WO2015105062A1 - 射出成形軸 - Google Patents

射出成形軸 Download PDF

Info

Publication number
WO2015105062A1
WO2015105062A1 PCT/JP2015/050006 JP2015050006W WO2015105062A1 WO 2015105062 A1 WO2015105062 A1 WO 2015105062A1 JP 2015050006 W JP2015050006 W JP 2015050006W WO 2015105062 A1 WO2015105062 A1 WO 2015105062A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
torque acting
core material
axis
injection
Prior art date
Application number
PCT/JP2015/050006
Other languages
English (en)
French (fr)
Inventor
保浩 鈴木
晋一郎 岡本
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to EP18209912.7A priority Critical patent/EP3495673B1/en
Priority to EP18209914.3A priority patent/EP3477129B1/en
Priority to EP15734865.7A priority patent/EP3093511B1/en
Priority to CN201580003459.XA priority patent/CN105874227B/zh
Priority to JP2015556789A priority patent/JP6396331B2/ja
Priority to US15/110,571 priority patent/US10208834B2/en
Publication of WO2015105062A1 publication Critical patent/WO2015105062A1/ja
Priority to US16/238,222 priority patent/US11022199B2/en
Priority to US16/238,227 priority patent/US11035439B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/203Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with non-parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/02Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing for conveying rotary movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/72Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members with axially-spaced attachments to the coupling parts
    • F16D3/725Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members with axially-spaced attachments to the coupling parts with an intermediate member made of fibre-reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/72Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members with axially-spaced attachments to the coupling parts

Definitions

  • the present invention relates to an injection molding shaft that can absorb rotational energy by twisting deformation and is formed into a desired shape by injection molding.
  • shafts used as power transmission parts for automobiles, etc. are often made of metal and machined, resulting in high product prices and heavy weight.
  • an injection molding shaft 100 made of a synthetic resin material as shown in FIG. 10 has been devised.
  • a gear 101 and an inward flange 102 are integrally formed on one end side of a cylindrical shaft main body 103, and the rotational torque transmitted through the gear 101 is shown in another figure. It transmits to the rotating parts which do not (refer patent document 1).
  • the injection molding shaft 100 shown in FIG. 10 may cause a problem that the rotation transmission component such as the gear 101 is damaged due to the impact force due to the sudden torque fluctuation acting on the rotation transmission component such as the gear 101. It was.
  • the present invention provides an injection-molded shaft that can absorb an impact caused by a sudden torque fluctuation by torsional deformation of the shaft body when a sudden torque fluctuation acts.
  • the first torque action part 3 is formed on one axial end side
  • the second torque action part 4 is formed on the other axial end side.
  • the portion 3 and the second torque acting portion 4 are related to the injection-molded shaft 1 in which the shaft body 2 is connected along the direction of the axis 17.
  • the shaft body 2 includes a first connecting portion 15 formed integrally with the first torque acting portion 3 and a second connecting portion 16 formed integrally with the second torque acting portion 4.
  • a core member 18 having a cross-shaped cross section perpendicular to the axial center 17 extending from the first connecting portion 15 to the second connecting portion 16; the first connecting portion 15 and the second connecting portion 16; And a brace-like frame portion 60 disposed in a portion partitioned by the core member 18 and straddling the first connection portion 15, the second connection portion 16, and the core member 18 in a brace form. is doing.
  • a first torque acting part 3 is formed on one axial end side, and a second torque acting part 4 is formed on the other axial end side.
  • the first torque acting part 3 and the second torque acting part 4 relate to the injection molding shaft 1 connected by the shaft body 2 along the direction of the axis 17.
  • the shaft body 2 is composed of at least one skeleton unit 61.
  • the framework unit 61 is opposed to the core member 18 having a cross-shaped cross section extending along the axis 17 and one end side and the other end side of the core member 18 along the axis 17.
  • the cross-sectional shape perpendicular to the axis is a pair of disk-shaped frame parts 62, 62 having a disk shape, and a portion partitioned by the pair of disk-shaped frame parts 62, 62 and the core part 18. It is arranged and has a pair of disk-like frame parts 62, 62 and a brace-like frame part 60 stretched across the core material part 18 in a brace form.
  • the first torque acting part 3 is formed on one axial end side
  • the second torque acting part 4 is formed on the other axial end side.
  • the first torque acting part 3 and the second torque acting part 4 relate to the injection molding shaft 1 connected by the shaft body 2 along the axial direction.
  • the shaft body 2 is A first connecting portion 15 formed integrally with the first torque acting portion 3; A second connecting portion 16 formed integrally with the second torque acting portion 4; A core material part 18 having a cross-shaped cross section perpendicular to the axis 17 extending from the first connection part 15 to the second connection part 16; The plurality of core members 18 between the first connection portion 15 and the second connection portion 16 are formed at equal intervals along the direction of the axis 17 and the cross-sectional shape perpendicular to the axis is a disc shape.
  • the first connecting portion 15, the first skeleton portion 21 adjacent to the first connecting portion 15, and the core material portion 18 are arranged in a partitioned part, and the first connecting portion 15 and the first connecting portion 15 are arranged.
  • the passed third frame 23 The second connecting portion 16, the first skeleton portion 21 adjacent to the second connecting portion 16, and the core material portion 18 are arranged in a portion partitioned by the second connecting portion 16 and the first connecting portion 16.
  • a fourth frame portion 24 stretched strutally between the frame portion 21 and the core material portion 18; It is characterized by that.
  • the injection-molded shaft according to the present invention absorbs the energy accompanying the sudden torque fluctuation by the torsional deformation of the shaft body even if sudden torque fluctuation acts, and reduces the impact caused by the sudden torque fluctuation by the shaft body. Can do.
  • FIG. 2A is a front view of the injection-molded shaft according to the first embodiment of the present invention (viewed along the X-axis direction), and FIG. 2B is from the direction of arrow B1 in FIG. 2A.
  • FIG. 2C is a right side view of the injection molding shaft viewed from the direction of the arrow B2 in FIG. 2A, and FIG. 2D is A1 in FIG. 2A.
  • FIG. 2E is a cross-sectional view of the injection-molded shaft shown cut along the line A1
  • FIG. 2E is a cross-sectional view of the injection-molded shaft shown cut along the line A2-A2 of FIG. FIG.
  • FIG. 5F is a cross-sectional view of the injection-molded shaft shown cut along the line A3-A3 in FIG. 3A is a plan view of the injection molding shaft according to the first embodiment of the present invention (viewed along the Y-axis direction), and FIG. 3B is a line A1-A1 in FIG. 3A.
  • FIG. 3C is a cross-sectional view of the injection-molded shaft cut along the line
  • FIG. 3C is a cross-sectional view of the injection-molded shaft cut along the line A2-A2 of FIG. 3A
  • FIG. FIG. 3 is a cross-sectional view of an injection molding shaft shown cut along line A3-A3 in FIG.
  • FIG. 5A is a view showing the injection mold shaft mold cut along the YZ coordinate plane
  • FIG. 5B is a view showing the injection mold shaft mold along the XZ coordinate plane. It is a figure cut and shown.
  • Fig.6 (a) is a figure which shows the 1st modification of the injection molding axis
  • FIG. 5A is a view showing the injection mold shaft mold cut along the YZ coordinate plane
  • FIG. 5B is a view showing the injection mold shaft mold along the XZ coordinate plane. It is a figure cut and shown.
  • Fig.6 (a) is a figure which shows the 1st modification of the injection molding axis
  • FIG. 6B is a view showing a second modified example of the injection-molded shaft according to the first embodiment of the present invention, and shows a part of the shaft body enlarged (corresponding to FIG. 4).
  • Figure It is a figure which shows the 3rd modification of the injection molding axis
  • FIG. 1 to 4 are views showing an injection molding shaft 1 according to the first embodiment of the present invention.
  • FIG. 1 is a view showing a use state of the injection molding shaft 1.
  • 2A is a front view of the injection-molded shaft 1 (viewed along the X-axis direction)
  • FIG. 2B is an injection-molded shaft 1 viewed from the direction of the arrow B1 in FIG. 2C is a right side view of the injection molding shaft 1 viewed from the direction of the arrow B2 in FIG. 2A
  • FIG. 2D is a line A1-A1 in FIG. 2A.
  • 2 is a cross-sectional view of the injection-molded shaft 1 cut along the line, FIG.
  • FIG. 2E is a cross-sectional view of the injection-molded shaft 1 cut along the line A2-A2 of FIG. 2A
  • FIG. FIG. 3 is a cross-sectional view of the injection molding shaft 1 cut along line A3-A3 in FIG. 3A is a plan view of the injection molding shaft 1 (viewed along the Y-axis direction), and FIG. 3B is cut along the line A1-A1 of FIG. 3A
  • 3A is a cross-sectional view of the injection-molded shaft 1
  • FIG. 3C is a cross-sectional view of the injection-molded shaft 1 cut along the line A2-A2 in FIG. 3A
  • FIG. FIG. 3 is a cross-sectional view of the injection molding shaft 1 cut along line A3-A3.
  • FIG. 4 is an enlarged view showing a part of the injection-molded shaft 1 (particularly, the shaft body 2) of FIG.
  • the injection molding shaft 1 includes a helical gear 3 as a first torque acting portion formed on one end side in the axial direction and a first gear formed on the other end side in the axial direction. And a shaft body 2 that integrally connects the helical gear 3 and the worm 4 along the axial direction.
  • the injection-molded shaft 1 has a round bar-shaped first boss 5 integrally formed at the rotation center of the side surface 3 a of the helical gear 3, and a round bar-shaped second at the rotation center of the side surface 4 a of the worm 4.
  • the boss 6 is integrally formed (see FIGS. 2A to 2C).
  • the injection molding shaft 1 having such a structure is integrally formed by injecting molten resin such as POM (polyacetal) or PA (polyamide) into the cavity 8 of the mold 7 as will be described in detail later. .
  • the injection-molded shaft 1 has a helical gear 3 on one end side in the axial direction meshing with another first helical gear 10 to form a screw gear 11, and a worm on the other end side in the axial direction. 4 is meshed with another second helical gear 12 to form a worm gear 13.
  • the rotation of the injection molded shaft 1 is transmitted through the worm 4 formed integrally with the shaft body 2. 2 is transmitted to the helical gear 12.
  • the shaft body 2 of the injection-molded shaft 1 is twisted and deformed by the rotational torque acting via the helical gear 3 on one axial end side and the rotational torque acting via the worm 4 on the other axial end side. It is done.
  • the shaft body 2 of the injection molding shaft 1 has a disk-shaped first connection portion 15 located on one end side in the axial direction formed integrally with the helical gear 3, and is axially
  • a disc-shaped second connection portion 16 located on the other end side is formed integrally with the worm 4.
  • the first connecting portion 15 and the second connecting portion 16 are connected by a core portion 18 that extends along the shaft center 17.
  • the core member 18 is positioned so that the cross-sectional shape perpendicular to the axis is a cross shape, and the center of the crossing portion of the cross coincides with the axis 17.
  • a plurality of first skeleton parts 21 are formed at equal intervals along the direction in which the axis 17 extends in the core part 18 between the first connection part 15 and the second connection part 16.
  • the first frame portion 21 is formed on the core member 18 so that the cross-sectional shape perpendicular to the axis is a disc shape.
  • a second frame portion 22 is disposed in a portion partitioned by the first connection portion 15, the first frame portion 21 adjacent to the first connection portion 15, and the core material portion 18. Yes.
  • the second skeleton part 22 is stretched across the first connecting part 15, the first skeleton part 21 and the core part 18, and is composed of a pair of bracing members 22a and 22b which intersect in an X shape. Yes.
  • a third frame portion 23 is arranged at a portion partitioned by a pair of adjacent first frame portions 21 and 21 and a core material portion 18.
  • the third frame portion 23 is stretched across the pair of first frame portions 21 and 21 and the core material portion 18 in a brace shape, and a pair of brace members 23a intersecting in an X shape like the second frame portion 22. , 23b.
  • a fourth frame portion 24 is disposed in a portion partitioned by the second connection portion 16, the first frame portion 21 adjacent to the second connection portion 16, and the core material portion 18. Yes.
  • the fourth frame portion 24 is stretched across the second connecting portion 16, the first frame portion 21 and the core material portion 18, and is X-shaped like the second to third frame portions 22 and 23. It is comprised by a pair of crossing members 24a and 24b which cross
  • the shaft body 2 of the injection molding shaft 1 has a plate shape extending along the Y-axis of the core member 18.
  • the thickness of the first core material portion 18a is W
  • the thickness of the second core material portion 18b extending along the X axis of the core material portion 18 is the same as the thickness W of the first core material portion 18a.
  • the thickness dimension of the 2nd core material part 18b is taken as the dimension in a connection part with the 1st core material part 18a. 2 to 4, the X axis coincides with the separation direction of the first movable mold 33 that forms the shaft body 2 (see FIG.
  • the second core material portion 18b has the first movable portion.
  • a draft is provided to facilitate separation from the mold 33.
  • the second core material portion 18b becomes thinner as the thickness of the second core material portion 18b moves away from the first core material portion 18a along the X-axis direction.
  • the first to fourth frame portions 21 to 24 have a wall thickness W at the connection portion with the first core material portion 18a, and are the same as the wall thickness W of the first core material portion 18a.
  • the first to fourth skeleton parts 21 to 24 are provided with a draft similar to the second core part 18b, and the thickness dimension is increased from the first core part 18a along the X-axis direction. It is getting thinner.
  • the shaft body 2 of the injection molding shaft 1 is formed to have the same outer dimension (D) from one end side in the axial direction to the other end side in the axial direction.
  • the shaft body 2 of such an injection-molded shaft 1 is compared with a cylindrical shaft as in the conventional example (see FIG. 9), so that the core material portion 18 and the first to fourth framework portions 21 to 21 can be flexibly twisted and deformed.
  • a thickness dimension W of 24 is determined.
  • the shaft body 2 of the injection molding shaft 1 has a line-symmetric shape with respect to an axis 17 along the Z-axis direction.
  • a plurality of fixed shapes formed by the first to fourth frame portions 21 to 24 and the like are formed at equal intervals along the axis 17.
  • the shaft body 2 of the injection molding shaft 1 has center lines CL1 and Y whose axial cross-sections are along the X axis. It is formed in a line-symmetric shape with respect to the center line CL2 along the axis. Therefore, the injection-molded shaft 1 according to the present embodiment has a synergistic effect with the effect that the core portion 18 of the shaft body 2 and the first to fourth framework portions 21 to 24 are formed with the same wall thickness W. Injection molded with high accuracy.
  • the pair of bracing members 22 a to 24 a and 22 b to 24 b constituting the second to fourth frame portions 22 to 24 are the axis of the injection molding shaft 1. 17 and at an angle ⁇ .
  • the angle ⁇ is the distance between the first connecting portion 15 and the first skeleton portion 21 adjacent thereto, the interval between the pair of adjacent first skeleton portions 21 and 21, and the second connecting portion 16 and the first skeleton portion adjacent thereto.
  • Optimal numerical values are set according to the distance from the frame portion 21, the outer dimension D of the shaft body 2, and the like.
  • FIG. 5 is a view schematically showing an injection mold 7 of the injection molding shaft 1 according to the present embodiment.
  • 5A is a cross-sectional view of the injection mold 7 cut along the YZ coordinate plane of the orthogonal coordinate system
  • FIG. 5B is a cross-sectional view of the injection mold 7 in the orthogonal coordinate system. It is sectional drawing cut
  • the injection mold 7 has a fixed mold 25 and a movable mold 26.
  • the fixed mold 25 includes a first fixed mold 28 formed with a first cavity 27 that forms the first boss 5 on one end side in the axial direction of the injection molding shaft 1, and a second that forms the helical gear 3 of the injection molding shaft 1. And a second fixed mold 31 in which a cavity 30 is formed.
  • the movable mold 26 includes a first movable mold (a shaft body forming portion of the injection mold 7) 33 in which a third cavity 32 that forms the shaft body 2 of the injection molding shaft 1 and a worm 4 of the injection molding shaft 1.
  • the first movable mold 33 is divided into two parts so that the mold can be opened along the X-axis direction from the position of the axis 17 of the third cavity 32 (see FIG. 5B).
  • the first fixed mold 28 of the injection mold 7 is provided with a gate 38 so as to open into the first cavity 27.
  • the first to fifth cavities 27, 30, 32, 34, and 36 constitute a cavity 8 that forms the injection molding shaft 1.
  • the molten synthetic resin is injected from the gate 28 into the first cavity 27, and the molten resin injected into the first cavity 27.
  • the second to fifth cavities 30, 32, 34, and 36 are filled with the synthetic resin in the state.
  • the gate 28 is positioned on the fixed mold side when the injection mold 7 is configured with the fixed mold 25 shown in FIG. 5 as a movable mold and the movable mold 26 shown in FIG. 5 as a fixed mold.
  • the fifth cavity 36 is provided so as to open.
  • the movable mold 26 is fixed while being rotated. Separated from the mold 25 (moved in the Z-axis direction). As a result, the injection molding shaft 1 is separated from the fixed mold 25 while being held by the movable mold 26.
  • the first movable mold 33 is opened (divided into two) along the X-axis direction, and the first boss 5, the helical gear 3 and the shaft body 2 are exposed from the second movable mold 35, The worm 4 is accommodated in the second movable mold 35 and the second boss 6 is accommodated in the third movable mold 37.
  • the first movable mold 33 of the injection mold 7 has a coordinate axis (FIG. 2) in which the cross section perpendicular to the axis shown in FIGS. 2 (d) and 3 (b) is rotated 90 ° counterclockwise (counterclockwise).
  • the mold is opened (divided into two) along the Y-axis direction.
  • the injection-molded shaft 1 according to the present embodiment as described above can absorb the energy accompanying the rapid torque fluctuation by the flexible torsional deformation of the shaft body 2 even if abrupt torque fluctuation acts.
  • the impact accompanying torque fluctuation can be mitigated by the torsional deformation of the shaft body 2.
  • an excessive load acts on the helical gear 3 formed on one end side in the axial direction and the worm 4 formed on the other end side in the axial direction. It is possible to prevent the teeth of the helical gear 3 formed on one end side in the axial direction and the teeth of the other first helical gear 10 meshing therewith from being damaged, and to the other end side in the axial direction. It is possible to prevent the teeth of the formed worm 4 and the teeth of the other second helical gear 12 meshing therewith from being damaged.
  • the core portion 18 and the first to fourth frame portions 21 to 24 of the shaft body 2 are formed with the same thickness (W), the shaft body 2
  • W thickness
  • the injection molding shaft 1 according to the present embodiment, a large number of the hollow portions 41 to 43 are formed between the first connecting portion 15, the second skeleton portion 22, the first skeleton portion 21, and the core material portion 18. Yes. Further, the injection-molded shaft 1 is formed with a lot of lightening recesses 41 to 43 between the adjacent first frame parts 21 and 21, the third frame part 23, and the core part 18. Further, the injection-molded shaft 1 is formed with a lot of hollow portions 41 to 43 between the second connecting portion 16, the fourth frame portion 24 and the core material portion 18.
  • the injection molding shaft 1 according to the present embodiment can reduce the synthetic resin material as compared with the case where the injection molding shaft 1 is formed in a round bar shape, and the cooling time after the injection into the cavity 8 of the injection mold 7 is reduced. Since it can be shortened, the injection molding cycle can be shortened, the production efficiency can be improved, and the overall weight can be reduced.
  • the injection molded shaft 1 according to the present embodiment can relieve the impact caused by the sudden torque fluctuation by flexibly torsionally deforming the shaft body 2, the vibration caused by the sudden torque fluctuation can be reduced, and the rapid Generation of noise due to torque fluctuation can be suppressed. Therefore, the injection-molded shaft 1 according to this embodiment has a quiet operation sound during power transmission.
  • the injection-molded shaft 1 includes a plurality of lightenings at equal intervals along the axial direction on the distal end side of the core part 18 (the first core part 18a and the second core part 18b) of the shaft body 2. Since the concave portion 43 is formed, generation of voids (bubbles) hardly occurs, and molding defects caused by the voids can be effectively prevented.
  • FIG. 6A is a view showing a first modification of the injection-molded shaft 1 according to the first embodiment of the present invention, and shows a part of the shaft body 2 in an enlarged manner (corresponding to FIG. 4).
  • FIG. 6B is a view showing a second modified example of the injection-molded shaft 1 according to the first embodiment of the present invention.
  • FIG. 6B is an enlarged view showing a part of the shaft body 2 (FIG. 4). Corresponding figure).
  • the injection-molded shaft 1 according to the first embodiment of the present invention includes a pair of bracing members 22a to 24a and 22b to 24b in which the second to fourth frame portions 22 to 24 intersect in an X shape.
  • the present invention is not limited to the injection-molded shaft 1 according to the first embodiment.
  • the second to fourth frame portions 22 to 24 are connected to one brace.
  • the members 22a to 24a (or 22b to 24b) may be configured, and the torsional rigidity of the injection-molded shaft 1 may be reduced according to use conditions and the like.
  • FIGS. 6A and 6B the same components as those of the injection molding shaft 1 shown in FIG. 4 are denoted by the same reference numerals, and the injection molding according to the first embodiment is performed. A description overlapping the description of the shaft 1 is omitted.
  • FIG. 7 is a view showing a third modification of the injection molding shaft 1 according to the first embodiment of the present invention, and is a view showing one axial end portion of the injection molding shaft 1.
  • the injection-molded shaft 1 according to the first embodiment of the present invention has the lightening hole 44 of the first boss 5. It is preferable to form along the central axis 17 from the end surface 5a to the first connecting portion 15 of the shaft body 2.
  • the injection molding shaft 1 having such a hollow hole 44 can prevent molding defects due to the occurrence of sink marks and voids, and can shorten the cooling time and the injection molding cycle. it can.
  • the injection-molded shaft 1 according to the first embodiment has an effect obtained by providing a hollow hole 44 on the first boss 5 side when the outer dimension of the second boss 6 on the worm 4 side is large. In order to obtain the same effect as described above, it is preferable to form a lightening hole along the central axis 17 from the end face of the second boss to the second connecting portion 16 of the shaft body 2 (see FIG. 2).
  • FIG. 8 is a view showing a fourth modification of the injection-molded shaft 1 according to the first embodiment of the present invention, and corresponds to FIG.
  • the same components as those of the injection molding shaft 1 shown in FIG. 2 are denoted by the same reference numerals, and the description overlapping the description of the injection molding shaft 1 according to the first embodiment. Omitted.
  • the injection-molded shaft 1 includes an intersecting portion (first portion) between the second frame portion 22 (the bracing member 22 b) and the core material portion 18 located on one axial end side of the shaft body 2.
  • a semi-cylindrical lightening recess 46 is formed at the intersection 45).
  • the string portion is located along the outer periphery of the boundary between the first connecting portion 15 and the intersecting portion 45 when viewed from the direction along the X axis.
  • the injection-molded shaft 1 includes an intersecting portion (second intersecting portion) of the first frame portion 21, the second frame portion 22 (the bracing member 22a), the third frame portion 23 (the bracing member 23b), and the core material portion 18.
  • a columnar hollow portion 48 is formed in 47.
  • the injection-molded shaft 1 has a columnar hollow 51 in the first frame portion 21, the third frame portion 23 (the bracing members 23a and 23b), and the intersecting portion (third intersecting portion) 50 of the core material portion 18. Is formed.
  • the injection-molded shaft 1 includes an intersecting portion (fourth intersecting portion) of the first framework portion 21, the third framework portion 23 (the bracing member 23a), the fourth framework portion 24 (the bracing member 24b), and the core material portion 18.
  • a columnar hollow portion 53 is formed in 52. Further, the injection-molded shaft 1 is formed with a semi-cylindrical lightening recess 55 at an intersecting portion (fifth intersecting portion) 54 between the fourth frame portion 24 (the bracing member 24a) and the core material portion 18. In the semi-cylindrical thinned recess 55, the string portion is located along the outer periphery of the boundary between the second connecting portion 16 and the intersecting portion 54 when viewed from the direction along the X axis.
  • Each of the hollow recesses 46, 48, 51, 53, 55 has a line-symmetric shape with the center line CL2 along the Y axis as the axis of symmetry (see FIGS. 8A and 8F). . Further, the drafting recesses 46, 48, 51, 53, 55 are provided with a draft angle for facilitating release from the injection mold 7, and the other drafting recesses 41, 42 adjacent to each other. Is approximately the same as the thickness W at the connecting portion between the first to fourth frame portions 21 to 24 and the first core portion 18a. Further, the hollow recesses 46, 48, 51, 53, and 55 have a hole depth that reaches the first core material portion 18a (see FIGS. 8A and 8F).
  • the thickness dimension between the lightening recesses 46, 48, 51, 53, 55 and the other lightening recesses 41, 42 adjacent to each other is the first through fourth frame portions 21-24 and the first core material portion 18a. It is not limited to the case where it is made substantially the same as the wall thickness dimension W in the connecting portion, and may be changed according to the size of the shaft main body 2 or the size of the transmission torque. Further, the hole depths of the hollow recesses 46, 48, 51, 53, 55 are not limited to the hole depth reaching the first core material portion 18a, but depending on the size of the shaft body 2 and the size of the transmission torque, etc. May be changed.
  • the lightening recesses 46, 48, 51, 53, 55 are formed so as to be orthogonal to the YZ coordinate plane, and open along the mold opening direction of the injection mold 7 (see FIG. 5).
  • the portions formed with substantially the same thickness are formed in the first embodiment by forming the hollow portions 46, 48, 51, 53, 55. Since it becomes more than the injection molding shaft 1, the shape accuracy after the injection molding is improved as compared with the injection molding shaft 1 according to the first embodiment.
  • FIG. 9 is a front view of the injection molding shaft 1 according to this modification, and corresponds to FIG.
  • the injection-molded shaft 1 according to this modification has a shaft body 2 that is shorter than the shaft body 2 of the injection-molded shaft 1 according to the first embodiment. That is, in this modification, the shaft main body 2 of the injection-molded shaft 1 is integrated with the disc-shaped first connecting portion 15 formed integrally with the first torque acting portion 3 and the second torque acting portion 4.
  • a disc-shaped second connecting portion 16 formed in the first connecting portion, a core member portion 18 having a cross-shaped cross section perpendicular to the axis 17 extending from the first connecting portion 15 to the second connecting portion 16, and a first connection.
  • the brace-like frame portion 60 is disposed in a portion partitioned by the portion 15, the second connection portion 16, and the core material portion 18, and is stretched across the first connection portion 15, the second connection portion 16, and the core material portion 18. And have.
  • the brace frame portion 60 is configured by the pair of bracing members 22a and 22b intersecting in the X shape described in detail in the first embodiment or the pair of bracing members 24a and 24b intersecting in the X shape. .
  • the injection-molded shaft 1 shown in FIG. 9 has the same components as the components of the injection-molded shaft 1 shown in FIG. 2A, and the components of the injection-molded shaft 1 shown in FIG. The same reference numerals are given, and descriptions overlapping with those in the first embodiment are omitted.
  • the shaft body 2 of the injection-molded shaft 1 is composed of one skeleton unit 61. That is, the skeleton unit 61 is arranged so that the cross-sectional shape perpendicular to the axis extending along the axis 17 is opposite to the cross-shaped core member 18 and one end side and the other end side of the core member 18 along the axis 17.
  • the pair of disk-like frame parts 62 and 62 (first connection part 15 and second connection part 16) whose cross-sectional shape perpendicular to the axis is disk-like, and the pair of disk-like frame parts 62 and 62 and the core part 18 And a pair of disc-shaped frame parts 62, 62 and a brace-like frame part 60, 60 stretched across the core material 18 in a brace form.
  • the injection-molded shaft 1 according to this modified example as described above can absorb the energy accompanying the sudden torque fluctuation by the flexible torsional deformation of the shaft body 2 even if a sudden torque fluctuation acts.
  • the impact accompanying torque fluctuation can be mitigated by the torsional deformation of the shaft body 2.
  • the first embodiment is obtained. It can be seen that the shaft body 2 of the injection-molded shaft 1 is composed of a plurality (six sets) of skeleton units 61.
  • the first connection portion 15, the second connection portion 16, and the first skeleton portion 21 correspond to the disc-like skeleton portion 62.
  • the injection-molded shaft 1 may comprise the shaft body 2 by two or more sets of skeleton units 61.
  • the injection-molded shaft 1 according to the present modification is configured such that the brace-like frame portion 60 is constituted by a pair of bracing members 22a, 22b that intersect in an X shape or a pair of bracing members 24a, 24b that intersect in an X shape.
  • the present invention is not limited to this, and the bracing frame 60 may be configured by one bracing member 22a (24a) or one bracing member 22b (24b).
  • the injection-molded shaft 1 of the present invention is not limited to the first embodiment, and the first torque acting portion may be a gear other than a helical gear such as a spur gear or a bevel gear.
  • the torque acting portion may be a gear other than a worm such as a spur gear or a bevel gear.
  • the first torque acting part and the second torque acting part may be parts where the rotational torque acts, for example, a spline for fixing a helical gear or the like. It may be a forming part, a key groove forming part, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Gears, Cams (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

【課題】急激なトルク変動が作用した場合に、急激なトルク変動に伴う衝撃を軸本体の捩れ変形によって吸収できるようにした射出成形軸を提供する。 【解決手段】軸本体2は、軸直角断面形状が十字状の心材部18の軸方向一端側が第1接続部15を介してはすば歯車3に接続され、心材部18の軸方向他端側が第2接続部16を介してウォーム4に接続されている。第1接続部15と第2接続部16の間の心材部18には、第1骨組み部21が軸心方向に沿って等間隔で複数形成されている。第1接続部15、第1骨組み部21、及び心材部18には第2骨組み部22が筋交い状に張り渡されている。隣り合う一対の第1骨組み部21,21及び心材部18には第3骨組み部23が筋交い状に張り渡されている。第2接続部16、第1骨組み部21及び心材部18には第4骨組み部24が筋交い状に張り渡されている。

Description

射出成形軸
 この発明は、捩れ変形することによって回転エネルギーを吸収し得る軸であって、射出成形によって所望形状に形成される射出成形軸に関するものである。
 例えば、自動車等の動力伝達部品として使用される軸は、金属製で且つ切削加工されたものが多く、製品価格が高く且つ重量が重いという問題を有していた。
 このような問題を解決するものとして、図10に示すような合成樹脂材料製の射出成形軸100が案出された。この図10に示す射出成形軸100は、歯車101及び内向きフランジ102が円筒状の軸本体103の一端側に一体に形成されており、歯車101を介して伝達された回転トルクを他の図示しない回転部品に伝達するようになっている(特許文献1参照)。
特開2003-33947号公報
 しかしながら、図10に示した射出成形軸100は、円筒状の軸本体103のねじり剛性が大きいため、回転トルクが衝撃的に作用しても、軸本体103が十分に捩れ変形することができず、急激なトルク変動に伴う衝撃を軸本体103の捩れ変形で吸収することができなかった。そのため、図10に示した射出成形軸100は、歯車101等の回転伝達部品に急激なトルク変動に伴う衝撃力が作用し、歯車101等の回転伝達部品が破損するという問題を生じることがあった。
 そこで、本発明は、急激なトルク変動が作用した場合に、急激なトルク変動に伴う衝撃を軸本体の捩れ変形によって吸収できるようにした射出成形軸を提供する。
 図9に示すように、本発明は、軸方向一端側に第1のトルク作用部3が形成され、軸方向他端側に第2のトルク作用部4が形成され、これら第1のトルク作用部3と第2のトルク作用部4とが軸本体2によって軸心17方向に沿って接続された射出成形軸1に関するものである。この発明において、前記軸本体2は、前記第1のトルク作用部3と一体に形成される第1接続部15と、前記第2のトルク作用部4と一体に形成される第2接続部16と、前記第1接続部15から前記第2接続部16まで前記軸心17に沿って延びる軸直角断面形状が十字形状の心材部18と、前記第1接続部15と前記第2接続部16及び前記心材部18とで仕切られた部分に配置され、前記第1接続部15と前記第2接続部16及び前記心材部18に筋交い状に張り渡された筋交い状骨組み部60と、を有している。
 また、図1乃至図9に示すように、本発明は、軸方向一端側に第1のトルク作用部3が形成され、軸方向他端側に第2のトルク作用部4が形成され、これら第1のトルク作用部3と第2のトルク作用部4とが軸本体2によって軸心17方向に沿って接続された射出成形軸1に関するものである。この発明において、前記軸本体2は、少なくとも一つの骨組みユニット61で構成されている。そして、前記骨組みユニット61は、前記軸心17に沿って延びる軸直角断面形状が十字形状の心材部18と、前記心材部18の前記軸心17に沿った一端側と他端側に対向するようにそれぞれ配置され、軸直角断面形状が円板形状の一対の円板状骨組み部62,62と、前記一対の円板状骨組み部62,62と前記心材部18とで仕切られた部分に配置され、前記一対の円板状骨組み部62,62と前記心材部18に筋交い状に張り渡された筋交い状骨組み部60と、を有している。
 また、図1乃至図8に示すように、本発明は、軸方向一端側に第1のトルク作用部3が形成され、軸方向他端側に第2のトルク作用部4が形成され、これら第1のトルク作用部3と第2のトルク作用部4とが軸本体2によって軸心方向に沿って接続された射出成形軸1に関するものである。この発明において、前記軸本体2は、
 ・前記第1のトルク作用部3と一体に形成される第1接続部15と、
 ・前記第2のトルク作用部4と一体に形成される第2接続部16と、
 ・前記第1接続部15から前記第2接続部16まで軸心17に沿って延びる軸直角断面形状が十字形状の心材部18と、
 ・前記第1接続部15と前記第2接続部16との間の前記心材部18に軸心17方向に沿って等間隔で複数形成され且つ軸直角断面形状が円板形状となるように前記心材部18に形成された第1骨組み部21と、
 ・前記第1接続部15と、前記第1接続部15に隣合う前記第1骨組み部21と、前記心材部18とで仕切られた部分に配置され、前記第1接続部15と前記第1骨組み部21及び前記心材部18に筋交い状に張り渡された第2骨組み部22と、
 ・隣合う一対の前記第1骨組み部21,21と前記心材部18とで仕切られた部分に配置され、隣り合う一対の前記第1骨組み部21,21と前記心材部18に筋交い状に張り渡された第3骨組み部23と、
 ・前記第2接続部16と、前記第2接続部16に隣合う前記第1骨組み部21と、前記心材部18とで仕切られた部分に配置され、前記第2接続部16と前記第1骨組み部21及び前記心材部18に筋交い状に張り渡された第4骨組み部24と、を有する、
 ことを特徴としている。
 本発明に係る射出成形軸は、急激なトルク変動が作用したとしても、急激なトルク変動に伴うエネルギーを軸本体の捩れ変形によって吸収し、急激なトルク変動に伴う衝撃を軸本体によって緩和することができる。
本発明の第1実施形態に係る射出成形軸の使用状態を示す図である。 図2(a)が本発明の第1実施形態に係る射出成形軸の正面図(X軸方向に沿って見た図)、図2(b)が図2(a)の矢印B1の方向から見た射出成形軸の左側面図、図2(c)が図2(a)の矢印B2の方向から見た射出成形軸の右側面図、図2(d)が図2(a)のA1-A1線に沿って切断して示す射出成形軸の断面図、図2(e)が図2(a)のA2-A2線に沿って切断して示す射出成形軸の断面図、図2(f)が図2(a)のA3-A3線に沿って切断して示す射出成形軸の断面図である。 図3(a)が本発明の第1実施形態に係る射出成形軸の平面図(Y軸方向に沿って見た図)、図3(b)が図3(a)のA1-A1線に沿って切断して示す射出成形軸の断面図、図3(c)が図3(a)のA2-A2線に沿って切断して示す射出成形軸の断面図、図3(d)が図3(a)のA3-A3線に沿って切断して示す射出成形軸の断面図である。 図2(a)の射出成形軸の一部を拡大して示す図である。 図5(a)が射出成形軸用金型をY-Z座標面に沿って切断して示す図であり、図5(b)が射出成形軸用金型をX-Z座標面に沿って切断して示す図である。 図6(a)は、本発明の第1実施形態に係る射出成形軸の第1の変形例を示す図であり、軸本体の一部を拡大して示す図(図4に対応する図)である。また、図6(b)は、本発明の第1実施形態に係る射出成形軸の第2の変形例を示す図であり、軸本体の一部を拡大して示す図(図4に対応する図)である。 本発明の第1実施形態に係る射出成形軸の第3の変形例を示す図であり、射出成形軸の軸方向一端部を示す図である。 本発明の第1実施形態に係る射出成形軸の第4の変形例を示す図であり、図2に対応する図である。 本発明の第1実施形態に係る射出成形軸の第5の変形例を示す図であり、図2(a)に対応する図である。 従来の射出成形軸の縦断面図である。
 以下、本発明の実施形態を図面に基づき詳述する。
 [第1実施形態]
 図1乃至図4は、本発明の第1実施形態に係る射出成形軸1を示す図である。なお、図1は射出成形軸1の使用状態を示す図である。また、図2(a)が射出成形軸1の正面図(X軸方向に沿って見た図)、図2(b)が図2(a)の矢印B1の方向から見た射出成形軸1の左側面図、図2(c)が図2(a)の矢印B2の方向から見た射出成形軸1の右側面図、図2(d)が図2(a)のA1-A1線に沿って切断して示す射出成形軸1の断面図、図2(e)が図2(a)のA2-A2線に沿って切断して示す射出成形軸1の断面図、図2(f)が図2(a)のA3-A3線に沿って切断して示す射出成形軸1の断面図である。また、図3(a)が射出成形軸1の平面図(Y軸方向に沿って見た図)、図3(b)が図3(a)のA1-A1線に沿って切断して示す射出成形軸1の断面図、図3(c)が図3(a)のA2-A2線に沿って切断して示す射出成形軸1の断面図、図3(d)が図3(a)のA3-A3線に沿って切断して示す射出成形軸1の断面図である。また、図4は、図2(a)の射出成形軸1(特に、軸本体2)の一部を拡大して示す図である。
  (射出成形軸の構造)
 これら図1乃至図3に示すように、射出成形軸1は、軸方向一端側に形成された第1のトルク作用部としてのはすば歯車3と、軸方向他端側に形成された第2のトルク作用部としてのウォーム4と、これらはすば歯車3とウォーム4とを軸心方向に沿って一体に接続する軸本体2と、を有している。また、この射出成形軸1は、はすば歯車3の側面3aの回転中心部に丸棒状の第1ボス5が一体に形成され、ウォーム4の側面4aの回転中心部に丸棒状の第2ボス6が一体に形成されている(図2(a)~(c)参照)。このような構造の射出成形軸1は、後に詳述するように、POM(ポリアセタール)やPA(ポリアミド)等の溶融樹脂を金型7のキャビティ8内に射出することにより、一体として形成される。
 図1に示すように、射出成形軸1は、軸方向一端側のはすば歯車3が他の第1はすば歯車10と噛み合ってねじ歯車11を構成し、軸方向他端側のウォーム4が他の第2はすば歯車12と噛み合ってウォームギヤ13を構成するようになっている。そして、このような射出成形軸1は、例えば、図外のモータ等の回転がねじ歯車11を介して伝達されると、その回転が軸本体2と一体に形成されたウォーム4を介して第2はすば歯車12に伝達される。この際、射出成形軸1の軸本体2は、軸方向一端側のはすば歯車3を介して作用する回転トルクと軸方向他端側のウォーム4を介して作用する回転トルクによって捩れ変形させられる。
 図2乃至図4に示すように、射出成形軸1の軸本体2は、軸方向一端側に位置する円板状の第1接続部15がはすば歯車3と一体に形成され、軸方向他端側に位置する円板状の第2接続部16がウォーム4と一体に形成されている。そして、この軸本体2は、第1接続部15と第2接続部16が軸心17に沿って延びる心材部18によって接続されている。この心材部18は、軸直角断面形状が十字形状であり、十字の交差部分の中心が軸心17と合致するように位置している。そして、この第1接続部15と第2接続部16との間の心材部18には、第1骨組み部21が軸心17の延びる方向に沿って等間隔で複数形成されている。この第1骨組み部21は、軸直角断面形状が円板形状になるように、心材部18に形成されている。また、この軸本体2において、第1接続部15、この第1接続部15と隣り合う第1骨組み部21、及び心材部18によって仕切られた部分には、第2骨組み部22が配置されている。この第2骨組み部22は、第1接続部15と第1骨組み部21及び心材部18に筋交い状に張り渡されており、X字状に交差する一対の筋交い部材22a,22bで構成されている。また、この軸本体2において、隣り合う一対の第1骨組み部21,21と心材部18によって仕切られた部分には、第3骨組み部23が配置されている。この第3骨組み部23は、一対の第1骨組み部21,21と心材部18に筋交い状に張り渡されており、第2骨組み部22と同様にX字状に交差する一対の筋交い部材23a,23bで構成されている。また、この軸本体2において、第2接続部16、この第2接続部16と隣り合う第1骨組み部21、及び心材部18によって仕切られた部分には、第4骨組み部24が配置されている。この第4骨組み部24は、第2接続部16と第1骨組み部21及び心材部18に筋交い状に張り渡されており、第2乃至第3骨組み部22,23と同様にX字状に交差する一対の筋交い部材24a,24bで構成されている。
 図2(d)~(e)、図3(b)~(c)、及び図4に示すように、射出成形軸1の軸本体2は、心材部18のY軸に沿って延びる板状の第1心材部分18aの肉厚寸法がWであり、心材部18のX軸に沿って延びる第2心材部分18bの肉厚寸法が第1心材部分18aの肉厚寸法Wと同一になっている。ここで、第2心材部分18bの肉厚寸法は、第1心材部分18aとの接続部分における寸法とする。そして、図2乃至図4において、X軸が軸本体2を成形する第1可動型33の分離方向に合致しており(図5(b)参照)、第2心材部分18bには第1可動型33との分離を容易にするための抜け勾配が設けられている。その結果、第2心材部分18bは、肉厚寸法が第1心材部分18aからX軸方向に沿って離れるにしたがって薄くなっている。また、第1乃至第4骨組み部21~24は、第1心材部分18aとの接続部分における肉厚寸法がWであり、第1心材部分18aの肉厚寸法Wと同一になっている。そして、これら第1乃至第4骨組み部21~24は、第2心材部分18bと同様に抜け勾配が設けられており、肉厚寸法が第1心材部分18aからX軸方向に沿って離れるにしたがって薄くなっている。また、射出成形軸1の軸本体2は、軸方向の一端側から軸方向の他端側まで同一の外形寸法(D)となるように形成されている。このような射出成形軸1の軸本体2は、従来例のような円筒軸と比較し(図9参照)、柔軟に捩れ変形できるように、心材部18と第1乃至第4骨組み部21~24の肉厚寸法Wが決定される。
 図2(a)及び図3(a)に示すように、射出成形軸1の軸本体2は、Z軸方向に沿った軸心17に対して線対称の形状になっており、また、第1乃至第4骨組み部21~24等で形作られる一定の形状が軸心17に沿って等間隔で複数形成されるようになっている。しかも、図2(d)~(f)及び図3(b)~(d)に示すように、射出成形軸1の軸本体2は、軸直角断面がX軸に沿った中心線CL1及びY軸に沿った中心線CL2に対して線対称の形状に形成されている。したがって、本実施形態に係る射出成形軸1は、軸本体2の心材部18と第1乃至第4骨組み部21~24が同一の肉厚寸法Wで形成されている効果との相乗効果によって、高精度に射出成形される。
 図4に示すように、射出成形軸1の軸本体2において、第2乃至第4骨組み部22~24を構成する一対の筋交い部材22a~24a,22b~24bは、射出成形軸1の軸心17と角度θで交差するようになっている。なお、角度θは、第1接続部15とこれと隣り合う第1骨組み部21との間隔、隣り合う一対の第1骨組み部21,21の間隔、第2接続部16とこれと隣り合う第1骨組み部21との間隔、軸本体2の外形寸法D等に応じて最適な数値が設定される。
  (射出成形金型)
 図5は、本実施形態に係る射出成形軸1の射出成形金型7を模式的に示す図である。なお、図5(a)が射出成形金型7を直交座標系のY-Z座標面に沿って切断して示す断面図であり、図5(b)が射出成形金型7を直交座標系のX-Z座標面に沿って切断して示す断面図である。
 図5に示すように、射出成形金型7は、固定型25と可動型26とを有している。固定型25は、射出成形軸1の軸方向一端側の第1ボス5を形作る第1キャビティ27が形成された第1固定型28と、射出成形軸1のはすば歯車3を形作る第2キャビティ30が形成された第2固定型31とを有している。可動型26は、射出成形軸1の軸本体2を形作る第3キャビティ32が形成された第1可動型(射出成形金型7の軸本体形成部分)33と、射出成形軸1のウォーム4を形作る第4キャビティ34が形成された第2可動型35と、射出成形軸1の軸方向他端側の第2ボス6を形作る第5キャビティ36が形成された第3可動型37とを有している。また、第1可動型33は、第3キャビティ32の軸心17の位置からX軸方向に沿って型開きできるように2分割されている(図5(b)参照)。また、射出成形金型7の第1固定型28には、ゲート38が第1キャビティ27内に開口するように設けられている。そして、第1乃至第5キャビティ27,30,32,34,36が射出成形軸1を形作るキャビティ8を構成する。
 図5に示すように、固定型25と可動型26が型締めされた状態において、ゲート28から溶融状態の合成樹脂が第1キャビティ27内に射出され、第1キャビティ27内に射出された溶融状態の合成樹脂が第2乃至第5キャビティ30,32,34,36に充填される。なお、ゲート28は、図5に記載した固定型25を可動型とし、図5に記載した可動型26を固定型として射出成形金型7を構成する場合、固定型側に位置することになる第5キャビティ36に開口するように設ける。
 図5に示す状態において、射出成形金型7のキャビティ8内に射出された合成樹脂が冷却されて固まった後(射出成形軸1が形作られた後)、可動型26が回転させられながら固定型25から分離される(Z軸方向に移動させられる)。これにより、射出成形軸1は、可動型26に保持された状態で固定型25から分離される。次に、第1可動型33がX軸方向に沿って型開き(2分割)され、第1ボス5、はすば歯車3及び軸本体2が第2可動型35から露出した状態になり、ウォーム4が第2可動型35内に収容され、第2ボス6が第3可動型37に収容された状態になる。次に、第3可動型37にスライド移動可能な状態で収容された突きだしピン40が射出成形軸1の第2ボス6を押し続けることにより、ウォーム4が第2可動型35内を回転させられながら移動させられ、ウォーム4が第2可動型35内から押し出されることにより、射出成形軸1が射出成形金型7から取り出される。なお、射出成形金型7の第1可動型33は、図2(d)及び図3(b)で示す軸直角断面が反時計回り方向(左回り方向)に90°回転させた座標軸(図2(d)の上下方向がX軸方向とし、図3(b)の左右方向がX軸方向とされた場合)において、Y軸方向に沿って型開き(2分割)される。
  (本実施形態の効果)
 以上のような本実施形態に係る射出成形軸1は、急激なトルク変動が作用したとしても、急激なトルク変動に伴うエネルギーを軸本体2の柔軟な捩れ変形によって吸収することができ、急激なトルク変動に伴う衝撃を軸本体2の捩れ変形によって緩和することができる。その結果、本実施形態に係る射出成形軸1によれば、軸方向一端側に形成されたはすば歯車3及び軸方向他端側に形成されたウォーム4に過度な負荷が作用するのを抑えることができ、軸方向一端側に形成されたはすば歯車3の歯及びこれと噛み合う他の第1はすば歯車10の歯が破損するのを防止できると共に、軸方向他端側に形成されたウォーム4の歯及びこれと噛み合う他の第2はすば歯車12の歯が破損するのを防止できる。
 また、本実施形態に係る射出成形軸1は、軸本体2の心材部18と第1乃至第4骨組み部21~24が同一の肉厚寸法(W)で形成されているため、軸本体2が収縮率のばらつきに起因する成形不良を生じることがなく、高精度に射出成形される。
 また、本実施形態に係る射出成形軸1は、第1接続部15、第2骨組み部22、第1骨組み部21及び心材部18との間に多くの肉抜き凹部41~43が形成されている。また、射出成形軸1は、隣り合う第1骨組み部21,21、第3骨組み部23及び心材部18との間に多くの肉抜き凹部41~43が形成されている。さらに、射出成形軸1は、第2接続部16、第4骨組み部24及び心材部18との間に多くの肉抜き凹部41~43が形成されている。したがって、本実施形態に係る射出成形軸1は、丸棒状に形成する場合と比較し、合成樹脂材料を少なくすることができ、射出成形金型7のキャビティ8内への射出後における冷却時間を短くすることができるため、射出成形サイクルを短縮することができ、生産効率を向上させることができると共に、全体重量の軽量化を図ることができる。
 また、本実施形態に係る射出成形軸1は、軸本体2が柔軟に捩れ変形することによって急激なトルク変動に伴う衝撃を緩和できるため、急激なトルク変動に起因する振動を低減でき、急激なトルク変動に起因する騒音の発生を抑えることができる。したがって、本実施形態に係る射出成形軸1は、動力伝達時における作動音が静かになる。
 また、本実施形態に係る射出成形軸1は、軸本体2の心材部18(第1心材部分18a及び第2心材部分18b)の先端側に、軸方向に沿って等間隔で複数の肉抜き凹部43が形成されているため、ボイド(気泡)の発生が生じにくく、ボイドに起因する成形不良を効果的に防止できる。
  (第1実施形態の第1の変形例及び第2の変形例)
 図6(a)は、本発明の第1実施形態に係る射出成形軸1の第1の変形例を示す図であり、軸本体2の一部を拡大して示す図(図4に対応する図)である。また、図6(b)は、本発明の第1実施形態に係る射出成形軸1の第2の変形例を示す図であり、軸本体2の一部を拡大して示す図(図4に対応する図)である。
 本発明の第1実施形態に係る射出成形軸1は、第2乃至第4骨組み部22~24がX字状に交差する一対の筋交い部材22a~24a,22b~24bで構成されている。しかし、本発明は、第1実施形態に係る射出成形軸1に限られず、図6(a)又は図6(b)に示すように、第2乃至第4骨組み部22~24を一つの筋交い部材22a~24a(又は22b~24b)で構成し、射出成形軸1の捩れ剛性を使用条件等に応じて小さくしてもよい。なお、図6(a)及び図6(b)に示す射出成形軸1において、図4に示す射出成形軸1と同様の構成部分には同一符号を付し、第1実施形態に係る射出成形軸1の説明と重複する説明を省略する。
  (第1実施形態の第3の変形例)
 図7は、本発明の第1実施形態に係る射出成形軸1の第3の変形例を示す図であり、射出成形軸1の軸方向一端部を示す図である。
 図7に示すように、本発明の第1実施形態に係る射出成形軸1は、はすば歯車3側の第1ボス5の外形寸法が大きい場合、肉抜き穴44を第1ボス5の端面5aから軸本体2の第1接続部15まで中心軸17に沿って形成することが好ましい。このような肉抜き穴44を形成した射出成形軸1は、ヒケやボイドの発生等に起因する成形不良が生じるのを防止でき、冷却時間の短縮化及び射出成形サイクルの短縮化を図ることができる。なお、図示しないが、第1実施形態に係る射出成形軸1は、ウォーム4側の第2ボス6の外形寸法が大きい場合、第1ボス5側に肉抜き穴44を設けることによって得られる効果と同様の効果を得るため、肉抜き穴を第2ボスの端面から軸本体2の第2接続部16まで中心軸17に沿って形成することが好ましい(図2参照)。
  (第1実施形態の第4の変形例)
 図8は、本発明の第1実施形態に係る射出成形軸1の第4の変形例を示す図であり、図2に対応する図である。なお、図8に示す射出成形軸1において、図2に示す射出成形軸1と同様の構成部分には同一符号を付し、第1実施形態に係る射出成形軸1の説明と重複する説明を省略する。
 図8に示すように、本変形例に係る射出成形軸1は、軸本体2の軸方向一端側に位置する第2骨組み部22(筋交い部材22b)と心材部18との交差部分(第1の交差部分)45に半円柱状の肉抜き凹部46が形成されている。そして、この半円柱状の肉抜き凹部46は、X軸に沿った方向から見た場合、弦の部分が第1接続部15と交差部分45との境界の外周に沿って位置している。また、射出成形軸1は、第1骨組み部21、第2骨組み部22(筋交い部材22a)、第3骨組み部23(筋交い部材23b)、及び心材部18の交差部分(第2の交差部分)47に円柱状の肉抜き凹部48が形成されている。また、射出成形軸1は、第1骨組み部21、第3骨組み部23(筋交い部材23a,23b)、及び心材部18の交差部分(第3の交差部分)50に円柱状の肉抜き凹部51が形成されている。また、射出成形軸1は、第1骨組み部21、第3骨組み部23(筋交い部材23a)、第4骨組み部24(筋交い部材24b)、及び心材部18の交差部分(第4の交差部分)52に円柱状の肉抜き凹部53が形成されている。また、射出成形軸1は、第4骨組み部24(筋交い部材24a)と心材部18との交差部分(第5の交差部分)54に半円柱状の肉抜き凹部55が形成されている。そして、この半円柱状の肉抜き凹部55は、X軸に沿った方向から見た場合、弦の部分が第2接続部16と交差部分54との境界の外周に沿って位置している。
 上記各肉抜き凹部46,48,51,53,55は、Y軸に沿った中心線CL2を対称の軸とした線対称の形状になっている(図8(a),(f)参照)。また、肉抜き凹部46,48,51,53,55は、射出成形金型7からの離型を容易にするための抜き勾配が設けられており、隣り合う他の肉抜き凹部41,42との間の肉厚寸法が第1乃至第4骨組み部21~24と第1心材部分18aとの接続部分における肉厚寸法Wとほぼ同様になっている。また、肉抜き凹部46,48,51,53,55は、第1心材部分18aに到達する穴深さになっている(図8(a),(f)参照)。なお、肉抜き凹部46,48,51,53,55と隣り合う他の肉抜き凹部41,42との間の肉厚寸法は、第1乃至第4骨組み部21~24と第1心材部分18aとの接続部分における肉厚寸法Wとほぼ同様にする場合に限定されず、軸本体2の大きさや伝達トルクの大きさ等に応じて変更してもよい。また、肉抜き凹部46,48,51,53,55の穴深さは、第1心材部分18aに到達する穴深さに限定されず、軸本体2の大きさや伝達トルクの大きさ等に応じて変更してもよい。
 また、肉抜き凹部46,48,51,53,55は、Y-Z座標面に直交するように形成され、射出成形金型7の型開き方向に沿って開口するようになっている(図5参照)。
 以上のような本変形例に係る射出成形軸1は、肉抜き凹部46,48,51,53,55が形成されることにより、ほぼ同一の肉厚寸法で形作られる部分が第1実施形態に係る射出成形軸1よりも多くなるため、射出成形後の形状精度が第1実施形態に係る射出成形軸1よりも向上する。
  (第1実施形態の第5の変形例)
 図9は、本変形例に係る射出成形軸1の正面図であり、図2(a)に対応する図である。この図9に示すように、本変形例に係る射出成形軸1は、軸本体2が第1実施形態に係る射出成形軸1の軸本体2よりも短く形成されている。すなわち、本変形例において、射出成形軸1の軸本体2は、第1のトルク作用部3と一体に形成された円板形状の第1接続部15と、第2のトルク作用部4に一体に形成された円板形状の第2接続部16と、第1接続部15から第2接続部16まで軸心17に沿って延びる軸直角断面形状が十字形状の心材部18と、第1接続部15と第2接続部16及び心材部18とで仕切られた部分に配置され、第1接続部15と第2接続部16及び心材部18に筋交い状に張り渡された筋交い状骨組み部60と、を有している。ここで、筋交い状骨組み部60は、第1実施形態において詳述したX字状に交差する一対の筋交い部材22a,22b又はX字状に交差する一対の筋交い部材24a,24bで構成されている。なお、図9に示す射出成形軸1は、図2(a)に示した射出成形軸1の構成部分と同様の構成部分に、図2(a)に示した射出成形軸1の構成部分と同一の符号を付し、第1実施形態の説明と重複する説明を省略する。
 このような射出成形軸1の軸本体2は、一つの骨組みユニット61で構成されていると見ることができる。すなわち、骨組みユニット61は、軸心17に沿って延びる軸直角断面形状が十字形状の心材部18と、心材部18の軸心17に沿った一端側と他端側に対向するようにそれぞれ配置され、軸直角断面形状が円板形状の一対の円板状骨組み部62,62(第1接続部15、第2接続部16)と、一対の円板状骨組み部62,62と心材部18とで仕切られた部分に配置され、一対の円板状骨組み部62,62と心材部18に筋交い状に張り渡された筋交い状骨組み部60,60と、を有している。
 以上のような本変形例に係る射出成形軸1は、急激なトルク変動が作用したとしても、急激なトルク変動に伴うエネルギーを軸本体2の柔軟な捩れ変形によって吸収することができ、急激なトルク変動に伴う衝撃を軸本体2の捩れ変形によって緩和することができる。
 なお、本変形例に係る射出成形軸1のように、軸本体2が骨組みユニット61で構成されているとの視点から第1実施形態に係る射出成形軸1を見直すと、第1実施形態に係る射出成形軸1の軸本体2が複数(6組)の骨組みユニット61で構成されていると見ることができる。ここで、第1実施形態に係る射出成形軸1の軸本体2において、第1接続部15、第2接続部16、及び第1骨組み部21は、円板状骨組み部62に相当する。また、第1実施形態に係る射出成形軸1の軸本体2において、X字状に交差する一対の筋交い部材22a,22b、X字状に交差する一対の筋交い部材23a,23b、一対の筋交い部材24a,24bは、筋交い状骨組み部60に相当する。また、射出成形軸1は、軸本体2を2組以上の複数の骨組みユニット61で構成してもよい。
 また、本変形例に係る射出成形軸1は、筋交い状骨組み部60をX字状に交差する一対の筋交い部材22a,22b又はX字状に交差する一対の筋交い部材24a,24bで構成するようになっているが、これに限られず、筋交い状骨組み部60を一つの筋交い部材22a(24a)、又は一つの筋交い部材22b(24b)で構成してもよい。
  (その他の変形例)
 本発明の射出成形軸1は、上記第1実施形態に限定されるものではなく、第1のトルク作用部が平歯車、傘歯車等のはすば歯車以外の歯車でもよく、また、第2のトルク作用部が平歯車、傘歯車等のウォーム以外の歯車でもよい。また、本発明の射出成形軸1において、第1のトルク作用部及び第2のトルク作用部は、回転トルクが作用する部分であればよく、例えば、はすば歯車等を固定するためのスプライン形成部やキー溝形成部等であってもよい。
 1……射出成形軸、2……軸本体、3……はすば歯車(第1のトルク作用部)、4……ウォーム(第2のトルク作用部)、15……第1接続部、16……第2接続部、17……軸心、18……心材部、21……第1骨組み部、22……第2骨組み部、23……第3骨組み部、24……第4骨組み部、33……第1可動型(軸本体形成部分)、60……筋交い状骨組み部、61……骨組みユニット、62……円板状骨組み部

Claims (9)

  1.  軸方向一端側に第1のトルク作用部が形成され、軸方向他端側に第2のトルク作用部が形成され、これら第1のトルク作用部と第2のトルク作用部とが軸本体によって軸心方向に沿って接続された射出成形軸であって、
     前記軸本体は、
     前記第1のトルク作用部と一体に形成される第1接続部と、
     前記第2のトルク作用部と一体に形成される第2接続部と、
     前記第1接続部から前記第2接続部まで前記軸心に沿って延びる軸直角断面形状が十字形状の心材部と、
     前記第1接続部と前記第2接続部及び前記心材部とで仕切られた部分に配置され、前記第1接続部と前記第2接続部及び前記心材部に筋交い状に張り渡された筋交い状骨組み部と、
     を有することを特徴とする射出成形軸。
  2.  軸方向一端側に第1のトルク作用部が形成され、軸方向他端側に第2のトルク作用部が形成され、これら第1のトルク作用部と第2のトルク作用部とが軸本体によって軸心方向に沿って接続された射出成形軸であって、
     前記軸本体は、少なくとも一つの骨組みユニットで構成され、
     前記骨組みユニットは、
     前記軸心に沿って延びる軸直角断面形状が十字形状の心材部と、
     前記心材部の前記軸心に沿った一端側と他端側に対向するようにそれぞれ配置され、軸直角断面形状が円板形状の一対の円板状骨組み部と、
     前記一対の円板状骨組み部と前記心材部とで仕切られた部分に配置され、前記一対の円板状骨組み部と前記心材部に筋交い状に張り渡された筋交い状骨組み部と、を有する、
     ことを特徴とする射出成形軸。
  3.  軸方向一端側に第1のトルク作用部が形成され、軸方向他端側に第2のトルク作用部が形成され、これら第1のトルク作用部と第2のトルク作用部とが軸本体によって軸心方向に沿って接続された射出成形軸であって、
     前記軸本体は、
     前記第1のトルク作用部と一体に形成される第1接続部と、
     前記第2のトルク作用部と一体に形成される第2接続部と、
     前記第1接続部から前記第2接続部まで軸心に沿って延びる軸直角断面形状が十字形状の心材部と、
     前記第1接続部と前記第2接続部との間の前記心材部に軸心方向に沿って等間隔で複数形成され且つ軸直角断面形状が円板形状となるように前記心材部に形成された第1骨組み部と、
     前記第1接続部と、前記第1接続部に隣合う前記第1骨組み部と、前記心材部とで仕切られた部分に配置され、前記第1接続部と前記第1骨組み部及び前記心材部に筋交い状に張り渡された第2骨組み部と、
     隣合う一対の前記第1骨組み部と前記心材部とで仕切られた部分に配置され、隣り合う一対の前記第1骨組み部と前記心材部に筋交い状に張り渡された第3骨組み部と、
     前記第2接続部と、前記第2接続部に隣合う前記第1骨組み部と、前記心材部とで仕切られた部分に配置され、前記第2接続部と前記第1骨組み部及び前記心材部に筋交い状に張り渡された第4骨組み部と、を有する、
     ことを特徴とする射出成形軸。
  4.  前記軸本体は、前記心材部の軸直角断面を直交座標系のX-Y座標面と仮定し、且つ、前記心材部の軸直角断面形状における十字形状がX軸とY軸に合致すると仮定した場合、射出成形金型の軸本体形成部分をX軸方向又はY軸方向に2分割することができるように形成された、
     ことを特徴とする請求項3に記載の射出成形軸。
  5.  前記第2骨組み部、前記第3骨組み部、及び前記第4骨組み部は、X字状に交差する一対の筋交い部材で構成された、
     ことを特徴とする請求項3又は4に記載の射出成形軸。
  6.  前記第2骨組み部、前記第3骨組み部、及び前記第4骨組み部は、一つの筋交い部材で構成された、
     ことを特徴とする請求項3又は4に記載の射出成形軸。
  7.  前記心材部と前記第1乃至第4骨組み部は、肉厚が同一寸法になるように形成された、 ことを特徴とする請求項3乃至6のいずれかに記載の射出成形軸。
  8.  前記第1のトルク作用部と前記第2のトルク作用部のいずれか一方がはすば歯車であり、前記第1のトルク作用部と前記第2のトルク作用部のいずれか他方がウォームである、
     ことを特徴とする請求項1乃至7のいずれかに記載の射出成形軸。
  9.  ・前記軸本体は、
     前記第2骨組み部と前記心材部との第1の交差部分と、
     前記第1骨組み部、前記第2骨組み部、前記第3骨組み部、及び前記心材部の第2の交差部分と、
     前記第1骨組み部、前記第3骨組み部、及び前記心材部の第3の交差部分と、
     前記第1骨組み部、前記第3骨組み部、前記第4骨組み部、及び前記心材部の第4の交差部分と、
     前記第4骨組み部と前記心材部との第5の交差部分と、が形作られ、
     ・前記第1~5の交差部分には、前記射出成形金型の型開き方向へ向かって開口する肉抜き凹部が形成された、
     ことを特徴とする請求項4に記載の射出成形軸。
PCT/JP2015/050006 2014-01-09 2015-01-05 射出成形軸 WO2015105062A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18209912.7A EP3495673B1 (en) 2014-01-09 2015-01-05 Injection molded shaft
EP18209914.3A EP3477129B1 (en) 2014-01-09 2015-01-05 Injection molded shaft
EP15734865.7A EP3093511B1 (en) 2014-01-09 2015-01-05 Injection molding shaft
CN201580003459.XA CN105874227B (zh) 2014-01-09 2015-01-05 注塑成形轴
JP2015556789A JP6396331B2 (ja) 2014-01-09 2015-01-05 射出成形軸
US15/110,571 US10208834B2 (en) 2014-01-09 2015-01-05 Injection molded shaft
US16/238,222 US11022199B2 (en) 2014-01-09 2019-01-02 Injection molded shaft
US16/238,227 US11035439B2 (en) 2014-01-09 2019-01-02 Injection molded shaft

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-002217 2014-01-09
JP2014002217 2014-01-09
JP2014-225941 2014-11-06
JP2014225941 2014-11-06

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/110,571 A-371-Of-International US10208834B2 (en) 2014-01-09 2015-01-05 Injection molded shaft
US16/238,222 Division US11022199B2 (en) 2014-01-09 2019-01-02 Injection molded shaft
US16/238,227 Division US11035439B2 (en) 2014-01-09 2019-01-02 Injection molded shaft

Publications (1)

Publication Number Publication Date
WO2015105062A1 true WO2015105062A1 (ja) 2015-07-16

Family

ID=53523890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050006 WO2015105062A1 (ja) 2014-01-09 2015-01-05 射出成形軸

Country Status (5)

Country Link
US (3) US10208834B2 (ja)
EP (3) EP3477129B1 (ja)
JP (1) JP6396331B2 (ja)
CN (1) CN105874227B (ja)
WO (1) WO2015105062A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643551B1 (en) 2018-10-24 2021-06-23 Batz, S.Coop. Shutter device for a front grille of a vehicle
CN111216379A (zh) * 2020-03-19 2020-06-02 胜利油田新大管业科技发展有限责任公司 一种复合材料抽油杆修复模具及其使用方法
DE102021110013A1 (de) * 2021-04-20 2022-10-20 Warema Renkhoff Se Wellenkern und damit gebildete Welle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512974A (ja) * 1996-06-18 1999-11-09 ノースロップ グラマン コーポレーション 螺旋溝トルクチューブ組立体を製造するための方法および成形型
JP2003033947A (ja) 2001-07-24 2003-02-04 Bridgestone Corp 筒状樹脂成形体、それの成形方法およびそれに用いる成形金型
JP2005147303A (ja) * 2003-11-18 2005-06-09 I & P Kk シャフトおよびその製造方法
WO2012128213A1 (ja) * 2011-03-18 2012-09-27 株式会社ジェイテクト 動力伝達軸の製造方法および車両用操舵装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2009496A (en) * 1933-02-11 1935-07-30 Leonard W Johnson Method of making a valve guide cleaner
US3610056A (en) * 1970-03-16 1971-10-05 Merit Plastics Inc Connector member for rotary drive cable
US3737154A (en) * 1971-07-12 1973-06-05 K Johnson Shock attenuating device
SE367367B (ja) * 1971-08-23 1974-05-27 B Lindstroem
DE3320605A1 (de) * 1983-06-08 1984-12-13 Schaab, Brigitta, 8950 Kaufbeuren Verformungselement und verfahren zu seiner herstellung
DE3419176A1 (de) * 1984-05-23 1985-11-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Bauelement zur uebertragung von drehmomenten
GB8603473D0 (en) * 1986-02-12 1986-03-19 Marconi Co Ltd Mooring tether
CA1289776C (en) * 1986-07-12 1991-10-01 Geoffrey Michael Suter Camshaft and method for its production
JP3162789B2 (ja) * 1992-04-13 2001-05-08 三洋電機株式会社 床用吸込具
DE19509116C2 (de) * 1995-03-16 2000-01-05 Deutsch Zentr Luft & Raumfahrt Flexible Struktur
US8667754B2 (en) * 2008-08-26 2014-03-11 The Boeing Company Composite tie rod and method for making the same
JP2010242928A (ja) * 2009-04-09 2010-10-28 Seiko Epson Corp 記録装置
DE102014109754B4 (de) * 2014-07-11 2016-03-31 Pierburg Gmbh Kupplungsvorrichtung zur Verbindung zweier gegenüberliegender Wellen sowie Verfahren zur Herstellung einer derartigen Kupplungsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512974A (ja) * 1996-06-18 1999-11-09 ノースロップ グラマン コーポレーション 螺旋溝トルクチューブ組立体を製造するための方法および成形型
JP2003033947A (ja) 2001-07-24 2003-02-04 Bridgestone Corp 筒状樹脂成形体、それの成形方法およびそれに用いる成形金型
JP2005147303A (ja) * 2003-11-18 2005-06-09 I & P Kk シャフトおよびその製造方法
WO2012128213A1 (ja) * 2011-03-18 2012-09-27 株式会社ジェイテクト 動力伝達軸の製造方法および車両用操舵装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093511A4 *

Also Published As

Publication number Publication date
EP3093511B1 (en) 2019-06-12
CN105874227B (zh) 2019-10-11
US20190178345A1 (en) 2019-06-13
EP3093511A4 (en) 2017-09-13
CN105874227A (zh) 2016-08-17
US20190178346A1 (en) 2019-06-13
JP6396331B2 (ja) 2018-09-26
US10208834B2 (en) 2019-02-19
EP3477129B1 (en) 2020-06-03
JPWO2015105062A1 (ja) 2017-03-23
US11022199B2 (en) 2021-06-01
EP3093511A1 (en) 2016-11-16
US20160327122A1 (en) 2016-11-10
EP3495673A1 (en) 2019-06-12
US11035439B2 (en) 2021-06-15
EP3495673B1 (en) 2020-06-17
EP3477129A1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6396331B2 (ja) 射出成形軸
US20070086907A1 (en) Gearwheel and method for manufacturing a gearwheel
DE102007006986B3 (de) Rotor für eine schnell laufende elektrische Maschine
DE102015203018A1 (de) Elektrische Maschine mit mittels Kunststoff befestigten Magneten
WO2017163731A1 (ja) 樹脂製歯車、樹脂製歯車の射出成形方法、樹脂製歯付きベルト用プーリ、及び樹脂製回転体
JP7339076B2 (ja) 軽量歯車とその製造方法、歯車列の製造方法およびロボット
JP6319375B2 (ja) デファレンシャル装置及びその製造方法
CN103062169B (zh) 一种航空用防松锁紧器
JP2018119630A (ja) ボールねじ機構およびそれを用いたステアリング装置
JP3185116U (ja) 成形機のスクリュ締結機構
JP2010181013A (ja) ダブルコニカルインボリュートギアの構成および製造方法
JP6504195B2 (ja) 車両用差動伝達装置およびその製造方法
JP2010276119A (ja) 軸継手のハブ及びその製造方法並びに成型装置
JP6254131B2 (ja) エネルギー吸収体
CN109130094A (zh) 一种注塑螺旋角斜齿轮的模具
JP6966264B2 (ja) ギアードモータ
CN209337300U (zh) 用于膜元件产品包装箱内的内衬装置
JP6504191B2 (ja) 車両用差動伝達装置およびその製造方法
CN108799350A (zh) 弹性体及其联轴器
CA2872971C (en) Internally grooved components and method of manufacture
JP6544382B2 (ja) 車両用差動伝達装置およびその製造方法
CN202646592U (zh) 双联齿轮结构及工程机械
JP7178687B2 (ja) はすば歯車及びはすば歯車の製造方法
JPH0265636A (ja) ラジアルタイプの同期電動機ロータと出力軸との固定構造
JP5771105B2 (ja) 射出成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556789

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015734865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015734865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15110571

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE