WO2015103983A1 - 一种放射性废水处理的方法和装置 - Google Patents

一种放射性废水处理的方法和装置 Download PDF

Info

Publication number
WO2015103983A1
WO2015103983A1 PCT/CN2015/070290 CN2015070290W WO2015103983A1 WO 2015103983 A1 WO2015103983 A1 WO 2015103983A1 CN 2015070290 W CN2015070290 W CN 2015070290W WO 2015103983 A1 WO2015103983 A1 WO 2015103983A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
membrane module
water
treatment
radioactive waste
Prior art date
Application number
PCT/CN2015/070290
Other languages
English (en)
French (fr)
Inventor
李俊峰
王建龙
赵树理
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to JP2016549613A priority Critical patent/JP2017501421A/ja
Priority to EP15734813.7A priority patent/EP3018659A4/en
Priority to US15/029,098 priority patent/US10457573B2/en
Publication of WO2015103983A1 publication Critical patent/WO2015103983A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/084Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/18Details relating to membrane separation process operations and control pH control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2523Recirculation of concentrate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2684Electrochemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/06Use of membrane modules of the same kind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop

Definitions

  • the invention relates to radioactive wastewater treatment, in particular to a method and a device for treating radioactive wastewater by a disc tube reverse osmosis membrane technology.
  • Each treatment method has its applicable scope and technical characteristics.
  • the current research mainly focuses on the decontamination efficiency of radioactive wastewater under different reactor treatment conditions in the case of reactor core melting, and selects suitable radioactive wastewater in combination with treatment flow rate and process characteristics. Processing technology.
  • the focus of the radioactive wastewater treatment technology is to increase the decontamination factor of the radioactive waste water so that the concentration of radionuclides in the discharged water is as low as possible and the volume of the radioactive concentrate is as small as possible.
  • the radioactive wastewater membrane treatment system has a high decontamination factor, its low concentration factor (usually only 5-10) limits its widespread use.
  • the strict requirements of the conventional reverse osmosis membrane treatment system for water ingress also severely limit its use. If pretreatment with diatomaceous earth filtration, the amount of solid waste generated will be greatly increased.
  • the invention can simplify the complicated pretreatment process by selecting the highly anti-pollution disc-type reverse osmosis membrane module, and realize the high-efficiency treatment and high-magnification concentration through the optimized combination processing of the disc-type reverse osmosis membrane module.
  • DTRO disk-type reverse osmosis
  • the radioactive waste water may be sequentially passed through the first stage membrane module and the second stage membrane module to obtain second stage clean water; the first stage concentrated water sent from the first stage membrane module enters the third stage The membrane module is obtained to obtain a concentrate.
  • the second stage concentrated water sent from the second stage membrane module and the concentrated stage clean water sent from the third stage membrane module can be returned to the first stage membrane module for reprocessing.
  • the radioactive waste water may be subjected to sand filtration, ultrafiltration or pH adjustment before being fed to the membrane module, wherein the pH of the radioactive waste water may be adjusted if pH adjustment is performed. The value is adjusted to 6-8.
  • the salt content of the radioactive waste water before the treatment is preferably not more than 5 g/L.
  • Another object of the present invention is to provide a radioactive waste water treatment apparatus for use in the radioactive waste water treatment method of the present invention, comprising a first stage, a second stage and a third stage disc tube type reverse osmosis membrane module and for providing radioactive waste water
  • the water supply pump wherein the clean water outlet of the first stage membrane module is connected to the inlet of the second stage membrane module, and the concentrated water outlet of the first stage membrane module is connected to the inlet of the third stage membrane module.
  • both the concentrated water outlet of the second stage membrane module and the clean water outlet of the third stage membrane module are coupled to the inlet of the first stage membrane module.
  • the radioactive waste water treatment device further includes first, second, and third stage high pressure pumps and circulating pumps for the first stage, second stage, and third stage disc tubular reverse osmosis membrane modules, respectively. .
  • FIG. 1 is a process flow diagram of a method of treating a radioactive waste water according to an embodiment of the present invention.
  • FIGS. 2A and 2B are respectively a schematic structural view and a physical diagram of a radioactive waste water treatment apparatus according to an embodiment of the present invention.
  • 3A and 3B are respectively a flow path schematic and a physical diagram of a disk-type reverse osmosis membrane module used in the present invention.
  • Radioactive wastewater treatment is different from general wastewater treatment such as coking wastewater, pharmaceutical wastewater, textile/dyeing wastewater, petroleum/chemical wastewater, landfill leachate, etc. because: 1) the concentration of radionuclide ions is extremely low. Exceeding the capacity of conventional wastewater treatment technology; the environmental emission requirement is 10Bq/L, and 90 Sr and 137 Cs are taken as examples. The corresponding mass concentrations of nuclide are 2.0 ⁇ 10 -13 mg/L and 3.0 ⁇ 10 respectively. -13 mg/L. 2) The requirements for the generation of secondary radioactive waste are much higher than conventional wastewater treatment. An important principle of radioactive wastewater treatment is the minimization of radioactive waste. 3) The operability and maintainability of the equipment under radioactive conditions need to be considered.
  • the inventors Based on the above specific requirements for the treatment of radioactive waste water, the inventors have devised a method and apparatus for treating radioactive waste water of the present invention in which the amount of radioactive waste generated is minimized while ensuring an extremely low concentration of radionuclide ion discharge.
  • the "decontamination factor” is also used to measure the mass concentration of radionuclide ions, which is calculated as (the activity of the raw water) / (the activity of the water).
  • concentration factor is used to measure the amount of radioactive waste produced, which can be calculated as (raw water volume) / (concentrate volume).
  • the decontamination factor is at least 500, and the concentration factor is at least 25 times, which achieves the discharge standard of domestic sewage of 10 Bq/L, and ensures radioactivity.
  • the amount of waste generated is as small as possible.
  • This is also a key to the method of the present invention which is significantly different from prior art wastewater treatment methods. In prior art wastewater treatment processes, either the concentration factor is never considered, or complex processes and equipment have to be employed in order to simultaneously achieve emission standards and concentration multiples.
  • the present invention successfully realizes the discharge of radioactive waste water by using a DTRO membrane module to treat radioactive waste water, and at the same time achieves the least amount of radioactive waste generated by a simple and easy-to-operate process and apparatus.
  • the radioactive wastewater is treated using a tertiary DTRO membrane module.
  • 1 is an exemplary process flow diagram of a three-stage DTRO membrane module for treating radioactive wastewater.
  • the radioactive waste water passes through the first-stage membrane module and the second-stage membrane module in sequence to obtain second-stage clean water; the first-stage concentrated water sent from the first-stage membrane module enters the third-stage membrane module to obtain a concentrate.
  • the second stage concentrated water sent from the second stage membrane module and the concentrated stage clean water sent from the third stage membrane module can be returned to the first stage membrane module for reprocessing.
  • the pretreatment of raw water is shown in Figure 1, this is not a necessary step. Since the membrane module used in the present invention is a DTRO membrane module, it is possible to directly treat the radioactive waste water without any pretreatment of the raw water and to achieve the required discharge standards. Unlike many radioactive wastewater treatment processes in the prior art, it is necessary to first pretreat the wastewater through a complex ultrafiltration process in order to deliver the pretreated wastewater for reverse osmosis treatment. Obviously, in the method of the present invention, the elimination of the pretreatment process can simplify the processing equipment and greatly reduce the processing cost.
  • the raw water is pretreated, it may be an operation such as sand filtration, ultrafiltration or pH adjustment, which is easily determined by those skilled in the art based on actual conditions. If pH adjustment is carried out, it is preferred to adjust the pH of the radioactive waste water to 6-8. At this pH, on the one hand, the reverse osmosis treatment of the DTRO membrane module is the best, and on the other hand, the DTRO membrane module has a long service life.
  • ion exchange of the secondary clean water is shown in Fig. 1, this step can be selected according to the actual situation.
  • radioactive wastewater that is routinely discharged from nuclear facilities, its radioactivity is generally between 1000 Bq/L and 10,000 Bq/L (total ⁇ ), which are treated by the two-stage DTRO membrane module of the method of the invention, and the activity of the second-stage clean water. It is often below 10Bq/L and meets the discharge standards for domestic sewage.
  • the radioactivity can be as high as 50,000 Bq/L; this highly radioactive wastewater is treated by the two-stage DTRO membrane module of the present invention.
  • the radioactivity of the secondary clean water is also close to 10 Bq/L (e.g., Example 1 below).
  • the second stage water sent from the second stage membrane module can be sent for further fine treatment.
  • the activity of the second-stage clean water sent from the second-stage membrane module is greater than 1 Bq/L, the second-stage clean water is finely treated.
  • an ion exchange treatment or an electrodialysis treatment is preferred.
  • the radioactive waste water treated by the method of the invention can obtain water close to the natural water background through one-step fine treatment even if the radioactivity is as high as 50,000 Bq/L. The activity is about 0.5 Bq/L.
  • the secondary clean water obtained by the treatment of the secondary DTRO membrane module of the method of the present invention is already very clean, if it is subjected to further ion exchange treatment, the ion exchange resin used can be used for a long time, generally 2-3 Replacement is required only after the year, which significantly reduces the amount of waste resin produced and reduces the processing cost of the entire process.
  • the waste resin that is finally removed can be solidified together with the concentrate discharged from the third stage membrane module.
  • the number of stages of the DTRO membrane module is correspondingly increased as the water quality requirements are increased.
  • the number of stages of the water treatment membrane module must not be increased in an unrestricted manner in order to purify the water quality improvement, because the increased water treatment membrane module also increases the amount of the concentrate.
  • the increase in the total amount of concentrate inevitably reduces the concentration factor, resulting in more waste requiring curing treatment.
  • the concentrated water treatment membrane module of the increased number of stages has a high concentration of effluent radioactivity, and improper reflux may cause an increase in the activity of the effluent; secondly, the production process is difficult to control and makes Processing costs increase.
  • the number of stages of the clean water and concentrated water treatment membrane modules must be reasonably configured based on the double consideration of the decontamination factor and the concentration factor.
  • the decontamination factor can be from 500 to 5000 and the concentration factor can be at least 25 times.
  • the concentrated water from the third stage membrane module can be returned to the first stage membrane module for reprocessing without discharging the concentrate until the salt content of the concentrate reaches 125 g/L.
  • the method of the invention preferably comprises a three-stage DTRO membrane module, that is, a two-stage tandem water treatment membrane module and a first-stage concentrated water treatment membrane module, wherein the concentrated water discharged from the third-stage membrane module can reach the maximum value of the concentrated water of the DTRO membrane module, increasing The concentration series does not further increase the concentration factor.
  • DTRO membrane modules are particularly suitable for the treatment of high concentration sewage.
  • the inventors have noticed that the salt content of the raw water is increased and the treatment energy consumption is correspondingly increased, so that the salt content of the radioactive waste water before treatment is preferably not more than 5 g/L.
  • the present invention also provides a radioactive waste water treatment apparatus for use in the method of the present invention.
  • 2A and 2B are respectively a schematic structural view and a physical diagram of a radioactive waste water treatment apparatus according to an embodiment of the present invention.
  • the radioactive waste water treatment apparatus includes a first-stage disc-type reverse osmosis membrane module 1, a second-stage disc-type reverse osmosis membrane module 10, and a third-stage disc-type reverse osmosis membrane.
  • the inlets of 9 are connected; the concentrated water outlet of the second stage membrane module 10 and the clean water outlet of the third stage membrane module 9 are all connected to the inlet of the first stage membrane module 1.
  • a first stage high pressure pump 7 and a circulation pump 4 a second stage high pressure pump 6 and a circulation pump 3 for the first, second and third stage disc tubular reverse osmosis membrane modules, respectively.
  • Disc-type reverse osmosis (DTRO) membrane modules for use in the process of the present invention are well known, but are primarily used in the prior art for treating landfill leachate. As mentioned above, due to the special requirements of radioactive wastewater treatment, it is not possible to simply transplant the existing DTRO membrane module to treat other wastewater by directly transplanting the method and apparatus for treating radioactive wastewater, which also confirms the reason why the prior art still The DTRO membrane module could not be used to treat radioactive wastewater.
  • the disc-type membrane module is mainly composed of a filter membrane 2, a baffle plate 5, a central tie rod, a pressure-resistant sleeve 6, various seals at both ends of the flange 8, and a coupling bolt.
  • the filter membrane and the deflector are stacked together, fixed by a central tie rod and an end cap flange, and then placed in a pressure-resistant sleeve to form a disc-type membrane module.
  • the liquid passes through the gap between the filter membrane 2 stack and the pressure resistant sleeve 6 and then enters the bottom deflector 5 through the raw water passage 1, and the treated liquid rapidly flows through the filter membrane at the shortest distance. 2, then reversed to another film surface at 180°, and then flowed into the next filter membrane, thereby forming a tangential flow filter on the surface of the film from the circumference of the guide disc to the center of the circle, to the circumference, and then to the center of the circle.
  • the concentrate finally flows out from the feed end flange 8. While the liquid flows through the filtration membrane, the permeate is continuously discharged through the central collection tube 7.
  • the concentrate and the permeate are separated by an O-ring 3 mounted on the deflector.
  • the high pressure pump and the circulation pump used for the water supply pump and the DTRO membrane module may be various pumps commonly used in the art, such as a plunger pump, a centrifugal pump, and the like.
  • the high pressure pump has to meet the requirements of high lift and low flow
  • the circulating pump has to meet the requirements of low lift and high flow.
  • the operation steps of the radioactive waste water treatment device of the invention are as follows: firstly, the raw water supply pump is started; the concentrated water outlet valve of the first stage membrane module is completely opened, the first stage high pressure pump and the circulation pump (frequency conversion control) are started, and the pressure is adjusted to 2.5 to 7 MPa. (The specific pressure is based on the concentration of radioactive raw water.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 500 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 10 Bq/L
  • the decontamination factor of the two-stage membrane system is 5000.
  • the volume of the concentrate to be solidified by the cement is 0.4 cubic meters (the salt content is 125 g/L), whereby the concentration ratio of the radioactive waste water of the entire process is 25 times.
  • the total volume of clean water can be 9.6 tons, and the total beta activity of the final clean water is 0.5 Bq/L, thereby going through the entire process.
  • the fouling factor is 100,000.
  • the volume of waste to be solidified is 1.2 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 120,000 yuan.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 100 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 2 Bq/L
  • the decontamination factor of the two-stage membrane system is 5000.
  • the volume of the concentrate to be solidified by the cement is 0.4 cubic meters (the salt content is 125 g/L), whereby the concentration ratio of the radioactive waste water of the entire process is 25 times.
  • the total volume of clean water obtained is 9.6 tons, and the total beta activity of the final clean water is 0.1 Bq/L, whereby the decontamination factor of the entire process is 100,000.
  • the volume of waste to be solidified is 1.2 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 120,000 yuan.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 50 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 1 Bq/L
  • the decontamination factor of the two-stage membrane system is 5000.
  • the volume of the concentrate to be solidified by the cement is 0.4 cubic meters (the salt content is 125 g/L), whereby the concentration ratio of the radioactive waste water of the entire process is 25 times.
  • the total volume of clean water can be 9.6 tons, and the total beta activity of the final clean water is 0.05 Bq/L, thereby the entire process goes.
  • the fouling factor is 100,000.
  • the volume of waste to be solidified is 1.2 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 120,000 yuan.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 10 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 0.2 Bq/L
  • the decontamination factor of the two-stage membrane system is 5000.
  • the volume of the concentrated solution requiring cement solidification is 0.4 cubic meters (the salt content is 125 g/L), whereby the concentration ratio of the radioactive waste water of the entire process is 25 times.
  • the volume of waste to be solidified is 1.2 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 120,000 yuan.
  • the raw water supply pump was started, and 10 tons of waste water having a salt content of 1 g/L and a total ⁇ activity of 10,000 Bq/L was sent to the apparatus shown in Fig. 2B for treatment.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 200 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 4 Bq/L
  • the decontamination factor of the two-stage membrane system is 2,500.
  • the volume of the concentrate to be solidified by the cement is 0.2 cubic meters (the salt content is 50 g/L), whereby the concentration of the radioactive waste water of the entire process is 50 times.
  • the total volume of clean water can be 9.8 tons, and the total beta activity of the final clean water is 0.2 Bq/L, thereby going through the entire process.
  • the fouling factor is 50,000.
  • the volume of waste to be solidified is 0.6 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 60,000 yuan.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 100 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 2 Bq/L
  • the decontamination factor of the two-stage membrane system is 50 times.
  • the total volume of clean water can be 9.8 tons, and the total beta activity of the final clean water is 0.1 Bq/L, thereby the entire process.
  • the fouling factor is 50,000.
  • the volume of waste to be solidified is 0.6 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 60,000 yuan.
  • the total beta activity of the clean water discharged from the first stage membrane module is 20 Bq/L
  • the activity of the clean water discharged from the second stage membrane module is 0.4 Bq/L
  • the decontamination factor of the two-stage membrane system is 2500.
  • the volume of the concentrate to be solidified by the cement is 0.2 cubic meters (the salt content is 50 g/L), whereby the concentration of the radioactive waste water of the entire process is 50 times.
  • the volume of waste to be solidified is 0.6 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 60,000 yuan.
  • the raw water supply pump was started, and 10 tons of waste water having a salt content of 0.1 g/L and a total beta activity of 5000 Bq/L was sent to the apparatus shown in Fig. 2B for treatment.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 125 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 10 Bq/L
  • the decontamination factor of the two-stage membrane system is 500.
  • the volume of the concentrate to be solidified by the cement is 0.1 cubic meter (the salt content is 10 g/L), whereby the concentration ratio of the radioactive waste water of the entire process is 100 times.
  • the total volume of clean water can be 9.9 tons, and the total beta activity of the final clean water is 0.5 Bq/L, thereby the entire process goes.
  • the fouling factor is 10,000.
  • the volume of waste to be solidified is 0.3 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 30,000 yuan.
  • the total beta activity of the clean water discharged from the first-stage membrane module is 25 Bq/L
  • the activity of the clean water discharged from the second-stage membrane module is 2 Bq/L
  • the decontamination factor of the two-stage membrane system is 500.
  • the volume of the concentrate to be solidified by the cement is 0.1 cubic meter (the salt content is 10 g/L), whereby the concentration ratio of the radioactive waste water of the entire process is 100 times.
  • the total volume of clean water can be 9.9 tons, and the total beta activity of the final clean water is 0.1 Bq/L, thereby going through the entire process.
  • the fouling factor is 10,000.
  • the volume of waste to be solidified is 0.3 cubic meters, and if the disposal cost of the solidified body is calculated as 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 30,000 yuan.
  • the total beta activity of the effluent at each stage is as follows: first stage membrane module 200Bq/L, second stage membrane module 4Bq/L, ion exchanger 0.2Bq/L; therefore, decontamination of the first stage membrane module
  • the factor is 50
  • the decontamination factor of the second stage membrane module is 50
  • the decontamination factor of the entire process is 50,000.
  • the total volume of clean water discharged after the treatment of the process is 9 tons, and the volume of the concentrate required to solidify the cement is 1 cubic meter, so the concentration multiple is 10 times.
  • the volume of waste to be solidified is 3 cubic meters, and if the disposal cost of the solidified body is 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 300,000 yuan. Obviously, the processing cost is five times that of the embodiment 5.
  • the total beta activity of the effluent at each stage is as follows: first stage membrane module 200Bq/L, second stage membrane module 4Bq/L, ion exchanger 0.2Bq/L; therefore, decontamination of the first stage membrane module
  • the factor is 50
  • the decontamination factor of the second stage membrane module is 50
  • the decontamination factor of the entire process is 50,000.
  • the total volume of clean water discharged after the treatment of the process is 9 tons, and the volume of the concentrate required to solidify the cement is also 1 cubic meter, so the concentration multiple is 10 times.
  • the volume of waste to be solidified is 3 cubic meters, and if the disposal cost of the solidified body is 100,000 yuan/m3, the disposal cost after concentration of the waste liquid is 300,000 yuan. Obviously, the processing cost is still five times that of Embodiment 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种放射性废水的处理方法和装置,其中使放射性废水通过碟管式反渗透(DTRO)膜组件进行处理,能够同时获得高去污因子和高浓缩倍数的效果。在所述方法中,使放射性废水依次通过第一级膜组件和第二级膜组件,得到第二级清水;从第一级膜组件送出的第一级浓水进入第三级膜组件,得到浓缩液。

Description

一种放射性废水处理的方法和装置 技术领域
本发明涉及放射性废水处理,具体涉及一种通过碟管式反渗透膜技术处理放射性废水的方法和装置。
背景技术
对于核工业领域产生的放射性废水,絮凝沉淀、砂滤、硅藻土过滤、超滤、选择性离子交换、反渗透膜处理、蒸发、电渗析都是处理它们的常用方法。
每种处理方法都有其适用范围和技术特点,目前的研究主要集中在研究不同的处理方法对反应堆堆芯融化情况下放射性废水的去污效率,结合处理流量和工艺特点选择出适用的放射性废水处理技术。
放射性废水处理技术的重点是提高放射性废水的去污因子,使排放出水中的放射性核素的浓度尽可能低,并使放射性浓缩液的体积尽量小。在目前国内外技术条件下,放射性废水膜处理系统虽然有较高的去污因子,但其很低的浓缩倍数(通常只有5-10)限制了其广泛使用。同时,常规反渗透膜处理系统对进水的严格要求也严重限制了其使用,若采用硅藻土过滤等预处理将极大增加固体废物的产生量。
本发明通过选择高抗污染的碟管式反渗透膜组件而可以简化复杂的预处理工艺,并通过碟管式反渗透膜组件的优化组合处理同时实现了高效处理和高倍数浓缩。
发明内容
本发明的目的之一是提供一种放射性废水处理方法,其中使放射性废水通过碟管式反渗透(DTRO)膜组件进行处理,其中去污因子达至少500,并且浓缩倍数达至少25倍。
在本发明方法的一个实施方案中,可以使放射性废水依次通过第一级膜组件和第二级膜组件,得到第二级清水;从第一级膜组件送出的第一级浓水进入第三级膜组件,得到浓缩液。
根据本发明的方法,一方面,可以将从第二级膜组件送出的第二级浓水和从第三级膜组件送出的浓缩级清水都返回送入第一级膜组件进行再处理。
另一方面,在本发明的方法中,放射性废水在进料到膜组件之前,可以经过砂滤、超滤或pH值调节的预处理,其中如果进行pH值调节,则可以将放射性废水的pH值调节到6-8。
又一方面,在本发明的方法中,放射性废水在处理前的含盐量优选不超过5g/L。
本发明的另一目的是提供一种用于本发明放射性废水处理方法的放射性废水处理装置,其包括第一级、第二级和第三级碟管式反渗透膜组件以及用于提供放射性废水的供水泵,其中第一级膜组件的清水出口与第二级膜组件的进口相连,第一级膜组件的浓水出口与第三级膜组件的进口相连。
一方面,第二级膜组件的浓水出口和第三级膜组件的清水出口都与第一级膜组件的进口相连。
另一方面,所述放射性废水处理装置还包括分别用于第一级、第二级和第三级碟管式反渗透膜组件的第一级、第二级和第三级高压泵和循环泵。
附图说明
图1是根据本发明一个实施方案的放射性废水处理方法的工艺流程图。
图2A和图2B分别是根据本发明一个实施方案的放射性废水处理装置的结构示意图和实物图。
图3A和图3B分别是用于本发明的碟管式反渗透膜组件的流道示意图和实物图。
图4是对比例2的工艺流程图。
具体实施方式
放射性废水处理不同于诸如焦化废水、制药废水、纺织/印染废水、石油/化工废水、垃圾渗滤液之类的一般性废水处理,这是因为:1)放射性核素离子的排放质量浓度极低,超出了常规废水处理技术的能力;环境排放要求放射性活度为10Bq/L,以90Sr和137Cs为例,各自对应的核素质量浓度分别为2.0×10-13mg/L和3.0×10-13mg/L。2)对二次放射性废物产生量的要求远远高于常规的废水处理,放射性废水处理的一个重要原则就是放射性废物最小化。3)需要考虑放射性条件下设备的可操作性和可维护性。
基于放射性废水处理的上述特殊要求,本发明人设计完成本发明的放射性废水处理方法和装置,其中在保证放射性核素离子的排放质量浓度极低的同时,所产生的放射性废物的量最少。
在本文中,除了放射性活度外,“去污因子”也用来衡量放射性核素离子的排放质量浓度,该因子按(原水的放射性活度)/(清水的放射性活度)来计算。本文所用的“浓缩倍数”用来衡量所产生的放射性废物的量,可以按(原水体积)/(浓缩液体积)来计算。
根据本发明的放射性废水处理方法,放射性废水经过DTRO膜组件处理后,去污因子达至少500,并且浓缩倍数达至少25倍,这既达到了生活污水的排放标准10Bq/L,又确保了放射性废物的产生量尽可能地少。这也是本发明方法显著不同于现有技术相关废水处理方法的一个关键所在。现有技术的废水处理方法中,要么从不考虑浓缩倍数这一参数,要么为了同时追求达到排放标准和浓缩倍数而不得不采用复杂的工艺和设备。本发明通过使用DTRO膜组件处理放射性废水,成功实现了通过简单易操作的工艺和装置使得放射性废水达到排放标准,同时放射性废物的产生量最少。
在本发明方法的一个实施方案中,使用三级DTRO膜组件处理放射性废水。图1是三级DTRO膜组件处理放射性废水的示例性工艺流程图。
根据图1,放射性废水依次通过第一级膜组件和第二级膜组件,得到第二级清水;从第一级膜组件送出的第一级浓水进入第三级膜组件,得到浓缩液。从第二级膜组件送出的第二级浓水和从第三级膜组件送出的浓缩级清水可以返回送入第一级膜组件进行再处理。
尽管图1中示出了对原水进行预处理,但这不是必须的步骤。由于本发明所用的膜组件是DTRO膜组件,可以在没有对原水进行任何形式的预处理情况下,直接处理放射性废水,并达到要求的排放标准。不像现有技术中许多放射性废水处理工艺,需要首先通过复杂的超滤工艺预处理废水,才能将经预处理的废水送去进行反渗透处理。显然,在本发明的方法中,预处理工艺的省去能够简化处理设备,大大降低处理成本。
如果对原水进行预处理,可以是砂滤、超滤或pH值调节之类的操作,这是本领域技术人员根据实际情况容易确定的。如果进行pH值调节,优选将放射性废水的pH值调节到6-8。在该pH值下,一方面DTRO膜组件的反渗透处理效果最好,另一方面能保证DTRO膜组件具有较长的使用寿命。
同样,尽管图1中示出了对二级清水进行离子交换,但该步骤是可以根据实际情况进行选择的。事实上,对于核设施常规排放的放射性废水,其放射性活度一般在1000Bq/L至10000Bq/L(总β),它们通过本发明方法的两级DTRO膜组件处理,二级清水的放射性活度往往已经低于10Bq/L,符合生活污水的排放标准。甚至对于非常规泄漏的放射性废水,比如2011年日本福岛核泄漏所产生的放射性废水,其放射性活度可以高达50000Bq/L;这种高放射性废水通过本发明的两级DTRO膜组件处理,第二级清水的放射性活度也接近10Bq/L(例如下文的实施例1)。
但是,如果追求所排放的污水最好能够接近自然界水本底,这种情况下可以将从第二级膜组件送出的第二级清水送去进一步精细处理。在本发明的方法中,如果从第二级膜组件送出的第二级清水的放射性活度大于1Bq/L,则对第二级清水进行精细处理。关于精细处理,优选离子交换处理或电渗析处理。本发明方法所处理的放射性废水即使放射性活度高达50000Bq/L,通过一步精细处理,仍可以获得接近自然界水本底的水,其 放射性活度约为0.5Bq/L。
另一方面,由于通过本发明方法的二级DTRO膜组件处理得到的二级清水已经非常干净,如果对其进行进一步的离子交换处理,所用的离子交换树脂可以长时间使用,一般使用2-3年后才需要更换,从而显著减少了废树脂的产生量,降低了整套工艺的处理成本。最终移出的废树脂可以与从第三级膜组件排放的浓缩液一起固化处置。
根据现有技术的一些DTRO膜组件水处理方法,随着水质要求提高来相应增加DTRO膜组件的级数。但是,在本发明的放射性废水处理方法中,绝不能单纯地为了追求水质提高而无限制地增加清水处理膜组件的级数,这是因为增加的清水处理膜组件同样也会增加浓缩液的量,而浓缩液总量的增加必然使得浓缩倍数降低,从而导致产生更多的废物需要固化处置。另外,如果增加浓水处理膜组件的级数,首先所增加级数的浓水处理膜组件的出水放射性浓度很高,回流不当会导致出水的放射性活度增加;其次生产工艺上难于控制并使得处理成本增加。必须基于去污因子和浓缩倍数的双重考虑,合理配置清水、浓水处理膜组件的级数。在本发明方法不包括精细处理步骤的一个实施方案中,去污因子可以为500至5000,并且浓缩倍数可以至少为25倍。可以将从第三级膜组件送出的浓缩级清水返回送入第一级膜组件进行再处理而不排放浓缩液,直至浓缩液的含盐量达到125g/L才予以排放。
本发明的方法优选三级DTRO膜组件,即两级串联清水处理膜组件和一级浓水处理膜组件,其中第三级膜组件排放的浓水可以达到DTRO膜组件浓水的最大值,增加浓缩级数并不能进一步提高浓缩倍数。
此外,现有技术教导DTRO膜组件尤其适用于高浓度污水的处理。但是,本发明人注意到原水含盐量升高,处理能耗也会相应增加,因此放射性废水在处理前的含盐量优选不超过5g/L。
本发明还提供一种用于本发明方法的放射性废水处理装置。图2A和图2B分别是根据本发明一个实施方案的放射性废水处理装置的结构示意图和实物图。在图2A和图2B中,放射性废水处理装置包括第一级碟管式反渗透膜组件1、第二级碟管式反渗透膜组件10和第三级碟管式反渗透膜 组件9以及用于提供放射性废水的供水泵8,其中第一级膜组件1的清水出口与第二级膜组件10的进口相连,第一级膜组件1的浓水出口与第三级膜组件9的进口相连;第二级膜组件10的浓水出口和第三级膜组件9的清水出口都与第一级膜组件1的进口相连。图中还示出了分别用于第一级、第二级和第三级碟管式反渗透膜组件的第一级高压泵7和循环泵4、第二级高压泵6和循环泵3以及第三级高压泵5和循环泵2。
本发明方法所用的碟管式反渗透(DTRO)膜组件是公知的,但现有技术中主要将其用于处理垃圾渗滤液。如上所述,由于放射性废水处理的特殊要求,并不能简单将现有的DTRO膜组件处理其它废水的方法和装置直接移植用来处理放射性废水,这也反向印证了现有技术为什么至今为止仍未能将DTRO膜组件用于处理放射性废水。
图3A和3B分别示出了本发明所用的碟管式膜组件的流道示意(工作原理)图和实物图。从图中可以看到,碟管式膜组件主要由过滤膜片2、导流盘5、中心拉杆、耐压套管6、两端法兰8各种密封件及联接螺栓等部件组成。把过滤膜片和导流盘叠放在一起,用中心拉杆和端盖法兰进行固定,然后置入耐压套管中,就形成一个碟管式膜组件。
如图3A所示,料液通过过滤膜片2堆与耐压套管6之间的间隙后经原水通道1进入底部导流盘5,被处理的液体以最短的距离快速流经过滤膜片2,然后以180°逆转到另一膜面,再从此流入到下一个过滤膜片,从而在膜表面形成由导流盘圆周到圆中心,再到圆周,再到圆中心的切向流过滤,浓缩液最后从进料端法兰8处流出。料液流经过滤膜的同时,透过液通过中心收集管7不断排出。浓缩液与透过液通过安装于导流盘上的O型垫圈3隔离。
供水泵、DTRO膜组件所用的高压泵和循环泵可以是本领域常用的各种泵,例如柱塞泵、离心泵等。但是,在本发明中,高压泵要满足高扬程、低流量的要求,而循环泵相反要满足低扬程、高流量的要求。
本发明放射性废水处理装置的操作步骤如下:首先启动原水供水泵;完全打开第一级膜组件的浓水出口阀,启动第一级高压泵和循环泵(变频控制),调节压力到2.5至7MPa(具体压力根据放射性原水的浓度确 定);完全打开第二级膜组件的浓水出口阀,启动第二级高压泵和循环泵(变频控制),调节压力到2.5至7MPa(具体压力根据放射性原水的浓度确定);最后完全打开第三级膜组件的浓水出口阀,启动第三级高压泵和循环泵(变频控制),调节压力到2.5至7MPa(具体压力根据放射性原水的浓度确定)。
下面借助实施例来举例说明本发明,但这些实施例绝不构成对本发明的限制。
实施例中所用装置如下:
Figure PCTCN2015070290-appb-000001
实施例1
启动原水供水泵,将10吨含盐量为5g/L、总β放射性活度为50000Bq/L(核电站和核设施放射性废水浓度可能达到的最大水平)的废水送入图2B所示装置进行处理。
完全打开第一级膜组件的浓水出口阀,启动第一级高压泵(变频控制,变频频率50Hz),延时3分钟启动第一级循环泵,调节第一级膜组件的浓水出口阀使得第一级高压泵的出口压力达到5.5MPa。完全打开第二级膜组件的浓水出口阀,启动第二级高压泵,延时3分钟启动第二级循环泵(变频控制,变频频率50Hz),调节第二级膜组件的浓水出口阀使得第二级高压泵的出口压力达到3.5MPa。完全打开第三级膜组件的浓水出口阀,启动第三级高压泵,延时3分钟启动第三级循环泵(变频控制,变频频率30Hz),调节第三级膜组件的浓水出口阀使得第三级高压泵的出口压力为7MPa。
经过处理,第一级膜组件排放的清水的总β放射性活度为500Bq/L,第二级膜组件排放的清水的放射性活度为10Bq/L,两级膜系统的去污因子为5000,需要进行水泥固化的浓缩液体积为0.4立方米(含盐量125g/L),由此整个工艺的放射性废水的浓缩倍数为25倍。
如果将第二级膜组件排放的清水送入离子交换器进行进一步处理,可以得到的清水总体积为9.6吨,并且最终清水的总β放射性活度为0.5Bq/L,由此整个工艺的去污因子为100000。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为1.2立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为12万元。
实施例2
按实施例1中所用的装置和操作条件处理10吨含盐量为5g/L、总β放射性活度为10000Bq/L的废水。
经过处理,第一级膜组件排放的清水的总β放射性活度为100Bq/L,第二级膜组件排放的清水的放射性活度为2Bq/L,两级膜系统的去污因子为5000,需要进行水泥固化的浓缩液体积为0.4立方米(含盐量125g/L),由此整个工艺的放射性废水的浓缩倍数为25倍。
如果将第二级膜组件排放的清水送入离子交换器进行进一步处理,可以得到的清水总体积为9.6吨,并且最终清水的总β放射性活度为 0.1Bq/L,由此整个工艺的去污因子为100000。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为1.2立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为12万元。
实施例3
按实施例1中所用的装置和操作条件处理10吨含盐量为5g/L、总β放射性活度为5000Bq/L的废水。
经过处理,第一级膜组件排放的清水的总β放射性活度为50Bq/L,第二级膜组件排放的清水的放射性活度为1Bq/L,两级膜系统的去污因子为5000,需要进行水泥固化的浓缩液体积为0.4立方米(含盐量125g/L),由此整个工艺的放射性废水的浓缩倍数为25倍。
如果将第二级膜组件排放的清水送入离子交换器进行进一步处理,可以得到的清水总体积为9.6吨,并且最终清水的总β放射性活度为0.05Bq/L,由此整个工艺的去污因子为100000。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为1.2立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为12万元。
实施例4
按实施例1中所用的装置和操作条件处理10吨含盐量为5g/L、总β放射性活度为1000Bq/L的废水。
经过处理,第一级膜组件排放的清水的总β放射性活度为10Bq/L,第二级膜组件排放的清水的放射性活度为0.2Bq/L,两级膜系统的去污因子为5000,需要进行水泥固化的浓缩液体积为0.4立方米(含盐量125g/L),由此整个工艺的放射性废水的浓缩倍数为25倍。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为1.2立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为12万元。
实施例5
启动原水供水泵,将10吨含盐量为1g/L、总β放射性活度为10000Bq/L的废水送入图2B所示装置进行处理。
完全打开第一级膜组件的浓水出口阀,启动第一级高压泵(变频控制,变频频率45Hz),延时3分钟启动第一级循环泵,调节第一级膜组件的浓水出口阀使得第一级高压泵的出口压力达到2.2MPa。完全打开第二级膜组件的浓水出口阀,启动第二级高压泵,延时3分钟启动第二级循环泵(变频控制,变频频率45Hz),调节第二级膜组件的浓水出口阀使得第二级高压泵的出口压力达到2.2MPa。完全打开第三级膜组件的浓水出口阀,启动第三级高压泵,延时3分钟启动第三级循环泵(变频控制,变频频率30Hz),调节第三级膜组件的浓水出口阀使得第三级高压泵的出口压力为5.5MPa。
经过处理,第一级膜组件排放的清水的总β放射性活度为200Bq/L,第二级膜组件排放的清水的放射性活度为4Bq/L,两级膜系统的去污因子为2500,需要进行水泥固化的浓缩液体积为0.2立方米(含盐量50g/L),由此整个工艺的放射性废水的浓缩倍数为50倍。
如果将第二级膜组件排放的清水送入离子交换器进行进一步处理,可以得到的清水总体积为9.8吨,并且最终清水的总β放射性活度为0.2Bq/L,由此整个工艺的去污因子为50000。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为0.6立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为6万元。
实施例6
按实施例5中所用的装置和操作条件处理10吨含盐量为1g/L、总β放射性活度为5000Bq/L的废水。
经过处理,第一级膜组件排放的清水的总β放射性活度为100Bq/L,第二级膜组件排放的清水的放射性活度为2Bq/L,两级膜系统的去污因子 为2500,需要进行水泥固化的浓缩液体积为0.2立方米(含盐量50g/L),由此整个工艺的放射性废水的浓缩倍数为50倍。
如果将第二级膜组件排放的清水送入离子交换器进行进一步处理,可以得到的清水总体积为9.8吨,并且最终清水的总β放射性活度为0.1Bq/L,由此整个工艺的去污因子为50000。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为0.6立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为6万元。
实施例7
按实施例5中所用的装置和操作条件处理10吨含盐量为1g/L、总β放射性活度为1000Bq/L的废水。
经过处理,第一级膜组件排放的清水的总β放射性活度为20Bq/L,第二级膜组件排放的清水的放射性活度为0.4Bq/L,两级膜系统的去污因子为2500,需要进行水泥固化的浓缩液体积为0.2立方米(含盐量50g/L),由此整个工艺的放射性废水的浓缩倍数为50倍。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为0.6立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为6万元。
实施例8
启动原水供水泵,将10吨含盐量为0.1g/L、总β放射性活度为5000Bq/L的废水送入图2B所示装置进行处理。
完全打开第一级膜组件的浓水出口阀,启动第一级高压泵(变频控制,变频频率40Hz),延时3分钟启动第一级循环泵,调节第一级膜组件的浓水出口阀使得第一级高压泵的出口压力达到2.2MPa。完全打开第二级膜组件的浓水出口阀,启动第二级高压泵,延时3分钟启动第二级循环泵(变频控制,变频频率40Hz),调节第二级膜组件的浓水出口阀使得第二级高压泵的出口压力达到2.2MPa。完全打开第三级膜组件的浓水出口阀, 启动第三级高压泵,延时3分钟启动第三级循环泵(变频控制,变频频率30Hz),调节第三级膜组件的浓水出口阀使得第三级高压泵的出口压力为3.5MPa。
经过处理,第一级膜组件排放的清水的总β放射性活度为125Bq/L,第二级膜组件排放的清水的放射性活度为10Bq/L,两级膜系统的去污因子为500,需要进行水泥固化的浓缩液体积为0.1立方米(含盐量10g/L),由此整个工艺的放射性废水的浓缩倍数为100倍。
如果将第二级膜组件排放的清水送入离子交换器进行进一步处理,可以得到的清水总体积为9.9吨,并且最终清水的总β放射性活度为0.5Bq/L,由此整个工艺的去污因子为10000。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为0.3立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为3万元。
实施例9
按实施例8中所用的装置和操作条件处理10吨含盐量为0.1g/L、总β放射性活度为1000Bq/L的废水。
经过处理,第一级膜组件排放的清水的总β放射性活度为25Bq/L,第二级膜组件排放的清水的放射性活度为2Bq/L,两级膜系统的去污因子为500,需要进行水泥固化的浓缩液体积为0.1立方米(含盐量10g/L),由此整个工艺的放射性废水的浓缩倍数为100倍。
如果将第二级膜组件排放的清水送入离子交换器进行进一步处理,可以得到的清水总体积为9.9吨,并且最终清水的总β放射性活度为0.1Bq/L,由此整个工艺的去污因子为10000。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为0.3立方米,固化体处置成本如果按10万元/立方米计算,则废液浓缩后的处置成本为3万元。
对比例1
根据与实施例5相同的方式处理10吨含盐量为1g/L、总β放射性活度为10000Bq/L的放射性废水,不同之处在于从第一级DTRO膜组件送出的浓水并不经过第三级DTRO膜组件进一步处理,而是直接作为浓缩液。
经过处理,各级出水的总β放射性活度如下:第一级膜组件200Bq/L,第二级膜组件4Bq/L,离子交换器0.2Bq/L;因此,第一级膜组件的去污因子为50,第二级膜组件的去污因子为50,整个工艺的去污因子为50000。
但是,该工艺处理后排放的清水总体积为9吨,需要进行水泥固化的浓缩液体积为1立方米,因此浓缩倍数为10倍。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为3立方米,固化体处置成本如果按10万元/立方米,则废液浓缩后的处置成本为30万元。显然,处理成本为实施例5的5倍。
对比例2
根据图4所示的流程图处理10吨含盐量为1g/L、总β放射性活度为10000Bq/L的放射性废水,其中4个DTRO膜组件两两串联构成两组第一级和第二级膜组件,这两组膜组件彼此并联,并且从这两组膜组件的第一级膜组件送出的浓水并不经过第三级DTRO膜组件进一步处理,而是直接作为浓缩液。
经过处理,各级出水的总β放射性活度如下:第一级膜组件200Bq/L,第二级膜组件4Bq/L,离子交换器0.2Bq/L;因此,第一级膜组件的去污因子为50,第二级膜组件的去污因子为50,整个工艺的去污因子为50000。
但是,该工艺处理后排放的清水总体积为9吨,需要进行水泥固化的浓缩液体积同样为1立方米,因此浓缩倍数为10倍。
鉴于水泥固化的增容比一般为3,则需要固化的废物体积为3立方米,固化体处置成本如果按10万元/立方米,则废液浓缩后的处置成本为30万元。显然,处理成本仍为实施例5的5倍。

Claims (14)

  1. 一种放射性废水处理方法,其特征在于将放射性废水通过碟管式反渗透膜组件进行处理,其中去污因子达至少500,并且浓缩倍数达至少25倍。
  2. 根据权利要求1所述的方法,其特征在于放射性废水依次通过第一级膜组件和第二级膜组件,得到第二级清水;从第一级膜组件送出的第一级浓水进入第三级膜组件,得到浓缩液。
  3. 根据权利要求2所述的方法,其特征在于从第二级膜组件送出的第二级浓水返回送入第一级膜组件。
  4. 根据权利要求2或3所述的方法,其特征在于从第三级膜组件送出的浓缩级清水返回送入第一级膜组件。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于如果从第二级膜组件送出的第二级清水的放射性活度大于1Bq/L,则将第二级清水送去精细处理,优选离子交换处理或电渗析处理。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于从第三级膜组件送出的浓缩级清水返回送入第一级膜组件进行再处理而不排放浓缩液,直至浓缩液的含盐量达到125g/L才予以排放。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于放射性废水在进料到碟管式反渗透膜组件之前,经过砂滤、超滤或pH值调节的预处理。
  8. 根据权利要求7所述的方法,其特征在于放射性废水在进料到膜组件之前将其pH值调节到6-8。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于放射性废水在处理前的含盐量不超过5g/L。
  10. 一种用于根据权利要求1至9中任一项所述方法的放射性废水处理装置,其包括第一级、第二级和第三级碟管式反渗透膜组件以及用于提供放射性废水的供水泵,其中第一级膜组件的清水出口与第二级膜组件的进口相连,第一级膜组件的浓水出口与第三级膜组件的进口相连。
  11. 根据权利要求10所述的装置,其特征在于第二级膜组件的浓水出口与第一级膜组件的进口相连。
  12. 根据权利要求10或11所述的装置,其特征在于第三级膜组件的清水出口与第一级膜组件的进口相连。
  13. 根据权利要求10至12中任一项所述的装置,其特征在于所述装置还包括分别用于第一级、第二级和第三级碟管式反渗透膜组件的第一级、第二级和第三级高压泵和循环泵。
  14. 根据权利要求10至13中任一项所述的装置,其特征在于所述装置还包括用于处理第二级清水的精细处理装置,优选离子交换器或电渗析器。
PCT/CN2015/070290 2014-01-09 2015-01-07 一种放射性废水处理的方法和装置 WO2015103983A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016549613A JP2017501421A (ja) 2014-01-09 2015-01-07 放射性廃水の処理方法及び装置
EP15734813.7A EP3018659A4 (en) 2014-01-09 2015-01-07 Method and apparatus for processing radioactive wastewater
US15/029,098 US10457573B2 (en) 2014-01-09 2015-01-07 Method and apparatus for processing radioactive wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410010846.3 2014-01-09
CN201410010846.3A CN103745759B (zh) 2014-01-09 2014-01-09 一种放射性废水处理的方法和装置

Publications (1)

Publication Number Publication Date
WO2015103983A1 true WO2015103983A1 (zh) 2015-07-16

Family

ID=50502772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070290 WO2015103983A1 (zh) 2014-01-09 2015-01-07 一种放射性废水处理的方法和装置

Country Status (5)

Country Link
US (1) US10457573B2 (zh)
EP (1) EP3018659A4 (zh)
JP (1) JP2017501421A (zh)
CN (2) CN106448787B (zh)
WO (1) WO2015103983A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368830A (zh) * 2018-11-20 2019-02-22 江苏爱特恩高分子材料有限公司 一种数字印刷废水的直接处理方法
CN115448485A (zh) * 2021-06-09 2022-12-09 北京科泰兴达高新技术有限公司 一种高浓度难降解有机废水处理系统

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448787B (zh) * 2014-01-09 2018-10-02 清华大学 一种放射性废水处理的方法和装置
CN103919272A (zh) * 2014-04-25 2014-07-16 安徽中烟再造烟叶科技有限责任公司 再造烟叶萃取液低温浓缩系统及其低温浓缩方法
CN105244068A (zh) * 2015-08-31 2016-01-13 中国核电工程有限公司 一种高盐含量放射性废液处理装置及方法
CN108285221B (zh) * 2015-12-23 2020-08-11 倍杰特集团股份有限公司 一种废水深度浓缩处理方法
CN105738189B (zh) * 2016-04-01 2018-08-10 北京辰安科技股份有限公司 一种放射性分析检测的浓缩处理装置及方法
CN106448788A (zh) * 2016-12-02 2017-02-22 北京科泰兴达高新技术有限公司 一种受放射性物质污染的水质深度净化系统
DE102017105004B4 (de) 2017-03-09 2019-04-04 Siempelkamp NIS Ingenieurgesellschaft mbH Aufbereitung einer borhaltigen Flüssigkeit
CN107512811B (zh) * 2017-07-31 2020-06-23 四川思达能环保科技有限公司 球形氢氧化镍生产工艺过程废水的处理方法
CN107720698A (zh) * 2017-11-03 2018-02-23 深圳市纯水号水处理科技有限公司 一种氢氟酸回收工艺
CN109754889A (zh) * 2017-11-06 2019-05-14 中广核工程有限公司 核电站放射性废液处理装置
CN109821420A (zh) * 2017-11-23 2019-05-31 神华集团有限责任公司 反渗透系统和反渗透水处理方法
CN108046463A (zh) * 2017-11-24 2018-05-18 北京欧美中科学技术研究院 节水的反渗透装置
CN110304689A (zh) * 2018-03-20 2019-10-08 国家能源投资集团有限责任公司 一种含盐水的反渗透处理方法和反渗透系统
CN110304690A (zh) * 2018-03-20 2019-10-08 国家能源投资集团有限责任公司 一种含盐水的反渗透处理方法和反渗透系统
CN110349689B (zh) * 2018-04-03 2021-09-24 清华大学 核电站放射性废液处理装置
CN110349690B (zh) * 2018-04-03 2021-09-21 清华大学 放射性废液处理方法及装置
CN110379532B (zh) * 2018-04-13 2023-08-25 清华大学 放射性废液处理方法及装置
CN109052752B (zh) * 2018-08-30 2021-04-27 常州大学 一种复合式垃圾渗滤液处理设备
CN109092065A (zh) * 2018-10-17 2018-12-28 成都泓润科技有限公司 一种大循环反渗透工艺脱出低分子量醇类的装置及方法
CN111346513B (zh) * 2018-12-20 2022-04-12 国家能源投资集团有限责任公司 含盐水的反渗透处理方法和反渗透系统
CN109444944B (zh) * 2018-12-21 2024-05-28 清华大学 水中氚的快速自动分析方法及装置
CN109867415B (zh) * 2019-03-27 2021-11-30 四川恒泰环境技术有限责任公司 一种节能半导体新材料砷化镓生产废水处理工艺
CN110064305A (zh) * 2019-05-31 2019-07-30 成都泓润科技有限公司 一种提高膜浓缩倍数和浓液浓度的装置及使用方法
CN110585928A (zh) * 2019-06-28 2019-12-20 苏州苏净环保工程有限公司 一种膜系统的多段内循环和冲洗清洗装置
CN110280138A (zh) * 2019-07-23 2019-09-27 费特膜(北京)科技有限公司 一种碟管式反渗透膜包元件
CN111681798B (zh) * 2020-04-30 2022-09-27 中国辐射防护研究院 一种小型核设施退役现场放射性废水处理装置
CN112221215A (zh) * 2020-09-29 2021-01-15 减一污泥处理技术(江苏)有限公司 一种利用玻璃滤料半渗透性分离垃圾渗滤液的方法
CN112340884A (zh) * 2020-11-06 2021-02-09 北京清核朝华科技有限公司 用于核电厂teu系统的新型放射性废液处理系统及方法
CN112960834A (zh) * 2021-02-08 2021-06-15 北京汲智科技有限公司 一种餐厨垃圾渗滤液的污水处理达标排放工艺
CN113012843A (zh) * 2021-03-11 2021-06-22 莱特莱德(上海)技术有限公司 一种处理放射性废水的系统和方法
CN113274880A (zh) * 2021-06-24 2021-08-20 厦门嘉戎技术股份有限公司 一种dtro组件膜片的改性工艺
CN113697904A (zh) * 2021-07-30 2021-11-26 广东碟中碟膜技术有限公司 一种方便更换膜片的dtro膜试验装置
CN115259464A (zh) * 2022-08-05 2022-11-01 嘉戎技术(北京)有限公司 集成式工业废水处理系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2878362Y (zh) * 2006-02-07 2007-03-14 北京天地人环保科技有限公司 碟管式反渗透技术处理垃圾渗滤液的设备
JP2008076054A (ja) * 2006-09-19 2008-04-03 Ebara Corp 放射性核種含有廃液処理方法及び装置
CN202164181U (zh) * 2011-07-14 2012-03-14 西安百衡伯仲复合材料有限公司 碟管式膜法水处理装置
WO2013179939A1 (ja) * 2012-05-29 2013-12-05 栗田工業株式会社 放射性ストロンチウム含有排水の処理方法及び処理装置
CN103745759A (zh) * 2014-01-09 2014-04-23 清华大学 一种放射性废水处理的方法和装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336118B2 (zh) * 1974-06-13 1978-09-30
JPS5343200U (zh) * 1976-09-17 1978-04-13
JPS5385299A (en) * 1977-01-07 1978-07-27 Hitachi Ltd Back osmotic treating method of radioactive waste washings
JPS5925633B2 (ja) 1978-09-20 1984-06-19 三菱重工業株式会社 排水の処理方法
JPS61116695A (ja) * 1984-11-12 1986-06-04 科学技術庁原子力局長 放射性ヨウ素含有水溶液の処理法
HU195967B (en) * 1985-05-13 1988-08-29 Tatabanyai Szenbanyak Process for recovering boric acid solution, reusable in atomic power station, from radioactive solutions of atomic power station
JPH0664187B2 (ja) * 1986-08-22 1994-08-22 科学技術庁原子力局長 放射性廃液の処理方法
JPH02143198A (ja) 1988-11-25 1990-06-01 Tokyo Electric Power Co Inc:The 廃液濃縮システムの運転方法
JP2989403B2 (ja) 1993-01-05 1999-12-13 三菱重工業株式会社 原子力発電所から排出される洗浄排水の処理方法
JPH08108048A (ja) * 1994-10-12 1996-04-30 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
JP3969221B2 (ja) * 2002-07-05 2007-09-05 栗田工業株式会社 脱イオン水の製造方法及び装置
JP5048239B2 (ja) * 2005-11-22 2012-10-17 株式会社マーフィード 浄水装置
JP2007203144A (ja) * 2006-01-31 2007-08-16 Kobelco Eco-Solutions Co Ltd 水処理方法及び水処理設備
CN101028958B (zh) * 2006-03-04 2010-10-13 林炳金 一种工业废水处理方法
US20110049054A1 (en) * 2007-09-20 2011-03-03 Verenium Corporation Wastewater treatment system
CN101229949B (zh) * 2007-12-19 2011-09-07 核工业理化工程研究院华核新技术开发公司 移动式放射性废水处理设备
CN201965936U (zh) * 2010-12-30 2011-09-07 核工业理化工程研究院华核新技术开发公司 具有三防功能的放射性污水应急处理系统
JP5712107B2 (ja) * 2011-10-27 2015-05-07 株式会社神鋼環境ソリューション 水処理方法及び水処理設備
CN102522134B (zh) * 2011-12-23 2014-08-20 核工业理化工程研究院华核新技术开发公司 一种将放射性污染水处理成饮用水的净化系统
CN102951741B (zh) * 2012-08-14 2014-09-24 上海晶宇环境工程有限公司 垃圾渗滤液深度处理工艺及专用设备
CN103177784B (zh) * 2013-03-28 2015-06-03 清华大学 一种处理放射性废水的方法
CN103466838B (zh) * 2013-09-23 2015-05-27 杭州天创环境科技股份有限公司 一种含二甲基甲酰胺废水精馏塔凝水的处理方法
CN103762004B (zh) * 2014-01-22 2016-06-08 清华大学 一种浓缩放射性废水的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2878362Y (zh) * 2006-02-07 2007-03-14 北京天地人环保科技有限公司 碟管式反渗透技术处理垃圾渗滤液的设备
JP2008076054A (ja) * 2006-09-19 2008-04-03 Ebara Corp 放射性核種含有廃液処理方法及び装置
CN202164181U (zh) * 2011-07-14 2012-03-14 西安百衡伯仲复合材料有限公司 碟管式膜法水处理装置
WO2013179939A1 (ja) * 2012-05-29 2013-12-05 栗田工業株式会社 放射性ストロンチウム含有排水の処理方法及び処理装置
CN103745759A (zh) * 2014-01-09 2014-04-23 清华大学 一种放射性废水处理的方法和装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LI, JUAN ET AL.: "Application and Characteristics of Two-stage DTRO in Small-scale Treatment of Waste Leachate", JOURNAL OF ANHUI AGRICULTURAL SCIENCES, vol. 39, no. 35, 31 December 2011 (2011-12-31), pages 21926 - 21928, XP008181996 *
PABBY, A.K.DR ET AL.: "Membrane Techniques for Treatment in Nuclear Waste Processing: Global Experience", MEMBRANE TECHNOLOGY, 30 November 2008 (2008-11-30), pages 9 - 13, XP025800186 *
WANG, JIANLONG ET AL.: "Research Advances in Radioactive Wastewater Treatment Using Membrane Process", ACTA SCIENTIAE CIRCUMSTANTIAE, vol. 33, no. 10, 31 October 2013 (2013-10-31), pages 2640 - 2652, XP008181978 *
ZHAO, JUAN: "Application of Reverse Osmosis in Radioactive Wastewater Treatment", PROGRESS REPORT ON CHINA NUCLEAR SCIENCE & TECHNOLOGY, vol. 1, 30 November 2009 (2009-11-30), pages 120 - 122, XP008182316 *
ZUO, JUNFANG ET AL.: "Application of DTRO Technology in the Treatment of Landfill Leachate", MEMBRANE SCIENCE AND TECHNOLOGY, vol. 31, no. 2, 30 April 2011 (2011-04-30), pages 110 - 115, XP008181982 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368830A (zh) * 2018-11-20 2019-02-22 江苏爱特恩高分子材料有限公司 一种数字印刷废水的直接处理方法
CN115448485A (zh) * 2021-06-09 2022-12-09 北京科泰兴达高新技术有限公司 一种高浓度难降解有机废水处理系统
CN115448485B (zh) * 2021-06-09 2023-08-01 北京科泰兴达高新技术有限公司 一种高浓度难降解有机废水处理系统

Also Published As

Publication number Publication date
CN106448787B (zh) 2018-10-02
JP2017501421A (ja) 2017-01-12
US10457573B2 (en) 2019-10-29
EP3018659A4 (en) 2017-03-01
CN103745759A (zh) 2014-04-23
EP3018659A1 (en) 2016-05-11
CN103745759B (zh) 2017-01-18
CN106448787A (zh) 2017-02-22
US20160251239A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2015103983A1 (zh) 一种放射性废水处理的方法和装置
JP2013215679A (ja) 超純水製造装置
CN102942265A (zh) 全膜法水处理一体化装置
JP2013126636A (ja) 逆浸透処理装置
CN102674590A (zh) 双膜法工艺处理重金属废水及回收利用方法
KR102119838B1 (ko) 초순수 제조장치
CN106548816A (zh) 一种组合式的放射性废水处理装置
CN110349689B (zh) 核电站放射性废液处理装置
CN106746057B (zh) 一种高产水率的锅炉给水处理方法及其装置
CN206529357U (zh) 一种高产水率的锅炉给水处理装置
JPH1147560A (ja) 加圧水型原子力発電所の2次系ライン水処理装置
CN112340884A (zh) 用于核电厂teu系统的新型放射性废液处理系统及方法
CN109987738A (zh) 一种含铀废液中铀回收工艺
RU2686074C1 (ru) Способ переработки жидких радиоактивных отходов
CN106517597A (zh) 一种电镀含镍废水的处理系统
CN207102346U (zh) 一种反渗透式污水处理装置
CN211570183U (zh) 一种垃圾渗滤液处理装置
KR101806144B1 (ko) 제어-삼투 및 역삼투를 이용한 담수화 시스템
CN203754515U (zh) 一种用于干熄焦发电循环水处理的双膜系统
CN210480932U (zh) 高浓度高色度高盐度难降解有机废水的分离浓缩设备
CN113012843A (zh) 一种处理放射性废水的系统和方法
CN206408003U (zh) 一种电镀含镍废水的处理系统
CN205687675U (zh) 反渗透膜苦咸水淡化系统
CN109809593B (zh) 适用于不同含盐量低水平放射性废水处理的设备及方法
CN111863302A (zh) 一种用于放射性废液深度净化处理装置和使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015734813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15029098

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016549613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE