WO2015104875A1 - 排気弁駆動装置およびこれを備えた内燃機関 - Google Patents

排気弁駆動装置およびこれを備えた内燃機関 Download PDF

Info

Publication number
WO2015104875A1
WO2015104875A1 PCT/JP2014/075566 JP2014075566W WO2015104875A1 WO 2015104875 A1 WO2015104875 A1 WO 2015104875A1 JP 2014075566 W JP2014075566 W JP 2014075566W WO 2015104875 A1 WO2015104875 A1 WO 2015104875A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust valve
plunger
pressure
hydraulic
hydraulic oil
Prior art date
Application number
PCT/JP2014/075566
Other languages
English (en)
French (fr)
Inventor
村田 聡
純 樋口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480064357.4A priority Critical patent/CN105917086A/zh
Priority to KR1020167014094A priority patent/KR101761123B1/ko
Publication of WO2015104875A1 publication Critical patent/WO2015104875A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/054Camshafts in cylinder block

Definitions

  • the present invention relates to a mechanical exhaust valve drive device driven by a cam and an internal combustion engine provided with the same.
  • a marine diesel engine which is a low-speed two-stroke cycle diesel engine, uses a hydraulic mechanism to drive an exhaust valve.
  • an engine of an electronic control system that uses a solenoid valve for hydraulic control of the hydraulic mechanism, the opening and closing timing of the exhaust valve is controlled to be optimum according to the operation load.
  • the mechanical engine is a cam hydraulic drive system in which the exhaust valve actuator is operated according to the pressure change of the hydraulic pressure generated by the cam driven plunger, the open / close timing of the exhaust valve depends on the cam profile Because it is difficult to change while driving.
  • Patent Document 1 is configured to supply high-pressure hydraulic oil from a separately provided pressurized hydraulic oil source to a hydraulic oil pipe that supplies hydraulic oil to an exhaust valve actuator that drives an exhaust valve. It is adopted. Specifically, by switching the electronically controlled hydraulic valve, the hydraulic oil from the pressurized hydraulic oil source is additionally supplied to the hydraulic oil pipe, and the exhaust valve is opened earlier than the timing determined by the cam profile. Also, by supplying additional hydraulic oil during the operation of the cam, the exhaust valve is closed later than the timing determined by the cam profile.
  • the present invention has been made in view of such circumstances, and adopts a cam hydraulic drive system in which the opening / closing timing of the exhaust valve is variable, and does not affect the operation of the internal combustion engine and is reliable.
  • a high exhaust valve drive device and an internal combustion engine provided with the same.
  • an exhaust valve drive of the present invention and an internal combustion engine provided with the same adopt the following means.
  • an actuator for operating an exhaust valve of an internal combustion engine a hydraulic path supplying hydraulic fluid for operating the actuator, a plunger connected to the hydraulic path, and a cylinder accommodating the plunger And a cam for reciprocating the plunger, the actuator is operated by the hydraulic fluid pressurized by the plunger to open the exhaust valve, and the hydraulic fluid is depressurized by the plunger.
  • the actuator operates to close the exhaust valve, thereby forming an outer peripheral surface of the plunger on the outer peripheral surface of the plunger from a pressure space where the plunger applies pressure to the hydraulic oil.
  • a communication hole communicating with the opening is formed, and a stroke in which the plunger reciprocates is formed on the inner peripheral surface of the cylinder.
  • a groove is formed in communication with the outer peripheral opening over a part of the period, and a hydraulic oil discharge path for discharging the hydraulic oil is connected to the groove, and the hydraulic oil discharge path is discharged It is an exhaust valve drive provided with a quantity adjustment valve.
  • the plunger is provided with the communication hole through which the hydraulic fluid flows from the pressure space where the plunger pressurizes the hydraulic fluid to the opening of the outer peripheral surface of the plunger.
  • a groove is formed in the inner circumferential surface of the cylinder, communicating with the outer circumferential opening of the communication hole over a section of a part of a stroke in which the plunger reciprocates. From the groove, the hydraulic oil in the groove was discharged via the hydraulic oil discharge path.
  • the hydraulic fluid can be discharged from the pressurized space where the hydraulic fluid is pressurized by the plunger. Therefore, in the process of pressurizing the hydraulic fluid by the plunger, the hydraulic fluid in the process of pressurization is discharged through the communication hole of the plunger, so the pressure rise of the hydraulic fluid is delayed, and the opening timing of the exhaust valve can be delayed. On the other hand, in the process of depressurizing the hydraulic fluid after the plunger is pressurized, the hydraulic fluid is withdrawn during the pressurization and the hydraulic pressure is reduced, so the closing timing of the exhaust valve can be advanced.
  • the discharge amount adjustment valve is provided in the hydraulic oil discharge path, and the flow rate at which the hydraulic oil is discharged from the pressurized space is adjusted.
  • the degree of pressure increase and the degree of decrease of the ultimate pressure of the hydraulic fluid pressurized by the plunger can be adjusted, and the opening timing and closing timing of the exhaust valve can be arbitrarily changed.
  • the configuration is not adopted in which the hydraulic oil pressurized by the pressure source separately provided is supplied to the hydraulic path, and the hydraulic oil is operated by discharging the hydraulic oil through the communication hole. Since the pressure change of the oil is to be adjusted, it is not necessary to separately provide a pressurized source of hydraulic oil.
  • the discharge amount adjustment valve a proportional control valve by electronic control, a variable orifice provided with a mechanical mechanism, or the like is used.
  • the exhaust amount adjustment valve may be controlled in a direction in which the opening degree increases as the load on the internal combustion engine decreases.
  • the discharge amount adjustment valve is controlled in the direction in which the degree of opening increases, that is, in the opening direction, the degree of decrease in hydraulic pressure increases, so the timing at which the exhaust valve closes is advanced.
  • the earlier the exhaust valve is closed the larger the amount of air sealed in the combustion chamber when the exhaust valve is closed, so more air (new air) is compressed, and the compression pressure and combustion pressure of the internal combustion engine Becomes higher. Therefore, by controlling the emission control valve in the opening direction as the load on the internal combustion engine decreases, combustion improvement of the internal combustion engine is achieved even at low load, and the fuel consumption rate is improved.
  • the exhaust amount adjustment valve is controlled in the opening direction as the load on the internal combustion engine decreases, and when the timing at which the exhaust valve is opened is delayed, the time for performing gas exchange between combustion gas and fresh air in the cylinder becomes short.
  • the rotation speed of the internal combustion engine is low, so that sufficient time for gas exchange can be taken.
  • the in-cylinder pressure after combustion can be maintained without decreasing by the time that the opening timing is delayed, so the cylinder maintained at the in-cylinder pressure after this combustion More axial torque can be extracted from the internal gas, and the fuel consumption rate is further improved.
  • the internal combustion engine has a high load at a timing when the exhaust valve is closed when the exhaust amount adjustment valve is at the maximum opening degree. Also, a period in which the groove communicates with the outer peripheral surface opening may be set such that the compression pressure and the combustion pressure of the internal combustion engine become equal to or less than the design allowable pressure.
  • the timing at which the exhaust valve is closed is the earliest when the exhaust amount adjustment valve is at the maximum opening degree. As described above, when the exhaust amount adjustment valve is at the maximum opening degree, the compression pressure and the combustion pressure of the internal combustion engine become lower than the design allowable pressure even when the internal combustion engine has a high load, to the outer peripheral surface opening The period in which the grooves communicate is determined.
  • the discharge adjustment valve is at the maximum opening degree and the discharge amount of hydraulic oil becomes maximum.
  • the period in which the groove communicates with the outer peripheral opening is limited so that the compression pressure and the combustion pressure become equal to or less than the design allowable pressure. Therefore, even if the discharge control valve is stuck at the maximum opening degree for some reason, the flow rate at which the hydraulic oil is discharged is limited to the safe range, so the pressure exceeds the design allowable pressure and compression is performed. The pressure and the combustion pressure do not increase, and damage to the internal combustion engine can be avoided.
  • the discharge amount adjustment valve may be fully closable.
  • the discharge amount adjustment valve By fully closing the discharge amount adjustment valve, it is possible to prevent the hydraulic oil from being discharged from the pressurized space of the plunger. This enables the operation of the exhaust valve according to the cam profile. Further, like the exhaust valve drive device described above, even if the internal combustion engine has a high load at the maximum opening degree of the exhaust amount adjustment valve, the outer peripheral surface opening is such that the compression pressure and the combustion pressure of the internal combustion engine become equal to or lower than the design allowable pressure.
  • the exhaust valve only operates according to the cam profile even if the discharge adjustment valve is stuck completely closed for some reason Since the closing timing of the exhaust valve is later than when the exhaust control valve is at the maximum opening degree, the compression pressure and the combustion pressure do not rise above the design allowable pressure, and damage to the internal combustion engine is avoided. Can.
  • an internal combustion engine comprising the exhaust valve drive device according to any one of the above, the exhaust valve driven by the exhaust valve drive device, and a combustion chamber accommodating the exhaust valve. It is.
  • the pressure change of the hydraulic fluid is prevented by discharging the hydraulic fluid through the communication hole, without adopting a configuration in which the hydraulic fluid pressurized by the separately-provided pressurized hydraulic fluid source is additionally supplied to the hydraulic path. Since the adjustment is made, there is no need to provide a pressurized hydraulic oil source. Therefore, high reliability can be realized without the risk that the operation of the internal combustion engine will be impaired due to the failure of the pressurized hydraulic fluid source.
  • FIG. 1 shows an exhaust valve drive device 1 according to the present embodiment.
  • the exhaust valve drive device 1 is provided in a diesel engine (internal combustion engine) for a ship main engine.
  • a diesel engine for ship's main engine (hereinafter referred to as “diesel engine”) is, for example, a low-speed two-stroke cycle engine, and employs a uniflow type which scavenges in one direction so as to supply air from below and exhaust upward. ing.
  • the output from the diesel engine is directly or indirectly connected to the screw propeller via a propeller shaft (not shown).
  • the exhaust valve drive device 1 includes an exhaust valve 5 for opening and closing an exhaust passage formed in the cylinder cover 3, a piston (actuator) 7 for driving the exhaust valve 5, and a piston 7.
  • a hydraulic path 9 for supplying hydraulic oil to the hydraulic fluid, a plunger 11 connected to the hydraulic path 9, and a cam 13 for reciprocating the plunger 11 are provided.
  • the piston 7 is connected to a shaft portion 5 a of the exhaust valve 5 extending in the vertical direction, and reciprocates in the first cylinder 15 in the vertical direction.
  • One end 9 a of the hydraulic path 9 is connected to the hydraulic chamber 17 formed by the first cylinder 15 and the piston 7.
  • the exhaust valve 5 is biased upward, that is, toward the first cylinder 15 by biasing means such as an air spring (not shown).
  • An orifice path 19 branched from the first branch point 9 b is connected to the hydraulic path 9.
  • the orifice path 19 is provided with an orifice 21 which is a fixed throttle.
  • a predetermined amount of hydraulic oil is discharged from the orifice 21 to the outside of the hydraulic path 9 when the pressure in the hydraulic path 9 becomes equal to or higher than the predetermined value.
  • a predetermined amount of hydraulic oil is discharged to the outside of the hydraulic path 9 at the time of pressurization by the plunger 11 and the amount of oil remaining in the hydraulic path 9 at the time of pressure reduction by the plunger 11 is reduced. Is held upward (exhaust valve closing direction) compared to the time of pressurization.
  • a low pressure hydraulic oil supply path 23 branched from the second branch point 9 c is connected to the hydraulic path 9.
  • An oil pressure serving as a base used when opening and closing the exhaust valve 5 is supplied to the low pressure hydraulic oil supply path 23 from a low pressure hydraulic oil source (not shown).
  • the low pressure hydraulic oil supply path 23 is provided with a check valve 25.
  • the hydraulic pressure in the hydraulic pressure path 9 becomes lower than a predetermined value, the hydraulic oil of a shortage is supplied from the low pressure hydraulic oil supply path 23. It has become so.
  • the base hydraulic pressure which is the base hydraulic pressure, specifically the minimum hydraulic pressure shown in FIG. 2C, is maintained.
  • the check valve 25 is kept closed when the pressure in the hydraulic pressure passage 9 is equal to or more than a predetermined value. That is, the check valve 25 is closed in the pressure stroke by the plunger 11.
  • the plunger 11 reciprocates in the second cylinder 27 in the vertical direction.
  • the other end 9 d of the hydraulic path 9 is connected to a pressure chamber (pressure space) 29 formed by the second cylinder 27 and the plunger 11.
  • the plunger 11 is formed with a communication hole 12 connecting the end face opening 11b provided on the end face 11a facing the pressure chamber 29 and the outer peripheral face opening 11d provided on the outer peripheral surface 11c which is the side surface of the plunger 11. ing.
  • the communication hole 12 is connected to a central axial hole 12a formed along the central axis of the plunger 11 and a lower end of the central axial hole 12a and a radial hole formed radially toward the outer peripheral surface 11c. And 12b.
  • the hydraulic oil in the pressure chamber 29 is discharged to the outside from the outer peripheral surface opening 11 d by the communication hole 12.
  • the shape of the communication hole 12 is not particularly limited, as long as the hydraulic oil can be discharged from the pressure chamber 29 to the outside.
  • a groove 30 is formed on the inner peripheral surface, which is the side surface of the second cylinder 27, at a position facing the outer peripheral surface opening 11d.
  • the height of the groove 30, that is, the dimension in the reciprocation direction of the plunger 11 is dimensioned to communicate with the outer peripheral surface opening 11 d during a part of the stroke in which the plunger 11 reciprocates.
  • the lower end of the groove 30 is set to a position where the outer peripheral surface opening 11 d and the groove 30 communicate with each other when the plunger 11 is located at the bottom dead center, and the plunger 11 is on the upper end of the groove 30.
  • the groove 30 is set at a position where it is closed by the outer peripheral surface 11 c of the plunger 11 before being located at the dead point.
  • the outer peripheral surface opening is made so that the in-cylinder compression pressure and the combustion pressure become equal to or less than the design allowable pressure.
  • the period in which the groove 30 communicates with the portion 11 d is determined, and the height of the groove 30 is determined according to the period.
  • a hydraulic oil discharge path 31 is connected between the groove 30 and the low pressure hydraulic oil supply path 23.
  • a discharge amount adjustment valve 33 is provided in the hydraulic oil discharge path 31.
  • As the discharge amount adjustment valve 33 a proportional control valve by electronic control, a variable orifice having a mechanical mechanism, or the like is used, and the opening degree thereof is controlled by a control unit (not shown).
  • the degree of opening of the discharge amount adjustment valve 33 can be adjusted steplessly, and can be fully closed.
  • the opening adjustment of the emission control valve 33 is performed according to the load of the diesel engine, and is fully closed when the diesel engine has a high load, and is adjusted in the opening direction as the load of the diesel engine decreases.
  • a connecting shaft 35 is attached to the lower portion of the plunger 11, and a cam roller 37 is provided at the lower end of the connecting shaft 35.
  • the cam roller 37 rolls on the outer peripheral surface or profile of the lower cam 13.
  • the cam 13 is fixed to the cam shaft 39 and rotates with the cam shaft 39.
  • the camshaft 39 rotates in synchronization with the crankshaft of the diesel engine.
  • the lift amount of the cam 13 is shown in (a)
  • the valve opening degree of the discharge amount adjustment valve 33 is shown in (b)
  • the hydraulic pressure in the hydraulic path 9 is shown in (c)
  • the lift amount of the exhaust valve 5 is shown in (d). It is shown.
  • the discharge amount adjustment valve 33 when the discharge amount adjustment valve 33 is fully closed, it is indicated by a solid line.
  • the opening degree of the discharge amount adjustment valve 33 is always fully closed over one cycle in which the cam lift amount is increased and decreased.
  • the cam lift amount is increased according to the profile of the cam 13 at time t0 and the plunger 11 starts to be pushed up, the hydraulic pressure of the pressure chamber 29, that is, the hydraulic path 9 starts to rise.
  • the cam lift amount reaches the maximum value at time t1 and the plunger 11 is pushed up to the top dead center and the working oil pressure reaches the maximum value
  • the oil pressure in the oil pressure chamber 17 on the piston 7 side acts at time t2.
  • the piston 7 is pushed down by overcoming the biasing force of the air spring (not shown) and the pressure in the cylinder.
  • the hydraulic pressure does not rise for a predetermined period until time t0 '. Because, during this period, the communication hole 12 of the plunger 11 and the groove 30 of the second cylinder 27 communicate with each other, and the hydraulic oil in the pressure chamber 29 is discharged to the outside of the plunger 11 even if the plunger 11 is raised. This is because the pressure in the pressure chamber 29 or the hydraulic pressure passage 9 does not rise. Then, after time t0 ', the communication hole 12 and the groove 30 do not communicate with each other, so the hydraulic pressure starts to rise.
  • the timing of the pressure increase of the hydraulic oil is delayed from time t0 to time t0 'compared to when the discharge amount adjustment valve 33 is fully closed (solid line), the exhaust valve 5 is opened.
  • the timing will also be delayed. That is, the exhaust valve lift amount starts to rise from time t2 'delayed by a predetermined time from time t2.
  • the opening timing of the exhaust valve 5 is delayed by opening the exhaust amount adjustment valve 33, and Close timing can be advanced. Further, the opening / closing timing of the exhaust valve 5 can be adjusted by appropriately adjusting the opening degree of the discharge amount adjustment valve 33 according to a command from a control unit (not shown).
  • the plunger 11 is provided with the communication hole 12 in which the working oil flows from the opening 11 b of the end face 11 a of the plunger 11 to the outer peripheral opening 11 d of the plunger 11.
  • a groove 30 is formed in the inner peripheral surface of the second cylinder 27 so as to communicate with the outer peripheral surface opening 11 d of the communication hole 12 over a partial section of a stroke in which the plunger 11 reciprocates. Further, the hydraulic oil in the groove 30 is discharged from the groove 30 via the hydraulic oil discharge path 31.
  • the hydraulic fluid can be discharged from the pressure chamber 39 which pressurizes the hydraulic fluid by the plunger 11. Therefore, in the process where the plunger 11 pressurizes the hydraulic oil, the hydraulic oil in the process of being pressurized is discharged through the communication hole 12 of the plunger 11, so the pressure rise of the hydraulic oil is delayed and the opening timing of the exhaust valve 5 is delayed. be able to. On the other hand, in the process of depressurizing the hydraulic fluid after the plunger 11 is pressurized, the hydraulic fluid is removed during the pressurization and the hydraulic pressure is reduced, so the closing timing of the exhaust valve 5 can be advanced.
  • the discharge amount adjustment valve 33 is provided in the hydraulic oil discharge path 31 to adjust the flow rate at which the hydraulic oil is discharged from the pressure chamber 29, the degree of pressure rise when pressurizing the hydraulic oil by the plunger 11 Also, the degree of decrease in the ultimate pressure of the hydraulic oil pressurized by the plunger 11 can be adjusted, and the opening timing and closing timing of the exhaust valve 5 can be arbitrarily changed.
  • the discharge amount adjustment valve 33 when the discharge amount adjustment valve 33 is controlled in the opening direction, the degree of decrease in hydraulic pressure increases, so the timing at which the exhaust valve 5 is closed is advanced. As the timing at which the exhaust valve 5 is closed is earlier, the amount of air sealed in the combustion chamber when the exhaust valve is closed is larger, so the amount of new air to be compressed is large, and the in-cylinder compression pressure and combustion pressure are high. Become. Therefore, by controlling the emission control valve 33 in the opening direction as the load on the diesel engine decreases, combustion improvement of the diesel engine can be performed even at low load, and the fuel consumption rate can be improved.
  • the exhaust amount adjustment valve 33 is controlled in the closing direction as the load on the diesel engine decreases, and when the timing at which the exhaust valve 5 is opened is delayed, the time for performing gas exchange between combustion gas and fresh air in the cylinder
  • the timing at which the exhaust valve 5 is opened is delayed, the time for performing gas exchange between combustion gas and fresh air in the cylinder
  • the rotation speed of the diesel engine is low, so that sufficient time for gas exchange can be taken.
  • the in-cylinder pressure after combustion can be maintained without decreasing by the time when the closing timing is delayed, so the in-cylinder pressure after the combustion is maintained. More axial torque can be extracted from the in-cylinder gas, and the fuel consumption rate can be further improved.
  • the timing at which the exhaust valve 5 is closed is the earliest when the exhaust amount adjustment valve 33 is at the maximum opening degree.
  • the outer peripheral surface opening 11 d is set such that the compression pressure and the combustion pressure in the cylinder become equal to or lower than the design allowable pressure even if the diesel engine has a high load.
  • the period in which the grooves 30 communicate is determined.
  • the flow rate at which the hydraulic oil is discharged is determined by the period when the groove 30 communicates with the outer peripheral surface opening 11d, even if the discharge adjustment valve 33 is at the maximum opening degree and the discharge amount of the hydraulic oil is maximum
  • the period in which the groove 30 communicates with the outer peripheral surface opening 11 d is limited so that the compression pressure and the combustion pressure of the diesel engine become equal to or less than the design allowable pressure. Therefore, even if the discharge adjustment valve 33 is stuck at the maximum opening degree for some reason, the flow rate at which the hydraulic oil is discharged is limited, so the compression pressure and pressure exceeding the design allowable pressure can be obtained. The combustion pressure does not increase and damage to the diesel engine can be avoided.
  • the discharge amount adjustment valve 33 By completely closing the discharge amount adjustment valve 33, it is possible to prevent the hydraulic oil from being discharged from the pressure chamber 29 of the plunger 11. This enables the operation of the exhaust valve 5 in accordance with the profile of the cam 13.
  • the outer circumferential surface opening 11d is set so that the compression pressure and the combustion pressure in the cylinder become equal to or lower than the design allowable pressure.
  • the exhaust valve 5 since the period in which the groove portion 30 is in communication is determined, the exhaust valve 5 merely operates according to the cam profile even if the discharge adjustment valve 33 is stuck in a fully closed state for some reason. Since the closing timing of the exhaust valve 5 is later than when the emission control valve 33 is at the maximum opening degree, the compression pressure and the combustion pressure do not become higher than the design allowable pressure, and damage to the diesel engine is avoided. be able to.
  • the above-described exhaust valve drive device 1 may be provided for each cylinder of a diesel engine, or the piston 7, the first cylinder 15, the cam 13 and the plunger 11 may be provided for each cylinder to discharge hydraulic oil.
  • the path 31 and the emission control valve 33 may be made common to a plurality of cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 排気弁の開閉タイミングを可変としたカム油圧駆動方式を採用した上で、内燃機関の運転に支障を来さず信頼性の高い排気弁駆動装置を提供する。プランジャ(11)には、プランジャ(11)が作動油を加圧する加圧室(29)からプランジャ(11)の外周面に位置する外周面開口部(11d)まで連通する連通孔(12)が形成され、第2シリンダ(27)の内周面には、プランジャ(11)が往復動する行程の一部の期間にわたって外周面開口部(11d)に対して連通する溝部(30)が形成され、溝部(30)には、作動油を排出するための作動油排出経路(31)が接続され、作動油排出経路(31)には、排出量調整弁(33)が設けられている。

Description

排気弁駆動装置およびこれを備えた内燃機関
 本発明は、カムによって駆動される機械式とされた排気弁駆動装置およびこれを備えた内燃機関に関する。
 例えば低速2ストロークサイクルディーゼル機関とされた舶用ディーゼル機関(内燃機関)は、油圧機構を用いて排気弁を駆動している。この油圧機構の油圧制御に電磁弁を用いる電子制御方式のエンジンでは、運転負荷に応じて排気弁の開閉タイミングが最適になるように制御されている。一方、機械式のエンジンは、カム駆動のプランジャによって発生された油圧の圧力変化に応じて排気弁アクチュエータを動作させるカム油圧駆動方式であるため、排気弁の開閉タイミングはカムプロファイルに依存してしまうため運転中に変更することが難しい。
 これを解決するために、特許文献1では、排気弁を駆動する排気弁アクチュエータに作動油を供給する作動油管に対して、別に設けた加圧作動油原から高圧の作動油を供給する構成が採用されている。具体的には、電子制御油圧弁を切り換えることによって、加圧作動油源からの作動油を作動油管に追加供給し、カムプロファイルにより定められるタイミングよりも排気弁を早く開くようになっている。また、カムの作動期間中に作動油を追加供給することによって、カムプロファイルにより定めるタイミングよりも排気弁を遅く閉鎖するようになっている。
特開2010-106843号公報
 しかし、特許文献1に記載された排気弁駆動装置では、加圧作動油原であるポンプの故障等によって油圧が低下した場合には、作動油管に作動油を追加供給することによって排気弁の閉タイミングを遅らせることができず、排気弁の閉タイミングはカムプロファイルにより定められたものとなる。そして、エンジンが高負荷とされた場合には、本来の排気弁の閉タイミングまで遅らせることができないので、筒内の圧縮圧力および燃焼圧力が通常よりも大きくなってしまい、設計許容圧力を超えてエンジンが損傷してしまうおそれがある。また、電子制御油圧弁が閉じた状態で固着してしまい、作動油管に作動油を追加供給できない場合も上記と同様の問題が発生し得る。
 さらに、電子制御油圧弁が開いた状態で固着してしまい、加圧作動油源から作動油管に作動油が常時供給され続ける場合には、排気弁を閉じることができなくなり、エンジンの運転継続ができなくなるおそれがある。
 本発明は、このような事情に鑑みてなされたものであって、排気弁の開閉タイミングを可変としたカム油圧駆動方式を採用した上で、内燃機関の運転に支障を来さず信頼性の高い排気弁駆動装置およびこれを備えた内燃機関を提供する。
 上記課題を解決するために、本発明の排気弁駆動装置およびこれを備えた内燃機関は以下の手段を採用する。
 本発明の第一の態様は、内燃機関の排気弁を動作させるアクチュエータと、該アクチュエータを動作させる作動油を供給する油圧経路と、該油圧経路に接続されたプランジャと、該プランジャを収容するシリンダと、前記プランジャを往復動させるカムと、を備え、前記プランジャによって加圧された前記作動油によって前記アクチュエータが動作して前記排気弁を開とし、加圧された前記作動油を前記プランジャによって減圧することによって前記アクチュエータが動作して前記排気弁を閉とする排気弁駆動装置において、前記プランジャには、該プランジャが前記作動油を加圧する加圧空間から該プランジャの外周面に位置する外周面開口部まで連通する連通孔が形成され、前記シリンダの内周面には、前記プランジャが往復動する行程の一部の期間にわたって前記外周面開口部に対して連通する溝部が形成され、該溝部には、前記作動油を排出するための作動油排出経路が接続され、該作動油排出経路には、排出量調整弁が設けられている排気弁駆動装置である。
 カムによってプランジャを動作させる機械式の排気弁駆動装置とされている。すなわち、カムの動作によって駆動されたプランジャの往復動に応じて排気弁が開閉される。
 上記本発明の第一の態様では、プランジャが作動油を加圧する加圧空間からプランジャ外周面の開口部へと作動油が流れる連通孔をプランジャに設けた。そして、この連通孔の外周面開口部に対して、プランジャが往復動する行程の一部の区間にわたって連通する溝部をシリンダ内周面に形成した。溝部からは、作動油排出経路を介して溝部内の作動油が排出されるようにした。これにより、プランジャの連通孔とシリンダの溝部とが連通している間は、プランジャによって作動油を加圧する加圧空間から作動油を排出することができる。したがって、プランジャが作動油を加圧する行程では、加圧途中の作動油がプランジャの連通孔を介して排出されるので作動油の圧力上昇が遅くなり、排気弁の開タイミングを遅らせることができる。一方、プランジャが加圧後の作動油を減圧する行程では、加圧途中で作動油が抜かれており作動油圧が低下しているため、排気弁の閉タイミングを早めることができる。
 そして、上記本発明の第一の態様では、作動油排出経路に排出量調整弁を設け、加圧空間から作動油が排出される流量を調整することとしたので、プランジャによって作動油を加圧する際の圧力上昇の程度と、プランジャによって加圧された作動油の到達圧力の低下の程度を調整することができ、排気弁の開タイミング及び閉タイミングを任意に変更することができる。
 また、上記本発明の第一の態様では、別に設けた加圧源によって加圧された作動油を油圧経路に供給する構成を採用せず、連通孔を介して作動油を排出することによって作動油の圧力変化を調整することとしているので、作動油の加圧源を別に設ける必要がない。したがって、上記本発明の第一の態様では、別に設けた加圧源が故障することによって内燃機関の運転に支障を来すといったリスクを負うことがなく、高い信頼性を実現することができる。
 排出量調整弁としては、電子制御による比例制御弁や機械的機構を備えた可変オリフィス等が用いられる。
 上記本発明の第一の態様に係る排気弁駆動装置において、前記排出量調整弁は、前記内燃機関の負荷が下がるに従い開度が大きくなる方向に制御される構成であってもよい。
 排出量調整弁を開度が大きくなる方向すなわち開方向に制御すると、作動油圧の低下の程度が大きくなるため、排気弁が閉となるタイミングが早くなる。排気弁が閉となるタイミングが早くなるほど、排気弁が閉鎖された時に燃焼室内に密閉される空気量が多くなるため、圧縮される空気(新気)が多くなり内燃機関の圧縮圧力および燃焼圧力が高くなる。したがって、内燃機関の負荷が下がるに従い排出量調整弁を開方向に制御することにより、低負荷であっても内燃機関の燃焼改善が行われて燃料消費率が改善される。
 また、排出量調整弁を内燃機関の負荷が下がるに従い開方向に制御して、排気弁が開となるタイミングを遅くすると、燃焼ガスと新気とのガス交換を筒内で行う時間が短くなるおそれがあるが、負荷が下がった部分負荷状態では内燃機関の回転数が低いためガス交換のための時間を十分にとることができる。また、排気弁の開タイミングを遅らせることで、開タイミングを遅らせた時間分だけ燃焼後の筒内圧力を低下させずに維持することができるので、この燃焼後の筒内圧力に維持された筒内ガスから軸回転力をより多く取り出すことができ、燃料消費率がさらに改善される。
 上記本発明の第一の態様に係る排気弁駆動装置において、前記排出量調整弁が最大開度とされた場合に前記排気弁が閉となるタイミングにて、前記内燃機関が高負荷であっても該内燃機関の圧縮圧力および燃焼圧力が設計許容圧力以下となるように、前記外周面開口部に対して前記溝部が連通する期間が設定されていてもよい。
 排気弁が閉となるタイミングが早くなるほど、排気弁が閉鎖された時に燃焼室内に密閉される空気量が多くなるため、圧縮される新気が多くなり内燃機関の圧縮圧力および燃焼圧力が高くなる。そして、排気弁が閉となるタイミングが最も早くなるのは、排出量調整弁が最大開度とされた場合である。このように排出量調整弁が最大開度となった場合に、内燃機関が高負荷であっても内燃機関の圧縮圧力および燃焼圧力が設計許容圧力以下となるように外周面開口部に対して溝部が連通する期間が決定されている。すなわち、外周面開口部に対して溝部が連通する期間によって作動油が排出される流量が決まるので、排出量調整弁が最大開度となり作動油の排出量が最大となっても、内燃機関の圧縮圧力および燃焼圧力が設計許容圧力以下となるように外周面開口部に対して溝部が連通する期間を制限するようにした。したがって、何らかの原因で排出量調整弁が最大開度のまま固着してしまった場合であっても、作動油が排出される流量が安全範囲に制限されているので、設計許容圧力を超えて圧縮圧力および燃焼圧力が高くならず、内燃機関の損傷を回避することができる。
 上記本発明の第一の態様に係る排気弁駆動装置において、前記排出量調整弁は、全閉可能とされていてもよい。
 排出量調整弁を全閉とすることにより、プランジャの加圧空間から作動油が排出されない状態とすることができる。これにより、カムのプロファイルに従った排気弁の動作が可能となる。
 また、上記排気弁駆動装置のように、排出量調整弁の最大開度にて内燃機関が高負荷であっても内燃機関の圧縮圧力および燃焼圧力が設計許容圧力以下となるように外周面開口部に対して溝部が連通する期間が決定されている場合には、何らかの原因で排出量調整弁が全閉のまま固着してしまった場合であっても、排気弁はカムプロファイルに従って動作するだけで、排気弁の閉タイミングは排出量調整弁の最大開度となる場合よりも遅いので、設計許容圧力を超えて圧縮圧力および燃焼圧力が高くなることはなく、内燃機関の損傷を回避することができる。
 本発明の第二の態様は、上記のいずれかに記載の排気弁駆動装置と、該排気弁駆動装置によって駆動される前記排気弁と、該排気弁を収容する燃焼室とを備えた内燃機関である。
 上記のいずれかの排気弁駆動装置を備えているので、信頼性の高い内燃機関を提供することができる。
 別に設けた加圧作動油源によって加圧された作動油を油圧経路に追加供給する構成を採用せず、本発明では、連通孔を介して作動油を排出することによって作動油の圧力変化を調整することとしたので、加圧作動油源を設ける必要がない。したがって、加圧作動油源が故障することによって内燃機関の運転に支障を来すといったリスクを負うことがなく、高い信頼性を実現することができる。
本発明の一実施形態にかかる排気弁駆動装置を示した概略構成図である。 図1の排気弁駆動装置を用いた場合の作動油の圧力変化および排気弁リフトの変化を示したグラフである。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
 図1には、本実施形態にかかる排気弁駆動装置1が示されている。排気弁駆動装置1は、船舶主機用ディーゼルエンジン(内燃機関)に設けられている。船舶主機用ディーゼルエンジン(以下「ディーゼルエンジン」という。)は、例えば低速2ストロークサイクル機関とされており、下方から給気して上方へ排気するように1方向に掃気されるユニフロー型が採用されている。ディーゼルエンジンからの出力は、図示しないプロペラ軸を介してスクリュープロペラに直接的または間接的に接続されている。
 排気弁駆動装置1は、図1に示されているように、シリンダカバー3に形成された排気流路を開閉する排気弁5と、排気弁5を駆動するピストン(アクチュエータ)7と、ピストン7へ作動油を供給する油圧経路9と、油圧経路9に接続されたプランジャ11と、プランジャ11を往復動させるカム13とを備えている。
 ピストン7は、上下方向に延在する排気弁5の軸部5aに接続されており、第1シリンダ15内を上下方向に往復動するようになっている。第1シリンダ15とピストン7とによって形成された油圧室17には、油圧経路9の一端9aが接続されている。なお、排気弁5は、図示しない空気ばね等の付勢手段によって上方すなわち第1シリンダ15方向に付勢されている。
 油圧経路9には、第1分岐点9bから分岐したオリフィス用経路19が接続されている。オリフィス用経路19には固定絞りとされたオリフィス21が設けられている。
 油圧経路9内の圧力が所定値以上となった場合に、オリフィス21から所定量の作動油が油圧経路9の外部へと排出されるようになっている。これにより、プランジャ11による加圧時に所定量の作動油を油圧経路9外へ排出し、プランジャ11による減圧時に油圧経路9に残存する油量を少なくしておくことで、ピストン7と排気弁5は加圧時に比べて上方(排気弁閉止方向)に保持される。そして、プランジャ11を押し下げて作動油を吸い込む際には加圧時と同量の油量を吸い込むことになるので、ピストン7はプランジャ11による減圧が完了するより前に確実に上方へ吸い上げられて排気弁5が安定的に閉とされるようになっている。
 油圧経路9には、第2分岐点9cから分岐した低圧作動油供給経路23が接続されている。低圧作動油供給経路23には、排気弁5を開閉する際に用いるベースとなる油圧が図示しない低圧作動油源から供給されるようになっている。低圧作動油供給経路23には、逆止弁25が設けられており、油圧経路9内の油圧が所定値以下になった場合に、低圧作動油供給経路23から不足分の作動油が供給されるようになっている。これによりベースとなる油圧、具体的には図2(c)に示した最低作動油圧であるベース圧力が維持される。一方、逆止弁25は、油圧経路9内の圧力が所定値以上の場合には閉とされたままとされる。すなわち、プランジャ11による加圧行程の際には逆止弁25は閉とされる。
 プランジャ11は、第2シリンダ27内を上下方向に往復動するようになっている。第2シリンダ27とプランジャ11とによって形成された加圧室(加圧空間)29には、油圧経路9の他端9dが接続されている。プランジャ11には、加圧室29に面する端面11aに設けた端面開口部11bと、プランジャ11の側面となる外周面11cに設けた外周面開口部11dとを接続する連通孔12が形成されている。連通孔12は、プランジャ11の中心軸に沿って形成された中心軸孔部12aと、中心軸孔部12aの下端に接続されるとともに外周面11cに向けて半径方向に形成された半径孔部12bとによって構成されている。この連通孔12により、加圧室29内の作動油が外周面開口部11dから外部へと排出される。なお、連通孔12の形状は特に限定されるものではなく、加圧室29から外部へと作動油を排出できる形状であれば良い。
 第2シリンダ27の側面となる内周面には、外周面開口部11dに対向する位置に、溝部30が形成されている。溝部30の高さ、すなわちプランジャ11の往復動方向における寸法は、プランジャ11が往復動する行程の一部の期間にわたって外周面開口部11dに対して連通する寸法とされている。具体的には、溝部30の下端は、プランジャ11が下死点に位置しているときに外周面開口部11dと溝部30が連通する位置に設定され、溝部30の上端は、プランジャ11が上死点に位置する前に溝部30がプランジャ11の外周面11cによって閉塞される位置に設定される。さらに具体的には、排出量調整弁33が最大開度となった場合に、ディーゼルエンジンが高負荷であっても筒内の圧縮圧力および燃焼圧力が設計許容圧力以下となるように外周面開口部11dに対して溝部30が連通する期間が決定され、その期間に応じて溝部30の高さが決定される。
 溝部30と低圧作動油供給経路23との間には、作動油排出経路31が接続されている。作動油排出経路31には、排出量調整弁33が設けられている。排出量調整弁33としては、電子制御による比例制御弁や機械的機構を備えた可変オリフィス等が用いられ、図示しない制御部によってその開度が制御されるようになっている。排出量調整弁33の開度は、無段階に調整できるようになっており、全閉も可能となっている。排出量調整弁33の開度調整は、ディーゼルエンジンの負荷に応じて行われ、ディーゼルエンジンが高負荷の場合には全閉とされ、ディーゼルエンジンの負荷が下がるに従い開方向に調整される。
 プランジャ11の下部には、接続軸35が取り付けられており、この接続軸35の下端にはカムローラ37が設けられている。カムローラ37は、下方のカム13の外周面すなわちプロファイル上を転動するようになっている。
 カム13は、カム軸39に固定されており、カム軸39とともに回転する。カム軸39は、ディーゼルエンジンのクランク軸と同期して回転するようになっている。
 次に、上記構成の排気弁駆動装置1の動作について説明する。
 先ず、排出量調整弁33が全閉の場合について説明し、次に排出量調整弁33が開となった場合について説明する。
<排出量調整弁33;全閉>
 排出量調整弁33が全閉とされた場合は、加圧室29から作動油が排出されることがないので、カム13のプロファイルに従った排気弁5の開閉が行われる。主として、排出量調整弁13が全閉とされる場合は、ディーゼルエンジンの負荷が高負荷側の場合である。
 図2には、(a)にカム13のリフト量、(b)に排出量調整弁33の弁開度、(c)に油圧経路9における作動油圧、(d)に排気弁5のリフト量が示されている。同図において、排出量調整弁33が全閉の場合は、実線にて示されている。
 同図(b)に示すように、排出量調整弁33の開度は、カムリフト量が上昇して低下する1サイクルにわたって常に全閉とされている。
 時刻t0にてカム13のプロファイルに従いカムリフト量が増大してプランジャ11が押し上げられ始めると、加圧室29すなわち油圧経路9の作動油圧が上昇し始める。そして、時刻t1にてカムリフト量が最大値に達してプランジャ11が上死点まで押し上げられ、作動油圧が最大値に達すると、時刻t2にて、ピストン7側の油圧室17における油圧が作用し、図示しない空気ばねの付勢力および筒内圧力に打ち勝ってピストン7を押し下げる。これにより、排気弁リフトが増大して、排気弁5が開となる。このとき、ピストン7が押し下げられるに伴い、作動油が油圧室17に取り込まれるので、作動油圧は急激に減少する。
 そして、カム13のプロファイルに従いプランジャ11が上死点に維持されている時刻t3までの期間は、排気弁リフト量も最大で維持されており、排気弁5は開のままとされる。
 時刻t3にてカム13のプロファイルに従いカムリフト量が減少してプランジャ11が下降し始めると、作動油圧が低下し始める。作動油圧が所定値を下回ると、図示しない空気ばねの付勢力および筒内圧力が打ち勝って時刻t4からピストン7が上方へと押し上げられることによって排気弁リフト量が減少し始める。カムリフト量が最小値に達してプランジャ11が下死点まで下げられると、排気弁5が時刻t5にて全閉となる。
<排出量調整弁33;開>
 つぎに、ディーゼルエンジンの負荷が減少し、低負荷側となった場合には、図示しない制御部からの指示に従い、排出量調整弁33を所定量だけ開とする場合について説明する。図2(b)に破線で示すように、排出量調整弁33の開度は、カムリフト量が上昇して低下する1サイクルにわたって所定開度にて一定とされている。
 図2(c)に示すように、時刻t0にてカム13のプロファイルに従いカムリフト量が増大してプランジャ11が押し上げられ始めても、時刻t0’までの所定期間は、作動油圧は上昇しない。なぜなら、この期間はプランジャ11の連通孔12と第2シリンダ27の溝部30とが連通しており、プランジャ11が上昇しても加圧室29内の作動油がプランジャ11の外部へと排出されるため加圧室29すなわち油圧経路9の圧力は上昇しないからである。
 そして、時刻t0’を過ぎると、連通孔12と溝部30とが連通しなくなるので、作動油圧が上昇し始める。このように、排出量調整弁33の全閉時(実線)に比べて、破線で示すように作動油の圧力上昇のタイミングが時刻t0から時刻t0’まで遅れるので、排気弁5が開となるタイミングも遅れることになる。すなわち、排気弁リフト量は、時刻t2から所定時間遅れた時刻t2’から上昇し始める。
 時刻t3にてカム13のプロファイルに従いカムリフト量が減少してプランジャ11が下降し始めると、作動油圧が低下し始める。このとき、作動油圧は、連通孔12が溝部30に連通していた時間すなわち時刻t0からt0’の間に作動油が所定量排出されているので、図2(c)に作動油圧を破線で示したように、排出量調整弁33の全閉時(実線)に比べて作動油圧が低くなっている。これにより、作動油圧に対して、図示しない空気ばねの付勢力および筒内圧力が早く打ち勝つため、排気弁リフト量は時刻t4’にて時刻t4よりも早めに減少し出し、その結果として、時刻t5’にて時刻t5よりも早めに排気弁5は全閉となる。
 このように、図2(d)の排気弁リフト量の変化を参照すれば分かるように、排出量調整弁33を開くことにより、排気弁5の開タイミングを遅くし、かつ、排気弁5の閉タイミングを早めることができる。また、図示しない制御部からの指令によって、排出量調整弁33の開度を適宜調整することにより、排気弁5の開閉タイミングを調整することができる。
 本実施形態の排気弁駆動装置1によれば、以下の作用効果を奏することができる。
 プランジャ11の端面11aの開口部11bからプランジャ11の外周面開口部11dへと作動油が流れる連通孔12をプランジャ11に設けた。そして、この連通孔12の外周面開口部11dに対して、プランジャ11が往復動する行程の一部の区間にわたって連通する溝部30を第2シリンダ27の内周面に形成した。また、溝部30からは、作動油排出経路31を介して溝部30内の作動油が排出されるようにした。これにより、プランジャ11の連通孔12と第2シリンダ27の溝部30とが連通している間は、プランジャ11によって作動油を加圧する加圧室39から作動油を排出することができる。したがって、プランジャ11が作動油を加圧する行程では、加圧途中の作動油がプランジャ11の連通孔12を介して排出されるので作動油の圧力上昇が遅くなり、排気弁5の開タイミングを遅らせることができる。一方、プランジャ11が加圧後の作動油を減圧する行程では、加圧途中で作動油が抜かれており作動油圧が低下しているため、排気弁5の閉タイミングを早めることができる。
 そして、作動油排出経路31に排出量調整弁33を設け、加圧室29から作動油が排出される流量を調整することとしたので、プランジャ11によって作動油を加圧する際の圧力上昇の程度と、プランジャ11によって加圧された作動油の到達圧力の低下の程度を調整することができ、排気弁5の開タイミング及び閉タイミングを任意に変更することができる。
 また、別に設けた加圧源(例えば特許文献1の加圧作動油源)によって加圧された作動油を油圧経路9に供給する構成を採用せず、連通孔12を介して作動油を排出することによって作動油の圧力変化を調整することとしているので、作動油の加圧源を別に設ける必要がない。したがって、別に設けた加圧源が故障することによってディーゼルエンジンの運転に支障を来すといったリスクを負うことがなく、高い信頼性を実現することができる。
 また、排出量調整弁33を開方向に制御すると、作動油圧の低下の程度が大きくなるため、排気弁5が閉となるタイミングが早くなる。排気弁5が閉となるタイミングが早くなるほど、排気弁が閉鎖された時に燃焼室内に密閉される空気量が多くなるため、圧縮される新気が多くなり筒内の圧縮圧力および燃焼圧力が高くなる。したがって、ディーゼルエンジンの負荷が下がるに従い排出量調整弁33を開方向に制御することにより、低負荷であってもディーゼルエンジンの燃焼改善が行われて燃料消費率を改善することができる。
 また、排出量調整弁33をディーゼルエンジンの負荷が下がるに従い閉方向に制御して、排気弁5が開となるタイミングを遅くすると、燃焼ガスと新気とのガス交換を筒内で行う時間が短くなるおそれがあるが、負荷が下がった部分負荷状態ではディーゼルエンジンの回転数が低いためガス交換のための時間を十分にとることができる。また、排気弁5の閉タイミングを遅らせることで、閉タイミングを遅らせた時間分だけ燃焼後の筒内圧力を低下させずに維持することができるので、この燃焼後の筒内圧力に維持された筒内ガスから軸回転力をより多く取り出すことができ、燃料消費率をさらに改善することができる。
 上述のように、排気弁5が閉となるタイミングが早くなるほど、排気弁が閉鎖された時に燃焼室内に密閉される空気量が多くなるため、圧縮される新気が多くなり内燃機関の圧縮圧力および燃焼圧力が高くなる。そして、排気弁5が閉となるタイミングが最も早くなるのは、排出量調整弁33が最大開度とされた場合である。このように排出量調整弁33が最大開度となった場合に、ディーゼルエンジンが高負荷であっても筒内の圧縮圧力および燃焼圧力が設計許容圧力以下となるように外周面開口部11dに対して溝部30が連通する期間が決定されている。すなわち、外周面開口部11dに対して溝部30が連通する期間によって作動油が排出される流量が決まるので、排出量調整弁33が最大開度となり作動油の排出量が最大となっても、ディーゼルエンジンの圧縮圧力および燃焼圧力が設計許容圧力以下となるように外周面開口部11dに対して溝部30が連通する期間を制限するようにした。したがって、何らかの原因で排出量調整弁33が最大開度のまま固着してしまった場合であっても、作動油が排出される流量が制限されているので、設計許容圧力を超えて圧縮圧力および燃焼圧力が高くならず、ディーゼルエンジンの損傷を回避することができる。
 排出量調整弁33を全閉とすることにより、プランジャ11の加圧室29から作動油が排出されない状態とすることができる。これにより、カム13のプロファイルに従った排気弁5の動作が可能となる。
 また、上述のように、排出量調整弁33の最大開度にてディーゼルエンジンが高負荷であっても筒内の圧縮圧力および燃焼圧力が設計許容圧力以下となるように外周面開口部11dに対して溝部30が連通する期間が決定されているので、何らかの原因で排出量調整弁33が全閉のまま固着してしまった場合であっても、排気弁5はカムプロファイルに従って動作するだけで、排気弁5の閉タイミングは排出量調整弁33の最大開度となる場合よりも遅いので、設計許容圧力を超えて圧縮圧力および燃焼圧力が高くなることはなく、ディーゼルエンジンの損傷を回避することができる。
 なお、上述した排気弁駆動装置1は、ディーゼルエンジンの気筒毎に設けてもよいし、あるいは、ピストン7、第1シリンダ15、カム13及びプランジャ11を各気筒に設けた上で、作動油排出経路31及び排出量調整弁33を複数の気筒に対して共通化してもよい。
1 排気弁駆動装置
3 シリンダカバー
5 排気弁
7 ピストン
9 油圧経路
11 プランジャ
11d 外周面開口部
12 連通孔
13 カム
15 第1シリンダ
17 油圧室
19 オリフィス用経路
21 オリフィス
23 低圧作動油供給経路
25 逆止弁
27 第2シリンダ
29 加圧室
30 溝部
31 作動油排出経路
33 排出量調整弁
35 接続軸
37 カムローラ

Claims (5)

  1.  内燃機関の排気弁を動作させるアクチュエータと、
     該アクチュエータに作動油を供給する油圧経路と、
     該油圧経路に接続されたプランジャと、
     該プランジャを収容するシリンダと、
     前記プランジャを往復動させるカムと、
    を備え、
     前記プランジャによって加圧された前記作動油によって前記アクチュエータが動作して前記排気弁を開とする排気弁駆動装置において、
     前記プランジャには、該プランジャが前記作動油を加圧する加圧空間から該プランジャの外周面に位置する外周面開口部まで連通する連通孔が形成され、
     前記シリンダの内周面には、前記プランジャが往復動する行程の一部の期間にわたって前記外周面開口部と連通する溝部が形成され、
     該溝部には、前記作動油を排出するための作動油排出経路が接続され、
     該作動油排出経路には、排出量調整弁が設けられていることを特徴とする排気弁駆動装置。
  2.  前記排出量調整弁は、前記内燃機関の負荷が下がるに従い開度が大きくなるように制御されることを特徴とする請求項1に記載の排気弁駆動装置。
  3.  前記排出量調整弁が最大開度とされた場合に前記排気弁が閉となるタイミングにて、前記内燃機関が高負荷であっても該内燃機関の圧縮圧力および燃焼圧力が設計許容圧力以下となるように、前記外周面開口部に対して前記溝部が連通する期間が設定されていることを特徴とする請求項1又は2に記載の排気弁駆動装置。
  4.  前記排出量調整弁は、全閉可能とされていることを特徴とする請求項1から3のいずれかに記載の排気弁駆動装置。
  5.  請求項1から4のいずれかに記載の排気弁駆動装置と、
     該排気弁駆動装置によって駆動される前記排気弁と、
     該排気弁を収容する燃焼室と、
    を備えていることを特徴とする内燃機関。
     
     
PCT/JP2014/075566 2014-01-10 2014-09-26 排気弁駆動装置およびこれを備えた内燃機関 WO2015104875A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480064357.4A CN105917086A (zh) 2014-01-10 2014-09-26 排气阀驱动装置以及具有该排气阀驱动装置的内燃机
KR1020167014094A KR101761123B1 (ko) 2014-01-10 2014-09-26 배기밸브 구동장치 및 이것을 구비한 내연기관

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-003456 2014-01-10
JP2014003456A JP6141209B2 (ja) 2014-01-10 2014-01-10 排気弁駆動装置およびこれを備えた内燃機関

Publications (1)

Publication Number Publication Date
WO2015104875A1 true WO2015104875A1 (ja) 2015-07-16

Family

ID=53523717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075566 WO2015104875A1 (ja) 2014-01-10 2014-09-26 排気弁駆動装置およびこれを備えた内燃機関

Country Status (4)

Country Link
JP (1) JP6141209B2 (ja)
KR (1) KR101761123B1 (ja)
CN (1) CN105917086A (ja)
WO (1) WO2015104875A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152171U (ja) * 1988-04-12 1989-10-20
JPH0726922A (ja) * 1993-07-07 1995-01-27 Zexel Corp 内燃機関のバルブ制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0158740U (ja) * 1987-10-06 1989-04-12
CH681825A5 (ja) * 1991-05-22 1993-05-28 New Sulzer Diesel Ag
DK173421B1 (da) * 1997-05-16 2000-10-02 Man B & W Diesel As Hydrauliksystem til en totakts krydshovedmotor og med enstrenget højtryksfødeledning
JP5189069B2 (ja) * 2009-12-17 2013-04-24 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド 大型2サイクルディーゼルエンジン用のカム駆動排気弁作動システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152171U (ja) * 1988-04-12 1989-10-20
JPH0726922A (ja) * 1993-07-07 1995-01-27 Zexel Corp 内燃機関のバルブ制御装置

Also Published As

Publication number Publication date
KR101761123B1 (ko) 2017-07-25
CN105917086A (zh) 2016-08-31
JP2015132192A (ja) 2015-07-23
KR20160077170A (ko) 2016-07-01
JP6141209B2 (ja) 2017-06-07

Similar Documents

Publication Publication Date Title
RU2509219C2 (ru) Устройство управления в поршневом двигателе
JPWO2008001699A1 (ja) エンジンバルブ装置
JP2010048122A (ja) 高圧燃料ポンプ
JP2010112286A (ja) 内燃機関の可変圧縮比機構
JP2013525681A (ja) ピストンエンジンにおけるガス交換バルブのための制御装置
US20100180875A1 (en) Seating control device for a valve for a split-cycle engine
KR101698301B1 (ko) 배기밸브 구동장치 및 이것을 구비한 내연기관
KR101727872B1 (ko) 배기밸브 구동장치 및 이것을 구비한 내연기관
WO2015104875A1 (ja) 排気弁駆動装置およびこれを備えた内燃機関
JP5984303B2 (ja) 燃料噴射補助装置及び燃料噴射補助装置を備える燃料噴射ポンプ
KR101439035B1 (ko) 차량의 가변 밸브 구동 장치
CN110892135B (zh) 利用往复活塞式机器进行气体膨胀的方法和装置
CN102459829A (zh) 用于活塞式发动机中的气体交换的控制装置
JP5589758B2 (ja) 油圧駆動可変動弁機構のフェイルセーフ制御装置
JP6293636B2 (ja) 排気弁駆動装置およびこれを備えた内燃機関
JP6254245B2 (ja) 排気弁駆動装置およびこれを備えた内燃機関
KR102122224B1 (ko) 배기 밸브 작동 시스템 및 대형 2행정 내연 기관
JP2011080393A (ja) 内燃機関
KR20200020959A (ko) 가변 압축 장치 및 엔진 시스템
KR20160059037A (ko) 연료분사펌프
JP2011038413A (ja) 内燃機関の制御方法および内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167014094

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878020

Country of ref document: EP

Kind code of ref document: A1