WO2015104907A1 - 排気弁駆動装置およびこれを備えた内燃機関 - Google Patents

排気弁駆動装置およびこれを備えた内燃機関 Download PDF

Info

Publication number
WO2015104907A1
WO2015104907A1 PCT/JP2014/080861 JP2014080861W WO2015104907A1 WO 2015104907 A1 WO2015104907 A1 WO 2015104907A1 JP 2014080861 W JP2014080861 W JP 2014080861W WO 2015104907 A1 WO2015104907 A1 WO 2015104907A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust valve
pressure
air
plunger
hydraulic
Prior art date
Application number
PCT/JP2014/080861
Other languages
English (en)
French (fr)
Inventor
石田 裕幸
村田 聡
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020167010948A priority Critical patent/KR101698301B1/ko
Priority to CN201480059076.XA priority patent/CN105705738B/zh
Publication of WO2015104907A1 publication Critical patent/WO2015104907A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • F01L1/462Valve return spring arrangements
    • F01L1/465Pneumatic arrangements

Definitions

  • the present invention relates to a mechanical exhaust valve drive device driven by a cam and an internal combustion engine provided with the same.
  • a marine diesel engine which is a low-speed two-stroke cycle diesel engine, uses a hydraulic mechanism to drive an exhaust valve.
  • an engine of an electronic control system that uses a solenoid valve for hydraulic control of the hydraulic mechanism, the opening and closing timing of the exhaust valve is controlled to be optimum according to the operation load.
  • the mechanical engine is a cam hydraulic drive system in which the exhaust valve actuator is operated according to the pressure change of the hydraulic pressure generated by the cam driven plunger, the open / close timing of the exhaust valve depends on the cam profile Because it is difficult to change while driving.
  • the amount of hydraulic oil introduced to the exhaust valve actuator by removing the hydraulic oil from the hydraulic pipe that supplies the hydraulic oil to the exhaust valve actuator that drives the exhaust valve to the buffer tank.
  • the structure which supplies high-pressure hydraulic fluid from pressurized oil source separately provided with respect to the hydraulic fluid pipe which supplies hydraulic fluid to the exhaust valve actuator which drives an exhaust valve is employ
  • the present invention has been made in view of such circumstances, and an exhaust valve drive device capable of adjusting the opening / closing timing of the exhaust valve without directly controlling the hydraulic oil in the hydraulic pipe, and an internal combustion provided with the same. Provide an institution.
  • an exhaust valve drive of the present invention and an internal combustion engine provided with the same adopt the following means.
  • an actuator for operating an exhaust valve of an internal combustion engine a hydraulic path supplying hydraulic fluid to the actuator, a plunger connected to the hydraulic path, and a cylinder accommodating the plunger.
  • the exhaust valve drive apparatus according to the present invention is an exhaust valve drive apparatus provided with pressure changing means for changing the supply pressure of the compressible fluid supplied to the pressing means.
  • the exhaust valve is opened and closed according to the reciprocation of the plunger driven by the operation of the cam.
  • the opening / closing timing of the exhaust valve can be changed by adjusting the pressing force by the pressure changing unit that changes the supply pressure of the fluid. For example, when the supply pressure of the fluid is increased to increase the pressing force, the pressing force acts as a reaction force in a stroke in which the plunger pressurizes the hydraulic oil and opens the exhaust valve, whereby the timing of opening the exhaust valve can be delayed.
  • the exhaust valve closing timing can be advanced because it is biased by the pressing force.
  • the fluid it is preferable to use a compressible fluid such as air or nitrogen, and use the compression reaction force of the compressible fluid.
  • the pressing means is typically configured to press the valve stem of the exhaust valve, it may be configured to press an actuator connected to the valve stem of the exhaust valve.
  • the pressure changing means may be configured to increase the supply pressure of the fluid as the load on the internal combustion engine decreases.
  • the time for gas exchange can be sufficiently taken because the rotational speed of the internal combustion engine is low.
  • the in-cylinder pressure after combustion can be maintained without decreasing by the time that the opening timing is delayed, so the cylinder maintained at the in-cylinder pressure after this combustion More axial torque can be extracted from the internal gas, and the fuel consumption rate is further improved.
  • an actuator for operating an exhaust valve of an internal combustion engine, a hydraulic path supplying hydraulic fluid to the actuator, a plunger connected to the hydraulic path, and a cylinder accommodating the plunger.
  • the pressing means receives a pressure from the fluid and transmits a pressing force to the exhaust valve, and a pressure receiving area changing means capable of changing a pressure receiving area of the pressure receiving member.
  • an exhaust valve drive device for operating an exhaust valve of an internal combustion engine, a hydraulic path supplying hydraulic fluid to the actuator, a plunger connected to the hydraulic path, and a cylinder accommodating the plunger.
  • the actuator is operated by the hydraulic fluid pressurized by the plunger to operate the exhaust valve
  • the pressing means receives a pressure from the fluid and transmits a pressing force to the exhaust valve, and a pressure receiving area changing means capable of changing a pressure receiving
  • the exhaust valve is opened and closed according to the reciprocation of the plunger driven by the operation of the cam.
  • the opening / closing timing of the exhaust valve can be changed by adjusting the pressing force so that the pressure receiving area of the pressure receiving member of the pressing means can be changed. For example, when the pressure receiving area is increased to increase the compression reaction force, the pressing force by the fluid acts as a reaction force to delay the opening timing of the exhaust valve in the stroke where the plunger pressurizes the hydraulic oil to open the exhaust valve. it can.
  • the exhaust valve closing timing can be advanced because it is biased by the pressing force by the fluid.
  • a compressible fluid such as air or nitrogen, and use the compression reaction force of the compressible fluid.
  • the pressure receiving area changing means may be configured to increase the pressure receiving area as the load on the internal combustion engine decreases.
  • the pressure receiving area When the pressure receiving area is controlled to be large, the pressing force by the fluid is large, and the timing at which the exhaust valve is closed is advanced. The earlier the exhaust valve is closed, the larger the amount of air sealed in the combustion chamber when the exhaust valve is closed, so the amount of new air to be compressed becomes larger and the compression pressure and combustion pressure of the internal combustion engine become higher. . Therefore, by controlling the supply pressure to increase as the load on the internal combustion engine decreases, the combustion improvement of the internal combustion engine is performed even at a low load, and the fuel consumption rate is improved. In addition, if the pressure receiving area is controlled to be large and the exhaust valve opening timing is delayed, there is a possibility that the time for performing the gas exchange between the combustion gas and the fresh air in the cylinder may become short, but the load decreases.
  • the pressing means may have a plurality of the pressure receiving members, and the pressure receiving area changing means may change the number of pressure receiving members transmitting the pressing force to the exhaust valve. Good.
  • the pressure receiving area can be changed by changing the number of pressure receiving members that apply a compression reaction force to the exhaust valve. Thereby, the opening / closing timing of the exhaust valve can be arbitrarily changed.
  • an exhaust valve drive apparatus according to any one of the above, the exhaust valve driven by the exhaust valve drive apparatus, and a combustion chamber accommodating the exhaust valve. It is an internal combustion engine.
  • FIG. 1 shows an exhaust valve drive device 1 according to a first embodiment.
  • the exhaust valve drive device 1 is provided in a diesel engine (internal combustion engine) for a ship main engine.
  • a diesel engine for ship's main engine (hereinafter referred to as “diesel engine”) is, for example, a low-speed two-stroke cycle engine, and employs a uniflow type which scavenges in one direction so as to supply air from below and exhaust upward. ing.
  • the output from the diesel engine is directly or indirectly connected to the screw propeller via a propeller shaft (not shown).
  • the exhaust valve drive device 1 includes an exhaust valve 5 for opening and closing an exhaust passage formed in the cylinder cover 3, a piston (actuator) 7 for driving the exhaust valve 5, and an air spring. , A hydraulic path 9 for supplying hydraulic fluid to the piston 7, a plunger 11 connected to the hydraulic path 9, and a cam 13 for reciprocating the plunger 11.
  • the piston 7 is connected to a shaft portion 5 a of the exhaust valve 5 extending in the vertical direction, and reciprocates in the first cylinder 15 in the vertical direction.
  • One end 9 a of the hydraulic path 9 is connected to the hydraulic chamber 17 formed by the first cylinder 15 and the piston 7.
  • the air spring portion 6 includes an air cylinder 8 in which air (compressible fluid) is stored, and an air piston 10.
  • An air supply path 12 is connected to the air cylinder 8.
  • the air supply path 12 is provided with a check valve 14, and a buffer tank 16 and an air compressor (pressure changing means) 18 are provided upstream thereof.
  • the air pressurized by the air compressor 18 is accumulated in the buffer tank 16, and the air in the buffer tank 16 is supplied to the air cylinder 8 via the check valve 14.
  • the air pressure in the air cylinder 8 is determined by the pressure in the buffer tank 16, and the pressure in the buffer tank 16 is determined by an air compressor 18 controlled by a control unit (not shown).
  • the air stored in the air cylinder 8 is prevented from flowing backward to the buffer tank 16 side by the check valve 14.
  • the check valve 14 forms a closed space of the air cylinder 8 and forms an air spring (air spring) using the compressibility of air.
  • the air piston 10 is fixed directly or indirectly to the shaft 5 a of the exhaust valve 5 so that the air pressure applied to the air piston 10 acts on the exhaust valve 5.
  • the exhaust valve 5 is pressed upward in FIG. 1, that is, toward the first cylinder 15.
  • An orifice path 19 branched from the first branch point 9 b is connected to the hydraulic path 9.
  • the orifice path 19 is provided with an orifice 21 which is a fixed throttle.
  • a predetermined amount of hydraulic oil is discharged from the orifice 21 to the outside of the hydraulic path 9 when the pressure in the hydraulic path 9 becomes equal to or higher than the predetermined value.
  • a predetermined amount of hydraulic oil is discharged to the outside of the hydraulic path 9 at the time of pressurization by the plunger 11 and the amount of oil remaining in the hydraulic path 9 at the time of pressure reduction by the plunger 11 is reduced. Is held upward (exhaust valve closing direction) compared to the time of pressurization.
  • a low pressure hydraulic oil supply path 23 branched from the second branch point 9 c is connected to the hydraulic path 9.
  • An oil pressure serving as a base used when opening and closing the exhaust valve 5 is supplied to the low pressure hydraulic oil supply path 23 from a low pressure hydraulic oil source (not shown).
  • the low pressure hydraulic oil supply path 23 is provided with a check valve 25.
  • the hydraulic pressure in the hydraulic pressure path 9 becomes lower than a predetermined value, the hydraulic oil of a shortage is supplied from the low pressure hydraulic oil supply path 23. It has become so.
  • the base hydraulic pressure which is the minimum hydraulic pressure shown in FIG. 2 (b)
  • the check valve 25 is kept closed when the pressure in the hydraulic pressure passage 9 is equal to or more than a predetermined value. That is, the check valve 25 is closed in the pressure stroke by the plunger 11.
  • the plunger 11 reciprocates in the second cylinder 27 in the vertical direction.
  • the other end 9 d of the hydraulic path 9 is connected to a pressure chamber (pressure space) 29 formed by the second cylinder 27 and the plunger 11.
  • a connecting shaft 35 is attached to the lower portion of the plunger 11, and a cam roller 37 is provided at the lower end of the connecting shaft 35.
  • the cam roller 37 rolls on the outer peripheral surface or profile of the lower cam 13.
  • the cam 13 is fixed to the cam shaft 39 and rotates with the cam shaft 39.
  • the camshaft 39 rotates in synchronization with the crankshaft of the diesel engine.
  • Air pressure When the air pressure in the air cylinder 8 is relatively low, it is mainly used when the load of the diesel engine is high.
  • the pressure in the air cylinder 8 is determined by an air compressor 18 controlled by a control unit (not shown).
  • the lift amount of the cam 13 is shown in (a), the operating oil pressure in the hydraulic path 9 in (b), the air spring pressure which is the pressure in the air cylinder 8 in (c), and The lift amount is indicated.
  • the air pressure when relatively low, it is indicated by a solid line.
  • the exhaust valve lift amount increases, the air spring pressure increases as the air piston 10 moves downward and the volume in the air cylinder 8 decreases. After the exhaust valve lift amount reaches the maximum value at time t3, the lift amount is maintained for a predetermined period. Then, during the period up to time t5 in which the plunger 11 is maintained at the top dead center in accordance with the profile of the cam 13, the exhaust valve lift amount is also maintained at maximum, and the exhaust valve 5 is kept open.
  • the air pressure in the air cylinder 8 when the air pressure in the air cylinder 8 is relatively high, the time at which the exhaust valve 5 opens becomes later than when the air pressure is relatively low. This increases the air pressure in the air cylinder 8 to increase the compression reaction force by the air spring, and the plunger 11 pressurizes the hydraulic oil to open the exhaust valve 5, the pressing force by the increased compression reaction force is It is because it acts as a larger reaction force. This can also be understood from the fact that the air spring pressure is greater at the broken line (higher air pressure) than at the solid line (low air pressure), as shown in FIG. 2 (c). After the exhaust valve lift amount reaches the maximum value at time t3 ', the lift amount is maintained for a predetermined period.
  • the opening timing of the exhaust valve 5 is delayed by increasing the air pressure in the air cylinder 8, and the exhaust valve
  • the closing timing of 5 can be advanced.
  • the opening / closing timing of the exhaust valve 5 can be adjusted by appropriately adjusting the increase amount of the air pressure according to a command from the control unit (not shown).
  • the exhaust valve drive device 1 of the present embodiment By changing the pressure of the air supplied into the air cylinder 8 and changing the compression reaction force of the air spring to adjust the pressing force, the open / close timing of the exhaust valve 5 can be changed. Specifically, in a stroke where the air spring pressure is increased to increase the compression reaction force and the plunger 11 pressurizes the hydraulic oil to open the exhaust valve, the pressing force by the increased compression reaction force is applied as a reaction force, The opening timing of the exhaust valve 5 can be delayed. On the other hand, in the process of closing the exhaust valve 5 by reducing the pressure of the hydraulic oil after pressurization by the plunger 11, the closing timing of the exhaust valve 5 can be advanced by urging by the pressing force by the increased compression reaction force.
  • the air spring pressure is controlled to be high and the timing at which the exhaust valve 5 is opened is delayed, there is a risk that the time for performing the gas exchange between the combustion gas and the fresh air in the cylinder becomes short. In the part load state where the engine speed is lowered, the time for gas exchange can be sufficiently taken because the rotational speed of the diesel engine is low. Further, by delaying the opening timing of the exhaust valve 5, the in-cylinder pressure after combustion can be maintained without decreasing by the time when the opening timing is delayed, so the in-cylinder pressure after the combustion is maintained. More axial torque can be extracted from the in-cylinder gas, and the fuel consumption rate can be further improved.
  • FIG. 3 to FIG. 3 The present embodiment is different from the first embodiment in that the air spring pressure is changed, but is different in that the pressure receiving area of the air piston on which the air spring pressure acts is changed.
  • the other parts of the configuration that are the same as those in the first embodiment are denoted by the same reference numerals and the description thereof will be omitted.
  • the air spring portion 6 includes a main air cylinder 8a and a sub air cylinder 8b.
  • the main air piston (pressure receiving member) 10a is inserted into the main air cylinder 8a
  • the sub air piston (pressure receiving member) 10b is inserted into the sub air cylinder 8b.
  • the main air piston 10a and the sub air piston 10b are fixed to each other by the connecting member 40, and not only the force applied to the main air piston 10a but also the force applied to the sub air piston 10b is transmitted to the shaft 5a of the exhaust valve 5 It has become so.
  • two air springs of a main air spring composed of the main air cylinder 8a and the main air piston 10a and a sub air spring composed of the sub air cylinder 8b and the sub air piston 10b are configured.
  • An air spring also acts on the exhaust valve 5.
  • the air supply path 12 is connected to the main air cylinder 8 a via the check valve 14 as in the first embodiment. Further, a first communication path 44 connected to the solenoid valve (pressure receiving area changing means) 42 is connected to the main air cylinder 8 a. A second communication path 46 is connected between the solenoid valve 42 and the sub air cylinder 8 b. Further, a third communication path 48 connected to the air supply path 12 on the upstream side (buffer tank 16 side) of the check valve 14 is connected to the solenoid valve 42.
  • the solenoid valve 42 is a switching valve for switching the flow path, and is controlled by a control unit (not shown). Specifically, in the state shown in FIG.
  • the solenoid valve 42 connects the main air cylinder 8 a and the sub air cylinder 8 b by connecting the first communication path 44 and the second communication path 46, and The second communication passage 46 and the third communication passage 48 are shut off, and the sub air cylinder 8 b and the air supply passage 12 are disconnected.
  • an air spring is formed in which the main air cylinder 8a and the sub air cylinder 8b are closed by the check valve 14, and the pressure receiving surface of the main piston 10a and the sub piston 10b becomes the pressure receiving area. It is formed.
  • the solenoid valve 42 disconnects the main air cylinder 8 a and the sub air cylinder 8 b by blocking the first communication path 44 and the second communication path 46, and By connecting the second communication passage 46 and the third communication passage 48, the sub air cylinder 8b and the air supply passage 12 are connected.
  • the space closed by the check valve 14 is only the main air cylinder 8a, and an air spring in which only the pressure receiving surface of the main piston 10a has a pressure receiving area is configured, and a small pressure receiving area is formed.
  • the sub air cylinder 8 b is in communication with the air supply path 12 on the upstream side of the check valve 14 and does not form a closed space functioning as an air spring, and therefore does not act as an air spring.
  • an air spring can be obtained which can obtain a large compression reaction force as the large pressure receiving area shown in FIG. 3 and the small pressure receiving area shown in FIG. As an air spring, a small compression reaction force can be obtained.
  • FIG. 5 similarly to FIG. 2, (a) shows the lift amount of the cam 13, (b) shows the hydraulic pressure in the hydraulic path 9, (c) shows the air spring pressure which is the pressure in the air cylinder 8, (d).
  • the lift amount of the exhaust valve 5 is shown in FIG. In the figure, when the pressure receiving area is relatively small, it is indicated by a solid line.
  • the air spring pressure increases as the main air piston 10a moves downward to decrease the volume in the air cylinder 8a.
  • the sub air cylinder 8b since the sub air cylinder 8b is in communication with the air supply path 12, the sub air piston 10b moves downward. Even if the volume in the sub air cylinder 8b is reduced, the air spring pressure does not rise.
  • the exhaust valve lift amount reaches the maximum value at time t3, the lift amount is maintained for a predetermined period. Then, during the period up to time t5 in which the plunger 11 is maintained at the top dead center in accordance with the profile of the cam 13, the exhaust valve lift amount is also maintained at maximum, and the exhaust valve 5 is kept open.
  • the time at which the exhaust valve 5 is opened is delayed as compared with the case where the pressure receiving area is relatively small.
  • This enlarges the pressure receiving area of the air spring portion 6 'to increase the compression reaction force by the air spring, and in the stroke where the plunger 11 pressurizes the hydraulic oil to open the exhaust valve 5, pressing by the increased compression reaction force This is because the force acts as a larger reaction force.
  • the opening timing of the exhaust valve 5 is delayed by enlarging the pressure receiving area of the air spring portion 6 ', and the exhaust The closing timing of the valve 5 can be advanced.
  • the exhaust valve drive device 1 'of the present embodiment the following effects can be achieved.
  • the pressure receiving area of the air spring portion 6 ' is increased to increase the compression reaction force
  • the pressing force by the compression reaction force acts as a reaction force in the stroke where the plunger 11 pressurizes the hydraulic oil to open the exhaust valve 5.
  • the opening timing of the valve 5 can be delayed.
  • the closing timing of the exhaust valve 5 can be advanced because it is biased by the pressing force by the compression reaction force.
  • the in-cylinder pressure after combustion can be maintained without decreasing by the time when the opening timing is delayed, so the in-cylinder pressure after the combustion is maintained. More axial torque can be extracted from the in-cylinder gas, and the fuel consumption rate is further improved.
  • the opening / closing timing of the exhaust valve 5 can be easily changed.
  • the main air cylinder 8a, the main air piston 10a, and the secondary air cylinder 8b and the secondary air piston 10b are combined.
  • the opening and closing timing of the valve 5 may be changed.
  • the exhaust valve driving device 1 or 1 'of each embodiment described above may be provided for each cylinder of the diesel engine, or the piston 7, the first cylinder 15, the cam 13 and the plunger 11, the check valve 14
  • the buffer tank 16 may be made common to a plurality of cylinders after each cylinder is provided.
  • the air supply pressure may be changed as in the first embodiment in the state where the pressure receiving area shown in FIG. 3 is large by combining the first embodiment and the second embodiment, as shown in FIG.
  • the air supply pressure may be changed as in the first embodiment in a state where the pressure receiving area is small.
  • each said embodiment demonstrated air (air) as an example of a compressible fluid, other compressible fluids, such as nitrogen, may be sufficient, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 油圧管内の作動油を直接制御せずに排気弁の開閉タイミングを調整することができる排気弁駆動装置を提供する。プランジャ(11)によって加圧された作動油によってピストン(7)が動作して排気弁(5)を開とし、加圧された作動油をプランジャ(11)によって減圧することによってピストン(7)が動作して排気弁5を閉とする排気弁駆動装置(1)である。排気弁駆動装置(1)は、供給されたエアの圧縮反力によって排気弁(5)を閉方向へ押し付けるエアスプリング部(6)を備え、エアスプリング部(6)に供給するエアの供給圧力を変更するエアコンプレッサ(18)を備えている。

Description

排気弁駆動装置およびこれを備えた内燃機関
 本発明は、カムによって駆動される機械式とされた排気弁駆動装置およびこれを備えた内燃機関に関する。
 例えば低速2ストロークサイクルディーゼル機関とされた舶用ディーゼル機関(内燃機関)は、油圧機構を用いて排気弁を駆動している。この油圧機構の油圧制御に電磁弁を用いる電子制御方式のエンジンでは、運転負荷に応じて排気弁の開閉タイミングが最適になるように制御されている。一方、機械式のエンジンは、カム駆動のプランジャによって発生された油圧の圧力変化に応じて排気弁アクチュエータを動作させるカム油圧駆動方式であるため、排気弁の開閉タイミングはカムプロファイルに依存してしまうため運転中に変更することが難しい。
 これを解決するために、特許文献1では、排気弁を駆動する排気弁アクチュエータに作動油を供給する油圧管からバッファタンクに作動油を抜くことで、排気弁アクチュエータに導かれる作動油の油量を減少させる構成が採用されている。これにより、カムプロファイルにより定められた排気弁の開タイミングを遅らせ、かつ、閉タイミングを早めるようになっている。
 また、特許文献2では、排気弁を駆動する排気弁アクチュエータに作動油を供給する作動油管に対して、別に設けた加圧作動油原から高圧の作動油を供給する構成が採用されている。具体的には、電子制御油圧弁を切り換えることによって、加圧作動油源からの作動油を作動油管に追加供給し、カムプロファイルにより定められるタイミングよりも排気弁を早く開くようになっている。また、カムの作動期間中に作動油を追加供給することによって、カムプロファイルにより定めるタイミングよりも排気弁を遅く閉鎖するようになっている。
特開平6-288210号公報 特開2010-106843号公報
 上記特許文献1及び2のように、排気弁アクチュエータに作動油を供給する油圧管に対して、作動油を抜いたり追加供給したりして油圧管内の作動油を直接制御することは種々検討されている。しかし、本発明者等は、油圧管内の作動油を直接制御せずに排気弁の開閉タイミングを変更することができる代替手法についても検討することに着目した。
 本発明は、このような事情に鑑みてなされたものであって、油圧管内の作動油を直接制御せずに排気弁の開閉タイミングを調整することができる排気弁駆動装置およびこれを備えた内燃機関を提供する。
 上記課題を解決するために、本発明の排気弁駆動装置およびこれを備えた内燃機関は以下の手段を採用する。
 本発明の第一の態様は、内燃機関の排気弁を動作させるアクチュエータと、該アクチュエータに作動油を供給する油圧経路と、該油圧経路に接続されたプランジャと、該プランジャを収容するシリンダと、前記プランジャを往復動させるカムと、供給された流体によって前記排気弁を閉方向へ押し付ける押付手段と、を備え、前記プランジャによって加圧された前記作動油によって前記アクチュエータが動作して前記排気弁を開とする排気弁駆動装置において、前記押付手段に供給する前記圧縮性流体の供給圧力を変更する圧力変更手段を備えた排気弁駆動装置である。
 カムによってプランジャを動作させる機械式の排気弁駆動装置とされている。すなわち、カムの動作によって駆動されたプランジャの往復動に応じて排気弁が開閉される。
 この構成によれば、流体の供給圧力を変更する圧力変更手段によって押付力を調整することにより、排気弁の開閉タイミングを変更することができる。
 例えば、流体の供給圧力を上げて押付力を増大すると、プランジャが作動油を加圧して排気弁を開く行程では、押付力が反力として作用し、排気弁の開タイミングを遅らせることができる。一方、加圧後の作動油をプランジャが減圧して排気弁を閉じる行程では、押付力によって加勢されるため、排気弁の閉タイミングを早めることができる。
 なお、流体としては、空気や窒素等の圧縮性流体を用い、圧縮性流体の圧縮反力を用いることが好ましい。
 また、押付手段は、典型的には、排気弁の弁軸を押し付ける構成が採用されるが、排気弁の弁軸に接続されたアクチュエータを押し付ける構成とされていても良い。
 上記本発明の排気弁駆動装置において、前記圧力変更手段は、前記内燃機関の負荷が低下するに従い前記流体の供給圧力を上昇させる構成であってもよい。
 流体の供給圧力を高くなるように制御すると、押付力が大きくなるため、排気弁が閉となるタイミングが早くなる。排気弁が閉となるタイミングが早くなるほど、排気弁が閉鎖された時に燃焼室内に密閉される空気量が多くなるため、圧縮される新気が多くなり内燃機関の圧縮圧力および燃焼圧力が高くなる。したがって、内燃機関の負荷が下がるに従い供給圧力が高くなるように制御することにより、低負荷であっても内燃機関の燃焼改善が行われて燃料消費率が改善される。
 また、流体の供給圧力を上昇させるように制御して、排気弁が開となるタイミングを遅くすると、燃焼ガスと新気とのガス交換を筒内で行う時間が短くなるおそれがあるが、負荷が下がった部分負荷状態では内燃機関の回転数が低いためガス交換のための時間を十分にとることができる。また、排気弁の開タイミングを遅らせることで、開タイミングを遅らせた時間分だけ燃焼後の筒内圧力を低下させずに維持することができるので、この燃焼後の筒内圧力に維持された筒内ガスから軸回転力をより多く取り出すことができ、燃料消費率がさらに改善される。
 本発明の第二の態様は、内燃機関の排気弁を動作させるアクチュエータと、該アクチュエータに作動油を供給する油圧経路と、該油圧経路に接続されたプランジャと、該プランジャを収容するシリンダと、前記プランジャを往復動させるカムと、供給された流体によって前記排気弁を閉方向へ押し付ける押付手段と、を備え、前記プランジャによって加圧された前記作動油によって前記アクチュエータが動作して前記排気弁を開とする排気弁駆動装置において、前記押付手段は、前記流体から圧力を受けて前記排気弁へと押付力を伝える受圧部材と、該受圧部材の受圧面積を変更可能とする受圧面積変更手段と、を備えた排気弁駆動装置である。
 カムによってプランジャを動作させる機械式の排気弁駆動装置とされている。すなわち、カムの動作によって駆動されたプランジャの往復動に応じて排気弁が開閉される。
 この構成によれば、押付手段の受圧部材の受圧面積が変更可能として押付力を調整することにより、排気弁の開閉タイミングを変更することができる。
 例えば、受圧面積を大きくして圧縮反力を増大すると、プランジャが作動油を加圧して排気弁を開く行程では、流体による押付力が反力として作用し、排気弁の開タイミングを遅らせることができる。一方、加圧後の作動油をプランジャが減圧して排気弁を閉じる行程では、流体による押付力によって加勢されるため、排気弁の閉タイミングを早めることができる。
 なお、流体としては、空気や窒素等の圧縮性流体を用い、圧縮性流体の圧縮反力を用いることが好ましい。
 上記本発明の排気弁駆動装置において、前記受圧面積変更手段は、前記内燃機関の負荷が低下するに従い前記受圧面積を上昇させる構成であってもよい。
 受圧面積が大きくなるように制御すると、流体による押付力が大きくなるため、排気弁が閉となるタイミングが早くなる。排気弁が閉となるタイミングが早くなるほど、排気弁が閉鎖された時に燃焼室内に密閉される空気量が多くなるため、圧縮される新気が多くなり内燃機関の圧縮圧力および燃焼圧力が高くなる。したがって、内燃機関の負荷が下がるに従い供給圧力が高くなるように制御することにより、低負荷であっても内燃機関の燃焼改善が行われて燃料消費率が改善される。
 また、受圧面積が大きくなるように制御して、排気弁が開となるタイミングを遅くすると、燃焼ガスと新気とのガス交換を筒内で行う時間が短くなるおそれがあるが、負荷が下がった部分負荷状態では内燃機関の回転数が低いためガス交換のための時間を十分にとることができる。また、排気弁の開タイミングを遅らせることで、開タイミングを遅らせた時間分だけ燃焼後の筒内圧力を低下させずに維持することができるので、この燃焼後の筒内圧力に維持された筒内ガスから軸回転力をより多く取り出すことができ、燃料消費率がさらに改善される。
 上記本発明の排気弁駆動装置において、前記押付手段は、前記受圧部材を複数有し、前記受圧面積変更手段は、前記排気弁へ押付力を伝える受圧部材の数を変更する構成であってもよい。
 排気弁へ圧縮反力を与える受圧部材の数を変更することにより、受圧面積を変更することができる。これにより、排気弁の開閉タイミングを任意に変更することができる。
 また、本発明の第三の態様は、上記のいずれかに記載の排気弁駆動装置と、該排気弁駆動装置によって駆動される前記排気弁と、該排気弁を収容する燃焼室とを備えた内燃機関である。
 上記のいずれかの排気弁駆動装置を備えているので、簡便な構成で排気弁動作を調整することができる内燃機関を提供することができる。
 圧縮性流体の圧縮反力によって排気弁を閉方向へ押し付ける押付手段の押付力を変更することにより、油圧管内の作動油を直接制御せずに排気弁の開閉タイミングを変更することができる。
本発明の第1実施形態にかかる排気弁駆動装置を示した概略構成図である。 図1の排気弁駆動装置を用いた場合の作動油の圧力変化および排気弁リフトの変化を示したグラフである。 本発明の第2実施形態にかかる排気弁駆動装置を示した概略構成図である。 図3の排気弁駆動装置の電子制御油圧弁を切り換えた状態を示した概略構成図である。 図3の排気弁駆動装置を用いた場合の作動油の圧力変化および排気弁リフトの変化を示したグラフである。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 図1には、第1実施形態にかかる排気弁駆動装置1が示されている。排気弁駆動装置1は、船舶主機用ディーゼルエンジン(内燃機関)に設けられている。船舶主機用ディーゼルエンジン(以下「ディーゼルエンジン」という。)は、例えば低速2ストロークサイクル機関とされており、下方から給気して上方へ排気するように1方向に掃気されるユニフロー型が採用されている。ディーゼルエンジンからの出力は、図示しないプロペラ軸を介してスクリュープロペラに直接的または間接的に接続されている。
 排気弁駆動装置1は、図1に示されているように、シリンダカバー3に形成された排気流路を開閉する排気弁5と、排気弁5を駆動するピストン(アクチュエータ)7と、エアスプリング部(押付手段)6と、ピストン7へ作動油を供給する油圧経路9と、油圧経路9に接続されたプランジャ11と、プランジャ11を往復動させるカム13とを備えている。
 ピストン7は、上下方向に延在する排気弁5の軸部5aに接続されており、第1シリンダ15内を上下方向に往復動するようになっている。第1シリンダ15とピストン7とによって形成された油圧室17には、油圧経路9の一端9aが接続されている。
 エアスプリング部6は、空気(圧縮性流体)が貯留されるエアシリンダ8と、エアピストン10とを備えている。エアシリンダ8には、エア供給経路12が接続されている。空気供給経路12には、逆止弁14が設けられており、その上流側にはバッファタンク16及びエアコンプレッサ(圧力変更手段)18が設けられている。エアコンプレッサ18によって加圧された空気がバッファタンク16内に蓄積されるようになっており、バッファタンク16内の空気が逆止弁14を介してエアシリンダ8内に供給される。エアシリンダ8内の空気圧力はバッファタンク16内の圧力によって決定され、バッファタンク16内の圧力は、図示しない制御部によって制御されるエアコンプレッサ18によって決定される。エアシリンダ8内に貯留された空気は、逆止弁14によってバッファタンク16側に逆流しないようになっている。この逆止弁14によってエアシリンダ8が閉じた空間となり、空気の圧縮性を用いたエアスプリング(空気ばね)が構成される。
 エアピストン10は、直接的または間接的に排気弁5の軸部5aに固定されており、エアピストン10に加わる空気圧力が排気弁5に作用するようになっている。これにより、排気弁5は、図1における上方すなわち第1シリンダ15方向に押し付けられる。
 油圧経路9には、第1分岐点9bから分岐したオリフィス用経路19が接続されている。オリフィス用経路19には固定絞りとされたオリフィス21が設けられている。
 油圧経路9内の圧力が所定値以上となった場合に、オリフィス21から所定量の作動油が油圧経路9の外部へと排出されるようになっている。これにより、プランジャ11による加圧時に所定量の作動油を油圧経路9外へ排出し、プランジャ11による減圧時に油圧経路9に残存する油量を少なくしておくことで、ピストン7と排気弁5は加圧時に比べて上方(排気弁閉止方向)に保持される。そして、プランジャ11を押し下げて作動油を吸い込む際には加圧時と同量の油量を吸い込むことになるので、ピストン7はプランジャ11による減圧が完了するより前に確実に上方へ吸い上げられて排気弁5が安定的に閉とされるようになっている。
 油圧経路9には、第2分岐点9cから分岐した低圧作動油供給経路23が接続されている。低圧作動油供給経路23には、排気弁5を開閉する際に用いるベースとなる油圧が図示しない低圧作動油源から供給されるようになっている。低圧作動油供給経路23には、逆止弁25が設けられており、油圧経路9内の油圧が所定値以下になった場合に、低圧作動油供給経路23から不足分の作動油が供給されるようになっている。これによりベースとなる油圧、具体的には図2(b)に示した最低作動油圧であるベース圧力が維持される。一方、逆止弁25は、油圧経路9内の圧力が所定値以上の場合には閉とされたままとされる。すなわち、プランジャ11による加圧行程の際には逆止弁25は閉とされる。
 プランジャ11は、第2シリンダ27内を上下方向に往復動するようになっている。第2シリンダ27とプランジャ11とによって形成された加圧室(加圧空間)29には、油圧経路9の他端9dが接続されている。
 プランジャ11の下部には、接続軸35が取り付けられており、この接続軸35の下端にはカムローラ37が設けられている。カムローラ37は、下方のカム13の外周面すなわちプロファイル上を転動するようになっている。
 カム13は、カム軸39に固定されており、カム軸39とともに回転する。カム軸39は、ディーゼルエンジンのクランク軸と同期して回転するようになっている。
 次に、上記構成の排気弁駆動装置1の動作について図2を用いて説明する。
 先ず、エアシリンダ8に貯留される空気圧力が相対的に低い場合について説明し、次に空気圧力が相対的に高い場合について説明する。
<空気圧力;低>
 エアシリンダ8内の空気圧力が相対的に低い場合は、主として、ディーゼルエンジンの負荷が高負荷の場合に用いられる。エアシリンダ8内の圧力は、図示しない制御部によって制御されるエアコンプレッサ18によって決定される。
 図2には、(a)にカム13のリフト量、(b)に油圧経路9における作動油圧、(c)にエアシリンダ8内の圧力であるエアスプリング圧、(d)に排気弁5のリフト量が示されている。同図において、空気圧力が相対的に低い場合は、実線にて示されている。
 時刻t0にてカム13のプロファイルに従いカムリフト量が増大してプランジャ11が押し上げられ始めると、加圧室29すなわち油圧経路9の作動油圧が上昇し始める。時刻t1にて、カムリフト量が最大値に達してプランジャ11が上死点まで押し上げられ、作動油圧が最大値に達すると、時刻t2にて、ピストン7側の油圧室17における油圧が作用し、エアスプリング部6の押付力および筒内圧力に打ち勝ってピストン7を押し下げる。これにより、排気弁リフト量が増大して、排気弁5が開となる。このとき、ピストン7が押し下げられるに伴い、作動油が油圧室17に取り込まれるので、作動油圧は急激に減少する。また、排気弁リフト量が増大すると、エアピストン10が下方に移動してエアシリンダ8内の容積を減少させるに伴い、エアスプリング圧が上昇する。排気弁リフト量は、時刻t3にて最大値に達した後、所定期間そのままのリフト量を維持する。
 そして、カム13のプロファイルに従いプランジャ11が上死点に維持されている時刻t5までの期間は、排気弁リフト量も最大で維持されており、排気弁5は開のままとされる。
 時刻t5にてカム13のプロファイルに従いカムリフト量が減少してプランジャ11が下降し始めると、作動油圧が低下し始める。作動油圧が所定値を下回ると、エアスプリング部6の押付力および筒内圧力が打ち勝って時刻t6からピストン7が上方へと押し上げられることによって排気弁リフト量が減少し始める。排気弁リフト量が減少し始めると、エアピストン10が上方に移動してエアシリンダ8内の容積を増大させるに伴い、エアスプリング圧が低下する。
 カムリフト量が最小値に達してプランジャ11が下死点まで下げられると、排気弁5が時刻t7にて全閉となる。
<空気圧力;高>
 つぎに、ディーゼルエンジンの負荷が減少し、低負荷側となった場合には、図示しない制御部からの指示に従いエアコンプレッサ18の吐出圧力を増大させて、エアシリンダ8内の空気圧力を上昇させる。図2(c)に破線で示すように、エアスプリング圧力が上昇していることが分かる。
 時刻t0にてカム13のプロファイルに従いカムリフト量が増大してプランジャ11が押し上げられ始めると、加圧室29すなわち油圧経路9の作動油圧が上昇し始める。時刻t1にて、カムリフト量が最大値に達してプランジャ11が上死点まで押し上げられ、作動油圧が最大値に達する。そして、時刻t2よりも遅れた時刻t2’にて、ピストン7側の油圧室17における油圧が作用し、エアスプリング部6の押付力および筒内圧力に打ち勝ってピストン7を押し下げる。これにより、排気弁リフト量が増大して、排気弁5が開となる。このように、エアシリンダ8内の空気圧力が相対的に高い場合は、相対的に低い場合に比べて排気弁5が開となる時刻が遅くなる。これは、エアシリンダ8内の空気圧力を上げてエアスプリングによる圧縮反力を増大させ、プランジャ11が作動油を加圧して排気弁5を開く行程では、増大された圧縮反力による押付力がより大きな反力として作用するからである。これは、図2(c)に示されているように、エアスプリング圧が実線(空気圧低)に比べて破線(空気圧大)の方が大きいことからも理解できる。排気弁リフト量は、時刻t3’にて最大値に達した後、所定期間そのままのリフト量を維持する。
 そして、時刻t5にてカム13のプロファイルに従いカムリフト量が減少してプランジャ11が下降し始めると、作動油圧が低下し始める。このとき、エアシリンダ8内の空気圧力が相対的に高くなっているので(図2(c)の破線参照)、増大されたエアスプリング圧の圧縮反力による押付力が排気弁5を閉じる方向に加勢される。これにより、排気弁リフト量は時刻t6’にて時刻t6よりも早めに減少し出し、その結果として、時刻t7’にて時刻t7よりも早めに排気弁5は全閉となる。
 このように、図2(d)の排気弁リフトの変化を参照すれば分かるように、エアシリンダ8内の空気圧力を増大することにより、排気弁5の開タイミングを遅くし、かつ、排気弁5の閉タイミングを早めることができる。また、図示しない制御部からの指令によって、空気圧力の増大量を適宜調整することにより、排気弁5の開閉タイミングを調整することができる。
 本実施形態の排気弁駆動装置1によれば、以下の作用効果を奏することができる。
 エアシリンダ8内に供給される空気の圧力を変更することによってエアスプリングの圧縮反力を変更して押付力を調整することにより、排気弁5の開閉タイミングを変更することができる。具体的には、エアスプリング圧力を上げて圧縮反力を増大させ、プランジャ11が作動油を加圧して排気弁を開く行程では、増大された圧縮反力による押付力を反力として作用させ、排気弁5の開タイミングを遅らせることができる。一方、加圧後の作動油をプランジャ11が減圧して排気弁5を閉じる行程では、増大された圧縮反力による押付力によって加勢させることにより、排気弁5の閉タイミングを早めることができる。
 エアスプリング圧が高くなるように制御すると、圧縮反力による押付力が大きくなるため、排気弁5が閉となるタイミングが早くなる。排気弁5が閉となるタイミングが早くなるほど、排気弁が閉鎖された時に燃焼室内に密閉される空気量が多くなるため、圧縮される新気が多くなりディーゼルエンジンの圧縮圧力および燃焼圧力が高くなる。したがって、ディーゼルエンジンの負荷が下がるに従いエアスプリング圧が高くなるように制御することにより、低負荷であってもディーゼルエンジンの燃焼改善が行われて燃料消費率を改善することができる。
 また、エアスプリング圧を高くなるように制御して、排気弁5が開となるタイミングを遅くすると、燃焼ガスと新気とのガス交換を筒内で行う時間が短くなるおそれがあるが、負荷が下がった部分負荷状態ではディーゼルエンジンの回転数が低いためガス交換のための時間を十分にとることができる。また、排気弁5の開タイミングを遅らせることで、開タイミングを遅らせた時間分だけ燃焼後の筒内圧力を低下させずに維持することができるので、この燃焼後の筒内圧力に維持された筒内ガスから軸回転力をより多く取り出すことができ、燃料消費率をさらに改善することができる。
[第2実施形態]
 次に、本発明の第2実施形態について、図3~図5を用いて説明する。
 本実施形態は、第1実施形態がエアスプリング圧を変更するものであったのに対し、エアスプリング圧が作用するエアピストンの受圧面積を変更する点で相違する。それ以外の構成であって共通する構成については、同一符号を付しその説明を省略する。
 図3に示されているように、エアスプリング部6’は、主エアシリンダ8aと副エアシリンダ8bとを備えている。主エアシリンダ8aには主エアピストン(受圧部材)10aが嵌挿され、副エアシリンダ8bには副エアピストン(受圧部材)10bが嵌挿されている。主エアピストン10aと副エアピストン10bとは、接続部材40によって互いに固定されており、主エアピストン10aに加わる力だけでなく副エアピストン10bにも加わる力も排気弁5の軸部5aに伝達されるようになっている。すなわち、主エアシリンダ8a及び主エアピストン10aから構成される主エアスプリングと、副エアシリンダ8b及び副エアピストン10bから構成される副エアスプリングとの2つのエアスプリングが構成されており、いずれのエアスプリングも排気弁5に対して作用するようになっている。
 主エアシリンダ8aには、第1実施形態と同様に、逆止弁14を介してエア供給経路12が接続されている。また、主エアシリンダ8aには、電磁弁(受圧面積変更手段)42に接続される第1連通経路44が接続されている。電磁弁42と副エアシリンダ8bとの間には、第2連通経路46が接続されている。さらに電磁弁42には、逆止弁14よりも上流側(バッファタンク16側)のエア供給経路12に接続された第3連通経路48が接続されている。
 電磁弁42は、流路を切り換えるための切換弁であり、図示しない制御部によって制御される。具体的には、電磁弁42は、図3に示した状態では、第1連通経路44と第2連通経路46とを接続することによって主エアシリンダ8aと副エアシリンダ8bとを接続し、かつ、第2連通経路46と第3連通経路48とを遮断し、副エアシリンダ8bとエア供給経路12とを非接続とする。これにより、主エアシリンダ8a及び副エアシリンダ8bが逆止弁14によって閉じられた空間となり、主ピストン10a及び副ピストン10bの受圧面が受圧面積となるエアスプリングが構成され、大受圧面積状態が形成される。
 一方、電磁弁42は、図4に示した状態では、第1連通経路44と第2連通経路46とを遮断することによって主エアシリンダ8aと副エアシリンダ8bとを非接続とし、かつ、第2連通経路46と第3連通経路48とを接続することによって副エアシリンダ8bとエア供給経路12とを接続する。これにより、逆止弁14によって閉じられた空間は主エアシリンダ8aのみとなり、主ピストン10aの受圧面のみが受圧面積となるエアスプリングが構成され、小受圧面積状態が形成される。副エアシリンダ8bについては、逆止弁14の上流側のエア供給経路12に連通されており、エアスプリングとして機能する閉空間を形成しないので、エアスプリングとして作用することはない。
 このように、図示しない制御部によって電磁弁42を切り換えることによって、図3に示した大受圧面積状態として大きな圧縮反力が得られるエアスプリングを構成し、また、図4に示した小受圧面積状態として小さな圧縮反力が得られるエアスプリングを構成する。
 次に、上記構成の排気弁駆動装置1’の動作について図5を用いて説明する。
 先ず、エアスプリング部6’の受圧面積が相対的に小さい場合すなわち電磁弁42が図4の状態とされている場合について説明し、次に受圧面積が相対的に大きい場合すなわち電磁弁42が図3の状態とされている場合について説明する。
<受圧面積;小>
 エアスプリング部6’の受圧面積が相対的に小さい場合は、主として、ディーゼルエンジンの負荷が高負荷の場合に用いられる。この場合、電磁弁42は、図4の状態とされ、主エアシリンダ8aと副エアシリンダ8bとが非接続とされ、主エアピストン10aの受圧面のみがエアスプリングの受圧面積となっている。これにより、排気弁5に作用する力は相対的に小さくなっている。
 図5には、図2と同様に、(a)にカム13のリフト量、(b)に油圧経路9における作動油圧、(c)にエアシリンダ8内の圧力であるエアスプリング圧、(d)に排気弁5のリフト量が示されている。同図において、受圧面積が相対的に小さい場合は、実線にて示されている。
 時刻t0にてカム13のプロファイルに従いカムリフト量が増大してプランジャ11が押し上げられ始めると、加圧室29すなわち油圧経路9の作動油圧が上昇し始める。時刻t1にて、カムリフト量が最大値に達してプランジャ11が上死点まで押し上げられ、作動油圧が最大値に達すると、時刻t2にて、ピストン7側の油圧室17における油圧が作用し、エアスプリング部6’の押付力および筒内圧力に打ち勝ってピストン7を押し下げる。これにより、排気弁リフト量が増大して、排気弁5が開となる。このとき、ピストン7が押し下げられるに伴い、作動油が油圧室17に取り込まれるので、作動油圧は急激に減少する。また、排気弁リフト量が増大すると、主エアピストン10aが下方に移動してエアシリンダ8a内の容積を減少させるに伴い、エアスプリング圧が上昇する。一方、副エアシリンダ8bについては、図5(c)に一点鎖線で示しているように、副エアシリンダ8bがエア供給経路12に連通されているので、副エアピストン10bが下方に移動して副エアシリンダ8b内の容積を減少させてもエアスプリング圧は上昇しない。排気弁リフト量は、時刻t3にて最大値に達した後、所定期間そのままのリフト量を維持する。
 そして、カム13のプロファイルに従いプランジャ11が上死点に維持されている時刻t5までの期間は、排気弁リフト量も最大で維持されており、排気弁5は開のままとされる。
 時刻t5にてカム13のプロファイルに従いカムリフト量が減少してプランジャ11が下降し始めると、作動油圧が低下し始める。作動油圧が所定値を下回ると、エアスプリング部6’の押付力および筒内圧力が打ち勝って時刻t6からピストン7が上方へと押し上げられることによって排気弁リフト量が減少し始める。排気弁リフト量が減少し始めると、主エアピストン10aが上方に移動して主エアシリンダ8a内の容積を増大させるに伴い、エアスプリング圧が低下する。この場合、副エアシリンダ8bについては、副エアピストン10bが上方に移動して副エアシリンダ8b内の容積が増大しても、副エアピストン10bはエア供給経路12に接続されているため、エアスプリング圧は一定のままである。
 カムリフト量が最小値に達してプランジャ11が下死点まで下げられると、排気弁5が時刻t7にて全閉となる。
<受圧面積;大>
 つぎに、ディーゼルエンジンの負荷が減少し、低負荷側となった場合には、図示しない制御部からの指示に従い電磁弁42の位置が図3に示した状態に変更され、エアスプリング部6’の受圧面積を増大させる。具体的には、電磁弁42により、主エアシリンダ8aと副エアシリンダ8bとが接続され、主エアピストン10a及び副エアピストン10bの合計受圧面がエアスプリングの受圧面積となっている。これにより、排気弁5に作用する力は相対的に大きくなっている。なお、エアスプリング圧は、エアコンプレッサ18によって決まる圧力なので上述した<受圧面積;小>の場合と変わらないが、受圧面積が大きくなっているため排気弁5に作用する力が相対的に大きくなる。
 時刻t0にてカム13のプロファイルに従いカムリフト量が増大してプランジャ11が押し上げられ始めると、加圧室29すなわち油圧経路9の作動油圧が上昇し始める。時刻t1にて、カムリフト量が最大値に達してプランジャ11が上死点まで押し上げられ、作動油圧が最大値に達する。そして、時刻t2よりも遅れた時刻t2’にて、ピストン7側の油圧室17における油圧が作用し、エアスプリング部6’の押付力および筒内圧力に打ち勝ってピストン7を押し下げる。これにより、排気弁リフト量が増大して、排気弁5が開となる。このように、エアスプリング部6’の受圧面積が相対的に大きい場合は、受圧面積が相対的に小さい場合に比べて排気弁5が開となる時刻が遅くなる。これは、エアスプリング部6’の受圧面積を大きくしてエアスプリングによる圧縮反力を増大させ、プランジャ11が作動油を加圧して排気弁5を開く行程では、増大された圧縮反力による押付力がより大きな反力として作用するからである。排気弁リフト量は、時刻t3’にて最大値に達した後、所定期間そのままのリフト量を維持する。
 そして、時刻t5にてカム13のプロファイルに従いカムリフト量が減少してプランジャ11が下降し始めると、作動油圧が低下し始める。このとき、エアスプリング部6’の受圧面積が相対的に大きくなっているので、増大された圧縮反力による押付力が排気弁5を閉じる方向に加勢される。これにより、排気弁リフト量は時刻t6’にて時刻t6よりも早めに減少し出し、その結果として、時刻t7’にて時刻t7よりも早めに排気弁5は全閉となる。
 このように、図5(d)の排気弁リフトの変化を参照すれば分かるように、エアスプリング部6’の受圧面積を大きくすることにより、排気弁5の開タイミングを遅くし、かつ、排気弁5の閉タイミングを早めることができる。
 本実施形態の排気弁駆動装置1’によれば、以下の作用効果を奏することができる。
 エアスプリング部6’の受圧面積を大きくして圧縮反力を増大すると、プランジャ11が作動油を加圧して排気弁5を開く行程では、圧縮反力による押付力が反力として作用し、排気弁5の開タイミングを遅らせることができる。一方、加圧後の作動油をプランジャ11が減圧して排気弁5を閉じる行程では、圧縮反力による押付力によって加勢されるため、排気弁5の閉タイミングを早めることができる。
 このように、排気弁5が閉となるタイミングが早くなると、ディーゼルエンジンの燃焼空間に新気を取り入れる期間が長くなるため圧縮される新気が多くなりディーゼルエンジンの圧縮圧力および燃焼圧力が高くなる。したがって、ディーゼルエンジンの負荷が下がるに従い受圧面積が大きくなるように制御することにより、低負荷であってもディーゼルエンジンの燃焼改善が行われて燃料消費率が改善される。
 また、受圧面積が大きくなるように制御して、排気弁5が開となるタイミングを遅くすると、燃焼ガスと新気とのガス交換を筒内で行う時間が短くなるおそれがあるが、負荷が下がった部分負荷状態ではディーゼルエンジンの回転数が低いためガス交換のための時間を十分にとることができる。また、排気弁5の開タイミングを遅らせることで、開タイミングを遅らせた時間分だけ燃焼後の筒内圧力を低下させずに維持することができるので、この燃焼後の筒内圧力に維持された筒内ガスから軸回転力をより多く取り出すことができ、燃料消費率がさらに改善される。
 また、排気弁5へ圧縮反力を与えるエアシリンダ及びエアピストンの数を変更することにより、受圧面積を変更することとしたので、排気弁5の開閉タイミングを簡便に変更することができる。なお、本実施形態では、主エアシリンダ8a及び主エアピストン10aと、副エアシリンダ8b及び副エアピストン10bとの2組の組合せとしたが、この組合せの数を3以上として、さらに任意に排気弁5の開閉タイミングを変更するようにしても良い。
 なお、上述した各実施形態の排気弁駆動装置1,1’は、ディーゼルエンジンの気筒毎に設けてもよいし、あるいは、ピストン7、第1シリンダ15、カム13及びプランジャ11、逆止弁14を各気筒に設けた上で、バッファタンク16を複数の気筒に対して共通化しても良い。
 また、第1実施形態と第2実施形態を組み合わせて、図3に示した受圧面積が大の状態で第1実施形態のようにエア供給圧力を変化させてもよいし、図4に示した受圧面積が小の状態で第1実施形態のようにエア供給圧を変化させてもよい。
 また、上記各実施形態では、圧縮性流体の一例としてエア(空気)を用いて説明したが、例えば窒素等の他の圧縮性流体であってもよい。
1,1’ 排気弁駆動装置
3 シリンダカバー
5 排気弁
6,6’ エアスプリング部(押付手段)
7 ピストン
8 エアシリンダ
8a 主エアシリンダ
8b 副エアシリンダ
9 油圧経路
10 エアピストン
10a 主エアピストン
10b 副エアピストン
11 プランジャ
12 エア供給経路
13 カム
14 逆止弁
15 第1シリンダ
16 バッファタンク
17 油圧室
18 エアコンプレッサ(圧力変更手段)
19 オリフィス用経路
21 オリフィス
23 低圧作動油供給経路
25 逆止弁
27 第2シリンダ
29 加圧室
35 接続軸
37 カムローラ
40 接続部材
42 電磁弁(受圧面積変更手段)
44 第1連通経路
46 第2連通経路
48 第3連通経路

Claims (6)

  1.  内燃機関の排気弁を動作させるアクチュエータと、
     該アクチュエータに作動油を供給する油圧経路と、
     該油圧経路に接続されたプランジャと、
     該プランジャを収容するシリンダと、
     前記プランジャを往復動させるカムと、
     供給された流体によって前記排気弁を閉方向へ押し付ける押付手段と、
    を備え、
     前記プランジャによって加圧された前記作動油によって前記アクチュエータが動作して前記排気弁を開とする排気弁駆動装置において、
     前記押付手段に供給する前記流体の供給圧力を変更する圧力変更手段を備えていることを特徴とする排気弁駆動装置。
  2.  前記圧力変更手段は、前記内燃機関の負荷が低下するに従い前記流体の供給圧力を上昇させることを特徴とする請求項1に記載の排気弁駆動装置。
  3.  内燃機関の排気弁を動作させるアクチュエータと、
     該アクチュエータに作動油を供給する油圧経路と、
     該油圧経路に接続されたプランジャと、
     該プランジャを収容するシリンダと、
     前記プランジャを往復動させるカムと、
     供給された流体によって前記排気弁を閉方向へ押し付ける押付手段と、
    を備え、
     前記プランジャによって加圧された前記作動油によって前記アクチュエータが動作して前記排気弁を開とする排気弁駆動装置において、
     前記押付手段は、前記流体から圧力を受けて前記排気弁へと押付力を伝える受圧部材と、
     該受圧部材の受圧面積を変更可能とする受圧面積変更手段と、
    を備えていることを特徴とする排気弁駆動装置。
  4.  前記受圧面積変更手段は、前記内燃機関の負荷が低下するに従い前記受圧面積を上昇させることを特徴とする請求項3に記載の排気弁駆動装置。
  5.  前記押付手段は、前記受圧部材を複数有し、
     前記受圧面積変更手段は、前記排気弁へと押付力を伝える受圧部材の数を変更することを特徴とする請求項4に記載の排気弁駆動装置。
  6.  請求項1から5のいずれかに記載の排気弁駆動装置と、
     該排気弁駆動装置によって駆動される前記排気弁と、
     該排気弁を収容する燃焼室と、
    を備えていることを特徴とする内燃機関。
PCT/JP2014/080861 2014-01-10 2014-11-21 排気弁駆動装置およびこれを備えた内燃機関 WO2015104907A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167010948A KR101698301B1 (ko) 2014-01-10 2014-11-21 배기밸브 구동장치 및 이것을 구비한 내연기관
CN201480059076.XA CN105705738B (zh) 2014-01-10 2014-11-21 排气阀驱动装置以及具有该排气阀驱动装置的内燃机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014003457A JP6038055B2 (ja) 2014-01-10 2014-01-10 排気弁駆動装置およびこれを備えた内燃機関
JP2014-003457 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015104907A1 true WO2015104907A1 (ja) 2015-07-16

Family

ID=53523747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080861 WO2015104907A1 (ja) 2014-01-10 2014-11-21 排気弁駆動装置およびこれを備えた内燃機関

Country Status (4)

Country Link
JP (1) JP6038055B2 (ja)
KR (1) KR101698301B1 (ja)
CN (1) CN105705738B (ja)
WO (1) WO2015104907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644544B2 (en) 2014-11-03 2017-05-09 Vconverter Corporation Spring biased exhaust valve assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106703928B (zh) * 2016-12-28 2022-07-15 沪东重机有限公司 由伺服油直接驱动的排气阀控制执行系统
CN106939808B (zh) * 2017-04-26 2023-06-02 哈尔滨工程大学 一种应用于低速柴油机的带液压旋阀器的排气阀装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941606U (ja) * 1982-09-11 1984-03-17 三井造船株式会社 排気弁の開弁時期調整装置
JPH023002U (ja) * 1988-06-18 1990-01-10
JP2000045732A (ja) * 1998-07-29 2000-02-15 Hitachi Zosen Corp 2サイクルディーゼルエンジンの排気弁駆動装置
JP2003214125A (ja) * 2002-01-22 2003-07-30 Toyota Motor Corp 電磁駆動弁及びその製造方法
JP2008255854A (ja) * 2007-04-03 2008-10-23 Nhk Spring Co Ltd エンジンの動弁機構

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288210A (ja) 1993-03-31 1994-10-11 Mitsubishi Heavy Ind Ltd 大形2サイクルエンジンの排気弁油圧駆動装置
JP5189069B2 (ja) * 2009-12-17 2013-04-24 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド 大型2サイクルディーゼルエンジン用のカム駆動排気弁作動システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941606U (ja) * 1982-09-11 1984-03-17 三井造船株式会社 排気弁の開弁時期調整装置
JPH023002U (ja) * 1988-06-18 1990-01-10
JP2000045732A (ja) * 1998-07-29 2000-02-15 Hitachi Zosen Corp 2サイクルディーゼルエンジンの排気弁駆動装置
JP2003214125A (ja) * 2002-01-22 2003-07-30 Toyota Motor Corp 電磁駆動弁及びその製造方法
JP2008255854A (ja) * 2007-04-03 2008-10-23 Nhk Spring Co Ltd エンジンの動弁機構

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644544B2 (en) 2014-11-03 2017-05-09 Vconverter Corporation Spring biased exhaust valve assembly

Also Published As

Publication number Publication date
KR101698301B1 (ko) 2017-01-19
JP2015132193A (ja) 2015-07-23
CN105705738A (zh) 2016-06-22
KR20160060751A (ko) 2016-05-30
JP6038055B2 (ja) 2016-12-07
CN105705738B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
RU2509219C2 (ru) Устройство управления в поршневом двигателе
US20090039300A1 (en) Hydro-mechanical valve actuation system for split-cycle engine
US8707916B2 (en) Lost-motion variable valve actuation system with valve deactivation
US20120192817A1 (en) Variable force valve spring
WO2015104907A1 (ja) 排気弁駆動装置およびこれを備えた内燃機関
US7721690B2 (en) Valve actuation mechanism
KR101727872B1 (ko) 배기밸브 구동장치 및 이것을 구비한 내연기관
JP5071234B2 (ja) 内燃機関の可変動弁装置
WO2020124554A1 (zh) 气门配气机构及发动机
JP6293636B2 (ja) 排気弁駆動装置およびこれを備えた内燃機関
WO2015104875A1 (ja) 排気弁駆動装置およびこれを備えた内燃機関
JPS59206606A (ja) 内燃機関の排気弁駆動装置
WO2005111406A1 (ja) 高圧燃料ポンプ
EP3126643B1 (en) Gas exchange valve arrangement
JP2015001226A (ja) 車両の可変バルブ駆動装置
KR20110062122A (ko) 고압 연료 펌프
JP5634696B2 (ja) 内燃機関の制御装置
WO2010027238A3 (ko) 왕복 피스톤 엔진 및 그 작동 방법
JP6254245B2 (ja) 排気弁駆動装置およびこれを備えた内燃機関
KR20200070945A (ko) 가변 압축비 엔진
WO2018029701A1 (en) Hydraulic internal reciprocal engine (h.i.r.e)
JPS59206607A (ja) 内燃機関の排気弁駆動装置
JP2009079591A (ja) 内燃機関によるブレーキ方法
JP2004036403A (ja) 燃料ガス制御機構、および内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877764

Country of ref document: EP

Kind code of ref document: A1