WO2018168529A1 - 目止剤及びその利用 - Google Patents

目止剤及びその利用 Download PDF

Info

Publication number
WO2018168529A1
WO2018168529A1 PCT/JP2018/008064 JP2018008064W WO2018168529A1 WO 2018168529 A1 WO2018168529 A1 WO 2018168529A1 JP 2018008064 W JP2018008064 W JP 2018008064W WO 2018168529 A1 WO2018168529 A1 WO 2018168529A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
resin composition
hardness
resin
isocyanate
Prior art date
Application number
PCT/JP2018/008064
Other languages
English (en)
French (fr)
Inventor
卓磨 小林
瑞輝 斎藤
浩幸 佐藤
健夫 ▲高▼橋
Original Assignee
株式会社クレハ
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017051955A external-priority patent/JP2020100676A/ja
Priority claimed from JP2017051954A external-priority patent/JP2020100675A/ja
Application filed by 株式会社クレハ, 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 株式会社クレハ
Publication of WO2018168529A1 publication Critical patent/WO2018168529A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Definitions

  • the present invention relates to a sealant for temporarily closing a pit wall and use thereof.
  • the debris generated from the periphery of the drill during the well excavation is transported to the ground surface, the underground pressure is adjusted to maintain the stability of the well, and the collapse of the formation is suppressed.
  • Circulating fluid muddy water or finishing fluid
  • the reservoir that is the production layer is a highly permeable formation, or if natural fractures (cracks) exist in the shale layer, fluid will be lost through the high permeable formation and cracks in the well wall, and circulating mud The volume may decrease or the muddy water column pressure may decrease.
  • the sealant calcium carbonate or the like is generally used.
  • the work time for performing this acid treatment is required, and if the acid treatment is insufficient, the amount of recovered resources may be reduced due to insoluble residues such as calcium carbonate residue as a filler.
  • the decomposition function is decomposed after a predetermined period of time. An eye-catching agent using a degradable material that has disappeared has attracted attention.
  • Patent Document 1 describes a sealing agent containing a synthetic resin having a sealing function for a period of 40 days or less at a temperature of 93 ° C. (200 ° F.) to 204 ° C. (400 ° F.).
  • Patent Documents 2 and 3 describe a sealant using a degradable material containing an aliphatic polyester resin such as polylactic acid and polyglycolic acid.
  • Fractures have various widths, and in particular, the width of the crevice at the opening or inside of the fracture is several mm or less, or several hundred ⁇ m to several ⁇ m, particularly around 50 ⁇ m in a highly permeable formation. There is a need for a sealant that can temporarily seal the pores of the width.
  • Patent Documents 1 to 3 do not describe any sealant capable of temporarily closing the pores at an appropriate time even in a high temperature environment.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a sealant or the like that can suitably temporarily seal pores that cause the drilling fluid to flow even under a high temperature environment. is there.
  • the sealant according to the present invention is a sealant for sealing a well wall, wherein the sealant is a powder of a resin composition containing a polyurethane resin, and the polyurethane resin is an aliphatic isocyanate type It is at least one of a polyurethane resin and an aromatic isocyanate-based polyurethane resin, and the sheet-like molded body molded from the resin composition has a durometer type D hardness at 23 ° C. of 28 or more. .
  • the present invention has the effect of providing a sealant or the like capable of temporarily closing pores even in a high temperature environment.
  • time-degradable-lost circulation materials are generally fluids in a well-penetrated or cracked well wall in various well drilling processes.
  • a material blended in a circulating fluid such as drilling mud or finishing fluid for the purpose of temporarily preventing runoff.
  • the sealant according to the present embodiment is a powder formed from a resin composition having a durometer type D hardness of 28 or more at 23 ° C.
  • the resin composition includes a polyurethane resin, and the polyurethane resin is at least one of an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin.
  • the aliphatic isocyanate-based polyurethane resin and the aromatic isocyanate-based polyurethane resin which are polyurethane resins, may be crosslinked with a crosslinking agent.
  • a powder formed from such a resin composition as a filler, for example, a highly permeable layer having pores with a width of about 1 ⁇ m to 800 ⁇ m even in a high temperature environment of 100 ° C. or more and 200 ° C. or less. It can be temporarily stopped.
  • the sealant according to the present embodiment is formed of a resin composition having a durometer type D hardness of 28 or more at 23 ° C., so that the seal part that has closed the pores with the sealant is the eyes.
  • the time until the seal is released without being able to withstand the pressure applied to the stop (the seal maintenance time) is 100 ° C. or more and 200 ° C. or less, for example, 1 hour or more and 960 hours (40 days)
  • the following ranges can be used. Thereby, it is possible to release the seal before various operations are completed while securing various work times to be performed inside and outside the well during the seal.
  • the resin composition is the main material of the filler. Since the resin composition contains a polyurethane resin and the durometer type D hardness at 23 ° C. is 28 or higher, the well wall can be suitably temporarily observed in a high temperature environment of 100 ° C. or higher and 200 ° C. or lower. A sealant can be obtained.
  • the resin composition may have a hardness (durometer type D hardness at 23 ° C.) of 28 or more.
  • the durometer type D hardness at 23 ° C. is preferably 28 or more and 80 or less, and more preferably 28 or more and 75 or less.
  • the durometer type D hardness at 23 ° C. is within the above-described preferable range, the filler is neither too soft nor too hard, so that the pores are temporarily stopped more suitably at high temperatures. be able to.
  • the durometer type D hardness in 23 degreeC in a resin composition is 29 or more and 80 or less, a well wall can be temporarily stopped in a high temperature environment of 110 degreeC or more and 200 degrees C or less.
  • the durometer type D hardness of the resin composition is measured using a sheet-like molded body formed using the resin composition.
  • the durometer type D hardness can be measured in accordance with ISO7619 / JIS K 6253.
  • the measurement position of the test piece for hardness measurement is 12 mm or more inside from the end of the test piece.
  • interval of a measurement point is 6 mm or more.
  • the thickness of a test piece is 6 mm or more normally.
  • the resin composition is a thermoplastic polyurethane resin
  • the molded body is part of the resin composition obtained by melt-kneading the polyurethane resin with a known kneading extruder or the like when producing the filler. And can be formed into a sheet shape using a processing method such as hot pressing, if necessary.
  • the resin composition is a thermosetting polyurethane resin
  • a thermosetting polyurethane resin raw material before curing is poured into a mold for manufacturing a test piece for hardness measurement, and heated to a predetermined temperature after defoaming. Hold for a predetermined time. Thereby, the said resin raw material can be hardened and a test piece can be obtained.
  • test piece may be heat-treated at a predetermined temperature for a predetermined time before the test, if necessary, in order to remove mechanical strain during molding and stabilize the hardness.
  • hardness means “durometer type D hardness at 23 ° C.” unless otherwise specified.
  • the filler is formed into a powder form by melt-kneading an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin, which are polyurethane resins, and pulverizing the obtained resin composition.
  • blending a crosslinking agent with a resin composition it is good to melt-knead the polyurethane resin which mix
  • the heating temperature and time during the melt-kneading may be appropriately adjusted in consideration of the melting point of the aliphatic isocyanate-based polyurethane resin and aromatic isocyanate-based polyurethane resin and the reaction temperature of the crosslinking agent.
  • the filler can be obtained by appropriately pulverizing a resin composition obtained by melt-kneading by a known method.
  • the shape of the particles of the powder formed by the resin composition is not limited, but is spherical, scale-like, plate-like, ellipsoidal, prismatic, rod-like, star-shaped, polygonal and fibrous. (Short fiber) etc. may be sufficient and the porous form which has a small hole may be sufficient. Moreover, the combination of what differs in a shape and the thing from which a particle size differs may be sufficient.
  • the melt-kneaded resin composition may be pulverized into a powder by freeze pulverization. Thereby, it is possible to obtain a sealant having a small median diameter of particles formed from the resin composition.
  • the powder formed from the resin composition that is, the filler, has a median diameter (50% D) of preferably 50 ⁇ m or more and 800 ⁇ m or less, more preferably 100 ⁇ m or more and 750 ⁇ m or less, and more preferably 300 ⁇ m or more and 700 ⁇ m or less. More preferably.
  • the median diameter (50% D) of the powder is preferably larger in the above range.
  • the median diameter (50% D) is preferably smaller within the above range.
  • a resin composition or the like having a reduced strength is more difficult to leak from the sealing portion, and the pores can be temporarily temporarily blocked at a high temperature.
  • the filler When using the filler, it is preferable to prepare several types of powders having different median diameters, and to use these in a mixed state.
  • the median diameter of each powder to be mixed is in the above range. More preferably, it is within. Thereby, it is possible to obtain a sealant that can more appropriately seal the pores.
  • the sealant is formed from a resin composition using a polyurethane resin as a base resin of the resin composition and adjusted so that the durometer type D hardness at 23 ° C. is 28 or more.
  • Polyurethane resin generally refers to a polymer compound derived from an isocyanate compound regardless of the presence or absence of a urethane bond. Specifically, it is a polymer compound composed of a chemical bond such as a urethane bond, and in some cases a urea bond or an amide bond. Examples of the polyurethane resin include a thermoplastic polyurethane resin and a thermosetting polyurethane resin.
  • thermoplastic polyurethane resin and the thermosetting polyurethane resin can be formed from an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin. Therefore, in the present specification, when simply described as “polyurethane resin”, the “polyurethane resin” includes “thermoplastic polyurethane resin” and “thermosetting polyurethane resin”, and “aliphatic isocyanate-based polyurethane resin”. And the meaning of “aromatic isocyanate-based polyurethane resin”.
  • the thermoplastic polyurethane resin is a polyurethane resin that can be repeatedly melted by heating, and is a polyurethane resin having a branched structure among aliphatic isocyanate-based polyurethane resins and aromatic isocyanate-based polyurethane resins. Although it may be, it is more preferably a polyurethane resin having a linear structure.
  • thermosetting polyurethane resin is a polyurethane resin obtained by curing a molten prepolymer by heating. More specifically, it is a polyurethane resin that can be obtained by crosslinking a thermoplastic polyurethane resin or a polyurethane resin prepolymer with a crosslinking agent. Examples of the thermosetting polyurethane resin include those obtained by molding methods such as the following (i) to (iii).
  • Millable gum mold processing method For example, a hydroxyl group-terminated prepolymer having a skeleton such as polyester polyol and a structure derived from aliphatic isocyanate or aromatic isocyanate is generated, and a crosslinking agent is kneaded by roll kneading, It is obtained by heating in a mold and allowing the crosslinking to proceed.
  • Cast mold forming method For example, an isocyanate group-terminated prepolymer having a skeleton such as polyester polyol and a structure derived from aliphatic isocyanate or aromatic isocyanate is generated, and a crosslinking agent is added thereto.
  • thermoplastic polyurethane resin pellet is melted by heating and obtained through extrusion molding or injection molding.
  • a partially crosslinked polyurethane resin can be obtained by adding a cross-linking agent as necessary at the time of melting.
  • crosslinking can be advanced by heat-treating a thermoplastic polyurethane resin to which a crosslinking agent has been added at a predetermined temperature for a predetermined time as required, and the hardness can be adjusted.
  • the polyurethane resin contained in the resin composition is an aromatic isocyanate-based polyurethane resin only, an aliphatic isocyanate-based polyurethane resin, or an aromatic isocyanate-based polyurethane resin. Although it may be any of the aliphatic isocyanate-based polyurethane resin, it is preferable to adjust the hardness of the polyurethane resin as described below.
  • the durometer type D hardness of the resin composition is determined by at least one method of (1) combined use of a plurality of polyurethane resins, (2) cross-linking with a cross-linking agent, and heat treatment of a polyurethane resin to which a cross-linking agent is added (3) electron beam irradiation. Adjusted.
  • the durometer type D hardness of the resin composition can be adjusted by using a plurality of polyurethane resins in combination.
  • the polyurethane resin to be used in combination may be a plurality of thermoplastic polyurethane resins having the same hardness, but is more preferably a plurality of thermoplastic polyurethane resins having different hardness from each other because the adjustment of the hardness is easier.
  • melt kneading a plurality of thermoplastic polyurethane resins may be referred to as melt blending.
  • a plurality of polyurethane resins are used in combination, if the durometer type D hardness at 23 ° C. of the resin composition obtained by melt-kneading is 28 or more, for example, a plurality of aromatic isocyanate polyurethane resins having different hardnesses are used. Alternatively, a plurality of aliphatic isocyanate polyurethane resins having different hardnesses may be used, and aromatic isocyanate polyurethane resins and aliphatic isocyanate polyurethane resins having different hardnesses may be used.
  • the aliphatic isocyanate-based polyurethane resin generally has a low hardness and tends to have a high decomposition rate
  • the aromatic isocyanate-based polyurethane resin has a higher hardness than the aliphatic isocyanate-based polyurethane resin and tends to have a low decomposition rate.
  • the aromatic isocyanate type polyurethane resin contained in the resin composition which is a melt blend is the hardness (durometer type D at 23 degreeC) of the molded object. It is preferable to use an aromatic isocyanate polyurethane resin having a hardness of 28 or more (more preferably 29 or more), and the aromatic isocyanate polyurethane resin has a durometer type D hardness of 28 to 80 at 23 ° C. It is preferably 29 or more and 75 or less.
  • the hardness of the resin composition can be adjusted so that the decomposition rate of the filler is relatively slow.
  • the aliphatic isocyanate-based polyurethane resin may have a durometer type D hardness at 23 ° C. of less than 29 or even less than 28. .
  • the aliphatic isocyanate-based polyurethane resin may have a durometer type D hardness at 23 ° C. of 28 or more (more preferably 29 or more), but the durometer type D hardness at 23 ° C. is 20 or more and 65 or less. It is more preferable.
  • the aromatic isocyanate-based polyurethane resin and the aliphatic isocyanate-based polyurethane resin may be used as long as the durometer type D hardness at 23 ° C. of the molded article formed from at least one resin is 28 or more, but used for melt-kneading.
  • the molded product molded from the aromatic isocyanate polyurethane resin and the molded product molded from the aliphatic isocyanate polyurethane resin preferably each have a durometer type D hardness of 28 or more at 23 ° C.
  • the durometer type D hardness of a resin composition may exist in a predetermined range. Therefore, a sealant capable of temporarily observing the well wall in a high temperature environment of 100 ° C. to 200 ° C. can be suitably produced.
  • “to” means a range including numerical values at both ends or a weight ratio.
  • the seal retention time is equal to the retention time of the aliphatic isocyanate-based polyurethane resin having a low hardness and the hardness. It is a time between the high-value aromatic isocyanate-based polyurethane resin and the sealing maintenance time.
  • the term “sealing maintenance time” as used herein refers to the time when the eyepiece portion where the pores are eyebroken with the eyestopping agent cannot withstand the pressure applied to the eyelet, deforms or collapses, and the eyelet is released. It means the time. The reason why it cannot withstand the pressure includes, for example, that the strength and molecular weight with time of the resin composition contained in the filler are lowered by hydrolysis or thermal decomposition.
  • the sealant it is possible to adjust the seal keeping time by changing the mixing ratio of the aliphatic isocyanate polyurethane resin and the aromatic isocyanate polyurethane resin. That is, it is possible to adjust the eye keeping time suitable for the situation when drilling a well.
  • the weight ratio of the prepolymer including a structure derived from aliphatic isocyanate to the prepolymer including a structure derived from aromatic isocyanate is 80: Less than 80:20 or less prepolymer containing a structure derived from an aliphatic isocyanate, and mixed so that more prepolymer containing a structure derived from an aliphatic isocyanate than 0: 100.
  • the durometer type D hardness of the resin composition may be adjusted by proceeding with crosslinking with an agent (millable gum mold forming method or cast mold forming method).
  • An aromatic isocyanate-based polyurethane resin is a polyurethane resin having a structure derived from an isocyanate having an aromatic ring. That is, in this specification, the “aromatic isocyanate-based polyurethane resin” is defined by the fact that the isocyanate for producing the polyurethane resin is “aromatic isocyanate”. That is, the “aromatic isocyanate-based polyurethane resin” is not defined by whether or not a skeleton such as a polyester skeleton constituting the main chain of the polyurethane resin has an “aromatic” hydrocarbon skeleton.
  • the aromatic isocyanate-based polyurethane resin is a polyurethane resin produced using an aromatic isocyanate, and typically an aromatic diisocyanate is exemplified as the aromatic isocyanate.
  • the aromatic diisocyanate include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), and naphthalene diisocyanate (NDI).
  • aromatic diisocyanate and the isocyanurate compound (trimer) of these aromatic diisocyanates may be used together in the aromatic isocyanate polyurethane resin.
  • the aromatic isocyanate is more preferably diphenylmethane diisocyanate (MDI).
  • MDI diphenylmethane diisocyanate
  • an aromatic isocyanate polyurethane resin produced using diphenylmethane diisocyanate (MDI) may be referred to as diphenylmethane diisocyanate polyurethane resin (MDI polyurethane resin).
  • Examples of the skeleton constituting the main chain of the aromatic isocyanate-based polyurethane resin include a polyether skeleton, a polyester skeleton, a polyether ester skeleton, and a poly (meth) acrylate skeleton, and these skeletons are aromatic isocyanate-based polyurethanes. It may coexist as the main chain of the resin.
  • the skeleton constituting the main chain of the aromatic isocyanate-based polyurethane resin is either or both of a polyester skeleton and a polyether ester skeleton. Is preferred.
  • a polyol containing a polyester skeleton or a polyether ester skeleton is called a polyester polyol and contains at least a polyester skeleton.
  • a polyurethane resin is obtained.
  • the polyester skeleton is not limited, but is formed by ring-opening polymerization of glycolide, ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, and the like.
  • Skeletons dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid, and ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
  • dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and phthalic acid
  • ethylene glycol propylene glycol
  • 1,3-propanediol 1,4-butanediol
  • 1,6- It may be a skeleton formed by condensation with a diol such as hexanediol, or a skeleton formed by combining these.
  • the polyether ester skeleton can be a copolymer of a polyether constituent unit having 1 to 6 carbon atoms in the repeating unit and a polyester constituent unit having 2 to 20 carbon atoms in the repeating unit.
  • examples of the polyether constituent unit include polyacetal, polyethylene glycol, and polytetramethylene glycol
  • examples of the polyester constituent unit include the above-described polyester skeleton.
  • the skeleton such as the polyether skeleton, the polyester skeleton, the polyether ester skeleton, and the poly (meth) acrylate skeleton functions as a soft segment that provides flexibility to the aromatic isocyanate polyurethane resin.
  • the structure derived from aromatic isocyanate functions as a hard segment, the more the structure derived from aromatic isocyanate is included, the more durometer type D hardness of the aromatic isocyanate polyurethane resin at 23 ° C. Shows a tendency to increase.
  • the aromatic isocyanate-based polyurethane resin contains many structures derived from aromatic isocyanate, and if the durometer type D hardness at 23 ° C. is 28 or more, it can be used for melt blending without performing crosslinking with a crosslinking agent. It can be suitably used as an aromatic isocyanate polyurethane resin.
  • the aromatic isocyanate polyurethane resin having a durometer type D hardness lower than 28 at 23 ° C. may be adjusted in hardness by forming a crosslinked structure with a crosslinking agent or the like as will be described later (thermoplastic molding process). Law).
  • the weight average molecular weight of the aromatic isocyanate-based polyurethane resin is preferably 5,000 or more and 100,000 or less, more preferably 10,000 or more and 70,000 or less, 15,000 or more, Most preferably, it is 50,000 or less.
  • a filler having an appropriate hydrolyzability can be obtained.
  • aromatic isocyanate-based polyurethane resin typically, those represented by the following chemical formula (I) are preferable.
  • n 1 is an integer of 5 to 40.
  • Examples of the product of the MDI polyurethane resin represented by the chemical formula (I) include Pandex (registered trademark) T-5070 manufactured by DIC Covestro Polymer Co., Ltd.
  • an isocyanate-terminated, hydroxyl-terminated or carboxyl-terminated prepolymer capable of forming these aromatic isocyanate-based polyurethane resins can be suitably used to obtain a thermosetting polyurethane resin.
  • the aliphatic isocyanate-based polyurethane resin is a polyurethane resin having a structure derived from an acyclic or cyclic aliphatic isocyanate. That is, in this specification, “aliphatic isocyanate-based polyurethane resin” is defined by the fact that the isocyanate for producing the polyurethane resin is “aliphatic isocyanate”. That is, the “aliphatic isocyanate-based polyurethane resin” is not defined by whether or not a skeleton such as a polyester skeleton constituting the main chain of the polyurethane resin has an “aliphatic” hydrocarbon skeleton.
  • the aliphatic isocyanate-based polyurethane resin is a polyurethane resin produced using an aliphatic isocyanate, and the aliphatic isocyanate typically includes an aliphatic diisocyanate.
  • the aliphatic diisocyanate include hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), norbornane diisocyanate (NBDI), hydrogenated xylylene diisocyanate (H6XDI), and dicyclohexylmethane diisocyanate.
  • aliphatic diisocyanate and an isocyanurate compound (trimer) of these aliphatic diisocyanates may be used in combination with the aliphatic isocyanate-based polyurethane resin.
  • the aliphatic isocyanate is more preferably hexamethylene diisocyanate (HDI).
  • generated using hexamethylene diisocyanate (HDI) may be called a hexamethylene diisocyanate type polyurethane resin (HDI type polyurethane resin).
  • the skeleton constituting the main chain of the aliphatic isocyanate-based polyurethane resin is the same as the skeleton constituting the main chain of the aromatic isocyanate-based polyurethane resin, the polyether skeleton, the polyester skeleton, the polyether ester skeleton, and the poly (meth) acrylate skeleton. The detailed description is omitted.
  • an aliphatic isocyanate type polyurethane resin can be selected as a polyurethane resin with low hardness compared with an aromatic isocyanate type polyurethane resin.
  • the weight average molecular weight of the aliphatic isocyanate polyurethane resin is preferably 10,000 or more and 250,000 or less, more preferably 50,000 or more and 200,000 or less, 100,000 or more, Most preferably, it is 150,000 or less.
  • a filler having an appropriate hydrolyzability can be obtained.
  • the aliphatic isocyanate-based polyurethane resin is typically preferably represented by the following chemical formula (II).
  • n 2 is an integer of 20 to 130.
  • Examples of the aliphatic isocyanate-based polyurethane resin include Pandex (registered trademark) T-R3080 manufactured by DIC Covestro Polymer Co., Ltd.
  • the isocyanate-terminated, hydroxyl-terminated or carboxyl-terminated prepolymer that can form these aliphatic isocyanate-based polyurethane resins can be suitably used to obtain a thermosetting polyurethane resin.
  • the sealant adjusts the durometer type D hardness at 23 ° C. of the resin composition by blending a cross-linking agent with the resin composition.
  • the crosslinking agent is preferably at least one crosslinking agent selected from the group consisting of a polyfunctional isocyanate compound, a monomer having an ethylenically unsaturated group, a polyvalent amine, a polyhydric alcohol, and a polyfunctional epoxy compound.
  • a network-like crosslinked structure can be formed in a polyurethane resin by a combination of these. For this reason, the hardness of a resin composition can be prepared suitably.
  • a crosslinking agent may be added to an aliphatic isocyanate type polyurethane resin and an aromatic isocyanate type polyurethane resin (thermoplastic molding method), and in addition to the prepolymer for forming these polyurethane resins. Also good (millable gum mold processing and cast mold processing).
  • the resin composition may contain a polyfunctional isocyanate compound as a crosslinking agent.
  • the polyfunctional isocyanate compound is a functional group having active hydrogen present at the terminal or main chain of the polyurethane resin when one or both of an aliphatic isocyanate polyurethane resin and an aromatic isocyanate polyurethane resin is melt-kneaded. Crosslink to the base (thermoplastic molding process).
  • polyfunctional isocyanate compound examples include the above-mentioned aliphatic diisocyanates and aromatic diisocyanates, and isocyanurates formed from these aliphatic diisocyanates or aromatic diisocyanates.
  • the polyfunctional isocyanate compound has an allophanate bond with a urethane bond in which an isocyanate group is present in the main chain of the polyurethane resin, as shown in the following general formula (III).
  • the polyfunctional isocyanate can form a ureat bond with the urea bond.
  • the polyfunctional isocyanate compound also crosslinks the main chain of one polyurethane resin and the main chain of another polyurethane resin via the polyfunctional isocyanate compound by such a burette bond.
  • the weight ratio of the aliphatic isocyanate polyurethane resin before addition to the crosslinking agent is in the range of 99.8: 0.2 to 50:50.
  • the hardness of the crosslinked aliphatic isocyanate polyurethane resin can be further increased. Therefore, it is possible to obtain a sealant capable of temporarily closing the pores more suitably in a high temperature environment.
  • a crosslinking agent is added to the prepolymer of the aliphatic isocyanate polyurethane resin, the weight ratio between the prepolymer and the crosslinking agent is in the range of 99.8: 0.2 to 50:50. It is preferable to add a cross-linking agent to (millable gum mold forming method). That is, the preferable range of the weight ratio between the prepolymer and the crosslinking agent is in accordance with the preferable range of the weight ratio between the aliphatic isocyanate polyurethane resin and the crosslinking agent.
  • the weight ratio of the aromatic isocyanate polyurethane resin before addition to the crosslinking agent is more than 100: 0, and the weight ratio is 50:50. It is preferable that the crosslinking agent is added so that the crosslinking agent is less than 50:50. It is preferable to add so that the weight ratio of the aromatic isocyanate polyurethane resin and the crosslinking agent is in the range of 99.7: 0.3 to 60:40, and 99.6: 0.4 to 70:30. It is more preferable to add so that it may become this range.
  • the hardness of the cross-linked aromatic isocyanate-based polyurethane resin becomes higher, and the pores can be more appropriately temporarily spotted at a high temperature.
  • the weight ratio of the prepolymer to the crosslinking agent is more than 100: 0 and is 50:50?
  • the cross-linking agent is preferably added so that the cross-linking agent is less than 50:50 (millable gum mold forming method). That is, the preferable range of the weight ratio between the prepolymer and the crosslinking agent conforms to the preferable range of the weight ratio between the aromatic isocyanate polyurethane resin and the crosslinking agent.
  • polyfunctional isocyanate compounds may be present in the filler in an unreacted state.
  • a monomer having an ethylenically unsaturated group can be used.
  • Examples of monomers having an ethylenically unsaturated group include triallyl isocyanurate (TAIC), ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipentaerythritol tris. (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. are mentioned.
  • TAIC triallyl isocyanurate
  • Method dipentaerythritol hexa (meth) acrylate, etc.
  • Such a cross-linking agent having an ethylenically unsaturated group can be cross-linked by, for example, using in combination with
  • the resin composition is pulverized and irradiated with an electron beam. Adjust the hardness of the object.
  • the crosslinking agent having an ethylenically unsaturated group contained in the resin composition can also be crosslinked with the main chain of the polyurethane resin while polymerizing each other.
  • the electron beam irradiation dose is, for example, preferably 5 kGy or more and 150 kGy or less, more preferably 10 kGy or more and 120 kGy or less, and further preferably 20 kGy or more and 100 kGy or less.
  • polyhydric amine and polyhydric alcohol As the crosslinking agent, for example, polyhydric amine or polyhydric alcohol can be used.
  • the polyvalent amine or polyhydric alcohol crosslinks by reacting with the isocyanate group remaining at the end of the polyurethane during melt-kneading with the polyurethane resin.
  • a cross-linked structure is formed via a newly formed amide bond or ester bond by causing an ester exchange reaction with an ester group present in the main chain. can do.
  • the hardness of the polyurethane resin is suitably prepared by using a polyvalent amine or polyhydric alcohol and the above-mentioned polyfunctional isocyanate compound in combination. can do.
  • the polyvalent amine and the polyhydric alcohol are also crosslinking agents that crosslink the isocyanate group-terminated prepolymer (cast mold forming method).
  • polyvalent amine examples include 3,3'-dichlorobenzidine, 4,4'-methylenebis-2-chloroaniline, and trimethylenebis (4-aminobenzoate).
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, and 2, Alkylene glycols such as 2,4-trimethyl-1,3-pentanediol, diethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polyoxyalkylene glycols such as polytetramethylene glycol, and bisphenols such as bisphenol A Etc. can be used.
  • trimethylolethane, trimethylolpropane, glycerin, pentaerythritol and the like can be used in combination as trivalent or higher alcohols.
  • Polyfunctional epoxy compound A polyfunctional epoxy compound can be used for a crosslinking agent, for example.
  • the polyfunctional epoxy compound crosslinks by reacting with the hydroxyl group remaining at the end of the polyurethane during melt kneading with the polyurethane resin.
  • a crosslinked structure can be formed by reacting with a carboxyl group present at the terminal.
  • polyfunctional epoxy compound examples include tris (2,3-epoxypropyl) isocyanurate and poly (glycidyl methacrylate).
  • the hardness of the polyurethane resin can be adjusted by further crosslinking the polyurethane resin to which the cross-linking agent has been added rather than the heat treatment.
  • the polyurethane resin to which the crosslinking agent is added can be carried out by holding at a predetermined temperature for a predetermined time.
  • the atmosphere during the heat treatment may be performed in air or in an inert gas such as nitrogen, or under reduced pressure, as necessary.
  • the hardness of the resin composition may be adjusted by irradiating the melt-extruded resin composition with an electron beam to cut or crosslink the main chain of the polyurethane resin.
  • the resin composition may or may not contain a crosslinking agent.
  • the electron beam irradiation dose is, for example, preferably 5 kGy or more and 150 kGy or less, more preferably 10 kGy or more and 120 kGy or less, and further preferably 20 kGy or more and 100 kGy or less.
  • the value of the electron beam irradiation dose is too small, the hardness of the polyurethane resin is not sufficiently high, and when the value of the irradiation dose is too large, the main chain of the polyurethane resin is cut more than necessary. Hardness decreases.
  • the irradiation dose of the electron beam is in the above-described preferable range, a sealing material capable of suitably temporarily closing the pores is obtained.
  • the sealant according to the present embodiment can further contain various compounding agents that are usually added in the sealant as long as the purpose of the present embodiment is not impaired.
  • various additives such as a decomposition accelerator, a filler, an antioxidant, and a decomposition inhibitor. These various additives can be used alone or in combination of two or more.
  • the resin composition may contain a decomposition accelerator.
  • a decomposition accelerator accelerates
  • examples of the decomposition accelerator include lactones such as glycolide and lactide, acid anhydrides such as 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), diethyl oxalate, and the like.
  • lactones such as glycolide and lactide
  • acid anhydrides such as 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), diethyl oxalate, and the like.
  • the content of the decomposition accelerator in the resin composition is, for example, preferably 0.1% by weight to 20% by weight, more preferably 0.3% by weight to 15% by weight, and more preferably 0.5% by weight to 10% by weight. % Or less is more preferable. According to the preferable range described above, the decomposition promoting effect is sufficient because the content of the decomposition accelerator is not too small. Moreover, since there is not too much content, initial hardness does not fall and sufficient eye keeping time can be obtained.
  • the resin composition for example, the aromatic isocyanate-based polyurethane resin has a tendency to decrease in hardness as compared with the case where the plasticizer is not contained by containing the plasticizer, and therefore, instead of the decomposition accelerator.
  • the durometer type D hardness may be adjusted by blending a plasticizer and changing its content.
  • the plasticizer include phthalic acid esters and adipic acid esters.
  • phthalic acid esters include dioctyl phthalate, diisononyl phthalate, and bis (2-butoxyethyl) phthalate.
  • adipic acid esters include dioctyl adipate, diisononyl adipate, and adipic acid.
  • plasticizers include known plasticizers, such as phosphate ester plasticizers, sulfonate ester plasticizers, and trimellitic acid plasticizers. You may adjust the durometer type D hardness of this resin composition by mix
  • the resin composition may contain a filler in a blending amount that does not depart from the scope of the present invention.
  • the filler include organic or inorganic fibrous reinforcing materials and granular or powder reinforcing materials, and these can be used alone or in combination of two or more.
  • fibrous reinforcing material examples include glass fibers, carbon fibers, asbestos fibers, silica fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, and potassium titanate fibers, and the like, stainless steel And metal fiber materials such as aluminum, titanium, copper and brass, and high melting point organic fiber materials such as aramid fiber, kenaf fiber, polyamide, fluororesin, polyester resin and acrylic resin.
  • Granular or powdery reinforcing materials include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, clay, glass powder, zinc oxide, nickel carbonate, iron oxide, quartz powder, magnesium carbonate And barium sulfate, and the like, but preferably a degradable reinforcing material that does not affect the production hindrance is more preferable.
  • the filler may be treated with a bundling material or a surface treatment agent as necessary.
  • the filler When the filler is added to the resin composition, the filler is preferably added so that the content of the filler in the resin composition is 2% by weight or more and 30% by weight or less. More preferably, the addition is more preferably 4 wt% or more and 20 wt% or less. In the above-mentioned preferable range, the content of the filler is not too small, so the hardness of the polyurethane resin becomes sufficiently high. Moreover, since there is not too much content of a filler, even if filler remains after decomposition
  • the filler according to the present embodiment includes a powder formed from the first resin composition (first powder) and a powder formed from the second resin composition (first 2 powder), and each resin composition for forming these powders has a different polyurethane resin composition.
  • first resin composition a resin composition for forming a powder contained in the sealant according to the first embodiment is used.
  • the durometer type D hardness at 23 ° C. of the sheet-like molded body molded from the second resin composition is higher than the durometer type D hardness at 23 ° C. of the sheet-shaped molded body molded from the first resin composition. Low.
  • the sealant according to the present embodiment is a powdered sealant that does not melt and knead the first resin composition and the second resin composition having different hardnesses.
  • the sealant according to the present embodiment adjusts the decomposition rate as a sealant by including a plurality of resin compositions having different decomposition rates, thereby adjusting the seal maintenance time.
  • the powder When a powder formed from a mixture of two different powders with different decomposition rates is used as a filler, the powder has a high decomposition rate due to a decrease in mechanical strength or a smaller particle size associated with the decomposition of the powder.
  • the voids are recovered by passing through the gaps between the powders having a slow decomposition rate, and the eye closure is eventually released.
  • the eye maintenance time can be suitably controlled. For example, even in a high temperature environment of 100 ° C. or more and 200 ° C. or less, pores having a width of 1 ⁇ m or more and 800 ⁇ m or less, more preferably pores having a width of 10 ⁇ m or more and 500 ⁇ m or less can be temporarily spotted.
  • the seal part where the pores are sealed with the sealant is at a pressure applied to the seal.
  • the time (sealing maintenance time) until it is unbearable, deforms or collapses and the eyelet is released is within a range of, for example, 1 hour to 960 hours (40 days) at 100 ° C to 200 ° C. be able to. Thereby, it is possible to release the seal before various operations are completed while securing various work times to be performed inside and outside the well during the seal.
  • the weight ratio of the first powder formed from the first resin composition and the second powder formed from the second resin composition is preferably in the range of 40:60 to 99: 1. Thereby, it is possible to obtain a sealant that can be temporarily stopped until various operations are completed in a high temperature environment.
  • the first powder and the second powder each have a median diameter (50% D) of preferably 50 ⁇ m or more and 800 ⁇ m or less, more preferably 100 ⁇ m or more and 750 ⁇ m or less, and more preferably 300 ⁇ m or more and 700 ⁇ m or less. More preferably.
  • the resin composition or the like having a reduced strength is more difficult to leak from the sealing portion, and the pores can be temporarily temporarily blocked at a high temperature.
  • the one where the median diameter difference of 1st powder and 2nd powder is smaller is more preferable.
  • the first resin composition is a resin composition for forming the first powder, and the hardness (durometer type D hardness at 23 ° C.) of the sheet-like molded body formed from the resin composition is 28 or more (more (Preferably 29 or more).
  • the durometer type D hardness at 23 ° C. is preferably 28 or more and 80 or less, and more preferably 29 or more and 75 or less. Thereby, a powder having a relatively low decomposition rate can be suitably obtained.
  • the first resin composition is a resin composition similar to the resin composition for forming the powder contained in the sealant according to the first embodiment, and more preferably, the durometer type D hardness at 23 ° C. 28 or more and 80 or less, and the thermoplastic polyurethane resin is more preferably an aromatic isocyanate-based polyurethane resin.
  • the first resin composition is preferably composed of an aromatic isocyanate-based polyurethane resin, but when an aliphatic isocyanate-based polyurethane resin is included, the weight ratio of the aliphatic isocyanate-based polyurethane resin to the aromatic isocyanate-based polyurethane resin is The weight ratio is 80:20, or the weight ratio of the aliphatic isocyanate polyurethane resin is less than 80:20, and the aliphatic isocyanate polyurethane resin is greater than 0: 100, and the weight of the aliphatic isocyanate polyurethane resin.
  • the ratio is preferably smaller than the weight ratio of the aliphatic isocyanate polyurethane resin contained in the second resin composition.
  • the hardness of the first resin composition may be adjusted with a cross-linking agent in the same manner as the resin composition in the sealant according to the first embodiment.
  • the first resin composition may contain other compounding agents exemplified by the decomposition accelerator as used in the sealant according to the first embodiment.
  • the second resin composition is a resin composition for forming a powder having a relatively high decomposition rate than the powder formed from the first resin composition.
  • the sheet-like molded body formed from the second resin composition has a durometer type D hardness at 23 ° C. lower than that of the sheet-shaped molded body formed from the first resin composition.
  • the composition of the polyurethane resin contained in the second resin composition is not limited. However, a resin composition made of an aliphatic isocyanate polyurethane resin that is thermoplastic is more preferable.
  • the durometer type D hardness at 23 ° C. of the sheet-like molded body formed from the second resin composition may be smaller than 29, or even smaller than 28, and the durometer type D hardness at 23 ° C. May be 28 or more (more preferably 29 or more), but the durometer type D hardness at 23 ° C. is more preferably 20 or more and 65 or less.
  • the second resin composition is preferably composed of an aliphatic isocyanate-based polyurethane resin, or when it contains an aromatic isocyanate-based polyurethane resin, the weight ratio of the aliphatic isocyanate-based polyurethane resin to the aromatic isocyanate-based polyurethane resin. Is preferably in the range of 20:80 to 100: 0, and the weight ratio of the aliphatic isocyanate polyurethane resin is preferably larger than the weight ratio of the aliphatic isocyanate polyurethane resin contained in the first resin composition.
  • the 2nd resin composition whose durometer type D hardness in 23 degreeC is 20 or more and 65 or less can be obtained, and the 2nd powder whose decomposition rate is comparatively faster than the 1st powder is obtained suitably. Can do.
  • the hardness of the second resin composition may be adjusted with a cross-linking agent in the same manner as the resin composition in the sealant according to the first embodiment.
  • the second resin composition may contain other compounding agents exemplified by the decomposition accelerator as used in the sealant according to the first embodiment.
  • the durometer type D hardness of the first resin composition and the second resin composition may be measured using a molded body formed using these resin compositions.
  • the hardness of the first resin composition and the second resin composition is measured according to ISO7619 / JIS K 6253, as in the durometer type D hardness measurement method described in the sealant according to the first embodiment. be able to.
  • the well fluid according to the present embodiment includes the above-described sealant (the first embodiment and the second embodiment).
  • Well fluid is generally sometimes referred to as finishing fluid.
  • the sealant according to the present embodiment has higher dispersibility in water and higher wettability than a starch derivative that is one of the dehydration reducing agents contained in the well fluid.
  • the high dispersibility of the sealant in the well fluid is effective for efficiently sealing the pores, and a tool for injecting the well fluid into the well (for example, a drill and its peripheral members) ) Contributes to prevention of clogging caused by the sealant.
  • the sealant which concerns on this embodiment can be conveniently used especially as a sealant mix
  • the well fluid according to the present embodiment is the type and physical properties of the resin composition contained in the sealant depending on the environment in the wellbore that uses the well fluid, particularly the temperature or pressure of the high temperature environment.
  • the composition including additives and the like, shape, size, and the like can be appropriately selected and combined. Therefore, the sealant according to the present embodiment may use different materials or combinations of materials.
  • the content of the above-mentioned filler in the well fluid according to this embodiment is not particularly limited, and is usually 1% by weight to 15% by weight, and preferably 3% by weight to 10% by weight.
  • the well fluid according to the present embodiment can contain various compounding agents that are usually added in the well fluid, in addition to the above-described sealant, in a range that does not impair the purpose of the present embodiment.
  • inorganic weighting agents such as barite (BaSO 4 ) and calcium carbonate, alkali metal halides such as NaCl, KCl and CaCl 2 or alkaline earth metal halides (salts), clay swelling inhibitors, or solid-free specific gravity Conditioning agents, organic colloids such as guar gum and carboxymethylcellulose (CMC), inorganic colloids (clays, etc.), dispersed anti-powdering agents, surfactants, pH regulators, other anti-mudging agents, conversion agents, antifoaming An agent, a lubricant, an antiseptic, a bactericidal agent, an anticorrosive, and the like can be mentioned, and can be contained at a concentration according to the environment in the wellbore where the well fluid is used.
  • the well excavation method according to the present embodiment performs temporary sealing using the above-described sealing agent (first and second embodiments).
  • the above-mentioned sealant is used as a well such as a shale layer for producing well bore excavation in a reservoir section using a drill, shale gas / oil, or the like. Can be used in well drilling.
  • the sealant fluid containing the sealant according to the present embodiment prior to flowing the sealant fluid containing the sealant according to the present embodiment into another well fluid, It may be allowed to flow into the well.
  • the type, physical properties, composition, shape, and size of the resin composition contained in the sealant are determined. It can select suitably and can combine.
  • the sealant which concerns on one Embodiment (1st Embodiment) of this invention is a sealant which seals a well wall, Comprising:
  • the said sealant is powder of the resin composition containing a polyurethane resin.
  • the polyurethane resin is at least one of an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin, and a sheet-like molded body formed from the resin composition has a durometer type D hardness at 23 ° C. Is 28 or more.
  • the sealant which concerns on one Embodiment (2nd Embodiment) of this invention is the said resin composition in the said aspect 1,
  • the 1st resin composition Furthermore, this 1st resin composition mutually A durometer type D hardness at 23 ° C. of a sheet-like molded article containing a powder formed from a second resin composition containing a polyurethane resin having a different composition, and formed from the second resin composition is It may be lower than the durometer type D hardness at 23 ° C. of the sheet-like molded body molded from the composition.
  • the said polyurethane resin contained in the said 1st resin composition consists of an aromatic isocyanate type polyurethane resin
  • the said 2nd resin composition The polyurethane resin contained in is preferably composed of an aliphatic isocyanate-based polyurethane resin.
  • the filler according to one embodiment (second embodiment) of the present invention is a weight of the powder formed from the first resin composition and the powder formed from the second resin composition.
  • the ratio is preferably in the range of 40:60 to 99: 1.
  • the said resin composition contains both the said aliphatic isocyanate type polyurethane resin and the said aromatic isocyanate type polyurethane resin. May be.
  • the weight ratio of the aliphatic isocyanate polyurethane resin to the aromatic isocyanate polyurethane resin is 80:20.
  • the amount of the aliphatic isocyanate polyurethane resin is less than 80:20 and the amount of the aliphatic isocyanate polyurethane resin is more than 0: 100.
  • the aliphatic isocyanate constituting the aliphatic isocyanate polyurethane resin is hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate. And at least one aliphatic isocyanate selected from the group consisting of hydrogenated xylylene diisocyanate and dicyclohexylmethane diisocyanate.
  • the aromatic isocyanate constituting the aromatic isocyanate-based polyurethane resin is diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diene. It is preferably at least one aromatic isocyanate selected from the group consisting of isocyanate and naphthalene diisocyanate.
  • At least one of the aliphatic isocyanate polyurethane resin and the aromatic isocyanate polyurethane resin is at least a polyester skeleton. It is preferable that it contains.
  • the resin composition may further contain a crosslinking agent, or the first resin composition and the above-described one. At least one of the second resin compositions may further contain a crosslinking agent.
  • the polyurethane resin contained in the resin composition is composed of an aliphatic isocyanate-based polyurethane resin, and the resin composition further includes: A crosslinking agent is included, and the weight ratio of the aliphatic isocyanate polyurethane resin to the crosslinking agent may be in the range of 99.8: 0.2 to 50:50.
  • the polyurethane resin contained in the resin composition is composed of the aromatic isocyanate polyurethane resin, and the resin composition includes: Further, a crosslinking agent is included, and the weight ratio of the aromatic isocyanate-based polyurethane resin and the crosslinking agent is more crosslinking agent than 100: 0, 50:50, or less crosslinking agent than 50:50. May be.
  • the crosslinking agent includes a polyfunctional isocyanate compound, a monomer having an ethylenically unsaturated group, a polyvalent amine, a polyhydric alcohol. And at least one crosslinking agent selected from the group consisting of polyfunctional epoxy compounds.
  • the well fluid according to one embodiment of the present invention is characterized in that it contains a sealant according to one embodiment (first and second embodiments) of the present invention.
  • the well excavation method which concerns on one Embodiment of this invention is characterized by performing temporary sealing using the sealant which concerns on one Embodiment (1st and 2nd Embodiment) of this invention. .
  • sealants were prepared under the following conditions.
  • Example 1 [Manufacture of sealants for evaluation] (Manufacture of hardness evaluation samples and seal evaluation samples)
  • an HDI polyurethane resin 1800 g of Pandex (registered trademark) T-R3080 manufactured by DIC Covestro Polymer Co., Ltd. having a durometer type D hardness of 28 at 23 ° C. was weighed and put into a polyethylene bag. Further, 200 g of HDI was weighed as a cross-linking agent and charged into the polyethylene bag. That is, the crosslinking agent was added so that the content with respect to the HDI polyurethane resin after the addition of the crosslinking agent was 10% by weight.
  • the polyethylene bag was hand-shaked to stir the HDI polyurethane resin and the cross-linking agent in the polyethylene bag for 3 minutes to obtain a mixture (blend). After obtaining the blend, the blend was mixed for 5 minutes at a temperature of 230 ° C. and melt extruded from a die using the following kneading extruder.
  • a sample for hardness evaluation was also produced. Specifically, the process from the die to the melt extrusion was performed in the same manner as the sample for evaluation of sealing, and after the melt extrusion, a hot press molding was performed to form a sheet having a thickness of 3 mm. Thereafter, heat treatment was performed at 120 ° C. for 2 hours in a nitrogen atmosphere to obtain a sample for hardness evaluation.
  • the sample for evaluation used for the measurement of durometer type D hardness was a sample in which durometer type D hardness was sufficiently stable. Specifically, a sample in which the durometer type D hardness after heat-treating the sample for evaluation for 2 hours under a nitrogen atmosphere at 120 ° C. does not change by 10% or more compared to the durometer type D hardness before the heat treatment is used. It was.
  • the durometer type D hardness changes by 10% or more before and after the heat treatment, the heat treatment and measurement are repeated, and the durometer D hardness when the change in the durometer D hardness before and after the heat treatment is less than 10% is the durometer D of the sample for evaluation. Hardness.
  • the durometer type D hardness at 23 ° C. of the hardness evaluation sample after electron beam irradiation was 39.
  • the pellet after electron beam irradiation was pulverized by a freeze pulverization method using liquid nitrogen immersion using a pulverizer shown below. In this way, a powdery evaluation sealant was produced. Specifically, the pellet was cooled by being immersed in liquid nitrogen for 5 minutes, and the cooled sample was charged into a pulverizer at 125 g / min and pulverized. In addition, liquid nitrogen was also charged at the same time when the sample was charged into the pulverizer. Thereby, the sealing agent for evaluation of Example 1 was obtained.
  • evaluation fluid (hereinafter also referred to as evaluation mud)]
  • evaluation filler and each component of Table 1 below were mixed at a weight ratio shown in Table 1 to prepare an evaluation mud.
  • the sodium chloride in the 10 weight% sodium chloride aqueous solution in Table 1 is a pure chemical company make.
  • the AMPS polymer is Driscal (registered trademark) -D manufactured by Ternite Co., Ltd. Lignin is available from Halliburton Energy Services, Inc. This is DURENEX (registered trademark) PLUS.
  • the oxygen scavenger is Ternite (registered trademark) OS-5 manufactured by Ternite Co., Ltd.
  • the sealing evaluation was performed by a sealing test using a plug tester (Flitter Press HPHT 500ML manufactured by Fann Instrument Company) including the filter disk (highly permeable layer) shown in FIG.
  • a ceramic filter disc 50 Part No. 210540 manufactured by Fann Instrument Company was used as a ceramic filter having a pore size of 50 ⁇ m.
  • FIG. 1 is a diagram schematically showing a plug testing machine used for a sealing test using an evaluation mud.
  • the upper container containing the muddy water for evaluation was heated to 120 ° C. and held. After the temperature rise, a pressure of 600 psi was applied to the plug tester from the top. As a result, the difference between the pressure from the top and the pressure from the bottom was 500 psi, and the pressure of 500 psi was applied to the filter disk from the top.
  • the sealing valve was started while the lower valve of the lower container (back pressure tank) was opened and the temperature and pressure were maintained.
  • the filter has a pore of 50 ⁇ m, and water is transmitted from the upper container through the pore to the lower container. Therefore, the amount of water permeated from the filter every predetermined time was measured. The permeation amount was measured by collecting the permeated water through the lower valve of the lower container in a reserve tank.
  • the permeation recovery point (the point where the temporary sealing was released) was set, and the sealing test was completed.
  • the time until the water permeation recovery point is reached after the start of the eye stop test is set as the eye end maintenance time, and when the eye end maintenance time is 1 hour or more and 960 hours (40 days) or less, the eye end evaluation is " “A”, and otherwise, the evaluation was “B”.
  • the maintenance time at 120 ° C. was 7 hours.
  • Example 2 a hardness evaluation sample and an evaluation sealant were produced in the same manner as in Example 1 except that MDI was used instead of HDI as a crosslinking agent.
  • the durometer type D hardness at 23 ° C. of the sample for hardness evaluation was 34.
  • the evaluation sealant of Example 2 had a median diameter (50% D) of 396 ⁇ m.
  • Example 2 An evaluation mud was prepared from the obtained evaluation sealant in the same manner as in Example 1, and a seal test was conducted in the same manner as in Example 1. As shown in Table 2, the maintenance time at 120 ° C. was 3 hours.
  • Example 3 In Example 3, instead of the HDI polyurethane resin, an MDI polyurethane resin was used, a crosslinking agent was not added, and an electron beam was not irradiated. A sample for stop evaluation was produced.
  • the durometer type D hardness of the durometer type D hardness at 23 ° C. of the sample for hardness evaluation was 60.
  • a sealant for evaluation was prepared in the same manner as in the above-described example. As shown in Table 2, the median diameter (50% D) of the evaluation filler was 334 ⁇ m.
  • an evaluation muddy water is produced from the obtained sealant for evaluation in the same manner as in the above example, and a seal test is performed at 120 ° C., 140 ° C. and 149 ° C. in the same manner as in the above example. It was.
  • the maintenance time at 120 ° C. was more than 2328 hours.
  • the eye-keeping time at 140 ° C. was 65 hours.
  • the eye-keeping time at 149 ° C. was 28 hours.
  • Example 4 A sample for hardness evaluation and a sample for evaluation of sealing were produced in the same manner as in Example 3 except that 10% by weight of MDI was added as a crosslinking agent to the MDI polyurethane resin.
  • the method of adding to the MDI polyurethane resin is the same as in Examples 1 and 2.
  • the durometer type D hardness at 23 ° C. of the hardness evaluation sample was 64.
  • a sealant for evaluation was prepared in the same manner as in the above-described example. As shown in Table 2, the median diameter (50% D) of the evaluation filler was 402 ⁇ m.
  • a muddy water for evaluation was prepared from the obtained sealing agent for evaluation in the same manner as in the above-described example, and the sealing was performed at 120 ° C., 130 ° C., 140 ° C. and 149 ° C. in the same manner as in the above-described example.
  • a test was conducted. As shown in Table 2, the maintenance time at 120 ° C. was longer than 1464 hours. The maintenance time at 130 ° C. was longer than 1224 hours. The eye-keeping time at 140 ° C. was 70 hours. The eye-keeping time at 149 ° C. was 31 hours.
  • Example 5 A hardness evaluation sample and an evaluation sealant were produced in the same manner as in Example 3 except that as a base resin composition, in addition to the HDI polyurethane resin, an MDI polyurethane resin was further included.
  • HDI polyurethane resin 1100 g of the above-mentioned HDI polyurethane resin was weighed and 900 g of MDI polyurethane resin was weighed and put into a polyethylene bag. After the addition, handshaking was performed in the same manner as in the above-described example, and the HDI polyurethane resin and the MDI polyurethane resin were stirred to obtain a blend. Thus, the HDI polyurethane resin and the MDI polyurethane resin were mixed at a weight ratio of 55:45.
  • the blend was melt-extruded (melt kneaded) to produce a hardness evaluation sample and an evaluation sealant (melt blend).
  • the durometer type D hardness at 23 ° C. of the sample for hardness evaluation was 34.
  • the evaluation filler prepared in the same manner as in the above Example had a median diameter (50% D) of 345 ⁇ m.
  • Example 6 Except for mixing the HDI polyurethane resin and the MDI polyurethane resin in a weight ratio of 65:35, the mixture was melt-kneaded in the same manner as in Example 5 to produce a hardness evaluation sample and an evaluation sealant (melt blended product) ).
  • the durometer type D hardness at 23 ° C. of the sample for hardness evaluation was 30.
  • the evaluation filler prepared in the same manner as in the above Example had a median diameter (50% D) of 358 ⁇ m.
  • Example 7 Except for mixing the HDI polyurethane resin and the MDI polyurethane resin in a weight ratio of 70:30, the mixture was melt kneaded in the same manner as in Example 5 to produce a hardness evaluation sample and an evaluation sealant (melt blended product) ).
  • the durometer type D hardness at 23 ° C. of the sample for hardness evaluation was 30.
  • the evaluation filler prepared in the same manner as in the above Example had a median diameter (50% D) of 438 ⁇ m.
  • Example 8> A hardness evaluation sample and an evaluation sealant were produced in the same manner as in Example 1 except that no crosslinking agent was added to the HDI polyurethane resin and no electron beam was irradiated.
  • the durometer type D hardness at 23 ° C. of the sample for hardness evaluation was 28.
  • the evaluation sealant produced in the same manner as in the above example had a median diameter (50% D) of 337 ⁇ m.
  • an evaluation muddy water was produced from the obtained sealing agent for evaluation in the same manner as in the above-described example, and a sealing test was performed at 120 ° C. and 100 ° C. in the same manner as in the above-described example.
  • the eye keeping time at 120 ° C. was 0 hour, but the eye keeping time at 100 ° C. was 24 hours.
  • Example 9 A hardness evaluation sample and an evaluation sealant were prepared by mixing MDI polyurethane resin powder and HDI polyurethane resin powder in a weight ratio of 50:50 (powder blend). In addition, the hardness of the MDI polyurethane resin and the hardness of the HDI polyurethane resin were individually evaluated by individually manufacturing hardness evaluation samples.
  • the durometer type D hardness at 23 ° C. of the sample for evaluating the hardness of the MDI polyurethane resin was 60.
  • the durometer type D hardness at 23 ° C. of the hardness evaluation sample of the HDI polyurethane resin was measured. As shown in Table 2, the durometer type D hardness at 23 ° C. of the sample for evaluating the hardness of the HDI polyurethane resin was 28.
  • Example 9 The manufacture of the sealant for evaluation of Example 9 was performed as follows. A strand was obtained by weighing 2000 g of T-5070, which is an MDI polyurethane resin, kneading for 5 minutes at a temperature of 230 ° C. using the above-mentioned kneading extruder, and melt-extruding it from a die. Pellets were obtained from the obtained strands through the pelletizer described above. Similarly, after obtaining a strand from TR3080, which is an HDI polyurethane resin, the strand was obtained through a pelletizer to obtain a pellet.
  • T-5070 which is an MDI polyurethane resin
  • the pellets of the obtained MDI polyurethane resin and HDI polyurethane resin were separately pulverized into powders by a freeze pulverization method using liquid nitrogen immersion using the above pulverizer.
  • the pellet-like MDI polyurethane resin (or pellet-like HDI polyurethane resin) cooled by immersion in liquid nitrogen for 5 minutes is charged into the pulverizer at 125 g / min.
  • liquid nitrogen is also pulverized. It was thrown into.
  • the median diameter (50% D) of the powders of the obtained MDI polyurethane resin and HDI polyurethane resin was measured using SALD3000 manufactured by Shimadzu Corporation, which is a laser diffraction particle size distribution measuring device. As shown in Table 2, the median diameter (50% D) of the MDI polyurethane resin powder was 334 ⁇ m. The median diameter (50% D) of the powder of HDI polyurethane resin was 337 ⁇ m.
  • Example 9 the eye-keeping time at 120 ° C. of the eye-closing agent for evaluation of Example 9 was 402 hours.
  • Example 10 Instead of mixing the powder of MDI-based polyurethane resin and the powder of HDI-based polyurethane resin at a weight ratio of 50:50, the same as in Example 9, except for mixing at a weight ratio of 95: 5. Obtained (powder blend).
  • Evaluation mud was produced from the obtained evaluation filler by the same method as in Example 9. Moreover, the sealing test was performed in the same manner as in Example 9 except that the sealing test was performed at 140 ° C. instead of 120 ° C. As shown in Table 2, the mesh maintenance time at 140 ° C. was 60 hours.
  • the durometer type D hardness at 23 ° C. of the sample for hardness evaluation was 8.
  • the evaluation filler prepared in the same manner as in the above Example had a median diameter (50% D) of 435 ⁇ m.
  • an evaluation mud was produced from the obtained sealing agent for evaluation in the same manner as in the above-described example, and a sealing test was performed at 100 ° C. in the same manner as in the above-described example.
  • the mesh maintenance time at 100 ° C. was 0 hour.
  • the sealing maintenance time at 120 ° C. was 1 hour or more and 960 hours or less.
  • the filler having a durometer type D hardness of Examples 1 and 2 and 5 to 7 of 29 or more and containing at least one of an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin, It was found that the pores can be suitably temporarily closed at a high temperature of 120 ° C.
  • the sealing maintenance time is 1 hour or more and 960 ° C. or less. was.
  • the durometer type D hardness of Examples 3 and 4 is 29 or more, and the sealant containing the aromatic isocyanate polyurethane resin is suitable for temporarily closing the pores at high temperatures of 140 ° C. and 149 ° C. I understood that I could do it.
  • the sealing maintenance time was 1 hour or more and 960 hours or less at 120 ° C and 140 ° C. .
  • the sealant which is a powder of the resin composition containing the MDI polyurethane resin and the HDI polyurethane resin of Examples 9 and 10 has preferable pores at high temperatures of 120 ° C and 140 ° C. I found out that I could temporarily stop.
  • the filler having a durometer type D hardness of 28 or more and containing at least one of an aliphatic isocyanate-based polyurethane resin and an aromatic isocyanate-based polyurethane resin preferably has fine pores at a high temperature. I knew that I could stop.
  • the present invention can be used as a sealant and a well fluid for temporarily closing pores in a high temperature environment such as a deep well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

高温環境下でも細孔を一時目止めすることができる目止剤等を提供する。目止剤は、ポリウレタン樹脂を含む樹脂組成物の粉体であり、ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つであり、樹脂組成物から成形されたシート状の成形体は、23℃におけるデュロメータタイプD硬度が28以上である。

Description

目止剤及びその利用
 本発明は、坑壁を一時的に目止するための目止剤及びその利用に関する。
 在来型石油坑井から産出される石油及びガス、並びに、近年注目を浴びているシェールガス及びシェールオイル等の炭化水素資源は、一般的には油及びガスを多く含む岩石層に穿孔掘削した井戸(坑井)を通じて生産される。
 坑井の掘削、仕上げ作業には、坑井掘進中のドリル周辺から生じる堀屑を地表へ運搬したり、地下の圧力を調節して坑内の安定を保ち、地層崩壊を抑制したり、坑井内を冷却するために、循環流体(泥水又は仕上げ流体)が使用される。
 ここで、生産層である貯留層が高浸透性地層であったり、シェール層に天然のフラクチャー(亀裂)が存在したりすると、高浸透性地層や坑壁の亀裂を通して流体が流失し、循環泥水量が減少したり、泥水柱圧力が低下したりすることがある。
 その結果、坑井内の不安定化、掘削及び処理作業効率の低下、並びに、貯留層内に残存した流体による貯留層の生産障害を引き起こしてしまう虞があるだけでなく、高機能で高価な流体の流出による掘削コストの増大を招くことがある。そこで、流体の流出を極力抑制するために、分解可能な目止剤を用いて坑壁を一時的に目止めする方法が用いられている。
 目止剤としては、一般的に炭酸カルシウム等が用いられているが、生産に移行する際には、酸処理によって目止剤である炭酸カルシウムを分解させる必要がある。この酸処理を行うための作業時間が必要となるうえ、酸処理が不十分だと目止剤である炭酸カルシウムの残存物等の不溶解性残渣物により資源回収量が低減する虞がある。
 そこで、酸処理に要する作業時間を短縮しつつ酸処理コストを削減し、目止剤が残存することによる資源回収量の低減を防止するために、所定期間が経過すると分解して目止め機能が消失する分解性材料を用いた目止剤が注目されている。
 特許文献1には、温度93℃(200度F)~204℃(400度F)において、40日以下の期間の目止め機能を有する合成樹脂含有の目止剤が記載されている。
 特許文献2及び3には、ポリ乳酸及びポリグリコール酸等の脂肪族ポリエステル樹脂を含む分解性材料を用いた目止剤が記載されている。
国際公開WO2015/072317号 米国特許出願公開第2008/0139417号公報 米国特許出願公開第2008/0070805号公報
 生産が進むにつれて生ずる個々の坑井における石油ガス可採量の減少及び年々増加するエネルギー消費の増大に伴い、石油の開発は容易な場所からより厳しい条件の場所へと移り、気象条件の厳しい極地や海洋の大水深坑井開発領域での高深度坑井掘削等が求められている。特に、坑井の高深度化につれて、坑井の敷設条件が厳しくなり、例えば、地中約3000mを超える高深度では、場所によっては約100℃以上の高温環境となる。そこで、このような高温環境下においても、一時目止めすることができる目止剤が求められている。
 また、フラクチャーには、種々の幅があり、なかでも、フラクチャーの開孔部又は内部における、裂け目の幅が数mm以下、又は、高浸透性地層における数百μm~数μm、特に50μm前後の幅の細孔を一時的に目止めすることができる目止剤が求められている。
 しかしながら、特許文献1~3には、高温環境下でも細孔を適切な時間において一時目止めすることができる目止剤について何ら記載されていない。
 本発明は、上記課題に鑑みられたものであり、その目的は、高温環境下でも、掘削流体の流失を引き起こす細孔を好適に一時目止めすることができる目止剤等を提供することにある。
 上記の課題を解決するために、本発明者が鋭意検討した結果、以下の本発明に達した。
 本発明に係る目止剤は、坑壁を目止めする目止剤であって、上記目止剤は、ポリウレタン樹脂を含む樹脂組成物の粉体であり、上記ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つであり、上記樹脂組成物から成形されたシート状の成形体は、23℃におけるデュロメータタイプD硬度が28以上であることを特徴とする。
 本発明は、高温環境下でも細孔を一時目止めすることができる目止剤等を提供することができるという効果を奏する。
本発明の各実施形態に係る目止剤による目止め試験に用いられるプラグ試験機を概略的に示す図である。
 <目止剤(第1実施形態)>
 本実施形態において、時限分解性目止剤(time degradable-lost circulation materials)とは、一般的には、坑井掘削の諸工程において、高浸透性地層や亀裂層のある坑壁内への流体流失を一時的に目止めする目的で、掘削泥水や仕上げ流体などの循環流体に配合される材料をいう。
 本実施形態に係る目止剤は、23℃におけるデュロメータタイプD硬度が28以上である樹脂組成物から形成される粉体である。ここで、樹脂組成物は、ポリウレタン樹脂を含み、ポリウレタン樹脂は脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つである。なお、後述するように、ポリウレタン樹脂である脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂は架橋剤によって架橋していてもよい。
 このような樹脂組成物から形成した粉体を目止剤として使用することにより、例えば、100℃以上200℃以下の高温環境下でも、幅が1μm~800μm程度の細孔を有する高浸透層を一時目止めすることができる。
 本実施形態に係る目止剤は、23℃におけるデュロメータタイプD硬度が28以上である樹脂組成物から形成されていることにより、目止剤で細孔を目止めした目止め部が、当該目止めにかかる圧力に耐えられず、変形又は崩壊し、目止めが解除されるまでの時間(目止め維持時間)を、100℃以上200℃以下において、例えば、1時間以上960時間(40日間)以下の範囲にすることができる。これにより、目止め中に坑井内外で行う各種作業時間を確保しつつ、各種作業が終了するまでに目止めを解除することができる。
 〔樹脂組成物〕
 樹脂組成物は、目止剤の主たる材料である。樹脂組成物が、ポリウレタン樹脂を含み、かつ23℃におけるデュロメータタイプD硬度が28以上であることから、100℃以上200℃以下の高温環境下において、坑壁を好適に一時目止することができる目止剤を得ることができる。
 樹脂組成物は、硬度(23℃におけるデュロメータタイプD硬度)は28以上であればよい。23℃におけるデュロメータタイプD硬度は、28以上80以下であることが好ましく、28以上75以下であることがより好ましい。ここで、目止剤が柔らかすぎる場合には、目止め部がより崩壊しやすくなり、硬すぎる場合にも、目止剤に含まれる強度が低下した樹脂組成物等が目止め部の隙間から漏れ出しやすくなる。これに対し、23℃におけるデュロメータタイプD硬度が、上述の好ましい範囲であるとき、目止剤は、柔らかすぎず、硬すぎもしないため、高温下において、より好適に細孔を一時目止めすることができる。なお、樹脂組成物における23℃におけるデュロメータタイプD硬度が、29以上80以下であれば、110℃以上、200℃以下の高温環境下において坑壁を好適に一時目止めすることができる。
 樹脂組成物のデュロメータタイプD硬度は、樹脂組成物を用いて形成したシート状の成形体を用いて測定したものである。デュロメータタイプD硬度は、ISO7619/JIS K 6253に準拠して測定することができる。硬度測定用試験片の測定位置は試験片の端から12mm以上内側である。複数の場所の硬度を測定する場合には、測定点の間隔は6mm以上である。また、試験片の厚みは通常6mm以上である。デュロメータタイプD硬度を測定するための樹脂組成物の成形体(試験片)としては、樹脂組成物をシート状に溶融押出したものをISO7619/JIS K 6253に準拠して2枚重ね合わせ厚さを6mmとしたものを用いることができる。樹脂組成物が熱可塑性ポリウレタン樹脂である場合は、成形体は、目止剤を製造するときにポリウレタン樹脂を、公知の混練押出機等で溶融混練することで得られた樹脂組成物の一部をサンプリングして必要に応じ熱プレス等の加工法を用いてシート状に成形して得ることができる。樹脂組成物が熱硬化型ポリウレタン樹脂である場合は、例えば、硬度測定のための試験片製造用の型に硬化前の熱硬化型ポリウレタン樹脂原料を流し込み、脱泡後に所定温度に加温して所定時間保持する。これにより、当該樹脂原料を硬化させ、試験片を得ることができる。また、試験片は試験前に、必要に応じて、成形加工時の機械的歪を除去し、硬度を安定化させるために所定温度で所定時間熱処理してもよい。なお、本明細書において、単に「硬度」と記載されている場合、特に説明がない限り、該「硬度」とは「23℃におけるデュロメータタイプD硬度」のことを意味する。
 目止剤は、ポリウレタン樹脂である脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂等を溶融混練し、得られた樹脂組成物を粉砕することによって粉体状に形成される。なお、樹脂組成物に架橋剤を配合する場合、架橋剤を配合したポリウレタン樹脂を溶融混練するとよい。
 溶融混練時の加熱温度及び時間は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂の融点、及び架橋剤の反応温度を考慮して適宜調整するとよい。目止剤は、溶融混練して得られた樹脂組成物を、適宜公知の方法によって粉体化することで得られる。
 樹脂組成物によって形成される粉体の粒子の形状は、限定されるものではないが、球形状、鱗片状、板状、楕円体状、角柱状、棒状、星形状、多角体状及び繊維状(短繊維)等であってもよく、小孔を有する多孔質状であってもよい。また、これらのうち、形状が異なるものの組み合わせ、及び粒径が異なるものの組み合わせであってもよい。
 溶融混練した樹脂組成物は、一例として、凍結粉砕によって粉体状に粉砕するとよい。これによって、樹脂組成物から形成される粒子のメディアン径が小さな目止剤を得ることができる。
 樹脂組成物によって形成される粉体、つまり目止剤は、メディアン径(50%D)が、50μm以上800μm以下であることが好ましく、100μm以上750μm以下であることがより好ましく、300μm以上700μm以下であることがさらに好ましい。ここで、デュロメータタイプD硬度が低い樹脂組成物を用いて粉体を形成した場合は、当該粉体のメディアン径(50%D)は、上記の範囲内においてより大きいことが好ましい。
 また、デュロメータタイプD硬度が高い樹脂組成物を用いて粉体を形成した場合は、メディアン径(50%D)は上記の範囲内においてより小さいことが好ましい。目止め部から強度が低下した樹脂組成物等がより漏れ出しにくくなり、高温下において細孔をより好適に一時目止めすることができる。
 なお、目止剤を使用する際には、メディアン径が互いに異なる粉体を数種類用意し、これらを混合して使用することが好ましく、ここで、混合する各粉体のメディアン径は上述の範囲内であることがより好ましい。これにより、孔隙をより好適に目止めすることができる目止剤を得ることができる。
 〔ポリウレタン樹脂〕
 目止剤は、ポリウレタン樹脂を樹脂組成物のベース樹脂として用い、23℃におけるデュロメータタイプD硬度が28以上であるように調整された樹脂組成物から形成される。
 ポリウレタン樹脂は、一般的にはウレタン結合の有無によらず、イソシアネート化合物から誘導される高分子化合物を指す。具体的にはウレタン結合、場合によってはウレア結合又はアミド結合等の化学結合から構成される高分子化合物である。ポリウレタン樹脂としては、例えば、熱可塑性ポリウレタン樹脂、及び熱硬化性ポリウレタン樹脂を挙げることができる。
 熱可塑性ポリウレタン樹脂及び熱硬化性ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂、及び芳香族イソシアネート系ポリウレタン樹脂から形成され得る。よって、本明細書において、単に「ポリウレタン樹脂」と記載する場合、当該「ポリウレタン樹脂」には、「熱可塑性ポリウレタン樹脂」及び「熱硬化性ポリウレタン樹脂」、並びに、「脂肪族イソシアネート系ポリウレタン樹脂」、及び「芳香族イソシアネート系ポリウレタン樹脂」の意味を包含する。
 なお、熱可塑性ポリウレタン樹脂は、加熱により繰り返し溶融状態とすることが可能なポリウレタン樹脂であり、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうち、分枝状の構造を有するポリウレタン樹脂であってもよいが、直鎖状の構造を有するポリウレタン樹脂であることがより好ましい。
 また、熱硬化性ポリウレタン樹脂とは、溶融状態のプレポリマーを加熱により硬化させて得られるポリウレタン樹脂である。より具体的には、熱可塑性ポリウレタン樹脂又はポリウレタン樹脂のプレポリマーを架橋剤によって架橋することによって得ることができるポリウレタン樹脂である。なお、熱硬化性ポリウレタン樹脂は、以下の(i)~(iii)のような成形加工法によって得られるものを挙げることができる。
(i)ミラブルガム型成形加工法
 例えば、ポリエステルポリオール等の骨格と、脂肪族イソシアネート又は芳香族イソシアネートに由来する構造とを備えたヒドロキシル基末端プレポリマーを生成し、ロール練りで架橋剤を練り込み、鋳型に入れて加熱し、架橋を進行させることで得られる。
(ii)キャスト型成形加工法
 例えば、ポリエステルポリオール等の骨格と、脂肪族イソシアネート又は芳香族イソシアネートに由来する構造とを備えたイソシアネート基末端プレポリマーを生成し、これに架橋剤を添加した後の液状の混合物を型に注ぎ、末端を鎖延長又は架橋により連結させることで得られる。
(iii)熱可塑型成形加工法
 例えば、熱可塑性ポリウレタン樹脂のペレットを加熱により溶融させ、押出成形又は射出成形を経て得られる。また、溶融の際に必要に応じて架橋剤を添加すれば部分架橋したポリウレタン樹脂が得られる。また、架橋剤を添加した熱可塑性ポリウレタン樹脂を必要に応じ所定温度で所定時間熱処理することにより架橋を進行させることができ、硬度の調整ができる。
 23℃におけるデュロメータタイプD硬度が28以上であれば、樹脂組成物に含まれるポリウレタン樹脂は、芳香族イソシアネート系ポリウレタン樹脂のみ、又は脂肪族イソシアネート系ポリウレタン樹脂のみ、若しくは、芳香族イソシアネート系ポリウレタン樹脂と脂肪族イソシアネート系ポリウレタン樹脂との両方の何れであってもよいが、以下に示すように、ポリウレタン樹脂の硬度を調整することが好ましい。
 〔硬度の調整〕
 樹脂組成物のデュロメータタイプD硬度は、(1)複数のポリウレタン樹脂の併用、(2)架橋剤による架橋、及び架橋剤を添加したポリウレタン樹脂の熱処理(3)電子線照射の少なくとも1つの方法によって調整される。
 (1)複数のポリウレタン樹脂の併用
 一実施形態において、樹脂組成物のデュロメータタイプD硬度は、複数のポリウレタン樹脂を併用することによって調整することができる。併用するポリウレタン樹脂は、硬度が同じ複数の熱可塑性ポリウレタン樹脂であってもよいが、硬度の調節がより容易であることから、硬度が互いに異なる複数の熱可塑性ポリウレタン樹脂であることが好ましい。このように複数の熱可塑性ポリウレタン樹脂を溶融混練することを溶融ブレンドと称することもある。
 複数のポリウレタン樹脂を併用する場合、溶融混練して得られる樹脂組成物の23℃におけるデュロメータタイプD硬度が28以上であれば、例えば、互いに硬度が異なる複数の芳香族イソシアネート系ポリウレタン樹脂を用いてもよく、互いに硬度が異なる複数の脂肪族イソシアネート系ポリウレタン樹脂を用いてもよく、互いに硬度が異なる芳香族イソシアネート系ポリウレタン樹脂と脂肪族イソシアネート系ポリウレタン樹脂とを用いてもよい。
 ここで、脂肪族イソシアネート系ポリウレタン樹脂は、一般的に硬度が低く、分解速度が速い傾向を示し、芳香族イソシアネート系ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂より硬度が高く、分解速度が遅い傾向を示す。よって、一実施形態において、複数のポリウレタン樹脂を併用する場合、限定されるものではないが、より硬度が高い芳香族イソシアネート系ポリウレタン樹脂と、より硬度が低い脂肪族系ポリウレタン樹脂とをブレンドすることがより好ましい。
 このように複数のポリウレタン樹脂を併用する実施形態において、具体的には、溶融ブレンド物である樹脂組成物に含まれる芳香族イソシアネート系ポリウレタン樹脂は、その成形体の硬度(23℃におけるデュロメータタイプD硬度)が28以上(より好ましくは29以上)である芳香族イソシアネート系ポリウレタン樹脂を用いることが好ましく、該芳香族イソシアネート系ポリウレタン樹脂は、23℃におけるデュロメータタイプD硬度が、28以上80以下であることが好ましく、29以上75以下であることがより好ましい。このような芳香族イソシアネート系ポリウレタン樹脂を用いることにより、目止剤の分解速度が比較的遅くなるように、樹脂組成物の硬度を調整することができる。
 また、複数のポリウレタン樹脂を併用する実施形態において、脂肪族イソシアネート系ポリウレタン樹脂は、その成形体の23℃におけるデュロメータタイプD硬度は29よりも小さくてもよく、さらには28よりも小さくてもよい。また、脂肪族イソシアネート系ポリウレタン樹脂は、23℃におけるデュロメータタイプD硬度が、28以上(より好ましくは29以上)であってもよいが、23℃におけるデュロメータタイプD硬度は、20以上65以下であることがより好ましい。
 ここで、芳香族イソシアネート系ポリウレタン樹脂と脂肪族イソシアネート系ポリウレタン樹脂とは、少なくとも一方の樹脂から成形される成形体の23℃におけるデュロメータタイプD硬度が28以上であればよいが、溶融混練に使用される芳香族イソシアネート系ポリウレタン樹脂から成形される成形体と、脂肪族イソシアネート系ポリウレタン樹脂から成形される成形体とは、それぞれ、23℃におけるデュロメータタイプD硬度が28以上であることが好ましい。
 硬度が高い芳香族イソシアネート系ポリウレタン樹脂と、該芳香族イソシアネート系ポリウレタン樹脂よりも硬度が低い脂肪族イソシアネート系ポリウレタン樹脂とを併用する場合、脂肪族イソシアネート系ポリウレタン樹脂と、芳香族イソシアネート系ポリウレタン樹脂との重量比は、80:20であるか、80:20よりも上記脂肪族イソシアネート系ポリウレタン樹脂が少なく、0:100よりも上記脂肪族イソシアネート系ポリウレタン樹脂が多いことが好ましく、75:25~40:60の範囲であることがより好ましく、70:30~55:45の範囲であることがさらに好ましい。これにより、樹脂組成物のデュロメータタイプD硬度が所定の範囲内になるように好適に調整することができる。よって、100℃~200℃という高温環境下において、坑壁を一時的に目止することができる目止剤を好適に製造することができる。本明細書において、特に説明がない限り、「~」はその両端の数値、又は重量比を含む範囲であることを意味している。
 ここで、目止剤が、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂を含んでいる場合、目止め維持時間は、硬度の低い脂肪族イソシアネート系ポリウレタン樹脂の目止め維持時間と、硬度の高い芳香族イソシアネート系ポリウレタン樹脂の目止め維持時間との間の時間となる。なお、ここでいう目止め維持時間とは、目止剤で細孔を目止めした目止め部が、当該目止めにかかる圧力に耐えられず、変形又は崩壊し、目止めが解除されるまでの時間のことをいう。圧力に耐えられなくなる理由としては、例えば、加水分解又は熱分解により、目止剤に含まれる上述の樹脂組成物の経時的な強度及び分子量が低下することが挙げられる。
 したがって、目止剤において、脂肪族イソシアネート系ポリウレタン樹脂と、芳香族イソシアネート系ポリウレタン樹脂との混合割合を変更することによって、目止め維持時間を調整することが可能となる。すなわち、坑井掘削するときの状況に適した目止め維持時間に調整することができる。
 なお、例えば、樹脂組成物として熱硬化性ポリウレタン樹脂を採用する場合、脂肪族イソシアネートに由来する構造を含むプレポリマーと、芳香族イソシアネートに由来する構造を含むプレポリマーとの重量比を、80:20であるか、80:20よりも脂肪族イソシアネートに由来する構造を含むプレポリマーが少なく、0:100よりも脂肪族イソシアネートに由来する構造を含むプレポリマー多くなるように混合し、後述する架橋剤によって架橋を進行させることで、樹脂組成物のデュロメータタイプD硬度を調整してもよい(ミラブルガム型成形加工法又はキャスト型成形加工法)。
 〔芳香族イソシアネート系ポリウレタン樹脂〕
 芳香族イソシアネート系ポリウレタン樹脂は、芳香環を有しているイソシアネートに由来する構造を有するポリウレタン樹脂である。つまり、本明細書中において、「芳香族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂を生成するためのイソシアネートが「芳香族イソシアネート」であることによって規定される。つまり、「芳香族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂の主鎖を構成するポリエステル骨格等の骨格が「芳香族」炭化水素骨格を有しているか否かによって規定されない。
 芳香族イソシアネート系ポリウレタン樹脂は、芳香族イソシアネートを用いて生成されるポリウレタン樹脂であり、芳香族イソシアネートには、典型的には、芳香族ジイソシアネートが挙げられる。ここで、芳香族ジイソシアネートには、例えば、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、及びナフタレンジイソシアネート(NDI)等が挙げられる。また、芳香族イソシアネート系ポリウレタン樹脂には、芳香族ジイソシアネートと、これら芳香族ジイソシアネートのイソシアヌレート化合物(三量体)が併用されていてもよい。なかでも、芳香族イソシアネートは、ジフェニルメタンジイソシアネート(MDI)であることがより好ましい。なお、本明細書中において、ジフェニルメタンジイソシアネート(MDI)を用いて生成された芳香族イソシアネート系ポリウレタン樹脂のことを、ジフェニルメタンジイソシアネート系ポリウレタン樹脂(MDI系ポリウレタン樹脂)と称することもある。
 芳香族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格は、例えば、ポリエーテル骨格、ポリエステル骨格、ポリエーテルエステル骨格、及びポリ(メタ)アクリレート骨格等が挙げられ、これらの骨格は芳香族イソシアネート系ポリウレタン樹脂の主鎖として併存してよい。なかでも、所望の硬度及び加水分解性を得ることができるという観点から、芳香族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格は、ポリエステル骨格、及びポリエーテルエステル骨格の何れか又は両方であることが好ましい。特に、ポリエステル骨格、又はポリエーテルエステル骨格を含むポリオールはポリエステルポリオールと呼ばれ、少なくともポリエステル骨格を含み、例えば、ポリエステルポリオールと芳香族イソシアネートを反応させることで、目止剤として好適な芳香族イソシアネート系ポリウレタン樹脂が得られる。
 ここで、ポリエステル骨格は、限定されるものではないが、グリコリド、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、及びε-カプロラクトン等を開環重合することによって形成される骨格、シュウ酸、コハク酸、アジピン酸、セバシン酸、及びフタル酸等のジカルボン酸と、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、及び1,6-ヘキサンジオール等のジオールとを縮合して形成される骨格、又はこれらを組み合わせて形成される骨格であり得る。
 また、ポリエーテルエステル骨格は、繰り返し単位における炭素数1~6のポリエーテル構成単位と、繰り返し単位における炭素数2~20のポリエステル構成単位との共重合体であり得る。ここで、ポリエーテル構成単位としては、例えば、ポリアセタール、ポリエチレングリコール及びポリテトラメチレングリコール等が挙げられ、ポリエステル構成単位としては上述のポリエステル骨格が挙げられる。
 なお、芳香族イソシアネート系ポリウレタン樹脂において、ポリエーテル骨格、ポリエステル骨格、ポリエーテルエステル骨格、及びポリ(メタ)アクリレート骨格等の骨格は、該芳香族イソシアネート系ポリウレタン樹脂に柔軟性をもたらすソフトセグメントとして機能する。これに対して、芳香族系イソシアネートに由来する構造は、ハードセグメントとして機能するため、芳香族系イソシアネートに由来する構造が多く含まれる程、芳香族イソシアネート系ポリウレタン樹脂の23℃におけるデュロメータタイプD硬度は高くなる傾向を示す。よって、芳香族イソシアネート系ポリウレタン樹脂は、芳香族イソシアネートに由来する構造が多く含まれ、23℃におけるデュロメータタイプD硬度が28以上であれば、架橋剤による架橋を行なわなくても、溶融ブレンド用の芳香族イソシアネート系ポリウレタン樹脂として好適に使用することができる。
 また、23℃におけるデュロメータタイプD硬度が28よりも低い芳香族イソシアネート系ポリウレタン樹脂は、後述するように架橋剤等によって架橋構造を形成することで硬度を調整してもよい(熱可塑型成形加工法)。
 また、芳香族イソシアネート系ポリウレタン樹脂の重量平均分子量は、5,000以上、100,000以下であることが好ましく、10,000以上、70,000以下であることがより好ましく、15,000以上、50,000以下であることが最も好ましい。芳香族イソシアネート系ポリウレタン樹脂の重量平均分子量が、5,000以上、100,000以下であれば、適度な加水分解性を備えた目止剤を得ることができる。
 芳香族イソシアネート系ポリウレタン樹脂は、典型的には、以下の化学式(I)に示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 ここで、化学式(I)において、mは1以上10以下の整数であり、nは5以上40以下の整数である。
 化学式(I)に示されるMDI系ポリウレタン樹脂の製品としては、例えば、ディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-5070等を挙げることができる。
 また、これら芳香族イソシアネート系ポリウレタン樹脂を形成することができるイソシアネート末端、若しくは水酸基末端又はカルボキシル基末端のプレポリマーは、熱硬化型ポリウレタン樹脂を得るために好適に使用することができる。
 〔脂肪族イソシアネート系ポリウレタン樹脂〕
 脂肪族イソシアネート系ポリウレタン樹脂は、非環式又は環式の脂肪族イソシアネートに由来する構造を有するポリウレタン樹脂である。つまり、本明細書中において、「脂肪族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂を生成するためのイソシアネートが「脂肪族イソシアネート」であることによって規定される。つまり、「脂肪族イソシアネート系ポリウレタン樹脂」とは、ポリウレタン樹脂の主鎖を構成するポリエステル骨格等の骨格が「脂肪族」炭化水素骨格を有しているか否かによって規定されない。
 脂肪族イソシアネート系ポリウレタン樹脂は、脂肪族イソシアネートを用いて生成されるポリウレタン樹脂であり、脂肪族イソシアネートには、典型的には、脂肪族ジイソシアネートが挙げられる。ここで、脂肪族ジイソシアネートには、例えば、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ノルボルナンジイソシアネート(NBDI)、水添キシリレンジイソシアネート(H6XDI)、及びジシクロヘキシルメタンジイソシアネート等が挙げられる。また、脂肪族イソシアネート系ポリウレタン樹脂には、脂肪族ジイソシアネートと、これら脂肪族ジイソシアネートのイソシアヌレート化合物(三量体)が併用されていてもよい。なかでも、脂肪族イソシアネートは、ヘキサメチレンジイソシアネート(HDI)であることがより好ましい。なお、本明細書中において、ヘキサメチレンジイソシアネート(HDI)を用いて生成された脂肪族イソシアネート系ポリウレタン樹脂のことを、ヘキサメチレンジイソシアネート系ポリウレタン樹脂(HDI系ポリウレタン樹脂)と称することもある。
 脂肪族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格は、芳香族イソシアネート系ポリウレタン樹脂の主鎖を構成する骨格と同じく、ポリエーテル骨格、ポリエステル骨格、ポリエーテルエステル骨格、及びポリ(メタ)アクリレート骨格等が挙げられるが、詳細な説明は省略する。
 なお、脂肪族イソシアネート系ポリウレタン樹脂において、主鎖を構成する骨格と同じく、脂肪族イソシアネートに由来する構造はハードセグメントを形成するが、脂肪族イソシアネートに由来する構造よりも芳香族イソシアネートに由来する構造の方がより強固なハードセグメントを形成する傾向がある。このため、複数のポリウレタン樹脂を併用する場合、脂肪族イソシアネート系ポリウレタン樹脂は、芳香族イソシアネート系ポリウレタン樹脂と比較して硬度が低いポリウレタン樹脂として選択し得る。
 また、脂肪族イソシアネート系ポリウレタン樹脂の重量平均分子量は、10,000以上、250,000以下であることが好ましく、50,000以上、200,000以下であることがより好ましく、100,000以上、150,000以下であることが最も好ましい。脂肪族イソシアネート系ポリウレタン樹脂の重量平均分子量が、10,000以上、250,000以下であれば、適度な加水分解性を備えた目止剤を得ることができる。
 脂肪族イソシアネート系ポリウレタン樹脂は、典型的には、以下の化学式(II)に示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000002
 ここで、化学式(II)において、mは1以上10以下の整数であり、nは20以上130以下の整数である。
 脂肪族イソシアネート系ポリウレタン樹脂の製品としては、例えば、ディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-R3080等を挙げることができる。
 また、これら脂肪族イソシアネート系ポリウレタン樹脂を形成することができるイソシアネート末端、若しくは水酸基末端又はカルボキシル基末端のプレポリマーは、熱硬化型ポリウレタン樹脂を得るために好適に使用することができる。
 (2)架橋剤による架橋
 一実施形態において、目止剤は、樹脂組成物に架橋剤を配合することにより、樹脂組成物の23℃におけるデュロメータタイプD硬度を調整する。
 架橋剤としては、多官能イソシアネート化合物、エチレン系不飽和基を有するモノマー、多価アミン、多価アルコール、及び多官能エポキシ化合物からなる群から選択される少なくとも1つの架橋剤であることが好ましい。また、これらの複数の組み合わせにより、ポリウレタン樹脂中において網目状の架橋構造を形成することができる。このため、樹脂組成物の硬度を好適に調製することができる。
 なお、架橋剤は、上述の通り、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂に加えてもよく(熱可塑型成形加工法)、これらポリウレタン樹脂を形成するためのプレポリマーに加えてもよい(ミラブルガム型成形加工法及びキャスト型成形加工法)。
 (2.1)多官能イソシアネート化合物
 樹脂組成物は、架橋剤として多官能イソシアネート化合物を含み得る。多官能イソシアネート化合物は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの何れか一方又は両方を溶融混練するときに、これらポリウレタン樹脂の末端又は主鎖に存在する活性水素を有する官能基に架橋する(熱可塑型成形加工法)。
 多官能イソシアネート化合物としては、例えば、上述の脂肪族ジイソシアネート、及び芳香族ジイソシアネート、並びに、これら脂肪族ジイソシアネート又は芳香族ジイソシアネートから形成されるイソシアヌレートが挙げられる。
 多官能イソシアネート化合物は、一例として、下記一般式(III)に示すように、イソシアネート基がポリウレタン樹脂の主鎖に存在するウレタン結合とアロファネート結合する。
Figure JPOXMLDOC01-appb-C000003
 これによって、1つのポリウレタン樹脂の主鎖と、別のポリウレタン樹脂の主鎖とを多官能イソシアネート化合物を介して架橋する。なお、ポリウレタン樹脂が尿素結合を有している場合、多官能イソシアネートは、当該尿素結合とビューレット結合を形成し得る。このような、ビューレット結合によっても、多官能イソシアネート化合物は、1つのポリウレタン樹脂の主鎖と、別のポリウレタン樹脂の主鎖とを多官能イソシアネート化合物を介して架橋する。
 架橋剤を脂肪族イソシアネート系ポリウレタン樹脂に添加する場合には、添加前の脂肪族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比が、99.8:0.2~50:50の範囲となるように架橋剤を添加することが好ましい。脂肪族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比が、99.7:0.3~60:40の範囲となるように添加することがより好ましく、99.6:0.4~70:30の範囲となるように添加することがさらに好ましい。上述の範囲で架橋剤を添加することにより、架橋した脂肪族イソシアネート系ポリウレタン樹脂の硬度がより高くすることができる。よって、高温環境下において、より好適に細孔を一時目止めすることができる目止剤を得ることができる。なお、脂肪族イソシアネート系ポリウレタン樹脂のプレポリマーに架橋剤を添加する場合には、該プレポリマーと、架橋剤との重量比は、99.8:0.2~50:50の範囲となるように架橋剤を添加することが好ましい(ミラブルガム型成形加工法)。つまり、該プレポリマーと、架橋剤との重量比の好ましい範囲は、脂肪族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比の好ましい範囲に準じている。
 また、架橋剤を芳香族イソシアネート系ポリウレタン樹脂に添加する場合には、添加前の芳香族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比は、100:0よりも架橋剤が多く、50:50であるか、50:50よりも架橋剤が少なくなるように架橋剤を添加することが好ましい。芳香族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比が、99.7:0.3~60:40の範囲となるように添加することが好ましく、99.6:0.4~70:30の範囲となるように添加することがさらに好ましい。上述の範囲で架橋剤を添加することにより、架橋した芳香族イソシアネート系ポリウレタン樹脂の硬度がより高くなり、高温下において、より好適に細孔を一時目止めすることができる。なお、芳香族イソシアネート系ポリウレタン樹脂のプレポリマーに架橋剤を添加する場合には、該プレポリマーと、架橋剤との重量比は、100:0よりも架橋剤が多く、50:50であるか、50:50よりも架橋剤が少なくなるように架橋剤を添加することが好ましい(ミラブルガム型成形加工法)。つまり、該プレポリマーと、架橋剤との重量比の好ましい範囲は、芳香族イソシアネート系ポリウレタン樹脂と、架橋剤との重量比の好ましい範囲に準じている。
 なお、これら多官能イソシアネート化合物のうちの一部は、未反応の状態にて目止剤中に存在し得る。
 (2.2)エチレン系不飽和基を有するモノマー
 架橋剤には、例えば、エチレン系不飽和基を有するモノマーを用いることができる。
 エチレン系不飽和基を有するモノマーには、例えば、トリアリルイソシアヌレート(TAIC)、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、及び、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。なお、このような、エチレン系不飽和基を有する架橋剤は、例えば、有機過酸化物等のラジカル重合開始剤と併用するか、若しくは、電子線を照射することによって架橋させることができる。例えば、ポリウレタン樹脂に、エチレン系不飽和基を有する架橋剤を配合し、溶融混練することで樹脂組成物を得た後、該樹脂組成物を粉砕し、電子線照射を行なうことで該樹脂組成物の硬度を調整する。このとき、樹脂組成物に含まれるエチレン系不飽和基を有する架橋剤は、互いに重合しつつ、ポリウレタン樹脂の主鎖にも架橋し得る。
 電子線の照射線量としては、例えば、5kGy以上150kGy以下が好ましく、10kGy以上120kGy以下がより好ましく、20kGy以上100kGy以下がさらに好ましい。
 (2.3)多価アミン、及び多価アルコール
 架橋剤には、例えば、多価アミン、又は多価アルコールを用いることができる。多価アミン、又は多価アルコールは、ポリウレタン樹脂との溶融混練の際に、ポリウレタン末端に残存するイソシアネート基と反応することにより架橋する。また、ポリエステル骨格、又はポリエーテルエステル骨格を有するポリウレタン樹脂においては、主鎖に存在するエステル基とエステル交換反応を生じることによって、新たに生成したアミド結合、又はエステル結合を介して架橋構造を形成することができる。特に、末端イソシアネート基が存在しない、又は微量にしか存在しないポリウレタン樹脂においては、多価アミン、又は多価アルコールと上述の多官能イソシアネート化合物とを併用することにより、ポリウレタン樹脂の硬度を好適に調製することができる。なお、多価アミン、及び多価アルコールは、イソシアネート基末端のプレポリマーを架橋する架橋剤でもある(キャスト型成形加工法)。
 多価アミンとしては、例えば、3,3’-ジクロロベンジジン、4,4’-メチレンビス-2-クロロアニリン、及び、トリメチレンビス(4-アミノベンゾアート)等が挙げられる。
 多価アルコールには、例えば、エチレングリコール、プロピレングリコール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、及び、2,2,4-トリメチル-1,3-ペンタンジオール等のアルキレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、及び、ポリテトラメチレングリコール等のポリオキシアルキレングリコール、並びに、ビスフェノールA等のビスフェノール類等を用いることができる。また、三価以上のアルコール類として、トリメチロールエタン、トリメチロールプロパン、グリセリン、及び、ペンタエルスリトール等を併用することができる。
 (2.4)多官能エポキシ化合物
 架橋剤には、例えば、多官能エポキシ化合物を用いることができる。多官能エポキシ化合物は、ポリウレタン樹脂との溶融混練の際に、ポリウレタン末端に残存するヒドロキシル基と反応することにより架橋する。また、ポリエステル骨格、又はポリエーテルエステル骨格を有するポリウレタン樹脂においては、末端に存在するカルボキシル基と反応することによって、架橋構造を形成することができる。特に、末端ヒドロキシル基やカルボキシル基が存在しないポリウレタン樹脂、又は微量にしか存在しないポリウレタン樹脂においては、多官能エポキシ化合物と上述の多価アミン、又は多価アルコールとを併用することにより、ポリウレタン樹脂の硬度を好適に調整することができる。
 多官能エポキシ化合物としては、例えば、トリス(2,3-エポキシプロピル)イソシアヌレート、及び、ポリ(メタクリル酸グリシジル)等が挙げられる。
 (2.5)熱処理
 架橋剤を添加したポリウレタン樹脂を、熱処理にすることよりさらに架橋を進めることで、当該ポリウレタン樹脂の硬度を調整することができる。熱処理により架橋を進めるには、架橋剤を添加したポリウレタン樹脂を、所定温度で所定時間保持することにより行うことができる。熱処理時の雰囲気は、必要に応じ、空気中又は窒素等の不活性ガス中、若しくは減圧下で行ってもよい。
 (3)電子線照射
 また、溶融押出した樹脂組成物に電子線照射することによって、ポリウレタン樹脂の主鎖を切断、又は架橋することによって、樹脂組成物の硬度を調整してもよい。この場合、樹脂組成物は架橋剤を含んでいてもよく、含んでいなくてもよい。
 電子線の照射線量としては、例えば、5kGy以上150kGy以下が好ましく、10kGy以上120kGy以下がより好ましく、20kGy以上100kGy以下がさらに好ましい。ここで、電子線の照射線量の値が小さすぎる場合には、ポリウレタン樹脂の硬度が十分に高くならず、照射線量の値が大きすぎる場合には、ポリウレタン樹脂の主鎖が必要以上に切断され硬度が低下する。これに対し、電子線の照射線量が上述の好ましい範囲であるとき、細孔を好適に一時目止めできる目止材が得られる。
 〔樹脂組成物におけるその他の配合剤〕
 本実施形態に係る目止剤は、本実施形態の目的を阻害しない範囲で、目止剤において通常添加される種々の配合剤をさらに含有させることができる。例えば、分解促進剤、充填剤、酸化防止剤、及び、分解抑制剤等の各種の添加剤を挙げることができる。これら各種の添加剤は、夫々単独で、又は2種以上を組み合わせて使用することができる。
 (分解促進剤)
 樹脂組成物は、分解促進剤を含んでいてもよい。分解促進剤は、目止剤に含まれる樹脂組成物の分解を促進するものであり、酸及び酸前駆体を挙げることができ、酸前駆体がより好ましい。
 より具体的には、分解促進剤としては、グリコリド及びラクチド等のラクトン類、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)等の酸無水物、シュウ酸ジエチル等のカルボン酸エステル類、p-トルエンスルホン酸エチル等のスルホン酸エステル類、並びに、リン酸エステル類等が挙げられる。
 樹脂組成物における分解促進剤の含有量としては、例えば、0.1重量%以上20重量%以下が好ましく、0.3重量%以上15重量%以下がより好ましく、0.5重量%以上10重量%以下がさらに好ましい。上述の好ましい範囲によれば、分解促進剤の含有量が少なすぎないため、分解促進効果が十分である。また、含有量が多すぎないため、初期硬度が低下せず、十分な目止維持時間を得られる。
 また、樹脂組成物は、例えば、芳香族イソシアネート系ポリウレタン樹脂は可塑剤を含有することによって、可塑剤を含有しない場合と比較して硬度が減少する傾向にあり、したがって、分解促進剤に代えて、可塑剤を配合し、その含有量を変えることでデュロメータタイプD硬度を調節してもよい。可塑剤としては、例えば、フタル酸エステルやアジピン酸エステル等が挙げられる。フタル酸エステルとしては、例えば、フタル酸ジオクチル、フタル酸ジイソノニル、及びフタル酸ビス(2-ブトキシエチル)等が挙げられ、アジピン酸エステルには、例えば、アジピン酸ジオクチル、アジピン酸ジイソノニル、及びアジピン酸ビス(2-ブトキシエチル)等が挙げられる。その他、可塑剤には、公知の可塑剤を挙げることができ、リン酸エステル系可塑剤、スルホン酸エステル系可塑剤、トリメリット酸系可塑剤等挙げることができる。これら可塑剤を樹脂組成物に配合することで該樹脂組成物のデュロメータタイプD硬度を調整し、これによって分解速度を調整してもよい。
 (充填剤)
 樹脂組成物は、本発明の範囲を逸脱しない配合量において充填剤を含んでいてもよい。充填材は、有機又は無機の繊維状強化材、及び、顆粒状又は粉末状強化材等を挙げることができ、これらは、単独で、又は、2種類以上を組み合わせて使用することができる。
 繊維状強化材としては、例えば、ガラス繊維、炭素繊維、アスベスト繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維及びチタン酸カリ繊維等の無機繊維状物、ステンレス、アルミニウム、チタン、銅及び真鍮等の金属繊維状物、並びに、アラミド繊維、ケナフ繊維、ポリアミド、フッ素樹脂、ポリエステル樹脂及びアクリル樹脂等の高融点有機質繊維状物質等を挙げることができる。
 顆粒状又は粉末状強化材としては、マイカ、シリカ、タルク、アルミナ、カオリン、硫酸カルシウム、炭酸カルシウム、酸化チタン、フェライト、クレー、ガラス粉、酸化亜鉛、炭酸ニッケル、酸化鉄、石英粉末、炭酸マグネシウム及び硫酸バリウム等を挙げることができるが、好ましくは生産障害の影響を及ぼさない分解性の強化材がより好ましい。充填剤は、必要に応じて、集束材又は表面処理剤により処理されていてもよい。
 充填剤を樹脂組成物に添加する場合には、樹脂組成物における充填剤の含有量が、2重量%以上30重量以下となるように添加することが好ましく、3重量%以上25重量%以下となるように添加することがより好ましく、4重量%以上20重量%以下となるように添加することがさらに好ましい。上述の好ましい範囲では、充填剤の含有量が少なすぎないため、ポリウレタン樹脂の硬度が十分に高くなる。また、充填剤の含有量が多すぎないため、ポリウレタン樹脂の分解後に充填剤が残存したとしても目止めを十分に解除できる。
 <目止剤(第2実施形態)>
 本発明に係る目止剤は、上記実施形態(第1実施形態)に限定されない。例えば、本実施形態(第2実施形態)に係る目止剤は、第1樹脂組成物から形成される粉体(第1粉体)及び、第2樹脂組成物から形成される粉体(第2粉体)を含むパウダーブレントであり、これらの粉体を形成するための各樹脂組成物は、互いにポリウレタン樹脂の組成が異なる。ここで、第1樹脂組成物として、第1実施形態に係る目止剤に含まれる粉体を形成するための樹脂組成物を用いる。また、第2樹脂組成物から成形されるシート状の成形体の23℃におけるデュロメータタイプD硬度は、第1樹脂組成物から成形されるシート状の成形体の23℃におけるデュロメータタイプD硬度よりも低い。
 すなわち、本実施形態に係る目止剤は、互いに硬度が異なる第1樹脂組成物及び第2樹脂組成物を溶融混練しないようにして、粉体化した目止剤である。本実施形態に係る目止剤は、分解速度が異なる樹脂組成物を複数含むことで目止剤としての分解速度を調整し、これにより、目止維持時間を調整する。
 分解速度が異なる2つの異なる粉体の混合物から形成した粉体を目止剤として使用した場合には、粉体の分解に伴う機械強度低下、又は小粒径化により、分解速度の速い粉体が分解速度の遅い粉体同士の隙間をすり抜けることで空隙が回復し、やがて目止めが解除される。これにより、目止維持時間を好適に制御できる。また、例えば、100℃以上200℃以下の高温環境下でも、幅が1μm以上800μm以下の細孔を、より好ましくは幅が10μm以上500μm以下の細孔を一時目止めすることができる。
 本実施形態に係る目止剤は、目止剤の分解及び生成した分解物の溶出に伴う強度低下により、目止剤で細孔を目止めした目止め部が、当該目止めにかかる圧力に耐えられず、変形又は崩壊し、目止めが解除されるまでの時間(目止め維持時間)を、100℃以上200℃以下において、例えば、1時間以上960時間(40日間)以下の範囲にすることができる。これにより、目止め中に坑井内外で行う各種作業時間を確保しつつ、各種作業が終了するまでに目止めを解除することができる。
 第1樹脂組成物から形成される第1粉体と、第2樹脂組成物から形成される第2粉体との重量比は、40:60~99:1の範囲であることが好ましい。これによって、高温環境下において各種作業が終了するまで、好適に一時目止することができる目止剤を得ることかできる。
 第1粉体及び第2粉体は、それぞれ別個にメディアン径(50%D)が、50μm以上800μm以下であることが好ましく、100μm以上750μm以下であることがより好ましく、300μm以上700μm以下であることがさらに好ましい。これにより、目止め部から強度が低下した樹脂組成物等がより漏れ出しにくくなり、高温下において細孔をより好適に一時目止めすることができる。なお、第1粉体及び第2粉体のメディアン径の差は、小さい方がより好ましい。
 〔第1樹脂組成物〕
 第1樹脂組成物は、第1粉体を形成するための樹脂組成物であり、当該樹脂組成物から形成したシート状の成形体の硬度(23℃におけるデュロメータタイプD硬度)は28以上(より好ましくは29以上)であればよい。23℃におけるデュロメータタイプD硬度は、28以上80以下であることが好ましく、29以上75以下であることがより好ましい。これにより、分解速度が比較的遅い粉体を好適に得ることができる。
 第1樹脂組成物は、第1実施形態に係る目止剤に含まれる粉体を形成するための樹脂組成物と同様の樹脂組成物であり、より好ましくは、23℃におけるデュロメータタイプD硬度が、28以上80以下である熱可塑性ポリウレタン樹脂からなり、該熱可塑性ポリウレタン樹脂は芳香族イソシアネート系ポリウレタン樹脂であることがより好ましい。
 第1樹脂組成物は、芳香族イソシアネート系ポリウレタン樹脂からなることが好ましいが、脂肪族イソシアネート系ポリウレタン樹脂を含む場合、脂肪族イソシアネート系ポリウレタン樹脂と、芳香族イソシアネート系ポリウレタン樹脂との重量比が、80:20であるか、80:20よりも上記脂肪族イソシアネート系ポリウレタン樹脂が少なく、0:100よりも上記脂肪族イソシアネート系ポリウレタン樹脂が多い重量比であり、かつ脂肪族イソシアネート系ポリウレタン樹脂の重量比が、第2樹脂組成物に含まれる脂肪族イソシアネート系ポリウレタン樹脂の重量比よりも小さいことが好ましい。
 なお、第1樹脂組成物は、第1実施形態に係る目止剤における樹脂組成物と同じく、架橋剤によって硬度を調整してもよい。
 また、第1樹脂組成物は、第1実施形態に係る目止剤おいて使用されるような、分解促進剤に例示されるその他の配合剤を含んでいてもよい。
 〔第2樹脂組成物〕
 第2樹脂組成物は、第1樹脂組成物から形成される粉体よりも、比較的分解速度が速い粉体を形成するための樹脂組成物である。第2樹脂組成物から形成されるシート状の成形体は、第1樹脂組成物から形成されるシート状の成形体よりも、23℃におけるデュロメータタイプD硬度が低い。
 第2樹脂組成物は、その成形体の23℃におけるデュロメータタイプD硬度が、第1樹脂組成物の成形体の硬度よりも低ければ、第2樹脂組成物に含まれるポリウレタン樹脂の組成は限定されないが、より好ましくは、熱可塑性である脂肪族イソシアネート系ポリウレタン樹脂からなる樹脂組成物である。
 ここで、第2樹脂組成物から形成したシート状の成形体の23℃におけるデュロメータタイプD硬度は29よりも小さくてもよく、さらには28よりも小さくてもよく、23℃におけるデュロメータタイプD硬度は、28以上(より好ましくは29以上)であってもよいが、23℃におけるデュロメータタイプD硬度は、20以上65以下であることがより好ましい。
 第2樹脂組成物は、脂肪族イソシアネート系ポリウレタン樹脂からなることが好ましいが、又は、芳香族イソシアネート系ポリウレタン樹脂を含む場合、脂肪族イソシアネート系ポリウレタン樹脂と、芳香族イソシアネート系ポリウレタン樹脂との重量比は、20:80~100:0の範囲であり、かつ脂肪族イソシアネート系ポリウレタン樹脂の重量比が第1樹脂組成物に含まれる脂肪族イソシアネート系ポリウレタン樹脂の重量比よりも大きいことが好ましい。これにより、23℃におけるデュロメータタイプD硬度は、20以上65以下である第2樹脂組成物を得ることができ、第1粉体よりも分解速度が比較的速い第2粉体を好適に得ることができる。
 なお、第2樹脂組成物は、第1実施形態に係る目止剤における樹脂組成物と同じく、架橋剤によって硬度を調整してもよい。
 また、第2樹脂組成物は、第1実施形態に係る目止剤おいて使用されるような、分解促進剤に例示されるその他の配合剤を含んでいてもよい。
 第1樹脂組成物及び第2樹脂組成物のデュロメータタイプD硬度は、これら樹脂組成物を用いて形成した成形体を用いて測定するとよい。第1樹脂組成物及び第2樹脂組成物の硬度は、上述の第1実施形態に係る目止剤において説明したデュロメータタイプD硬度の測定方法と同じく、ISO7619/JIS K 6253に準拠して測定することができる。
 <坑井流体>
 本実施形態に係る坑井流体は、上述の目止剤(第1実施形態及び第2実施形態)を含む。
 坑井流体とは、一般的に、仕上げ流体と称することもある。本実施形態に係る目止剤は、坑井流体に含まれる脱水減少剤の一つであるデンプン誘導体よりも、水への高い分散性及び高い濡れ性を備えている。坑井流体において目止剤の分散性が高いことは、細孔を効率良く目止めするために有効であり、坑井流体を坑井に注入するためのツール(例えば、ドリル及びその周辺部材等)における目止剤による詰まりを防止することにも寄与する。このため、本実施形態に係る目止剤は、なかでも水系の坑井流体に配合する目止剤として好適に用いることができる。
 本実施形態に係る坑井流体は、当該坑井流体を使用する坑井孔内の環境、特に、高温環境の温度又は圧力に応じて、目止剤に含有される樹脂組成物の種類、物性、組成(添加剤等を含む)、形状、及び、大きさ等を適宜選択し、組み合わせることができる。したがって、本実施形態に係る目止剤は、異なる材料又は材料の組み合わせを使用してもよい。
 本実施形態に係る坑井流体における上述の目止剤の含有量は、特に限定されず、通常1重量%以上15重量%以下であり、3重量%以上10重量%以下が好ましい。
 本実施形態に係る坑井流体には上述の目止剤のほか、本実施形態の目的を阻害しない範囲で、坑井流体において通常添加される種々の配合剤を含有させることができる。例えば、バライト(BaSO)及び炭酸カルシウム等の無機系加重剤、NaCl、KCl及びCaCl等のアルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化合物(塩類)の粘土膨潤抑制剤、又はソリッドフリーの比重調整剤、グアーガム及びカルボキシメチルセルロース(CMC)等の有機コロイド剤、無機コロイド剤(粘土類等)、分散解コウ剤、界面活性剤、pH調整剤、他の逸泥防止剤、転換剤、消泡剤、潤滑剤、防腐剤、殺菌剤並びに、防食防止剤等が挙げられ、坑井流体を使用する坑井孔内の環境に応じた濃度で含有させることができる。
 <坑井掘削方法>
 本実施形態に係る坑井掘削方法は、上述の目止剤(第1実施形態及び第2実施形態)を使用して一時目止めを行う。
 例えば、本実施形態に係る坑井掘削方法では、上述の目止剤を、例えば、ドリルを使用しての貯留層区間における坑井孔掘削、シェールガス・オイル等を産出するシェール層等の坑井掘削において使用することができる。また、本実施形態に係る坑井掘削方法では、本実施形態に係る目止剤を含有する目止剤用流体を、別種の坑井流体を坑井孔内に流入させるのに先立って、坑井内に流入させてもよい。
 また、本実施形態に係る目止剤を使用する環境、特に、高温環境の温度又は圧力に応じて、目止剤に含まれる樹脂組成物の種類、物性、組成、形状、及び、大きさを適宜選択し、組み合わせることができる。
 <まとめ>
 本発明の一実施形態(第1実施形態)に係る目止剤は、坑壁を目止めする目止剤であって、上記目止剤は、ポリウレタン樹脂を含む樹脂組成物の粉体であり、上記ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つであり、上記樹脂組成物から成形されたシート状の成形体は、23℃におけるデュロメータタイプD硬度が28以上であることを特徴とする。
 また、本発明の一実施形態(第2実施形態)に係る目止剤は、上記態様1において、上記樹脂組成物は第1樹脂組成物であり、さらに、該第1樹脂組成物とは互いに組成が異なるポリウレタン樹脂を含む第2樹脂組成物から形成される粉体を含み、該第2樹脂組成物から成形されたシート状の成形体の23℃におけるデュロメータタイプD硬度は、該第1樹脂組成物から成形されたシート状の成形体の23℃におけるデュロメータタイプD硬度よりも低くてもよい。
 また、本発明の一実施形態(第2実施形態)に係る目止剤は、上記第1樹脂組成物に含まれる上記ポリウレタン樹脂は、芳香族イソシアネート系ポリウレタン樹脂からなり、上記第2樹脂組成物に含まれる上記ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂からなることが好ましい。
 また、本発明の一実施形態(第2実施形態)に係る目止剤は、上記第1樹脂組成物から形成される粉体と、上記第2樹脂組成物から形成される粉体との重量比が、40:60~99:1の範囲であることが好ましい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤は、上記樹脂組成物が、上記脂肪族イソシアネート系ポリウレタン樹脂及び上記芳香族イソシアネート系ポリウレタン樹脂の両方を含んでいてもよい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記脂肪族イソシアネート系ポリウレタン樹脂と上記芳香族イソシアネート系ポリウレタン樹脂との重量比が、80:20であるか、80:20よりも上記脂肪族イソシアネート系ポリウレタン樹脂が少なく、0:100よりも上記脂肪族イソシアネート系ポリウレタン樹脂が多いことが好ましい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記脂肪族イソシアネート系ポリウレタン樹脂を構成している脂肪族イソシアネートは、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添キシリレンジイソシアネート、及びジシクロヘキシルメタンジイソシアネートからなる群から選択される少なくとも1つの脂肪族イソシアネートであることが好ましい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記芳香族イソシアネート系ポリウレタン樹脂を構成している芳香族イソシアネートは、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、及びナフタレンジイソシアネートからなる群から選択される少なくとも1つの芳香族イソシアネートであることが好ましい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記脂肪族イソシアネート系ポリウレタン樹脂及び上記芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つは、少なくともポリエステル骨格を含んでいることが好ましい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記樹脂組成物は、さらに架橋剤を含んでいてもよく、又は、上記第1樹脂組成物及び上記第2樹脂組成物のうちの少なくとも一方は、さらに架橋剤を含んでいてもよい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記樹脂組成物が含むポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂からなり、該樹脂組成物は、さらに架橋剤を含み、該脂肪族イソシアネート系ポリウレタン樹脂と、該架橋剤との重量比が、99.8:0.2~50:50の範囲であってもよい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記樹脂組成物が含むポリウレタン樹脂は、上記芳香族イソシアネート系ポリウレタン樹脂からなり、該樹脂組成物は、さらに架橋剤を含み、該芳香族イソシアネート系ポリウレタン樹脂と、該架橋剤との重量比は、100:0よりも架橋剤が多く、50:50であるか、50:50よりも架橋剤が少なくてもよい。
 また、本発明の一実施形態(第1及び第2実施形態)に係る目止剤において、上記架橋剤は、多官能イソシアネート化合物、エチレン系不飽和基を有するモノマー、多価アミン、多価アルコール、及び多官能エポキシ化合物からなる群から選択される少なくとも1つの架橋剤であることが好ましい。
 また、本発明の一実施形態に係る坑井流体は、本発明の一実施形態(第1及び第2実施形態)に係る目止剤を含むことを特徴とする。
 また、本発明の一実施形態に係る坑井掘削方法は、本発明の一実施形態(第1及び第2実施形態)に係る目止剤を使用して一時目止めを行うことを特徴とする。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 実施例1~10及び比較例について、夫々以下に示す条件で目止剤を作製した。
 <実施例1>
 〔評価用目止剤の製造〕
 (硬度評価用サンプル及び目止め評価用サンプルの製造)
 まず、HDI系ポリウレタン樹脂として、23℃におけるデュロメータタイプD硬度が28である、ディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-R3080を1800g秤量し、ポリエチレン袋に投入した。また、架橋剤としてHDIを200g秤量し、当該ポリエチレン袋に投入した。すなわち、架橋剤を添加後のHDI系ポリウレタン樹脂に対する含有量が10重量%となるように架橋剤を添加した。架橋剤の添加後、ポリエチレン袋を持ってハンドシェイクすることで、ポリエチレン袋内のHDI系ポリウレタン樹脂と架橋剤とを3分間撹拌し、混合物(ブレンド物)を得た。ブレンド物を得た後、以下の混練押出機を使用して、ブレンド物を温度230℃において5分間混合し、ダイスから溶融押出した。
・混練押出機:2D30W2(東洋精機製作所株式会社製)
・スクリューサイズ:直径30mmφ、L/D=30
・スクリュー回転速度:50rpm
・ペレタイザー:型式SCF-150(いすず化工機株式会社製)
 溶融押出して得られたブレンド物をストランドとした後に、ペレタイザーを通してペレットを得た。
 また、ペレットとは別に、硬度評価用サンプルも製造した。具体的には、ダイスから溶融押出するところまでは目止め評価用サンプルと同様に行い、溶融押出後、熱プレス成型することによって、3mm厚のシート状とした。その後、窒素雰囲気下120℃で2時間熱処理を行い、硬度評価用サンプルを得た。
 (電子線の照射)
 溶融押出して得られたペレット及び3mm厚のシート状の硬度評価用サンプルに、電子線を60kGy照射した。
 (デュロメータタイプD硬度の測定)
 3mm厚のシート状の硬度評価用サンプルを2枚重ね、6mm厚にし、ISO7619/JIS K 6253に準拠し、硬度計を用いて硬度評価用サンプルのデュロメータタイプD硬度を測定した。なお、硬度計としては、テクロック株式会社製のデュロメータタイプD GS-720Rを使用した。
 デュロメータタイプD硬度の測定に用いる評価用サンプルは、デュロメータタイプD硬度が十分に安定したものを使用した。具体的には、評価用サンプルを窒素雰囲気下120℃の条件で2時間熱処理を行った後のデュロメータタイプD硬度が、熱処理前のデュロメータタイプD硬度と比較して10%以上変化しないものを用いた。
 熱処理前後でデュロメータタイプD硬度が10%以上変化する場合には、熱処理と測定を繰り返し、熱処理前後のデュロメータD硬度の変化が10%未満となった際のデュロメータD硬度を評価用サンプルのデュロメータD硬度とした。
 表2に示す通り、電子線照射後の硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は39だった。
 (サンプル粉砕による目止剤の製造)
 電子線照射後のペレットを、以下に示す粉砕機を用いて、液体窒素浸漬による凍結粉砕法により粉砕した。これにより、粉体(パウダー)状の評価用目止剤を作製した。具体的には、ペレットを、液体窒素中に5分間浸漬することで冷却し、冷却したサンプルを125g/minで粉砕機に投入して粉砕した。なお、粉砕機へのサンプル投入時には、同時に液体窒素も投入した。これにより、実施例1の評価用目止剤を得た。
・粉砕機:イクシードミル EM-1A型(槙野産業株式会社製)
・回転盤:
 ピンディスク直径:160mm
 ピン直径:3.5mm
 ピン長さ:19mm
 本体側ピン本数:178本
 本体側ピン配列:3列
 本体側ピン間隔:3.5mm
 ドア側ピン本数:168本
 ドア側ピン配列:3列
 ドア側ピン間隔:2.5mm
・粉砕回転数:本体側ピンディスク:8000rpm(133Hz)
・ドア側ピンディスク:12000rpm(200Hz)
 (評価用目止剤のメディアン径(50%D)の測定)
 得られたパウダー状の評価用目止剤のメディアン径(50%D)を、レーザ回折式粒子径分布測定装置である、島津製作所株式会社製のSALD3000を用いて測定した。表2に示す通り、パウダー状の評価用目止剤のメディアン径(50%D)は、676μmであった。
 〔評価用流体(以下、評価用泥水ともいう)の製造〕
 得られた評価用目止剤と、以下の表1の各成分とを、表1に示す重量比で混合し、評価用泥水を作製した。
Figure JPOXMLDOC01-appb-T000004
 なお、表1における10重量%塩化ナトリウム水溶液における塩化ナトリウムは、純正化学株式会社製である。AMPSポリマーは、株式会社テルナイト製のDriscal(登録商標)-Dである。リグニンはHalliburton Energy Services,inc.製のDURENEX(登録商標)PLUSである。脱酸素剤は、株式会社テルナイト製のテルナイト(登録商標)OS-5である。
 〔目止め評価〕
 目止め評価は、図1に示すフィルターディスク(高浸透性層)を含むプラグ試験機(Fann Instrument Company製のFliter Press HPHT 500ML)を用いた目止め試験により行った。目止め試験においては、50μmの孔隙を有するセラミック製のフィルターとして、Fann Instrument Company製のCeramic Fliter Disc 50(Part NO.210540)を使用した。
 以下に、目止め試験について、図1を用いながら説明する。図1は、評価用泥水による目止め試験に用いられるプラグ試験機を概略的に示す図である。
 図1に示すように、評価用目止剤を混入した評価用泥水をプラグ試験機に入れた後、プラグ試験機に、上から100psiの圧力及び下から100psiの圧力をかけた。これにより、上からの圧力と下からの圧力の差分は0psiとなり、昇温前には、フィルターディスクには圧力がかからないようにした。
 評価用泥水の入った上部容器を120℃まで昇温し、保持した。昇温後、プラグ試験器に、上から600psiの圧力がかかるようにした。これにより、上からの圧力と下からの圧力との差分は500psiとなり、フィルターディスクには上から500psiの圧力がかかるようにした。
 次に、下部容器(バックプレッシャータンク)の下部バルブを開放して、温度及び圧力を保持した状態で目止め試験を開始した。
 ここで、上述のように、フィルターには50μmの孔隙があり、上部容器から、当該孔隙を介して、下部容器に水が透過するようになっている。そこで、所定時間毎のフィルターからの透水量を測定した。透過量は下部容器の下部バルブを介して透過した水分をリザーブタンクに回収して測定した。
 所定時間毎の透水量が増大した時点で透水回復点(一時目止めが解除された点)とし、目止め試験を終了した。
 目止め試験を開始したときから、透水回復点に達するまでの時間を目止め維持時間とし、当該目止め維持時間が1時間以上960時間(40日間)以下である場合に、目止め評価を「A」とし、それ以外のときに目止め評価を「B」とした。
 表2に示す通り、120℃における目止め維持時間は、7時間だった。
 <実施例2>
 実施例2では、架橋剤として、HDIの代わりにMDIを用いた以外は、実施例1と同様に、硬度評価用サンプル及び評価用目止剤を製造した。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は34だった。
 実施例2の評価用目止剤は、表2に示す通り、メディアン径が(50%D)は、396μmだった。
 次に、得られた評価用目止剤から実施例1と同様に評価用泥水を作製し、実施例1と同様に目止め試験を行った。表2に示す通り、120℃における目止め維持時間は、3時間だった。
 <実施例3>
 実施例3では、HDI系ポリウレタン樹脂の代わりに、MDI系ポリウレタン樹脂を使用し、架橋剤を添加せず、電子線を照射していない以外は、実施例1と同様に硬度評価用サンプル及び目止め評価用サンプルを製造した。
 ここで、本実施例では、MDI系ポリウレタン樹脂として、23℃におけるデュロメータタイプD硬度が60のディーアイシーコベストロポリマー株式会社製のパンデックス(登録商標)T-5070を用いた。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度のデュロメータタイプD硬度は60だった。
 上述の実施例と同様に評価用目止剤を作製した。表2に示す通り、評価用目止剤のメディアン径(50%D)は、334μmだった。
 次に、得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、120℃、140℃及び149℃において目止め試験を行った。表2に示す通り、120℃における目止め維持時間は、2328時間よりも多い時間だった。140℃における目止め維持時間は65時間だった。149℃における目止め維持時間は、28時間だった。
 <実施例4>
 MDI系ポリウレタン樹脂に、架橋剤としてMDIを10重量%添加した以外は、実施例3と同様に硬度評価用サンプル及び目止め評価用サンプルを製造した。なお、MDI系ポリウレタン樹脂への添加の仕方は、実施例1及び2と同様である。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は64だった。
 上述の実施例と同様に評価用目止剤を作製した。表2に示す通り、評価用目止剤のメディアン径(50%D)は、402μmだった。
 次に、得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、120℃、130℃、140℃及び149℃において目止め試験を行った。表2に示す通り、120℃における目止め維持時間は、1464時間よりも長い時間だった。130℃における目止め維持時間は1224時間よりも長い時間だった。140℃における目止め維持時間は70時間だった。149℃における目止め維持時間は、31時間だった。
 <実施例5>
 ベースとなる樹脂組成物として、HDI系ポリウレタン樹脂に加え、MDI系ポリウレタン樹脂をさらに含む以外は、実施例3と同様に硬度評価用サンプル及び評価用目止剤を製造した。
 より具体的には、上述のHDI系ポリウレタン樹脂を1100g秤量し、MDI系ポリウレタン樹脂を900g秤量し、ポリエチレン袋に投入した。投入後、上述の実施例と同様にハンドシェイクし、HDI系ポリウレタン樹脂と、MDI系ポリウレタン樹脂とを撹拌し、ブレンド物を得た。このように、HDI系ポリウレタン樹脂と、MDI系ポリウレタン樹脂とを重量比55:45で混合した。
 その後、上述の実施例と同様に、ブレンド物を溶融押出(溶融混練)して、硬度評価用サンプル及び評価用目止剤を製造した(溶融ブレンド物)。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は34だった。
 上述の実施例と同様に作製した評価用目止剤は、表2に示す通り、メディアン径(50%D)が、345μmだった。
 次に、得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、120℃において目止め試験を行った。表2に示す通り、120℃における目止め維持時間は、62時間だった。
 <実施例6>
 HDI系ポリウレタン樹脂と、MDI系ポリウレタン樹脂とを重量比65:35で混合した以外は、実施例5と同様に溶融混練し、硬度評価用サンプル及び評価用目止剤を製造した(溶融ブレンド物)。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は30だった。
 上述の実施例と同様に作製した評価用目止剤は、表2に示す通り、メディアン径(50%D)が、358μmだった。
 次に、得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、120℃において目止め試験を行った。表2に示す通り、120℃における目止め維持時間は、1時間だった。
 <実施例7>
 HDI系ポリウレタン樹脂と、MDI系ポリウレタン樹脂とを重量比70:30で混合した以外は、実施例5と同様に溶融混練し、硬度評価用サンプル及び評価用目止剤を製造した(溶融ブレンド物)。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は30だった。
 上述の実施例と同様に作製した評価用目止剤は、表2に示す通り、メディアン径(50%D)が、438μmだった。
 次に、得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、120℃において目止め試験を行った。表2に示す通り、120℃における目止め維持時間は、2時間だった。
 <実施例8>
 HDI系ポリウレタン樹脂に、架橋剤を添加せず、電子線を照射していない以外は、実施例1と同様に硬度評価用サンプル及び評価用目止剤を製造した。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は28だった。
 上述の実施例と同様に作製した評価用目止剤は、表2に示す通り、メディアン径(50%D)が、337μmだった。
 次に、得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、120℃及び100℃で目止め試験を行った。表2に示す通り、120℃における目止め維持時間は、0時間だったが、100℃における目止維持時間は、24時間だった。
 <実施例9>
 MDI系ポリウレタン樹脂のパウダーと、HDI系ポリウレタン樹脂のパウダーとを重量比50:50で混合した硬度評価用サンプル及び評価用目止剤を製造した(パウダーブレンド物)。なお、MDI系ポリウレタン樹脂の硬度と、HDI系ポリウレタン樹脂の硬度とは、それぞれ個別に硬度評価用サンプルを製造することで、個別に評価を行なった。
 表2に示す通り、MDI系ポリウレタン樹脂の硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は60だった。
 同様に、HDI系ポリウレタン樹脂の硬度評価用サンプルの23℃におけるデュロメータタイプD硬度を測定した。表2に示すように、HDI系ポリウレタン樹脂の硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は28だった。
 実施例9の評価用目止剤の製造は次の通り行なった。MDI系ポリウレタン樹脂であるT-5070を2000g秤量し、上述の混練押出機を使用して、温度230℃において5分間混練し、ダイスから溶融押出しすることで、ストランドを得た。得られたストランドを、上述のペレタイザーを通してペレットを得た。同様にして、HDI系ポリウレタン樹脂であるT-R3080から、ストランドを得た後、当該ストランドを、ペレタイザーを通してペレットを得た。
 得られたMDI系ポリウレタン樹脂及びHDI系ポリウレタン樹脂のペレットを、上述の粉砕機を用い、液体窒素浸漬による凍結粉砕法により、それぞれ別々に粉砕し、粉体(パウダー)にした。ここで、液体窒素中に5分間浸漬して冷却したペレット状のMDI系ポリウレタン樹脂(又はペレット状のHDI系ポリウレタン樹脂)を125g/minで粉砕機に投入し、それと同時に、液体窒素も粉砕機に投入した。
 得られたMDI系ポリウレタン樹脂及びHDI系ポリウレタン樹脂のパウダーのメディアン径(50%D)を、レーザ回折式粒子径分布測定装置である、島津製作所株式会社製のSALD3000を用いてそれぞれ測定した。表2に示す通り、MDI系ポリウレタン樹脂のパウダーのメディアン径(50%D)は、334μmだった。HDI系ポリウレタン樹脂のパウダーのメディアン径(50%D)は、337μmであった。
 MDI系ポリウレタン樹脂のパウダーを100g秤量し、HDI系ポリウレタン樹脂のパウダーを100g秤量し、ポリエチレン袋に投入した。投入後、3分間ハンドシェイクし、MDI系ポリウレタン樹脂と、HDI系ポリウレタン樹脂とを撹拌し、パウダーの混合物を得た(パウダーブレンド物)。このように、MDI系ポリウレタン樹脂と、HDI系ポリウレタン樹脂とを重量比50:50で混合して、目止め評価用サンプルとしての評価用目止剤を得た。
 また、表2に示す通り、実施例9の評価用目止剤の120℃における目止め維持時間は、402時間だった。
 <実施例10>
 MDI系ポリウレタン樹脂のパウダーと、HDI系ポリウレタン樹脂のパウダーとを重量比50:50で混合する代わりに、重量比95:5で混合する以外は、実施例9と同様に評価用目止剤を得た(パウダーブレンド物)。
 得られた評価用目止剤から、実施例9と同様の方法で評価用泥水を作製した。また、120℃の代わりに、140℃において目止め試験を行った以外は、実施例9と同様に目止め試験を行った。表2に示すように、140℃における目止め維持時間は60時間だった。
 <比較例>
 MDI系ポリウレタン樹脂として、BASFジャパン製 エラストラン(登録商標)C60A10WNを用いた以外は、実施例3と同様に硬度評価用サンプル及び評価用目止剤を製造した。
 表2に示す通り、硬度評価用サンプルの23℃におけるデュロメータタイプD硬度は8だった。
 上述の実施例と同様に作製した評価用目止剤は、表2に示す通り、メディアン径(50%D)が、435μmだった。
 次に、得られた評価用目止剤から上述の実施例と同様に評価用泥水を作製し、上述の実施例と同様の方法で、100℃で目止め試験を行った。表2に示す通り、100℃における目止め維持時間は、0時間であった。
Figure JPOXMLDOC01-appb-T000005
 表2から明らかなように、実施例1、2及び5~7の目止剤を用いて目止め試験を行った結果、120℃において、目止め維持時間が1時間以上960時間以下だった。このことから、実施例1、2及び5~7のデュロメータタイプD硬度が29以上であり、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つを含む目止剤は、120℃の高温において、細孔を好適に一時目止めできることが分かった。
 また、実施例3及び4のデュロメータタイプD硬度が29以上である目止剤を用いて目止め試験を行った結果、140℃及び149℃において、目止め維持時間が1時間以上960℃時間以下だった。このことから、実施例3及び4のデュロメータタイプD硬度が29以上であり、芳香族イソシアネート系ポリウレタン樹脂を含む目止剤は、140℃及び149℃の高温において、細孔を好適に一時目止めできることが分かった。
 また、表2から明らかなように、実施例9、10の目止剤を用いて目止め試験を行った結果、120℃及び140℃において、目止め維持時間が1時間以上960時間以下だった。このことから、実施例9、10の、MDI系ポリウレタン樹脂、及び、HDI系ポリウレタン樹脂を含む樹脂組成物の粉体である目止剤は、120℃及び140℃の高温において、細孔を好適に一時目止めできることが分かった。
 以上のことから、デュロメータタイプD硬度が28以上であり、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つを含む目止剤は、高温において、細孔を好適に一時目止めできることが分かった。
 本発明は、高深度の坑井等の高温環境下において、細孔を一時目止めするための目止剤及び坑井流体等に利用することができる。

Claims (15)

  1.  坑壁を目止めする目止剤であって、
     上記目止剤は、ポリウレタン樹脂を含む樹脂組成物の粉体であり、
     上記ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂及び芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つであり、
     上記樹脂組成物から成形されたシート状の成形体は、23℃におけるデュロメータタイプD硬度が28以上であることを特徴とする目止剤。
  2.  上記樹脂組成物は第1樹脂組成物であり、
     さらに、該第1樹脂組成物とは互いに組成が異なるポリウレタン樹脂を含む第2樹脂組成物から形成される粉体を含み、
     該第2樹脂組成物から成形されたシート状の成形体の23℃におけるデュロメータタイプD硬度は、該第1樹脂組成物から成形されたシート状の成形体の23℃におけるデュロメータタイプD硬度よりも低いことを特徴とする請求項1に記載の目止剤。
  3.  上記第1樹脂組成物に含まれる上記ポリウレタン樹脂は、芳香族イソシアネート系ポリウレタン樹脂からなり、
     上記第2樹脂組成物に含まれる上記ポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂からなることを特徴とする請求項2に記載の目止剤。
  4.  上記第1樹脂組成物から形成される粉体と、上記第2樹脂組成物から形成される粉体との重量比が、40:60~99:1の範囲であることを特徴とする請求項2又は3に記載の目止剤。
  5.  上記樹脂組成物が、上記脂肪族イソシアネート系ポリウレタン樹脂及び上記芳香族イソシアネート系ポリウレタン樹脂の両方を含んでいることを特徴とする請求項1又は2に記載の目止剤。
  6.  上記脂肪族イソシアネート系ポリウレタン樹脂と上記芳香族イソシアネート系ポリウレタン樹脂との重量比が、80:20であるか、80:20よりも上記脂肪族イソシアネート系ポリウレタン樹脂が少なく、0:100よりも上記脂肪族イソシアネート系ポリウレタン樹脂が多いことを特徴とする請求項5に記載の目止剤。
  7.  上記脂肪族イソシアネート系ポリウレタン樹脂を構成している脂肪族イソシアネートは、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水添キシリレンジイソシアネート、及びジシクロヘキシルメタンジイソシアネートからなる群から選択される少なくとも1つの脂肪族イソシアネートであることを特徴とする請求項1~6の何れか1項に記載の目止剤。
  8.  上記芳香族イソシアネート系ポリウレタン樹脂を構成している芳香族イソシアネートは、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、及びナフタレンジイソシアネートからなる群から選択される少なくとも1つの芳香族イソシアネートであることを特徴とする請求項1~7の何れか1項に記載の目止剤。
  9.  上記脂肪族イソシアネート系ポリウレタン樹脂及び上記芳香族イソシアネート系ポリウレタン樹脂のうちの少なくとも1つは、少なくともポリエステル骨格を含んでいることを特徴とする請求項1~8の何れか1項に記載の目止剤。
  10.  上記樹脂組成物は、架橋剤を含んでいることを特徴とする請求項1に記載の目止剤、又は、上記第1樹脂組成物及び上記第2樹脂組成物のうちの少なくとも一方は、さらに架橋剤を含んでいることを特徴とする請求項2~4の何れか1項に記載の目止剤。
  11.  上記樹脂組成物が含むポリウレタン樹脂は、脂肪族イソシアネート系ポリウレタン樹脂からなり、該樹脂組成物は、さらに架橋剤を含み、該脂肪族イソシアネート系ポリウレタン樹脂と、該架橋剤との重量比が、99.8:0.2~50:50の範囲であることを特徴とする請求項1又は2に記載の目止剤。
  12.  上記樹脂組成物が含むポリウレタン樹脂は、上記芳香族イソシアネート系ポリウレタン樹脂からなり、該樹脂組成物は、さらに架橋剤を含み、該芳香族イソシアネート系ポリウレタン樹脂と、該架橋剤との重量比は、100:0よりも架橋剤が多く、50:50であるか、50:50よりも架橋剤が少ないことを特徴とする請求項1~4の何れか1項に記載の目止剤。
  13.  上記架橋剤は、多官能イソシアネート化合物、エチレン系不飽和基を有するモノマー、多価アミン、多価アルコール、及び多官能エポキシ化合物からなる群から選択される少なくとも1つの架橋剤であることを特徴とする請求項10~12の何れか1項に記載の目止剤。
  14.  請求項1~13の何れか1項に記載の目止剤を含むことを特徴とする坑井流体。
  15.  請求項1~13の何れか1項に記載の目止剤を使用して一時目止めを行うことを特徴とする坑井掘削方法。
PCT/JP2018/008064 2017-03-16 2018-03-02 目止剤及びその利用 WO2018168529A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017051955A JP2020100676A (ja) 2017-03-16 2017-03-16 目止剤及びその利用
JP2017-051954 2017-03-16
JP2017-051955 2017-03-16
JP2017051954A JP2020100675A (ja) 2017-03-16 2017-03-16 目止剤及びその利用

Publications (1)

Publication Number Publication Date
WO2018168529A1 true WO2018168529A1 (ja) 2018-09-20

Family

ID=63523923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008064 WO2018168529A1 (ja) 2017-03-16 2018-03-02 目止剤及びその利用

Country Status (1)

Country Link
WO (1) WO2018168529A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440348A (zh) * 2020-04-13 2020-07-24 江苏鼎峰石油科技有限公司 一种薄片型耐高温自悬浮堵漏剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072317A1 (ja) * 2013-11-15 2015-05-21 株式会社クレハ 坑井掘削用一時目止め剤
JP2015143458A (ja) * 2013-12-27 2015-08-06 株式会社クレハ ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法
WO2015133543A1 (ja) * 2014-03-07 2015-09-11 株式会社クレハ 弾性材料を含有するダウンホールツール用シール部材を坑井処理流体と接触させて弾性材料を崩壊させる坑井処理方法
JP2015180795A (ja) * 2014-03-07 2015-10-15 株式会社クレハ 崩壊性のダウンホールツール用シール部材、ダウンホールツール、及び坑井掘削方法
WO2016047501A1 (ja) * 2014-09-22 2016-03-31 株式会社クレハ 反応性金属及び分解性樹脂組成物を含有する坑井掘削用組成物、坑井掘削用成形品、及び坑井掘削方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072317A1 (ja) * 2013-11-15 2015-05-21 株式会社クレハ 坑井掘削用一時目止め剤
JP2015143458A (ja) * 2013-12-27 2015-08-06 株式会社クレハ ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法
WO2015133543A1 (ja) * 2014-03-07 2015-09-11 株式会社クレハ 弾性材料を含有するダウンホールツール用シール部材を坑井処理流体と接触させて弾性材料を崩壊させる坑井処理方法
JP2015180795A (ja) * 2014-03-07 2015-10-15 株式会社クレハ 崩壊性のダウンホールツール用シール部材、ダウンホールツール、及び坑井掘削方法
WO2016047501A1 (ja) * 2014-09-22 2016-03-31 株式会社クレハ 反応性金属及び分解性樹脂組成物を含有する坑井掘削用組成物、坑井掘削用成形品、及び坑井掘削方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440348A (zh) * 2020-04-13 2020-07-24 江苏鼎峰石油科技有限公司 一种薄片型耐高温自悬浮堵漏剂的制备方法
CN111440348B (zh) * 2020-04-13 2022-05-03 江苏鼎峰石油科技有限公司 一种薄片型耐高温自悬浮堵漏剂的制备方法

Similar Documents

Publication Publication Date Title
CA2930362C (en) Temporary plugging agent for well drilling
JP6194018B2 (ja) ダウンホールツールまたはダウンホールツール部材及び分解性樹脂組成物、並びに炭化水素資源の回収方法
JP2020531613A (ja) アルカリ性ナノ粒子系分散液および水不溶性加水分解性ポリエステルを有する逸泥防止剤組成物
CN107532465A (zh) 弹性体的可控降解及其在油田应用中的用途
JP6207529B2 (ja) ポリ−l−乳酸固化押出成形物の応用及びポリ−l−乳酸固化押出成形物の製造方法
JP6114875B2 (ja) ダウンホールツール用分解性ゴム部材、分解性シール部材、分解性保護部材、ダウンホールツール、及び坑井掘削方法
AU2008245781B2 (en) Use of elastomers to produce gels for treating a wellbore
JP6441649B2 (ja) ダウンホールツール用分解性シール部材、ダウンホールツール、及び坑井掘削方法
JPWO2013161755A1 (ja) ポリグリコール酸樹脂短繊維及び坑井処理流体
JPWO2013161754A1 (ja) 坑井処理流体用ポリグリコール酸樹脂短繊維
JP2020531612A (ja) アルカリ性ナノ粒子系分散液および水溶性加水分解性エステルを有する逸泥防止剤組成物
US10696893B2 (en) Perforation balls and methods of using the same
US20160264851A1 (en) Aqueous Dispersion and Additives for Fracturing Work
WO2018168529A1 (ja) 目止剤及びその利用
WO2018168530A1 (ja) 目止剤及びその利用
WO2017110610A1 (ja) 組成物、ダウンホールツール用組成物、ダウンホールツール用分解性ゴム部材、ダウンホールツール、及び坑井掘削方法
JP2020100676A (ja) 目止剤及びその利用
JP2020100675A (ja) 目止剤及びその利用
WO2020163674A1 (en) Degradable urethane and urethane-urea systems
CN110997863A (zh) 涂覆的颗粒、其制备方法及其作为支撑剂的使用方法
KR20190084613A (ko) 반응형 바닥코팅제 조성물 및 이의 제조방법
JP6968529B2 (ja) 変位絶縁材組成物、硬化体、制水設備の変位絶縁方法および制水設備
JP2008267036A (ja) 雑草の生育を抑制する雑草生育抑制工法及び雑草生育抑制用組成物
JP2006070058A (ja) 液状ブロック化ウレタンプレポリマー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP