WO2015099167A1 - Il-17aを標的とするワクチン - Google Patents

Il-17aを標的とするワクチン Download PDF

Info

Publication number
WO2015099167A1
WO2015099167A1 PCT/JP2014/084682 JP2014084682W WO2015099167A1 WO 2015099167 A1 WO2015099167 A1 WO 2015099167A1 JP 2014084682 W JP2014084682 W JP 2014084682W WO 2015099167 A1 WO2015099167 A1 WO 2015099167A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
polypeptide
vaccine
Prior art date
Application number
PCT/JP2014/084682
Other languages
English (en)
French (fr)
Inventor
弘 郡山
啓徳 中神
森下 竜一
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to AU2014370875A priority Critical patent/AU2014370875B2/en
Priority to CA2935046A priority patent/CA2935046C/en
Priority to US15/108,415 priority patent/US11421025B2/en
Priority to JP2015555069A priority patent/JP6164593B2/ja
Priority to CN201480075747.1A priority patent/CN106132433B/zh
Priority to EP14873679.6A priority patent/EP3088000A4/en
Priority to KR1020167020472A priority patent/KR101836756B1/ko
Publication of WO2015099167A1 publication Critical patent/WO2015099167A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to a vaccine targeting the IL-17A epitope.
  • SLE Systemic lupus erythematosus
  • SLE is an autoimmune disease that can affect the entire body from the scalp to the footpad, and is a chronic inflammatory disease in which various symptoms and multiple organs are damaged.
  • cytokines such as type 1 interferon are involved in the process, but details are unknown.
  • SLE patients are women of childbearing age, the relationship between female hormones and etiology is suspected.
  • black women are more prevalent in North America than white women, and a genetic predisposition is suspected, but the etiology remains unknown.
  • corticosteroids for treatment of SLE, corticosteroids, immunosuppressants, anti-cancer drugs such as cyclophosphamide, etc. are used. Although nonspecific immunosuppressive action can suppress SLE disease, There are problems such as being susceptible to infectious diseases due to a typical immunosuppressive action. Moreover, corticosteroids have side effects such as hypertension, diabetes, dyslipidemia, and depression, and cyclophosphamide has strong side effects such as bone marrow suppression, carcinogenicity, and infertility. The problem of infertility is particularly acute because many SLE patients are women of reproductive age. Under such circumstances, it is desired to elucidate the pathological condition in detail and to develop a molecule-specific treatment method with less side effects based on the pathogenesis.
  • Non-patent Document 1 the blood IL-17 concentration in SLE patients was significantly higher than that in the control group.
  • Non-patent Document 2 the blood concentration of IL-17 is increased, and when IL-17 neutralizing antibody is administered to the mice, the kidney lesions are Improvement was reported.
  • IL-17 is a cytokine secreted from Th17 cells that are immunocompetent cells, macrophages, neutrophils, etc., rheumatoid arthritis, inflammatory bowel disease (Crohn's disease, ulcerative colitis), multiple sclerosis, It has been revealed that in many autoimmune diseases such as psoriasis, it plays an important role in aggravating the pathology. Recently, it has been reported that anti-IL-17 antibody drugs show therapeutic effects on psoriasis patients (Non-patent Document 4). However, antibody drugs are very expensive, and autoantibodies against the antibody drugs themselves are produced in the course of continuous use, and problems such as loss of effectiveness (secondary ineffectiveness) have come to be known.
  • Non-patent Document 5 Non-patent Document 5
  • immunization of the full length also induces cellular immunity against IL-17, and cells that express IL-17 are attacked by cytotoxic T cells, and there is a risk that harmful side effects are strongly manifested.
  • cytotoxic T cells There is also a risk of producing antibodies that cross-react with other cytokines similar to IL-17.
  • a vaccine using only an epitope of a part of IL-17 having no homology with other proteins as an immunogen is desirable in terms of safety.
  • Non-patent Document 6 It was reported that two types of epitope vaccines for IL-17 were prepared and administered to inflammatory bowel disease model mice (Non-patent Document 6). However, in this report, the pathological condition was not improved in the vaccine administration group, but rather worsened, and inflammation of the large intestine and increased collagen deposition were observed. As described above, although there is a report on an epitope vaccine against IL-17, there is no report that the vaccine has shown a therapeutic effect for some diseases, as far as the applicant knows.
  • An object of the present invention is to provide a vaccine against IL-17A, and a therapeutic and / or prophylactic agent for a disease containing the vaccine, such as SLE, in which IL-17A is involved in aggravation of the disease state.
  • the present inventors have identified an amino acid site important for binding to the IL-17A receptor from the structure of IL-17A. Then, a part of the amino acid site was used as an antigen, and a polynucleotide encoding it was inserted into a vector encoding hepatitis B virus core antigen polypeptide to prepare a DNA vaccine.
  • this DNA vaccine was administered to SLE model mice, NZBWF1 mice, a high increase in antibody titer was observed, and an antibody that correctly recognizes IL-17A was produced by a binding experiment between the antibody and recombinant IL-17A. It was confirmed.
  • the present inventors can improve the pathology of colitis model mice, arthritis model mice, colon cancer transplant mice, and lung cancer transplant mice by administering the DNA vaccine or a peptide vaccine encoded by the DNA. It was confirmed. Surprisingly, the present inventors did not see any exacerbation of the pathological condition observed with the epitope vaccine of IL-17 reported in the past in the vaccine administration group found in the present invention. It was confirmed. Based on these findings, the present inventors have completed the present invention.
  • a vaccine for preventing or treating a disease involving IL-17A as an exacerbation factor including any of the following (1) to (3): (1) The amino acid sequence shown in SEQ ID NO: 1, the amino acid sequence shown in SEQ ID NO: 8, the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 1, or the non-human mammal corresponding to SEQ ID NO: 8 A polypeptide comprising an amino acid sequence derived from an animal, (2) The amino acid sequence shown in SEQ ID NO: 1, the amino acid sequence shown in SEQ ID NO: 8, the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 1, or the non-human mammal corresponding to SEQ ID NO: 8 In an amino acid sequence derived from an animal, a polypeptide comprising an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added, and (3) expressing the polypeptide of (1) or (2) above An expression vector
  • [1]-[6] vaccine (1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, and (2) an expression vector capable of expressing the polypeptide of (1) above, [8]
  • the vaccine according to [1]-[6], wherein the disease involving IL-17A as an exacerbation factor is rheumatoid arthritis including any of the following (1) to (3): (1) a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1; (2) the amino acid sequence shown in SEQ ID NO: 11 or the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 12; and (3) an expression vector capable of expressing the polypeptide of (1) or (2) above, [9]
  • a preventive or therapeutic agent for a disease in which IL-17A is involved as an exacerbation factor comprising an antibody that recognizes the following polypeptide (1) or (2) and inhibits the function of IL-17A: (1) The amino acid sequence shown in SEQ ID NO: 1, the amino acid sequence shown in SEQ ID NO:
  • the disease in which IL-17A is involved as an exacerbation factor is rheumatoid arthritis.
  • a prophylactic or therapeutic agent of [9]-[11], comprising the polypeptide [14] a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, [14-1] a polynucleotide encoding [14], I will provide a.
  • the vaccine of the present invention can be used for the treatment of diseases such as SLE in which IL-17A is involved as a disease-causing factor.
  • the figure shows the binding of recombinant IL-17A protein to antibodies from the serum of Balb / c mice immunized with IL-17A1 DNA vaccine (epitope sequence: RPSDYLNR) or IL-17A2 DNA vaccine.
  • Anti-IL-17A antibody was used as the primary antibody.
  • C) Anti-BSA antibody was used as the primary antibody. The increase of the antibody titer in the 6th week of the Balb / c mouse immunized with IL-17A1 DNA vaccine is shown. No1 to No4 primary antibodies (mouse antiserum) were diluted 10-fold and further diluted stepwise every 10-fold. No1: IL-17A1 No1 antisera, No2: IL-17A1 No2 antisera, No3: IL-17A1 No3 antisera, No4: IL-17A1 No4 antisera A) IL-17A1 DNA vaccine administration plan to NZBWF1 mice is shown.
  • the increase in antibody titer in the IL-17A1 DNA vaccine administration group is shown.
  • the figure shows the binding of antisera obtained from mice immunized with IL-17A1 DNA vaccine and BSA-IL-17A1 (RPSDYLNR) conjugate (No5 BSA conjugate) or mouse recombinant IL-17A (No5 rIL-17).
  • the primary antibody mouse antiserum was diluted 100 times and further diluted stepwise every 5 times.
  • NZBWF1 or MRL / lpr mice administered IL-17A1 DNA vaccine A) Urine protein (NZBWF1 mouse), B) Urinary MCP-1 concentration (pg / ml) (NZBWF1 mouse), C) Blood IL- 17A concentration (pg / ml) (NZBWF1 mouse), D) blood TNF- ⁇ concentration (pg / ml) (MRL / lpr mouse), E) blood IL-1 ⁇ concentration (pg / ml) (NZBWF1 mouse), F) Blood TNF- ⁇ concentration (pg / ml) (NZBWF1 mouse) is shown.
  • NZBWF1 mouse or MRL / lpr mouse after IL-17A1 DNA vaccine or Saline administration A) PAS staining photo (weakly enlarged), B) PAS stained photo (strongly enlarged), C) F4 / 80 shows photographs of immunostaining (NZBWF1 mice), D) Pictures of immunostaining of F4 / 80 (MRL / lpr mice).
  • mouth is shown.
  • the photograph of HE staining of the liver after administering IL-17A1 DNA vaccine or Saline to NZBWF1 mouse or MRL / lpr mouse is shown.
  • C57 BL / 6 mice administered with IL-17A1 DNA vaccine or Saline and inoculated with LLC cells B) body weight (g), C) tumor volume (mm 3 ), D) tumor 28 days after LLC cell inoculation Weight (mg), E) Photographic image of lung metastasis, F) Number of cancer lung metastasis (number), G) Number of cancer liver metastasis (number).
  • Antisera IL-17 Human obtained from a mouse immunized with a vaccine comprising a peptide comprising the human IL-17A1 epitope (SEQ ID NO: 1) or serum before vaccine administration (Preimmune) and BSA-human IL-17A1 Shows binding to the conjugate.
  • the primary antibody (mouse antiserum) was diluted 10 times and further diluted stepwise every 5 times.
  • the primary antibody (mouse antiserum) was diluted 10 times and further diluted stepwise every 5 times.
  • the primary antibody (mouse antiserum) was diluted 10 times and further diluted stepwise every 5 times. Binding of antiserum obtained from a mouse immunized with a vaccine comprising a peptide comprising the human IL-17A2 epitope (SEQ ID NO: 8) and BSA-human IL-17A2 conjugate (No AF975), or human IL-17A3 The binding between antisera obtained from a mouse immunized with a vaccine containing a peptide consisting of an epitope (SEQ ID NO: 9) and a BSA-human IL-17A3 conjugate (No AF976) is shown. The primary antibody (mouse antiserum) was diluted 10 times and further diluted stepwise every 5 times.
  • Vaccine containing peptide consisting of human IL-17A4 epitope (SEQ ID NO: 11), vaccine containing DNA encoding human IL-17A5 epitope (SEQ ID NO: 12), DNA encoding human IL-17A6 epitope (SDY)
  • SEQ ID NO: 11 The increase in antibody titer in the sixth week of Balb / c mice immunized with a vaccine containing or a vaccine containing DNA encoding the human IL-17A7 epitope (DYY) is shown.
  • Each primary antibody (mouse antiserum) was diluted 10 times and further diluted stepwise every 5 times.
  • A) A plan for administration of various IL-17A peptide vaccines and Type II collagen to DBA / 1 mice is shown.
  • IL-17 (-) control IL-17 non-added, IL-17 only: recombinant human IL-17A added, IL-17 + antisera: recombinant human IL-17A and anti-human IL-17A1 mouse antibody, AIL-17 + antisera: Recombinant human IL-17A and non-immune mouse antibody
  • the present invention provides a vaccine against IL-17A, and a therapeutic and / or prophylactic agent for a disease containing the vaccine, such as SLE, in which IL-17A is involved as an aggravating factor of a disease state.
  • the vaccine against IL-17A of the present invention (also referred to as epitope vaccine) is selected from the group consisting of the following (1) to (3).
  • the amino acid sequence shown in SEQ ID NO: 1, the amino acid sequence shown in SEQ ID NO: 8, the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 1, or the non-human mammal corresponding to SEQ ID NO: 8 A polypeptide comprising an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added in an amino acid sequence derived from an animal, (3) An expression vector capable of expressing the polypeptide of (1) or (2) above.
  • the vaccine against IL-17A of the present invention is preferably selected from the group consisting of the following (1 ′) to (3 ′).
  • (3 ′) An expression vector capable of expressing the polypeptide of (1 ′) or (2 ′).
  • the most preferred vaccine against IL-17A of the present invention is selected from the group consisting of the following (1 ′′) or (2 ′′).
  • the disease in which IL-17A is involved as an exacerbation factor is not particularly limited as long as the disease state is exacerbated by IL-17A.
  • SLE inflammatory bowel disease (ulcerative colitis, Crohn's disease), psoriasis, rheumatoid arthritis, multiple sclerosis, encephalomyelitis, tumor (lung cancer (non-small cell lung cancer is preferred among them), colon cancer, IL-17A, including blood cell tumors), arteriosclerosis, chronic inflammatory diseases, allergic diseases (delayed type hypersensitivity, contact type hypersensitivity, etc.)
  • SLE, inflammatory bowel disease, rheumatoid arthritis, lung cancer, colon cancer, psoriasis and multiple sclerosis are preferable, and SLE, inflammatory bowel disease, rheumatoid arthritis, lung cancer and colon cancer are most preferable.
  • the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 or the DNA encoding the polypeptide has therapeutic effects on SLE, inflammatory bowel disease, rheumatoid arthritis, lung cancer, and colon cancer. Indicated.
  • the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 it encodes the amino acid sequence shown in SEQ ID NO: 11, or the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 12, or the polypeptide DNA also showed a therapeutic effect on rheumatoid arthritis. Exacerbation means that the condition further deteriorates, and the degree of deterioration does not matter.
  • the subject of administration of the vaccine of the present invention is any mammal, and is a mammal that has developed a disease in which IL-17A is involved in the progression of the disease state or a mammal that is likely to develop it.
  • Mammals include, for example, rodents such as mice, rats, hamsters, guinea pigs, and laboratory animals such as rabbits, pets such as dogs and cats, livestock such as cows, pigs, goats, horses and sheep, humans, monkeys, Examples include primates such as orangutans and chimpanzees, preferably humans.
  • the subject of administration may or may not be receiving treatment.
  • the substance contained in the vaccine is a substance derived from an administration subject (that is, when administered to a human, the vaccine is a human-derived substance, and when administered to a mouse, The vaccine is preferably a mouse-derived substance).
  • Polypeptide of the above (1) (or (1 ′), (1 ′′), the same applies hereinafter) included in the vaccine of the present invention (hereinafter, the above (2) (or (2 ′), the same applies hereinafter)) (Also referred to as a polypeptide of the present invention) is a partial amino acid sequence of IL-17A.
  • the amino acid sequence at positions 62 to 69 of human IL-17A is SEQ ID NO: 1
  • the corresponding amino acid sequence at positions 65 to 72 of mouse IL-17A is SEQ ID NO: 5.
  • Each of these is encoded by a nucleotide sequence represented by SEQ ID NO: 2, SEQ ID NO: 6, for example.
  • the amino acid sequence of human IL-17A at positions 102 to 118 is SEQ ID NO: 8, and the corresponding amino acid sequence at positions 105 to 121 of mouse IL-17A is SEQ ID NO: 10.
  • Each of these is encoded, for example, by the nucleotide sequence represented by SEQ ID NO: 13 and SEQ ID NO: 14.
  • SEQ ID NO: 8 As an amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 1 (SEQ ID NO: 8), the sequence information disclosed in SEQ ID NO: 1 (SEQ ID NO: 8) in this specification, a known sequence database Etc. can be used to design appropriate primers and probes, and can be easily obtained using ordinary genetic engineering techniques such as RT-PCR or plaque hybridization.
  • the polypeptide of (2) above contained in the vaccine of the present invention has one or several (preferably 1 to several (2 to 5)) amino acids deleted or substituted in the partial sequence of the IL-17A amino acid sequence.
  • Amino acid sequence inserted or added Such a polypeptide lacks one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence represented by SEQ ID NO: 1 (SEQ ID NO: 8) in humans.
  • Amino acid sequences that are deleted, substituted, inserted or added are also included.
  • As the amino acid sequence for example, (1) one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence represented by SEQ ID NO: 1 (SEQ ID NO: 8) are deleted.
  • the amino acid sequence contained in the polypeptide of (2) above is one or several (preferably 1 to several) amino acid sequences derived from a non-human mammal corresponding to SEQ ID NO: 1 (SEQ ID NO: 8).
  • An amino acid sequence in which several (2 to 5) amino acids have been deleted, substituted, inserted or added is also preferred.
  • such a polypeptide lacks one or several amino acids (preferably 1 to several (2 to 5)) in the amino acid sequence represented by SEQ ID NO: 5 (SEQ ID NO: 10). Amino acid sequences that are deleted, substituted, inserted or added are also included.
  • amino acid sequence for example, (1) one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence shown in SEQ ID NO: 5 (SEQ ID NO: 10) are deleted. (2) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids are added to the amino acid sequence shown in SEQ ID NO: 5 (SEQ ID NO: 10); 3) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids are inserted into the amino acid sequence shown in SEQ ID NO: 5 (SEQ ID NO: 10), (4) SEQ ID NO: An amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence shown in 5 (SEQ ID NO: 10) are substituted with other amino acids, or (5) the above ( An amino acid sequence in which mutations 1) to (4) are combined (in this case, Sum, one or several (preferably 1 to several (2 to 5))) are included.
  • amino acid residue substitution examples include conservative amino acid substitution.
  • Conservative amino acid substitution refers to substitution of a specific amino acid with an amino acid having a side chain having the same properties as the side chain of the amino acid. Specifically, in a conservative amino acid substitution, a particular amino acid is replaced with another amino acid belonging to the same group as the amino acid.
  • Groups of amino acids having side chains of similar nature are known in the art. For example, such amino acid groups include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having neutral side chains.
  • An amino acid having a neutral side chain further includes amino acids having a polar side chain (for example, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), and amino acids having a nonpolar side chain (for example, alanine, Valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan).
  • amino acids having aromatic side chains for example, phenylalanine, tryptophan, tyrosine
  • amino acids having side chains including hydroxyl groups for example, alcoholic hydroxyl groups, phenolic hydroxyl groups) (for example, serine, threonine, Tyrosine) and the like.
  • “Deletion of amino acid residue” includes, for example, selecting and deleting an arbitrary amino acid residue from the amino acid sequence represented by SEQ ID NO: 1.
  • Examples of such an amino acid sequence include SEQ ID NO: 11, SEQ ID NO: 12, SDY or DYY, and preferably SEQ ID NO: 11 and SEQ ID NO: 12.
  • SEQ ID NO: 15 SEQ ID NO: 16, for example.
  • an amino acid residue is inserted or added into the amino acid sequence represented by SEQ ID NO: 1, at the N-terminal side or C-terminal side.
  • SEQ ID NO: 1 1 to 2 residues of the basic amino acid arginine (Arg) or lysine (Lys) may be added to the N-terminal side or C-terminal side of the amino acid sequence.
  • the polypeptide of the present invention may contain an additional amino acid. Such amino acid addition is permissible as long as the polypeptide induces a specific immune response against IL-17A.
  • the amino acid sequence to be added is not particularly limited, and examples thereof include a tag for facilitating detection and purification of the polypeptide. Tags include Flag tag, histidine tag, c-Myc tag, HA tag, AU1 tag, GST tag, MBP tag, fluorescent protein tag (eg, GFP, YFP, RFP, CFP, BFP, etc.), immunoglobulin Fc tag, etc. Can be illustrated.
  • the position to which the amino acid sequence is added is the N-terminus and / or C-terminus of the polypeptide of the present invention.
  • the amino acids used in the polypeptide of the present invention include L-form, D-form and DL-form, but it is usually preferred to be L-form.
  • These polypeptides can be synthesized by an ordinary polypeptide synthesis method and used in the present invention, but in the present invention, the production method, synthesis method, procurement method, etc. are not particularly limited.
  • a polynucleotide (DNA or RNA, preferably DNA encoding the polypeptide of (1) or (2) above ) Is functionally linked downstream of a promoter capable of exerting promoter activity in mammalian cells to be administered. That is, the expression vector (3) can express the polypeptide (1) or (2) as a transcription product under the control of a promoter.
  • the expression vector of (3) is administered to a mammal, and the polypeptide of (1) or (2) is produced in the mammal, and the mammal is specific for the polypeptide of (1) or (2). An immune response is induced.
  • the promoter used is not particularly limited as long as it can function in the cells of the mammal to be administered, and polI promoter, polII promoter, polIII promoter, and the like can be used.
  • SV40-derived early promoter, viral promoter such as cytomegalovirus (CMV), mammalian constituent protein gene promoter such as ⁇ -actin gene promoter, and the like are used.
  • a transcription termination signal that is, a terminator region is contained downstream of the polynucleotide encoding the above-described polypeptide (1) or (2).
  • a selection marker gene for selecting transformed cells a gene that imparts resistance to drugs such as tetracycline, ampicillin, and kanamycin, a gene that complements an auxotrophic mutation, and the like may further be included.
  • the type of vector used for the expression vector is not particularly limited, but examples of a vector suitable for administration to mammals such as humans include viral vectors and plasmid vectors.
  • examples of viral vectors include retroviruses, adenoviruses, adeno-associated viruses, and the like.
  • a plasmid vector is preferably used.
  • an expression vector containing a polynucleotide encoding a hepatitis B virus core hereinafter referred to as HBc
  • HBc hepatitis B virus core
  • HBc has the property of self-assembling and becoming spherical, and the IL-17A epitope can be stably presented outside the core particle formed by self-assembly while maintaining its structure.
  • the HBc and IL-17A epitopes may be linked directly by covalent bonds or may be linked via a spacer.
  • the spacer is only required to be stably presented on the outside of the core particle formed by self-assembly of HBc while maintaining the structure of the IL-17A epitope, and examples thereof include IT, GAT, CGG, It is not limited to these.
  • plasmid vectors containing the sequence include, but are not limited to, pCAGGS, pCR-X8, pcDNA3.1, pZeoSV, and pBK-CMV. More preferably, a pcDNA3.1-HBc vector is mentioned. In this vector, a spacer is inserted between the 240th and 241st bases of a polynucleotide encoding HBc corresponding to the 80th and 81st amino acids of HBc.
  • nucleotide sequence encoding the polypeptide of (1) or (2) above is represented by nucleotide number: 246 and nucleotide number: An expression vector comprising a nucleotide sequence inserted between 247.
  • the vaccine of the present invention can be provided as a pharmaceutical composition containing any carrier, for example, a pharmaceutically acceptable carrier, in addition to the polypeptide of (1) or (2) or the expression vector of (3).
  • Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolide, dispersants such as surfactants, water, Examples include, but are not limited to, diluents such as physiological saline and base wax.
  • the vaccine of the present invention may further contain a nucleic acid introduction reagent in order to promote introduction of the expression vector into cells.
  • a viral vector is used as an expression vector
  • retronectin, fibronectin, polybrene or the like can be used as a gene introduction reagent.
  • a plasmid vector is used as an expression vector, lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, poly (ethyleneimine) (PEI), etc. Cationic lipids can be used.
  • the vaccine of the present invention may further contain a carrier protein in order to increase the immunogenicity of the polypeptide encoded by the polypeptide of (1) or (2) or the expression vector of (3).
  • a carrier protein is a substance that imparts immunogenicity by binding to a molecule that is not immunogenic due to its low molecular weight, and is known in the art. Examples of carrier proteins include bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), squash hemocyanin (KLH), thyroglobulin (TG), immunoglobulin and the like.
  • BSA bovine serum albumin
  • RSA rabbit serum albumin
  • OVA ovalbumin
  • KLH squash hemocyanin
  • TG thyroglobulin
  • immunoglobulin immunoglobulin and the like.
  • a polynucleotide encoding the carrier protein may be linked to the polynucleotide encoding the polypeptide of (1) or (2).
  • the vaccine of the present invention may further contain an adjuvant that is pharmaceutically acceptable and compatible with the active ingredient.
  • adjuvants are generally substances that non-specifically enhance the host immune response, and a number of different adjuvants are known in the art. Examples of adjuvants include, but are not limited to: complete Freund's adjuvant, incomplete Freund's adjuvant, aluminum hydroxide, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP) N-acetyl-normuryl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2- (1'-2'-dipalmitoyl -Sn-glycero-3-hydroxyphosphoryloxy) -ethylamine (MTP-PE), Quill A (registered trademark), lysolecithin, sap
  • the vaccine of the present invention can be administered to mammals orally or parenterally. Since polypeptides and expression vectors can be degraded in the stomach, they are preferably administered parenterally.
  • Preparations suitable for oral administration include liquids, capsules, sachets, tablets, suspensions, emulsions and the like.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants. Further, a buffer solution, an antibacterial agent, an isotonic agent and the like may be contained.
  • aqueous and non-aqueous sterile suspensions can be mentioned, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
  • the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
  • the content of the active ingredient in the pharmaceutical composition is usually about 0.1 to 100% by weight, preferably about 1 to 99% by weight, and more preferably about 10 to 90% by weight of the whole pharmaceutical composition.
  • the dose of the vaccine of the present invention varies depending on the subject to be administered, the administration method, the dosage form, etc., but when the active ingredient is the polypeptide of (1) or (2) above, usually one polypeptide per adult is used. In the range of 1 ⁇ g to 1000 ⁇ g per dose, preferably in the range of 20 ⁇ g to 100 ⁇ g, usually 2 to 3 times over 4 to 12 weeks. If the antibody titer decreases, add once each time .
  • the expression vector per adult is usually in the range of 1 ⁇ g to 1000 ⁇ g, preferably in the range of 20 ⁇ g to 100 ⁇ g, usually for 4 to 12 weeks. Administer 2 to 3 times. If the antibody titer decreases, add 1 dose each time.
  • a specific immune response (specific antibody production, specific T cell proliferation, etc.) against IL-17A is induced, and the mammal is neutralizing antibody against IL-17A. And the function of IL-17A is inhibited, so that a preventive or therapeutic effect for a disease associated with IL-17A as an exacerbation factor is exhibited.
  • the present invention provides a kit comprising one or more containers including one or more components of the vaccine of the present invention. Even with the kit of the present invention, it is possible to prevent diseases associated with IL-17 as an exacerbation factor, or to treat or reduce the symptoms.
  • IL-17A neutralizing antibody for prevention or treatment of diseases associated with IL-17A as an exacerbation factor
  • the present invention recognizes the following polypeptide (1) or (2) and inhibits the function of IL-17A And a preventive or therapeutic agent for a disease associated with IL-17A as an exacerbation factor (preventive or therapeutic agent of the present invention).
  • the amino acid sequence shown in SEQ ID NO: 1, the amino acid sequence shown in SEQ ID NO: 8, the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 1, or the non-human mammal corresponding to SEQ ID NO: 8 A polypeptide comprising an amino acid sequence derived from an animal; (2) The amino acid sequence shown in SEQ ID NO: 1, the amino acid sequence shown in SEQ ID NO: 8, the amino acid sequence derived from a non-human mammal corresponding to SEQ ID NO: 1, or the non-human mammal corresponding to SEQ ID NO: 8 A polypeptide comprising an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added in an amino acid sequence derived from an animal.
  • the preventive or therapeutic agent of the invention preferably contains an antibody that recognizes the following polypeptide (1 ′) or (2 ′) and inhibits the function of IL-17A.
  • (1 ′) a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1, or the amino acid sequence shown in SEQ ID NO: 8;
  • (2 ′) A polypeptide comprising the amino acid sequence represented by SEQ ID NO: 11 or the amino acid sequence represented by SEQ ID NO: 12.
  • the most preferred preventive or therapeutic agent of the invention includes (1 ′′) an antibody that recognizes a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 and inhibits the function of IL-17A.
  • IL-17A can be an effective preventive and / or therapeutic means for diseases associated with exacerbations. That is, administration of the antibody can be expected to have a therapeutic effect on a patient who has developed a disease associated with IL-17A as an exacerbation factor, and a preventive effect on a subject who may develop the disease.
  • IL-17A neutralizing antibody of the present invention can be used for the prevention and / or treatment of colorectal cancer.
  • the antibodies of the present invention natural antibodies such as polyclonal antibodies and monoclonal antibodies, chimeric mice that can be produced using transgenic mice and gene recombination techniques, humanized and single chain antibodies, and human antibody production genes are introduced. And human antibodies prepared by mouse, phage display, etc., and fragments thereof.
  • the antibody of the present invention is not particularly limited as long as it recognizes the polypeptide of the present invention and inhibits the function of IL-17A, but is preferably a monoclonal antibody from the viewpoint of specificity to IL-17A.
  • the antibody of the present invention is preferably a humanized antibody or a human antibody.
  • the above antibody fragment means a partial region of the above-described antibody. Specifically, for example, an antibody fragment containing F (ab ′) 2 , Fab ′, Fab, Fc region, Fv (variable fragment of antibody) SFv, dsFv (disulphide stabilized Fv), dAb (single domain antibody) and the like (Exp. Opin. Ther. Patents, Vol. 6, No. 5, p. 441-456, 1996).
  • the above-mentioned humanized antibody refers to an antibody produced using a gene recombination technique in which only the antigen recognition site is derived from a non-human gene and the remaining site is derived from a human gene.
  • the human antibody is a human antibody produced by a transgenic mouse into which a human antibody-producing gene has been introduced (eg, TransChromo Mouse (trademark)), human B lymphocyte mRNA, VH and VL genes derived from the genome,
  • the class of the antibody is not particularly limited, and the antibody of the present invention includes an antibody having any isotype such as IgG, IgM, IgA, IgD, or IgE.
  • IgG or IgM is preferable, and IgG is more preferable in consideration of easiness of antibody purification and the like.
  • a polyclonal antibody or monoclonal antibody can be produced by a method known per se. That is, the immunogen (polypeptide of the present invention) is optionally combined with Freund's Adjuvant in mammals, for example, polyclonal antibodies, mouse, rat, hamster, guinea pig, rabbit, cat, dog, pig. Immunize mice, rats, hamsters, guinea pigs, goats, horses or rabbits. In the case of a monoclonal antibody, mice, rats, hamsters and the like are immunized by the same method.
  • the polypeptide of the present invention can be used as an immunogen as it is, but may be immunized as a complex with a high molecular compound (eg, carrier protein) having a molecular weight of 10,000 or more.
  • a high molecular compound eg, carrier protein
  • a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1 is synthesized according to the method described above, and bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), scallop hemocyanin (KLH) ),
  • a carrier protein such as thyroglobulin (TG) or immunoglobulin may be formed and used as an immunogen.
  • 1 to 2 preferably 1 amino acid can be added to the polypeptide of the present invention.
  • the position of the added amino acid may be any position of the polypeptide and is not particularly limited, but the N-terminal or C-terminal of the polypeptide is preferable.
  • any method known per se can be applied as long as the antigenicity of the polypeptide of the present invention can be maintained.
  • a cysteine residue can be introduced into the polypeptide of the present invention and bound to the amino group of the polymer compound (carrier protein) via the SH group that is the side chain of the cysteine (MBS method).
  • amino groups such as ⁇ -amino group and ⁇ -amino group of lysine residues of proteins can be bonded to each other (glutaraldehyde method).
  • the polyclonal antibody can be produced as follows. That is, the immunogen is 1 to 3 in the mouse, rat, hamster, guinea pig, goat, horse or rabbit, preferably goat, horse or rabbit, more preferably rabbit subcutaneously, intramuscularly, intravenously, in a food pad or intraperitoneally. Immunization is given by several injections. Usually, immunization is performed 1 to 5 times about every 1 to 14 days from the initial immunization, and serum is obtained from the immunized mammal about 1 to 5 days after the final immunization.
  • serum itself can be used as a polyclonal antibody, ultrafiltration, ammonium sulfate fractionation, Euglobulin precipitation method, caproic acid method, caprylic acid method, ion exchange chromatography (DEAE or DE52, etc.), anti-immunoglobulin column
  • affinity column chromatography using a protein A / G column, a column to which an immunogen is crosslinked, or the like.
  • Examples of the method for producing a monoclonal antibody include the following methods. First, a hybridoma is prepared from the antibody-producing cell obtained from the immunized animal and a myeloma cell (myeloma cell) having no autoantibody-producing ability, and the hybridoma is cloned. That is, using a culture supernatant of a hybridoma as a specimen, a monoclonal antibody that exhibits specific affinity for the peptide of the present invention used for immunization of mammals and does not cross-react with a carrier protein is produced by immunological techniques. Select a clone. Next, an antibody can be produced from the culture supernatant of the hybridoma by a method known per se.
  • a monoclonal antibody can be produced as follows. That is, the immunogen can be subcutaneous, intramuscular, intravenous in mice, rats, or hamsters (including transgenic animals created to produce antibodies from other animals such as human antibody-producing transgenic mice). Immunization is carried out by injection or implantation in a food pad or abdominal cavity. Usually, immunization is carried out 1 to 4 times about every 1 to 14 days from the first immunization, and antibody-producing cells are obtained from the spleen of the mammal immunized about 1 to 5 days after the final immunization.
  • a hybridoma (fusion cell) secreting a monoclonal antibody can be prepared according to the method of Köhler and Milstein et al. (Nature, Vol. 256, p.495-497, 1975) and a modification method according thereto. That is, antibody-producing cells contained in the spleen, lymph nodes, bone marrow, tonsils, etc., preferably from the spleen obtained from the immunized mammal as described above, and preferably mouse, rat, guinea pig, hamster, rabbit or human
  • a hybridoma is obtained by cell fusion with a myeloma cell having no autoantibody-producing ability derived from mammals such as mouse, rat or human.
  • myeloma cells used for cell fusion include mouse-derived myeloma P3 / X63-AG8.653 (653; ATCC No. CRL1580), P3 / NSI / 1-Ag4-1 (NS-1), P3 / X63- Ag8.
  • human-derived myeloma U-266AR1, GM1500-6TG-A1-2, UC729-6, CEM-AGR, D1R11 or CEM-T15 examples of myeloma cells used for cell fusion.
  • the obtained hybridomas are cultured in, for example, a microtiter plate, and the culture supernatants of wells in which proliferation has been observed are used in the above-described immunization.
  • the reactivity with respect to a peptide and the reactivity with respect to the carrier protein of the said supernatant can be performed by measuring and comparing by immunoassay methods, such as ELISA, for example.
  • the hybridoma cloned by screening is cultured using a medium (for example, DMEM containing 10% fetal calf serum). And the centrifugation supernatant of the culture solution can be used as a monoclonal antibody solution.
  • a medium for example, DMEM containing 10% fetal calf serum
  • the centrifugation supernatant of the culture solution can be used as a monoclonal antibody solution.
  • ascites can be generated in the animal, and the ascites obtained from the animal can be used as a monoclonal antibody solution.
  • the monoclonal antibody is preferably isolated and / or purified in the same manner as the polyclonal antibody described above.
  • the chimera antibody is disclosed in JP-B-3-73280 and the like
  • the humanized antibody is described in, for example, JP-T-4-506458 and JP-A-62-296890
  • the human antibody is, for example, Nature Genetics, Vol.15, p.146-156, 1997, Nature Genetics, Vol.7, p.13-21, 1994, JP-T-4-504365, International Publication No.94 / 25585, Nature, Vol.368, p.856-859, 1994, Japanese translation of PCT publication No. 6-500263, etc.
  • Antibody production by phage display can be performed, for example, by collecting and concentrating phage having affinity for an antigen by biopanning from a phage library prepared for human antibody screening. Etc. can be easily obtained. In this case, it is preferable to screen an antibody library using the polypeptide of the present invention as an antigen.
  • preferred antibody libraries and antibody screening methods see Science, 228: 4075, p.1315-1317, 1985, Nature, 348, p.552-554, 1990, Curr.ProteineptPept.Sci .; 1 (2) , Pp.155-169, 2000, WO 01/062907, and the like.
  • the antibody fragment thus obtained may be used, or the antibody may be prepared using DNA possessed by the phage.
  • the compounding amount of the antibody contained in the preventive or therapeutic agent of the present invention is not particularly limited as long as the above effects are exhibited, but usually 0.001 to 90% by weight of the entire preventive or therapeutic agent of the present invention. It is preferably 0.005 to 50% by weight, more preferably 0.01 to 10% by weight.
  • the preventive or therapeutic agent of the present invention may contain a pharmaceutically acceptable carrier in addition to the antibody which is an active ingredient.
  • a carrier usually used in the pharmaceutical field can be used.
  • excipients such as sucrose, starch, mannitol, sorbit, lactose, glucose, calcium phosphate, calcium carbonate, sodium benzoate, sulfite Preservatives such as sodium hydrogen, methylparaben, propylparaben, stabilizers such as citric acid, sodium citrate, acetic acid, suspensions such as methylcellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, water, physiological Examples include diluents such as saline, base waxes such as glycerin and polyethylene glycol, but are not limited thereto.
  • Examples of the dosage form of the preventive or therapeutic agent of the present invention include, but are not limited to, liquids and injection preparations.
  • the preventive or therapeutic agent of the present invention may be a controlled-release preparation such as an immediate-release preparation or a sustained-release preparation. Since an antibody is generally soluble in an aqueous solvent, it can be easily absorbed regardless of the dosage form. Furthermore, the solubility of the antibody can be increased by a method known per se.
  • the preventive or therapeutic agent of the present invention that can be used for the prevention, treatment or alleviation of diseases associated with IL-17A as an exacerbation factor uses the antibody as an active ingredient according to means known per se as a pharmaceutical preparation method. Can be manufactured.
  • the preventive or therapeutic agent of the present invention suitable for systemic administration can be produced by dissolving an effective amount of the antibody of the present invention in an aqueous or non-aqueous isotonic sterile injection solution (eg, injection preparation). it can.
  • the antibody of the present invention may be produced by lyophilizing (eg, lyophilized preparation) and dissolving it in an aqueous or non-aqueous isotonic sterile diluent.
  • the preventive or therapeutic agent of the present invention suitable for local administration can be produced by dissolving the antibody of the present invention in a diluent such as water or physiological saline (eg, liquid).
  • the liquid can also be used by inhalation therapy to the bronchi, lungs, etc. using a nebulizer.
  • These agents may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like.
  • These preventive or therapeutic agents of the present invention can be enclosed in a container in unit doses or multiple doses, such as ampoules and vials.
  • the dose of the prophylactic or therapeutic agent of the present invention can be appropriately set according to the activity, type or combination amount of the antibody contained as an active ingredient, administration subject, administration route, age and weight of the administration subject, etc.
  • the dose (effective amount) per day for an adult (body weight 60 kg) is 0.1 mg to 1000 mg, preferably 0.1 mg to 500 mg, more preferably 0.1 mg to 300 mg as the amount of antibody.
  • the prophylactic or therapeutic agent of the present invention may be administered once or divided into several times as needed per day, or may be administered in several days.
  • the preventive or therapeutic agent of the present invention can be used in combination with known prophylactic / therapeutic agents effective for diseases associated with IL-17A as an exacerbation factor. These may be used alone or in combination.
  • the term “combination” means that the preventive or therapeutic agent of the present invention is used in combination with a known prophylactic / therapeutic agent for a disease associated with IL-17A as an exacerbation factor.
  • the form is not particularly limited.
  • HBc was amplified by PCR using the above primer set. The HBc obtained above was cloned into pcDNA 3.1 / V5-His TOPO TA Expression Kit (Invitrogen).
  • Nucleic acid sequences encoding the following two types of epitope A1 or epitope A2 of mouse IL-17A were respectively inserted into the pcDNA3.1-HBc vector by Mutagenesis.
  • a vaccine comprising a pcDNA3.1-HBc vector into which a nucleic acid sequence encoding a mouse IL-17A1 epitope has been inserted is referred to as an IL-17A1 DNA vaccine, a nucleic acid sequence encoding a mouse IL-17A2 epitope.
  • a vaccine containing the pcDNA3.1-HBc vector into which is inserted is referred to as IL-17A2 DNA vaccine.
  • the structure of the vector is shown in FIG.
  • Mouse IL-17A1 epitope RPSDYLNR SEQ ID NO: 5
  • Mouse IL-17A2 epitope DHHMNSV SEQ ID NO: 7
  • Experiment 2 Administration of DNA vaccine to mice DNA vaccine was injected into the thigh muscle of each of the following 6-week-old male mice by syringe, and electroporation was performed at that site. Three doses were administered every 2 weeks (120 ⁇ g / 60 ⁇ l ⁇ 1 location / time).
  • Experiment 1 Antibody titer measurement, various cytokines in blood and urine, survival analysis NZBWF1 mouse (SLE disease model) HBc-IL-17A1 (IL-17A1 DNA vaccine) group: 6 animals HBc (pcDNA3.1-HBc vector) group: 6 animals Saline group: 10 animals Body weight was measured every week, and serum was collected every 4 weeks. The administration plan is shown in FIG. 4A.
  • Experiment 2 Antibody titer measurement, analysis of each organ MRL / lpr mouse HBc-IL-17A1 (IL-17A1 DNA vaccine) group: 6 Saline group: 6 mice Body weight was measured every week, and serum was collected every 4 weeks It was.
  • Example 1 Preparation of anti-IL-17A antibody titer measurement plate by antigenic ELISA of mouse IL-17A peptide : 96 wells of mouse IL-17A1 epitope + BSA conjugate, mouse IL-17A2 epitope + BSA conjugate at a concentration of 10 ⁇ g / ml It dispensed to the plate and left still at 4 degreeC overnight. Recombinant mouse IL-17A was dispensed into a 96-well plate at a concentration of 0.25 ⁇ g / ml and allowed to stand at 4 ° C. overnight. The plate was washed once with 200 ⁇ l of PBS and then blocked with 5% skim milk in PBS for 2 hours.
  • the primary antibody (mouse antiserum) was serially diluted with 5% skim milk in PBS, 50 ⁇ l was applied to a 96-well plate, and incubated overnight at 4 ° C.
  • the plate was washed 7 times with 200 ⁇ l of PBS-T (0.05% Tween), diluted with secondary antibody (anti-mouse IgG Ab-HRP label) 1/1000 (5% skim milk), added 50 ⁇ l at room temperature, 3 hours at room temperature Incubated.
  • the plate was washed three times with 200 ⁇ l of PBS-T (0.05% Tween), 50 ⁇ l of TMB solution was added, and the mixture was incubated at room temperature for 30 minutes while protected from light.
  • Lane 1 Recombinant mouse IL-17A
  • Lane 2 Mouse IL-17A1 epitope + BSA conjugate
  • Lane 3 Mouse IL-17A2 epitope + BSA conjugate
  • Primary antibody A Antiserum of Balb / c mice administered with IL-17A1 DNA vaccine
  • B Commercially available anti-mouse IL-17A antibody
  • C Commercially available anti-BSA antibody
  • mice administered with IL-17A1 DNA vaccine bound recombinant mouse IL-17A in the same manner as commercially available anti-mouse IL-17A antibody.
  • the antiserum of mice administered IL-17A1 DNA vaccine specifically recognized the mouse IL-17A1 epitope + BSA conjugate and did not react with the mouse IL-17A2 epitope + BSA conjugate.
  • Recombinant mouse IL-17A contains a large amount of BSA for stabilization, and commercially available anti-BSA antibodies include mouse IL-17A1 epitope + BSA conjugate and mouse IL-17A2 epitope + BSA conjugate.
  • Example 2 Effect of IL-17A vaccine in SLE model mice Measurement of blood IL-1 ⁇ , TNF- ⁇ and IL-17A concentrations and urinary MCP-1 concentrations Using a Quantikine ELISA kit, IL was determined according to the manufacturer's protocol. -1 ⁇ , TNF- ⁇ , IL-17A and MCP-1 concentrations were measured. Serum was used at 25 ⁇ l each. 50 ⁇ l of urine was used. A standard curve was prepared using the standard sample attached to the kit, and the concentration of each cytokine was quantified. A significant decrease in blood IL-1 ⁇ was observed in the IL-17A1 DNA vaccine administration group to NZBWF1 mice (FIG. 6E).
  • Urine qualitative examination Urine was collected at any time from anesthetized mice. Urine protein, urine creatinine, urinary albumin, urine occult blood, urine specific gravity and the like were measured using a urine multi-stick test paper. A decrease in urine protein was observed in the IL-17A1 DNA vaccine administration group to NZBWF1 mice (FIG. 6A).
  • the IL-17A1 DNA vaccine was administered to a NZBWF1 mouse, a model mouse with a survival rate of SLE, and observed daily, and the day when the mouse died was recorded. The number of dead mice was compiled every week to create a survival graph. As a result of long-term observation of the IL-17A1 DNA vaccine administration group, a significant extension of the survival period of the vaccine administration group was observed (FIG. 7A). Further, in the group administered with the DNA vaccine to MRL / lpr mice described in Experiment 1, a tendency to extend the lifespan was also observed (FIG. 8B).
  • the statistical method survival rate was statistically processed by Kaplan-Meier method.
  • each excised organ was fixed in 4% paraformaldehyde for 24 hours, embedded in paraffin, and cut into 4 ⁇ m sections. The sections were reacted with a primary antibody (anti-F4 / 80 antibody) and a secondary antibody (HRP-labeled anti-rat IgG antibody). Slides were counterstained with hematoxylin and used for microscopic observation.
  • kidneys, submandibular glands and liver were dissected and fixed overnight in 4% paraformaldehyde and embedded in paraffin. A 4 ⁇ m section of the kidney was stained with PAS staining. 4 ⁇ m sections of submandibular gland and liver were stained with HE staining.
  • the degree of renal lesion in NZBWF1 mice or MRL / lpr mice was confirmed by renal PAS staining. The results are shown in FIGS. 11A and 11B. In the vaccine administration group, glomerular and interstitial destruction was suppressed. The degree of macrophage infiltration was confirmed by immunostaining with F4 / 80. The results are shown in FIGS. 11C and 11D. In the vaccine administration group, suppression of macrophage infiltration around the glomeruli and stroma was observed.
  • the degree of submandibular adenitis in NZBWF1 mice was confirmed by submandibular gland HE staining. The results are shown in FIG. Suppression of submandibular adenitis was observed in the vaccine administration group.
  • Example 3 Effect of IL-17A vaccine in colitis model mice
  • a 6-week-old male mouse was enemamed every week with a TNBS solution (2 mg / 100 ⁇ l / dose), and the femoral muscle was electroporated with IL-17A1 DNA vaccine.
  • Mice were sacrificed on week 8.
  • the administration plan is shown in FIG.
  • the length of the large intestine of the mouse 8 weeks after administration of TNBS was examined in the Balb / c mouse described in the experiment 4 of the large intestine.
  • the length of the large intestine became shorter with the induction of colitis by TNBS (Saline group), but this effect was suppressed in the vaccine group (FIG. 14 (C)).
  • the large intestine of the sacrificed large intestine was dissected, fixed overnight in 4% paraformaldehyde, and embedded in paraffin. A 4 ⁇ m section of the large intestine was stained with HE and examined histologically. Pathological findings such as infiltration of inflammatory cells were observed in the Saline group (FIG. 14D). In addition, the pathological findings of HE-stained sections were scored. A decrease in H & E score was observed in the vaccine group (FIG. 14 (E)).
  • IL-17A vaccine showed an inhibitory effect on colitis in TNBS-induced colitis model mice.
  • Example 4 Effect of IL-17A Vaccine in Arthritis Model Mice
  • Mouse IL-17A1 DNA vaccine was administered 3 times every 2 weeks using electroporation to the femoral muscle of each of the following 6-week-old male mice (120 ⁇ g / 60 ⁇ l). ⁇ 1 location / time).
  • Arthritis was induced by administering Type II collagen and CFA (complete Freund's adjuvant) 28 days after the first vaccine administration, and Type II collagen and IFA (incomplete Freund's adjuvant) 42 days after the first vaccine administration, and 3 times weekly thereafter
  • the degree of arthritis was observed and scored.
  • the administration plan is shown in FIG.
  • IL-17A vaccine showed an arthritis-suppressing effect in arthritis model mice with Type II collagen.
  • Example 5 Effect of IL-17A Vaccine in Colorectal Cancer Model Mice
  • a vaccine (KLH conjugated) containing a peptide comprising mouse IL-17A1 epitope was administered 3 times every 2 weeks to the femoral muscle of each of the following 6-week-old male mice. (25 ⁇ g / 25 ⁇ l + adjuvant 25 ⁇ l / dose (adjuvant is CFA at first dose, IFA at third dose)).
  • mouse colon cancer cell line CT26 cells (5 ⁇ 10 5 cells / Body) were inoculated, and thereafter tumor volumes (0.5 ⁇ major axis ⁇ minor axis ⁇ minor axis) were measured every week.
  • IL-17A vaccine showed a tumor growth inhibitory effect and a survival time extension effect in a colon cancer model mouse inoculated with CT26 cells.
  • mice IL-17A1 DNA vaccine was administered 3 times every 2 weeks to the femoral muscle of each of the following 6-week-old male mice (120 ⁇ g / 60 ⁇ l). ⁇ 1 location / time).
  • mouse lung cancer cell line LLC cells (5 ⁇ 10 5 cells / Body) were inoculated, and thereafter tumor volumes (0.5 ⁇ major axis ⁇ minor axis ⁇ minor axis) were measured every week.
  • tumor volumes 0.5 ⁇ major axis ⁇ minor axis ⁇ minor axis
  • mice were sacrificed in the ninth week, the tumor weight, lung metastasis, and liver metastasis were confirmed.
  • the administration plan is shown in FIG.
  • Experiment 7 C57 BL / 6 mice Vaccine group (HBc-IL-17A1 group): 5 Saline group (saline group): 5
  • Tumor volume was examined weekly after inoculating LLC cells into C57 BL / 6 mice described in Tumor Volume Experiment 7. It was recognized that the vaccine group had an effect of suppressing tumor growth (FIG. 17C).
  • IL-17A vaccine is a lung cancer model mouse inoculated with LLC cells, It showed tumor growth inhibitory effect and metastasis inhibitory effect.
  • Example 7 Anti-IL-17A antibody titer measurement by antigenic ELISA of human IL-17A peptide
  • a vaccine comprising a peptide comprising the following human IL-17A1 epitope corresponding to mouse IL-17A1 epitope (RPSDYLNR (SEQ ID NO: 5)) (KLH conjugated) was prepared and administered intradermally to Balb / c mice three times at 2-week intervals, and the serum antibody titer was measured according to the method described in Example 1 6 weeks after the first administration.
  • Human IL-17A1 epitope RSSDYYNR SEQ ID NO: 1
  • an increase in the antibody titer of Balb / c mice administered with the vaccine was observed (FIG. 18).
  • the serum also showed cross-reactivity with the mouse IL-17A1 epitope (FIG. 19 (A)). Furthermore, sera obtained by administering a vaccine containing a peptide consisting of the mouse IL-17A1 epitope also showed cross-reactivity with the human IL-17A1 epitope (FIG. 19 (B)).
  • a vaccine (KLH conjugated) containing a peptide consisting of the following two types of epitopes of human IL-17A (human IL-17A2 epitope and human IL-17A3 epitope) was prepared, and the vaccine was applied to Balb / c mice at intervals of 2 weeks. Serum antibody titers were measured according to the method described in Example 1 6 weeks after the first administration and 6 weeks after the first administration.
  • a vaccine (KLH conjugated) containing a peptide consisting of human IL-17A4 which is a partial sequence of the following human IL-17A1 epitope was prepared.
  • Balb / c mice were intradermally administered 3 times at 2-week intervals, and serum antibody titers were measured according to the method described in Example 1 6 weeks after the initial administration.
  • Example 8 Effect of Human IL-17A Vaccine in Arthritis Model Mice
  • a vaccine comprising a peptide comprising human IL-17A1 epitope, human IL-17A2 epitope or human IL-17A4 epitope on the thigh muscle of each of the following 6-week-old male mice ( KLH conjugated) was administered 3 times every 2 weeks (120 ⁇ g / 60 ⁇ l ⁇ 1 location / time).
  • Arthritis was induced by administering Type II collagen and CFA (complete Freund's adjuvant) 28 days after the first vaccine administration, and Type II collagen and IFA (incomplete Freund's adjuvant) 42 days after the first vaccine administration, and 3 times weekly thereafter The degree of arthritis was observed and scored.
  • the administration plan is shown in FIG.
  • the clinical score of arthritis of DBA / 1 mice described in clinical score experiment 8 was examined. It was confirmed that the vaccine group consisting of human IL-17A1 epitope, human IL-17A2 epitope or human IL-17A4 epitope has an effect of suppressing the onset and progression of arthritis (FIG. 22 (B)).
  • human IL-17A vaccine showed an arthritis inhibitory effect in arthritis model mice with Type II collagen.
  • Example 9 In vitro neutralization activity against IL-17A The amount of IL-6 secreted when recombinant human IL-17A was added to normal human skin fibroblasts (NHDF) in a medium was measured by ELISA. Addition of 17A promoted IL-16 secretion (IL-17 only). However, when IgG purified from the antiserum of a mouse immunized with a vaccine containing a peptide consisting of the human IL-17A1 epitope was added simultaneously with IL-17A, IL-6 secretion was suppressed (IL-17 + antisera) . Moreover, when IgG purified from the antiserum of non-immunized mice was added simultaneously with IL-17A, IL-6 secretion was hardly suppressed (IL-17 + control sera). These results are shown in FIG.
  • the antibody obtained by immunization with a vaccine containing a peptide consisting of the human IL-17A1 epitope suppressed IL-6 secretion from cultured cells in vitro Therefore, it was suggested that the antibody has a neutralizing action on IL-17A activity, and it was suggested that IL-17A is effective for the therapeutic effect of diseases related to aversion.
  • the vaccine of the present invention increases the antibody titer against IL-17A, not only SLE, but also rheumatoid arthritis, inflammatory bowel disease, cancer, psoriasis, multiple sclerosis, arteriosclerosis, etc.
  • IL-17A can also be used for other diseases that are involved in the progression of disease states, and can greatly contribute to the treatment of these diseases.
  • This application is based on Japanese Patent Application No. 2013-273133 (filing date: December 27, 2013) filed in Japan, the contents of which are incorporated in full herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pulmonology (AREA)
  • Rheumatology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

 本発明は、配列番号:1に示されるアミノ酸配列、又は配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチドを免疫原として用いたIL-17Aに対するワクチン、及び該ワクチンを含み、IL-17Aが増悪因子として関連する疾患の予防又は治療剤等を提供する。

Description

IL-17Aを標的とするワクチン
 本発明は、IL-17Aのエピトープを標的とするワクチン等に関する。
 全身性エリテマトーデス(SLE)は頭皮から足趾までの全身が侵されうる自己免疫疾患であり、種々の症状と多臓器が障害を受ける慢性炎症性疾患である。SLEの病態に関して、自己抗原と抗体との免疫複合体が各臓器に沈着して局所で炎症を惹起し、それが組織障害を引き起こして更なる自己免疫反応を招く、という悪循環が起きること、またその過程に1型インターフェロン等のサイトカインが関与していることが想定されているが、詳細は不明である。
 また、SLE患者の多くは妊娠可能な年齢の女性であることから、女性ホルモンと病因との関連が疑われている。一方、北米では黒人女性の方が白人女性より有病率が高いとされており、遺伝的素因の存在が疑われているが、病因は依然として不明である。
 SLEの治療には、副腎皮質ステロイド、免疫抑制剤、抗がん剤であるシクロフォスファミド等が用いられ、非特異的な免疫抑制作用によりSLEの病勢を抑制することができるものの、非特異的な免疫抑制作用により、感染症に罹患しやすくなる等の問題が存在する。しかも、副腎皮質ステロイドには高血圧症、糖尿病、脂質異常症、うつ等の副作用があり、シクロフォスファミドには骨髄抑制、発癌性、不妊症といった強い副作用がある。SLE患者の多くは妊娠可能な年齢の女性であるため、不妊症の問題は特に深刻である。
 このような現状において、病態のより詳細な解明と、その病因に基づいた副作用の少ない分子特異的治療法の開発が望まれている。
 近年、SLE患者に対する臨床研究から、SLE患者の血中IL-17濃度が対照群と比較して有意に高いことが報告された(非特許文献1)。また、SLEに類似する病変が腎臓に認められるPP2Aトランスジェニックマウスにおいて、IL-17の血中濃度が上昇していること、該マウスにIL-17の中和抗体を投与すると、その腎病変が改善されたことが報告された(非特許文献2)。これらの知見から、一つの可能性として、SLEの病態では1型インターフェロンとIL-17が悪循環を形成し、その病変の進行に重要な役割を担っているという仮説が唱えられている(非特許文献3)。
 IL-17は、免疫担当細胞であるTh17細胞や、マクロファージ、好中球等から分泌されるサイトカインであり、関節リウマチ、炎症性腸疾患(クローン病、潰瘍性大腸炎)、多発性硬化症、乾癬等多くの自己免疫疾患において、その病態の増悪に重要な役割を担っていることが明らかとなっている。
 最近、乾癬患者に対して抗IL-17抗体医薬品が治療効果を示すことが報告された(非特許文献4)。しかし抗体医薬品は非常に高価であり、また継続使用の過程で抗体医薬品自身に対する自己抗体が産生され、有効性が失われる(二次無効)などの問題が知られるようになった。これらのことからIL-17を標的としたワクチンはこれらの疾患に有効であり、かつ安価で長期に渡り有効な治療剤となるものと考えられる。
 IL-17に対するワクチンとしては、IL-17全長を免疫原としたペプチドワクチンの研究が報告されている(非特許文献5)。しかし、全長を免疫すると、IL-17に対する細胞性免疫も惹起され、細胞障害性T細胞によりIL-17を発現する細胞が攻撃され、有害な副作用が強く表れる危険性がある。また、IL-17に類似する他のサイトカインに交差反応を示す抗体も産生される危険性がある。そのため、他のタンパク質との相同性がないIL-17の一部分のエピトープだけを免疫原とするワクチンの方が安全面で望ましいと考えられる。そして、IL-17のエピトープワクチンを2種類作製して炎症性腸疾患モデルマウスに投与したとの報告がなされた(非特許文献6)。ところが、該報告では、ワクチン投与群で病態が改善されるのではなく、むしろ増悪し、大腸の炎症やコラーゲン沈着の増加が認められた。
 このように、IL-17に対するエピトープワクチンについての報告は存在するものの、該ワクチンにより、何らかの疾患の治療効果が示されたという報告は、出願人の知る限り、皆無である。
Nature Immunology, 2009, 10(7):778-785 J Immunology, 2012, 188(8):3567-3571 Eur J Immunology 2012, 42(9):2274-2284 J Dermatol 2014; 41: 1039-1046 Eur J Immunology 2006, 36(11):2857-2867 Immunotherapy, 2012, 4(12):1799-1807
 本発明は、IL-17Aに対するワクチン、及び該ワクチンを含み、SLEのようにIL-17Aが病態の増悪に関与している疾患の治療及び/又は予防剤等を提供することを目的とする。
 本発明者らは、鋭意工夫を重ねた結果、IL-17Aの構造から、IL-17A受容体への結合に重要なアミノ酸部位を特定した。そして、該アミノ酸部位の一部を抗原とし、それをコードするポリヌクレオチドを、B型肝炎ウイルスコア抗原ポリペプチドをコードするベクターに挿入してDNAワクチンを作製した。該DNAワクチンをSLEモデルマウスであるNZBWF1マウスに投与したところ、抗体価の高い上昇を認め、該抗体と組み換えIL-17Aとの結合実験により、IL-17Aを正しく認識する抗体が産生されたことを確認した。また、該DNAワクチンを投与した、別のSLEモデルマウスであるMRL/lprマウスでの血中TNF-α、NZBWF1マウスでの血中IL-1βの低下をそれぞれ認めた。さらに、NZBWF1マウスの該DNAワクチン投与群の長期観察の結果、該DNAワクチン投与群での生存期間の有意な延長を認めた。またNZBWF1マウスの腎臓の病理所見の改善やF4/80発現の低下、MRL/lprマウスの脾臓重量の減少を認め、該DNAワクチンによるSLE病態の改善効果が確認できた。
 また、本発明者らは、大腸炎モデルマウス、関節炎モデルマウス、大腸癌移植マウス、肺癌移植マウスにおいても、該DNAワクチンや該DNAによってコードされるペプチドワクチンを投与することによって、病態を改善できることを確認した。
 そして、驚くべきことに、本発明者らは、本発明で見出されたワクチン投与群では、従来報告されていたIL-17のエピトープワクチンで観察されるような、病態の増悪が見られないことを確認した。
 本発明者らは、これらの知見に基づき本発明を完成させるに至った。
 すなわち、本発明は下記に関するものである。
[1]以下の(1)~(3)のいずれかを含む、IL-17Aが増悪因子として関与する疾患の予防または治療用ワクチン:
(1)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド、
(2)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列において、1又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を含むポリペプチド、及び
(3)上記(1)又は(2)のポリペプチドを発現し得る発現ベクター、
[2]以下の(1)~(3)のいずれかを含む、[1]のワクチン:
(1)配列番号:1に示されるアミノ酸配列、又は配列番号:8に示されるアミノ酸配列からなるポリペプチド;
(2)配列番号:11に示されるアミノ酸配列、又は配列番号:12に示されるアミノ酸配列からなるポリペプチド;及び
(3)上記(1)又は(2)のポリペプチドを発現し得る発現ベクター、
[3]発現ベクターが、B型肝炎ウイルスコア(HBc)をコードするヌクレオチド配列を含む、[1]又は[2]のワクチン、
[4]発現ベクターが、該(1)又は(2)のポリペプチドをコードするヌクレオチド配列が配列番号:17で示されるヌクレオチド配列の塩基番号:246と塩基番号:247の間に挿入されたヌクレオチド配列を含む、[1]又は[2]のワクチン、
[5]キャリアタンパク質および/又はアジュバントを含む、[1]-[4]のワクチン、
[5-1][1]-[5]のいずれかのワクチンを含む組成物、
[6]IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、腫瘍、乾癬、及び多発性硬化症からなる群から選択される、[1]-[5]のワクチン、
[7]以下の(1)又は(2)を含む、IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、大腸癌、及び肺癌からなる群から選択される、[1]-[6]のワクチン:
(1)配列番号:1に示されるアミノ酸配列からなるポリペプチド、及び
(2)上記(1)のポリペプチドを発現し得る発現ベクター、
[8]以下の(1)~(3)のいずれかを含む、IL-17Aが増悪因子として関与する疾患が、関節リウマチである、[1]-[6]のワクチン:
(1)配列番号:1に示されるアミノ酸配列からなるポリペプチド;
(2)配列番号:11に示されるアミノ酸配列又は配列番号:12に示されるアミノ酸配列からなるポリペプチド;及び
(3)上記(1)又は(2)のポリペプチドを発現し得る発現ベクター、
[9]以下の(1)又は(2)のポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、IL-17Aが増悪因子として関与する疾患の予防または治療剤:
(1)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド、
(2)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列において、1又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を含むポリペプチド、
[10]以下の(1)又は(2)のポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、[9]の予防または治療剤:
(1)配列番号:1に示されるアミノ酸配列、又は配列番号:8に示されるアミノ酸配列からなるポリペプチド;
(2)配列番号:11に示されるアミノ酸配列、又は配列番号:12に示されるアミノ酸配列からなるポリペプチド、
[10-1]IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、乾癬、関節リウマチ、多発性硬化症、脳脊髄炎、腫瘍(非小細胞性肺癌、大腸癌、血球系腫瘍などを含むIL-17Aが増悪に関与する種々の腫瘍性疾患)、動脈硬化症、慢性炎症性疾患、及び、アレルギー疾患(遅延型過敏症、接触型過敏症)からなる群から選択される、[9]又は[10]の予防または治療剤、
[11]IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、腫瘍、乾癬、及び多発性硬化症からなる群から選択される、[9]又は[10]の予防または治療剤、
[11-1]IL-17Aが憎悪因子として関与する疾患がSLEである、[9]又は[10]の予防または治療剤、
[12]IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、大腸癌、及び肺癌からなる群から選択される、配列番号:1に示されるアミノ酸配列からなるポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、[9]-[11]の予防または治療剤、
[13] IL-17Aが増悪因子として関与する疾患が、関節リウマチであり、配列番号:1に示されるアミノ酸配列、配列番号:11に示されるアミノ酸配列又は配列番号:12に示されるアミノ酸配列からなるポリペプチドを含む、[9]-[11]の予防または治療剤、
[14]配列番号:1に示されるアミノ酸配列からなるポリペプチド、
[14-1][14]をコードするポリヌクレオチド、
を提供する。
 本発明のワクチンは、SLEのようにIL-17Aが病態の増悪因子として関与する疾患の治療等に使用することができる。
IL-17Aエピトープを含む発現ベクターの構造を示す。A)pcDNA3.1+HBcベクターの構造、B)Hbcの240番目と241番目の塩基の間にスペーサー及びIL-17Aの部分配列をコードする配列を挿入したベクターの構造、C)前記BのベクターにIL-17Aのエピトープを挿入した模式図、を示す。 組み換えIL-17Aタンパク質とIL-17A1 DNAワクチン(エピトープ配列:RPSDYLNR)又はIL-17A2 DNAワクチンで免疫したBalb/cマウスの血清由来の抗体との結合を示す。A)1次抗体としてIL-17A1 DNAワクチン投与によって得られた抗血清を用いた。B)1次抗体として抗IL-17A抗体を用いた。C)1次抗体として抗BSA抗体を用いた。 IL-17A1 DNAワクチンで免疫したBalb/cマウスの第6週における抗体価の上昇を示す。No1~No4の1次抗体(マウス抗血清)を、10倍希釈し、さらに10倍毎に段階的に希釈して用いた。No1:IL-17A1 No1 antisera, No2:IL-17A1 No2 antisera, No3:IL-17A1 No3 antisera, No4:IL-17A1 No4 antisera A)NZBWF1マウスへのIL-17A1 DNAワクチン投与プランを示す。B)IL-17A1 DNAワクチン投与群での抗体価の上昇を示す。 IL-17A1 DNAワクチンで免疫したマウスから得られた抗血清とBSA-IL-17A1(RPSDYLNR)コンジュゲート(No5 BSA conjugate)又はマウス組み換えIL-17A(No5 rIL-17)との結合を示す。1次抗体(マウス抗血清)を、100倍希釈し、さらに5倍毎に段階的に希釈して用いた。 IL-17A1 DNAワクチンを投与したNZBWF1マウスまたはMRL/lprマウスの、A)尿タンパク質(NZBWF1マウス)、B)尿中MCP-1濃度(pg/ml)(NZBWF1マウス)、C)血中IL-17A濃度(pg/ml)(NZBWF1マウス)、D)血中TNF-α濃度(pg/ml)(MRL/lprマウス)、E)血中IL-1β濃度(pg/ml)(NZBWF1マウス) 、F)血中TNF-α濃度(pg/ml)(NZBWF1マウス)を示す。 A)IL-17A1 DNAワクチンを投与したNZBWF1マウスの生存率(図中矢印は、ワクチン投与を意味する)、B)抗IL-17A1抗体価を示す。 IL-17A1 DNAワクチンを投与したMRL/lprマウスの、A)血中TNF-α濃度(pg/ml)、B)生存率(図中矢印は、ワクチン投与を意味する)を示す。 IL-17A1 DNAワクチンを投与したMRL/lprマウスの、A)体重(g)、B)全体重当たりの心臓重量の割合、C)脾臓重量(mg)、D)全体重当たりの脾臓重量の割合、を示す。 病理組織の解析プランを示す。A)NZBWF1マウスへのIL-17A1 DNAワクチン、Saline投与プラン、B)MRL/lprマウスへのIL-17A1 DNAワクチン、Saline投与プランを示す。 NZBWF1マウス又はMRL/lprマウスへ、IL-17A1 DNAワクチン又はSalineを投与した後の腎臓の、A)PAS染色の写真(弱拡大)、B)PAS染色の写真(強拡大)、C)F4/80の免疫染色の写真(NZBWF1マウス)、D)F4/80の免疫染色の写真(MRL/lprマウス)を示す。 NZBWF1マウスへ、IL-17A1 DNAワクチン又はSalineを投与した後の顎下腺のHE染色の写真を示す。 NZBWF1マウス又はMRL/lprマウスへ、IL-17A1 DNAワクチン又はSalineを投与した後の肝臓のHE染色の写真を示す。 A)Balb/cマウスへのTNBS投与とIL-17A1 DNAワクチン投与プランを示す。また、TNBSとIL-17A1 DNAワクチン又はSalineを投与したBalb/cマウスの、B)体重の増加割合(%)、C)大腸の長さ(mm)、D)大腸のHE染色の写真、E)大腸のHEスコアを示す。 A)DBA/1マウスへのIL-17A1 DNAワクチン投与とType IIコラーゲン投与のプランを示す。また、IL-17A1 DNAワクチン又はSalineとType IIコラーゲンを投与したDBA/1マウスの、B)関節炎の臨床スコア、C)関節の写真を示す。 A)Balb/cマウスへのIL-17A1 ペプチドワクチン投与とCT26細胞接種のプランを示す。また、IL-17A1 ペプチドワクチン又はSalineを投与し、CT26細胞を接種したBalb/cマウスの、B)腫瘍体積(mm)、C)生存率を示す。 A)C57 BL/6マウスへのIL-17A1 DNAワクチン投与とLLC細胞接種のプランを示す。また、IL-17A1 DNAワクチン又はSalineを投与し、LLC細胞を接種したC57 BL/6マウスの、B)体重(g)、C)腫瘍体積(mm)、D)LLC細胞接種28日後の腫瘍重量(mg)、E)肺転移の写真像、F)癌の肺転移数(個)、G)癌の肝転移数(個)を示す。 ヒトIL-17A1エピトープ(配列番号:1)からなるぺプチドを含むワクチンで免疫したマウスから得られた抗血清(IL-17 Human)又はワクチン投与前の血清(Preimmune)とBSA-ヒトIL-17A1コンジュゲートとの結合を示す。1次抗体(マウス抗血清)を、10倍に希釈し、さらに5倍毎に段階的に希釈して用いた。 A)ヒトIL-17A1エピトープ(配列番号:1)からなるぺプチドを含むワクチンで免疫したマウスから得られた抗血清とBSA-ヒトIL-17A1コンジュゲート(No Y11-5weeks Human)、又はBSA-マウスIL-17A1コンジュゲート(No Y11-5weeks Mouse)との結合を示す。また、ワクチン投与前の血清とBSA-ヒトIL-17A1コンジュゲート(No Y11 Pre Human)、又はBSA-マウスIL-17A1コンジュゲート(No Y11 Pre Mouse) との結合を示す。1次抗体(マウス抗血清)を、10倍に希釈し、さらに5倍毎に段階的に希釈して用いた。B)マウスIL-17A1エピトープ(配列番号:5)からなるぺプチドを含むワクチンで免疫したマウスから得られた抗血清とBSA-マウスIL-17A1コンジュゲート(No G8-5weeks Mouse)、又はBSA-ヒトIL-17A1コンジュゲート(No G8-5weeks Human)との結合を示す。また、ワクチン投与前の血清とBSA-マウスIL-17A1コンジュゲート(No G8 Pre Mouse)、又はBSA-ヒトIL-17A1コンジュゲート(No G8 Pre Human) との結合を示す。1次抗体(マウス抗血清)を、10倍に希釈し、さらに5倍毎に段階的に希釈して用いた。 ヒトIL-17A2エピトープ(配列番号:8)からなるぺプチドを含むワクチンで免疫したマウスから得られた抗血清とBSA-ヒトIL-17A2コンジュゲート(No AF975) との結合、またはヒトIL-17A3エピトープ(配列番号:9)からなるぺプチドを含むワクチンで免疫したマウスから得られた抗血清とBSA-ヒトIL-17A3コンジュゲート(No AF976)との結合を示す。1次抗体(マウス抗血清)を、10倍に希釈し、さらに5倍毎に段階的に希釈して用いた。 ヒトIL-17A4エピトープ(配列番号:11)からなるぺプチドを含むワクチン、ヒトIL-17A5エピトープ(配列番号:12)をコードするDNAを含むワクチン、ヒトIL-17A6エピトープ(SDY)をコードするDNAを含むワクチンまたはヒトIL-17A7エピトープ(DYY)をコードするDNAを含むワクチンで免疫したBalb/cマウスの第6週における抗体価の上昇を示す。各1次抗体(マウス抗血清)を、10倍希釈し、さらに5倍毎に段階的に希釈して用いた。 A)DBA/1マウスへの各種IL-17A ペプチドワクチンとType IIコラーゲン投与のプランを示す。B)各種IL-17A ペプチドワクチンを投与し、Type IIコラーゲンを投与したDBA/1マウスの関節炎の臨床スコアを示す。H17: ヒトIL-17A1エピトープ, AF4: ヒトIL-17A4エピトープ, AF5:ヒトIL-17A2エピトープ, Control(KLH):KLH, Collagen(-):Type IIコラーゲン非投与 培地中の正常ヒト皮膚線維芽細胞(NHDF)が分泌するIL-6濃度をELISAで測定した結果を示す。IL-17(-) control:IL-17非添加, IL-17 only:組み換えヒトIL-17A添加, IL-17+antisera:組み換えヒトIL-17Aおよび抗ヒトIL-17A1マウス抗体, IL-17+antisera:組み換えヒトIL-17Aおよび非免疫マウス抗体
 本発明は、IL-17Aに対するワクチン、及び該ワクチンを含み、SLEのようにIL-17Aが病態の増悪因子として関与する疾患の治療及び/又は予防剤等を提供する。
 ワクチン
 本発明のIL-17Aに対するワクチン(エピトープワクチンともいう)は、以下の(1)~(3)からなる群より選択される。
(1)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド、
(2)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列において、1又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を含むポリペプチド、
(3)上記(1)又は(2)のポリペプチドを発現し得る発現ベクター。
 その中でも、本発明のIL-17Aに対するワクチンは、好ましくは、以下の(1’)~(3’)からなる群より選択される。
(1’)配列番号:1に示されるアミノ酸配列、又は配列番号:8に示されるアミノ酸配列からなるポリペプチド、
(2’)配列番号:11に示されるアミノ酸配列、又は配列番号:12に示されるアミノ酸配列からなるポリペプチド、
(3’)上記(1’)又は(2’)のポリペプチドを発現し得る発現ベクター。
 最も好ましい本発明のIL-17Aに対するワクチンは、以下の(1’’)または(2’’)からなる群より選択される。
(1’’)配列番号:1に示されるアミノ酸配列、配列番号:11に示されるアミノ酸配列、又は配列番号:12に示されるアミノ酸配列からなるポリペプチド、
(2’’)上記(1’’)のポリペプチドを発現し得る発現ベクター。
 IL-17Aが増悪因子として関与する疾患とは、IL-17Aにより病態が増悪されれば特に限定はない。例えば、SLE、炎症性腸疾患(潰瘍性大腸炎、クローン病)、乾癬、関節リウマチ、多発性硬化症、脳脊髄炎、腫瘍(肺癌(その中でも非小細胞性肺癌が好ましい)、大腸癌、血球系腫瘍などを含むIL-17Aが増悪に関与する種々の腫瘍性疾患)、動脈硬化症、慢性炎症性疾患、及び、アレルギー疾患(遅延型過敏症、接触型過敏症等)等が挙げられ、好ましくは、SLE、炎症性腸疾患、関節リウマチ、肺癌、大腸癌、乾癬、多発性硬化症が挙げられ、最も好ましくはSLE、炎症性腸疾患、関節リウマチ、肺癌、大腸癌である。後述する実施例に記載の通り、配列番号:1に示されるアミノ酸配列からなるポリペプチドまたは該ポリペプチドをコードするDNAは、SLE、炎症性腸疾患、関節リウマチ、肺癌、大腸癌に治療効果を示した。また、配列番号:1に示されるアミノ酸配列からなるポリペプチドに加えて、配列番号:11に示されるアミノ酸配列、又は配列番号:12に示されるアミノ酸配列からなるポリペプチドまたは該ポリペプチドをコードするDNAも、関節リウマチに治療効果を示した。増悪とは、病態がさらに悪化することをいい、悪化の程度は問わない。
 本発明のワクチンの投与対象は、任意の哺乳動物であって、IL-17Aが病態の増悪に関与している疾患を発症している哺乳動物又はそれを発症する虞のある哺乳動物である。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類及びウサギ等の実験動物、イヌ及びネコ等のペット、ウシ、ブタ、ヤギ、ウマ及びヒツジ等の家畜、ヒト、サル、オランウータン及びチンパンジー等の霊長類等が挙げられるが、好ましくはヒトである。投与対象は、治療を受けていても、受けていなくてもよい。
 本発明のワクチンが投与される場合、該ワクチンに含まれる物質は、投与対象に由来する物質(すなわち、ヒトに投与する場合、該ワクチンはヒト由来の物質であり、マウスに投与する場合、該ワクチンはマウス由来の物質である)であることが好ましい。
 本発明のワクチンに含まれる上記(1)(あるいは(1’)、(1’’)。以下同様)のポリペプチド(以下、上記(2)(あるいは(2’)。以下同様)のポリペプチドと併せて、本発明のポリペプチド、ともいう)は、IL-17Aの部分アミノ酸配列である。
 本発明では、ヒトIL-17Aの62~69番目のアミノ酸配列を配列番号:1とし、それに対応するマウスIL-17Aの65~72番目のアミノ酸配列を配列番号:5とする。これらはそれぞれ、例えば、配列番号:2、配列番号:6で表されるヌクレオチド配列によりコードされる。また、ヒトIL-17Aの102~118番目のアミノ酸配列を配列番号:8とし、それに対応するマウスIL-17Aの105~121番目のアミノ酸配列を配列番号:10とする。これらはそれぞれ、例えば、配列番号:13、配列番号:14で表されるヌクレオチド配列によりコードされる。
 配列番号:1(配列番号:8)に対応する非ヒト哺乳動物由来のアミノ酸配列としては、本明細書中の配列番号:1(配列番号:8)に開示された配列情報、公知の配列データベース等を利用して、適切なプライマーやプローブを設計し、RT-PCR又はプラークハイブリダイゼーション等、通常の遺伝子工学的手法を用いて容易に取得することができる。
 本発明のワクチンに含まれる上記(2)のポリペプチドは、IL-17Aアミノ酸配列の部分配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列である。そのようなポリペプチドとしては、ヒトの場合、配列番号:1(配列番号:8)で表されるアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も含まれる。該アミノ酸配列としては、例えば、(1)配列番号:1(配列番号:8)に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失したアミノ酸配列、(2)配列番号:1(配列番号:8)に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が付加されたアミノ酸配列、(3)配列番号:1(配列番号:8)に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が挿入されたアミノ酸配列、(4)配列番号:1(配列番号:8)に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、又は(5)上記(1)~(4)の変異が組み合わせられたアミノ酸配列(この場合、変異したアミノ酸の総和が、1又は数個(好ましくは1~数(2~5)個))が含まれる。
 また、上記(2)のポリペプチドに含まれるアミノ酸配列としては、配列番号:1(配列番号:8)に対応する非ヒト哺乳動物由来のアミノ酸配列の内、1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も好ましく挙げることができる。
 このようなポリペプチドとしては、マウスの場合、配列番号:5(配列番号:10)で表されるアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も含まれる。該アミノ酸配列としては、例えば、(1)配列番号:5(配列番号:10)に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失したアミノ酸配列、(2)配列番号:5(配列番号:10)に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が付加されたアミノ酸配列、(3)配列番号:5(配列番号:10)に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が挿入されたアミノ酸配列、(4)配列番号:5(配列番号:10)に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、又は(5)上記(1)~(4)の変異が組み合わせられたアミノ酸配列(この場合、変異したアミノ酸の総和が、1又は数個(好ましくは1~数(2~5)個))が含まれる。
 「アミノ酸残基の置換」としては、例えば、保存的アミノ酸置換が挙げられる。保存的アミノ酸置換とは、特定のアミノ酸を、そのアミノ酸の側鎖と同様の性質の側鎖を有するアミノ酸で置換することをいう。具体的には、保存的アミノ酸置換では、特定のアミノ酸は、そのアミノ酸と同じグループに属する他のアミノ酸により置換される。同様の性質の側鎖を有するアミノ酸のグループは、当該分野で公知である。例えば、このようなアミノ酸のグループとしては、塩基性側鎖を有するアミノ酸(例えば、リジン、アルギニン、ヒスチジン)、酸性側鎖を有するアミノ酸(例えば、アスパラギン酸、グルタミン酸)、中性側鎖を有するアミノ酸(例えば、グリシン、アスパラギン、グルタミン、セリン、トレオニン、チロシン、システイン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)が挙げられる。また、中性側鎖を有するアミノ酸は、さらに、極性側鎖を有するアミノ酸(例えば、グリシン、アスパラギン、グルタミン、セリン、トレオニン、チロシン、システイン)、及び非極性側鎖を有するアミノ酸(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)に分類することもできる。また、他のグループとして、例えば、芳香族側鎖を有するアミノ酸(例えば、フェニルアラニン、トリプトファン、チロシン)、水酸基(アルコール性水酸基、フェノール性水酸基)を含む側鎖を有するアミノ酸(例えば、セリン、トレオニン、チロシン)等も挙げることができる。
 「アミノ酸残基の欠失」としては、例えば、配列番号:1で表されるアミノ酸配列の中から、任意のアミノ酸残基を選択して欠失させることが挙げられる。そのようなアミノ酸配列としては、例えば、配列番号:11、配列番号:12、SDYまたはDYYが挙げられ、好ましくは、配列番号:11、配列番号:12が挙げられる。これらはそれぞれ、例えば、配列番号:15、配列番号:16で表されるヌクレオチド配列によりコードされる。
 「アミノ酸残基の挿入」又は「アミノ酸残基の付加」としては、例えば、配列番号:1で表されるアミノ酸配列の内部、N末端側又はC末端側に、アミノ酸残基を挿入又は付加させることが挙げられる。ペプチドの水溶解性を増強するため、アミノ酸配列のN末端側又はC末端側に塩基性アミノ酸であるアルギニン(Arg)又はリジン(Lys)を1~2残基付加してもよい。
 本発明のポリペプチドは、付加的なアミノ酸を含んでもよい。このようなアミノ酸付加は、該ポリペプチドがIL-17Aに対する特異的免疫反応を誘導する限り許容される。付加されるアミノ酸配列は、特に限定されないが、例えば、ポリペプチドの検出や精製等を容易にならしめるためのタグを挙げることができる。タグとしては、Flagタグ、ヒスチジンタグ、c-Mycタグ、HAタグ、AU1タグ、GSTタグ、MBPタグ、蛍光タンパク質タグ(例えば、GFP、YFP、RFP、CFP、BFP等)、イムノグロブリンFcタグ等を例示することができる。アミノ酸配列が付加される位置は、本発明のポリペプチドのN末端及び/又はC末端である。
 本発明のポリペプチドに用いられるアミノ酸はL体、D体及びDL体を包含するものであるが、通常、L体であることが好ましい。これらのポリペプチドは、通常のポリペプチド合成法により合成され、本発明に供することができるが、本発明においては、製造方法・合成方法、調達方法等については、特に限定されない。
 上記(3)(あるいは(3’)、(2’’)。以下同様)の発現ベクターにおいて、上述の(1)又は(2)のポリペプチドをコードするポリヌクレオチド(DNA又はRNA、好ましくはDNA)は、投与対象である哺乳動物の細胞内でプロモーター活性を発揮し得るプロモーターの下流に機能的に連結される。すなわち、(3)の発現ベクターは、プロモーターの制御下で、転写産物として(1)又は(2)のポリペプチドを発現し得る。(3)の発現ベクターを哺乳動物に投与し、該哺乳動物の体内で(1)又は(2)のポリペプチドが産生され、該哺乳動物に(1)又は(2)のポリペプチドに対する特異的免疫反応が誘導される。
 使用されるプロモーターは、投与対象である哺乳動物の細胞内で機能し得るものであればよく、polI系プロモーター、polII系プロモーター、polIII系プロモーター等を使用することができる。具体的には、SV40由来初期プロモーター、サイトメガロウイルス(CMV)等のウイルスプロモーター、β-アクチン遺伝子プロモーター等の哺乳動物の構成蛋白質遺伝子プロモーター等が用いられる。
 上述の(1)又は(2)のポリペプチドをコードするポリヌクレオチドの下流に転写終結シグナル、すなわちターミネーター領域を含有する。さらに、形質転換細胞選択のための選択マーカー遺伝子(テトラサイクリン、アンピシリン、カナマイシン等の薬剤に対する抵抗性を付与する遺伝子、栄養要求性変異を相補する遺伝子等)をさらに含有してもよい。
 本発明において発現ベクターに使用されるベクターの種類は特に制限されないが、ヒト等の哺乳動物への投与に好適なベクターとしては、ウイルスベクター、プラスミドベクター等を挙げることができる。ウイルスベクターとしては、レトロウイルス、アデノウイルス、アデノ随伴ウイルス等が挙げられる。製造及び取り扱いの容易性や経済性を考慮すると、プラスミドベクターが好ましく用いられる。中でも、特に好ましくはB型肝炎ウイルスコア(以下、HBcという)をコードするポリヌクレオチドを含む発現ベクターである。これは、国際公開第2012/141280号等を参照することができる。
 HBcは自己集合して球状になる性質を有し、該自己集合して形成されるコア粒子の外側に、IL-17Aエピトープがその構造を維持しながら安定に提示することができる。HBc及びIL-17Aエピトープは直接共有結合により連結されてもよいし、スペーサーを介して連結されてもよい。スペーサーは、HBcが自己集合して形成されるコア粒子の外側に、IL-17Aエピトープがその構造を維持しながら安定に提示されればよく、例えば、IT、GAT、CGG等が挙げられるが、これらに限定されない。該配列を含むプラスミドベクターとしては、pCAGGS、pCR-X8、pcDNA3.1、pZeoSV、pBK-CMV等が挙げられるが、これらに限定されない。より好ましくは、pcDNA3.1-HBcベクターが挙げられる。該ベクターは、HBcの80番目と81番目のアミノ酸に相当するHBcをコードするポリヌクレオチドの240番目と241番目の塩基の間にスペーサーを挿入している。従って、上記(3)の発現ベクターは、好ましくは、上述の(1)又は(2)のポリペプチドをコードするヌクレオチド配列が配列番号:17で示されるヌクレオチド配列の塩基番号:246と塩基番号:247の間に挿入されたヌクレオチド配列を含む発現ベクターである。
 本発明のワクチンは、上記(1)若しくは(2)のポリペプチド又は(3)の発現ベクターに加え、任意の担体、例えば、医薬上許容される担体を含む医薬組成物として提供され得る。
 医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリド等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、これらに限定されない。
 さらに、本発明のワクチンが上記(3)の発現ベクターの場合、該発現ベクターの細胞内への導入を促進するために、本発明のワクチンは更に核酸導入用試薬を含むことができる。発現ベクターとしてウイルスベクターを使用する場合には、遺伝子導入試薬としてはレトロネクチン、ファイブロネクチン、ポリブレン等を用いることができる。また、発現ベクターとしてプラスミドベクターを使用する場合には、リポフェクチン、リポフェクタミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質を用いることができる。
 本発明のワクチンは、上記(1)若しくは(2)のポリペプチド又は(3)の発現ベクターによってコードされるポリペプチドの免疫原性を高めるために、キャリアタンパク質をさらに含んでもよい。キャリアタンパク質は、一般には、分子量が小さいために免疫原性を有さない分子に結合して免疫原性を付与する物質であり、当技術分野で公知である。キャリアタンパク質の例としては、牛血清アルブミン(BSA)、ウサギ血清アルブミン(RSA)、オボアルブミン(OVA)、スカシ貝ヘモシアニン(KLH)、チログロブリン(TG)、免疫グロブリン等が挙げられる。上記(3)の発現ベクターの場合は、上記(1)又は(2)のポリペプチドをコードするポリヌクレオチドに、該キャリアタンパク質をコードするポリヌクレオチドが連結されていてもよい。
 本発明のワクチンはまた、製薬上許容可能で且つ活性成分と相溶性であるアジュバントをさらに含有してもよい。アジュバントは、一般には、宿主の免疫応答を非特異的に増強する物質であり、多数の種々のアジュバントが当技術分野で公知である。アジュバントの例としては以下のものが挙げられるが、これらに限定されない:完全フロイントアジュバント、不完全フロイントアジュバント、水酸化アルミニウム、N-アセチル-ムラミル-L-トレオニル-D-イソグルタミン(thr-MDP)、N-アセチル-ノルムラミル-L-アラニル-D-イソグルタミン(nor-MDP)、N-アセチルムラミル-L-アラニル-D-イソグルタミニル-L-アラニン-2-(1’-2’-ジパルミトイル-sn-グリセロ-3-ヒドロキシホスホリルオキシ)-エチルアミン(MTP-PE)、Quill A(登録商標)、リゾレシチン、サポニン誘導体、プルロニックポリオール、モンタニドISA-50(Seppic,Paris,France)、Bayol(登録商標)及びMarkol(登録商標)。
 本発明のワクチンは、経口又は非経口的に哺乳動物に対して投与することができる。ポリペプチドや発現ベクターは、胃の中で分解され得るので、非経口的に投与することが好ましい。経口投与に好適な製剤としては、液剤、カプセル剤、サッシェ剤、錠剤、懸濁液剤、乳剤等を挙げることができる。非経口的な投与(例えば、皮下注射、筋肉注射、局所注入、腹腔内投与等)に好適な製剤としては、水性及び非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性及び非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分及び医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌のビヒクルに溶解又は懸濁すればよい状態で保存することもできる。
 医薬組成物中の有効成分の含有量は、通常、医薬組成物全体の約0.1~100重量%、好ましくは約1~99重量%、さらに好ましくは約10~90重量%程度である。
 本発明のワクチンの投与量は、投与する対象、投与方法、投与形態等によって異なるが、有効成分が上記(1)又は(2)のポリペプチドの場合は、通常成人1人当たりポリペプチドを、一回当たり1μg~1000μgの範囲、好ましくは20μg~100μgの範囲で、通常4週間から12週間に亘って、2回から3回投与し、抗体価が低下した場合にはその都度1回追加投与する。有効成分が上記(3)の発現ベクターの場合は、通常成人1人当たり発現ベクターを、一回当たり1μg~1000μgの範囲、好ましくは20μg~100μgの範囲で、通常4週間から12週間に亘って、2回から3回投与し、抗体価が低下した場合にはその都度1回追加投与する。
 本発明のワクチンを哺乳動物へ投与することにより、IL-17Aに対する特異的免疫応答(特異的抗体産生、特異的T細胞の増殖等)が誘導され、該哺乳動物がIL-17Aに対する中和抗体を獲得し、IL-17Aの機能が阻害されることで、IL-17Aが増悪因子として関連する疾患に対する予防又は治療効果が発揮される。
 本発明は、本発明のワクチンの1又は2以上の成分を包含する、1又は2以上の容器からなるキットを提供する。本発明のキットを用いても、IL-17が増悪因子として関連する疾患を予防する、あるいは、その症状を治療若しくは軽減する、ことができる。
 IL-17Aが増悪因子として関連する疾患の予防又は治療用IL-17A中和抗体
 本発明は、以下の(1)又は(2)のポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、IL-17Aが増悪因子として関連する疾患の予防又は治療剤(本発明の予防又は治療剤)を提供する。
(1)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド;
(2)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列において、1又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を含むポリペプチド。
 また、発明の予防又は治療剤は、好ましくは、以下の(1’)又は(2’)のポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む。
(1’)配列番号:1に示されるアミノ酸配列、または配列番号:8に示されるアミノ酸配列からなるポリペプチド;
(2’)配列番号:11に示されるアミノ酸配列、または配列番号:12に示されるアミノ酸配列からなるポリペプチド。
 最も好ましい発明の予防又は治療剤は、(1’’)配列番号:1に示されるアミノ酸配列からなるポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む。
 前記(1)又は(2)(あるいは(1’)、(2’)又は(1’’)。以下同様)のポリペプチドを認識する抗体は、IL-17Aに結合し、その機能を阻害することで、上述のIL-17Aが増悪因子として関連する疾患に対する有効な、予防及び/又は治療手段となり得る。すなわち、該抗体を投与することにより、IL-17Aが増悪因子として関連する疾患を発症した患者に対する治療効果、及び発症の虞のある対象に対する予防効果が期待できる。
 上述のIL-17Aが憎悪因子として関連する疾患の中でも、SLE、炎症性腸疾患、関節リウマチ、肺癌、大腸癌、乾癬、多発性硬化症、特に、SLE、炎症性腸疾患、関節リウマチ、肺癌、大腸癌の予防及び/又は治療に本発明のIL-17A中和抗体を用いることができる。
 本発明の抗体としては、ポリクローナル抗体、モノクローナル抗体等の天然型抗体、トランスジェニックマウスや遺伝子組換え技術を用いて製造され得るキメラ抗体、ヒト化抗体及び一本鎖抗体、ヒト抗体産生遺伝子を導入したマウスやファージディスプレイ等により作製したヒト抗体、並びにこれらの断片等が含まれる。本発明の抗体は、それぞれ本発明のポリペプチドを認識し、IL-17Aの機能を阻害する抗体である限り特に限定されないが、IL-17Aに対する特異性の点からモノクローナル抗体であることが好ましい。あるいはヒトへの臨床応用の点から、本発明の抗体はヒト化抗体又はヒト抗体であることが好ましい。
 上記抗体断片とは、前述した抗体の一部分の領域を意味し、具体的には、例えば、F(ab’)、Fab’、Fab、Fc領域を含む抗体断片、Fv(variable fragment of antibody)、sFv、dsFv(disulphide stabilised Fv)、dAb(single domain antibody)等が挙げられる(Exp. Opin. Ther. Patents, Vol.6, No.5, p.441-456, 1996)。
 上記ヒト化抗体とは、抗原認識部位のみヒト以外の遺伝子を由来とし、かつ残りの部位をヒト遺伝子由来として、遺伝子組換え技術を用いて製造された抗体のことをいう。また上記ヒト抗体とは、ヒト抗体産生遺伝子を導入したトランスジェニックマウス(例、TransChromo Mouse(商標))が産生するヒト抗体や、ヒトのBリンパ球のmRNAやゲノム由来のVH遺伝子とVL遺伝子とをランダムに組み合わせて構築したライブラリーから、ファージディスプレイ法等のディスプレイ技術によって抗体可変領域を発現させたヒト抗体ライブラリーを基に作製した抗体のことをいう。
 また抗体のクラスも特に限定されず、本発明の抗体は、IgG、IgM、IgA、IgD又はIgE等のいずれのアイソタイプを有する抗体をも包含する。好ましくはIgG又はIgMであり、抗体の精製の容易性等を考慮すると、より好ましくはIgGである。
 抗体の製造方法
 ポリクローナル抗体又はモノクローナル抗体は、自体公知の方法によって製造することができる。すなわち、免疫原(本発明のポリペプチド)を、必要に応じてフロイントアジュバント(Freund’s Adjuvant)と共に、哺乳動物、例えば、ポリクローナル抗体の場合、マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、ブタ、ヤギ、ウマ又はウシ等、好ましくはマウス、ラット、ハムスター、モルモット、ヤギ、ウマ又はウサギに免疫する。モノクローナル抗体の場合は、同様の方法で、マウス、ラット、ハムスター等に免疫する。
 本発明のポリペプチドは、そのまま免疫原として用いることも可能であるが、分子量1万以上の高分子化合物(例、キャリアタンパク質等)との複合体として免疫してもよい。例えば、配列番号:1で表されるアミノ酸配列からなるポリペプチドを上記記載の方法に従って合成し、牛血清アルブミン(BSA)、ウサギ血清アルブミン(RSA)、オボアルブミン(OVA)、スカシ貝ヘモシアニン(KLH)、チログロブリン(TG)、免疫グロブリン等のキャリアタンパク質との複合体を形成させ、免疫原として用いてもよい。
 前記ポリペプチドとキャリアタンパク質との複合体を形成させる等の目的で、本発明のポリペプチドには1~2個、好ましくは1個のアミノ酸を付加することができる。付加されるアミノ酸の位置はポリペプチドのいずれの位置でもよく、特に限定されないが、ポリペプチドのN末端又はC末端が好ましい。
 複合体の形成においては、本発明のポリペプチドの抗原性を維持することができればよく、自体公知の方法を適用することができる。例えば、本発明のポリペプチドにシステイン残基を導入し、当該システインの側鎖であるSH基を介して前記高分子化合物(キャリアタンパク質)のアミノ基と結合させることもできる(MBS法)。また、タンパク質のリジン残基のεアミノ基や、αアミノ基等のアミノ基同士を結合させることもできる(グルタルアルデヒド法)。
 ポリクローナル抗体は、具体的には下記のようにして製造することができる。すなわち、免疫原をマウス、ラット、ハムスター、モルモット、ヤギ、ウマ又はウサギ、好ましくはヤギ、ウマ又はウサギ、より好ましくはウサギの皮下内、筋肉内、静脈内、フッドパッド内あるいは腹腔内に1~数回注射することにより免疫感作を施す。通常、初回免疫から約1~14日毎に1~5回免疫を行って、最終免疫より約1~5日後に免疫感作された該哺乳動物から血清を取得する。
 血清そのものをポリクローナル抗体として用いることも可能であるが、限外ろ過、硫安分画、ユーグロブリン沈澱法、カプロイン酸法、カプリル酸法、イオン交換クロマトグラフィー(DEAE又はDE52等)、抗イムノグロブリンカラム若しくはプロテインA/Gカラム、免疫原を架橋させたカラム等を用いたアフィニティカラムクロマトグラフィーにより、該抗体を単離及び/又は精製し、得られた精製抗体を用いることも可能である。
 モノクローナル抗体の製造方法としては、例えば、下記の方法が挙げられる。まず上記免疫感作動物から得た該抗体産生細胞と自己抗体産生能のない骨髄腫系細胞(ミエローマ細胞)からハイブリドーマを調製し、該ハイブリドーマをクローン化する。すなわち、ハイブリドーマの培養上清を検体として、免疫学的手法により、哺乳動物の免疫に用いた本発明のペプチドに対する特異的親和性を示しかつキャリアタンパク質と交差反応性を示さないモノクローナル抗体を産生するクローンを選択する。次いで、当該ハイブリドーマの培養上清等から、自体公知の方法によって抗体を製造することができる。
 具体的には、下記のようにしてモノクローナル抗体を製造することができる。すなわち、免疫原を、マウス、ラット又はハムスター(ヒト抗体産生トランスジェニックマウスのような他の動物由来の抗体を産生するように作出されたトランスジェニック動物を含む)の皮下内、筋肉内、静脈内、フッドパッド内若しくは腹腔内に1~数回注射するか、又は移植することにより免疫感作を施す。通常、初回免疫から約1~14日毎に1~4回免疫を行って、最終免疫より約1~5日後に免疫感作された該哺乳動物の脾臓等から抗体産生細胞を取得する。
 モノクローナル抗体を分泌するハイブリドーマ(融合細胞)の調製は、ケーラー及びミルシュタインらの方法(Nature,Vol.256,p.495-497,1975)ならびにそれらに準じる修飾方法に従って行うことができる。すなわち、前述の如く免疫感作された哺乳動物から取得される脾臓、リンパ節、骨髄又は扁桃等、好ましくは脾臓に含まれる抗体産生細胞と、好ましくはマウス、ラット、モルモット、ハムスター、ウサギ又はヒト等の哺乳動物、より好ましくはマウス、ラット又はヒト由来の自己抗体産生能のないミエローマ細胞との細胞融合により、ハイブリドーマを得る。
 細胞融合に用いられるミエローマ細胞としては、例えば、マウス由来ミエローマP3/X63-AG8.653(653;ATCC No.CRL1580)、P3/NSI/1-Ag4-1(NS-1)、P3/X63-Ag8.U1(P3U1)、SP2/0-Ag14(Sp2/0、Sp2)、PAI、F0又はBW5147、ラット由来ミエローマ210RCY3-Ag.2.3.、ヒト由来ミエローマU-266AR1、GM1500-6TG-A1-2、UC729-6、CEM-AGR、D1R11又はCEM-T15が挙げられる。
 モノクローナル抗体を産生するハイブリドーマのスクリーニングは、得られたハイブリドーマを、例えば、マイクロタイタープレート内で培養し、増殖の見られたウェルの培養上清の、前述の免疫感作で用いた本発明のポリペプチドに対する反応性及び前記上清のキャリアタンパク質に対する反応性を、例えば、ELISA等の免疫測定法によって測定し、比較することによって行うことができる。
 スクリーニングによりクローン化されたハイブリドーマは、培地(例えば、10%牛胎仔血清を含むDMEM)を用いて培養される。そして、その培養液の遠心上清をモノクローナル抗体溶液とすることができる。また、該ハイブリドーマを、該ハイブリドーマに由来する動物の腹腔に注入することにより、動物に腹水を生成させ、該動物から得られた腹水をモノクローナル抗体溶液とすることができる。モノクローナル抗体は、上述のポリクローナル抗体と同様の方法で、単離及び/又は精製されることが好ましい。
 また、キメラ抗体は、例えば、特公平3-73280号公報等を、ヒト化抗体は、例えば、特表平4-506458号公報、特開昭62-296890号公報等を、ヒト抗体は、例えば、Nature Genetics, Vol.15, p.146-156, 1997、Nature Genetics, Vol.7, p.13-21, 1994、特表平4-504365号公報、国際公開第94/25585号、Nature, Vol.368, p.856-859, 1994、特表平6-500233号公報等を参考に、それぞれ製造することができる。
 ファージディスプレイによる抗体作製は、例えば、ヒト抗体スクリーニング用に作製されたファージライブラリーから、バイオパニングにより抗原に親和性を有するファージを回収、濃縮することにより行うことができ、これによりFab等の抗体等を容易に得ることができる。この場合、本発明のポリペプチドを抗原として用いて、抗体ライブラリーをスクリーニングすることが好ましい。好ましい抗体ライブラリー及び抗体のスクリーニング方法については、Science, 228:4075, p.1315-1317, 1985、Nature, 348, p.552-554, 1990、Curr.Protein Pept.Sci.;1(2), p.155-169, 2000、国際公開第01/062907号等を参考にすることができる。これにより得られた抗体断片を使用してもよく、あるいは、ファージが有するDNAを利用して抗体を調製してもよい。
 本発明の予防又は治療剤中に含まれる前記抗体の配合量は、上記効果を奏する限り特に限定されるものではないが、通常、本発明の予防又は治療剤全体の0.001~90重量%であり、好ましくは0.005~50重量%であり、より好ましくは0.01~10重量%である。
 本発明の予防又は治療剤は、有効成分である前記抗体以外に医薬的に許容される担体を含有していてもよい。かかる担体としては、製剤分野において通常用いられる担体を使用することができ、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、リン酸カルシウム、炭酸カルシウム等の賦形剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、グリセリン、ポリエチレングリコール等のベースワックス等が挙げられるが、それらに限定されない。
 本発明の予防又は治療剤の投与剤形としては、例えば、液剤、注射製剤等が挙げられるが、それらに限定されない。また本発明の予防又は治療剤は、その剤形が速放性製剤又は徐放性製剤等の放出制御製剤であってもよい。抗体は一般に水性溶媒に可溶であるため、上記いずれの剤形を採っても容易に吸収される。さらに自体公知の方法により抗体の溶解性を上昇させることも可能である。
 IL-17Aが増悪因子として関連する疾患の予防、治療又は軽減のために用いることができる本発明の予防又は治療剤は、製剤製法として自体公知である手段に従って、上記抗体を有効成分として使用することで製造することができる。
 例えば、全身投与に好適な本発明の予防又は治療剤は、水性又は非水性の等張な無菌の注射液に有効量の本発明の抗体を溶解させて製造(例、注射製剤)することができる。本発明の抗体を凍結乾燥させ(例、凍結乾燥製剤)、これを水性又は非水性の等張な無菌の希釈液に溶解させることで製造してもよい。また、局所投与に好適な本発明の予防又は治療剤は、水又は生理食塩水のような希釈液に本発明の抗体を溶解させて製造することができる(例、液剤)。液剤は、噴霧器を用いた気管支や肺等への吸入療法によって使用することも可能である。なお、これらの剤には抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。これらの本発明の予防又は治療剤は、アンプル及びバイアルのように、単位投与量あるいは複数回投与量ずつ容器に封入することができる。
 本発明の予防又は治療剤の投与量は、有効成分として含有する抗体の活性、種類若しくは配合量、投与対象、投与ルート、投与対象の年齢及び体重等により適宜設定することができるが、例えば、成人(体重60kg)1日あたりの投与量(有効量)としては、抗体量として0.1mg~1000mg、好ましくは0.1mg~500mg、さらに好ましくは0.1mg~300mgである。本発明の予防又は治療剤は、1日あたり、必要に応じて一度又は数回に分割して投与してもよく、また数日に分けて投与してもよい。
 本発明の予防又は治療剤は、上述のIL-17Aが増悪因子として関連する疾患に有効な公知の予防・治療剤と併用することができる。これらは1種類のみ、又は複数の種類を併用してもよい。本明細書中、「併用」とは、本発明の予防又は治療剤と、IL-17Aが増悪因子として関連する疾患の既知の予防・治療剤とを組み合わせて使用することを意味し、その使用形態は特に限定されない。例えば、本発明の予防又は治療剤とIL-17Aが増悪因子として関連する疾患の既知の予防・治療剤とを共に含有した医薬組成物としての投与、又は混合することなく別途製剤し、同時若しくは時間間隔をあけて投与するいずれの場合も含まれる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。
[実験例1]
 DNAワクチンの作製
 DNAワクチンベクター
 B型肝炎ウイルスコア抗原(HBc)を単離するため、BCCM/LMBP Plasmid Collectionよりplasmid pPLc3(Accession number LMBP 2470)を購入した。以下のプライマーを設計・合成した(国際公開第2012/141280号)。
 HBcF 5’-gcc atg gat atc gat cct tat aaa gaa ttc gga gc-3’(配列番号3)
 HBcR 5’-ggc ctc tca cta aca ttg aga ttc ccg aga ttg aga-3’(配列番号4)
 上記のプライマーセットを使用して、PCRによりHBcを増幅した。
 pcDNA 3.1/V5-His TOPO TA Expression Kit(Invitrogen)に前記で得られたHBcをクローニングした。MutagenesisによりpcDNA3.1-HBcベクターに、以下のマウスIL-17Aの2種類のエピトープA1又はエピトープA2をコードする核酸配列をそれぞれ挿入した。以下の実施例では、特に言及しない限り、マウスIL-17A1エピトープをコードする核酸配列を挿入したpcDNA3.1-HBcベクターを含むワクチンをIL-17A1 DNAワクチン、マウスIL-17A2エピトープをコードする核酸配列を挿入したpcDNA3.1-HBcベクターを含むワクチンをIL-17A2 DNAワクチンと表記する。ベクターの構造を図1に示す。
 マウスIL-17A1エピトープ RPSDYLNR(配列番号:5)
 マウスIL-17A2エピトープ DHHMNSV(配列番号:7)
[実験例2]
 DNAワクチンのマウスへの投与
 6週齢の下記各雄マウスの大腿筋肉にDNAワクチンをシリンジで注射し、その部位にエレクトロポレーションを施行することで投与した。2週間毎に3回投与した(120μg/60μl×1カ所/回)。
 
 実験1:抗体価測定、血中・尿中各種サイトカイン測定、生存率解析
 NZBWF1マウス(SLE疾患モデル)
 HBc-IL-17A1 (IL-17A1 DNAワクチン)群:6匹
 HBc (pcDNA3.1-HBcベクター)群:6匹
 Saline群:10匹
 毎週体重を測定し、4週間ごとに血清採取を行った。
 投与プランを図4Aに示す。
 
 MRL/lprマウス(SLE疾患モデル)
 HBc-IL-17A1(IL-17A1 DNAワクチン)群:9匹
 Saline群:9匹
 毎週体重を測定し、4週間ごとに血清採取を行った。
 
 実験2:抗体価測定、各臓器の解析
 MRL/lprマウス
 HBc-IL-17A1(IL-17A1 DNAワクチン)群:6匹
 Saline群:6匹
 毎週体重を測定し、4週間ごとに血清採取を行った。
実施例1 マウスIL-17A ペプチドの抗原性
 ELISAによる抗IL-17A抗体価測定
 プレートの作製:マウスIL-17A1エピトープ+BSAコンジュゲート、マウスIL-17A2エピトープ+BSAコンジュゲートを10μg/mlの濃度で96ウェルプレートに分注し、4℃で1晩静置した。組み換えマウスIL-17Aを0.25μg/mlの濃度で96ウェルプレートに分注し、4℃で1晩静置した。
 前記プレートをPBS 200μlで1回洗浄後、5%スキムミルクin PBSで2時間ブロッキングを行った。1次抗体(マウス抗血清)を5%スキムミルクin PBSで段階希釈し、50μlずつ96ウェルプレートにアプライ、4℃で1晩インキュベートした。
 前記プレートをPBS-T(0.05% Tween) 200μlで7回洗浄し、2次抗体(抗マウスIgG Ab-HRP標識)を1/1000希釈(5%スキムミルク)し、50μlずつ添加、常温で3時間インキュベートした。該プレートをPBS-T(0.05% Tween) 200μlで3回洗浄し、TMB溶液を50μl添加、遮光して常温で30分間インキュベートした。0.5N H2SO450μlを添加し反応停止させ、450nmの吸光度を測定した。
 Balb/cマウスをIL-17A1 DNAワクチンまたはIL-17A2 DNAワクチンで免疫した予備実験では、IL-17A1 DNAワクチンを投与したBalb/cマウスの抗体価の上昇が認められた(図3)。そして、図4Aに示す投与プランでNZBWF1マウスにIL-17A1 DNAワクチンを投与した結果、第6週で抗体価の上昇が認められ(図4B)、組み換えマウスIL-17Aを正しく認識する抗体が産生されたことを確認した(図5)。しかも、抗IL-17A1抗体価は長時間持続することを確認した(図7B)。
 Western blottingによる抗マウスIL-17A抗体の組み換えマウスIL-17Aに対する反応性の確認
 常法に従い、各レーンに蛋白質をアプライして電気泳動を行った。泳動後、メンブレンにトランスファーし、ブロッキング後、各1次抗体を添加して4℃で1晩インキュベートした。続いて2次抗体を反応させ、発色反応により抗体の結合を検出した。結果を図2に示す。
 レーン1:組み換えマウスIL-17A
 レーン2:マウスIL-17A1エピトープ+BSAコンジュゲート
 レーン3:マウスIL-17A2エピトープ+BSAコンジュゲート
 
 1次抗体
 A:IL-17A1 DNAワクチン投与したBalb/cマウスの抗血清
 B:市販の抗マウスIL-17A抗体
 C:市販の抗BSA抗体
 IL-17A1 DNAワクチン投与したマウスの抗血清は、市販の抗マウスIL-17A抗体と同様に組み換えマウスIL-17Aと結合した。
 IL-17A1 DNAワクチン投与したマウスの抗血清は、マウスIL-17A1エピトープ+BSAコンジュゲートを特異的に認識し、マウスIL-17A2エピトープ+BSAコンジュゲートとは反応しなかった。
 なお、組み換えマウスIL-17Aには、安定化のために大量のBSAが添加されており、市販の抗BSA抗体は、マウスIL-17A1エピトープ+BSAコンジュゲート、マウスIL-17A2エピトープ+BSAコンジュゲートとともにこれを認識していた。
実施例2 SLEモデルマウスにおけるIL-17Aワクチンの効果
 血中IL-1β、TNF-α及びIL-17A濃度、尿中MCP-1濃度の測定
 Quantikine ELISAキットを用いて、メーカーの指定するプロトコールに従いIL-1β、TNF-α、IL-17A及びMCP-1の濃度測定を行った。血清は25μlずつ使用した。尿は50μlずつ使用した。キットに添付の標準試料を用いて検量線を作製し、各サイトカイン濃度を定量した。NZBWF1マウスへのIL-17A1 DNAワクチン投与群で血中IL-1βの有意な減少が認められた(図6E)。血中IL-17A濃度、尿中MCP-1濃度、血中TNF-α濃度の減少傾向も認められた(図6C、B、F)。また、実験1に記載したMRL/lprマウスへのIL-17A1 DNAワクチン投与群でも、TNF-αの有意な減少が認められた(図6D、8A)。
 尿定性検査
 麻酔したマウスから随時尿を採取した。尿マルチスティック試験紙を用いて、尿蛋白、尿クレアチニン、尿アルブミン、尿潜血、尿比重等を測定した。NZBWF1マウスへのIL-17A1 DNAワクチン投与群で尿タンパク質の減少傾向が認められた(図6A)。
 生存率
 SLEのモデルマウスであるNZBWF1マウスにIL-17A1 DNAワクチンを投与後、毎日観察し、マウスが死亡した日を記録した。死亡したマウスの数を1週間毎にまとめて、生存率のグラフを作成した。IL-17A1 DNAワクチン投与群の長期観察の結果、該ワクチン投与群の生存期間の有意な延長を認めた(図7A)。また、実験1に記載したMRL/lprマウスへのDNAワクチン投与群でも、寿命の延長傾向が認められた(図8B)。
 臓器重量解析
 実験2に記載したMRL/lprマウスにIL-17A1 DNAワクチンを投与後、臓器の重量変化を調べた。HBc-IL-17A1群及びSaline群の2群間で、体重に有意差は無かった(図9A)。対照として、全体重当たりの心臓重量を測定したが、有意差は無かった(図9B)。一方、IL-17A1 DNAワクチンを投与後の脾臓重量の有意な減少が認められた(図9C)。そして、全体重当たりの脾臓重量の割合も有意な減少が認められた(図9D)。SLE患者では脾腫がみられ、これらのモデルマウスにおいて全体重当たりの脾臓重量の増加はSLEの増悪を反映する。そのため本結果より、IL-17A1 DNAワクチンがSLE治療効果を有していることが明らかとなった。
 統計手法
 生存率はKaplan-Meier法により統計処理を行った。
 病理組織の解析プランを図10に示す。
 実験3
 NZBWF1マウス
 HBc-IL-17A1(IL-17A1 DNAワクチン)群:9匹
 Saline群:9匹
 毎週体重を測定し、4週間ごとに血清採取を行った。
 
 MRL/lprマウス
 HBc-IL-17A1(IL-17A1 DNAワクチン)群:9匹
 Saline群:9匹
 毎週体重を測定し、4週間ごとに血清採取を行った。
 組織染色
 免疫組織染色解析では、摘出した各臓器を4%パラホルムアルデヒド中で24時間固定し、パラフィン中に埋包し、4μmの切片に切り出した。切片を1次抗体(抗F4/80抗体)および2次抗体(HRP標識抗ラットIgG抗体)で反応させた。スライドをヘマトキシリンで対比染色し、顕微鏡観察に用いた。組織検査アッセイでは、腎臓、顎下腺及び肝臓を解剖し、4%パラホルムアルデヒド中で一晩固定し、パラフィン中に埋包した。腎臓の4μm切片をPAS染色で染色した。顎下腺および肝臓の4μm切片をHE染色で染色した。
 腎臓
 PAS染色でNZBWF1マウス、又はMRL/lprマウスでの腎病変の程度を確認した。結果を図11A、Bに示す。ワクチン投与群で、糸球体、間質の破壊が抑制されていた。F4/80の免疫染色でマクロファージの浸潤の程度を確認した。結果を図11C、Dに示す。ワクチン投与群で糸球体周囲や間質へのマクロファージ浸潤の抑制が認められた。
 顎下腺
 HE染色でNZBWF1マウスでの顎下腺炎の程度を確認した。結果を図12に示す。ワクチン投与群で顎下腺炎の抑制が認められた。
 肝臓
 ワクチンの安全性の確認のために肝臓の組織切片をHE染色し、観察した。結果を図13に示す。NZBWF1マウス(図13A)及びMRL/lprマウス(図13B)いずれのマウスにおいても、ワクチン投与群及びSaline投与群ともに、病的所見が無いことを確認した。
実施例3 大腸炎モデルマウスにおけるIL-17Aワクチンの効果
 6週齢の下記各雄マウスにTNBS溶液(2mg/100μl/回)を毎週注腸し、大腿筋肉にIL-17A1 DNAワクチンをエレクトロポレーションを用いて2週間毎に3回投与した(120μg/60μl×1カ所/回)。第8週にマウスを犠死させた。投与プランを図14(A)に示す。
 実験4
 Balb/cマウス
 Normal群(TNBS(-)):1匹
 Vaccine群(HBc-IL-17A1群;TNBS(+)):3匹
 Saline群(TNBS(+)):3匹
 体重
 実験4に記載したBalb/cマウスにTNBS投与8週後のマウスの体重の変化を調べた。マウスの体重増加量は、TNBSによる大腸炎の誘導に伴い減少した(Saline群)が、この減少効果はワクチン群では見られなかった(図14(B))。
 大腸の長さ
 実験4に記載したBalb/cマウスにTNBS投与8週後のマウスの大腸の長さを調べた。大腸の長さは、TNBSによる大腸炎の誘導に伴い短くなった(Saline群)が、この効果はワクチン群で抑制された(図14(C))。
 大腸
 犠死させたマウスの大腸を解剖し、4%パラホルムアルデヒド中で一晩固定し、パラフィン中に埋包した。大腸の4μm切片をHE染色で染色し、組織学的検討を行った。Saline群で炎症細胞の浸潤などの病理所見が認められた(図14(D))。また、HE染色切片の病理学的所見をスコア化した。ワクチン群でH&Eスコアの低下を認めた(図14(E))。
 以上の結果から、IL-17AワクチンはTNBS誘導大腸炎モデルマウスにおいて大腸炎の抑制効果を示した。
実施例4 関節炎モデルマウスにおけるIL-17Aワクチンの効果
 6週齢の下記各雄マウスの大腿筋肉にマウスIL-17A1 DNAワクチンをエレクトロポレーションを用いて2週間毎に3回投与した(120μg/60μl×1カ所/回)。ワクチン初回投与の28日後にType IIコラーゲンとCFA(完全フロイントアジュバント)、ワクチン初回投与の42日後にType IIコラーゲンとIFA(不完全フロイントアジュバント)を投与することによって関節炎を誘導し、以後毎週3回関節炎の程度を観察し、スコア化した。投与プランを図15(A)に示す。
 実験5
 DBA/1マウス
 Vaccine群(HBc-IL-17A1群):6匹
 Saline群(生理食塩水群):6匹
 臨床スコア
 実験5に記載したDBA/1マウスの関節炎の臨床スコアおよび臨床所見を調べた。ワクチン群は関節炎の発症と進行の抑制効果を有することが認められた(図15(B)、(C))。
 以上の結果から、IL-17AワクチンはType IIコラーゲンによる関節炎モデルマウスにおいて、関節炎の抑制効果を示した。
実施例5 大腸癌モデルマウスにおけるIL-17Aワクチンの効果
 6週齢の下記各雄マウスの大腿筋肉にマウスIL-17A1エピトープからなるペプチドを含むワクチン(KLH conjugated)を2週間毎に3回投与した(25μg/25μl +アジュバント25μl /回(アジュバントは、初回投与時はCFA、2、3回目はIFA))。ワクチン初回投与の5週後にマウス大腸癌細胞株CT26細胞(5×105細胞/Body)を接種し、以後毎週腫瘍体積(0.5×長径×短径×短径)を計測した。また、全マウスが死亡するまで観察を続け、生存期間を確認した。投与プランを図16(A)に示す。
 実験6
 Balb/cマウス
 Vaccine群(IL-17A1-KLH群):6匹
 Saline群(生理食塩水群):6匹
 腫瘍体積
 実験6に記載したBalb/cマウスにCT26細胞を接種8日および15日後のマウスの腫瘍体積を調べた。ワクチン群は腫瘍体積の増大抑制効果を有することが認められた(図16(B))。
 生存率
 ワクチンを投与したBalb/cマウスにCT26細胞を接種後、毎日観察し、マウスが死亡した日を記録した。ワクチン投与群の長期観察の結果、生存期間の有意な延長を認めた(図16(C))。
 以上の結果から、IL-17AワクチンはCT26細胞接種による大腸癌モデルマウスにおいて、腫瘍増大抑制効果および生存期間延長効果を示した。
実施例6 肺癌モデルマウスにおけるIL-17Aワクチンの効果
 6週齢の下記各雄マウスの大腿筋肉にマウスIL-17A1 DNAワクチンをエレクトロポレーションを用いて2週間毎に3回投与した(120μg/60μl×1カ所/回)。ワクチン初回投与の5週後にマウス肺癌細胞株LLC細胞(5×105細胞/Body)を接種し、以後毎週腫瘍体積(0.5×長径×短径×短径)を計測した。第9週にマウスを犠死させた後、腫瘍の重量、肺転移、肝転移の有無を確認した。投与プランを図17(A)に示す。
 実験7
 C57 BL/6マウス
 Vaccine群(HBc-IL-17A1群):5匹
 Saline群(生理食塩水群):5匹
 体重
 実験7に記載した犠死させた後のマウスの体重を調べた。マウスの体重は、両群間で有意差は認められなかった(図17(B))。
 腫瘍体積
 実験7に記載したC57 BL/6マウスにLLC細胞を接種後、毎週腫瘍体積を調べた。ワクチン群は腫瘍の増大を抑制する効果を有することが認められた(図17(C))。
 腫瘍重量
 実験7に記載した犠死させた後のマウスの腫瘍重量を調べた。ワクチン群は腫瘍重量の増大を抑制する効果を有することが認められた(図17(D))。
 転移の有無
 ワクチン群において、肺転移、肝転移を認めなかった。ワクチン非投与群においては肺転移が認められた(図17(E)、(F)、(G))。
 以上の結果から、IL-17AワクチンはLLC細胞接種による肺癌モデルマウスにおいて、
腫瘍増大抑制効果および転移抑制効果を示した。
実施例7 ヒトIL-17A ペプチドの抗原性
 ELISAによる抗IL-17A抗体価測定
 マウスIL-17A1エピトープ(RPSDYLNR(配列番号:5))に対応する以下のヒトIL-17A1エピトープからなるペプチドを含むワクチン(KLH conjugated)を作製し、Balb/cマウスに2週間隔で3回皮内投与し、初回投与の6週後に実施例1に記載の方法に従って血清抗体価を測定した。
 ヒトIL-17A1エピトープ RSSDYYNR(配列番号:1)
 その結果、ワクチンを投与したBalb/cマウスの抗体価の上昇が認められた(図18)。また、前記血清は、マウスIL-17A1エピトープに対しても交差反応性を示した(図19(A))。さらに、マウスIL-17A1エピトープからなるペプチドを含むワクチンを投与することによって得られた血清も、ヒトIL-17A1エピトープに対して交差反応性を示した(図19(B))。
 また、以下のヒトIL-17Aの2種類のエピトープ(ヒトIL-17A2エピトープ、ヒトIL-17A3エピトープ)からなるペプチドを含むワクチン(KLH conjugated)を作製し、Balb/cマウスに2週間隔で3回皮内投与し、初回投与の6週後に実施例1に記載の方法に従って血清抗体価を測定した。
 ヒトIL-17A2エピトープ ADGNVDYHMNSVPIQQE(配列番号:8)
 ヒトIL-17A3エピトープ LRREPPHCPNSFRL(配列番号:9)
 その結果、ヒトIL-17A2エピトープからなるペプチドを含むワクチンを投与したBalb/cマウスの抗体価の上昇が認められた(図20)。
 さらに、以下のヒトIL-17A1エピトープの部分配列であるヒトIL-17A4からなるペプチドを含むワクチン(KLH conjugated)を作成した。また、ヒトIL-17A1エピトープの部分配列であるヒトIL-17A5、ヒトIL-17A6、またはヒトIL-17A7をコードするDNAを含むワクチンを実験例1に従って作成した。Balb/cマウスに2週間隔で3回皮内投与し、初回投与の6週後に実施例1に記載の方法に従って血清抗体価を測定した。
 ヒトIL-17A4エピトープ SDYYN(配列番号:11)
 ヒトIL-17A5エピトープ SDYY(配列番号:12)
 ヒトIL-17A6エピトープ SDY
 ヒトIL-17A7エピトープ DYY
 その結果、ヒトIL-17A4エピトープからなるペプチドを含むワクチン、ヒトIL-17A5エピトープ、ヒトIL-17A6エピトープまたはヒトIL-17A7エピトープをコードするDNA含むワクチンを投与したBalb/cマウスの抗体価の上昇が認められた(図21)。
実施例8 関節炎モデルマウスにおけるヒトIL-17Aワクチンの効果
 6週齢の下記各雄マウスの大腿筋肉にヒトIL-17A1エピトープ、ヒトIL-17A2エピトープまたはヒトIL-17A4エピトープからなるペプチドを含むワクチン(KLH conjugated)を2週間毎に3回投与した(120μg/60μl×1カ所/回)。ワクチン初回投与の28日後にType IIコラーゲンとCFA(完全フロイントアジュバント)、ワクチン初回投与の42日後にType IIコラーゲンとIFA(不完全フロイントアジュバント)を投与することによって関節炎を誘導し、以後毎週3回関節炎の程度を観察し、スコア化した。投与プランを図22(A)に示す。
 実験8
 DBA/1マウス
 H17(ヒトIL-17A1エピトープ)群:3匹
 AF4(ヒトIL-17A4エピトープ)群:3匹
 AF5(ヒトIL-17A2エピトープ)群:3匹
 Control(KLH)群:4匹
 Collagen(-)群:3匹
 臨床スコア
 実験8に記載したDBA/1マウスの関節炎の臨床スコアを調べた。ヒトIL-17A1エピトープ、ヒトIL-17A2エピトープまたはヒトIL-17A4エピトープからなるワクチン群は関節炎の発症と進行の抑制効果を有することが認められた(図22(B))。
 以上の結果から、ヒトIL-17AワクチンはType IIコラーゲンによる関節炎モデルマウスにおいて、関節炎の抑制効果を示した。
実施例9 IL-17Aに対するin vitro中和活性
 培地中の正常ヒト皮膚線維芽細胞(NHDF)に組み換えヒトIL-17Aを添加した時のIL-6の分泌量をELISAで測定した結果、IL-17Aの添加によってIL-16の分泌が促進された(IL-17 only)。しかし、ヒトIL-17A1エピトープからなるペプチドを含むワクチンで免疫したマウスの抗血清から精製したIgGをIL-17Aと同時に添加した場合、IL-6の分泌が抑制された(IL-17 + antisera)。また、非免疫マウスの抗血清から精製したIgGをIL-17Aと同時に添加した場合、IL-6の分泌はほとんど抑制されなかった(IL-17 + control sera)。これらの結果を、図23に示す。
 以上の結果から、ヒトIL-17A1エピトープからなるペプチドを含むワクチンによる免疫で得られる抗体はin vitroにおいて培養細胞からのIL-6分泌を抑制した。従って、該抗体はIL-17A活性の中和作用を有することが示唆され、IL-17Aが憎悪に関わる疾患の治療効果に有効であることが示唆された。
 本発明を好ましい態様を強調して説明してきたが、好ましい態様が変更され得ることは当業者にとって自明である。
 ここで述べられた特許及び特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 以上詳述したように、本発明のワクチンは、IL-17Aに対する抗体価を上昇させ、SLEだけでなく、関節リウマチ、炎症性腸疾患、癌、乾癬、多発性硬化症、動脈硬化症等、IL-17Aが病態の増悪に関与している他の疾患にも使用可能であり、これらの疾患の治療等に大きく貢献することができる。
 本出願は、日本で出願された特願2013-273133(出願日:2013年12月27日)を基礎としており、その内容はすべて本明細書に包含されるものとする。

Claims (13)

  1.  以下の(1)~(3)のいずれかを含む、IL-17Aが増悪因子として関与する疾患の予防または治療用ワクチン:
    (1)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド;
    (2)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列において、1又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を含むポリペプチド;及び
    (3)上記(1)又は(2)のポリペプチドを発現し得る発現ベクター。
  2.  以下の(1)~(3)のいずれかを含む、請求項1に記載のワクチン:
    (1)配列番号:1に示されるアミノ酸配列、又は配列番号:8に示されるアミノ酸配列からなるポリペプチド;
    (2)配列番号:11に示されるアミノ酸配列、又は配列番号:12に示されるアミノ酸配列からなるポリペプチド;及び
    (3)上記(1)又は(2)のポリペプチドを発現し得る発現ベクター。
  3.  発現ベクターが、B型肝炎ウイルスコア(HBc)をコードするヌクレオチド配列を含む、請求項1または2に記載のワクチン。
  4.  発現ベクターが、該(1)又は(2)のポリペプチドをコードするヌクレオチド配列が配列番号:17で示されるヌクレオチド配列の塩基番号:246と塩基番号:247の間に挿入されたヌクレオチド配列を含む、請求項1または2に記載のワクチン。
  5.  キャリアタンパク質および/又はアジュバントを含む、請求項1-4のいずれか1項に記載のワクチン。
  6.  IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、腫瘍、乾癬、及び多発性硬化症からなる群から選択される、請求項1-5のいずれか1項に記載のワクチン。
  7.  以下の(1)または(2)を含む、IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、大腸癌、及び肺癌からなる群から選択される、請求項1-6のいずれか1項に記載のワクチン:
    (1)配列番号:1に示されるアミノ酸配列からなるポリペプチド;及び
    (2)上記(1)のポリペプチドを発現し得る発現ベクター。
  8.  以下の(1)~(3)のいずれかを含む、IL-17Aが増悪因子として関与する疾患が、関節リウマチである、請求項1-6のいずれか1項に記載のワクチン:
    (1)配列番号:1に示されるアミノ酸配列からなるポリペプチド;
    (2)配列番号:11に示されるアミノ酸配列又は配列番号:12に示されるアミノ酸配列からなるポリペプチド;及び
    (3)上記(1)又は(2)のポリペプチドを発現し得る発現ベクター。
  9.  以下の(1)又は(2)のポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、IL-17Aが増悪因子として関与する疾患の予防または治療剤:
    (1)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列を含むポリペプチド;
    (2)配列番号:1に示されるアミノ酸配列、配列番号:8に示されるアミノ酸配列、配列番号:1に対応する非ヒト哺乳動物由来のアミノ酸配列、又は配列番号:8に対応する非ヒト哺乳動物由来のアミノ酸配列において、1又は数個のアミノ酸残基が置換、欠失、挿入又は付加されたアミノ酸配列を含むポリペプチド。
  10.  以下の(1)又は(2)のポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、請求項9に記載の予防または治療剤:
    (1)配列番号:1に示されるアミノ酸配列、又は配列番号:8に示されるアミノ酸配列からなるポリペプチド;
    (2)配列番号:11に示されるアミノ酸配列、又は配列番号:12に示されるアミノ酸配列からなるポリペプチド。
  11.  IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、腫瘍、乾癬、及び多発性硬化症からなる群から選択される、請求項9または10に記載の予防または治療剤。
  12.  IL-17Aが増悪因子として関与する疾患が、SLE、炎症性腸疾患、関節リウマチ、大腸癌、及び肺癌からなる群から選択される、配列番号:1に示されるアミノ酸配列からなるポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、請求項9-11のいずれか1項に記載の予防または治療剤。
  13.  IL-17Aが増悪因子として関与する疾患が、関節リウマチであり、配列番号:1に示されるアミノ酸配列、配列番号:11に示されるアミノ酸配列又は配列番号:12に示されるアミノ酸配列からなるポリペプチドを認識し、IL-17Aの機能を阻害する抗体を含む、請求項9-11のいずれか1項に記載の予防または治療剤。
PCT/JP2014/084682 2013-12-27 2014-12-26 Il-17aを標的とするワクチン WO2015099167A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2014370875A AU2014370875B2 (en) 2013-12-27 2014-12-26 Vaccine targeting IL-17A
CA2935046A CA2935046C (en) 2013-12-27 2014-12-26 Vaccine targeting il-17a
US15/108,415 US11421025B2 (en) 2013-12-27 2014-12-26 Treatment of IL-17A diseases
JP2015555069A JP6164593B2 (ja) 2013-12-27 2014-12-26 Il−17aを標的とするワクチン
CN201480075747.1A CN106132433B (zh) 2013-12-27 2014-12-26 以il-17a作为靶标的疫苗
EP14873679.6A EP3088000A4 (en) 2013-12-27 2014-12-26 Vaccine targeting il-17a
KR1020167020472A KR101836756B1 (ko) 2013-12-27 2014-12-26 Il-17a를 표적화하는 백신

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013273133 2013-12-27
JP2013-273133 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099167A1 true WO2015099167A1 (ja) 2015-07-02

Family

ID=53479005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084682 WO2015099167A1 (ja) 2013-12-27 2014-12-26 Il-17aを標的とするワクチン

Country Status (8)

Country Link
US (1) US11421025B2 (ja)
EP (1) EP3088000A4 (ja)
JP (1) JP6164593B2 (ja)
KR (1) KR101836756B1 (ja)
CN (1) CN106132433B (ja)
AU (1) AU2014370875B2 (ja)
CA (1) CA2935046C (ja)
WO (1) WO2015099167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164409A1 (ja) 2016-03-25 2017-09-28 国立大学法人大阪大学 疾患の要因となる生体内タンパク質を標的とするコンジュゲートワクチン

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296890A (ja) 1986-03-27 1987-12-24 メディカル リサーチ カウンスル 組換えdna生産物及び製造法
JPH0373280B2 (ja) 1984-08-15 1991-11-21 Shingijutsu Kaihatsu Jigyodan
JPH04504365A (ja) 1990-01-12 1992-08-06 アブジェニックス インコーポレイテッド 異種抗体の生成
JPH04506458A (ja) 1989-12-21 1992-11-12 セルテック リミテッド Cd3特異的組換え抗体
JPH06500233A (ja) 1990-08-29 1994-01-13 ジェンファーム インターナショナル,インコーポレイティド 異種免疫グロブリンを作る方法及びトランスジェニックマウス
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO2001062907A1 (en) 2000-02-22 2001-08-30 Medical & Biological Laboratories Co., Ltd. Antibody library
WO2012045848A1 (en) * 2010-10-08 2012-04-12 Novartis Ag Methods of treating psoriasis using il-17 antagonists
WO2012141280A1 (ja) 2011-04-15 2012-10-18 国立大学法人 大阪大学 Dnaワクチン

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070160576A1 (en) * 2001-06-05 2007-07-12 Genentech, Inc. IL-17A/F heterologous polypeptides and therapeutic uses thereof
EP3366702B1 (en) 2005-12-13 2023-08-09 Eli Lilly And Company Anti-il-17 antibodies
BRPI0708902A2 (pt) 2006-03-16 2011-06-14 Genentech Inc mÉtodos de tratar lupus usando anticorpos cd4
KR102468907B1 (ko) 2016-03-25 2022-11-18 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 질환의 요인이 되는 생체내 단백질을 표적으로 하는 컨쥬게이트 백신

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373280B2 (ja) 1984-08-15 1991-11-21 Shingijutsu Kaihatsu Jigyodan
JPS62296890A (ja) 1986-03-27 1987-12-24 メディカル リサーチ カウンスル 組換えdna生産物及び製造法
JPH04506458A (ja) 1989-12-21 1992-11-12 セルテック リミテッド Cd3特異的組換え抗体
JPH04504365A (ja) 1990-01-12 1992-08-06 アブジェニックス インコーポレイテッド 異種抗体の生成
JPH06500233A (ja) 1990-08-29 1994-01-13 ジェンファーム インターナショナル,インコーポレイティド 異種免疫グロブリンを作る方法及びトランスジェニックマウス
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO2001062907A1 (en) 2000-02-22 2001-08-30 Medical & Biological Laboratories Co., Ltd. Antibody library
WO2012045848A1 (en) * 2010-10-08 2012-04-12 Novartis Ag Methods of treating psoriasis using il-17 antagonists
WO2012141280A1 (ja) 2011-04-15 2012-10-18 国立大学法人 大阪大学 Dnaワクチン

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
CURR. PROTEIN PEPT. SCI., vol. 1, no. 2, 2000, pages 155 - 169
EUR J IMMUNOLOGY, vol. 36, no. 11, 2006, pages 2857 - 2867
EUR J IMMUNOLOGY, vol. 42, no. 9, 2012, pages 2274 - 2284
EXP. OPIN. THER. PATENTS, vol. 6, no. 5, 1996, pages 441 - 456
GUAN Q. ET AL.: "An IL -17 peptide-based and virus-like particle vaccine enhances the bioactivity of IL -17 in vitro and in vivo", IMMUNOTHERAPY, vol. 4, no. 12, 2012, pages 1799 - 1807, XP008183808 *
IMMUNOTHERAPY, vol. 4, no. 12, 2012, pages 1799 - 1807
J DERMATOL, vol. 41, 2014, pages 1039 - 1046
J IMMUNOLOGY, vol. 188, no. 8, 2012, pages 3567 - 3571
KOHLER; MILSTEIN ET AL., NATURE, vol. 256, 1975, pages 495 - 497
MA Y. ET AL.: "Targeting TGF-betal by employing a vaccine ameliorates fibrosis in a mouse model of chronic colitis", INFLAMM.BOWEL DIS., vol. 16, no. 6, 1 June 2010 (2010-06-01), pages 1040 - 1050, XP055354000, DOI: 10.1002/IBD.21167 *
NATURE GENETICS, vol. 15, 1997, pages 146 - 156
NATURE GENETICS, vol. 7, 1994, pages 13 - 21
NATURE IMMUNOLOGY, vol. 10, no. 7, 2009, pages 778 - 785
NATURE, vol. 348, 1990, pages 552 - 554
NATURE, vol. 368, 1994, pages 856 - 859
ROHN T.A. ET AL.: "VACCINATION AGAINST IL-17 SUPPRESSES AUTOIMMUNE ARTHRITIS AND ENCEPHALOMYELITIS", EUR. J.IMMUNOL., vol. 36, no. 11, 1 November 2006 (2006-11-01), pages 2857 - 2867, XP055162840 *
SCIENCE, vol. 228, no. 4075, 1985, pages 1315 - 1317
See also references of EP3088000A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164409A1 (ja) 2016-03-25 2017-09-28 国立大学法人大阪大学 疾患の要因となる生体内タンパク質を標的とするコンジュゲートワクチン
KR20180123064A (ko) 2016-03-25 2018-11-14 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 질환의 요인이 되는 생체내 단백질을 표적으로 하는 컨쥬게이트 백신
CN108883166A (zh) * 2016-03-25 2018-11-23 国立大学法人大阪大学 以成为疾病主要原因的生物体内蛋白质为靶标的结合疫苗
US10980876B2 (en) 2016-03-25 2021-04-20 Osaka University Conjugate vaccine targeting a disease-causing biological protein
CN108883166B (zh) * 2016-03-25 2023-06-02 国立大学法人大阪大学 以成为疾病主要原因的生物体内蛋白质为靶标的结合疫苗
EP4194007A1 (en) 2016-03-25 2023-06-14 Osaka University Conjugate vaccine targeting disorder-causing in vivo protein

Also Published As

Publication number Publication date
US11421025B2 (en) 2022-08-23
US20160319013A1 (en) 2016-11-03
JP6164593B2 (ja) 2017-07-19
AU2014370875A1 (en) 2016-08-11
KR20160126978A (ko) 2016-11-02
AU2014370875B2 (en) 2017-11-23
CA2935046C (en) 2021-04-13
JPWO2015099167A1 (ja) 2017-03-23
CN106132433B (zh) 2021-04-06
EP3088000A1 (en) 2016-11-02
EP3088000A4 (en) 2017-08-09
KR101836756B1 (ko) 2018-03-08
CA2935046A1 (en) 2015-07-02
CN106132433A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6620829B2 (ja) 認知症治療剤又は予防剤
JP5823663B2 (ja) ミスフォールドsod1媒介疾患を処置および検出するための方法および組成物
US20120107321A1 (en) Antibodies And Epitopes Specific To Misfolded Prion Protein
JP6193275B2 (ja) B細胞媒介炎症性疾患を治療するための方法
TW200844110A (en) Diagnosis and treatment of alzheimer's disease and other neurodementing diseases
US20100196408A1 (en) Metastatic colorectal cancer vaccine
CN113735974B (zh) 针对Claudin18.2的抗体及其用途
KR20180123064A (ko) 질환의 요인이 되는 생체내 단백질을 표적으로 하는 컨쥬게이트 백신
EP3192813A1 (en) Humanized monoclonal antibody for inhibiting vascular endothelial lipase enzyme activity
US20220213180A1 (en) Prophylactic and/or therapeutic agent of infectious diseases or inflammatory diseases
JP6164593B2 (ja) Il−17aを標的とするワクチン
WO2020096046A1 (ja) 老化関連t細胞を標的とした糖代謝異常の予防または治療用ワクチン
WO2015033831A1 (ja) Dpp-4を標的とした糖尿病治療用ワクチン
WO2009142086A1 (ja) マイコプラズマ感染症用ワクチン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873679

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015555069

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2935046

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15108415

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014873679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873679

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014370875

Country of ref document: AU

Date of ref document: 20141226

Kind code of ref document: A