WO2015098913A1 - ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法 - Google Patents
ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法 Download PDFInfo
- Publication number
- WO2015098913A1 WO2015098913A1 PCT/JP2014/084045 JP2014084045W WO2015098913A1 WO 2015098913 A1 WO2015098913 A1 WO 2015098913A1 JP 2014084045 W JP2014084045 W JP 2014084045W WO 2015098913 A1 WO2015098913 A1 WO 2015098913A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annular
- downhole tool
- degradable
- seal member
- mandrel
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 82
- 239000002861 polymer material Substances 0.000 claims abstract description 122
- 229920006237 degradable polymer Polymers 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims description 149
- 238000007789 sealing Methods 0.000 claims description 123
- 229920001971 elastomer Polymers 0.000 claims description 73
- 239000005060 rubber Substances 0.000 claims description 69
- 238000009412 basement excavation Methods 0.000 claims description 66
- 238000000354 decomposition reaction Methods 0.000 claims description 65
- 230000009467 reduction Effects 0.000 claims description 55
- 239000012530 fluid Substances 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 230000002093 peripheral effect Effects 0.000 claims description 46
- 230000006835 compression Effects 0.000 claims description 39
- 238000007906 compression Methods 0.000 claims description 39
- -1 organic acid esters Chemical class 0.000 claims description 38
- 229920006311 Urethane elastomer Polymers 0.000 claims description 34
- 239000012779 reinforcing material Substances 0.000 claims description 33
- 229920003232 aliphatic polyester Polymers 0.000 claims description 31
- 239000000126 substance Substances 0.000 claims description 31
- 229920000954 Polyglycolide Polymers 0.000 claims description 28
- 239000004633 polyglycolic acid Substances 0.000 claims description 28
- 230000006870 function Effects 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 25
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 24
- 230000002378 acidificating effect Effects 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 23
- 229920000728 polyester Polymers 0.000 claims description 22
- 238000007654 immersion Methods 0.000 claims description 21
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 19
- 239000002131 composite material Substances 0.000 claims description 17
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 15
- 239000004626 polylactic acid Substances 0.000 claims description 12
- 239000004014 plasticizer Substances 0.000 claims description 11
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 11
- 229920002647 polyamide Polymers 0.000 claims description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 10
- 230000000903 blocking effect Effects 0.000 claims description 10
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 10
- 239000000155 melt Substances 0.000 claims description 10
- 239000003566 sealing material Substances 0.000 claims description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 229920000800 acrylic rubber Polymers 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 239000004310 lactic acid Substances 0.000 claims description 8
- 235000014655 lactic acid Nutrition 0.000 claims description 8
- 229920000058 polyacrylate Polymers 0.000 claims description 8
- 150000008065 acid anhydrides Chemical class 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 6
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 claims description 6
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 5
- 229920000181 Ethylene propylene rubber Polymers 0.000 claims description 5
- 244000043261 Hevea brasiliensis Species 0.000 claims description 5
- 239000005639 Lauric acid Substances 0.000 claims description 5
- 229920005549 butyl rubber Polymers 0.000 claims description 5
- 229920003049 isoprene rubber Polymers 0.000 claims description 5
- 229920003052 natural elastomer Polymers 0.000 claims description 5
- 229920001194 natural rubber Polymers 0.000 claims description 5
- 150000007524 organic acids Chemical class 0.000 claims description 5
- 235000005985 organic acids Nutrition 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 4
- 150000007522 mineralic acids Chemical class 0.000 claims description 4
- 229920001084 poly(chloroprene) Polymers 0.000 claims description 4
- 229920006345 thermoplastic polyamide Polymers 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 230000035882 stress Effects 0.000 description 95
- 235000019589 hardness Nutrition 0.000 description 68
- 239000011347 resin Substances 0.000 description 32
- 229920005989 resin Polymers 0.000 description 30
- 238000004519 manufacturing process Methods 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 19
- 239000003921 oil Substances 0.000 description 18
- 230000007423 decrease Effects 0.000 description 14
- 150000002148 esters Chemical class 0.000 description 14
- 239000000835 fiber Substances 0.000 description 14
- 230000007062 hydrolysis Effects 0.000 description 13
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 239000000523 sample Substances 0.000 description 12
- 238000013329 compounding Methods 0.000 description 11
- 206010017076 Fracture Diseases 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000004215 Carbon black (E152) Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 239000011147 inorganic material Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 239000003345 natural gas Substances 0.000 description 9
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 8
- 229910010272 inorganic material Inorganic materials 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000005065 mining Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000001737 promoting effect Effects 0.000 description 7
- 238000004904 shortening Methods 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- PJRSUKFWFKUDTH-JWDJOUOUSA-N (2s)-6-amino-2-[[2-[[(2s)-2-[[(2s,3s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[(2-aminoacetyl)amino]-4-methylsulfanylbutanoyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]propanoyl]amino]acetyl]amino]propanoyl Chemical compound CSCC[C@H](NC(=O)CN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(N)=O PJRSUKFWFKUDTH-JWDJOUOUSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 229920000459 Nitrile rubber Polymers 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000004323 axial length Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 150000002596 lactones Chemical class 0.000 description 5
- 108010021753 peptide-Gly-Leu-amide Proteins 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000003180 well treatment fluid Substances 0.000 description 5
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 3
- 208000010392 Bone Fractures Diseases 0.000 description 3
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 229940022769 d- lactic acid Drugs 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000003079 shale oil Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229930182843 D-Lactic acid Natural products 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- IPRJXAGUEGOFGG-UHFFFAOYSA-N N-butylbenzenesulfonamide Chemical compound CCCCNS(=O)(=O)C1=CC=CC=C1 IPRJXAGUEGOFGG-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002144 chemical decomposition reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- UYCAUPASBSROMS-AWQJXPNKSA-M sodium;2,2,2-trifluoroacetate Chemical compound [Na+].[O-][13C](=O)[13C](F)(F)F UYCAUPASBSROMS-AWQJXPNKSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 150000003458 sulfonic acid derivatives Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 2
- YKJYKKNCCRKFSL-RDBSUJKOSA-N (-)-anisomycin Chemical compound C1=CC(OC)=CC=C1C[C@@H]1[C@H](OC(C)=O)[C@@H](O)CN1 YKJYKKNCCRKFSL-RDBSUJKOSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- DNJRKFKAFWSXSE-UHFFFAOYSA-N 1-chloro-2-ethenoxyethane Chemical compound ClCCOC=C DNJRKFKAFWSXSE-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- RGMMREBHCYXQMA-UHFFFAOYSA-N 2-hydroxyheptanoic acid Chemical compound CCCCCC(O)C(O)=O RGMMREBHCYXQMA-UHFFFAOYSA-N 0.000 description 1
- NYHNVHGFPZAZGA-UHFFFAOYSA-N 2-hydroxyhexanoic acid Chemical compound CCCCC(O)C(O)=O NYHNVHGFPZAZGA-UHFFFAOYSA-N 0.000 description 1
- JKRDADVRIYVCCY-UHFFFAOYSA-N 2-hydroxyoctanoic acid Chemical compound CCCCCCC(O)C(O)=O JKRDADVRIYVCCY-UHFFFAOYSA-N 0.000 description 1
- JRHWHSJDIILJAT-UHFFFAOYSA-N 2-hydroxypentanoic acid Chemical compound CCCC(O)C(O)=O JRHWHSJDIILJAT-UHFFFAOYSA-N 0.000 description 1
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- CMEUTESMNAONPQ-UHFFFAOYSA-N 4-azaniumyl-3-(4-methoxyphenyl)butanoate Chemical compound COC1=CC=C(C(CN)CC(O)=O)C=C1 CMEUTESMNAONPQ-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 206010010214 Compression fracture Diseases 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 229920006167 biodegradable resin Polymers 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 102220350010 c.119C>A Human genes 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920002961 polybutylene succinate Polymers 0.000 description 1
- 239000004631 polybutylene succinate Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000921 polyethylene adipate Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000007019 strand scission Effects 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/1208—Packers; Plugs characterised by the construction of the sealing or packing means
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J167/00—Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/128—Packers; Plugs with a member expanded radially by axial pressure
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/426—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
Definitions
- the present invention relates to a decomposable seal member for a downhole tool such as a well drilling plug used in well drilling performed to produce hydrocarbon resources such as oil or natural gas, a well drilling plug, and a well
- a downhole tool such as a well drilling plug used in well drilling performed to produce hydrocarbon resources such as oil or natural gas, a well drilling plug, and a well
- the present invention relates to a well drilling method.
- Hydrocarbon resources such as oil or natural gas have been mined and produced through wells (oil wells or gas wells, sometimes called “wells”) that have porous and permeable underground layers. With the increase in energy consumption, the wells have been deepened, and there are records of excavation exceeding 9000m in the world, and there are also deep wells exceeding 6000m in Japan.
- the acid treatment and the crushing method are known as a stimulation method (Patent Document 1).
- Acid treatment increases the permeability of the production layer by injecting a mixture of strong acids such as hydrochloric acid and hydrogen fluoride into the production layer and dissolving the rock reaction components (carbonates, clay minerals, silicates, etc.)
- strong acids such as hydrochloric acid and hydrogen fluoride
- rock reaction components carbonates, clay minerals, silicates, etc.
- various problems associated with the use of strong acids have been pointed out, and an increase in cost has been pointed out including various countermeasures.
- fracturing method also referred to as “fracturing method” or “hydraulic fracturing method”
- the hydraulic fracturing method is a method in which a production layer is cracked by a fluid pressure such as water pressure (hereinafter sometimes simply referred to as “water pressure”).
- a fluid pressure such as water pressure (hereinafter sometimes simply referred to as “water pressure”).
- water pressure a fluid pressure
- a vertical hole is excavated, followed by a vertical hole.
- these well holes which means holes to form wells, sometimes referred to as “down holes”.
- Fracturing fluid is fed into the tank at a high pressure, and cracks (fractures) are generated by water pressure in deep underground production layers (layers that produce hydrocarbon resources such as oil or natural gas), and hydrocarbon resources are collected through the fractures.
- It is a production layer stimulation method for.
- the hydraulic fracturing method has attracted attention for its effectiveness in the development of unconventional resources such as so-called shale oil (oil aged in shale) and shale gas.
- Cracks (fractures) formed by fluid pressure such as water pressure are immediately closed by formation pressure when water pressure disappears.
- proppant is contained in the fracturing fluid (that is, the well treatment fluid used for fracturing), and the proppant is fed into the well holes and propellants are introduced into the cracks (fractures).
- the proppant to be contained in the fracturing fluid an inorganic or organic material is used.
- Silica, alumina and other inorganic particles are used, and sand particles such as 20/40 mesh sand are widely used.
- the well treatment fluid such as fracturing fluid
- various types of water base, oil base and emulsion are used.
- the well treatment fluid is required to have a function capable of transporting proppant to a place where fractures are generated in the well hole. Therefore, the well treatment fluid usually has a predetermined viscosity and good dispersibility of proppant. Ease of processing and low environmental impact are required.
- the fracturing fluid may contain a channelant for the purpose of forming a channel through which shale oil, shale gas, etc. can pass between the proppants. Therefore, in addition to proppant, various additives such as a channelant, a gelling agent, a scale inhibitor, an acid for dissolving rocks, and a friction reducing agent are used in the well treatment fluid.
- fracturing fluid to create cracks (fractures) due to water pressure in deep underground production layers (layers that produce hydrocarbon resources such as oil or natural gas such as shale gas)
- the predetermined section is partially blocked while sequentially closing from the tip of the well hole, and the blockage is blocked.
- Fracturing fluid is fed into the compartment at high pressure to cause cracks in the production layer.
- fracturing is performed by closing the next predetermined section (usually, a section before the preceding section, that is, a section on the ground side). Thereafter, this process is repeated until the necessary sealing and fracturing are completed.
- the production layer may be stimulated again by fracturing the desired section of the well hole that has already been formed. In that case as well, operations for blocking and fracturing the well hole may be repeated. Further, in order to finish the well, the well hole may be closed to shut off the fluid from the lower part, and after the upper part is finished, the closing may be released.
- Patent Document 2 and Patent Document 3 disclose plugs that can close or fix a well hole ( (Sometimes referred to as “flac plug”, “bridge plug” or “packer”).
- Patent Document 2 discloses a downhole plug for well excavation (hereinafter, also referred to as “well excavation plug” or simply “plug”), specifically, in the axial direction.
- a mandrel (main body) having a hollow portion, on an outer circumferential surface orthogonal to the axial direction of the mandrel, along the axial direction, a ring or an annular member (annular member), a first conical member (conical member) and a slip (slip) ),
- the blocking of the well hole by the plug for well drilling is as follows.
- the slip advances along the conical member in contact with the inclined surface of the conical member.
- the tip of the slip is then abutted against the inner wall of the wellbore and fixed to the wellbore, and the malleable element is in the axial direction of the mandrel. This is because the diameter is deformed to expand as the distance decreases, and the borehole is closed by coming into contact with the inner wall of the borehole.
- metal materials aluminum, steel, stainless steel, etc.
- fibers wood, composite materials, plastics and the like
- a composite material containing a reinforcing material such as carbon fiber
- it is a polymer composite material such as an epoxy resin or a phenol resin
- the mandrel is formed of aluminum or a composite material.
- Oil and natural gas oil and natural gas
- oil and natural gas oil and natural gas
- Plugs are usually not designed to be recovered after removal from clogging, so they can be removed by crushing, drilling or other methods of breaking or breaking into pieces, but crushing, drilling, etc. Needed a lot of money and time.
- plugs that can be recovered after use (retrievable plug), but since the plugs are deep underground, recovering all of them requires a lot of money and time. Was.
- Patent Document 3 discloses a disposable downhole tool (meaning a downhole plug or the like) or a member thereof containing a biodegradable material that decomposes when exposed to an environment in a wellbore.
- Degradable polymers such as aliphatic polyesters such as polylactic acid have been disclosed as biodegradable materials.
- a cylindrical body part having a flow hole in the axial direction (tubular body) and a peripheral surface orthogonal to the axial direction of the cylindrical body part are provided along the axial direction.
- a combination of a packer element assembly consisting of an upper sealing element, a central sealing element and a lower sealing element, and a slip and a mechanical slip body is described.
- Patent Literature 3 does not disclose whether the material containing the biodegradable material is used for the downhole tool or its member.
- the first aspect of the subject of the present invention is that there are many well hole seals that are resistant to high pressure fluid pressurization such as fracturing under the harsh and diverse mining conditions such as deepening.
- Decomposable sealing member for downhole tools that can reduce the cost of well drilling and shorten the process by making it possible to seal downholes used in various applications and making it easy to remove and secure flow paths Is to provide.
- another aspect of the present invention is to provide a well drilling plug.
- Still another aspect of the present invention is to provide a well excavation method using the seal member.
- the inventors of the present invention include a mandrel and at least one annular seal member that can be expanded on the outer circumference that is orthogonal to the axial direction of the mandrel.
- the present inventors have found that the problem can be solved by using an annular sealing member that can be expanded in diameter having a specific structure and properties, and the present invention has been completed.
- a decomposable seal member for a downhole tool which is an annular seal member capable of expanding the diameter
- the expandable annular seal member includes two or more annular members that are divided along the axial direction, and Each of the annular members is formed of a degradable polymer material having a decomposability whose hardness is in a range of A60 to D80.
- the following decomposable sealing member for a downhole tool is provided.
- the decrease rate of 50% strain compression stress after immersion in water at a temperature of 150 ° C. with respect to 50% strain compression stress before immersion in each of the polymer materials forming two or more annular members is 5% or more.
- the polymer material forming each annular member has the reduction rate of the mass after immersion in water at a temperature of 150 ° C. for 72 hours with respect to the mass before immersion in the range of 5 to 100% (1) or (2) Decomposable sealing member for downhole tool.
- the polymer material forming each annular member is stable in a dry environment and reduced from 50% strain compressive stress after immersion in water at a temperature of 23 ° C.
- each annular member has a tensile breaking strain at a temperature of 66 ° C. of 50% or more, a 70% strain compressive stress of 10 MPa or more, and a compressive breaking strain of 50% or more.
- Decomposable sealing material for downhole tools (6)
- Each of the annular members is any one of the above (1) to (5), wherein the ratio of the compressive stress at 70% compressive stress to the compressive stress at 5% compressive strain at a temperature of 66 ° C. is 5 times or more.
- Degradable sealing material for downhole tools (7)
- the annular seal member capable of expanding the diameter is placed on the outer peripheral surface perpendicular to the axial direction of the mandrel, and at least one annular member is expanded in diameter by compression in the axial direction, so that the downhole
- the gap between the inner wall and the expandable annular seal member is closed, and at least one other annular member closes the gap between the mandrel and the expandable annular seal member.
- Degradable polymer materials include urethane rubber, acrylic rubber, polyester thermoplastic elastomer, polyamide thermoplastic elastomer, natural rubber, isoprene rubber, ethylene propylene rubber, butyl rubber, styrene rubber, aliphatic polyester rubber, And a decomposable sealing member for a downhole tool according to any one of (1) to (7), which comprises at least one rubber material selected from the group consisting of chloroprene rubber. (9) The decomposable sealing member for a downhole tool according to any one of (1) to (8), wherein the degradable polymer material includes a polymer material having a hydrolyzable functional group.
- the downhole tool decomposition according to any one of (1) to (9), wherein the decomposable polymer material includes a polymer material having at least one of a urethane bond, an ester bond, and an amide bond. Seal member.
- the polymer material having decomposability contains at least one selected from the group consisting of urethane rubber, polyester-based thermoplastic elastomer and polyamide-based thermoplastic elastomer, and any one of (1) to (10) above Degradable sealing material for downhole tools.
- the polymer material having decomposability is any one of the above (1) to (11), containing 0.1 to 20 parts by mass of a decomposition accelerator with respect to 100 parts by mass of the decomposable polymer material.
- Decomposable sealing material for downhole tools (13) The decomposable sealing member for downhole tools according to (12), wherein the decomposition accelerator is an acidic substance.
- the decomposable sealing member for downhole tools according to (12), wherein the decomposition accelerator contains at least one selected from the group consisting of organic acids, inorganic acids, organic acid esters, inorganic acid esters, and acid anhydrides. .
- the decomposition accelerator is lauric acid, glycolic acid, lactic acid, phosphoric acid, glycolide, lactide, polyglycolic acid, polylactic acid, methyl p-toluenesulfonate and 3,3 ′, 4,4′-benzophenonetetracarboxylic acid
- the mandrel and at least one of the downhole tools according to any one of (1) to (20) placed on the outer peripheral surface orthogonal to the axial direction of the mandrel A well drilling plug comprising a degradable seal member is provided. Furthermore, as a specific aspect of the invention, there is provided a well drilling plug provided with the above-described decomposable sealing member for downhole tools according to the following (20) to (27). (20) An annular auxiliary member that can be expanded on an outer peripheral surface orthogonal to the axial direction of the mandrel, and at least one that closes a gap between the inner wall of the downhole and the annular seal member that can be expanded.
- the well excavation plug according to (19), comprising the annular auxiliary member that can relieve deformation caused by the sealing action of two annular members by expanding the diameter.
- At least one slip placed on the outer peripheral surface orthogonal to the axial direction of the mandrel, or at least one decomposable sealing member for a downhole tool according to any one of claims 1 to 18 The well drilling plug according to (19) or (20), comprising at least one of the pair of rings provided.
- the following (28) to (32) well drilling methods are provided as specific embodiments of the invention.
- the downhole tool releasable seal member is preferably a part of a well drilling plug comprising a mandrel and the downhole tool releasable seal member or A well drilling method, wherein the whole is disassembled.
- the downhole tool After sealing the wellbore using the downhole tool provided with the decomposable sealing member for a downhole tool according to any one of (1) to (18), the downhole tool is formed in the wellbore.
- a downhole tool comprising the decomposable sealing member for a downhole tool according to any one of the above (1) to (18) and further comprising another downhaul tool member containing a degradable material
- a well excavation method in which the downhole tool decomposable sealing member is disassembled in the well hole after the well hole is sealed.
- (31) The well drilling method according to (30), wherein the degradable material contained in another member for downhole tool is polyglycolic acid.
- the downhole tool decomposable seal member which is an annular seal member that can be expanded in diameter, is divided along the axial direction.
- the downhole tool used can be sealed, and the removal and the securing of the flow path can be facilitated to reduce the cost of well drilling and shorten the process.
- a well drilling plug including a mandrel and at least one decomposable sealing member for a downhole tool placed on an outer peripheral surface perpendicular to the axial direction of the mandrel.
- the above-described decomposable seal member for downhole tools is used, and preferably for manholes and well drills comprising the decomposable seal member for downhole tools.
- the decomposable sealing member for the downhole tool preferably includes a mandrel and the degradable sealing member for the downhole tool.
- FIG. 1B is a schematic cross-sectional view showing a state in which the diameter of the annular seal member capable of expanding the diameter of the plug for well excavation in FIG. 1A is increased.
- the decomposable seal member for downhole tools which is an annular seal member capable of expanding the diameter of the present invention, is a downhole used when performing processing and operation performed by flowing a high pressure fluid such as fracturing.
- the downhaul tool that can be provided with the annular seal member (decomposable seal member for downhaul tool) of the present invention is not particularly limited.
- the present invention can be preferably applied to a well drilling plug including the above-described decomposable sealing member for a downhole tool.
- a well drilling plug provided with the decomposable sealing member for downhole tools of the present invention will be described as a specific example, and will be described with reference to FIGS. 1A and 1B.
- the well drilling plug (hereinafter, also referred to as “the well drilling plug of the present invention”) provided with the decomposable sealing member for a downhole tool of the present invention includes a mandrel 1 and a mandrel 1.
- Decomposable seal member 2 for downhaul tool (hereinafter referred to as “annular seal member 2 capable of expanding diameter” or “ 2) or more, the ring-shaped seal member 2 capable of expanding the diameter is divided into two or more divided along the axial direction.
- each annular member is formed of a polymer material having decomposability whose hardness is in the range of A60 to D80.
- annular seal member capable of expanding the diameter are the central annular member and the mandrel shaft. It shall consist of three annular members with the both-ends annular member adjacent to the both ends along a direction.
- the decomposable seal member for downhole tools which is an annular seal member capable of expanding the diameter of the present invention and the plug for well excavation of the present invention are not limited to this specific example.
- Mandrel The well drilling plug of the present invention includes a mandrel 1.
- the mandrel 1 provided in the plug for well excavation of the present invention is generally called a “core metal”, has a substantially circular cross section, and is sufficiently long with respect to the diameter of the cross section. This is a member that basically guarantees the strength of the well drilling plug.
- the mandrel 1 provided in the plug for well drilling of the present invention is appropriately selected according to the size of the borehole in the cross-section diameter (the inside of the borehole can be moved by being smaller than the borehole inner diameter)
- the diameter of the mandrel 1 is, for example, about 5 to 20 times the diameter of the cross section, but is not limited to this. Absent.
- the diameter of the cross section of the mandrel 1 is in the range of about 5 to 30 cm.
- the mandrel 1 provided in the plug for well excavation of the present invention may be solid, but from the viewpoint of securing the flow path at the initial stage of fracturing, reducing the weight of the mandrel 1, controlling the decomposition speed of the mandrel 1, etc. It is preferable that the mandrel 1 is a hollow mandrel having at least a portion of a hollow portion along the axial direction. The hollow portion may penetrate the mandrel 1 along the axial direction, or may not penetrate the mandrel 1 along the axial direction. When a well drilling plug is pushed and transferred into a well using a fluid, the mandrel 1 needs to have a hollow portion along the axial direction.
- the cross-sectional shape of the mandrel 1 defines the diameter (outer diameter) of the mandrel 1 and the outer diameter of the hollow portion (corresponding to the inner diameter of the mandrel 1). It is an annular shape formed by two concentric circles.
- the ratio of the diameters of the two concentric circles that is, the ratio of the outer diameter of the hollow portion to the diameter of the mandrel 1 is preferably 0.7 or less. Since the ratio is opposite to the ratio of the thickness of the hollow mandrel to the diameter of the mandrel 1, determining the upper limit of the ratio determines the preferable lower limit of the thickness of the hollow mandrel.
- the ratio of the outer diameter of the hollow portion to the diameter of the mandrel 1 is more preferably 0.6 or less, and even more preferably 0.5 or less.
- the diameter of the mandrel 1 and / or the outer diameter of the hollow portion may be uniform along the axial direction of the mandrel 1 or may vary along the axial direction. That is, the mandrel 1 may have a convex portion, a stepped portion, a concave portion (groove portion) or the like on the outer peripheral surface of the mandrel 1 by changing its outer diameter along the axial direction. Moreover, it is good also as what has a convex part, a step part, a recessed part (groove part), etc. in the internal peripheral surface of the mandrel 1 by changing the outer diameter of a hollow part along an axial direction.
- Projections, steps and recesses (grooves) on the outer peripheral surface and / or inner peripheral surface of the mandrel 1 are parts for attaching or fixing another member to the outer peripheral surface and / or inner peripheral surface of the mandrel 1.
- it can be used as a fixing portion for fixing the annular seal member 2 capable of expanding the diameter, and when the mandrel 1 has a hollow portion, the flow of fluid It can be a bearing surface that holds a ball used to control the movement.
- the mandrel 1 provided in the plug for well excavation of the present invention is preferably formed from a degradable material.
- the degradable material is, for example, biodegradable that is degraded by microorganisms in the soil in which the fracturing fluid is used, or by a solvent, particularly water, in the fracturing fluid, and optionally by acid or alkali.
- a degradable material that can be chemically decomposed by some other method may be used.
- it is a hydrolyzable material that decomposes with water at a predetermined temperature or higher.
- materials that lose their physical shape, such as destruction and collapse, by applying a large mechanical force such as metal materials such as aluminum that have been widely used as mandrels for conventional well drilling plugs, It does not correspond to the degradable material forming the mandrel 1 provided in the plug for well excavation of the invention.
- the strength of the original resin is reduced due to a decrease in the degree of polymerization and the like, resulting in brittleness.
- the material that loses the shape (hereinafter sometimes referred to as “disintegrating”) also falls under the degradable material.
- the degradable material forming the mandrel 1 provided in the plug for well drilling of the present invention it is required to have a desired strength in a high temperature and high pressure environment in a deep underground, and to be excellent in degradability.
- the material is not particularly limited, but a degradable resin is preferable.
- the degradable resin means a resin that can be chemically decomposed by the biodegradability, hydrolyzability, and other methods described above.
- Examples of degradable resins include aliphatic polyesters such as polylactic acid, polyglycolic acid, poly- ⁇ -caprolactone, and polyvinyl alcohol (partially saponified polyvinyl alcohol having a saponification degree of about 80 to 95 mol%). More preferably, it is an aliphatic polyester. That is, the degradable material is preferably an aliphatic polyester.
- Decomposable resins can be used alone or in combination of two or more by blending or the like.
- the aliphatic polyester includes, for example, homopolymerization or copolymerization of oxycarboxylic acid and / or lactone, esterification reaction of aliphatic dicarboxylic acid and aliphatic diol, aliphatic dicarboxylic acid, aliphatic diol, oxycarboxylic acid and An aliphatic polyester obtained by copolymerization with lactone and / or one that dissolves rapidly in water at a temperature of about 20 to 100 ° C. is preferable.
- Examples of the oxycarboxylic acid include glycolic acid, lactic acid, malic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, and other aliphatic hydroxycarboxylic acids having 2 to 8 carbon atoms. Is mentioned.
- Examples of the lactone include lactones having 3 to 10 carbon atoms such as propiolactone, butyrolactone, valerolactone, and ⁇ -caprolactone.
- aliphatic dicarboxylic acid examples include aliphatic saturated dicarboxylic acids having 2 to 8 carbon atoms such as oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid, and aliphatic acids having 4 to 8 carbon atoms such as maleic acid and fumaric acid. And unsaturated dicarboxylic acid.
- Examples of the aliphatic diol include alkylene glycols having 2 to 6 carbon atoms such as ethylene glycol, propylene glycol, butanediol, and hexanediol, and polyalkylene glycols having 2 to 4 carbon atoms such as polyethylene glycol, polypropylene glycol, and polybutylene glycol. Can be mentioned.
- polyesters forming the polyester can be used alone or in combination of two or more. Moreover, as long as the property as a degradable resin is not lost, it can also be used combining the component which forms polyesters which are aromatic, such as a terephthalic acid.
- Particularly preferred aliphatic polyesters are hydroxycarboxylic acid-based aliphatic polyesters such as polylactic acid (hereinafter sometimes referred to as “PLA”) and polyglycolic acid (hereinafter sometimes referred to as “PGA”); Lactone-based aliphatic polyesters such as ⁇ -caprolactone; Diol / dicarboxylic acid-based aliphatic polyesters such as polyethylene succinate and polybutylene succinate; Copolymers thereof such as glycolic acid / lactic acid copolymer (hereinafter referred to as “PGLA”) As well as a mixture thereof.
- the aliphatic polyester which combines and uses aromatic components such as a polyethylene adipate / terephthalate, can also be mentioned.
- the aliphatic polyester is most preferably at least one selected from the group consisting of PGA, PLA and PGLA, and PGA is further. preferable.
- the glycolic acid repeating unit is 50% by mass or more, preferably 75% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more. It includes 95% by mass or more, most preferably 99% by mass or more, and particularly preferably 99.5% by mass or more of a copolymer.
- a repeating unit of L-lactic acid or D-lactic acid is 50% by mass or more, preferably 75% by mass or more, more preferably 85% by mass. More preferably, it is obtained by mixing a copolymer having 90% by mass or more, or by mixing poly-L-lactic acid and poly-D-lactic acid so that each molecular chain is suitably entangled to form a stereocomplex. And stereocomplex polylactic acid known to have improved heat resistance.
- the ratio (mass ratio) of glycolic acid repeating units to lactic acid repeating units is 99: 1 to 1:99, preferably 90:10 to 10:90, more preferably 80:20 to 20:80. Copolymers can be used.
- melt viscosity As the aliphatic polyester, preferably PGA, PLA or PGLA, those having a melt viscosity of usually 50 to 5000 Pa ⁇ s, preferably 150 to 3000 Pa ⁇ s, more preferably 300 to 1500 Pa ⁇ s can be used. The melt viscosity is measured at a temperature of 270 ° C. and a shear rate of 122 sec ⁇ 1 . If the melt viscosity is too small, the strength required for the mandrel 1 provided in the plug for well excavation may be insufficient.
- melt viscosity is too large, for example, a high melting temperature is required to produce the mandrel 1, and the aliphatic polyester may be thermally deteriorated or the decomposability may be insufficient.
- the melt viscosity is about 20 g of sample at a predetermined temperature (270 ° C.) using a capillograph (“Capillograph 1-C” manufactured by Toyo Seiki Seisakusyo Co., Ltd.) equipped with a capillary (diameter 1 mm ⁇ ⁇ length 10 mm). For 5 minutes, and then the measurement is performed under the condition of a shear rate of 122 sec ⁇ 1 .
- PGA which is a particularly preferred aliphatic polyester, has a weight average molecular weight of 180,000 to 300,000, a temperature of 270 ° C., a shear rate, for example, from the viewpoint of moldability such that cracking is less likely to occur during molding by solidification extrusion molding.
- PGA having a melt viscosity of 700 to 2000 Pa ⁇ s measured at 122 sec ⁇ 1 is more preferable.
- PGA having a weight average molecular weight of 190,000 to 240000, a temperature of 270 ° C., and a melt viscosity measured at a shear rate of 122 sec ⁇ 1 is 800 to 1200 Pa ⁇ s. The melt viscosity is measured by the method described above.
- the weight average molecular weight is obtained by dissolving 10 mg of PGA sample in hexafluoroisopropanol (HFIP) in which sodium trifluoroacetate is dissolved at a concentration of 5 mM to 10 mL, and then filtering with a membrane filter. 10 ⁇ l of the sample solution was measured by gel permeation chromatography (GPC) under the following conditions.
- HFIP hexafluoroisopropanol
- a degradable material preferably a degradable resin, more preferably an aliphatic polyester, and even more preferably PGA, is a resin material (degradable material is decomposed) as another compounding component as long as the object of the present invention is not impaired.
- resins resins
- various additives such as a stabilizer, a decomposition accelerator or a decomposition inhibitor, and a reinforcing material may be contained or blended.
- the degradable material preferably contains a reinforcing material. In this case, the degradable material can be referred to as a composite material.
- the degradable material is a degradable resin, it is a so-called reinforced resin.
- the mandrel 1 formed from a reinforced resin is preferably formed from an aliphatic polyester containing a reinforcing material.
- the decomposable polymer material forming the annular seal member 2 capable of expanding the diameter may contain a reinforcing material, and therefore the decomposable polymer material.
- the decomposable material preferably contains a reinforcing material.
- the reinforcing material it is possible to use a material that has been conventionally used as a reinforcing material such as a resin material for the purpose of improving mechanical strength and heat resistance, such as a fibrous reinforcing material or a granular or powdered reinforcing material. Can be used.
- the reinforcing material can be contained in an amount of usually 150 parts by mass or less, preferably 10 to 100 parts by mass with respect to 100 parts by mass of the degradable material such as degradable resin.
- fibrous reinforcing materials include glass fibers, carbon fibers, asbestos fibers, silica fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, and the like; stainless steel, aluminum Metal fiber materials such as titanium, steel and brass; high melting point organic fiber materials such as aramid fiber, kenaf fiber, polyamide, fluororesin, polyester resin and acrylic resin; and the like.
- fibrous reinforcing material short fibers having a length of 10 mm or less, more preferably 1 to 6 mm, and further preferably 1.5 to 4 mm are preferable, inorganic fibrous materials are preferably used, and glass fibers are particularly preferable. preferable.
- Granular or powdery reinforcing materials include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, clay, glass powder, milled fiber, zinc oxide, nickel carbonate, iron oxide, quartz powder, Magnesium carbonate, barium sulfate and the like can be used.
- the particle size of the particulate or powder reinforcing material is usually 0.01 to 1000 ⁇ m, preferably 0.05 to 500 ⁇ m, more preferably 0.1 to 200 ⁇ m.
- the reinforcing materials can be used alone or in combination of two or more.
- the reinforcing material may be treated with a sizing agent or a surface treatment agent as necessary.
- a metal or inorganic member incorporated into the degradable material that is, the degradable material and the metal
- the mandrel 1 which consists of a composite material containing the decomposable material comprised with materials, such as an inorganic substance.
- the mandrel 1 made of a composite material containing a decomposable material has a shape that matches the shape of the dent by providing a hollow of a predetermined shape on a base material made of a degradable material such as degradable resin such as PGA, for example.
- metal metal pieces, etc.
- inorganic materials it is formed by inserting metal (metal pieces, etc.) or inorganic materials and fixing them with an adhesive, or winding and fixing wires, fibers, etc. so that the metal pieces, inorganic materials and base material can be kept fixed.
- a mandrel 1 made of a composite material.
- the mandrel 1 provided in the plug for well excavation of the present invention may be formed of a degradable material having a tensile strength at a temperature of 60 ° C. (hereinafter sometimes referred to as “60 ° C. tensile strength”) of 50 MPa or more. preferable.
- the plug for well drilling of the present invention is made of a degradable material having a 60 ° C. tensile strength of the mandrel 1 of 50 MPa or more, for example, in an environment of a temperature of about 60 ° C.
- the 60 ° C. tensile strength of the degradable material forming the mandrel 1 is measured in accordance with JIS K7113. In order to set the test temperature to 60 ° C., the test piece is placed in an oven and measured. (Unit: MPa). The 60 ° C. tensile strength of the degradable material forming the mandrel 1 is preferably 75 MPa or more, more preferably 100 MPa or more. In order for the 60 ° C.
- tensile strength of the degradable material forming the mandrel 1 to be 50 MPa or more, the type and characteristics (melt viscosity, molecular weight, etc.) of degradable materials such as degradable resins, reinforcing materials, etc. It can be based on the method of adjusting the kind and characteristic of an additive, an addition amount, etc.
- the upper limit of the 60 ° C. tensile strength is not particularly limited, but is usually 1000 MPa, and in many cases 750 MPa.
- the mandrel 1 can have a convex part, a step part, a concave part (groove part), etc. on the outer peripheral surface, and is used as a part for attaching or fixing another member to the outer peripheral surface of the mandrel 1.
- it can be a fixing portion for fixing the annular seal member 2 capable of expanding the diameter.
- the well excavation plug of the present invention includes at least one annular seal member 2 that can be expanded in diameter, which is placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1.
- the annular seal member 2 capable of expanding the diameter is compressed in the axial direction of the mandrel 1 and the distance in the axial direction is reduced (reduced diameter).
- the inner wall H and the outer peripheral surface of the mandrel 1 are in contact with each other, and the space between the plug and the well hole is closed (seal).
- the annular seal member 2 capable of expanding the diameter is expanded, that is, the mandrel 1. It is often necessary to hold it by some means while being compressed in the axial direction.
- the mandrel 1 can have a convex part, a step part, a concave part (groove part), etc. on the outer peripheral surface
- the mandrel 1 provided in the plug for well excavation of the present invention can be expanded in diameter on the outer peripheral surface.
- the fixing portion may be the convex portion, stepped portion or concave portion (groove portion) described above, or fix the threaded portion or other annular seal member 2 whose diameter can be expanded on the outer peripheral surface of the mandrel 1 in a compressed state. Means that can be used can be employed. From the viewpoints of ease of processing and molding, strength, and the like, the fixing portion is more preferably at least one selected from the group consisting of a groove, a stepped portion, and a thread.
- the decomposable seal member for downhaul tools which is an expandable ring seal member of the present invention, flows in high-pressure fluid such as fracturing.
- Downhole tools used in many other applications that require sealing such as downhaul tools used when performing operations and operations, and combining with other components as needed
- the downhole tool that can be provided with the annular seal member (decomposable seal member for downhole tool) of the present invention.
- An example of a well drilling plug which is a preferable application example of a downhole tool including the decomposable sealing member for a downhole tool according to the present invention, will be described below in further detail with respect to an annular sealing member 2 capable of expanding the diameter.
- the plug for well excavation provided with the decomposable seal member for a downhole tool of the present invention is a down seal which is at least one annular expandable seal member placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1.
- a releasable sealing member 2 for hall tools is provided.
- the annular seal member 2 capable of expanding the diameter is transmitted with an axial force of the mandrel 1 on the outer peripheral surface of the mandrel 1 by directly or indirectly contacting a pair of rings 5a and 5b described later, for example.
- the mandrel 1 is compressed in the axial direction, and the diameter in the direction perpendicular to the axial direction of the mandrel 1 is increased as the axial distance is reduced (reduced diameter).
- the annular seal member 2 is expanded in diameter, the outer portion in the direction orthogonal to the axial direction abuts the inner wall H of the well hole, and the inner portion in the direction orthogonal to the axial direction is the outer periphery of the mandrel 1. By contacting the surface, the space between the plug and the down hole is closed (seal).
- the ring-shaped seal member 2 capable of expanding the diameter can maintain contact with the inner wall H of the wellbore and the outer peripheral surface of the mandrel 1 while the fracturing is performed. It has a function of maintaining the seal.
- the annular seal member 2 that can be expanded comes into contact with the inner wall H of the wellbore and the outer peripheral surface of the mandrel 1 to close (seal) the space between the plug and the wellbore (see FIG. 1B) and the diameter of the mandrel 1 of the annular seal member 2 capable of expanding the diameter, since it is required that a gap can exist between the plug and the well hole when the diameter is not expanded (FIG. 1A).
- the length in the direction is preferably 10 to 90%, more preferably 15 to 80% with respect to the axial length of the mandrel 1.
- the annular seal member 2 capable of expanding the diameter has a length in the axial direction of the mandrel 1, thereby giving a sufficient sealing function to the well drilling plug including the annular seal member 2 capable of expanding the diameter. At the same time, after sealing, it can serve to fix the well hole and the plug.
- the decomposable seal member 2 for a downhole tool which is an annular seal member capable of expanding the diameter of the present invention, includes two or more annular members that are divided along the axial direction.
- the arrangement of the two or more annular members provided in the diameter-enlarging annular seal member of the present invention is not particularly limited, and two or more annular members divided along the axial direction are adjacent along the axial direction. Or two or more annular members partitioned along the axial direction may be spaced apart along the axial direction, or may include three or more annular members partitioned along the axial direction. Good.
- the three or more annular members may all be disposed adjacent to each other. , Some or all of them may be spaced apart. Further, each of the two or more annular members may be disposed in direct contact with the mandrel 1 on the outer peripheral surface orthogonal to the axial direction of the mandrel 1, or a stepped portion formed on the mandrel 1. Or another member attached to the mandrel 1, such as a ring 5a or 5b described later, or may be disposed so as to be included in the another member.
- the annular seal member 2 capable of expanding the diameter of the present invention includes three annular members divided along the axial direction.
- the central annular member along the axial direction of the mandrel 1 and the central annular member It can be set as the annular seal member 2 which can be diameter-expanded provided with the both-ends annular member adjacent to the both ends along the axial direction of the mandrel 1.
- Each of the central annular member or both-end annular members may be disposed in direct contact with the mandrel 1 or may be disposed via another member.
- each annular member has a decomposability whose hardness is in the range of A60 to D80. It is formed from a polymer material.
- the hardness of the decomposable polymer material forming the annular member is a durometer hardness type A (hereinafter sometimes referred to as “hardness A”) or type D measured in accordance with ISO7619. (Hereinafter, it may be referred to as “hardness D”).
- the durometer hardness includes type A for medium hardness suitable for general rubber, type D for high hardness suitable for hard rubber, and type E for low hardness suitable for sponge and the like.
- the hardness A100 generally corresponds approximately to the hardness D60.
- the diameter-enlarging annular seal member 2 of the present invention has a hardness in the above-described range by adjusting the structure of each annular member, etc. It can be configured to perform reliable well-hole sealing against high pressure fluid pressurization.
- the hardness of each annular member is preferably in the range of hardness A65 to D78, more preferably hardness A70 to D75.
- Two or more annular members divided along the axial direction provided in the annular seal member 2 capable of expanding the diameter of the present invention are formed from a polymer material having decomposability.
- Degradability is the same as that described above for mandrel 1, for example, biodegradability that is degraded by microorganisms in the soil in which the fracturing fluid is used, or by the solvent in the fracturing fluid, particularly water. Further, it means hydrolyzability that can be decomposed by an acid or alkali, if desired, and may be degradable that can be chemically decomposed by some other method, preferably by water at a predetermined temperature or higher. It is hydrolysable.
- the inherent strength of the polymer material is reduced due to a decrease in the degree of polymerization, etc., resulting in brittleness. Applicable.
- the decomposable resin described above with respect to the mandrel 1 can be used, and a conventionally known decomposable rubber material can be used.
- Degradable rubber materials include urethane rubber, acrylic rubber, polyester thermoplastic elastomer, polyamide thermoplastic elastomer, natural rubber, isoprene rubber, ethylene propylene rubber, butyl rubber, styrene rubber, aliphatic polyester rubber, and chloroprene rubber.
- the degradable polymer material may be a hydrolyzable functional group (for example, a urethane group, an ester group, an amide group, a carboxyl group). Group, a hydroxyl group, a silyl group, an acid anhydride, an acid halide, etc.), and a polymer material having decomposability is bonded to the main chain of the polymer with a urethane bond.
- a polymer material having at least one bond of an ester bond or an amide bond may be contained.
- the degradable polymer material include those containing urethane rubber, those containing a polyester-based thermoplastic elastomer, and those containing a polyamide-based thermoplastic elastomer.
- the polymer material having decomposability, preferably the decomposable rubber material, forming each of the two or more annular members divided along the axial direction may be the same or different and may be used alone or in combination. More than one species can be used in combination by blending, etc. By adjusting the structure of each annular member etc. together, it is possible to perform reliable well hole sealing against high pressure fluid pressurization such as fracturing Can be configured.
- a polymer material having particularly preferable decomposability preferably a degradable rubber material
- urethane rubber is used. That is, a particularly preferable decomposable rubber material is a decomposable rubber material containing urethane rubber.
- nitrile rubber and hydrogenated nitrile rubber which are rubber materials conventionally used for downhole tools, are usually used for well drilling of the present invention. It is not suitable as a degradable rubber material for forming at least one expandable annular seal member 2 provided in the plug.
- Each of the annular members included in the decomposable seal member for downhaul tools which is an annular seal member 2 capable of expanding the diameter of the present invention, may have a tensile breaking strain at a temperature of 66 ° C. (hereinafter referred to as “66 ° C. tensile breaking strain”). ) Is 50% or more, the strength of the decomposable sealing member for the downhole tool is maintained during the period required for the well treatment such as fracturing, and the blockage of the downhole is further prevented. This is preferable because it can be continued reliably.
- the downhole tool releasable seal member when a well hole is closed (sealed) using a downhole tool releasable seal member, the downhole tool releasable seal member has the shape of the downhole tool and the shape of the downhole (casing of the casing).
- Deformable seal member for downhole tools since there is no risk of breaking even if it is deformed so as to be surely engaged with the shape), or specifically deformed while receiving a large tensile force (and compressive force) The contact area between the casing and the casing is increased, and the blockage is ensured.
- the 66 ° C. tensile breaking strain is measured at a temperature of 66 ° C. in accordance with ISO 37 (JIS K6251).
- the 66 ° C. tensile breaking strain is more preferably 80% or more, and still more preferably 100% or more. There is no upper limit for the 66 ° C tensile breaking strain.
- the 66 ° C tensile breaking strain is too large, it becomes a small piece when the degradable seal member for downhole tools is disassembled after the required well treatment and the strength is lost. Since it may become difficult, it is usually 500% or less, and in many cases 480% or less.
- Each of the annular members included in the decomposable seal member for downhaul tools which is the annular seal member 2 capable of expanding the diameter of the present invention, may have a 70% strain compression stress (hereinafter referred to as “66 ° C. compression”) at a temperature of 66 ° C., if desired.
- 66 ° C. compression 70% strain compression stress
- the stress is sometimes 10 MPa or more, the strength of the decomposable sealing member for the downhole tool is maintained during the period required for the well treatment such as fracturing, and the blockage of the downhole is further prevented. This is preferable because it can be continued reliably.
- the downhole tool releasable seal member when a well hole is closed (sealed) using a downhole tool releasable seal member, the downhole tool releasable seal member has the shape of the downhole tool and the shape of the downhole (casing of the casing). There is no risk of breakage even if it is deformed so as to be surely engaged with the shape), specifically, while receiving a large compressive force (and tension). The contact area with the casing is increased, and blockage is ensured. Furthermore, in order to perform a process that requires a seal such as fracturing, for example, even when a very high pressure is applied by the fluid, a large compressive force (and tensile force) may be applied. There is an effect that the seal is not easily broken.
- the 66 ° C. compressive stress is measured at a temperature of 66 ° C. according to ISO 14126 (JIS K7018). It represents the maximum stress value up to.
- the 66 ° C. compressive stress is more preferably 20 MPa or more, and further preferably 30 MPa or more.
- the 66 ° C. compressive stress has no particular upper limit, but is usually 200 MPa or less, and in many cases 150 MPa or less.
- Each of the annular members provided in the decomposable seal member for downhole tools which is an annular seal member 2 capable of expanding the diameter of the present invention, may have a compression breaking strain at a temperature of 66 ° C. (hereinafter referred to as “66 ° C. compression breaking strain”). ) Is 50% or more, the strength of the decomposable sealing member for the downhole tool is maintained during the period required for the well treatment such as fracturing, and the blockage of the downhole is further prevented. This is preferable because it can be continued reliably.
- the 66 ° C. compression breaking strain is a strain (unit:%) at the time of compression breaking measured at a temperature of 66 ° C. in accordance with ISO14126 (JIS K7018).
- the 66 ° C. compression breaking strain is preferably 60% or more, more preferably 70% or more.
- the upper limit of the 66 ° C. compression breaking strain is 100%, but is usually 99% or less.
- Each annular member provided in the decomposable seal member for downhaul tool which is the annular seal member 2 capable of expanding the diameter according to the present invention is further compressed at a temperature of 66 ° C. with respect to a compressive stress at a compressive strain of 5%.
- Downhole tool for the period required to perform well treatment such as fracturing because the ratio of compressive stress at 70% strain (hereinafter also referred to as “66 ° C. compressive stress ratio”) is 5 times or more. This is preferable because the strength of the degradable sealing member is maintained and the downhole can be closed more reliably.
- the initial compressive strain of the decomposable seal member for downhole tools is small (it is easy to deform). It can be deformed to securely engage with the shape of the hole tool and the shape of the down hole (casing shape), and when the deformation is performed while receiving a large compressive force (and tensile force), the amount of deformation is
- the stress of the seal member rises greatly in a large region, for example, the seal member at the contact portion between the seal member and the casing has a high compressive stress (and tensile force), and thus, for example, a seal such as fracturing is necessary.
- the 66 ° C. compressive stress ratio is measured at a temperature of 66 ° C. in accordance with ISO 14126 (JIS K7018).
- the 66 ° C. compressive stress ratio is more preferably 8 times or more, and still more preferably 10 times or more.
- the 66 ° C. compressive stress ratio has no particular upper limit, but is usually 200 times or less, and often 150 times or less. In many cases, the decomposable sealing member for downhole tools of the present invention in which the 66 ° C.
- each annular member is 5 times or more is used at other temperatures, for example, in a temperature range of room temperature to 149 ° C.
- the ratio of the compressive stress at the compressive strain of 70% to the compressive stress at the compressive strain of 5% is 5 times or more, the sealing function can be achieved in a wide temperature range, which is more desirable.
- the 66 ° C. compression stress ratio is 5 times or more. If it exists, it is a decomposable sealing member for downhole tools that is practical.
- the ring-shaped sealing member 2 capable of expanding the diameter of the present invention seals a required portion of the downhole (well hole), shuts off the fluid, and then shuts off the fluid, and then a high-pressure fluid such as fracturing.
- a high-pressure fluid such as fracturing.
- the difference in 150% compression stress 5% reduction time is within 2 days, so that the two or more annular members decompose in a short time in a balanced manner, The well seal is released sufficiently in a short time, and the distribution of hydrocarbon resources such as oil and gas is not hindered, so that the production efficiency is improved. Therefore, the difference in 150% compression stress 5% reduction time is more preferably within 1.5 days, further preferably within 1 day, particularly preferably within 12 hours, and most preferably within 6 hours. There is no particular lower limit value for the difference in 150% compressive stress 5% reduction time, and it is desirable that there is no substantial difference in 0 days (hours), that is, 150% compressive stress 5% reduction time.
- the method for measuring the 150 ° C. compression stress 5% reduction time is as follows. That is, the required number of samples of the polymer material cut into 5 mm in thickness, length, and width from each of the two or more annular members provided in the annular seal member 2 capable of expanding the diameter is 150 ° C., respectively.
- 150 ° C. compressive stress decrease rate 50% strain compressive stress of the first 50% strain compressive stress (hereinafter referred to as “150 ° C. compressive stress decrease rate”. Unit:%) Is calculated, and the elapsed time of immersion in water at a temperature of 150 ° C. until the 150 ° C. compressive stress reduction rate reaches 5% is obtained.
- 150 ° C. compressive stress is 5%. Decrease time can be determined.
- the difference in 150% compressive stress 5% reduction time is determined by comparing the 150 ° C compressive stress 5% reduction time for each of the two or more annular members.
- the diameter-enlarging annular sealing member 2 of the present invention has a difference in 150% compressive stress 5% reduction time within 2 days in each of the polymer materials forming two or more annular members, for example, Temperature 177 ° C (350 ° F), 163 ° C (325 ° F), 149 ° C (300 ° F), 121 ° C (250 ° F), 93 ° C (200 ° F), 80 ° C or 66 ° C, or even 25
- two or more annular members are disassembled in a balanced manner in a short time, and wellhole seals are released in a short time and sufficiently, and oil, gas, etc.
- the annular member in the annular seal member 2 capable of expanding the diameter of the present invention is combined by combining materials whose difference in reduction time of 150% compression stress is within 2 days. The most suitable one can be selected.
- the diameter-enlarging annular seal member 2 of the present invention forms each annular member.
- the polymer material to be used is a reduction rate of 50% strain compression stress after immersion in water at a temperature of 150 ° C. for 24 hours (hereinafter referred to as “150 ° C. 24-hour compression stress reduction rate”) to the 50% strain compression stress before immersion. Is preferably 5% or more. Needless to say, if the 150 ° C. 24-hour compression stress reduction rate of the polymer material forming each annular member is 5% or more, the difference in 150 ° C. compression stress 5% reduction time is within 2 days.
- the measuring method of the compression stress reduction rate at 150 ° C. for 24 hours is as follows. That is, in the same manner as the measurement method of the difference in 150% compressive stress 5% reduction time, a sample of the polymer material forming each annular member was immersed in water at a temperature of 150 ° C., and after 24 hours, From the value of 50% strain compressive stress taken out and measured, and the initial value of 50% strain compressive stress, the compression stress reduction rate at 150 ° C. for 24 hours is calculated.
- the annular seal member 2 capable of expanding the diameter of the present invention has a 150 ° C. 24-hour compressive stress reduction rate of the polymer material forming each annular member, preferably 5% or more.
- the ring-shaped seal member 2 capable of expanding the diameter is disassembled or collapsed, disappears due to loss of strength, or the load resistance against various forces applied to the seal member decreases. Or occlusion function is lost. Therefore, in order to release the blockage of the space between the plug and the borehole, a large amount of cost and time are required for recovering or physically destroying the annular seal member 2 that can be expanded. It is possible to contribute to cost reduction and process shortening for the recovery of hydrocarbon resources.
- the diameter-expandable annular seal member 2 and the well drilling plug provided with at least one diameter-expandable annular seal member 2 include various downhole temperatures and other environments. Depending on the process to be carried out, performance maintaining time and decomposition time such as various strengths are required, but the diameter-enhancing annular seal member 2 of the present invention has a compressive stress reduction rate of 5% or more at 150 ° C. for 24 hours. For example, at temperatures of 177 ° C., 163 ° C., 149 ° C., 121 ° C., 93 ° C., 80 ° C. or 66 ° C., or even 25 ° C. In various downhole temperature environments such as ⁇ 40 ° C., it can have a characteristic of maintaining strength for a certain time and then decomposing.
- Decreased compressive stress at 150 ° C. for 24 hours preferably used as a degradable polymer material, preferably a degradable rubber material, which forms two or more annular members of the expandable annular seal member 2 of the present invention
- the polymer material having decomposability having a rate of 5% or more is compressed at 150 ° C. for 24 hours from the viewpoint of more excellent degradability (or disintegration) (can be designed to decompose in a desired short time).
- the stress reduction rate is preferably 10% or more, more preferably 20% or more. Although it depends on the magnitude of the initial 50% strain compressive stress value of the polymer material having decomposability described later, the reduction rate of compressive stress at 150 ° C.
- the upper limit of the 150 ° C. 24-hour compressive stress reduction rate of each polymer material forming two or more annular members of the annular seal member 2 capable of expanding the diameter is 100% (after being immersed in water at a temperature of 150 ° C. for 24 hours) Means that 50% strain compressive stress is completely lost, specifically, the degradability in a sample cut out from the two or more annular members during immersion in water at a temperature of 150 ° C. for 24 hours. When the polymer material having a loss or disappearance due to decomposition or elution, or when the sample collapses before reaching 50% strain when compressive stress is measured, etc. Means.) In many polymer materials having decomposability other than degradable rubber materials, the compressive stress reduction rate at 150 ° C. for 24 hours is often 100%.
- the initial 50% strain compressive stress of the polymer material forming the annular member has no particular upper limit, but is usually 200 MPa or less, and in many cases 150 MPa or less, from the viewpoint of handleability and decomposability (or disintegration). Is used.
- the decomposition time, the decomposition rate, and the like that cause a decrease in 50% strain compressive stress of the polymer material forming each ring member can be controlled.
- the control factor and controllability vary depending on the type of polymer material.For example, in the case of a rubber material, the degradation rate is adjusted by adjusting the degree of vulcanization, that is, by adjusting the degree of crosslinking between molecular chains.
- Control control of vulcanization method, control of decomposition rate by changing type and ratio of cross-linking agent, control of decomposition rate by hardness (in general, decomposition is suppressed when hardness is increased, and decomposition is accelerated when hardness is decreased ), Control of the decomposition rate by adjusting the type and amount of the additives and fillers such as hydrolysis inhibitors, control of the decomposition rate by changing molding conditions and effect conditions, and addition of acid, plasticizer, etc. It can also be adjusted by promoting strand scission. In the case of a degradable resin having hydrolysis or biodegradability, it can be adjusted by a plurality of methods such as adjustment of the degree of copolymerization and addition of a hydrolysis inhibitor.
- the polymer material forming each annular member has a difference in 150% compressive stress 5% reduction time within 2 days.
- the annular seal member 2 capable of expanding the diameter is, for example, biodegradable or broken down by microorganisms in soil in which a fracturing fluid or the like is used. It can have hydrolyzability, which can be decomposed by a solvent such as a ring fluid, in particular water, and optionally further by acid or alkali, or it can be chemically decomposed by some other method. In particular, it can have hydrolyzability that decomposes with water at a predetermined temperature or higher.
- an annular seal member 2 that can be expanded in diameter by applying a very small mechanical force. May easily collapse and lose its shape (disintegration).
- 72 hour mass reduction rate of the decomposable seal member for downhole tools is a high value obtained by cutting out 20 mm in thickness, length, and width from two or more annular members provided in the annular seal member 2 capable of expanding the diameter.
- a sample of the molecular material was immersed in 400 mL of water (deionized water or the like) at a temperature of 150 ° C. and measured after taking out after 72 hours and before being immersed in water at a temperature of 150 ° C. in advance.
- the rate of decrease (unit:%) relative to the initial mass is calculated by comparing the mass of the sample (hereinafter sometimes referred to as “initial mass”).
- each annular member when the sample of a cyclic
- the polymer material forming each annular member has a mass reduction rate in the range of 5 to 100% at 150 ° C. for 72 hours, so that a predetermined amount of decomposition accelerator can be obtained within several hours to several weeks in a downhole environment.
- the decomposable seal member for downhole tools formed from the rubber material containing is decomposed or collapsed, the sealing function is lost, which can contribute to cost reduction and process shortening for well drilling.
- the releasable seal member for downhole tools is required to have a function maintenance time and a function loss time of various seal functions depending on the environment such as various downhole temperatures and the processes performed in the environment.
- the polymer material forming each annular member has a mass reduction rate of 150 ° C. for 72 hours, more preferably 50 to 100%, still more preferably 70 to 100%, particularly preferably.
- various temperatures such as 177 ° C., 163 ° C., 149 ° C., 121 ° C., 93 ° C., 80 ° C. or 66 ° C., and further 25-40 ° C.
- the seal function In a downhole temperature environment, the seal function is exhibited for a certain period of time, and then the seal function is lost and the seal is released. Can.
- the factors for controlling the mass reduction rate at 150 ° C. for 72 hours of the degradable sealing member for downhole tools and the degree of control are the same as those described above for the 50% strain compressive stress.
- each annular member included in the decomposable seal member for downhole tools which is an annular seal member 2 capable of expanding the diameter of the present invention, is further stable in a dry environment, if desired.
- the rate of reduction of 50% strain compressive stress after immersion in water at 23 ° C. for 6 hours to 50% strain compressive stress after 1 hour immersion (hereinafter sometimes referred to as “23 ° C. compressive stress reduction rate”) is less than 5%. Therefore, the strength of the decomposable seal member for the downhole tool is maintained for a period required for performing well treatment such as fracturing, and the blockage of the downhole can be continued more reliably.
- the downhole blockage is not lost in an unexpected short time.
- the decomposable sealing member for downhole tools is stable in a dry environment
- the downhaul tool provided with the decomposable sealing member for downhole tools of the present invention is arranged in a wellbore, fracturing, etc.
- the sealing function is not lost in the stage before the well treatment.
- the method for measuring the 23 ° C. compressive stress reduction rate of the degradable seal member for downhole tools is the same as the method for measuring the 150 ° C. compressive stress reduction rate described above, and instead of immersing in water at a temperature of 150 ° C. It can be measured by immersing in water at a temperature of 23 ° C. for the required time.
- the 23 ° C. compressive stress reduction rate is more preferably less than 4%, and still more preferably less than 3%.
- the lower limit of the 23 ° C. compressive stress reduction rate is 0%, but there is no problem in use even at about 0.5%.
- about the decomposable sealing member for downhaul tools of this invention, being "stable in a dry environment” means that a compressive stress is reduced for 168 hours (7 days) or more in an environment at a temperature of 23 ° C and a relative humidity of 50%. It means that does not occur.
- the polymer material having decomposability suitable for forming the respective annular members provided in the diameter-enlarging annular seal member 2 of the present invention is a predetermined time depending on a fluid such as a fracturing fluid.
- specific materials include degradable rubber materials such as urethane rubber, acrylic rubber, polyester-based thermoplastic elastomer, or polyamide-based thermoplastic elastomer, or hydrolyzable
- a biodegradable resin specifically, for example, a polymer material having a hydrolyzable functional group is particularly preferably used, alone or mixed with another polymer material (resin material, rubber material, etc.) Can be used.
- the respective hardnesses of the polymer materials having decomposability that form two or more annular members divided along the axial direction may be the same or different.
- Urethane rubber (also referred to as “urethane elastomer”), which is a degradable rubber material that is particularly preferably used as a degradable polymer material for forming the diameter-enlarging annular seal member 2 of the present invention, is a molecule. It is a rubber material having a urethane bond therein, and is usually obtained by condensing an isocyanate compound and a compound having a hydroxyl group.
- aromatic which may have a plurality of aromatic rings), aliphatic, and alicyclic di, tri, and tetra polyisocyanates, or mixtures thereof are used.
- ester type urethane rubber As a compound having a hydroxyl group, a polyester type urethane rubber having an ester bond in its main chain (hereinafter sometimes referred to as “ester type urethane rubber”) and a polyether type urethane rubber having an ether bond in its main chain (hereinafter, referred to as “ester type urethane rubber”).
- ester type urethane rubber is preferable because it is easier to control degradability and disintegration.
- Urethane rubber is an elastic body that has both the elasticity (softness) of synthetic rubber and the rigidity (hardness) of plastic. Generally, it has excellent wear resistance, chemical resistance, oil resistance, high mechanical strength, and load resistance. Is large, and is known to have high elasticity and high energy absorption.
- urethane rubber i) kneading (millable) type: can be molded by the same processing method as general rubber, ii) thermoplastic type: can be molded by the same processing method as thermoplastic resin, and iii) due to the difference in molding method Casting type: Although it is classified as a type that can be molded by a processing method that uses a liquid raw material and thermosetting, any urethane rubber that forms the diameter-enlarging annular seal member 2 of the present invention can be used. Types can also be used.
- urethane rubber Specific examples of particularly preferred urethane rubber include durometer type hardness (according to ISO7619) A80 ester type thermoplastic urethane rubber (uncrosslinked type), hardness A80 ester type thermoplastic urethane rubber (crosslinked type), ester of hardness A85.
- Type thermoplastic urethane rubber (uncrosslinked type), ester type thermoplastic urethane rubber with hardness A85 (crosslinked type), ester type thermoplastic urethane rubber with hardness A90 (uncrosslinked type), ester type thermoplastic urethane rubber with hardness A90 ( Crosslinking type), ester type thermoplastic urethane rubber with hardness A95 (uncrosslinked type), ester type thermoplastic urethane rubber with hardness A95 (crosslinked type), lactone ester type thermoplastic urethane rubber with hardness D74 (crosslinked type), hardness D74 lactone ester type thermoplastic Tangomu (non-crosslinked type), and the like.
- ester type thermosetting urethane rubber with hardness A70 (added with Stavaxol (registered trademark) as hydrolysis inhibitor), ester type thermosetting urethane rubber with hardness A82 (no hydrolysis inhibitor added), ester with hardness A82 Type thermosetting urethane rubber (added Stavaxol (registered trademark) as hydrolysis inhibitor), ester type thermosetting urethane rubber with hardness A90 (added Stavaxol (registered trademark) as hydrolysis inhibitor), ester with hardness A90 Type thermosetting urethane rubber (no hydrolysis inhibitor added).
- the acrylic rubber preferably used as the decomposable polymer material for forming the diameter-enlarging annular seal member 2 of the present invention is a general term for rubber-like polymers mainly composed of acrylic ester, and acrylic ester.
- ACM which is a copolymer of acrylate and chloroethyl vinyl ether
- AEM which is a copolymer of acrylic ester and ethylene
- ANM which is a copolymer of acrylic ester and acrylonitrile.
- Acrylic rubber does not contain an unsaturated bond in the main chain, and thus has high chemical stability and has characteristics such as heat resistance, oil resistance, and aging resistance.
- it since it is inferior in water resistance and water vapor resistance, it is easy to disintegrate over time, and is suitable as a polymer material having decomposability that forms the annular seal member 2 capable of expanding the diameter of the present invention.
- the polyester-based thermoplastic elastomer preferably used as the degradable polymer material for forming the diameter-enlarging annular seal member 2 of the present invention is an elastomer mainly composed of a polyester-based block copolymer. Specifically, for example, there is a block copolymer of a hard segment made of polyester and a soft segment made of polyether. As the hard segment, aromatic polyester or aliphatic polyester, more specifically polyethylene terephthalate, polybutylene terephthalate.
- Polyethylene naphthalate, polybutylene naphthalate, polyhydroxyalkanoic acid and the like examples include polyethers such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol.
- the soft segment examples include polyethers such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol.
- the hard segment examples include aromatic polyester, more specifically polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like.
- the soft segment include aliphatic polyesters having a lower elastic modulus than the hard segment, such as polyhydroxyalkanoic acid having an alkyl chain length of 2 or more.
- polyester-based thermoplastic elastomers having desired physical properties can be obtained by a combination with various compounding agents.
- Polyester-based thermoplastic elastomers have both plastic and rubber properties, and can be molded in a variety of ways such as injection molding, extrusion molding, blow molding, etc. It is easy to collapse.
- Examples of commercially available products include, for example, P30B (hardness A71), P40B (hardness A82), P40H (hardness A89), P55B (hardness A94) manufactured by Toyobo Co., Ltd., manufactured by Toray DuPont Co., Ltd.
- Hytrel registered trademark 3046 (hardness A77), G3548L (hardness A80), 4047N (hardness A90), etc., are relatively high hardness materials for rubber, but are subject to high-temperature and high-pressure conditions expected in downhole tool environments.
- This is a degradable seal member having a suitable hardness and suitable for a seal member for downhole tools.
- Perprene (registered trademark) S type S1001 (hardness A96), S9001 (hardness A99), Hytrel (registered trademark) 6377 (hardness D63), 7277 (hardness D72), etc. are used for sealing as thin rubber members. It is a rubber material suitable for a downhole tool decomposable sealing member.
- polyester-based thermoplastic elastomers can be used alone, but can also be used by mixing with other thermoplastic elastomers and / or resin materials.
- the polyamide-based thermoplastic elastomer preferably used as the degradable polymer material forming the diameter-enlarging annular seal member 2 of the present invention includes a hard segment made of polyamide and a soft segment made of polyether and / or polyester.
- the block copolymer examples include aliphatic polyamide, more specifically, nylon 6, nylon 11, and nylon 12.
- examples of the soft segment include polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol. And the like.
- a polyamide-based thermoplastic elastomer having desired physical properties can be obtained by a combination with various compounding agents as necessary.
- Polyamide-based thermoplastic elastomers have intermediate properties between rubber and plastic, can be molded by various methods such as injection molding, extrusion molding, blow molding, etc. It has the property of causing hydrolysis under high pressure and easily disintegrating.
- TPAE-12 hardness D12 according to JIS K7115
- TPAE-38 hardness D32
- TPAE-10 hardness D41
- TPAE-23 hardness D62
- PA-260 hardness manufactured by T & K TOKA CORPORATION D69
- polyamide-based thermoplastic elastomers can be used alone, but can also be used by mixing with other thermoplastic elastomers and / or resin materials.
- the diameter-expandable annular seal member 2 of the present invention is placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1 and at least one annular member
- the diameter of the mandrel 1 is increased by axial compression to close the gap between the inner wall H of the downhole and the annular seal member 2 that can be expanded, and at least one other annular member is the outer periphery of the mandrel 1. It is preferable to have a function of blocking the fluid by closing the gap between the surface and the annular seal member 2 capable of expanding the diameter.
- the blockage by the annular member described above may be caused by the portion of the annular member itself that contacts the mandrel 1 being directly compressed in the axial direction of the mandrel 1, or other members, for example, a ring 5a or 5b to be described later may be provided. It may be generated by moving or expanding in the axial direction of the mandrel 1.
- the diameter-enlarging annular seal member 2 of the present invention includes two or more annular members that are divided along the axial direction, and preferably can be diameter-expanded with the inner wall H of the downhole as described above.
- the gap between the annular seal member 2 is closed, and then the gap between the outer peripheral surface of the mandrel 1 and the expandable annular seal member 2 is closed, thereby blocking the fluid. It has the function to do.
- This function is concretely taken by taking, for example, an annular seal member 2 that can be expanded in diameter, in which a central annular member, which is three annular members divided along the axial direction, and an annular member at both ends are adjacent along the axial direction. The following actions (i) to (iii) are presumed.
- one of the annular members specifically, the central annular member is subjected to axial compression via, for example, a pair of rings 5a and 5b described later, so that the axial distance is reduced.
- the diameter is increased in a direction perpendicular to the axial direction of the mandrel 1.
- the diametrically outer tip of the central annular member abuts on the inner wall H of the downhole, and between the inner wall H of the downhole and the annular seal member 2 capable of expanding the diameter. The clogging of the gap starts.
- a force acts to increase the diameter of the contact portion of the both-end annular member with the central annular member.
- a force that presses the outer peripheral surface of the mandrel 1 acts on the contact portion with the outer peripheral surface of the mandrel 1 located on the opposite side of the contact portion with the central annular member of the both-end annular members, and the mandrel 1 and the expanding portion are expanded.
- the gap between the ring-shaped annular seal member 2 is closed and firmly sealed.
- (iii) may act in parallel with (ii).
- the gap between the inner wall H of the downhole and the annular seal member 2 capable of expanding the diameter is closed in advance. Therefore, in order to cause the action (i) to occur in advance, in the above specific example, the center annular member and the both end annular members are arranged so that the diameter of the center annular member can be expanded before the both end annular members.
- the composition selection of degradable polymer materials, compounding of fillers and fillers, etc.
- the design of the annular member thickness adjustment, volume adjustment, presence of under, etc.
- the hardness of the central annular member is in the range of hardness A60 to A100
- the hardness of the annular member at both ends is in the range of hardness A60 to D80
- the hardness of the central annular member is smaller than the hardness of the annular members at both ends. Yes, but not essential.
- the annular seal member 2 capable of expanding the diameter of the present invention is configured such that, for example, the central annular member is expanded first to close the gap between the inner wall H of the downhole and the expandable annular seal member 2.
- the diameter is expanded by compression in the axial direction, and at least one that closes the gap between the inner wall H of the downhole and the annular seal member 2 that can be expanded.
- the axial length of the mandrel of one annular member (corresponding to the central annular member above) is 20 to 80% with respect to the axial length of the mandrel 1 of the annular seal member 2 capable of expanding the diameter.
- the thickness and size of two or more annular members divided along the axial direction provided in the annular seal member 2 capable of expanding the diameter can be adjusted, for example, The thickness of the annular member is usually in the range of 0.5 to 20 mm, and in many cases in the range of 1 to 10 mm.
- annular seal member 2 capable of expanding the diameter of the present invention
- a polymer material having a decomposability preferably a decomposable rubber material, particularly preferably a urethane rubber
- other blending components those formed from a composition comprising or blending various types of additives such as other types of rubber materials, resin materials, reinforcing materials, stabilizers, decomposition accelerators, or decomposition inhibitors It may be.
- a pigment or a dye an annular seal member 2 capable of expanding the diameter from a composition of a colored and decomposable polymer material having various identification functions such as a brand color is provided.
- the decomposability of the annular seal member 2 capable of expanding the diameter of the present invention can be increased or adjusted as desired.
- the decomposable rubber material forming the annular seal member 2 capable of expanding the diameter is decomposed by another decomposable material contained as another compounding component, so that the annular seal member capable of expanding the diameter is obtained. 2 may lose its original strength or lose its original shape so that it becomes disintegrating.
- the decomposable material to be contained as other compounding components include known degradable resins such as aliphatic polyesters such as PGA, PLA, and PGLA, or mixtures thereof.
- nitrile rubber for example, nitrile rubber, isoprene rubber, ethylene propylene rubber, butyl rubber, styrene rubber (100 parts by mass of urethane rubber)
- Other rubber materials such as styrene / butadiene rubber, fluorine rubber, and silicone rubber can be blended in the range of 5 to 150 parts by mass, preferably 10 to 100 parts by mass.
- nitrile rubber is usually a rubber material that is not suitable for a degradable rubber material.
- a degradable rubber material in particular, a decomposition having a large compressive stress reduction rate at 150 ° C. for 24 hours.
- the decomposable polymer material forming the decomposable seal member for downhaul tool which is the annular seal member 2 capable of expanding the diameter is decomposed. It is preferable that 0.1 to 20 parts by mass of a decomposition accelerator is contained with respect to 100 parts by mass of the polymer material having the property.
- the polymer material having decomposability is preferably a decomposable rubber material, more preferably urethane rubber, acrylic rubber, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, natural rubber. And at least one rubber material selected from the group consisting of isoprene rubber, ethylene propylene rubber, butyl rubber, styrene rubber, aliphatic polyester rubber, and chloroprene rubber.
- the decomposition accelerator contained in the polymer material having decomposability is a downhole environment in which the degradable seal member for downhaul tools is used.
- a decomposition accelerator a polymer material having a function of decomposing a molecular main chain of the polymer material having decomposability or a decomposable polymer material
- the compounding agent has a function of plasticizing, and therefore, preferable examples of the decomposition accelerator include acidic substances and plasticizers.
- the decomposition accelerator preferably contains at least one selected from the group consisting of organic acids, inorganic acids, organic acid esters, inorganic acid esters, and acid anhydrides.
- an acidic substance is preferable as a preferable decomposition accelerator.
- the acidic substance promotes the decomposition of the sealing member by breaking the molecular main chain bond of the degradable polymer material that forms the degradable sealing member for the downhole tool, so that the diameter can be increased. Disassembly of the annular seal member 2 is promoted. That is, when the degradable sealing member for downhole tools is formed of a degradable polymer material containing an acidic substance, it is usually dispersed homogeneously inside the degradable polymer material, and the acidic material is acidic.
- the presence of the substance allows the acidic substance to contact many of the molecules of the polymer material having decomposability.
- the degradable seal member for downhole tools formed from the polymer material having decomposability As compared with the case where the decomposition proceeds from the surface of the sealing member, such as when the material is immersed in water (which may contain an acidic substance), the decomposition of the polymer material having degradability at a higher rate Is presumed to progress.
- the acidic substance may be a narrowly defined acidic substance such as an acid, or an acid-generating substance that hydrolyzes to generate an acid when immersed in water under some conditions, for example.
- Acid generators include acids such as organic acids and inorganic acids, hydrolyzable acid derivatives such as oxycarboxylic acid dimers, trimers, oligomers or polymers, and high reactivity.
- Derivatives of organic acids for example, sulfonic acid derivatives such as sulfonic acid esters (corresponding to organic acid esters), sulfonamides, acid anhydrides and the like, acid generators known per se as acid precursors, preferably organic acid esters, Examples include inorganic acid esters and acid anhydrides.
- the acidic substance may be a period from when a degradable polymer material containing a predetermined amount of acidic substance is formed to forming a degradable sealing member for downhole tools (during polymerization of the degradable polymer material, It is required that it does not disappear due to decomposition or volatilization during melt molding.
- saturated fatty acids having about 8 to 20 carbon atoms such as lauric acid, glycolic acid, lactic acid, phosphoric acid, glycolide, glycolic acid oligomer, polyglycolic acid (PGA), lactide, lactic acid oligomer, polylactic acid (PLA)
- Oxycarboxylic acids such as, or derivatives thereof, sulfonic acid derivatives such as methyl p-toluenesulfonate (MPTS), o / p-toluenesulfonamide, N-butylbenzenesulfonamide, 3,3 ′, 4,4′-benzophenone
- acid anhydrides such as tetracarboxylic dianhydride (BTDA).
- the decomposition accelerator contains at least one selected from the group selected from lauric acid, glycolic acid, lactic acid, phosphoric acid, glycolide, lactide, PGA, PLA, MPTS and BTDA.
- the acidic substance is in a compatible state in the degradable polymer material forming the annular seal member 2 capable of expanding the diameter, and in a granular state (may be referred to as “granular”). It may be distributed.
- a compatible state in the degradable polymer material forming the annular seal member 2 capable of expanding the diameter
- a granular state may be referred to as “granular”. It may be distributed.
- urethane rubber which is a degradable rubber preferably used as a degradable polymer material
- glycolide and MPTS are often in a compatible state
- PGA and BTDA are in a granular form.
- lauric acid may be dispersed in a compatible state and granular form depending on temperature conditions and the like. In any case, there is an effect of accelerating the decomposition of the degradable rubber, but the decomposition promoting effect is usually larger in the case of being in a compatible state.
- a preferable decomposition accelerator includes a plasticizer.
- the plasticizer has a function (plasticity reduction, softening, etc.) for plasticizing the decomposable polymer material that forms the annular seal member 2 capable of expanding the diameter. Since, for example, water to be hydrolyzed (which may contain an acidic substance or an alkaline substance) enters the annular seal member 2 capable of expanding the diameter is promoted, as described above for the acidic substance. In comparison with the case where the decomposition proceeds from the surface of the annular seal member 2 capable of expanding the diameter, it is presumed that the decomposition of the polymer material having decomposability proceeds at a higher rate.
- plasticizer examples include dibutyl phthalate, diisononyl phthalate, dioctyl phthalate, dioctyl adipate, diisononyl adipate, dibutyl sebacate and the like.
- the type of plasticizer is determined by the combination with the degradable rubber.
- the decomposition accelerator in addition to the acidic substances and plasticizers mentioned above, those that exhibit the effect of promoting the decomposition of the polymer material having decomposability, in particular hydrolysis, can be used.
- the decomposition accelerator may be a single compound alone, may contain two or more compounds, and may contain, for example, an acidic substance and a plasticizer. Further, as described above for the acidic substance, the content of the decomposition accelerator may be compatible or granular, but an annular seal member 2 that can be expanded from a polymer material having decomposability.
- the content of the decomposition accelerator can be selected in an optimum range depending on the combination of the decomposition accelerator and the polymer material having decomposability, but is usually 0.1% with respect to 100 parts by mass of the polymer material having decomposability. It has a decomposition promoting effect on a polymer material having decomposability in the range of 0.3 to 15 parts by mass in most cases, and in the range of 0.5 to 10 parts by mass in most cases.
- the decomposition rate can be controlled by the type of the decomposition accelerator or the content of the decomposition accelerator.
- the diameter-enlarging annular seal member 2 of the present invention is formed of a decomposable polymer material containing 0.1 to 20 parts by mass of a decomposition accelerator with respect to 100 parts by mass of the decomposable polymer material. Since the decomposition of the polymer material having decomposability is promoted, the downhole tool, which is an annular seal member 2 that can be expanded, is performed after completion of the well treatment or after completion of the well drilling. Since the seal can be released with a degradable seal member at a lower temperature and / or in a shorter time, the seal can be released in a desired period under various mining conditions. , Well drilling cost reduction and process shortening.
- the degradable polymer material forming the decomposable seal member for downhole tools can be decomposed not from the surface of the seal member, but also from the inside, the degradable seal for downhole tools after release of the seal Since the member can be pulverized conventionally, the recovery operation after completion of the well treatment or after completion of the well excavation can be performed easily and quickly.
- the annular seal member 2 capable of expanding the diameter of the present invention in addition to a degradable polymer material, for example, a degradable rubber material, a specific example is urethane rubber, etc. It may be preferred to contain a reinforcing material.
- a reinforcing material it is possible to use a material that has been conventionally used as a reinforcing material such as a resin material for the purpose of improving mechanical strength and heat resistance, as described for the mandrel 1.
- the fibrous reinforcing material described for the mandrel 1 or a granular or powdered reinforcing material can be used.
- the reinforcing material can be contained in an amount of usually 150 parts by mass or less, preferably 10 to 100 parts by mass with respect to 100 parts by mass of a degradable polymer material such as a degradable rubber material.
- the plug for well excavation of the present invention that is, the plug for well excavation including the mandrel 1 and the annular seal member 2 capable of expanding the diameter is capable of being expanded from a polymer material having degradability.
- a plurality of annular seal members 2 can be provided, whereby the space between the plug and the well hole can be closed (sealed) at a plurality of positions, and the fixing of the well hole and the plug can be aided. The function can be performed more reliably.
- the plug for well excavation of the present invention includes a plurality of annular seal members 2 that can be expanded in diameter
- the axial length of the mandrel 1 of the annular seal member 2 that can be expanded as described above is as follows.
- the well drilling plug according to the present invention includes a plurality of annular seal members 2 that can be expanded in diameter
- the plurality of annular seal members 2 that can be expanded in diameter may have the same material, shape, or structure. They may be different.
- the plurality of annular seal members 2 capable of expanding the diameter may be disposed adjacent to or spaced apart from each other at a position between a pair of rings 5a and 5b described in detail later. It is good also as what was put in the position between each pair of a pair of rings 5a and 5b.
- the annular seal member 2 capable of expanding the diameter is constituted by a central annular member and both end annular members along the axial direction, for example, one or both of the central annular member and both end annular members are laminated rubber.
- An annular member (a member made of rubber) having a structure formed of a plurality of polymer materials (such as rubber) may be used.
- the annular seal member 2 capable of expanding the diameter is provided.
- One or more grooves, convex portions, rough surfaces (jagged edges), or the like may be provided in the contact portion with the inner wall H of the borehole.
- the well excavation plug of the present invention that is, the well excavation plug including the mandrel 1 and the annular seal member 2 that can be expanded in diameter is placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1.
- the slip 3 may be provided in combination with a wedge-shaped wedge 4. That is, a well excavation plug including at least one wedge 4 placed on an outer peripheral surface orthogonal to the axial direction of the mandrel 1 is preferable.
- the slip 3 and preferably the combination of the slip 3 and the wedge 4 are well known per se in well drilling plugs as means for securing the plug and well bore.
- the slip 3 formed from a material such as a metal or an inorganic material is slidably placed on the upper surface of the slope of the wedge 4 formed from a material such as a composite material.
- the slip 3 moves outwardly perpendicular to the axial direction of the mandrel 1, abuts against the inner wall H of the well hole, and the plug and the inner wall H of the well hole And fixing.
- the slip 3 can move outward perpendicular to the axial direction of the mandrel 1 and abut against the inner wall H of the wellbore, it can perform the function of fixing the plug and the inner wall H of the wellbore, It is not always necessary to be provided in combination with the wedge 4.
- the slip 3 has one or more grooves and protrusions in the contact portion with the inner wall H of the well hole in order to further ensure the blockage (seal) of the space between the plug and the well hole.
- a rough surface (notched) or the like may be provided.
- the slip 3 may be previously divided into a predetermined number in the circumferential direction orthogonal to the axial direction of the mandrel 1, or as shown in FIG. 1A, it is not divided into a predetermined number in advance. It may have a cut that ends in the middle from one end portion along the axial direction to the other end portion (when the slip 3 is provided in combination with the wedge 4, the axial force of the mandrel 1 is applied to the wedge 4.
- the well excavation plug of the present invention that is, the well excavation plug provided with the mandrel 1 and the annular seal member 2 that can be enlarged in diameter, is placed on the outer peripheral surface perpendicular to the axial direction of the mandrel 1 and can be expanded in diameter.
- This is an annular auxiliary member, and the deformation that is received during the sealing action of at least one annular member that closes the gap between the inner wall H of the downhole and the annular seal member 2 that can be expanded is expanded to reduce the diameter.
- the wedge 4 can be an annular auxiliary member capable of expanding the diameter, which can relieve the deformation of the at least one annular member by expanding the diameter.
- the annular member provided in the annular seal member 2 that can be expanded is deformed in the direction of the fluid pressure due to the high fluid pressure generated in fracturing or the like.
- the wedge 4 expands to make a surface contact with the central annular member so as to relieve the fluid pressure and seal the fluid. Can be maintained.
- the closing of the downhole by the annular seal member 2 capable of expanding the diameter is reliably maintained, and there is no problem in performing the fracturing.
- the well drilling plug according to the present invention includes a pair of rings 5a and 5b placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1, and has at least one decomposable polymer material, preferably decomposition.
- a well drilling plug in which a downhole tool decomposable seal member 2, which is an annular seal member capable of expanding the diameter and formed from a conductive rubber material, is provided between the pair of rings 5 a and 5 b is preferable. That is, according to the well drilling plug, for example, the slip 3 or the combination of the slip 3 and the wedge 4 is placed adjacent to the annular seal member 2 capable of expanding the diameter. It becomes easy to apply the axial force of the mandrel 1 to the slip 3 or the combination of the slip 3 and the wedge 4.
- the plug for well excavation according to the present invention may include a plurality of combinations of slips 3 and wedges 4 (combination of slips 3a and 3b and wedges 4a and 4b). In this case, it may be placed adjacently so as to sandwich the annular seal member 2 capable of expanding the diameter, or may be placed in another arrangement.
- the well drilling plug of the present invention includes a plurality of annular seal members 2 that can be expanded, a plurality of annular expandable rings that are combinations of slips 3a and 3b and wedges 4a and 4b. The arrangement with respect to the seal member 2 can be appropriately selected as desired.
- slip 3 provided in the plug for well excavation of the present invention, preferably a combination of slip 3 and wedge 4 (a combination of slip 3a, 3b and wedge 4a, 4b in the case where a plurality of combinations of slip 3 and wedge 4 are provided)
- one or both of the slip 3 and the wedge 4 may be formed of a degradable material.
- One or both of 3 and the wedge 4 may be a composite material (reinforced resin) containing a reinforcing material.
- a metal or inorganic member may be incorporated into the degradable material.
- the degradable material or the reinforcing material the materials described above can be used.
- one or both of the slip 3 and the wedge 4 may be formed from a decomposable material, or may be formed from a material containing at least one of a metal and an inorganic material as in the conventional case. Further, one or both of the slip 3 and the wedge 4 are formed of a material in which a metal or inorganic member is incorporated into a degradable material, that is, a degradable material and a material containing at least one of a metal and an inorganic material. It may also be a composite (decomposable material and metal or inorganic composite).
- a recess having a predetermined shape is provided in a base material made of a degradable material such as a degradable resin such as PGA, Insert metal (metal pieces, etc.) or inorganic material that matches the shape of the recess and fix them with adhesive, or wrap wire, fibers, etc. so that the metal piece, inorganic material, and base material can be fixed.
- a slip 3 or a wedge 4 formed by attaching and fixing is mentioned.
- the combination of the slip 3 and the wedge 4 is such that when the base material of the slip 3 rides on the upper part of the wedge 4 during operation, the metal piece and the inorganic substance are in contact with the inner wall H of the well bore, It has a function of fixing a well excavation plug.
- the well drilling plug of the present invention includes a pair of rings 5a and 5b placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1, and has at least one decomposability.
- An expandable annular seal member 2 (for example, constituted by a central annular member and an annular member at both ends along the axial direction) formed of a polymer material is interposed between the pair of rings 5a and 5b.
- the well drilling plug provided is preferred.
- the plug for well excavation of the present invention has at least one annular seal member 2 that can be expanded, and preferably at least one slip 3, placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1.
- the well drilling plug of the present invention further includes the pair of rings 5a and 5b, so that the pair of rings 5a and 5b is placed on the outer peripheral surface perpendicular to the axial direction of the mandrel 1.
- the axial force of the mandrel 1 can be efficiently applied to the annular seal member 2 and / or the slip 3 that can be expanded through the wedge 4.
- the pair of rings 5a and 5b is configured to be slidable along the axial direction of the mandrel 1 on the outer peripheral surface of the mandrel 1, and the mutual distance (distance) can be changed, and
- the diameter-enlarging annular seal member 2 and / or the end of the slip 3a, 3b along the axial direction of the mandrel 1 is directly or indirectly via the wedges 4a, 4b (in FIG. 1A, By configuring the slips 3a and 3b and the wedges 4a and 4b to contact each other, the axial force of the mandrel 1 can be easily applied to them.
- each of the pair of rings 5a and 5b is not particularly limited as long as the above-described functions can be achieved, but with respect to the annular seal member 2 capable of expanding the diameter and / or From the standpoint that the axial force of the mandrel 1 can be effectively applied to the slips 3a and 3b through the wedges 4a and 4b as required, the end surface of the ring that comes into contact with these is made planar. It is preferable.
- the ring of each of the pair of rings 5a and 5b is preferably an annular ring that completely surrounds the outer peripheral surface of the mandrel 1. However, the ring 5a or 5b may have a discontinuity or a deformed portion in the circumferential direction.
- the two or more annular members provided in the annular seal member 2 capable of expanding the diameter may be moved. Further, as a ring having a shape separated in the circumferential direction, a ring may be formed if desired.
- Each ring of the pair of rings 5a and 5b may be a wide ring (the length of the mandrel 1 in the axial direction is large) by placing a plurality of rings adjacent in the axial direction. Further, the axial force of the mandrel 1 is effectively applied to the annular seal member 2 capable of expanding the diameter and / or to the slips 3a and 3b through the wedges 4a and 4b as required. It may be said that it is a ring which forms one pair of rings 5a and 5b in the plug for well excavation of this invention including the member which contributes to.
- the pair of rings 5a and 5b may have the same or similar shape or structure, or may have different shapes or structures.
- each ring of the pair of rings 5a and 5b may have a different length and outer diameter in the axial direction of the mandrel 1.
- one of the pair of rings 5a and 5b can be configured so as not to slide with respect to the mandrel 1 as desired.
- the other ring of the pair of rings 5a and 5b slides on the outer peripheral surface of the mandrel 1 to expand the diameter of the annular seal member 2 and / or slips 3a and 3b placed as desired. It abuts on the end portion along the axial direction of the combination with the wedges 4a and 4b.
- a configuration in which one of the pair of rings 5a and 5b cannot slide with respect to the mandrel 1 is not particularly limited.
- the mandrel 1 and the pair of rings 5a and 5b are not limited.
- the ring is integrally formed (in this case, the ring cannot always slide with respect to the mandrel 1), or a clutch structure such as a dog clutch or a fitting structure is used. Can be used (in this case, the state of sliding with respect to the mandrel 1 and the state of non-sliding can be switched).
- the well drilling plug in which the mandrel 1 and one ring of the pair of rings 5a and 5b are integrally formed is formed by a well drilling plug formed by integral molding or by machining. A well drilling plug is provided.
- the plug for well excavation of the present invention may be provided with a plurality of pairs of a pair of rings 5a and 5b.
- an annular seal member 2 that can be expanded and / or one or more of the combinations of slips 3a, 3b and wedges 4a, 4b that are placed as desired are separately or combined to form a plurality of pairs. It can also be placed between the rings.
- the pair of rings 5a and 5b efficiently apply the axial force of the mandrel 1 to the annular seal member 2 and / or the slip 3 that can be expanded through the wedge 4 as desired.
- the material forming it is not particularly limited, but at least one of the rings (5a or 5b) may be formed of a degradable material.
- the degradable material forming at least one of the pair of rings 5a and 5b the same degradable material as described for the mandrel 1 can be used.
- the degradable material forming at least one of the pair of rings 5a and 5b is preferably a degradable resin, more preferably an aliphatic polyester, and still more preferably polyglycolic acid.
- the decomposable material may contain a reinforcing material, and in particular, may be formed from an aliphatic polyester containing a reinforcing material.
- both rings of the pair of rings 5a and 5b are formed from a decomposable material
- the resin type and composition of the decomposable material may be the same or different.
- a metal such as aluminum or iron or a composite material such as reinforced resin is used as a material for forming the other ring. Can do.
- the plug for well excavation of the present invention is for a downhole tool which is a mandrel and at least one annular seal member capable of expanding the diameter, which is placed on the outer peripheral surface orthogonal to the axial direction of the mandrel.
- a well excavation plug including a degradable seal member, wherein the at least one annular expandable seal member includes two or more annular members partitioned along an axial direction, and each annular
- the member is the above-described degradable sealing member for downhole tools, characterized in that the member is formed of a degradable polymer material having a hardness in the range of A60 to D80.
- the plug for well excavation of the present invention is at least one annular member that is combined with slip and slip, and that closes the gap between the inner wall of the downhole and the annular seal member that can be expanded in diameter.
- Wedges that can act as an expandable annular auxiliary member that can be relaxed by expanding the diameter, a pair of rings, and other normal well drilling plugs may be provided.
- a member can be provided.
- the mandrel has a hollow portion along the axial direction, the ball is placed in the hollow portion and controls the flow of fluid (formed from a material such as metal or resin, and may be formed from a degradable material).
- a member for connecting or releasing the well excavation plug and / or its member to or from each other member for example, a rotation stop member can be provided.
- the plug for well excavation of the present invention may be formed entirely of a degradable material.
- the plug for well excavation of the present invention includes two or more annular members in which an annular seal member capable of expanding the diameter is divided along the axial direction, and each annular member has a hardness of A60 to D80.
- a decomposable seal member for a downhole tool which is an annular seal member having an expandable diameter formed from a polymer material having a decomposable property in the range of, for example, a pair of rings in the axial direction of a mandrel
- a force at least one annular member is expanded in the direction orthogonal to the axial direction of the mandrel as it is compressed in the axial direction and reduced in diameter.
- the at least one annular member expands in diameter and closes a gap between the inner wall of the downhole and the annular seal member capable of expanding the diameter.
- at least one other annular member shuts off the fluid by closing the gap between the outer surface of the mandrel and the expandable annular sealing member, for example by axial compression. Can do.
- the well drilling plug according to the present invention is usually used after completion of fracturing of predetermined sections, when drilling of the well is completed and the well is completed, and production of oil, natural gas, etc. is started.
- an annular seal member that can be expanded by biodegradation, hydrolysis, or chemical decomposition by some other method, a mandrel or slip having a decomposability, and a pair of rings, if necessary, It can be easily disassembled and removed, and it is possible to completely eliminate the operation of collecting and physically destroying components for downhaul tools, such as plugs for well drilling that have been performed in the past. It is.
- the well drilling plug of the present invention conventionally, after completion of the well, a large number of well drilling plugs left in the well are removed, recovered, crushed, drilled or other methods, Many expenses and time required for destruction or fragmentation are not required, so that the cost of well drilling can be reduced and the process can be shortened.
- the decomposable sealing member for downhole tools remaining after the completion of the well treatment has completely disappeared before the start of production, but the strength is reduced even if it has not completely disappeared. If it becomes a state that collapses due to a stimulus such as a water flow in the downhole, the disassembled seal member for the downhole tool can be easily recovered by a flowback or the like, and the downhole and the fracture are focused on.
- the decomposable seal member for the downhole tool is decomposed and the strength is lowered in a shorter time.
- the water content in the formation may be low. In this case, the water-based fluid used during fracturing remains in the well without being recovered after fracturing. The disassembly of the plug can be promoted.
- the plug for well excavation of the present invention comprises the mandrel described above and an annular seal member having a specific structure and composition capable of expanding the diameter.
- the manufacturing method is not limited.
- each member provided in the plug for well excavation is molded by injection molding, extrusion molding (including solid extrusion molding), centrifugal molding, compression molding, or other known molding methods, and each member obtained is After machining such as cutting or drilling as necessary, a well drilling plug can be obtained by a combination of methods known per se.
- the decomposable sealing member for downhole tool is preferably a mandrel and a plug for well drilling comprising the degradable sealing member for downhole tool.
- the well drilling method in which a part or all of them are disassembled, the fracturing of a predetermined section is completed, or the drilling of the well is completed and the well is completed to produce oil, natural gas, etc.
- an expandable annular seal member that closes the wellbore by biodegradation, hydrolysis or some other chemical decomposition, optionally further, Decomposable mandrels, slips blocking well holes, etc. can be easily decomposed and removed.
- the decomposable seal member for downhole tools is disassembled, thereby (i) the seal portion Since it is disassembled, the seal for preventing fluid movement in the well can be released, (ii) it is easy to remove unnecessary downhole tools that impede production, (iii) others provided for downhole tools
- the downhole tool member By forming the downhole tool member from a material having decomposability, a downhole tool that does not require any crushing treatment before the start of production can be obtained.
- a downhole tool used in a fracturing process Not limited to, it is applicable to various downhole tools used in various processes where some kind of sealing is required It can Rukoto, there is an advantage of such.
- the well excavation method of the present invention after completion of the well, the members such as a number of plugs for well excavation or seal members remaining in the well have been removed, recovered, or crushed.
- the drilling and other methods eliminate the cost and time required to destroy or break down, thus reducing the cost of well drilling and shortening the process.
- each annular member has a tensile fracture strain at a temperature of 66 ° C. of 50% or more, a 70% strain compression stress of 10 MPa or more, and a compression fracture strain of 50.
- a well drilling method in which a decomposable seal member is disassembled is provided, and a well drilling method using a downhole tool including another downhole tool member containing a degradable material, and the downhole tool described above There is provided a well drilling method using a downhole tool in which the degradable sealing member is in contact with another downhole tool member.
- the present invention provides, as a first aspect, a decomposable seal member for a downhole tool, which is an annular seal member that can be expanded in diameter, and the annular seal member that can be expanded in diameter is divided along the axial direction.
- a decomposable seal member for a downhole tool which is an annular seal member that can be expanded in diameter, and the annular seal member that can be expanded in diameter is divided along the axial direction.
- Two or more annular members are provided, and each annular member is formed of a polymer material having a decomposability whose hardness is in the range of A60 to D80, and the degradability for downhole tools as described above Used in many applications such as reliable well hole sealing against high pressure fluid pressurization such as fracturing, etc. under the harsh and diverse mining conditions such as deepening due to the sealing member
- the downhole tool can be sealed, and the cost of well drilling can be reduced and the process can be shortened by facilitating the removal and securing of the flow path.
- the present invention provides, as another aspect, a well drilling plug including a mandrel and at least one decomposable sealing member for a downhole tool placed on an outer peripheral surface perpendicular to the axial direction of the mandrel, and
- a well drilling plug including a mandrel and at least one decomposable sealing member for a downhole tool placed on an outer peripheral surface perpendicular to the axial direction of the mandrel
- the well drilling method is characterized in that after the sealing treatment is performed, the decomposable sealing member for the downhole tool is disassembled, so that the mining conditions such as deepening are severe and diverse. With this, it is possible to perform reliable well hole sealing against high pressure fluid pressurization such as fracturing, and to facilitate the removal and securing of the flow path. Since it is cost reducing and shortening the process of well drilling, has high industrial applicability.
- Mandrel 2 Expandable ring-shaped seal member (decomposable seal member for downhaul tool) 3a, 3b: Slip 4a, 4b: Wedge 5a, 5b: Ring H: Inner wall of down hole (well hole)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Gasket Seals (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Materials Engineering (AREA)
Abstract
Description
拡径可能な環状のシール部材は、軸方向に沿って区分される2つ以上の環状部材を備え、かつ、
それぞれの環状部材は、硬度がA60~D80の範囲である分解性を有する高分子材料から形成される
ことを特徴とする前記のダウンホールツール用分解性シール部材が提供される。
(3)それぞれの環状部材を形成する高分子材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%の範囲にある前記(1)または(2)のダウンホールツール用分解性シール部材。
(4)それぞれの環状部材を形成する高分子材料は、ドライ環境下で安定かつ温度23℃の水に6時間浸漬後の50%ひずみ圧縮応力の1時間浸漬後の50%ひずみ圧縮応力に対する低下率が5%未満である前記(1)~(3)のいずれかのダウンホールツール用分解性シール部材。
(5)それぞれの環状部材は、温度66℃における引張破断ひずみが50%以上、70%ひずみ圧縮応力が10MPa以上かつ圧縮破断ひずみが50%以上である前記(1)~(4)のいずれかのダウンホールツール用分解性シール部材。
(6)それぞれの環状部材は、温度66℃において、圧縮ひずみ5%における圧縮応力に対する、圧縮ひずみ70%における圧縮応力の比率が5倍以上である前記(1)~(5)のいずれかのダウンホールツール用分解性シール部材。
(7)拡径可能な環状のシール部材は、マンドレルの軸方向と直交する外周面上に置かれ、かつ、少なくとも1つの環状部材が、軸方向への圧縮により拡径して、ダウンホールの内壁と拡径可能な環状のシール部材との間の隙間を閉塞し、少なくとも1つの他の環状部材が、マンドレルと拡径可能な環状のシール部材との間の隙間を閉塞することによって、流体を遮断する機能を有する前記(1)~(6)のいずれかのダウンホールツール用分解性シール部材。
(8)分解性を有する高分子材料は、ウレタンゴム、アクリルゴム、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、天然ゴム、イソプレンゴム、エチレンプロピレンゴム、ブチルゴム、スチレンゴム、脂肪族ポリエステルゴム、及びクロロプレンゴムからなる群より選ばれる少なくとも1種のゴム材料を含有する前記(1)~(7)のいずれかのダウンホールツール用分解性シール部材。
(9)分解性を有する高分子材料は、加水分解性の官能基を有する高分子材料を含有する前記(1)~(8)のいずれかのダウンホールツール用分解性シール部材。
(10)分解性を有する高分子材料は、ウレタン結合、エステル結合またはアミド結合の少なくとも1つの結合を有する高分子材料を含有する前記(1)~(9)のいずれかのダウンホールツール用分解性シール部材。
(11)分解性を有する高分子材料は、ウレタンゴム、ポリエステル系熱可塑性エラストマー及びポリアミド系熱可塑性エラストマーからなる群より選ばれる少なくとも1種を含有する前記(1)~(10)のいずれかのダウンホールツール用分解性シール部材。
(12)分解性を有する高分子材料は、該分解性を有する高分子材料100質量部に対して分解促進剤0.1~20質量部を含有する前記(1)~(11)のいずれかのダウンホールツール用分解性シール部材。
(13)分解促進剤が酸性物質である前記(12)のダウンホールツール用分解性シール部材。
(14)酸性物質が酸生成物質である前記(13)のダウンホールツール用分解性シール部材。
(15)分解促進剤が可塑剤である前記(12)のダウンホールツール用分解性シール部材。
(16)分解促進剤が、有機酸、無機酸、有機酸エステル、無機酸エステル及び酸無水物からなる群より選ばれる少なくとも1種を含有する前記(12)のダウンホールツール用分解性シール部材。
(17)分解促進剤が、ラウリン酸、グリコール酸、乳酸、リン酸、グリコリド、ラクチド、ポリグリコール酸、ポリ乳酸、p-トルエンスルホン酸メチル及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群より選ばれる少なくとも1種を含有する前記(12)のダウンホールツール用分解性シール部材。
(18)分解性を有する高分子材料は、強化材を含有する前記(1)~(17)のいずれかのダウンホールツール用分解性シール部材。
(20)マンドレルの軸方向と直交する外周面上に置かれる拡径可能な環状補助部材であって、ダウンホールの内壁と拡径可能な環状のシール部材との間の隙間を閉塞する少なくとも1つの環状部材のシール作用の際に受ける変形を、拡径して緩和することができる前記環状補助部材を備える前記(19)の坑井掘削用プラグ。
(21)マンドレルの軸方向と直交する外周面上に置かれる少なくとも1つのスリップ、または、少なくとも1つの請求項1乃至18のいずれか1項に記載のダウンホールツール用分解性シール部材がその間に備えられる1対のリングの少なくとも一方を備える前記(19)または(20)の坑井掘削用プラグ。
(22)マンドレルが、分解性材料から形成される前記(19)~(21)のいずれかの坑井掘削用プラグ。
(23)分解性材料は、脂肪族ポリエステルを含有する前記(22)の坑井掘削用プラグ。
(24)脂肪族ポリエステルは、ポリグリコール酸である前記(23)の坑井掘削用プラグ。
(25)ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである前記(24)の坑井掘削用プラグ。
(26)分解性材料は、強化材を含有する前記(19)~(25)のいずれかの坑井掘削用プラグ。
(27)マンドレルが、分解性材料を含有する複合材からなる前記(19)~(26)のいずれかの坑井掘削用プラグ。
(28)前記(1)~(18)のいずれかのダウンホールツール用分解性シール部材を使用して、好ましくはマンドレルと該ダウンホールツール用分解性シール部材を備える坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、該ダウンホールツール用分解性シール部材が、好ましくはマンドレルと該ダウンホールツール用分解性シール部材を備える坑井掘削用プラグの一部または全部が、分解されることを特徴とする坑井掘削方法。
(29)前記(1)~(18)のいずれかのダウンホールツール用分解性シール部材を備えるダウンホールツールを使用して、坑井孔をシールした後に、坑井孔内で該ダウンホールツール用分解性シール部材が分解される坑井掘削方法。
(30)前記(1)~(18)のいずれかのダウンホールツール用分解性シール部材を備え、さらに分解性材料を含有する他のダウンホールツール用部材を備えるダウンホールツールを使用して、坑井孔をシールした後に、坑井孔内で該ダウンホールツール用分解性シール部材が分解される坑井掘削方法。
(31)他のダウンホールツール用部材に含有される分解性材料がポリグリコール酸である前記(30)の坑井掘削方法。
(32)前記(1)~(18)のいずれかのダウンホールツール用分解性シール部材を備え、該ダウンホールツール用分解性シール部材が、他のダウンホールツール用部材に接するダウンホールツールを使用して、坑井処理を行った後に、坑井孔内で該ダウンホールツール用分解性シール部材が分解される坑井掘削方法。
本発明のダウンホールツール用分解性シール部材を備える坑井掘削用プラグ(以下、「本発明の坑井掘削用プラグ」ということがある。)は、マンドレル1と、マンドレル1の軸方向と直交する外周面上に置かれる少なくとも1つの拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材2(以下、「拡径可能な環状のシール部材2」または「ダウンホールツール用分解性シール部材2」ということがある。)とを備える坑井掘削用プラグであって、拡径可能な環状のシール部材2は、軸方向に沿って区分される2つ以上の環状部材を備え、かつ、それぞれの環状部材は、硬度がA60~D80の範囲である分解性を有する高分子材料から形成されることを特徴とする。以下に説明する坑井掘削用プラグの具体例においては、拡径可能な環状のシール部材に備えられる軸方向に沿って区分される2つ以上の環状部材が、中央環状部材と、マンドレルの軸方向に沿うその両端に隣接する両端環状部材との3つの環状部材からなるものとしている。本発明の拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材、及び、本発明の坑井掘削用プラグは、この具体例に限定されるものではない。
本発明の坑井掘削用プラグは、マンドレル1を備える。本発明の坑井掘削用プラグが備えるマンドレル1とは、通常「芯金」と称されるものであって、断面が略円形状で、断面の直径に対して長さが十分大きく、本発明の坑井掘削用プラグの強度を基本的に担保する部材である。本発明の坑井掘削用プラグに備えられるマンドレル1は、断面の直径が、坑井孔の大きさに応じて適宜選択され(坑井孔の内径より小さいことにより、坑井孔内を移動可能であり、一方、後述するように、マンドレル1の外周面上に置かれた、少なくとも1つの拡径可能な環状のシール部材2の拡径、及び、所望により備えられるスリップ3の拡径等により坑井孔の閉塞と固定が可能となる程度の径を有する。)、マンドレル1の長さは、断面の直径に対して、例えば5~20倍程度であるが、これに限定されるものではない。通常、マンドレル1の断面の直径は、5~30cm程度の範囲である。
本発明の坑井掘削用プラグに備えられるマンドレル1は、中実のものでもよいが、フラクチャリング初期の流路確保、マンドレル1の重量の軽減、マンドレル1の分解速度のコントロールなどの観点から、マンドレル1が、軸方向に沿う中空部を少なくとも一部に有する中空マンドレルであることが好ましい。中空部は、マンドレル1を軸方向に沿って貫通してもよいし、マンドレル1を軸方向に沿って貫通しないものでもよい。流体を用いて坑井掘削用プラグを坑井内に押し込み移送する場合には、マンドレル1が、軸方向に沿う中空部を有する必要がある。マンドレル1が軸方向に沿う中空部を有するものである場合、マンドレル1の断面形状は、マンドレル1の直径(外径)及び中空部の外径(マンドレル1の内径に相当する。)を画成する2つの同心円で形成される円環状である。2つの同心円の径の比率、すなわち、マンドレル1の直径に対する中空部の外径の比率が0.7以下であることが好ましい。この比率の大小は、マンドレル1の直径に対する中空マンドレルの肉厚の比率の大小と相反する関係にあるので、その比率の上限値を定めることは、中空マンドレルの肉厚の好ましい下限値を定めることに相当するということができる。中空マンドレルの肉厚が薄すぎると、坑井掘削用プラグを坑井孔内に配置したり、坑井孔の閉塞やフラクチャリングを行うときに、中空マンドレルの強度(特に引張強度)が不足して、極端な場合には坑井掘削用プラグが損傷することがある。したがって、マンドレル1の直径に対する中空部の外径の比率は、より好ましくは0.6以下、更に好ましくは0.5以下である。
本発明の坑井掘削用プラグに備えられるマンドレル1は、分解性材料から形成されるものであることが好ましい。分解性材料とは、例えば、フラクチャリング流体が使用される土壌中の微生物によって分解される生分解性、または、フラクチャリング流体中の溶媒、特に、水によって、更に所望により酸またはアルカリによって分解する加水分解性を有する分解性材料などがあるが、更に他の何らかの方法によって化学的に分解することができる分解性材料であってもよい。好ましくは、所定温度以上の水によって分解する加水分解性材料である。なお、従来坑井掘削用プラグに備えられるマンドレルとして汎用されているアルミニウム等の金属材料のように、大きな機械的な力を加えることによって、破壊、崩壊等物理的に形状を失う材料は、本発明の坑井掘削用プラグに備えられるマンドレル1を形成する分解性材料には該当しない。ただし、後述する分解性の樹脂にみられるように、重合度の低下等により本来の樹脂が有した強度が低下して脆くなる結果、極めて小さい機械的力を加えることによって簡単に崩壊し、当初の形状を失う(以下、「崩壊性」ということがある。)材料も、前記の分解性材料に該当する。
脂肪族ポリエステルは、例えば、オキシカルボン酸及び/またはラクトンの単独重合または共重合、脂肪族ジカルボン酸と脂肪族ジオールとのエステル化反応、脂肪族ジカルボン酸と、脂肪族ジオールと、オキシカルボン酸及び/またはラクトンとの共重合により得られる脂肪族ポリエステルであり、温度20~100℃程度の水に速やかに溶解するものが好ましい。
脂肪族ポリエステル、好ましくはPGA、PLAまたはPGLAとしては、溶融粘度が通常50~5000Pa・s、好ましくは150~3000Pa・s、より好ましくは300~1500Pa・sであるものを使用することができる。溶融粘度は、温度270℃、せん断速度122sec-1において測定するものである。溶融粘度が小さすぎると、坑井掘削用プラグに備えられるマンドレル1に求められる強度が不足する場合がある。溶融粘度が大きすぎると、例えば、マンドレル1を製造するために高い溶融温度が必要となり、脂肪族ポリエステルが熱劣化するおそれがあったり、分解性が不十分となったりすることがある。前記の溶融粘度は、キャピラリー(直径1mmφ×長さ10mm)を装着したキャピログラフ(株式会社東洋精機製作所製の「キャピログラフ1-C」)を使用して、試料約20gを所定温度(270℃)にて5分間保持した後、せん断速度122sec-1の条件で測定を行うものである。
<GPC測定条件>
装置:株式会社島津製作所製のShimazu LC-9A
カラム:昭和電工株式会社製のHFIP-806M 2本(直列接続)+プレカラム:HFIP-LG 1本
カラム温度:40℃
溶離液:トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたHFIP溶液
流速:1mL/分
検出器:示差屈折率計
分子量校正:分子量の異なる標準分子量のポリメタクリル酸メチル5種(POLYMER LABORATORIES Ltd.製)を用いて作成した分子量の検量線データを使用。
分解性材料、好ましくは分解性の樹脂、より好ましくは脂肪族ポリエステル、更に好ましくはPGAには、本発明の目的を阻害しない範囲で、更に他の配合成分として、樹脂材料(分解性材料が分解性の樹脂である場合は、他の樹脂)や、安定剤、分解促進剤または分解抑制剤、強化材等の各種添加剤を含有させ、または配合してもよい。分解性材料が、強化材を含有することが好ましく、この場合、分解性材料は、複合材ということができる。分解性材料が、分解性の樹脂である場合は、いわゆる強化樹脂である。強化樹脂から形成されるマンドレル1は、好ましくは、強化材を含有する脂肪族ポリエステルから形成されるものである。なお、後に説明するように、拡径可能な環状のシール部材2を形成する分解性を有する高分子材料が、強化材を含有するものであってもよく、したがって、分解性を有する高分子材料及び/または分解性材料は、強化材を含有するものであることが好ましい。
強化材としては、従来、機械的強度や耐熱性の向上を目的として樹脂材料等の強化材として使用されている材料を使用することができ、繊維状強化材や、粒状または粉末状強化材を使用することができる。強化材は、分解性の樹脂等の分解性材料100質量部に対して、通常150質量部以下、好ましくは10~100質量部の範囲で含有させることができる。
さらに、本発明の坑井掘削用プラグに備えられる、分解性材料から形成されるマンドレル1としては、分解性材料に対して金属や無機物の部材を組み込んだもの、すなわち、分解性材料と金属や無機物等の材料とにより構成される分解性材料を含有する複合材からなるマンドレル1とすることもできる。分解性材料を含有する複合材からなるマンドレル1は、例えば、PGAを始めとする分解性の樹脂等の分解性材料からなる母材に、所定形状の窪みを設け、窪みの形状に合致する形状の金属(金属片等)または無機物をはめ込んで、これらを接着剤で固定したり、金属片や無機物と母材が固定状態を維持できるように針金、繊維等を巻きつけて固定して形成される複合材からなるマンドレル1が挙げられる。
本発明の坑井掘削用プラグに備えられるマンドレル1は、温度60℃における引張強度(以下、「60℃引張強度」ということがある。)が50MPa以上である分解性材料から形成されることが好ましい。本発明の坑井掘削用プラグは、マンドレル1の60℃引張強度が50MPa以上である分解性材料からなることにより、例えば、シェールガス層において一般的である温度60℃程度の環境下や、更には、地下3000mを超える高深度の地中など、温度100℃を超えるような高温度環境下において、マンドレル1にかかる引張応力に耐えられる十分な強度を有することができる。マンドレル1を形成する分解性材料の60℃引張強度は、JIS K7113に準拠して測定するものであり、試験温度を60℃とするために、試験片をオーブン内に静置して測定を行う(単位:MPa)。マンドレル1を形成する分解性材料の60℃引張強度は、好ましくは75MPa以上、より好ましくは100MPa以上である。マンドレル1を形成する分解性材料の60℃引張強度を50MPa以上であるものとするためには、分解性材料、例えば分解性の樹脂の種類や特性(溶融粘度や分子量等)、強化材等の添加剤の種類や特性、添加量などを調整したりする方法によることができる。60℃引張強度の上限は、特に制限されないが、通常1000MPaであり、多くの場合750MPaである。
マンドレル1は、外周面に、凸部、段部や凹部(溝部)などを有するものとすることができ、マンドレル1の外周面に、別部材を取り付けたり固定したりするための部位として利用することができ、特に、拡径可能な環状のシール部材2を固定するための固定部とすることができる。
先に説明したように、本発明の拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材は、フラクチャリングを始めとする高圧力の流体を流入させて行う処理や操作を行う際に使用されるダウンホールツールなど、シールを必要とする他の多くの用途で使用されるダウンホールツールに、必要に応じて他の部材と組み合わせて、備えることができる環状のシール部材であって、本発明の拡径可能な環状のシール部材(ダウンホールツール用分解性シール部材)を備えることができるダウンホールツールは、特に限定されない。本発明のダウンホールツール用分解性シール部材を備えるダウンホールツールの好ましい適用例である坑井掘削用プラグを具体例に挙げて、拡径可能な環状のシール部材2について、以下更に説明する。本発明のダウンホールツール用分解性シール部材を備える坑井掘削用プラグは、マンドレル1の軸方向と直交する外周面上に置かれた、少なくとも1つの拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材2を備える。拡径可能な環状のシール部材2は、例えば、後述する1対のリング5a、5bに直接または間接的に当接することにより、マンドレル1の外周面上においてマンドレル1の軸方向の力を伝達され、その結果、図1Bに示すようにマンドレル1の軸方向に圧縮され、軸方向の距離が縮小(縮径)することに伴い、マンドレル1の軸方向に直交する方向に拡径する。該環状のシール部材2は、拡径して、軸方向に直交する方向の外方部が坑井孔の内壁Hと当接するとともに、軸方向に直交する方向の内方部がマンドレル1の外周面に当接することにより、プラグとダウンホールとの間の空間を閉塞(シール)するものである。拡径可能な環状のシール部材2は、次いでフラクチャリングが遂行されている間、坑井孔の内壁H及びマンドレル1の外周面と当接状態を維持することができ、プラグと坑井孔とのシールを維持する機能を有するものである。
本発明の拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材2は、軸方向に沿って区分される2つ以上の環状部材を備えることを特徴に有する。本発明の拡径可能な環状のシール部材に備えられる2つ以上の環状部材の配置は特に限定されず、軸方向に沿って区分される2つ以上の環状部材が軸方向に沿って隣接するものでもよいし、軸方向に沿って区分される2つ以上の環状部材が軸方向に沿って離隔するものでもよいし、軸方向に沿って区分される3つ以上の環状部材を備えるものでもよい。拡径可能な環状のシール部材2が、軸方向に沿って区分される3つ以上の環状部材を備えるものである場合、3つ以上の環状部材は、すべて隣接して配置してもよいし、一部または全部が離隔して配置してもよい。さらに、前記の2つ以上の環状部材の各々は、マンドレル1の軸方向と直交する外周面上において、マンドレル1に直接接して配置されるものでもよいし、マンドレル1に刻設された段部等やマンドレル1に取り付けられた別部材、例えば後述するリング5aまたは5b等を覆うように配置されるものでもよく、または、前記の別部材に内包されるように配置されるものでもよい。
例えば、本発明の拡径可能な環状のシール部材2が、軸方向に沿って区分される3つの環状部材を備えるものとしては、マンドレル1の軸方向に沿う中央環状部材と、中央環状部材のマンドレル1の軸方向に沿う両端に隣接する両端環状部材とを備える拡径可能な環状のシール部材2とすることができる。なお、中央環状部材または両端環状部材の各々は、マンドレル1に直接接して配置されてもよいし、別部材を介して配置されるものでもよい。
本発明の拡径可能な環状のシール部材2に備えられる軸方向に沿って区分される2つ以上の環状部材について、それぞれの環状部材は、硬度がA60~D80の範囲である分解性を有する高分子材料から形成されることを特徴に有する。本発明において、環状部材を形成する分解性を有する高分子材料の硬度とは、ISO7619に準拠して測定されるデュロメータ硬度のタイプA(以下、「硬度A」ということがある。)またはタイプD(以下、「硬度D」ということがある。)で表される硬度を意味するものである。なお、デュロメータ硬度としては、一般ゴム等に適合する中硬さ用のタイプA、硬質ゴム等に適合する高硬さ用のタイプD、及びスポンジ等に適合する低硬さ用のタイプEがある(例えば、硬度A100は、概ね硬度D60程度に相当することが多い。)。本発明の拡径可能な環状のシール部材2は、それぞれの環状部材を上記の範囲の硬度を有するものとすることによって、それぞれの環状部材の構造等を併せて調整することにより、フラクチャリング等の高圧流体加圧に抗する確実な坑井孔のシールを行うよう構成することができる。それぞれの環状部材の硬度は、好ましくは硬度A65~D78、より好ましくは硬度A70~D75の範囲である。
本発明の拡径可能な環状のシール部材2に備えられる軸方向に沿って区分される2つ以上の環状部材は、分解性を有する高分子材料から形成される。分解性とは、先にマンドレル1について説明したと同様に、例えば、フラクチャリング流体が使用される土壌中の微生物によって分解される生分解性、または、フラクチャリング流体中の溶媒、特に、水によって、更に所望により酸またはアルカリによって分解する加水分解性などを意味し、更に他の何らかの方法によって化学的に分解することができる分解性であってもよく、好ましくは、所定温度以上の水によって分解する加水分解性である。また、重合度の低下等により高分子材料が本来有した強度が低下して脆くなる結果、極めて小さい機械的力を加えることによって簡単に崩壊し、当初の形状を失う崩壊性も、分解性に該当する。分解性を有する高分子材料としては、先にマンドレル1について説明した分解性の樹脂を挙げることができるほか、従来知られている分解性のゴム材料を挙げることができる。分解性のゴム材料としては、ウレタンゴム、アクリルゴム、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、天然ゴム、イソプレンゴム、エチレンプロピレンゴム、ブチルゴム、スチレンゴム、脂肪族ポリエステルゴム、及びクロロプレンゴムからなる群より選ばれる少なくとも1種のゴム材料を含有するものを好ましく挙げることができる。また、所定温度以上の水によって分解する加水分解性が望まれることがあることから、分解性を有する高分子材料は、加水分解性の官能基(例えば、ウレタン基、エステル基、アミド基、カルボキシル基、水酸基、シリル基、酸無水物、酸ハロゲン化物等)を有する高分子材料を含有するものとすることもでき、また、分解性を有する高分子材料は、高分子の主鎖にウレタン結合、エステル結合またはアミド結合の少なくとも1つの結合を有する高分子材料を含有するものとすることもできる。分解性を有する高分子材料は、ウレタンゴムを含有するもの、ポリエステル系熱可塑性エラストマーを含有するもの、または、ポリアミド系熱可塑性エラストマーを含有するものが中でも好ましく挙げられる。軸方向に沿って区分される2つ以上の環状部材のそれぞれを形成する分解性を有する高分子材料、好ましくは分解性のゴム材料は、同一でもよいし、異なってもよく、単独でまたは2種以上をブレンド等により組み合わせて使用することもでき、それぞれの環状部材の構造等を併せて調整することにより、フラクチャリング等の高圧流体加圧に抗する確実な坑井孔のシールを行うよう構成することができる。
本発明の拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材に備えられるそれぞれの環状部材は、所望により、温度66℃における引張破断ひずみ(以下、「66℃引張破断ひずみ」ということがある。)が50%以上であることにより、フラクチャリング等の坑井処理を行うのに要する期間、ダウンホールツール用分解性シール部材の強度が維持され、ダウンホールの閉塞をより確実に継続できるので好ましい。すなわち、ダウンホールツール用分解性シール部材を使用して坑井孔の閉塞(シール)を行う場合に、ダウンホールツール用分解性シール部材が、ダウンホールツールの形状及びダウンホールの形状(ケーシングの形状)に確実に係合するように変形しても、具体的には大きな引張力(及び圧縮力)を受けながら変形しても、破断するおそれがないので、ダウンホールツール用分解性シール部材とケーシングとの当接面積が大きくなり、閉塞が確実となる。さらに、例えばフラクチャリング等のシールが必要とされる処理を実施するために、流体による極めて高い圧力が負荷されることで、大きな引張力(及び圧縮力)を受けることがあっても、流体のシールが破壊されにくい効果がある。66℃引張破断ひずみは、ISO37(JIS K6251)に準拠して、温度66℃で測定するものである。66℃引張破断ひずみは、より好ましくは80%以上、更に好ましくは100%以上である。66℃引張破断ひずみは、上限値が特にないが、66℃引張破断ひずみが大きすぎると、所要の坑井処理後にダウンホールツール用分解性シール部材を分解させて強度が失われる際に小片となりにくくなる場合があることから、通常500%以下、多くの場合480%以下である。
本発明の拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材に備えられるそれぞれの環状部材は、所望により、温度66℃における70%ひずみ圧縮応力(以下、「66℃圧縮応力」ということがある。)が10MPa以上であることにより、フラクチャリング等の坑井処理を行うのに要する期間、ダウンホールツール用分解性シール部材の強度が維持され、ダウンホールの閉塞をより確実に継続できるので好ましい。すなわち、ダウンホールツール用分解性シール部材を使用して坑井孔の閉塞(シール)を行う場合に、ダウンホールツール用分解性シール部材が、ダウンホールツールの形状及びダウンホールの形状(ケーシングの形状)に確実に係合するように変形しても、具体的には大きな圧縮力(及び引張)を受けながら変形しても、破断するおそれがないので、ダウンホールツール用分解性シール部材とケーシングとの当接面積が大きくなり、閉塞が確実となる。さらに、例えばフラクチャリング等のシールが必要とされる処理を実施するために、流体による極めて高い圧力が負荷されることで、大きな圧縮力(及び引張力)を受けることがあっても、流体のシールが破壊されにくい効果がある。66℃圧縮応力は、ISO14126(JIS K7018)に準拠して、温度66℃で測定する、圧縮ひずみ70%における圧縮応力(単位:MPa)または圧縮ひずみ70%到達以前に破断する際には破断時までの最大応力値を表す。66℃圧縮応力は、より好ましくは20MPa以上、更に好ましくは30MPa以上である。66℃圧縮応力は、上限値が特にないが、通常200MPa以下、多くの場合150MPa以下である。
本発明の拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材に備えられるそれぞれの環状部材は、所望により、温度66℃における圧縮破断ひずみ(以下、「66℃圧縮破断ひずみ」ということがある。)が50%以上であることにより、フラクチャリング等の坑井処理を行うのに要する期間、ダウンホールツール用分解性シール部材の強度が維持され、ダウンホールの閉塞をより確実に継続できるので好ましい。66℃圧縮破断ひずみは、ISO14126(JIS K7018)に準拠して、温度66℃で測定する圧縮破断時のひずみ(単位:%)である。66℃圧縮破断ひずみは、好ましくは60%以上、更に好ましくは70%以上である。66℃圧縮破断ひずみは、上限値が100%であるが、通常99%以下である。
本発明の拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材に備えられるそれぞれの環状部材は、更に所望により、温度66℃において、圧縮ひずみ5%における圧縮応力に対する、圧縮ひずみ70%における圧縮応力の比率(以下、「66℃圧縮応力比率」ということがある。)が5倍以上であることにより、フラクチャリング等の坑井処理を行うのに要する期間、ダウンホールツール用分解性シール部材の強度が維持され、ダウンホールの閉塞をより確実に継続できるので好ましい。すなわち、ダウンホールツール用分解性シール部材を使用して坑井孔の閉塞(シール)を行う場合に、ダウンホールツール用分解性シール部材の初期の圧縮ひずみが小さい(変形しやすい)ため、ダウンホールツールの形状及びダウンホールの形状(ケーシングの形状)に確実に係合するように変形可能であって、さらに、大きな圧縮力(及び引張力)を受けながら変形する際には、変形量が大きな領域でシール部材の応力が大きく立ち上がることで、例えばシール部材とケーシングの当接部分のシール部材が高い圧縮応力(及び引張力)を有する状態となるので、例えばフラクチャリング等のシールが必要とされる坑井処理を実施する際に、大きな圧力等がかかっても、十分なシール性能を有し、閉塞が確実となる。66℃圧縮応力比率は、ISO14126(JIS K7018)に準拠して、温度66℃で測定するものである。66℃圧縮応力比率は、より好ましくは8倍以上、更に好ましくは10倍以上である。66℃圧縮応力比率は、上限値が特にないが、通常200倍以下、多くの場合150倍以下である。なお、それぞれの環状部材の66℃圧縮応力比率が5倍以上である本発明のダウンホールツール用分解性シール部材は、多くの場合、他の温度、例えば室温~149℃のような温度範囲においても、圧縮ひずみ5%における圧縮応力に対する、圧縮ひずみ70%における圧縮応力の比率が5倍以上であれば、広い温度範囲においてシール機能等を果たすことができるので、より望ましいものとなる。ただし、上記の温度範囲の一部、例えば温度149℃において、上記の圧縮応力の比率が5倍未満であるようなダウンホールツール用分解性シール部材でも、66℃圧縮応力比率が5倍以上であれば、実用性があるダウンホールツール用分解性シール部材である。
本発明の拡径可能な環状のシール部材2に備えられる2つ以上の環状部材を形成する高分子材料(分解性を有する高分子材料である。)のそれぞれにおける、温度150℃の水に浸漬後の50%ひずみ圧縮応力の、浸漬前の50%ひずみ圧縮応力に対する低下率が5%以上となる時間(以下、「150℃圧縮応力5%低下時間」ということがある。)の差が、2日以内であることが好ましい。
150℃圧縮応力5%低下時間の差は、温度150℃の水に対する分解性の度合いに関連する特性であるから、本発明の拡径可能な環状のシール部材2は、それぞれの環状部材を形成する高分子材料は、温度150℃の水に24時間浸漬後の50%ひずみ圧縮応力の、浸漬前の50%ひずみ圧縮応力に対する低下率(以下、「150℃24時間圧縮応力低下率」ということがある。)が5%以上であることが望ましい。いうまでもなく、それぞれの環状部材を形成する高分子材料の150℃24時間圧縮応力低下率が5%以上であれば、150℃圧縮応力5%低下時間の差は、2日以内である。
本発明の拡径可能な環状のシール部材2に備えられる2つ以上の環状部材を形成するそれぞれの高分子材料の当初の50%ひずみ圧縮応力としては、高深度地下にあるダウンホール内において、穿孔やフラクチャリングを行うのに要する期間(プラグの所定位置までの搬入・移送、坑井掘削用プラグによるダウンホールの閉塞、及び、穿孔またはフラクチャリングの準備及び実施等を含む時間であり、概ね1~2日間程度であることが多いが、30分間~数時間等、より短時間である場合もある。)、拡径可能な環状のシール部材2の強度が維持され、ダウンホールの閉塞を確実に継続できる限り、特に限定はないが、通常1MPa以上、多くの場合3MPa以上であり、5MPa以上であることが特に好ましい。同様に、環状部材を形成する高分子材料の当初の50%ひずみ圧縮応力は、上限が特にないが、取扱い性や分解性(または崩壊性)の観点から、通常200MPa以下、多くの場合150MPa以下のものが使用される。
本発明の前記拡径可能な環状のシール部材2において、それぞれの環状部材を形成する高分子材料の50%ひずみ圧縮応力の低下をもたらす分解時間や分解速度等は制御可能である。制御の因子や制御可能な度合いは、高分子材料の種類によっても異なるが、例えば、ゴム材料の場合には、加硫度の調整、すなわち分子鎖間の架橋度合を調整することによる分解速度の制御、加硫方式の変更や架橋剤の種類と比率の変更による分解速度の制御、硬度による分解速度の制御(一般には、硬度を上げると分解が抑制され、硬度を下げると分解が促進される。)、加水分解抑制剤等の配合剤や充填材の種類と量の調整による分解速度の制御、成形条件や効果条件の変更による分解速度の制御、さらには酸や可塑剤等の添加により分子鎖の切断を促進することでも調整可能である。また、加水分解または生分解性を有する分解性の樹脂においては、共重合度の調整、加水分解抑制剤の添加など複数の手法により調整可能である。
本発明の拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材に備えられるそれぞれの環状部材を形成する高分子材料は、さらに、ダウンホール環境において、確実に分解性を発揮する観点から、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率(以下、「150℃72時間質量減少率」ということがある。)が5~100%の範囲にあることが好ましい。ダウンホールツール用分解性シール部材の150℃72時間質量減少率は、拡径可能な環状のシール部材2に備えられる2つ以上の環状部材から、厚み、長さ及び幅各20mmに切り出した高分子材料の試料を、温度150℃の水(脱イオン水等)400mL中に浸漬し、72時間経過後に取り出した後に測定した試料の質量と、予め温度150℃の水に浸漬する前に測定した試料の質量(以下、「当初質量」ということがある。)とを比較して、当初質量に対する減少率(単位:%)を算出するものである。なお、温度150℃の水に浸漬中に、環状部材の試料が、分解したり溶出したりして形状を失いまたは消失する場合は、前記の質量減少率を100%とする。それぞれの環状部材を形成する高分子材料は、150℃72時間質量減少率が5~100%の範囲にあることにより、ダウンホール環境において、数時間~数週間以内で、所定量の分解促進剤を含有するゴム材料から形成されるダウンホールツール用分解性シール部材が分解または崩壊することにより、シール機能が喪失されるので坑井掘削のための経費軽減や工程短縮に寄与することができる。ダウンホールツール用分解性シール部材には、種々のダウンホールの温度等の環境や当該環境において実施する工程に応じて、多様なシール機能の機能維持時間及び機能喪失時間が求められるが、本発明のダウンホールツール用分解性シール部材は、それぞれの環状部材を形成する高分子材料の150℃72時間質量減少率が、より好ましくは50~100%、更に好ましくは70~100%、特に好ましくは80~100%、最も好ましくは90~100%であることにより、例えば、温度177℃、163℃、149℃、121℃、93℃、80℃または66℃、更には25~40℃などの種々のダウンホールの温度環境において、一定時間シール機能を発揮し、その後シール機能を喪失してシールを解除する特性を有するものとすることができる。ダウンホールツール用分解性シール部材の150℃72時間質量減少率を制御する因子や制御できる程度は、先に50%ひずみ圧縮応力について説明したと同様である。
本発明の拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材に備えられるそれぞれの環状部材を形成する高分子材料は、更に所望により、ドライ環境下で安定であり、温度23℃の水に6時間浸漬後の50%ひずみ圧縮応力の1時間浸漬後の50%ひずみ圧縮応力に対する減少率(以下、「23℃圧縮応力低下率」ということがある。)が5%未満であることにより、フラクチャリング等の坑井処理を行うのに要する期間、ダウンホールツール用分解性シール部材の強度が維持され、ダウンホールの閉塞をより確実に継続できるので好ましい。すなわち、坑井掘削のための採掘条件が多様なものとなっているもとで、予期しない短時間で、ダウンホールの閉塞が喪失されるようなことがない。特に、ダウンホールツール用分解性シール部材は、ドライ環境下で安定であることにより、本発明のダウンホールツール用分解性シール部材を備えるダウンホールツールを坑井孔内に配置し、フラクチャリング等の坑井処理を行うに至る前段階において、シール機能を喪失することがない。ダウンホールツール用分解性シール部材の23℃圧縮応力低下率の測定方法は、先に説明した150℃圧縮応力低下率の測定方法と同様であり、温度150℃の水に浸漬するのに代えて、温度23℃の水に、所要時間浸漬することにより測定することができる。23℃圧縮応力低下率は、より好ましくは4%未満、更に好ましくは3%未満である。23℃圧縮応力低下率は、下限値が0%であるが、0.5%程度でも使用上支障がない。なお、本発明のダウンホールツール用分解性シール部材について、「ドライ環境下で安定」であるとは、温度23℃相対湿度50%の環境下において168時間(7日間)以上、圧縮応力の低下が生じないことをいう。
以上の観点から、本発明の拡径可能な環状のシール部材2に備えられるそれぞれの環状部材を形成するために適する分解性を有する高分子材料としては、フラクチャリング流体等の流体によって、所定時間後に易崩壊になることが期待されることから、具体的な材質としてはウレタンゴム、アクリルゴム、ポリエステル系熱可塑性エラストマー、またはポリアミド系熱可塑性エラストマーなどの分解性のゴム材料、または、加水分解性若しくは生分解性の樹脂、具体的には例えば加水分解性の官能基を有する高分子材料が、特に好ましく使用され、単体でまたは他の高分子材料(樹脂材料やゴム材料等)と混合して使用することができる。軸方向に沿って区分される2つ以上の環状部材を形成する分解性を有する高分子材料のそれぞれの硬度は、同一でもよいし、異なるものでもよい。
本発明の拡径可能な環状のシール部材2を形成する分解性の高分子材料として特に好ましく使用される分解性のゴム材料であるウレタンゴム(「ウレタンエラストマー」ということもある。)は、分子中にウレタン結合を有するゴム材料であり、通常、イソシアネート化合物と水酸基を有する化合物とを縮合して得られる。イソシアネート化合物としては、芳香族(複数の芳香族環を有してもよい。)、脂肪族、脂環族系のジ、トリ、テトラ系のポリイソシアネート類、またはこれらの混合物が用いられる。水酸基を有する化合物として、その主鎖にエステル結合を有するポリエステル型ウレタンゴム(以下、「エステル型ウレタンゴム」ということがある。)とその主鎖にエーテル結合を有するポリエーテル型ウレタンゴム(以下、「エーテル型ウレタンゴム」ということがある。)とに大別され、分解性や崩壊性の制御がより容易であることから、エステル型ウレタンゴムが好ましい場合が多い。ウレタンゴムは合成ゴムの弾性(柔らかさ)とプラスチックの剛性(固さ)を併せ持った弾性体であり、一般に、耐摩耗性、耐薬品、耐油性に優れ、機械的強度が大きく、耐荷重性が大きく、高弾性でエネルギー吸収性が高いことが知られている。ウレタンゴムとしては、成形方法の差異によって、i)混練(ミラブル)タイプ:一般のゴムと同じ加工方法で成形できる、ii)熱可塑性タイプ:熱可塑性樹脂と同じ加工方法で成形できる、及びiii)注型タイプ:液状の原料を使用して熱硬化する加工方法で成形できる、というタイプ区分がされるが、本発明の拡径可能な環状のシール部材2を形成するウレタンゴムとしては、いずれのタイプのものも使用することができる。
特に好ましいウレタンゴムの具体例としては、デュロメータタイプ硬度(ISO7619に準拠)A80のエステル型熱可塑性ウレタンゴム(未架橋タイプ)、硬度A80のエステル型熱可塑性ウレタンゴム(架橋タイプ)、硬度A85のエステル型熱可塑性ウレタンゴム(未架橋タイプ)、硬度A85のエステル型熱可塑性ウレタンゴム(架橋タイプ)、硬度A90のエステル型熱可塑性ウレタンゴム(未架橋タイプ)、硬度A90のエステル型熱可塑性ウレタンゴム(架橋タイプ)、硬度A95のエステル型熱可塑性ウレタンゴム(未架橋タイプ)、硬度A95のエステル型熱可塑性ウレタンゴム(架橋タイプ)、硬度D74のラクトン系エステル型熱可塑性ウレタンゴム(架橋タイプ)、硬度D74のラクトン系エステル型熱可塑性ウレタンゴム(未架橋タイプ)等を挙げることができる。更に、硬度A70のエステル型熱硬化性ウレタンゴム(加水分解抑制剤としてスタバクゾール(登録商標)を添加)、硬度A82のエステル型熱硬化性ウレタンゴム(加水分解抑制剤未添加)、硬度A82のエステル型熱硬化性ウレタンゴム(加水分解抑制剤としてスタバクゾール(登録商標)を添加)、硬度A90のエステル型熱硬化性ウレタンゴム〔加水分解抑制剤としてスタバクゾール(登録商標)を添加〕、硬度A90のエステル型熱硬化性ウレタンゴム(加水分解抑制剤未添加)などを挙げることができる。
本発明の拡径可能な環状のシール部材2を形成する分解性の高分子材料として好ましく使用されるアクリルゴムは、アクリル酸エステルを主成分とするゴム状重合体の総称であり、アクリル酸エステルとクロロエチルビニルエーテルとの共重合体であるACM、アクリル酸エステルとエチレンとの共重合体であるAEM、アクリル酸エステルとアクリロニトリルとの共重合体であるANM等がある。アクリルゴムは、主鎖に不飽和結合が含まれないため、化学的安定性に富み、耐熱性、耐油性、耐老化性などの特徴を有している。その一方、耐水性や耐水蒸気性に劣る特性があるため、経時で崩壊しやすく、本発明の拡径可能な環状のシール部材2を形成する分解性を有する高分子材料として適する。
本発明の拡径可能な環状のシール部材2を形成する分解性の高分子材料として好ましく使用されるポリエステル系熱可塑性エラストマーは、ポリエステル系ブロック共重合体を主成分としたエラストマーである。具体的には、例えばポリエステルからなるハードセグメントとポリエーテルからなるソフトセグメントとのブロック共重合体があり、ハードセグメントとして、芳香族ポリエステルや脂肪族ポリエステル、より具体的にはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリヒドロキシアルカン酸等が挙げられ、ソフトセグメントとして、例えばポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリエーテルが挙げられる。またハードセグメント及びソフトセグメントがポリエステルからなるブロック共重合体があり、ハードセグメントとして、芳香族ポリエステル、より具体的にはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ソフトセグメントとしては、ハードセグメントより低弾性率の脂肪族ポリエステル、例えばアルキル鎖長が2以上のポリヒドロキシアルカン酸が挙げられる。これらのハードセグメント及びソフトセグメントは、所望のエラストマーの物性、特に所望の分解特性及び機械特性に適合するように、ハードセグメントとソフトセグメントの種類またはこれらの比率を調整することが可能であり、更に必要に応じて各種配合剤との組み合わせによって所望の物性を有するポリエステル系熱可塑性エラストマーを得ることができる。ポリエステル系熱可塑性エラストマーは、プラスチックとゴムの両特性を備えており、射出成形、押出成形、ブロー成形等の各種成形加工が可能であり、また、エステル結合を有していることにより、所定時間で崩壊しやすい特性がある。市販品として挙げられる、例えば、東洋紡株式会社製ペルプレン(登録商標)PタイプのP30B(硬度A71)、P40B(硬度A82)、P40H(硬度A89)、P55B(硬度A94)、東レ・デュポン株式会社製ハイトレル(登録商標)3046(硬度A77)、G3548L(硬度A80)、4047N(硬度A90)などは、ゴムとしては比較的硬度が高い材料であるが、ダウンホールツール環境において想定される高温高圧条件に適する硬度であり、ダウンホールツール用シール部材に適する分解性シール部材である。また、ペルプレン(登録商標)SタイプのS1001(硬度A96)、S9001(硬度A99)やハイトレル(登録商標)6377(硬度D63)、7277(硬度D72)などは、薄肉のゴム製の部材としてシール用途などに適する硬度を有しており、ダウンホールツール用分解性シール部材に適するゴム材料である。これらのポリエステル系熱可塑性エラストマーは、単体での使用が可能であるが、更に他の熱可塑性エラストマー及び/または樹脂材料と混合して使用することもできる。
本発明の拡径可能な環状のシール部材2を形成する分解性の高分子材料として好ましく使用されるポリアミド系熱可塑性エラストマーは、ポリアミドからなるハードセグメントとポリエーテル及び/またはポリエステルからなるソフトセグメントとのブロック共重合体である。具体的には、ハードセグメントとしては、例えば、脂肪族ポリアミド、より具体的にはナイロン6、ナイロン11、ナイロン12が挙げられ、ソフトセグメントとしては、例えばポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリエーテルが挙げられる。これらのハードセグメント及びソフトセグメントは、所望のエラストマーの物性、特に所望の分解特性及び機械特性に適合するように、ハードセグメントとソフトセグメントの種類またはこれらの比率を調整することが可能であり、更に必要に応じて各種配合剤との組み合わせによって所望の物性を有するポリアミド系熱可塑性エラストマーを得ることができる。ポリアミド系熱可塑性エラストマーは、ゴムとプラスチックの中間的な性質を有し、射出成形、押出成形、ブロー成形等の各種成形加工が可能であり、また、アミド結合を有していることにより、高温高圧下で加水分解を生じ、易崩壊となる特性がある。市販品としては、株式会社T&K TOKA製TPAE-12(JIS K7115による硬度D12)、TPAE-38(硬度D32)、TPAE-10(硬度D41)、TPAE-23(硬度D62)、PA-260(硬度D69)などが挙げられ、薄肉のゴム製の部材としてシール用途などに適する硬度を有するので、ダウンホールツール用分解性シール部材に適するゴム材料である。これらのポリアミド系熱可塑性エラストマーは、単体での使用が可能であるが、更に他の熱可塑性エラストマー及び/または樹脂材料と混合して使用することもできる。
ダウンホールツールのシールを確実なものとするために、本発明の拡径可能な環状のシール部材2は、マンドレル1の軸方向と直交する外周面上に置かれ、かつ、少なくとも1つの環状部材が、軸方向への圧縮により拡径して、ダウンホールの内壁Hと拡径可能な環状のシール部材2との間の隙間を閉塞し、少なくとも1つの他の環状部材が、マンドレル1の外周面と拡径可能な環状のシール部材2との間の隙間を閉塞することによって、流体を遮断する機能を有するものであることが好ましい。上記した環状部材による閉塞は、環状部材自体のマンドレル1と接する部分が、直接マンドレル1の軸方向への圧縮を受けることにより生じるものでもよいし、他の部材、例えば後述するリング5aまたは5bが、マンドレル1の軸方向に移動したり、拡がったりすることにより生じるものでもよい。
(ii)次いで、更に中央環状部材の拡径が継続すると、ダウンホールの内壁Hに当接する中央環状部材の直径方向の外方先端部の面積(ダウンホールの内壁Hとの接触面積)が増大して、ダウンホールの内壁Hと拡径可能な環状のシール部材2との間の隙間を閉塞し、強固にシールする。
(iii)中央環状部材の変形が大きくなる結果、中央環状部材の強度が急激に増大し、中央環状部材と両端環状部材とが隣接し当接する部位を介して、両端環状部材に変形を引き起こす力、具体的には、両端環状部材の中央環状部材との当接部位を拡径しようとする力が作用する。この結果、両端環状部材の中央環状部材との当接部位の反対側に位置するマンドレル1の外周面との当接部位にマンドレル1の外周面を押圧する力が作用して、マンドレル1と拡径可能な環状のシール部材2との間の隙間を閉塞し、強固にシールする。なお、(iii)は(ii)と並行して作用することもあると推察される。
本発明の拡径可能な環状のシール部材2は、例えば、先の中央環状部材が先に拡径してダウンホールの内壁Hと拡径可能な環状のシール部材2との間の隙間を閉塞することによって、流体を遮断する機能を果たす観点から、軸方向への圧縮により拡径して、ダウンホールの内壁Hと拡径可能な環状のシール部材2との間の隙間を閉塞する少なくとも1つの環状部材(先の中央環状部材が相当する。)のマンドレルの軸方向の長さが、拡径可能な環状のシール部材2のマンドレル1の軸方向の長さに対して20~80%であることが好ましく、より好ましくは25~75%、更に好ましくは30~70%である。また、拡径可能な環状のシール部材2に備えられる軸方向に沿って区分される2つ以上の環状部材の厚みや大きさは、先に説明したように、調整することができ、例えば、環状部材の厚みは通常0.5~20mmの範囲、多くの場合1~10mmの範囲である。
本発明の拡径可能な環状のシール部材2としては、分解性を有する高分子材料、好ましくは分解性のゴム材料、特に好ましくはウレタンゴムに加えて、本発明の目的を阻害しない範囲で、更に他の配合成分として、他の種類のゴム材料や樹脂材料、強化材、安定剤、分解促進剤または分解抑制剤等の各種添加剤を含有させまたは配合してなる組成物から形成されるものであってもよい。また、所望により、顔料や染料を添加することにより、例えばブランドカラー等、種々の識別機能を有する着色された分解性を有する高分子材料の組成物から、拡径可能な環状のシール部材2を形成することもできる。特に、他の配合成分として、分解性を有する他の材料を含有させてなる分解性を有するゴム材料の組成物とすることにより、本発明の拡径可能な環状のシール部材2の分解性や崩壊性を増加させたり、所望に応じて調整したりすることができる。例えば、拡径可能な環状のシール部材2を形成する分解性のゴム材料に、他の配合成分として含有される他の分解性を有する材料が分解することにより、拡径可能な環状のシール部材2が、元の強度を失ったり、元の形状を失ったりして崩壊性のものとなるようにすることもできる。他の配合成分として含有させる分解性を有する材料としては、PGA、PLA、PGLA等の脂肪族ポリエステルなど公知の分解性の樹脂、またはそれらの混合物などが挙げられる。また、本発明の拡径可能な環状のシール部材2を形成する分解性のゴム材料としては、例えばウレタンゴム100質量部に対して、ニトリルゴム、イソプレンゴム、エチレンプロピレンゴム、ブチルゴム、スチレンゴム(スチレン・ブタジエンゴム等)、フッ素ゴム、シリコーンゴムなどの他のゴム材料を5~150質量部、好ましくは10~100質量部の範囲でブレンドして使用することができる。また、例えばニトリルゴムは、先に説明したように、通常、分解性のゴム材料には適しないゴム材料であるが、分解性のゴム材料、特に、150℃24時間圧縮応力低下率が大きい分解性のゴム材料であるウレタンゴムとブレンドして使用し拡径可能な環状のシール部材2を形成すると、ウレタンゴムが容易に分解または崩壊することによって、ニトリルゴムも形状を維持することが不可能となるので、比較的容易に拡径可能な環状のシール部材、及び坑井掘削用プラグを回収できるようになる場合がある。
本発明の拡径可能な環状のシール部材2としては、該拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材を形成する前記の分解性を有する高分子材料は、分解性を有する高分子材料100質量部に対して分解促進剤0.1~20質量部を含有するものであることが好ましい。なお、先に説明したように、分解性を有する高分子材料としては、好ましくは分解性のゴム材料、より好ましくはウレタンゴム、アクリルゴム、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、天然ゴム、イソプレンゴム、エチレンプロピレンゴム、ブチルゴム、スチレンゴム、脂肪族ポリエステルゴム、及びクロロプレンゴムからなる群より選ばれる少なくとも1種のゴム材が挙げられる。
本発明の拡径可能な環状のシール部材2において、好ましい分解促進剤として酸性物質が挙げられる。酸性物質は、ダウンホールツール用分解性シール部材を形成する分解性を有する高分子材料の分子主鎖の結合を切断することによって、該シール部材の分解を促進し、その結果、拡径可能な環状のシール部材2の分解が促進される。すなわち、ダウンホールツール用分解性シール部材が、酸性物質を含有する分解性を有する高分子材料から形成される場合、分解性を有する高分子材料の内部に、通常は均質に分散して、酸性物質が存在することにより、酸性物質が分解性を有する高分子材料の分子の多くに接触することができるので、例えば、分解性を有する高分子材料から形成されるダウンホールツール用分解性シール部材を水(酸性物質を含有してもよい。)に浸漬する場合のように、該シール部材の表面から分解が進行する場合と比較して、より大きな速度で分解性を有する高分子材料の分解が進行するものと推察される。
また、本発明の拡径可能な環状のシール部材2において、好ましい分解促進剤として可塑剤が挙げられる。可塑剤は、拡径可能な環状のシール部材2を形成する分解性を有する高分子材料を可塑化する機能(トルク低下、軟化等)を有するものである結果、分解性を有する高分子材料を分解、例えば加水分解する水(酸性物質またはアルカリ性物質を含有してもよい。)の拡径可能な環状のシール部材2への浸入が促進されるので、先に酸性物質について説明したと同様に、拡径可能な環状のシール部材2の表面から分解が進行する場合と比較して、より大きな速度で分解性を有する高分子材料の分解が進行するものと推察される。可塑剤としては、例えば、ジブチルフタレート、ジイソノニルフタレート、ジオクチルフタレート、ジオクチルアジペート、ジイソノニルアジペート、ジブチルセバケート等を挙げることができるが、分解性ゴムに対する可塑化効果の有無や大小が異なるので、好適な可塑剤の種類は、分解性ゴムとの組み合わせによって定まる。
分解促進剤としては、好ましく挙げた酸性物質及び可塑剤のほか、分解性を有する高分子材料の分解、特に加水分解を促進する効果を奏するものを使用することができる。分解促進剤は、1種の化合物単独でもよいし、2種以上の化合物を含有してもよく、また、例えば酸性物質と可塑剤とを含有してもよい。また、先に酸性物質について説明したように、分解促進剤の含有態様としては、相溶性でもよいし、顆粒状でもよいが、分解性を有する高分子材料から拡径可能な環状のシール部材2を形成するまでの間(分解性を有する高分子材料の重合中、溶融混練または溶融成形中など)に、分解したり揮散したりして消失しないことが必要である。分解促進剤の含有量は、分解促進剤と分解性を有する高分子材料との組み合わせによって最適範囲を選択することができるが、分解性を有する高分子材料100質量部に対して通常0.1~20質量部であり、多くの場合0.3~15質量部、ほとんどの場合0.5~10質量部の範囲で分解性を有する高分子材料に対する分解促進効果を有する。分解促進剤の含有量が少なすぎると、分解性を有する高分子材料に対する分解促進効果が不足し、所望の期間内に拡径可能な環状のシール部材2を分解してシールを解除できなくなるおそれがあり、坑井掘削の経費軽減や工程短縮が損なわれることがある。分解促進剤の含有量が多すぎると、フラクチャリング等の坑井処理において、ダウンホールツール用分解性シール部材による流体シールが必要とされる期間が経過する前に、シールが解除されてしまうおそれがあり、坑井掘削に大きな支障を生じることがある。したがって、分解促進剤の種類または分解促進剤の含有量により分解速度を制御することが可能である。本発明の拡径可能な環状のシール部材2は、分解性を有する高分子材料100質量部に対して分解促進剤0.1~20質量部を含有する分解性を有する高分子材料から形成されることにより、分解性を有する高分子材料の分解が促進されるので、坑井処理の終了後に行う、または坑井掘削の完了後に行う、拡径可能な環状のシール部材2であるダウンホールツール用分解性シール部材によるシールの解除を、より低温で、及び/またはより短時間で実施することができるので、採掘条件が多様となるもと、所望の期間でシールの解除を行うことができ、坑井掘削の経費軽減や工程短縮ができる。さらに、ダウンホールツール用分解性シール部材を形成する分解性を有する高分子材料を、該シール部材の表面からでなく内部から分解することができるので、シール解除後のダウンホールツール用分解性シール部材を、従来より微粉化することができるので、坑井処理終了後や坑井掘削完了後の回収操作が容易かつ迅速に行えるようになる。
本発明の拡径可能な環状のシール部材2としては、分解性を有する高分子材料、例えば分解性のゴム材料、具体的な例示としてはウレタンゴムなどに加えて、特に、他の配合成分として強化材を含有することが好ましいことがある。強化材としては、先にマンドレル1について説明したと同様の、従来、機械的強度や耐熱性の向上を目的として樹脂材料等の強化材として使用されている材料を使用することができ、先にマンドレル1について説明した繊維状強化材や、粒状または粉末状強化材を使用することができる。強化材は、分解性を有する高分子材料、例えば分解性のゴム材料100質量部に対して、通常150質量部以下、好ましくは10~100質量部の範囲で含有させることができる。
本発明の坑井掘削用プラグ、すなわち、マンドレル1と拡径可能な環状のシール部材2を備える坑井掘削用プラグは、マンドレル1の軸方向と直交する外周面上に置かれた、少なくとも1つのスリップ(slip)3を備えるものであることが好ましい。スリップ3は、楔状のウエッジ(wedge)4と組み合わせて備えられるものでもよい。すなわち、マンドレル1の軸方向と直交する外周面上に置かれた、少なくとも1つのウエッジ4を備える坑井掘削用プラグが好ましい。スリップ3、及び、好ましくはスリップ3とウエッジ4との組み合わせは、プラグと坑井孔との固定を行う手段として、坑井掘削用プラグにおいてそれ自体周知のものである。すなわち、金属、無機物等の材料から形成されるスリップ3が、複合材等の材料から形成されるウエッジ4の斜面の上面に摺動可能に接触して置かれ、ウエッジ4に、既に説明した方法によりマンドレル1の軸方向の力が加えられることにより、スリップ3がマンドレル1の軸方向と直交する外方に移動し、坑井孔の内壁Hに当接して、プラグと坑井孔の内壁Hとの固定を行う。
本発明の坑井掘削用プラグに備えられるスリップ3、好ましくはスリップ3とウエッジ4との組み合わせ(スリップ3とウエッジ4との組み合わせを複数備える場合のスリップ3a、3bとウエッジ4a、4bとの組み合わせを含む。)は、スリップ3によりプラグをダウンホールに固定することができる限り、所望により、スリップ3またはウエッジ4の一方または両方を、分解性材料から形成されるものとしてもよく、また、スリップ3またはウエッジ4の一方または両方を、強化材を含有する複合材(強化樹脂)としてもよい。さらに、分解性材料に対して金属や無機物の部材を組み込んだものでもよい。分解性材料または強化材としては、既に説明した材料を使用することができる。
既に説明したように、本発明の坑井掘削用プラグとしては、マンドレル1の軸方向と直交する外周面上に置かれた1対のリング5a、5bを備え、少なくとも1つの分解性を有する高分子材料から形成される拡径可能な環状のシール部材2(例えば、軸方向に沿う中央環状部材と両端環状部材とにより構成される。)が、該1対のリング5a、5bの間に備えられる坑井掘削用プラグが好ましい。本発明の坑井掘削用プラグは、マンドレル1の軸方向と直交する外周面上に置かれた、少なくとも1つの拡径可能な環状のシール部材2、及び、好ましくは、少なくとも1つのスリップ3及びウエッジ4を備えることにより、プラグとダウンホールとの間において、空間の閉塞と固定を行うことができるものである。本発明の坑井掘削用プラグは、更に前記の1対のリング5a、5bを備えることにより、1対のリング5a、5bが、マンドレル1の軸方向と直交する外周面上に置かれた、拡径可能な環状のシール部材2、及び/または、スリップ3に対してウエッジ4を介して、マンドレル1の軸方向の力を効率的に加えることができる。すなわち、1対のリング5a、5bを、マンドレル1の外周面上においてマンドレル1の軸方向に沿って摺動が可能で、相互の間隔(距離)を変更することができるように構成し、かつ、拡径可能な環状のシール部材2、及び/または、スリップ3a、3bのマンドレル1の軸方向に沿う端部に、直接または間接的に、ウエッジ4a、4bを介して(図1Aにおいては、スリップ3a、3bとウエッジ4a、4bとの組み合わせとして)、当接するように構成することにより、これらにマンドレル1の軸方向の力を容易に加えることができる。
1対のリング5a、5bは、前記の拡径可能な環状のシール部材2、及び/または、スリップ3に対して、所望によってはウエッジ4を介して、マンドレル1の軸方向の力を効率的に加えることができる限り、それを形成する材料は、特に限定されないが、少なくとも一方のリング(5aまたは5b)を分解性材料から形成されるものとすることもできる。1対のリング5a、5bの少なくとも一方のリングを形成する分解性材料としては、先にマンドレル1について説明したのと同様の分解性材料を使用することができる。したがって、1対のリング5a、5bの少なくとも一方を形成する分解性材料は、好ましくは分解性の樹脂であり、より好ましくは脂肪族ポリエステル、更に好ましくはポリグリコール酸である。また、分解性材料は、強化材を含有するものであってもよく、特に、強化材を含有する脂肪族ポリエステルから形成されるものとすることもできる。
本発明の坑井掘削用プラグは、マンドレルと、マンドレルの軸方向と直交する外周面上に置かれた、少なくとも1つの拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材を備える坑井掘削用プラグであって、少なくとも1つの拡径可能な環状のシール部材は、軸方向に沿って区分される2つ以上の環状部材を備え、かつ、それぞれの環状部材は、硬度がA60~D80の範囲である分解性を有する高分子材料から形成されることを特徴とする前記のダウンホールツール用分解性シール部材であるものである。
本発明の坑井掘削用プラグは、拡径可能な環状のシール部材が、軸方向に沿って区分される2つ以上の環状部材を備え、かつ、それぞれの環状部材は、硬度がA60~D80の範囲である分解性を有する高分子材料から形成される拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材であることによって、例えば、1対のリングにマンドレルの軸方向の力を加えることにより、少なくとも1つの環状部材が、軸方向に圧縮されて縮径することに伴いマンドレルの軸方向に直交する方向に拡径する。該少なくとも1つの環状部材は、拡径して、ダウンホールの内壁と拡径可能な環状のシール部材との間の隙間を閉塞する。通常は次いで、少なくとも1つの他の環状部材が、例えば軸方向への圧縮により、マンドレルの外周面と拡径可能な環状のシール部材との間の隙間を閉塞することによって、流体を遮断することができる。なお、ダウンホールツール用分解性シール部材が短時間で分解してしまうような高温環境にあるダウンホール内において、上記した閉塞(シール)等を行う場合には、地上から流体を注入して(cooldown injection)、ダウンホールツール用分解性シール部材の周辺温度を低下させた状態にコントロールすることによって、所望の時間、シール性能(強度等)を維持するような処理方法を採用することができる。
本発明の坑井掘削用プラグは、所定の諸区画のフラクチャリングが終了した後、通常は、坑井の掘削が終了して坑井が完成し、石油や天然ガス等の生産を開始するときに、生分解、加水分解または更に他の何らかの方法による化学的な分解によって、拡径可能な環状のシール部材を、所望によっては、分解性を有するマンドレルやスリップ、更に1対のリング等を、容易に分解して除去することができ、従来行われていた坑井掘削用プラグを始めとするダウンホールツール用の部材を回収したり物理的に破壊する操作を完全に不要とすることも可能である。したがって、本発明の坑井掘削用プラグによれば、従来、坑井完成後に、坑井内に残置されていた多数の坑井掘削用プラグを除去、回収したり、破砕、穿孔その他の方法によって、破壊したり、小片化したりするために要していた多くの経費と時間が不要となるので、坑井掘削の経費軽減や工程短縮ができる。なお、坑井処理が終了した後に残存するダウンホールツール用分解性シール部材は、生産を開始するまでに完全に消失していることが好ましいが、完全に消失していないとしても、強度が低下してダウンホール中の水流等の刺激により崩壊するような状態となれば、崩壊したダウンホールツール用分解性シール部材は、フローバックなどにより容易に回収することができ、ダウンホールやフラクチャに目詰まりを生じさせることがないので、石油や天然ガス等の生産障害となることがない。また通常、ダウンホールの温度が高い方が、短時間でダウンホールツール用分解性シール部材の分解や強度低下が進行する。なお、坑井によっては地層中の含水量が低いことがあり、その場合にはフラクチャリング時に使用した水ベースの流体を、フラクチャリング後に回収することなく坑井中に残留させることで、坑井掘削用プラグの分解を促進させることができる。
本発明の坑井掘削用プラグは、先に説明したマンドレルと、特有の構造及び組成を有する拡径可能な環状のシール部材を備えることを特徴とする坑井掘削用プラグを製造することができる限り、その製造方法は限定されない。例えば、射出成形、押出成形(固化押出成形を含む。)、遠心成形、圧縮成形その他の公知の成形方法により、坑井掘削用プラグに備えられる各部材を成形し、得られた各部材を、必要に応じて切削加工や穿孔等の機械加工した後に、それ自体公知の方法によって組み合わせて、坑井掘削用プラグを得ることができる。
本発明の坑井掘削方法によれば、すなわち、ダウンホールツール用分解性シール部材を使用して、好ましくはマンドレルと該ダウンホールツール用分解性シール部材を備える坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、該ダウンホールツール用分解性シール部材が、好ましくはマンドレルと該ダウンホールツール用分解性シール部材を備える坑井掘削用プラグの一部または全部が分解される坑井掘削方法によれば、所定の諸区画のフラクチャリングが終了し、または、坑井の掘削が終了して坑井が完成し、石油や天然ガス等の生産を開始するときには、生分解、加水分解または更に他の何らかの方法による化学的な分解により、坑井孔を閉塞している拡径可能な環状のシール部材を、所望によっては更に、分解性を有するマンドレルや坑井孔を閉塞しているスリップ等を、容易に分解して除去することができる。したがって、本発明のダウンホールツール用分解性シール部材を使用して坑井孔の目止め処理を行った後に、該ダウンホールツール用分解性シール部材が分解されることによって、(i)シール部自体が分解されるので、坑井内において流体の移動を妨げるためのシールが解除できる、(ii)生産を妨げる不要なダウンホールツールの除去が容易である、(iii)ダウンホールツールに備えられる他のダウンホールツール用部材を分解性を有する材料から形成することにより、生産開始前に破砕処理が全く不要なダウンホールツールを得ることができる、(iv)フラクチャリング工程に使用されるダウンホールツールに限られることなく、何らかのシールが必要とされる多様な工程において使用される種々のダウンホールツールに適用することができる、などの利点がある。この結果、本発明の坑井掘削方法によれば、従来、坑井完成後に、坑井内に残置されていた多数の坑井掘削用プラグまたはシール部材等のその部材を除去、回収したり、破砕、穿孔その他の方法によって、破壊したり、小片化したりするために要していた多くの経費と時間が不要となるので、坑井掘削の経費軽減や工程短縮ができる。
2 : 拡径可能な環状のシール部材(ダウンホールツール用分解性シール部材)
3a、3b : スリップ
4a、4b : ウエッジ
5a、5b : リング
H : ダウンホール(坑井孔)の内壁
Claims (32)
- 拡径可能な環状のシール部材であるダウンホールツール用分解性シール部材であって、
拡径可能な環状のシール部材は、軸方向に沿って区分される2つ以上の環状部材を備え、かつ、
それぞれの環状部材は、硬度がA60~D80の範囲である分解性を有する高分子材料から形成される
ことを特徴とする前記のダウンホールツール用分解性シール部材。 - 2つ以上の環状部材を形成する高分子材料のそれぞれにおける、温度150℃の水に浸漬後の50%ひずみ圧縮応力の、浸漬前の50%ひずみ圧縮応力に対する低下率が5%以上となる時間の差が、2日以内である請求項1記載のダウンホールツール用分解性シール部材。
- それぞれの環状部材を形成する高分子材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%の範囲にある請求項1または2記載のダウンホールツール用分解性シール部材。
- それぞれの環状部材を形成する高分子材料は、ドライ環境下で安定かつ温度23℃の水に6時間浸漬後の50%ひずみ圧縮応力の1時間浸漬後の50%ひずみ圧縮応力に対する低下率が5%未満である請求項1乃至3のいずれか1項に記載のダウンホールツール用分解性シール部材。
- それぞれの環状部材は、温度66℃における引張破断ひずみが50%以上、70%ひずみ圧縮応力が10MPa以上かつ圧縮破断ひずみが50%以上である請求項1乃至4のいずれか1項に記載のダウンホールツール用分解性シール部材。
- それぞれの環状部材は、温度66℃において、圧縮ひずみ5%における圧縮応力に対する、圧縮ひずみ70%における圧縮応力の比率が5倍以上である請求項1乃至5のいずれか1項に記載のダウンホールツール用分解性シール部材。
- 拡径可能な環状のシール部材は、マンドレルの軸方向と直交する外周面上に置かれ、かつ、少なくとも1つの環状部材が、軸方向への圧縮により拡径して、ダウンホールの内壁と拡径可能な環状のシール部材との間の隙間を閉塞し、少なくとも1つの他の環状部材が、マンドレルと拡径可能な環状のシール部材との間の隙間を閉塞することによって、流体を遮断する機能を有する請求項1乃至6のいずれか1項に記載のダウンホールツール用分解性シール部材。
- 分解性を有する高分子材料は、ウレタンゴム、アクリルゴム、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、天然ゴム、イソプレンゴム、エチレンプロピレンゴム、ブチルゴム、スチレンゴム、脂肪族ポリエステルゴム、及びクロロプレンゴムからなる群より選ばれる少なくとも1種のゴム材料を含有する請求項1乃至7のいずれか1項に記載のダウンホールツール用分解性シール部材。
- 分解性を有する高分子材料は、加水分解性の官能基を有する高分子材料を含有する請求項1乃至8のいずれか1項に記載のダウンホールツール用分解性シール部材。
- 分解性を有する高分子材料は、ウレタン結合、エステル結合またはアミド結合の少なくとも1つの結合を有する高分子材料を含有する請求項1乃至9のいずれか1項に記載のダウンホールツール用分解性シール部材。
- 分解性を有する高分子材料は、ウレタンゴム、ポリエステル系熱可塑性エラストマー及びポリアミド系熱可塑性エラストマーからなる群より選ばれる少なくとも1種を含有する請求項1乃至10のいずれか1項に記載のダウンホールツール用分解性シール部材。
- 分解性を有する高分子材料は、該分解性を有する高分子材料100質量部に対して分解促進剤0.1~20質量部を含有する請求項1乃至11のいずれか1項に記載のダウンホールツール用分解性シール部材。
- 分解促進剤が酸性物質である請求項12記載のダウンホールツール用分解性シール部材。
- 酸性物質が酸生成物質である請求項13記載のダウンホールツール用分解性シール部材。
- 分解促進剤が可塑剤である請求項12記載のダウンホールツール用分解性シール部材。
- 分解促進剤が、有機酸、無機酸、有機酸エステル、無機酸エステル及び酸無水物からなる群より選ばれる少なくとも1種を含有する請求項12記載のダウンホールツール用分解性シール部材。
- 分解促進剤が、ラウリン酸、グリコール酸、乳酸、リン酸、グリコリド、ラクチド、ポリグリコール酸、ポリ乳酸、p-トルエンスルホン酸メチル及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群より選ばれる少なくとも1種を含有する請求項12記載のダウンホールツール用分解性シール部材。
- 分解性を有する高分子材料は、強化材を含有する請求項1乃至17のいずれか1項に記載のダウンホールツール用分解性シール部材。
- マンドレルと、マンドレルの軸方向と直交する外周面上に置かれる少なくとも1つの請求項1乃至18のいずれか1項に記載のダウンホールツール用分解性シール部材を備える坑井掘削用プラグ。
- マンドレルの軸方向と直交する外周面上に置かれる拡径可能な環状補助部材であって、ダウンホールの内壁と拡径可能な環状のシール部材との間の隙間を閉塞する少なくとも1つの環状部材のシール作用の際に受ける変形を、拡径して緩和することができる前記環状補助部材を備える請求項19記載の坑井掘削用プラグ。
- マンドレルの軸方向と直交する外周面上に置かれる少なくとも1つのスリップ、または、少なくとも1つの請求項1乃至18のいずれか1項に記載のダウンホールツール用分解性シール部材がその間に備えられる1対のリングの少なくとも一方を備える請求項19または20記載の抗井掘削用プラグ。
- マンドレルが、分解性材料から形成される請求項19乃至21のいずれか1項に記載の坑井掘削用プラグ。
- 分解性材料は、脂肪族ポリエステルを含有する請求項22記載の坑井掘削用プラグ。
- 脂肪族ポリエステルは、ポリグリコール酸である請求項23記載の坑井掘削用プラグ。
- ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである請求項24記載の坑井掘削用プラグ。
- 分解性材料は、強化材を含有する請求項19乃至25のいずれか1項に記載の坑井掘削用プラグ。
- マンドレルが、分解性材料を含有する複合材からなる請求項19乃至26のいずれか1項に記載の坑井掘削用プラグ。
- 請求項1乃至18のいずれか1項に記載のダウンホールツール用分解性シール部材を使用して、坑井孔の目止め処理を行った後に、ダウンホールツール用分解性シール部材が分解されることを特徴とする坑井掘削方法。
- 請求項1乃至18のいずれか1項に記載のダウンホールツール用分解性シール部材を備えるダウンホールツールを使用して、坑井孔をシールした後に、坑井孔内で該ダウンホールツール用分解性シール部材が分解される坑井掘削方法。
- 請求項1乃至18のいずれか1項に記載のダウンホールツール用分解性シール部材を備え、さらに分解性材料を含有する他のダウンホールツール用部材を備えるダウンホールツールを使用して、坑井孔をシールした後に、坑井孔内で該ダウンホールツール用分解性シール部材が分解される坑井掘削方法。
- 他のダウンホールツール用部材に含有される分解性材料がポリグリコール酸である請求項30記載の坑井掘削方法。
- 請求項1乃至18のいずれか1項に記載のダウンホールツール用分解性シール部材を備え、該ダウンホールツール用分解性シール部材が、他のダウンホールツール用部材に接するダウンホールツールを使用して、坑井処理を行った後に、坑井孔内で該ダウンホールツール用分解性シール部材が分解される坑井掘削方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/037,506 US10208559B2 (en) | 2013-12-27 | 2014-12-24 | Diameter-expandable annular degradable seal member for downhole tool, plug for well drilling, and method for well drilling |
CA2931349A CA2931349C (en) | 2013-12-27 | 2014-12-24 | Diameter-expandable annular degradable seal member for downhole tool, plug for well drilling, and method for well drilling |
CN201480055144.5A CN105637174B (zh) | 2013-12-27 | 2014-12-24 | 钻井工具用可扩径的环状分解性密封构件、钻井用堵塞器、以及钻井方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013271310 | 2013-12-27 | ||
JP2013-271310 | 2013-12-27 | ||
JP2014127561A JP6359888B2 (ja) | 2013-12-27 | 2014-06-20 | ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法 |
JP2014-127561 | 2014-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098913A1 true WO2015098913A1 (ja) | 2015-07-02 |
Family
ID=53478765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084045 WO2015098913A1 (ja) | 2013-12-27 | 2014-12-24 | ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10208559B2 (ja) |
JP (1) | JP6359888B2 (ja) |
CN (1) | CN105637174B (ja) |
CA (1) | CA2931349C (ja) |
WO (1) | WO2015098913A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE46028E1 (en) | 2003-05-15 | 2016-06-14 | Kureha Corporation | Method and apparatus for delayed flow or pressure change in wells |
EP3015501A4 (en) * | 2013-06-28 | 2016-10-26 | Kureha Corp | RUBBER ELEMENT FOR DRILLING TOOLS, DRILLING TOOL AND METHOD FOR RECOVERING HYDROCARBON RESOURCES |
US9708878B2 (en) | 2003-05-15 | 2017-07-18 | Kureha Corporation | Applications of degradable polymer for delayed mechanical changes in wells |
WO2019031214A1 (ja) * | 2017-08-10 | 2019-02-14 | 株式会社クレハ | プラグ、保持部材、および当該プラグを用いた坑井掘削方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9731722B2 (en) * | 2015-04-20 | 2017-08-15 | Ford Global Technologies, Llc | Brake control for stop/start vehicle |
US10364642B1 (en) | 2015-08-19 | 2019-07-30 | Bubbletight, LLC | Degradable downhole tools and components |
US10767439B1 (en) | 2015-08-19 | 2020-09-08 | Bubbletight, LLC | Downhole tool having a sealing element constructed from a polyvinyl alcohol compound |
JP6635785B2 (ja) | 2015-12-22 | 2020-01-29 | 株式会社クレハ | ダウンホールツール用分解性ゴム部材、ダウンホールツール、及び坑井掘削方法 |
JP6786842B2 (ja) * | 2016-03-31 | 2020-11-18 | オムロン株式会社 | 耐油性試験方法および耐油性試験装置 |
AU2017293401A1 (en) * | 2016-07-05 | 2018-03-08 | The Wellboss Company, Llc | Composition of matter and use thereof |
WO2018168529A1 (ja) * | 2017-03-16 | 2018-09-20 | 株式会社クレハ | 目止剤及びその利用 |
JP2020097636A (ja) * | 2017-03-16 | 2020-06-25 | 株式会社クレハ | 目止剤及びその利用 |
US10487616B2 (en) * | 2017-06-28 | 2019-11-26 | Schlumberger Technology Corporation | Packoff seals and processes for using same |
CN108795015A (zh) * | 2018-05-15 | 2018-11-13 | 北京易联结科技发展有限公司 | 一种氢化丁腈橡胶、聚氨酯橡胶的复合材料及其制备方法 |
JP2020007514A (ja) * | 2018-07-12 | 2020-01-16 | 株式会社クレハ | ダウンホールツール |
CN110746670A (zh) * | 2018-07-24 | 2020-02-04 | 中石化石油工程技术服务有限公司 | 一种可溶氢化丁腈橡塑复合材料及其制备方法 |
US10655405B1 (en) * | 2019-08-15 | 2020-05-19 | Sun Energy Services, Llc | Method and apparatus for optimizing a well drilling operation |
US11828131B1 (en) | 2020-03-09 | 2023-11-28 | Workover Solutions, Inc. | Downhole plug with integrated slip cover and expansion element |
US11959353B2 (en) * | 2021-04-12 | 2024-04-16 | Halliburton Energy Services, Inc. | Multiple layers of open-hole seal in a wellbore |
US11788356B2 (en) * | 2021-11-23 | 2023-10-17 | Halliburton Energy Services, Inc. | Optimized adhesive thickness for metal-to-elastomer bonding in oilfield mud motor and pump stators |
CN114558445B (zh) * | 2022-03-02 | 2022-11-04 | 苏州市职业大学 | 一种生物除臭装置 |
WO2024019036A1 (ja) * | 2022-07-21 | 2024-01-25 | 興国インテック株式会社 | 分解性ゴム組成物、ゴム部材、封止部材、及び分解性ゴム組成物の製造方法 |
CN116856881B (zh) * | 2023-09-04 | 2023-11-17 | 太原科技大学 | 一种内嵌式封堵结构桥塞及其桥塞坐封方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050205266A1 (en) * | 2004-03-18 | 2005-09-22 | Todd Bradley I | Biodegradable downhole tools |
WO2013183363A1 (ja) * | 2012-06-07 | 2013-12-12 | 株式会社クレハ | 炭化水素資源回収ダウンホールツール用部材 |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4766167A (en) | 1987-09-23 | 1988-08-23 | C. J. Patterson Company | Hydroxy acid ester plasticized urethane elastomers |
US4924941A (en) * | 1989-10-30 | 1990-05-15 | Completion Services, Inc. | Bi-directional pressure assisted sealing packers |
JPH1160928A (ja) | 1997-08-27 | 1999-03-05 | Nishikawa Rubber Co Ltd | ポリヒドロキシカルボン酸樹脂組成物およびその製造方法 |
JP2000319446A (ja) | 1999-05-07 | 2000-11-21 | Nishikawa Rubber Co Ltd | 生分解性ゴム組成物 |
US6409175B1 (en) * | 1999-07-13 | 2002-06-25 | Grant Prideco, Inc. | Expandable joint connector |
EP1285147A1 (en) | 2000-05-15 | 2003-02-26 | Imperial Chemical Industries PLC | Method of oil/gas well stimulation |
ATE354380T1 (de) | 2003-02-03 | 2007-03-15 | Polaschegg Hans-Dietrich Dr Te | Zusammensetzung zur prävention von infektionen durch subkutane prothesen |
US7086460B2 (en) | 2003-07-14 | 2006-08-08 | Halliburton Energy Services, Inc. | In-situ filters, method of forming same and systems for controlling proppant flowback employing same |
GB2411918B (en) | 2004-03-12 | 2006-11-22 | Schlumberger Holdings | System and method to seal using a swellable material |
US7093664B2 (en) | 2004-03-18 | 2006-08-22 | Halliburton Energy Services, Inc. | One-time use composite tool formed of fibers and a biodegradable resin |
US7775278B2 (en) | 2004-09-01 | 2010-08-17 | Schlumberger Technology Corporation | Degradable material assisted diversion or isolation |
US7275596B2 (en) | 2005-06-20 | 2007-10-02 | Schlumberger Technology Corporation | Method of using degradable fiber systems for stimulation |
US7380600B2 (en) | 2004-09-01 | 2008-06-03 | Schlumberger Technology Corporation | Degradable material assisted diversion or isolation |
US7353876B2 (en) | 2005-02-01 | 2008-04-08 | Halliburton Energy Services, Inc. | Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations |
US7647964B2 (en) | 2005-12-19 | 2010-01-19 | Fairmount Minerals, Ltd. | Degradable ball sealers and methods for use in well treatment |
US20110067889A1 (en) | 2006-02-09 | 2011-03-24 | Schlumberger Technology Corporation | Expandable and degradable downhole hydraulic regulating assembly |
US7237610B1 (en) | 2006-03-30 | 2007-07-03 | Halliburton Energy Services, Inc. | Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use |
US7661481B2 (en) | 2006-06-06 | 2010-02-16 | Halliburton Energy Services, Inc. | Downhole wellbore tools having deteriorable and water-swellable components thereof and methods of use |
WO2008090590A1 (ja) | 2007-01-26 | 2008-07-31 | Seed Company Ltd. | エラストマー組成物、その製造方法、及び該組成物を用いた字消し |
JP4402698B2 (ja) | 2007-01-26 | 2010-01-20 | 株式会社シード | 字消し用エラストマー組成物、その製造方法、及び該組成物を用いた字消し |
US20080224413A1 (en) | 2007-03-15 | 2008-09-18 | Doane James C | Sealing material to metal bonding compositions and methods for bonding a sealing material to a metal surface |
US7806192B2 (en) | 2008-03-25 | 2010-10-05 | Foster Anthony P | Method and system for anchoring and isolating a wellbore |
WO2010039131A1 (en) | 2008-10-01 | 2010-04-08 | Baker Hughes Incorporated | Water swelling rubber compound for use in reactive packers and other downhole tools |
US8499841B2 (en) | 2008-11-05 | 2013-08-06 | Team Oil Tool, LP | Frac sleeve with rotational inner diameter opening |
US9500061B2 (en) | 2008-12-23 | 2016-11-22 | Frazier Technologies, L.L.C. | Downhole tools having non-toxic degradable elements and methods of using the same |
US8899317B2 (en) | 2008-12-23 | 2014-12-02 | W. Lynn Frazier | Decomposable pumpdown ball for downhole plugs |
US9260935B2 (en) | 2009-02-11 | 2016-02-16 | Halliburton Energy Services, Inc. | Degradable balls for use in subterranean applications |
US9127527B2 (en) | 2009-04-21 | 2015-09-08 | W. Lynn Frazier | Decomposable impediments for downhole tools and methods for using same |
US9109428B2 (en) * | 2009-04-21 | 2015-08-18 | W. Lynn Frazier | Configurable bridge plugs and methods for using same |
US8191644B2 (en) | 2009-12-07 | 2012-06-05 | Schlumberger Technology Corporation | Temperature-activated swellable wellbore completion device and method |
WO2011096968A1 (en) | 2010-02-08 | 2011-08-11 | Danimer Scientific, Llc | Degradable polymers for hydrocarbon extraction |
JP2012012560A (ja) | 2010-06-04 | 2012-01-19 | Kureha Corp | ポリグリコール酸樹脂組成物 |
US20120035309A1 (en) | 2010-08-06 | 2012-02-09 | Baker Hughes Incorporated | Method to disperse nanoparticles into elastomer and articles produced therefrom |
US20120067581A1 (en) | 2010-09-17 | 2012-03-22 | Schlumberger Technology Corporation | Mechanism for treating subteranean formations with embedded additives |
EP2623547B1 (en) | 2010-10-01 | 2018-07-25 | Bridgestone Corporation | Method for manufacturing rubber composition |
US8991505B2 (en) | 2010-10-06 | 2015-03-31 | Colorado School Of Mines | Downhole tools and methods for selectively accessing a tubular annulus of a wellbore |
US8887816B2 (en) | 2011-07-29 | 2014-11-18 | Halliburton Energy Services, Inc. | Polymer compositions for use in downhole tools and components thereof |
US20130233546A1 (en) | 2012-03-07 | 2013-09-12 | Halliburton Energy Services, Inc. | Degradable Fluid Sealing Compositions Having an Adjustable Degradation Rate and Methods for Use Thereof |
DE102012101929B4 (de) | 2012-03-07 | 2015-02-19 | Federnfabrik Dietz Gmbh | Federhülse, Federstift und Verfahren und Vorrichtung zur Herstellung einer Federhülse und eines Federstifts |
JP6133847B2 (ja) | 2012-04-27 | 2017-05-24 | 株式会社クレハ | ポリエステル樹脂組成物およびその成形体 |
PL221753B1 (pl) | 2012-05-14 | 2016-05-31 | Politechnika Łódzka | Kompozycja elastomerowa z kauczuku etylenowo-propylenowego, przeznaczona na wyroby gumowe o dobrych właściwościach wytrzymałościowych i kontrolowanej degradowalności |
RU2583466C1 (ru) | 2012-07-10 | 2016-05-10 | Куреха Корпорейшн | Элемент скважинного инструмента для извлечения углеводородных ресурсов |
JP6249965B2 (ja) | 2013-01-18 | 2017-12-20 | 株式会社クレハ | 坑井処理流体材料およびそれを含有する坑井処理流体 |
CN103497386A (zh) | 2013-09-11 | 2014-01-08 | 青岛龙梅机电技术有限公司 | 一种输电电线环保包裹外层 |
NO346949B1 (en) | 2014-07-07 | 2023-03-13 | Halliburton Energy Services Inc | Downhole tools comprising aqueous-degradable sealing elements, a method, and a system |
-
2014
- 2014-06-20 JP JP2014127561A patent/JP6359888B2/ja active Active
- 2014-12-24 CN CN201480055144.5A patent/CN105637174B/zh active Active
- 2014-12-24 WO PCT/JP2014/084045 patent/WO2015098913A1/ja active Application Filing
- 2014-12-24 CA CA2931349A patent/CA2931349C/en active Active
- 2014-12-24 US US15/037,506 patent/US10208559B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050205266A1 (en) * | 2004-03-18 | 2005-09-22 | Todd Bradley I | Biodegradable downhole tools |
WO2013183363A1 (ja) * | 2012-06-07 | 2013-12-12 | 株式会社クレハ | 炭化水素資源回収ダウンホールツール用部材 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE46028E1 (en) | 2003-05-15 | 2016-06-14 | Kureha Corporation | Method and apparatus for delayed flow or pressure change in wells |
US9708878B2 (en) | 2003-05-15 | 2017-07-18 | Kureha Corporation | Applications of degradable polymer for delayed mechanical changes in wells |
US10280703B2 (en) | 2003-05-15 | 2019-05-07 | Kureha Corporation | Applications of degradable polymer for delayed mechanical changes in wells |
EP3015501A4 (en) * | 2013-06-28 | 2016-10-26 | Kureha Corp | RUBBER ELEMENT FOR DRILLING TOOLS, DRILLING TOOL AND METHOD FOR RECOVERING HYDROCARBON RESOURCES |
US10414851B2 (en) | 2013-06-28 | 2019-09-17 | Kureha Corporation | Rubber member for downhole tools, downhole tool, and method for recovering hydrocarbon resource |
WO2019031214A1 (ja) * | 2017-08-10 | 2019-02-14 | 株式会社クレハ | プラグ、保持部材、および当該プラグを用いた坑井掘削方法 |
GB2581236A (en) * | 2017-08-10 | 2020-08-12 | Kureha Corp | Plug, retaining member and well drilling method using said plug |
GB2581236B (en) * | 2017-08-10 | 2021-03-24 | Kureha Corp | Plug, retaining member and method for well completion using plug |
US11066895B2 (en) | 2017-08-10 | 2021-07-20 | Kureha Corporation | Plug, retaining member, and method for well completion using plug |
US12000232B2 (en) | 2017-08-10 | 2024-06-04 | Kureha Corporation | Plug, retaining member, and method for well completion using plug |
Also Published As
Publication number | Publication date |
---|---|
US10208559B2 (en) | 2019-02-19 |
CA2931349C (en) | 2018-11-13 |
US20160298415A1 (en) | 2016-10-13 |
CN105637174A (zh) | 2016-06-01 |
JP6359888B2 (ja) | 2018-07-18 |
CA2931349A1 (en) | 2015-07-02 |
CN105637174B (zh) | 2019-05-03 |
JP2015143458A (ja) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6359888B2 (ja) | ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法 | |
JP6359355B2 (ja) | 分解性を有するゴム材料から形成される拡径可能な環状のゴム部材を備える坑井掘削用プラグ | |
JP6327946B2 (ja) | 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ | |
US10280699B2 (en) | Degradable rubber member for downhole tools, degradable seal member, degradable protecting member, downhole tool, and method for well drilling | |
JP6282201B2 (ja) | リング状のラチェット機構を備える坑井掘削用プラグ | |
JP6441649B2 (ja) | ダウンホールツール用分解性シール部材、ダウンホールツール、及び坑井掘削方法 | |
US20190382520A1 (en) | Method for producing rubber member for downhole tool | |
CA2927080C (en) | Plug for well drilling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874620 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15037506 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2931349 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14874620 Country of ref document: EP Kind code of ref document: A1 |