value ⁇ Pin> at the previous calculation to set the DC input current command value Ig *. (Step S1).
- the input power average value ⁇ Pin> is obtained based on the following formula (1).
- Input power average value ⁇ Pin> ⁇ Iin ⁇ Vg> (1)
- Iin is a boost circuit current detection value
- Vg is a DC input voltage detection value (DC input voltage value)
- a DC input voltage average value that is an averaged value by the averaging processing unit 34.
- ⁇ Vg> and the booster circuit current average value ⁇ Iin> are used.
- instantaneous values that are not averaged are used for the booster circuit current detection value Iin and the DC input voltage detection value Vg.
- ⁇ > Indicates an average value in parentheses. The same applies hereinafter.
- the control processing unit 30 gives the set DC input current command value Ig * to the first calculation unit 41.
- the first calculation unit 41 is also supplied with a DC input voltage detection value Vg and a system voltage detection value Va.
- the 1st calculating part 41 calculates the average value ⁇ Ia *> of the output electric current command value as the converter 1 based on following formula (2).
- ⁇ is a constant representing the conversion efficiency of the conversion device 1.
- Average value of output current command value ⁇ Ia *> ⁇ ⁇ Ig * ⁇ Vg> / ⁇ Va> ...
- the first calculation unit 41 obtains an output current command value Ia * (output current target value) based on the following equation (3) (step S2).
- the first calculation unit 41 obtains the output current command value Ia * as a sine wave having the same phase as the system voltage detection value Va.
- Output current command value Ia * ( ⁇ 2) ⁇ ⁇ Ia *> ⁇ sin ⁇ t ... (3)
- the first calculation unit 41 obtains the output current command value Ia * based on the input power average value ⁇ Pin> (DC power input power value) and the system voltage detection value Va.
- the first calculation unit 41 is an inverter current command value Iinv * (current target value of the single-phase inverter circuit) that is a current target value for controlling the single-phase inverter circuit 11. Is calculated (step S3).
- Inverter current command value Iinv * Ia * + s CaVa (4)
- Ca is the electrostatic capacitance of the capacitor
- the first calculation unit 41 When the first calculation unit 41 obtains the inverter current command value Iinv *, the first calculation unit 41 gives the inverter current command value Iinv * to the first adder 42.
- the single-phase inverter circuit 11 is feedback controlled by this inverter current command value Iinv *.
- the current adder current detection value Iinv is given to the first adder 42.
- the first adder 42 calculates the difference between the inverter current command value Iinv * and the current inverter current detection value Iinv, and gives the calculation result to the compensator 43.
- the compensator 43 converges the difference based on a proportional coefficient or the like to obtain an inverter voltage reference value Vinv # that can be used as the inverter current command value Iinv *.
- the compensator 43 supplies the inverter voltage reference value Vinv # to the inverter circuit control unit 33, thereby causing the single-phase inverter circuit 11 to output power at the voltage Vinv according to the inverter voltage reference value Vinv #.
- the electric power output from the single-phase inverter circuit 11 is subtracted by the system voltage detection value Va by the second adder 44, is then supplied to the AC reactor 22, and is fed back as a new inverter current detection value Iinv.
- the difference between the inverter current command value Iinv * and the inverter current detection value Iinv is calculated again by the first adder 42, and the single-phase inverter circuit 11 is controlled based on this difference as described above.
- the single-phase inverter circuit 11 is feedback controlled by the inverter current command value Iinv * and the inverter current detection value Iinv (step S4).
- the inverter current command value Iinv * calculated by the first calculation unit 41 is given to the second calculation unit 51.
- the second calculation unit 51 calculates the inverter output voltage command value Vinv * (voltage target value of the single-phase inverter circuit) based on the following equation (5) (step S5).
- Inverter output voltage command value Vinv * Va + s LaIinv * ... (5)
- the second term on the right side of Equation (5) and the second term and third term on the right side of (5a) are values added in consideration of the voltage generated at both ends of the AC reactor 22.
- the inverter that is the current target value for controlling the single-phase inverter circuit 11 so that the current phase of the AC power output from the single-phase inverter circuit 11 is in phase with the system voltage detection value Va.
- An inverter output voltage command value Vinv * (voltage target value) is set based on the current command value Iinv *.
- the output target value (Iinv *, Vinv *) of the single-phase inverter circuit 11 that is the target value on the AC side is the bridge output terminal of the single-phase inverter circuit 11, that is, the single-phase inverter circuit 11 and the filter circuit 21. Is set at the circuit connection point.
- the system connection point that moves the set point of the target value forward from the original system connection point (the circuit connection point between the system phase power supply 3p and the filter circuit 21) and finally settles into an appropriate system connection point. The system is done.
- the inductance La in the equation (5) is preferably an inductance common to the three-phase AC reactor 22.
- both the booster circuit 10 and the single-phase inverter circuit 11 operate based on the current target value Iinv * set by the control unit 12, so that high-frequency switching of both circuits is performed. Even if the operation is performed so that the periods are alternately switched, it is possible to suppress the occurrence of a phase shift or distortion in the alternating current output from each converter 1.
- the second calculation unit 51 When the inverter output voltage command value Vinv * is obtained, as shown in the following formula (6), the second calculation unit 51 generates the voltage Vg as the voltage V DC on the DC power supply side or preferably the following DC voltage Vgf and the inverter The absolute value of the output voltage target value Vinv * is compared, and the larger one is determined as the boost circuit voltage target value Vo * (step S6).
- Vo * Max (Vg ⁇ (RIin + L (d Iin / dt), absolute value of Vinv *) ... (6a) It is.
- R is the resistance of the DC reactor
- L is the inductance of the DC reactor
- (Z R + sL).
- the second calculator 51 calculates the booster circuit current command value Iin * based on the following equation (7) (step S7).
- Boost circuit current command value Iin * ⁇ (Iinv * ⁇ Vinv *) + (s C Vo *) ⁇ Vo * ⁇ / (Vg ⁇ ZIin) ... (7)
- C is the electrostatic capacitance of the capacitor
- the term added to the absolute value of the product of the inverter current command value Iinv * and the inverter output voltage command value Vinv * is the reactive power passing through the capacitor 19 Is a value that takes into account. That is, the value of Iin * can be obtained more accurately by considering reactive power in addition to the target power value of the single-phase inverter circuit 11.
- the above equation (7a) can be expressed as follows.
- Iin * ⁇ (Iinv * ⁇ Vinv *) + C ⁇ (d Vo * / dt) ⁇ Vo * + P LOSS ⁇ / ⁇ Vg-ZIin ⁇ ⁇ (7c)
- the above formula (7b) can also be expressed as follows.
- Iin * ⁇ (Iinv * ⁇ Vinv *) + Ic ⁇ Vo * + P LOSS ⁇ / ⁇ Vg ⁇ ZIin ⁇ ... (7d)
- Iin * ⁇ (Iinv * ⁇ Vinv *) + Ic ⁇ Vo * + P LOSS ⁇ / ⁇ Vg ⁇ ZIin ⁇ ...
- the second calculator 51 gives the booster circuit current command value Iin * to the third adder 52.
- the booster circuit 10 is feedback controlled by this booster circuit current command value Iin *.
- the third adder 52 is provided with the current booster circuit current detection value Iin in addition to the booster circuit current command value Iin *.
- the third adder 52 calculates the difference between the booster circuit current command value Iin * and the current booster circuit current detection value Iin and gives the calculation result to the compensator 53.
- the compensator 53 converges the difference and obtains a boost circuit voltage reference value Vbc # that can be used as the boost circuit current command value Iin * based on a proportional coefficient or the like.
- the compensator 53 supplies the booster circuit voltage reference value Vbc # to the booster circuit control unit 32, thereby causing the booster circuit 10 to output power at the voltage Vo according to the booster circuit voltage reference value Vbc #.
- the electric power output from the booster circuit 10 is subtracted by the DC input voltage detection value Vg by the fourth adder 54 and then given to the DC reactor 15 and fed back as a new booster circuit current detection value Iin.
- the difference between the booster circuit current command value Iin * and the booster circuit current detection value Iin is calculated again by the third adder 52, and the booster circuit 10 is controlled based on this difference as described above.
- the booster circuit 10 is feedback-controlled by the booster circuit current command value Iin * and the booster circuit current detection value Iin (step S8).
- the control processing unit 30 obtains the current input power average value ⁇ Pin> based on the equation (1) (step S9).
- the control processing unit 30 compares the input power average value ⁇ Pin> at the previous calculation with the DC input current so that the input power average value ⁇ Pin> becomes the maximum value (follows the maximum power point). Set command value Ig *.
- control processing unit 30 controls the booster circuit 10 and the single-phase inverter circuit 11 while performing MPPT control on the photovoltaic power generation panel 2.
- FIG. 8A shows an example of a result obtained by simulation of the booster circuit current command value Iin * obtained by the control processing unit 30 in the feedback control and the booster circuit current detection value Iin when controlled according to this.
- (B) is an example of the result of having calculated
- the boost circuit current detection value Iin is controlled by the control processing unit 30 along the boost circuit current command value Iin *.
- the booster circuit voltage target value Vo * is obtained by the above equation (6), the absolute value of the inverter output voltage command value Vinv * is approximately equal to the detected DC input voltage value. In the period that is equal to or greater than Vg, the absolute value of the inverter output voltage command value Vinv * is imitated, and in other periods, it is varied so as to follow the DC input voltage detection value Vg. It can be seen that the booster circuit voltage detection value Vo is controlled by the control processing unit 30 along the booster circuit voltage target value Vo *.
- FIG. 9 is a diagram illustrating an example of the inverter output voltage command value Vinv *.
- the vertical axis represents voltage and the horizontal axis represents time.
- the broken line indicates the voltage waveform of the system phase power supply 3p, and the solid line indicates the waveform of the inverter output voltage command value Vinv *.
- Converter 1 outputs electric power using inverter output voltage command value Vinv * shown in FIG. 9 as a voltage target value by control according to the flowchart of FIG. Therefore, the converter 1 outputs the electric power of the voltage according to the waveform of the inverter output voltage command value Vinv * shown in FIG.
- the voltage value and the frequency of both waves are substantially the same, but the phase of the inverter output voltage command value Vinv * is advanced several times with respect to the voltage phase of the system phase power supply 3p. ing.
- the control processing unit 30 of the present example performs the feedback control of the booster circuit 10 and the single-phase inverter circuit 11 to change the phase of the inverter output voltage command value Vinv * to the voltage phase of the system phase power supply 3p.
- the phase is advanced about 3 degrees.
- the angle by which the phase of the inverter output voltage command value Vinv * is advanced with respect to the voltage phase of the system phase power supply 3p only needs to be several degrees, and is different from the voltage waveform of the system phase power supply 3p as will be described later.
- the voltage waveform obtained when obtaining is set in a range where the phase is advanced approximately 90 degrees with respect to the voltage waveform of the system phase power supply 3p. For example, it is set in a range of values larger than 0 degree and smaller than 10 degrees.
- the phase advance angle is determined by the system voltage detection value Va, the inductance La of the AC reactor 22, and the inverter current command value Iinv * as shown in the above equation (5).
- the system voltage detection value Va and the inductance La of the AC reactor 22 are fixed values that are not controlled, so that the phase advance angle is determined by the inverter current command value Iinv *.
- the inverter current command value Iinv * is determined by the output current command value Ia * as shown in the above equation (4). As the output current command value Ia * increases, the advanced component in the inverter current command value Iinv * increases, and the advance angle (advance angle) of the inverter output voltage command value Vinv * increases.
- the control processing unit 30 of this example sets the DC input current command value Ig so that the phase of the inverter output voltage command value Vinv * is advanced by about 3 degrees with respect to the voltage phase of the system phase power supply 3p. * Is set.
- the booster circuit control unit 32 controls the switching elements Qa and Qb of the booster circuit 10.
- the inverter circuit control unit 33 controls the switching elements Q1 to Q4 of the single-phase inverter circuit 11.
- the booster circuit control unit 32 and the inverter circuit control unit 33 generate a booster circuit carrier wave and an inverter circuit carrier wave, respectively, and these carrier waves are booster circuit voltage reference values Vbc # that are command values given from the control processing unit 30, and Modulation is performed using the inverter voltage reference value Vinv # to generate a drive waveform for driving each switching element.
- the step-up circuit control unit 32 and the inverter circuit control unit 33 control each switching element based on the drive waveform, whereby an alternating current waveform approximated to the step-up circuit current command value Iin * and the inverter current command value Iinv *. Electric power is output to the booster circuit 10 and the single-phase inverter circuit 11.
- FIG. 10A is a graph comparing the booster circuit carrier wave with the waveform of the booster circuit voltage reference value Vbc #.
- the vertical axis represents voltage and the horizontal axis represents time.
- the wavelength of the booster carrier wave is shown longer than the actual wavelength for easy understanding.
- the booster circuit carrier wave generated by the booster circuit control unit 32 is a triangular wave whose local minimum value is “0”, and the amplitude A1 is the booster circuit voltage target value Vo * given from the control processing unit 30.
- the frequency of the booster circuit carrier wave is set by the booster circuit control unit 32 according to a control command from the control processing unit 30 so as to have a predetermined duty ratio.
- the booster circuit voltage target value Vo * is equal to the inverter output voltage command value Vinv * during the period W1 in which the absolute value of the inverter output voltage command value Vinv * is approximately equal to or greater than the DC input voltage detection value Vg. Following the absolute value, it changes so as to follow the DC input voltage detection value Vg in the other periods. Therefore, the amplitude A1 of the booster circuit carrier also changes according to the booster circuit voltage target value Vo *.
- the waveform of the booster circuit voltage reference value Vbc # (hereinafter also referred to as booster circuit reference wave Vbc #) is a value obtained by the control processing unit 30 based on the booster circuit current command value Iin *, and is the inverter output voltage command value Vinv.
- the absolute value of * is a positive value in a period W1 in which the absolute value is larger than the DC input voltage detection value Vg.
- the booster circuit reference wave Vbc # has a waveform that approximates the waveform formed by the booster circuit voltage target value Vo *, and intersects the booster carrier wave.
- the booster circuit control unit 32 compares the booster circuit carrier wave with the booster circuit reference wave Vbc #, and the booster circuit reference wave Vbc #, which is the target value of the voltage across the DC reactor 15, becomes equal to or higher than the booster circuit carrier wave.
- a drive waveform for driving the switching element Qb is generated so as to be turned on in the portion and turned off in the portion below the carrier wave.
- FIG. 10B shows a drive waveform for driving the switching element Qb generated by the booster circuit control unit 32.
- the vertical axis represents voltage and the horizontal axis represents time.
- the horizontal axis is shown so as to coincide with the horizontal axis in FIG.
- This drive waveform indicates the switching operation of the switching element Qb, and by applying it to the switching element Qb, the switching operation according to the drive waveform can be executed.
- the drive waveform constitutes a control command that turns off the switching element when the voltage is 0 volts and turns on the switching element when the voltage is positive.
- the booster circuit control unit 32 generates a drive waveform so that the switching operation is performed in a period W1 in which the absolute value of the inverter output voltage command value Vinv * is equal to or greater than the DC input voltage detection value Vg. Therefore, the switching element Qb is controlled so as to stop the switching operation within the range of the DC input voltage detection value Vg or less.
- Each pulse width is determined by the intercept of the carrier wave for the booster circuit which is a triangular wave. Therefore, the pulse width increases as the voltage increases.
- the booster circuit control unit 32 modulates the booster circuit carrier wave with the booster circuit reference wave Vbc #, and generates a drive waveform representing the pulse width for switching.
- the booster circuit control unit 32 performs PWM control of the switching element Qb of the booster circuit 10 based on the generated drive waveform.
- the switching element Qa As the switching element Qa, a driving waveform inverted from the driving waveform of the switching element Qb is used. However, in order to prevent the switching element Qb and the switching element Qa from conducting simultaneously, a dead time of about 1 microsecond is provided when the drive pulse of the switching element Qa shifts from OFF to ON.
- FIG. 11A is a graph comparing the carrier wave for the inverter circuit and the waveform of the inverter voltage reference value Vinv #.
- the vertical axis represents voltage and the horizontal axis represents time.
- the wavelength of the carrier wave for the inverter circuit is shown longer than the actual wavelength for easy understanding.
- the inverter circuit carrier generated by the inverter circuit control unit 33 is a triangular wave having an amplitude center of 0 volts, and its one-side amplitude is set to the boost circuit voltage target value Vo * (the voltage target value of the capacitor 23). Therefore, the amplitude A2 of the carrier wave for the inverter circuit has a period twice as long as the DC input voltage detection value Vg and a period twice as long as the voltage of the system phase power supply 3p. Further, the frequency is set by the inverter circuit control unit 33 so as to have a predetermined duty ratio by a control command or the like by the control processing unit 30.
- the booster circuit voltage target value Vo * is equal to the inverter output voltage command value Vinv * during the period W1 in which the absolute value of the inverter output voltage command value Vinv * is approximately equal to or greater than the DC input voltage detection value Vg.
- the amplitude A2 of the inverter circuit carrier also changes in accordance with the boost circuit voltage target value Vo *.
- the waveform of the inverter voltage reference value Vinv # (hereinafter also referred to as the inverter circuit reference wave Vinv #) is a value obtained by the control processing unit 30 based on the inverter current command value Iinv *, and is approximately the voltage amplitude of the system phase power supply 3p. Is set to the same. Therefore, the inverter circuit reference wave Vinv # intersects the booster circuit carrier in a portion where the voltage value is in the range of ⁇ Vg to + Vg.
- the inverter circuit control unit 33 compares the inverter circuit carrier wave with the inverter circuit reference wave Vinv #, and is turned on when the inverter circuit reference wave Vinv #, which is the voltage target value, is greater than or equal to the inverter circuit carrier wave.
- a drive waveform for driving the switching elements Q1 to Q4 is generated so as to be turned off at a portion where
- FIG. 11 is a drive waveform for driving the switching element Q1 generated by the inverter circuit control unit 33.
- the vertical axis represents voltage and the horizontal axis represents time.
- the horizontal axis is shown so as to coincide with the horizontal axis in FIG.
- the inverter circuit control unit 33 generates a drive waveform so that the switching operation is performed in the range W2 where the voltage of the inverter circuit reference wave Vinv # is in the range of ⁇ Vg to + Vg. Therefore, in the other range, the switching element Q1 is controlled so as to stop the switching operation.
- (C) of FIG. 11 is a drive waveform for driving the switching element Q3 generated by the inverter circuit control unit 33.
- the vertical axis represents voltage and the horizontal axis represents time.
- the inverter circuit control unit 33 compares the inverted wave of the inverter circuit reference wave Vinv # indicated by the broken line in the drawing with a carrier wave to generate a drive waveform. Also in this case, the inverter circuit control unit 33 generates the drive waveform so that the switching operation is performed in the range W2 where the voltage of the inverter circuit reference wave Vinv # (inverted wave thereof) is ⁇ Vg to + Vg. Therefore, in the other range, the switching element Q3 is controlled so as to stop the switching operation.
- the inverter circuit control unit 33 generates the inverted driving waveform of the switching element Q1 for the driving waveform of the switching element Q2, and inverts the driving waveform of the switching element Q3 for the driving waveform of the switching element Q4.
- the inverter circuit control unit 33 modulates the inverter circuit carrier wave with the inverter circuit reference wave Vinv #, and generates a drive waveform representing a pulse width for switching.
- the inverter circuit control unit 33 performs PWM control on the switching elements Q1 to Q4 of the single-phase inverter circuit 11 based on the generated drive waveform.
- the booster circuit control unit 32 of this example outputs power so that the current flowing through the DC reactor 15 matches the booster circuit current command value Iin *.
- the booster circuit 10 is caused to perform a switching operation in a period W1 (FIG. 10) in which the absolute value of the inverter output voltage command value Vinv * is approximately equal to or greater than the DC input voltage detection value Vg.
- the booster circuit 10 outputs power so that a voltage equal to or higher than the DC input voltage detection value Vg is approximated to the absolute value of the inverter output voltage command value Vinv * in the period W1.
- the booster circuit control unit 32 stops the switching operation of the booster circuit 10. Therefore, during the period equal to or lower than the DC input voltage detection value Vg, the booster circuit 10 outputs the DC power output from the photovoltaic power generation panel 2 to the single-phase inverter circuit 11 without boosting.
- the inverter circuit control part 33 of this example outputs electric power so that the electric current which flows into the AC reactor 22 may correspond to inverter electric current command value Iinv *.
- the single-phase inverter circuit 11 is caused to perform a switching operation in a period W2 (FIG. 11) in which the inverter output voltage command value Vinv * is approximately ⁇ Vg to + Vg. That is, the single-phase inverter circuit 11 is caused to perform a switching operation in a period in which the absolute value of the inverter output voltage command value Vinv * is equal to or less than the DC input voltage detection value Vg.
- the single-phase inverter circuit 11 performs the switching operation while the booster circuit 10 stops the switching operation, and outputs AC power that approximates the inverter output voltage command value Vinv *.
- the inverter circuit reference wave Vinv # and the inverter output voltage command value Vinv * are approximate, they overlap in FIG.
- the inverter circuit control unit 33 stops the switching operation of the single-phase inverter circuit 11 in a period other than the period W2 in which the voltage of the inverter output voltage command value Vinv * is approximately ⁇ Vg to + Vg. During this time, the single-phase inverter circuit 11 is supplied with power boosted by the booster circuit 10. Therefore, the single-phase inverter circuit 11 that has stopped the switching operation outputs the power supplied from the booster circuit 10 without stepping down.
- the converter 1 of this example approximates the inverter output voltage command value Vinv * by switching the booster circuit 10 and the single-phase inverter circuit 11 so as to be switched alternately and superimposing the electric power output from each of them.
- the AC power with the voltage waveform is output.
- the booster circuit 10 when the absolute value of the inverter output voltage command value Vinv * is higher than the DC input voltage detection value Vg, the booster circuit 10 is operated to operate the inverter output voltage command value. Control is performed so that the single-phase inverter circuit 11 is operated when the voltage at which the absolute value of Vinv * is lower than the DC input voltage detection value Vg is output. Therefore, since the single-phase inverter circuit 11 does not step down the power boosted by the booster circuit 10, the potential difference at the time of stepping down the voltage can be kept low, thereby reducing the loss due to switching of the booster circuit, AC power can be output with higher efficiency.
- both the booster circuit 10 and the single-phase inverter circuit 11 operate based on the inverter output voltage command value Vinv * (voltage target value) set by the control unit 12, the booster circuit that is output so as to switch alternately. Deviation and distortion can be suppressed between the power and the power of the single-phase inverter circuit.
- FIG. 12 is a diagram illustrating an example of a current waveform of AC power output from the converter 1 along with an example of a reference wave and a driving waveform of a switching element.
- the reference wave Vinv # and carrier wave of the single-phase inverter circuit, the driving waveform of the switching element Q1, the reference wave Vbc # and carrier wave of the booster circuit, the driving waveform of the switching element Qb, and the conversion device 1 are sequentially shown from the top.
- the graph which shows the command value and measured value of the current waveform of the alternating current power to output is represented.
- the horizontal axis of each graph indicates time and is shown to coincide with each other.
- the actual measured value Ia of the output current is controlled to coincide with the command value Ia *. It can also be seen that the period of switching operation of the switching element Qb of the booster circuit 10 and the period of switching operation of the switching elements Q1 to Q4 of the single-phase inverter circuit 11 are controlled to be switched alternately.
- the booster circuit obtained based on the above equation (7) is controlled so that the current flowing through the DC reactor 15 matches the current command value Iin *.
- the voltages of the booster circuit and the single-phase inverter circuit have the waveforms shown in FIG. 8B, and the high-frequency switching operations of the booster circuit 10 and the single-phase inverter circuit 11 each have a stop period and are switched approximately alternately. Operation to perform the operation becomes possible.
- the booster circuit 10 and the single-phase inverter circuit 11 perform “alternately” high-frequency switching so that the timing of the high-frequency switching does not overlap. If there is a stop period, loss is reduced, which contributes to higher efficiency.
- the booster circuit 10 and the single-phase inverter circuit 11 of this example output AC power having a voltage waveform approximate to the inverter output voltage command value Vinv * to the filter circuit 21 connected to the subsequent stage under the control of the control unit 12. .
- the converter 1 outputs AC power to the system phase power supply 3p via the filter circuit 21.
- the inverter output voltage command value Vinv * is generated by the control processing unit 30 as a voltage phase advanced by several degrees with respect to the voltage phase of the system phase power supply 3p. Therefore, the AC voltage output from the booster circuit 10 and the single-phase inverter circuit 11 is also a voltage phase advanced by several degrees with respect to the voltage phase of the system phase power supply 3p.
- FIG. 13A is a graph showing the voltage waveforms of the AC voltage output from the single-phase inverter circuit 11, the system phase power supply 3p, and the voltage across the AC reactor 22, respectively.
- the vertical axis represents voltage and the horizontal axis represents time.
- the voltage of both ends of the AC reactor 22 is a voltage applied to both ends of the AC reactor 22. Difference.
- the phase of the voltage across the AC reactor 22 is approximately 90 degrees ahead of the voltage phase of the system phase power supply 3p.
- FIG. 13B is a graph showing a waveform of a current flowing through the AC reactor 22.
- the vertical axis represents current and the horizontal axis represents time.
- the horizontal axis is shown to coincide with the horizontal axis in FIG.
- the current phase of AC reactor 22 is delayed by 90 degrees with respect to the voltage phase. Therefore, as shown in the figure, the current phase of the AC power output through the AC reactor 22 is substantially synchronized with the phase of the phase voltage of the system phase power supply 3p.
- the voltage phase output from the single-phase inverter circuit 11 is advanced several times with respect to the system phase power supply 3p, but the current phase substantially matches the phase of the phase voltage of the system phase power supply 3p. Therefore, as in the graph shown in the lowermost stage of FIG. 12, the current waveform output from the conversion device 1 is substantially the same as the voltage phase of the system phase power supply 3p.
- an alternating current having substantially the same phase as the voltage of the system phase power supply 3p can be output, so that the power factor of the alternating power can be suppressed from decreasing.
- FIG. 17 is a schematic connection diagram showing a three-phase AC power supply apparatus 100 using, for example, five concentrator photovoltaic (CPV) panels 2C for five phases for each phase.
- the concentrating solar power generation panel 2 ⁇ / b> C collects sunlight in corresponding solar cells and generates electric power using an optical system such as a Fresnel lens arranged in a matrix. Further, the concentrating solar power generation panel 2C has a tracking drive device (not shown) on the back side, and the concentrating solar power generation panel 2C is configured to always face the sun during the daytime. ing.
- Each of the concentrating solar power generation panels 2C is provided with a conversion device 1 (power conditioner). If the output of the converter 1 is connected in parallel in each phase to obtain a large power generation output and realize grid connection with the three-phase AC system 3, a solar power plant can be obtained. Such power plants can perform relatively stable high-output power generation during the day while suppressing power loss.
- a conversion device 1 power conditioner
- FIG. 18 is a circuit diagram showing a power converter 1 ⁇ / b> P connected to the three-phase AC system 3.
- the power conversion device 1P is configured by three sets of conversion devices (first phase conversion device, second phase conversion device, and third phase conversion device) 1 provided corresponding to each phase of three-phase alternating current.
- Each phase voltage with respect to the neutral point N of the three-phase AC system 3 is input to each converter 1.
- a DC unit 2x is connected to the output end of each converter 1.
- This power conversion system can convert the power provided from the three-phase AC system 3 from AC to DC and supply it to the DC unit 2x.
- the DC unit 2x is a DC power source such as a storage battery or a DC device that operates with DC. Note that the solar power generation panel is also a type of the DC unit 2x.
- the three sets of DC units 2x are independent of each other and do not share both positive and negative poles.
- the conversion device 1 includes an AC / DC conversion circuit (single-phase power conversion circuit) 11 that converts alternating current received from the three-phase alternating current system 3 into direct current, and a step-down circuit (DC) that steps down the output voltage of the AC / DC conversion circuit 11. / DC conversion circuit) 10, a control unit 12 (not shown in FIG. 18) for controlling the operations of both circuits 10 and 11, capacitors 19, 23 and 26, and an AC reactor 22. .
- the circuit of the conversion device 1 is different from that of FIG. 1 in that an FET is used as a switching element of the AC / DC conversion circuit 11, but is otherwise the same.
- FIG. 19 is an example of a circuit diagram of the conversion device 1.
- the photovoltaic power generation panel 2 in FIG. 2 is replaced with a direct current unit 2 x and that an FET is used as a switching element of the AC / DC conversion circuit 11.
- the step-up circuit 10 in FIG. 2 is replaced with the step-down circuit 10, and the circuit that is the single-phase inverter circuit 11 in FIG. 2 has the same switching element configuration but cooperates with the AC reactor 22.
- the AC / DC conversion circuit 11 can be boosted.
- the conversion device 1 in FIG. 19 is bidirectional, and the same operation as the conversion device 1 in FIG. 2 can be performed by connecting a photovoltaic power generation panel. Further, if the DC unit 2x is a storage battery, it is possible to perform a self-sustained operation by converting DC power into AC power.
- the control unit 12 can control the operations of the switching elements Q1 to Q4 to perform synchronous rectification. Further, by performing PWM control in the presence of the AC reactor 22, rectification can be performed while boosting. Thus, the AC / DC conversion circuit 11 converts the AC power supplied from the commercial AC system 3 into DC power.
- the step-down circuit 10 constitutes a step-down chopper circuit.
- the switching elements Qb and Qa are controlled by the control unit 12. Further, the switching operation of the step-down circuit 10 is controlled so that the period for performing the switching operation with the AC / DC conversion circuit 11 is alternately switched. Therefore, the step-down circuit 10 outputs the stepped-down voltage to the storage battery during the switching operation, and stops the switching operation (the switching element Qb is off and Qa is on).
- the DC voltage output from the conversion circuit 11 and input to the step-down circuit 10 is applied to the storage battery via the DC reactor 15.
- FIG. 20 is a voltage waveform diagram conceptually showing the operation of the conversion apparatus 1.
- (A) shows an example of the absolute value of the AC input voltage target value Vinv * to the AC / DC conversion circuit 11. This is generally a commercial AC full-wave rectified waveform.
- a two-dot chain line indicates a DC voltage Vg for charging.
- the AC / DC conversion circuit 11 performs a switching operation in a section (t0 to t1, t2 to t3, t4 to) where the DC voltage Vg is higher than the absolute value of the AC input voltage target value Vinv *.
- the voltage boosting operation is performed in cooperation with the AC reactor 22.
- the step-down circuit 10 is in a state where the switching element Qb is off and Qa is on, and the step-down operation is stopped.
- the thin stripe shown in (b) is actually a PWM pulse train, and the duty varies depending on the absolute value of the AC input voltage target value Vinv *. Therefore, if the voltage in this state is applied to the DC / DC conversion circuit, the input voltage of the DC / DC conversion circuit, that is, the voltage of the capacitor 19 has a waveform as shown in (c).
- the AC / DC conversion circuit 11 stops switching, and instead, the step-down circuit 10 Works.
- the switching said here means high frequency switching of about 20 kHz, for example, and is not low frequency switching to the extent of performing synchronous rectification (twice the commercial frequency). Even if the switching elements Q1 to Q4 are all turned off due to the switching of the AC / DC conversion circuit 11 being stopped, the voltage rectified through the built-in diodes of the switching elements Q1 to Q4 is input to the step-down circuit 10. However, in order to reduce conduction loss, it is preferable to perform synchronous rectification.
- the AC / DC conversion circuit 11 When the synchronous rectification is performed, the AC / DC conversion circuit 11 turns on the switching elements Q1, Q4 and switches the switching elements Q2, Q3 during the period when the sign of the current of the AC / DC conversion circuit 11 is positive under the control of the control unit 12. Is turned off, and in the period in which the sign of the current of the AC / DC conversion circuit 11 is negative, these on / off states are inverted. Since the frequency of this inversion is twice the commercial frequency, the frequency is very small compared to high frequency switching. Therefore, the loss due to on / off is extremely small.
- the step-down circuit 10 performs step-down operation in the section (t1 to t2, t3 to t4).
- the thin stripe shown in (d) is actually a PWM pulse train, and the duty varies depending on the absolute value of the AC input voltage target value Vinv *.
- a desired DC voltage Vg shown in (e) is obtained.
- the AC / DC conversion circuit 11 operates only during a period in which the absolute value of the AC input voltage target value Vinv * based on the AC voltage is lower than the DC voltage Vg, and the AC / DC conversion circuit 11 is stopped during the other periods, thereby AC / DC Switching loss of the DC conversion circuit 11 can be reduced.
- the step-down circuit 10 operates only during a period in which the absolute value of the AC input voltage target value Vinv * is higher than the direct-current voltage Vg, and the switching loss of the step-down circuit 10 can be reduced by stopping the switching in other periods. it can.
- the AC / DC conversion circuit 11 and the step-down circuit 10 perform switching operations alternately, and when one operates, the other stops switching. That is, a switching stop period occurs in each of the AC / DC conversion circuit 11 and the step-down circuit 10. Further, since the AC / DC conversion circuit 11 operates avoiding the peak of the absolute value of the AC input voltage target value Vinv * and the vicinity thereof, the voltage at the time of switching becomes relatively low. This also contributes to a reduction in switching loss. Thus, the switching loss of the conversion device 1 as a whole can be greatly reduced.
- the various quantities in the conversion apparatus 1 corresponding to the various quantities in the conversion apparatus 1 are as follows.
- Ia * input current target value from system phase power supply 3p
- Iin step-down circuit current detection value
- Iin * step-down circuit current target value
- Iinv * target value of AC input current to AC / DC conversion circuit 11
- Ig * to storage battery DC input current target value
- Ic current flowing in the capacitor 19
- Ica current flowing in the capacitor 23
- Va system voltage detection value
- Vg storage battery voltage value
- Vinv * AC input voltage target value to the AC / DC conversion circuit
- Vo * input voltage target value to the step-down circuit 10
- Pin input power to the storage battery
- P LOSS conversion Power loss of device 1
- the input target value (Iinv *, Vinv *) to the AC / DC conversion circuit 11 that is the target value on the AC side is set at the circuit connection point between the AC / DC conversion circuit 11 and the filter circuit 21.
- the Accordingly, the set point of the target value is moved to the front (AC / DC conversion circuit 11 side) from the circuit connection point of the system phase power supply 3p and the conversion device 1 as in the case of system interconnection.
- By so-called “reverse” grid interconnection appropriate interconnection between alternating current and direct current is performed.
- the input voltage target value Vo * to the step-down circuit 10 corresponding to Expression (6) is obtained by replacing Vgf, that is, (Vg ⁇ Z Iin) in Expression (6) with Vgr, that is, (Vg + Z Iin).
- Iin * ⁇ (Iinv * ⁇ Vinv *) ⁇ Ic ⁇ Vo * ⁇ / (Vg + ZIin) ... (R7b) It becomes.
- the above equation (R7a) can also be expressed as follows.
- Iin * ⁇ (Iinv * ⁇ Vinv *) ⁇ C ⁇ (d Vo * / dt) ⁇ Vo * ⁇ P LOSS ⁇ / (Vg + ZIin) (R7c)
- the above formula (R7b) can also be expressed as follows.
- Iin * ⁇ (Iinv * ⁇ Vinv *) ⁇ Ic ⁇ Vo * ⁇ P LOSS ⁇ / (Vg + ZIin) ... (R7d)
- the value of Iin * can be obtained more strictly by considering the reactive power and the power loss P LOSS .
- the controller 12 when the controller 12 outputs a voltage at a portion where the absolute value of the AC input voltage target value Vinv * to the AC / DC conversion circuit 11 is higher than the DC voltage (Vg + Z Iin), When the step-down circuit 10 is operated and the AC / DC conversion circuit 11 outputs a voltage whose absolute value of the AC input voltage target value Vinv * is lower than the DC voltage (Vg + Z Iin), the AC / DC conversion circuit 11 is controlled to operate. Therefore, the potential difference when boosting by the AC / DC conversion circuit 11 can be kept low, the switching loss of the AC / DC conversion circuit 11 and the step-down circuit 10 can be reduced, and DC power can be output with higher efficiency. it can.
- both the step-down circuit 10 and the AC / DC conversion circuit 11 operate based on the target value set by the control unit 12, even if the operation is performed so that the high-frequency switching periods of both circuits are switched alternately, the AC / DC It is possible to suppress the occurrence of a phase shift or distortion in the alternating current input to the DC conversion circuit 11.
- the conversion device 1 can perform the same grid-connected operation as the conversion device 1 shown in FIG. Accordingly, it is possible to realize an efficient conversion device that can be used in both directions of DC / AC conversion and AC / DC conversion for system interconnection.
- [Others] 18 and 19 show an example in which an FET is used as the switching element constituting the AC / DC conversion circuit 11, but an IGBT may be used instead of the FET.
- an IGBT may be used instead of the FET.
- synchronous rectification is not possible with an IGBT. Therefore, in the case of the IGBT, when the AC / DC conversion circuit 11 is in a high-frequency switching stop state, the IGBT operates as a full-bridge rectifier circuit by a diode built in the element.
- the conversion device 1 of FIG. 19 can be used in both directions from direct current to alternating current and alternating current to direct current, a plurality of types of direct current units 2x can be prepared for switching connection.
- a solar power generation panel can be connected as the DC unit 2x during the daytime, and power can be sold through grid connection, and a storage battery or a DC device can be connected as the DC unit 2x at night.
- FIG. 18 shows an example in which the three DC units 2x are independent of each other.
- the electrical specifications of each DC unit 2x may not be uniform.
- three DC units 2x having different voltages can be used.
- the DC knits can be combined into one to be common to the conversion devices 1 of the respective phases.
- FIG. 21 is a circuit diagram when the DC unit 2x is shared.
- an insulating transformer 60 is provided between the power conversion device 1P and the three-phase AC system 3.
- the insulation transformer 60 is required, there is an advantage that the DC unit 2x can be integrated. Thereby, for example, when the DC unit 2x is a storage battery, its capacity can be set to an appropriate amount without waste.
- [DC unit 3 independent + 3-phase 3-wire connection] 18 shows an example of three-phase four-wire connection with a neutral point (three-phase AC system is Y-connected), but three-phase three-wire connection without a neutral point (three-phase AC system is delta-connected). ) Is also possible.
- FIG. 22 is a circuit diagram in the case of such a three-phase three-wire connection.
- the outputs of the three converters 1 are connected to the inter-system power sources 3p (R), 3p (S), 3p (T) of the three-phase AC system 3 connected in delta connection.
- the withstand voltage performance required on the converter 1 side is relatively higher than that of the three-phase four-wire connection, but is adopted without any particular problem when the voltage of the three-phase AC system 3 is 200V. It is a circuit configuration that can.
- FIG. 23 is a circuit diagram in which the DC unit 2x is used in common, an insulating transformer 60 is provided, and three-phase three-wire connections are made.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々は、DC/DC変換回路及び単相電力変換回路を含み、前記制御部は、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々について、交流の電圧目標値の絶対値が、各直流ユニットの直流電圧を上回るときは前記DC/DC変換回路を動作させて前記電圧目標値の絶対値を成り立たせるとともに前記単相電力変換回路は必要な極性反転のみを行う状態とし、また、前記電圧目標値の絶対値が、前記直流電圧を下回るときは前記DC/DC変換回路の動作を停止させるとともに前記単相電力変換回路を動作させて前記電圧目標値を成り立たせる、ものである。
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々は、DC/DC変換回路及び単相電力変換回路を含み、前記制御部は、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々について、出力すべき交流の電圧目標値の絶対値が、入力される直流電圧を上回るときは前記DC/DC変換回路を動作させて前記電圧目標値の絶対値を生成するとともに前記単相電力変換回路は必要な極性反転のみを行う状態とし、また、前記電圧目標値の絶対値が、入力される直流電圧を下回るときは前記DC/DC変換回路の動作を停止させるとともに前記単相電力変換回路を動作させて前記電圧目標値を生成する、ものである。
本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々は、DC/DC変換回路及び単相電力変換回路を含み、前記制御部は、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々について、交流の電圧目標値の絶対値が、各直流ユニットの直流電圧を上回るときは前記DC/DC変換回路を動作させて前記電圧目標値の絶対値を成り立たせるとともに前記単相電力変換回路は必要な極性反転のみを行う状態とし、また、前記電圧目標値の絶対値が、前記直流電圧を下回るときは前記DC/DC変換回路の動作を停止させるとともに前記単相電力変換回路を動作させて前記電圧目標値を成り立たせる、ものである。
(i)電圧目標値の絶対値が、入力される直流電圧を上回るとき:
DC/DC変換回路:動作状態、
単相電力変換回路:高周波スイッチングは停止し、必要な極性反転のみを行う状態
(ii)電圧目標値の瞬時値の絶対値が、入力される直流電圧を下回るとき:
DC/DC変換回路:停止状態(図2のQaがオン、Qbがオフ)、
単相電力変換回路:動作状態
この結果、電圧(線間電圧)を単一の三相インバータで供給する場合と比べて、DCバスの電圧が低減される。
(a)スイッチング素子のスイッチング損失が低下する。
(b)リアクトル(直流・交流(第1,第2,第3))の鉄損が小さくなる。
(c)DCバスに接続されるスイッチング素子及び平滑用のコンデンサは、耐電圧性能の低いものでも使用できるようになる。スイッチング素子は耐電圧性能が低い方が、オン抵抗が低いため、導通損を低減することができる。
(d)全体としてスイッチング素子のスイッチングの回数が低減され、その分、スイッチング損失が大幅に低減される。
(e)リアクトル(直流・交流)の鉄損が小さくなる。
(f)上記コンデンサは、系統周波数の3倍の低周波交流成分の平滑作用を必要としなくなり、従って、低容量のコンデンサを使用することができる。
Ia*は前記出力電流目標値、
Vinv*は前記単相電力変換回路の電圧目標値、
Caは、前記出力平滑コンデンサの静電容量、
Vaは前記三相交流の相電圧の電圧値、
Cは、前記DC/DC変換回路と前記単相電力変換回路との間に設けられた前記平滑コンデンサの静電容量、
Vo*は前記DC/DC変換回路の電圧目標値、
VDCは直流入力電圧値、
sはラプラス演算子、とするとき、
前記DC/DC変換回路の電流目標値Iin*は、
Iin*={(Iinv* × Vinv*)+(s C Vo*)×Vo*}/VDC
であり、単相電力変換回路の電流目標値Iinv*は、
Iinv*= Ia*+s CaVa
であることが好ましい。
つまり、各変換装置が出力する交流電力の電圧位相を三相交流系統の電圧位相よりも、それぞれ数度進相させるので、各リアクトル(第1,第2,第3)の両端電圧の位相を、三相交流系統の電圧位相に対してほぼ90度進んだ位相とすることができる。各リアクトルの電流位相は、その電圧位相に対して90度遅延するので、各リアクトルを通して出力される交流電力の電流位相は、三相交流系統の相電圧の位相に対してほぼ同期することとなる。
この結果、三相交流系統の各相電圧に対して電流位相がほぼ同位相の交流電力を出力することができるので、当該交流電力の力率が低下するのを抑制することができる。
Vinv*=Va+s LaIinv*
により求め、但し、Laは前記第1リアクトル、前記第2リアクトル及び前記第3リアクトルに共通のインダクタンスであることが好ましい。
この場合、DC/DC変換回路及び単相電力変換回路は、共に制御部が設定した電流目標値Iinv*に基づいて動作するため、両回路の高周波スイッチング期間が交互に切り替わるように動作を行っても、各変換装置から出力される交流電流に位相ずれや歪が生じるのを抑制することができる。
この場合、各直流ユニットの電気的な仕様が揃っていなくてもよい。例えば、互いに電圧が異なる3つの直流ユニットを使用することもできる。
この場合、直流ユニットを1本化できるので、直流ユニットの容量を、無駄の無い適量に設定することができる。
これにより、三相交流系統が、中性点を有する3相4線式であっても、また、中性点の無い3相3線式であっても、電力変換装置と接続することができる。
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々は、DC/DC変換回路及び単相電力変換回路を含み、前記制御部は、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々について、出力すべき交流の電圧目標値の絶対値が、入力される直流電圧を上回るときは前記DC/DC変換回路を動作させて前記電圧目標値の絶対値を生成するとともに前記単相電力変換回路は必要な極性反転のみを行う状態とし、また、前記電圧目標値の絶対値が、入力される直流電圧を下回るときは前記DC/DC変換回路の動作を停止させるとともに前記単相電力変換回路を動作させて前記電圧目標値を生成するものである。
この構成は、電力変換装置と三相交流系統との間の、3相4線の接続(Y結線)に好適である。
この構成は、電力変換装置と三相交流系統との間の、3相3線の接続(デルタ結線)に好適である。
これにより、三相交流系統が、中性点を有する3相4線式であっても、また、中性点の無い3相3線式であっても、第1~第3変換装置と接続することができる。
この場合、電力損失を抑制しながら、日中は、比較的安定した高出力の発電を行うことができる。
(13)また、(7)の三相交流電源装置は、三相交流を出力することもできる。
以下、発明の実施形態について、図面を参照して詳細に説明する。
図1は、三相交流系統3に接続される三相交流電源装置100を示す回路図である。三相交流電源装置100は、電力変換装置1Pと、直流電源(第1直流電源、第2直流電源、第3直流電源)として例えば3組の太陽光発電パネル2とを備えている。3組の太陽光発電パネル2は、正負両極のいずれをも共有しない互いに独立した関係にある。
変換装置1は、太陽光発電パネル2が出力する直流電力が与えられる昇圧回路(DC/DC変換回路)10と、昇圧回路10から与えられる電力を交流電力に変換して系統相電源3pに出力する単相インバータ回路(単相電力変換回路)11とを備えている。昇圧回路10及び単相インバータ回路11は、制御部12により制御される。制御部12は、3組の変換装置1のいずれをも制御することができる。
昇圧回路10の入力側には、第1電圧センサ17、第1電流センサ18、及び平滑化のためのコンデンサ26が設けられている。
制御部12は、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinから入力電力Pinを演算し、太陽光発電パネル2に対するMPPT(Maximum Power Point Tracking:最大電力点追従)制御を行う機能を有している。
単相インバータ回路11は、例えばIGBTからなるスイッチング素子Q1~Q4を備えている。これらスイッチング素子Q1~Q4は、フルブリッジ回路を構成している。
各スイッチング素子Q1~Q4は、制御部12に接続されており、制御部12により制御可能とされている。制御部12は、各スイッチング素子Q1~Q4の動作をPWM制御する。これにより、単相インバータ回路11は、昇圧回路10から与えられる電力を交流電力に変換する。
フィルタ回路21は、交流リアクトル22と、交流リアクトル22の後段に設けられたコンデンサ23(出力平滑コンデンサ)とを備えて構成されている。フィルタ回路21は、単相インバータ回路11から出力される交流電力に含まれる高周波成分を除去する機能を有している。フィルタ回路21により高周波成分が除去された交流電力は、系統相電源3pに与えられる。
制御部12は、これら系統電圧検出値Va及びインバータ電流検出値Iinvと、上述の直流入力電圧検出値Vg、昇圧回路電流検出値Iinに基づいて、昇圧回路10及び単相インバータ回路11を制御する。
次に、図14及び図15は、変換装置1の動作の特徴を簡略に示す波形図である。両図は同じ内容を示しているが、図14は特に、直流入力から交流出力までの振幅の関係が見やすいように表示し、図15は特に、制御のタイミングが見やすいように表示している。図14の上段及び図15の左欄はそれぞれ、比較のために、最小変調方式ではない従来の変換装置の動作を表す波形図である。また、図14の下段及び図15の右欄はそれぞれ、最小変調方式の変換装置1(図2)の動作を示す波形図である。
さらに、コンデンサ19は、スイッチングの高周波を平滑化する程度で足りるため、系統周波数の3倍の低周波交流成分の平滑作用を必要としなくなる。従って、低容量(例えば10μFや22μF)のコンデンサを使用することができる。
以下、電力変換装置1Pの系統連系について詳細に説明する。
系統連系を行うためには、各相の変換装置1が、力率1の状態で三相交流系統3へ電力を送り込むように、出力する電流位相を制御する必要がある。すなわち、系統相電源3pの電圧位相と一致する電圧を出力するだけでなく、系統相電源3pの電圧位相と、対応する変換装置1の出力する電流位相とが、互いに一致する必要がある。
図3は、制御部12のブロック図である。制御部12は、図3に示すように、制御処理部30と、昇圧回路制御部32と、インバータ回路制御部33と、平均化処理部34とを機能的に有している。
制御部12の各機能は、その一部又は全部がハードウェア回路によって構成されてもよいし、その一部又は全部が、ソフトウェア(コンピュータプログラム)をコンピュータによって実行させることで実現されていてもよい。制御部12の機能を実現するソフトウェア(コンピュータプログラム)は、コンピュータの記憶装置(図示省略)に格納される。
また、インバータ回路制御部33は、制御処理部30から与えられる指令値及び検出値に基づいて、単相インバータ回路11のスイッチング素子Q1~Q4を制御し、前記指令値に応じた電流の電力を単相インバータ回路11に出力させる。
制御処理部30は、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinから入力電力Pin及びその平均値〈Pin〉を演算する。
制御処理部30は、入力電力平均値〈Pin〉に基づいて、直流入力電流指令値Ig*(後に説明する)を設定して太陽光発電パネル2に対するMPPT制御を行うとともに、昇圧回路10及び単相インバータ回路11それぞれをフィードバック制御する機能を有している。
平均化処理部34は、第1電圧センサ17及び第1電流センサ18から与えられる直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを、予め設定された所定の時間間隔ごとにサンプリングし、それぞれの平均値を求め、平均化された直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを制御処理部30に与える機能を有している。
また、直流入力電流検出値Igは、コンデンサ26よりも入力側で検出される電流値である。
図4に示すように、直流入力電圧検出値Vg、昇圧回路電流検出値Iin、及び直流入力電流検出値Igは、系統電圧の1/2の周期で変動していることが判る。
このため、直流入力電圧検出値Vgに生じる周期的な変動は、変換装置1が出力する交流電力の1/2周期となっている。
平均化処理部34は、上述の周期的変動による影響を抑制するために、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinを平均化する。
平均化処理部34は、あるタイミングt1から、タイミングt2までの間の期間Lにおいて、予め設定された所定の時間間隔Δtごとに、与えられる直流入力電圧検出値Vgについて複数回サンプリング(図中、黒点のタイミング)を行い、得られた複数の直流入力電圧検出値Vgの平均値を求める。
これにより、平均化処理部34は、系統相電源3pの周期と同期して周期的に変動する、直流入力電圧検出値Vgの平均値を、できるだけサンプリングの期間を短くしつつ、精度よく求めることができる。
なお、サンプリングの時間間隔Δtは、例えば、系統相電源3pの周期の1/100~1/1000、或いは、20マイクロ秒~200マイクロ秒等に設定することができる。
また、ここでは、期間Lを系統相電源3pの周期長さの1/2の長さに設定したが、期間Lは、少なくとも、系統相電源3pの1/2周期に設定すれば、直流入力電圧検出値Vgの平均値を精度よく求めることができる。直流入力電圧検出値Vgは、上述のように、昇圧回路10、および単相インバータ回路11の動作によって、系統相電源3pの周期長さの1/2の長さで周期的に変動するからである。
よって、期間Lをより長く設定する必要がある場合、系統相電源3pの1/2周期の3倍や4倍といったように、期間Lを系統相電源3pの1/2周期の整数倍に設定すればよい。これによって、周期単位で電圧変動を把握できる。
よって、平均化処理部34は、図5に示した直流入力電圧検出値Vgと同様の方法によって、昇圧回路電流検出値Iinの平均値も求める。
制御処理部30は、直流入力電圧検出値Vgの平均値及び昇圧回路電流検出値Iinの平均値をそれぞれ、期間Lごとに逐次求める。
平均化処理部34は、求めた直流入力電圧検出値Vgの平均値及び昇圧回路電流検出値Iinの平均値を制御処理部30に与える。
この点、本例では、系統相電源3pの周期長さの1/2の長さに設定された期間Lの間に、直流入力電圧検出値Vg及び昇圧回路電流検出値Iinのそれぞれについて、交流系統の1/2周期よりも短い時間間隔Δtで複数回サンプリングし、その結果から直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉を求めたので、直流電流の電圧及び電流が周期的に変動したとしても、できるだけサンプリングの期間を短くしつつ、直流入力電圧平均値〈Vg〉及び昇圧回路電流平均値〈Iin〉を精度よく求めることができる。
制御処理部30は、求めた指令値を昇圧回路制御部32及びインバータ回路制御部33に与え、昇圧回路10及び単相インバータ回路11それぞれをフィードバック制御する機能を有している。
制御処理部30は、単相インバータ回路11の制御を行うための機能部として、第1演算部41、第1加算器42、補償器43、及び第2加算器44を有している。
また、制御処理部30は、昇圧回路10の制御を行うための機能部として、第2演算部51、第3加算器52、補償器53、及び第4加算器54を有している。
以下、図7に従って、昇圧回路10及び単相インバータ回路11の制御処理を説明する。
入力電力平均値〈Pin〉=〈Iin×Vg〉 ・・・(1)
また、式(1)以外の以下に示す制御に関する各式においては、昇圧回路電流検出値Iin、及び直流入力電圧検出値Vgは、平均化されていない瞬時値が用いられる。
また、「〈 〉」は、括弧内の値の平均値を示している。以下同じである。
第1演算部41には、直流入力電流指令値Ig*の他、直流入力電圧検出値Vg、系統電圧検出値Vaも与えられる。
第1演算部41は、下記式(2)に基づいて、変換装置1としての出力電流指令値の平均値〈Ia*〉を演算する。ηは変換装置1の変換効率を表す定数である。
出力電流指令値の平均値〈Ia*〉=η〈Ig*×Vg〉/〈Va〉
・・・(2)
ここで、第1演算部41は、出力電流指令値Ia*を系統電圧検出値Vaと同位相の正弦波として求める。
出力電流指令値Ia*=(√2)×〈Ia*〉×sinωt
・・・(3)
次いで、第1演算部41は、下記式(4)に示すように、単相インバータ回路11を制御するための電流目標値であるインバータ電流指令値Iinv*(単相インバータ回路の電流目標値)を演算する(ステップS3)。
インバータ電流指令値Iinv*=Ia*+s CaVa ・・・(4)
上記式(4)は、時間tでの微分を用いた表現とすれば、
Iinv*=Ia* + Ca×(d Va/dt) ・・・(4a)
となる。また、コンデンサ23に流れる電流を検出してこれをIcaとすれば、
Iinv*=Ia* + Ica ・・・(4b)
となる。
式(4),(4a),(4b)中、右辺第2項は、フィルタ回路21のコンデンサ23に流れる電流を考慮して加算した値である。
なお、出力電流指令値Ia*は、上記式(3)に示すように、系統電圧検出値Vaと同位相の正弦波として求められる。つまり、制御処理部30は、変換装置1が出力する交流電力の電流Ia(出力電流)が系統電圧(系統電圧検出値Va)と同位相となるように単相インバータ回路11を制御する。
単相インバータ回路11は、このインバータ電流指令値Iinv*によって、フィードバック制御される。
第1加算器42は、インバータ電流指令値Iinv*と、現状のインバータ電流検出値Iinvとの差分を演算し、その演算結果を補償器43に与える。
単相インバータ回路11が出力した電力は、第2加算器44によって系統電圧検出値Vaで減算された上で交流リアクトル22に与えられ、新たなインバータ電流検出値Iinvとしてフィードバックされる。そして、第1加算器42によってインバータ電流指令値Iinv*とインバータ電流検出値Iinvとの間の差分が再度演算され、上記同様、この差分に基づいて単相インバータ回路11が制御される。
第2演算部51は、下記式(5)に基づいて、インバータ出力電圧指令値Vinv*(単相インバータ回路の電圧目標値)を演算する(ステップS5)。
インバータ出力電圧指令値Vinv*=Va+s LaIinv*
・・・(5)
上記式(5)は、時間tでの微分を用いた表現とすれば、
Vinv*=Va + RaIinv*+La× (d Iinv*/dt)
・・・(5a)
となる。ただし、Raは交流リアクトルの抵抗、Laは交流リアクトルのインダクタンスで、(Za=Ra+sLa)である。
式(5)の右辺第2項、(5a)の右辺第2項および第3項は、交流リアクトル22の両端に発生する電圧を考慮して加算した値である。
このように、本例では、単相インバータ回路11が出力する交流電力の電流位相が系統電圧検出値Vaと同位相となるように単相インバータ回路11を制御するための電流目標値であるインバータ電流指令値Iinv*に基づいてインバータ出力電圧指令値Vinv*(電圧目標値)を設定する。
Vo*=Max(Vg-ZIin,Vinv*の絶対値) ・・・(6)
とすることができる。
上記式(6)は、時間tでの微分を用いた表現とすれば、
Vo*=Max(Vg-(RIin+L(d Iin/dt),Vinv*の絶対値)
・・・(6a)
である。ただし、Rは直流リアクトルの抵抗、Lは直流リアクトルのインダクタンスで、(Z=R+sL)である。
昇圧回路電流指令値Iin*=
{(Iinv*×Vinv*) +(s C Vo*)×Vo*} / (Vg-ZIin)
・・・(7)
上記式(7)は、時間tでの微分を用いた表現とすれば、
Iin*=
{(Iinv*×Vinv*) +C×(d Vo*/dt)×Vo*} /{Vg-(R+sL)Iin}
・・・(7a)
となる。また、コンデンサ19に流れる電流を検出してこれをIcとすれば、
Iin*=
{(Iinv*×Vinv*) +Ic×Vo*} / {Vg-ZIin}
・・・(7b)
となる。
Iin*=
{(Iinv*×Vinv*) + C×(d Vo*/dt)×Vo* + PLOSS}/{Vg-ZIin} ・・・(7c)
同様に、上記式(7b)は、以下のようにも表すことができる。
Iin*=
{(Iinv*×Vinv*) +Ic×Vo* + PLOSS} / {Vg-ZIin}
・・・(7d)
この場合、単相インバータ回路11の電力目標値に加えて、無効電力及び電力損失PLOSSを考慮することにより、より厳密にIin*の値を求めることができる。
昇圧回路電流目標値Iin*=(Iinv*×Vinv*)/Vg
・・・(8)
昇圧回路10は、この昇圧回路電流指令値Iin*によって、フィードバック制御される。
第3加算器52には、昇圧回路電流指令値Iin*の他、現状の昇圧回路電流検出値Iinが与えられる。
第3加算器52は、昇圧回路電流指令値Iin*と、現状の昇圧回路電流検出値Iinとの差分を演算し、その演算結果を補償器53に与える。
昇圧回路10が出力した電力は、第4加算器54によって直流入力電圧検出値Vgで減算された上で直流リアクトル15に与えられ、新たな昇圧回路電流検出値Iinとしてフィードバックされる。そして、第3加算器52によって昇圧回路電流指令値Iin*と昇圧回路電流検出値Iinとの間の差分が再度演算され、上記同様、この差分に基づいて昇圧回路10が制御される。
上記ステップS8の後、制御処理部30は、上記式(1)に基づいて、現状の入力電力平均値〈Pin〉を求める(ステップS9)。
図8の(a)は、制御処理部30が上記フィードバック制御において求めた昇圧回路電流指令値Iin*、及びこれに従って制御した場合の昇圧回路電流検出値Iinをシミュレーションにより求めた結果の一例を示すグラフであり、(b)は、制御処理部30が上記フィードバック制御において求めた昇圧回路電圧目標値Vo*、及びこれに従って制御した場合の昇圧回路電圧検出値Voをシミュレーションにより求めた結果の一例を示すグラフである。
また、図8の(b)に示すように、昇圧回路電圧目標値Vo*は、上記式(6)によって求められるため、インバータ出力電圧指令値Vinv*の絶対値が、概ね直流入力電圧検出値Vg以上となる期間では、インバータ出力電圧指令値Vinv*の絶対値に倣い、それ以外の期間では直流入力電圧検出値Vgに倣うように変化している。
昇圧回路電圧検出値Voは、制御処理部30によって、昇圧回路電圧目標値Vo*に沿って制御されていることが判る。
変換装置1は、図7のフローチャートに従った制御によって、図9に示すインバータ出力電圧指令値Vinv*を電圧目標値として電力を出力する。
よって、変換装置1は、図9に示すインバータ出力電圧指令値Vinv*の波形に従った電圧の電力を出力する。
インバータ出力電圧指令値Vinv*の位相を系統相電源3pの電圧位相に対して進相させる角度は、数度であればよく、後述するように、系統相電源3pの電圧波形との間で差分を求めたときに得られる電圧波形が、系統相電源3pの電圧波形に対してほぼ90度進んだ位相となる範囲で設定される。例えば、0度より大きくかつ10度より小さい値の範囲で設定される。
インバータ電流指令値Iinv*は、上記式(4)に示すように、出力電流指令値Ia*によって定まる。この出力電流指令値Ia*が大きくなるほど、インバータ電流指令値Iinv*における進相した成分が増加し、インバータ出力電圧指令値Vinv*の進み角(進相させる角度)が大きくなる。
本例の制御処理部30は、上述のように、インバータ出力電圧指令値Vinv*の位相が、系統相電源3pの電圧位相に対して約3度進相するように、直流入力電流指令値Ig*を設定している。
昇圧回路制御部32は、昇圧回路10のスイッチング素子Qa,Qbを制御する。また、インバータ回路制御部33は、単相インバータ回路11のスイッチング素子Q1~Q4を制御する。
昇圧回路制御部32が生成する昇圧回路用搬送波は、極小値が「0」である三角波であり、振幅A1が制御処理部30から与えられる昇圧回路電圧目標値Vo*とされている。
また、昇圧回路用搬送波の周波数は、制御処理部30による制御命令によって、所定のディーティ比となるように、昇圧回路制御部32によって設定される。
この駆動波形は、スイッチング素子Qbのスイッチング動作を示しており、スイッチング素子Qbに与えることで、当該駆動波形に従ったスイッチング動作を実行させることができる。駆動波形は、電圧が0ボルトでスイッチング素子のスイッチをオフ、電圧がプラス電圧でスイッチング素子のスイッチをオンとする制御命令を構成している。
また、各パルス幅は、三角波である昇圧回路用搬送波の切片によって定まる。よって、電圧が高い部分ほどパルス幅が大きくなっている。
また、周波数は、制御処理部30による制御命令等によって、所定のデューティ比となるように、インバータ回路制御部33によって設定される。
インバータ回路制御部33は、インバータ回路用参照波Vinv#の電圧が-Vg~+Vgの範囲W2でスイッチング動作が行われるように駆動波形を生成する。よって、それ以外の範囲では、スイッチング動作を停止させるようにスイッチング素子Q1を制御する。
インバータ回路制御部33は、スイッチング素子Q3については、図中破線で示しているインバータ回路用参照波Vinv#の反転波と、搬送波とを比較して駆動波形を生成する。
この場合も、インバータ回路制御部33は、インバータ回路用参照波Vinv#(の反転波)の電圧が、-Vg~+Vgの範囲W2でスイッチング動作が行われるように駆動波形を生成する。よって、それ以外の範囲では、スイッチング動作を停止させるようにスイッチング素子Q3を制御する。
よって、単相インバータ回路11は、昇圧回路10がスイッチング動作を停止している間、スイッチング動作を行い、インバータ出力電圧指令値Vinv*に近似する交流電力を出力する。
なお、インバータ回路用参照波Vinv#と、インバータ出力電圧指令値Vinv*とは近似するので、図11(a)においては重複している。
さらに、昇圧回路10及び単相インバータ回路11は、共に制御部12が設定したインバータ出力電圧指令値Vinv*(電圧目標値)に基づいて動作するため、交互に切り替わるように出力される昇圧回路の電力と、単相インバータ回路の電力との間で、ずれや歪が生じるのを抑制することができる。
図12において、最上段から順に、単相インバータ回路の参照波Vinv#及び搬送波、スイッチング素子Q1の駆動波形、昇圧回路の参照波Vbc#及び搬送波、スイッチング素子Qbの駆動波形、及び変換装置1が出力する交流電力の電流波形の指令値及び実測値を示すグラフを表している。これら各グラフの横軸は、時間を示しており、互いに一致するように示している。
また、昇圧回路10のスイッチング素子Qbのスイッチング動作の期間と、単相インバータ回路11のスイッチング素子Q1~Q4のスイッチング動作の期間とは、概ね互いに交互に切り替わるように制御されていることが判る。
本例の昇圧回路10及び単相インバータ回路11は、制御部12による制御によって、インバータ出力電圧指令値Vinv*に近似した電圧波形の交流電力を、その後段に接続されたフィルタ回路21に出力する。変換装置1は、フィルタ回路21を介して系統相電源3pに交流電力を出力する。
従って、昇圧回路10及び単相インバータ回路11が出力する交流電圧も、系統相電源3pの電圧位相に対して数度進相した電圧位相とされる。
図に示すように、交流リアクトル22の両端が互いに数度電圧位相がずれた電圧がかかると、交流リアクトル22の両端電圧は、交流リアクトル22の両端にかかる互いに数度電圧位相がずれた電圧同士の差分となる。
交流リアクトル22の電流位相は、その電圧位相に対して90度遅延する。よって、図に示すように、交流リアクトル22を通して出力される交流電力の電流位相は、系統相電源3pの相電圧の位相に対してほぼ同期することとなる。
よって、図12の最下段に示すグラフのように、変換装置1が出力する電流波形は、系統相電源3pの電圧位相とほぼ一致したものとなる。
さて、図17は、例えば各相について5基、合計15基の集光型太陽光発電(CPV:Concentrator Photovoltaic)パネル2Cを用いた三相交流電源装置100を示す、概略の接続図である。集光型太陽光発電パネル2Cは、マトリックス状に多数並べたフレネルレンズ等の光学系を用いて、太陽光を、対応する太陽電池セルに集め、発電するものである。また、集光型太陽光発電パネル2Cは、背面側に図示しない追尾駆動装置を有しており、集光型太陽光発電パネル2Cが、日中は、常に太陽の方角を向くように構成されている。
〔全体構成について〕
次に、交流から直流への電力変換を行う変換装置の一実施形態について説明する。
図18は、三相交流系統3に接続される電力変換装置1Pを示す回路図である。電力変換装置1Pは、三相交流の各相に対応して設けられた3組の変換装置(第1相変換装置、第2相変換装置、第3相変換装置)1によって構成されている。
3組の直流ユニット2xは、正負両極のいずれをも共有しない互いに独立した関係にある。
商用交流系統3の交流電力に基づいて蓄電池を充電する場合、制御部12は、各スイッチング素子Q1~Q4の動作を制御し、同期整流をすることができる。また、交流リアクトル22が存在する下でPWM制御を行うことにより、昇圧しつつ整流を行うことができる。こうして、AC/DC変換回路11は、商用交流系統3から与えられる交流電力を直流電力に変換する。
また、降圧回路10のスイッチング動作は、AC/DC変換回路11との間でスイッチング動作を行う期間が交互に切り替わるように制御される。よって、降圧回路10は、スイッチング動作を行っている期間には、降圧した電圧を蓄電池に出力し、スイッチング動作を停止(スイッチング素子Qbがオフ、Qaがオン)している期間は、AC/DC変換回路11が出力して降圧回路10に入力した直流電圧を、直流リアクトル15を介して蓄電池に与える。
図20は、変換装置1の動作を概念的に示した電圧波形の図である。
(a)は、AC/DC変換回路11への交流入力電圧目標値Vinv*の絶対値の一例を示す。これは、概ね、商用交流の全波整流波形である。二点鎖線は、充電のための直流電圧Vgを示す。(b)に示すように、直流電圧Vgの方が交流入力電圧目標値Vinv*の絶対値より高い区間(t0~t1,t2~t3,t4~)では、AC/DC変換回路11がスイッチング動作し、交流リアクトル22との協働により昇圧動作する。
同様に、交流入力電圧目標値Vinv*の絶対値が直流電圧Vgより高い期間のみ降圧回路10が動作し、その他の期間ではスイッチングを停止させることで、降圧回路10のスイッチング損失を低減することができる。
上記変換装置1の制御は、図2の変換装置1による系統連系の制御を逆方向に見た類似の制御として、同様な考え方を適用することができる。
Ia*:系統相電源3pからの入力電流目標値
Iin:降圧回路電流検出値
Iin*:降圧回路電流目標値
Iinv*:AC/DC変換回路11への交流入力電流目標値
Ig*:蓄電池への直流入力電流目標値
Ic:コンデンサ19に流れる電流
Ica:コンデンサ23に流れる電流
Vg:蓄電池電圧値
Vinv*:AC/DC変換回路11への交流入力電圧目標値
Vo*:降圧回路10への入力電圧目標値
Pin:蓄電池への入力電力
PLOSS:変換装置1の電力損失
η:変換装置1の電力変換効率
式(1)と対応する蓄電池への入力電力Pinの平均値〈Pin〉は、
〈Pin〉=〈Iin×Vg〉 ・・・(R1)
である。
式(2)に対応する、系統相電源3pからの入力電流目標値の平均値〈Ia*〉は、
〈Ia*〉=〈Ig*×Vg〉/(η×〈Va〉) ・・・(R2)
である。
式(3)に対応する入力電流目標値Ia*は、
Ia*=(√2)×〈Ia*〉×sinωt ・・・(R3)
である。
Iinv*=Ia* - s CaVa ・・・(R4)
である。
上記式(R4)は、時間tでの微分を用いた表現とすれば、
Iinv*=Ia* - Ca×(d Va/dt) ・・・(R4a)
となる。また、コンデンサ23に流れる電流を検出してこれをIcaとすれば、
Iinv*=Ia* - Ica ・・・(R4b)
となる。
Vinv*=Va-Za Iinv* ・・・(R5)
である。
上記式(R5)は、時間tでの微分を用いた表現とすれば、
Vinv*=Va - {RaIinv*+La× (d Iinv*/dt) ・・・(R5a)
となる。
Vo*=Max(Vg+Z Iin,Vinv*の絶対値) ・・・(R6)
とすることができる。
上記式(R6)は、時間tでの微分を用いた表現とすれば、
Vo*=
Max(Vg+R Iin+L(d Iin/dt),Vinv*の絶対値)
・・・(R6a)
となる。
Iin*=
{(Iinv*×Vinv*)-(s C Vo*)×Vo*} /(Vg+ZIin) ・・(R7)
である。
上記式(R7)は、時間tでの微分を用いた表現とすれば、
Iin*=
{(Iinv*×Vinv*) - C×(d Vo*/dt)×Vo*} /{Vg+RIin+L(dIin/dt)) ・・・(R7a)
となる。また、コンデンサ19に流れる電流を検出してこれをIcとすれば、
Iin*=
{(Iinv*×Vinv*) -Ic×Vo*} / (Vg+ZIin)
・・・(R7b)
となる。
Iin*=
{(Iinv*×Vinv*) - C×(d Vo*/dt)×Vo* - PLOSS}/(Vg+ZIin) ・・・(R7c)
同様に、上記式(R7b)は、以下のようにも表すことができる。
Iin*=
{(Iinv*×Vinv*) -Ic×Vo* - PLOSS} / (Vg+ZIin)
・・・(R7d)
この場合、AC/DC変換回路11の電力目標値に加えて、無効電力及び電力損失PLOSSを考慮することにより、より厳密にIin*の値を求めることができる。
Iin*=(Iinv*×Vinv*)/Vg・・・(R8)
なお、図18,図19では、AC/DC変換回路11を構成するスイッチング素子としてFETを用いた例を示したが、FETに代えてIGBTを用いることもできる。但し、IGBTでは同期整流ができない。従って、IGBTの場合は、AC/DC変換回路11の高周波スイッチング停止状態では、素子内蔵のダイオードによって、フルブリッジ整流回路として動作することになる。
〔直流ユニット共通化+絶縁トランス〕
なお、図18では、3つの直流ユニット2xが互いに独立している例を示した。この場合、各直流ユニット2xの電気的な仕様が揃っていなくてもよい。例えば、互いに電圧が異なる3つの直流ユニット2xを使用することもできる。一方、直流ニットを1つにまとめて各相の変換装置1に共通の存在とすることもできる。
図21は、このような、直流ユニット2xが共通化された場合の回路図である。この場合、電力変換装置1Pと三相交流系統3との間に、絶縁トランス60が設けられる。絶縁トランス60が必要にはなるが、直流ユニット2xを一本化できる利点がある。これにより、例えば、直流ユニット2xが蓄電池である場合に、その容量を、無駄の無い適量に設定することができる。
また、図18では、中性点のある3相4線接続(三相交流系統がY結線)の例を示したが、中性点の無い3相3線接続(三相交流系統がデルタ結線)も可能である。
図22は、このような、3相3線接続の場合の回路図である。この場合、デルタ結線された三相交流系統3の系統線間電源3p(R),3p(S),3p(T)に、3つの変換装置1の出力が接続される。この場合、変換装置1側に求められる耐電圧性能は、3相4線接続に比べて相対的には高くなるが、三相交流系統3の電圧が200Vの場合などには特に問題なく採用することができる回路構成である。
また、図23は、直流ユニット2xを共通化した上で、絶縁トランス60を設け、3相3線接続した回路図である。
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1P 電力変換装置
2 太陽光発電パネル(直流電源)
2x 直流ユニット
2C 集光型太陽光発電パネル
3 三相交流系統
3p 系統相電源・系統線間電源
10 昇圧回路・降圧回路(DC/DC変換回路)
11 単相インバータ回路・AC/DC変換回路(単相電力変換回路)
12 制御部
15 直流リアクトル
17 電圧センサ
18 電流センサ
19 コンデンサ
21 フィルタ回路
22 交流リアクトル
23 コンデンサ
24 電流センサ
25 電圧センサ
26 コンデンサ
30 制御処理部
32 回路制御部
33 回路制御部
34 平均化処理部
41 第1演算部
42 第1加算器
43 補償器
44 第2加算器
51 第2演算部
52 第3加算器
53 補償器
54 第4加算器
60 絶縁トランス
100 三相交流電源装置
LB DCバス
Lin 電路
Q1~Q4,Qa,Qb スイッチング素子
Claims (13)
- 直流ユニットと三相交流との間で電力の変換をする電力変換装置であって、
前記直流ユニットと前記三相交流の第1相との間で、第1リアクトルを介して電力の変換を行う第1相変換装置と、
前記直流ユニットと前記三相交流の第2相との間で、第2リアクトルを介して電力の変換を行う第2相変換装置と、
前記直流ユニットと前記三相交流の第3相との間で、第3リアクトルを介して電力の変換を行う第3相変換装置と、
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置を制御する制御部と、を備え、
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々は、DC/DC変換回路及び単相電力変換回路を含み、
前記制御部は、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々について、交流の電圧目標値の絶対値が、各直流ユニットの直流電圧を上回るときは前記DC/DC変換回路を動作させて前記電圧目標値の絶対値を成り立たせるとともに前記単相電力変換回路は必要な極性反転のみを行う状態とし、また、前記電圧目標値の絶対値が、前記直流電圧を下回るときは前記DC/DC変換回路の動作を停止させるとともに前記単相電力変換回路を動作させて前記電圧目標値を成り立たせる、電力変換装置。 - 前記第1リアクトル、前記第2リアクトル及び前記第3リアクトルのそれぞれの後段には、出力平滑コンデンサが設けられ、また、前記DC/DC変換回路と前記単相電力変換回路との間には、平滑コンデンサが設けられており、
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々について、前記制御部は、対応する直流ユニットからの入力電力値及び前記三相交流の相電圧の値に基づいて得られる出力電流目標値、及び下記式より求められる前記DC/DC変換回路の電流目標値に基づいて前記交流電力の出力を制御し、
Ia*は前記出力電流目標値、
Vinv*は前記単相電力変換回路の電圧目標値、
Caは、前記出力平滑コンデンサの静電容量、
Vaは前記三相交流の相電圧の電圧値、
Cは、前記DC/DC変換回路と前記単相電力変換回路との間に設けられた前記平滑コンデンサの静電容量、
Vo*は前記DC/DC変換回路の電圧目標値、
VDCは直流入力電圧値、
sはラプラス演算子、とするとき、
前記DC/DC変換回路の電流目標値Iin*は、
Iin*={(Iinv* × Vinv*)+(s C Vo*)×Vo*}/VDC
であり、単相電力変換回路の電流目標値Iinv*は、
Iinv*= Ia*+s CaVa
である請求項1に記載の電力変換装置。 - 前記制御部は、前記DC/DC変換回路の電圧目標値として、前記単相電力変換回路の電圧目標値Vinv*を、
Vinv*=Va+s LaIinv*
により求め、但し、Laは前記第1リアクトル、前記第2リアクトル及び前記第3リアクトルに共通のインダクタンスである、請求項2に記載の電力変換装置。 - 前記直流ユニットは、前記第1相、前記第2相及び前記第3相にそれぞれ対応して設けられた第1直流ユニット、第2直流ユニット及び第3直流ユニットによって構成され、各直流ユニットは、正負両極のいずれをも共有しない互いに独立した存在である請求項1~請求項3のいずれか1項に記載の電力変換装置。
- 前記直流ユニットは、前記第1相、前記第2相及び前記第3相に対して共通の1ユニットであり、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置と前記三相交流の各相との間にはそれぞれ、絶縁トランスが設けられている請求項1~請求項3のいずれか1項に記載の電力変換装置。
- 前記電力変換装置と前記三相交流とは、3相4線接続及び3相3線接続のいずれか一方の接続形態によって互いに接続されている請求項1~請求項5のいずれか1項に記載の電力変換装置。
- 三相交流電源装置であって、
直流電源と、
前記直流電源から入力される直流電力に基づき、前記三相交流の第1相に、第1リアクトルを介して交流電力を供給する第1相変換装置と、
前記直流電源から入力される直流電力に基づき、前記三相交流の第2相に、第2リアクトルを介して交流電力を供給する第2相変換装置と、
前記直流電源から入力される直流電力に基づき、前記三相交流の第3相に、第3リアクトルを介して交流電力を供給する第3相変換装置と、
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置を制御する制御部と、を備え、
前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々は、DC/DC変換回路及び単相電力変換回路を含み、
前記制御部は、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置の各々について、出力すべき交流の電圧目標値の絶対値が、入力される直流電圧を上回るときは前記DC/DC変換回路を動作させて前記電圧目標値の絶対値を生成するとともに前記単相電力変換回路は必要な極性反転のみを行う状態とし、また、前記電圧目標値の絶対値が、入力される直流電圧を下回るときは前記DC/DC変換回路の動作を停止させるとともに前記単相電力変換回路を動作させて前記電圧目標値を生成する、三相交流電源装置。 - 前記直流電源は、前記第1相、前記第2相及び前記第3相にそれぞれ対応して設けられた第1直流電源、第2直流電源及び第3直流電源によって構成され、各直流電源は、正負両極のいずれをも共有しない互いに独立した存在である請求項7に記載の三相交流電源装置。
- 前記直流電源は、前記第1相、前記第2相及び前記第3相に対して共通の1電源であり、前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置と前記三相交流の各相との間にはそれぞれ、絶縁トランスが設けられている請求項7に記載の三相交流電源装置。
- 前記第1相変換装置、前記第2相変換装置及び前記第3相変換装置と前記三相交流とは、3相4線接続及び3相3線接続のいずれか一方の接続形態によって互いに接続されている請求項7~請求項9のいずれか1項に記載の三相交流電源装置。
- 前記第1直流電源、前記第2直流電源及び前記第3直流電源は、それぞれ、太陽を追尾するように動作する集光型太陽光発電パネルである請求項7~請求項10のいずれか1項に記載の三相交流電源装置。
- 三相交流系統に系統連係する請求項7記載の三相交流電源装置。
- 自立運転により三相交流を出力する請求項7記載の三相交流電源装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/109,080 US9722508B2 (en) | 2014-01-09 | 2015-01-06 | Power conversion device and three-phase alternating current power supply device |
EP15735346.7A EP3093972B1 (en) | 2014-01-09 | 2015-01-06 | Power conversion device and three-phase alternating current power supply device |
AU2015205308A AU2015205308B2 (en) | 2014-01-09 | 2015-01-06 | Power conversion device and three-phase alternating current power supply device |
JP2015556797A JP6481621B2 (ja) | 2014-01-09 | 2015-01-06 | 電力変換装置及び三相交流電源装置 |
CN201580004071.1A CN105900310A (zh) | 2014-01-09 | 2015-01-06 | 电力转换装置和三相交流电源装置 |
KR1020167014027A KR102243121B1 (ko) | 2014-01-09 | 2015-01-06 | 전력 변환 장치 및 3상 교류 전원 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002746 | 2014-01-09 | ||
JP2014-002746 | 2014-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015105081A1 true WO2015105081A1 (ja) | 2015-07-16 |
Family
ID=53523906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/050080 WO2015105081A1 (ja) | 2014-01-09 | 2015-01-06 | 電力変換装置及び三相交流電源装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9722508B2 (ja) |
EP (1) | EP3093972B1 (ja) |
JP (1) | JP6481621B2 (ja) |
KR (1) | KR102243121B1 (ja) |
CN (1) | CN105900310A (ja) |
AU (1) | AU2015205308B2 (ja) |
WO (1) | WO2015105081A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106597070A (zh) * | 2015-10-20 | 2017-04-26 | 施耐德电气It公司 | 用于全桥脉宽调制逆变器系统的电流感测系统 |
WO2017126175A1 (ja) * | 2016-01-18 | 2017-07-27 | 住友電気工業株式会社 | 電力変換システム及びその制御方法 |
EP3391502A4 (en) * | 2015-12-18 | 2018-12-05 | BYD Company Limited | Electric vehicle and vehicle-mounted charger and method for controlling the same |
JP2019134665A (ja) * | 2018-01-31 | 2019-08-08 | サングロー パワー サプライ カンパニー リミテッド | 光起電力ソリッドステート変圧器、光起電力インバータシステム及び双方向高電圧変流器 |
TWI677171B (zh) * | 2018-04-26 | 2019-11-11 | 國立交通大學 | 弦波調製方法及三相逆變器 |
US10514398B2 (en) | 2013-12-04 | 2019-12-24 | Schneider Electric It Corporation | Inverter regulation |
JP2021151076A (ja) * | 2020-03-18 | 2021-09-27 | 富士電機株式会社 | 電力変換装置およびその制御方法 |
JP2021528038A (ja) * | 2019-03-20 | 2021-10-14 | 中▲車▼青▲島▼四方▲車▼▲輛▼研究所有限公司Crrc Qingdao Sifang Rolling Stock Research Institute Co.,Ltd. | 単相インバータの並列制御方法、およびシステムならびにインバータ |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5618023B1 (ja) | 2013-06-11 | 2014-11-05 | 住友電気工業株式会社 | インバータ装置 |
AU2015205308B2 (en) * | 2014-01-09 | 2018-07-05 | Sumitomo Electric Industries, Ltd. | Power conversion device and three-phase alternating current power supply device |
JP6327106B2 (ja) * | 2014-01-10 | 2018-05-23 | 住友電気工業株式会社 | 変換装置 |
JP6303970B2 (ja) | 2014-10-17 | 2018-04-04 | 住友電気工業株式会社 | 変換装置 |
CN110268307B (zh) * | 2017-02-02 | 2022-08-02 | 凸版印刷株式会社 | 调光装置 |
US10511187B2 (en) * | 2017-12-11 | 2019-12-17 | LT Lighting (Taiwan) Corp. | Energy utilization point tracker inverter |
DE102018201202A1 (de) * | 2018-01-26 | 2019-08-01 | Siemens Aktiengesellschaft | Schaltungsanordnung für einen Umrichter, Verfahren zum Betrieb eines Umrichters und Luftfahrzeug mit einer derartigen Schaltungsanordnung |
JP6913056B2 (ja) * | 2018-05-29 | 2021-08-04 | 株式会社Soken | 電力変換装置の制御装置 |
CN109194177B (zh) * | 2018-10-30 | 2020-12-29 | 河南许芯变频技术研究院有限公司 | 一种无变压器的三相逆变电路 |
EP3850745A1 (de) * | 2018-11-29 | 2021-07-21 | Siemens Aktiengesellschaft | Mikro-solarinverter |
JP7204489B2 (ja) * | 2019-01-07 | 2023-01-16 | 株式会社Soken | Dc・ac変換装置の制御装置 |
JP7192889B2 (ja) * | 2019-01-22 | 2022-12-20 | 住友電気工業株式会社 | 電力変換装置及びその制御方法 |
WO2021044485A1 (ja) * | 2019-09-02 | 2021-03-11 | 東芝三菱電機産業システム株式会社 | インバータ装置の試験装置 |
US10700617B1 (en) * | 2019-09-06 | 2020-06-30 | ABBSchweiz AG | Boosting modular multilevel converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000152661A (ja) * | 1998-11-10 | 2000-05-30 | Matsushita Electric Ind Co Ltd | 系統連系インバータ装置 |
JP2011078306A (ja) * | 2009-10-01 | 2011-04-14 | Dr Johannes Heidenhain Gmbh | インバータの作動方法及びインバータ |
JP2012137830A (ja) | 2010-12-24 | 2012-07-19 | Ntt Facilities Inc | 太陽光発電システム |
JP2012165499A (ja) * | 2011-02-03 | 2012-08-30 | Nippon Soken Inc | 電力変換装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002369544A (ja) * | 2001-06-13 | 2002-12-20 | Matsushita Electric Ind Co Ltd | 系統連系インバータ |
JPWO2012090237A1 (ja) * | 2010-12-27 | 2014-06-05 | 株式会社日立製作所 | 電力変換装置 |
AU2015205308B2 (en) | 2014-01-09 | 2018-07-05 | Sumitomo Electric Industries, Ltd. | Power conversion device and three-phase alternating current power supply device |
-
2015
- 2015-01-06 AU AU2015205308A patent/AU2015205308B2/en not_active Ceased
- 2015-01-06 CN CN201580004071.1A patent/CN105900310A/zh active Pending
- 2015-01-06 WO PCT/JP2015/050080 patent/WO2015105081A1/ja active Application Filing
- 2015-01-06 JP JP2015556797A patent/JP6481621B2/ja active Active
- 2015-01-06 US US15/109,080 patent/US9722508B2/en active Active
- 2015-01-06 KR KR1020167014027A patent/KR102243121B1/ko active IP Right Grant
- 2015-01-06 EP EP15735346.7A patent/EP3093972B1/en not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000152661A (ja) * | 1998-11-10 | 2000-05-30 | Matsushita Electric Ind Co Ltd | 系統連系インバータ装置 |
JP2011078306A (ja) * | 2009-10-01 | 2011-04-14 | Dr Johannes Heidenhain Gmbh | インバータの作動方法及びインバータ |
JP2012137830A (ja) | 2010-12-24 | 2012-07-19 | Ntt Facilities Inc | 太陽光発電システム |
JP2012165499A (ja) * | 2011-02-03 | 2012-08-30 | Nippon Soken Inc | 電力変換装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3093972A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10514398B2 (en) | 2013-12-04 | 2019-12-24 | Schneider Electric It Corporation | Inverter regulation |
EP3160033A3 (en) * | 2015-10-20 | 2017-06-14 | Schneider Electric IT Corporation | Current sensing system for full-bridge pulse-width modulated inverter system |
CN106597070A (zh) * | 2015-10-20 | 2017-04-26 | 施耐德电气It公司 | 用于全桥脉宽调制逆变器系统的电流感测系统 |
US10637369B2 (en) | 2015-10-20 | 2020-04-28 | Schneider Electric It Corporation | Current sensing system for full-bridge pulse-width modulated inverter system |
EP3391502A4 (en) * | 2015-12-18 | 2018-12-05 | BYD Company Limited | Electric vehicle and vehicle-mounted charger and method for controlling the same |
WO2017126175A1 (ja) * | 2016-01-18 | 2017-07-27 | 住友電気工業株式会社 | 電力変換システム及びその制御方法 |
JP2017130991A (ja) * | 2016-01-18 | 2017-07-27 | 住友電気工業株式会社 | 電力変換システム及びその制御方法 |
US11088655B2 (en) | 2018-01-31 | 2021-08-10 | Sungrow Power Supply Co., Ltd. | Photovoltaic solid-state transformer, photovoltaic inverter system and bidirectional high-voltage converter |
JP2019134665A (ja) * | 2018-01-31 | 2019-08-08 | サングロー パワー サプライ カンパニー リミテッド | 光起電力ソリッドステート変圧器、光起電力インバータシステム及び双方向高電圧変流器 |
TWI677171B (zh) * | 2018-04-26 | 2019-11-11 | 國立交通大學 | 弦波調製方法及三相逆變器 |
JP2021528038A (ja) * | 2019-03-20 | 2021-10-14 | 中▲車▼青▲島▼四方▲車▼▲輛▼研究所有限公司Crrc Qingdao Sifang Rolling Stock Research Institute Co.,Ltd. | 単相インバータの並列制御方法、およびシステムならびにインバータ |
JP7007522B2 (ja) | 2019-03-20 | 2022-01-24 | 中▲車▼青▲島▼四方▲車▼▲輛▼研究所有限公司 | 単相インバータの並列制御方法、およびシステムならびにインバータ |
JP2021151076A (ja) * | 2020-03-18 | 2021-09-27 | 富士電機株式会社 | 電力変換装置およびその制御方法 |
JP7371545B2 (ja) | 2020-03-18 | 2023-10-31 | 富士電機株式会社 | 電力変換装置およびその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3093972A1 (en) | 2016-11-16 |
KR102243121B1 (ko) | 2021-04-22 |
AU2015205308B2 (en) | 2018-07-05 |
AU2015205308A1 (en) | 2016-05-26 |
EP3093972B1 (en) | 2021-12-29 |
KR20160106046A (ko) | 2016-09-09 |
JP6481621B2 (ja) | 2019-03-13 |
US9722508B2 (en) | 2017-08-01 |
EP3093972A4 (en) | 2017-10-04 |
JPWO2015105081A1 (ja) | 2017-03-23 |
CN105900310A (zh) | 2016-08-24 |
US20160329829A1 (en) | 2016-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6481621B2 (ja) | 電力変換装置及び三相交流電源装置 | |
JP6233216B2 (ja) | 電力変換装置及び三相交流電源装置 | |
TWI643438B (zh) | Transformer | |
JP5618022B1 (ja) | インバータ装置 | |
JP6303970B2 (ja) | 変換装置 | |
JP6414491B2 (ja) | 変換装置 | |
JP6349974B2 (ja) | 変換装置 | |
WO2018185963A1 (ja) | 電力変換装置及びその制御方法 | |
JP2016178708A (ja) | 変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15735346 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015556797 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015735346 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015735346 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015205308 Country of ref document: AU Date of ref document: 20150106 Kind code of ref document: A Ref document number: 20167014027 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15109080 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |