WO2015098053A1 - 電解コンデンサ用セパレータ、その製造方法、及びそれを用いた電解コンデンサ - Google Patents

電解コンデンサ用セパレータ、その製造方法、及びそれを用いた電解コンデンサ Download PDF

Info

Publication number
WO2015098053A1
WO2015098053A1 PCT/JP2014/006313 JP2014006313W WO2015098053A1 WO 2015098053 A1 WO2015098053 A1 WO 2015098053A1 JP 2014006313 W JP2014006313 W JP 2014006313W WO 2015098053 A1 WO2015098053 A1 WO 2015098053A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
separator
electrolytic capacitor
porogen
sheet
Prior art date
Application number
PCT/JP2014/006313
Other languages
English (en)
French (fr)
Inventor
伊藤 聡
俊祐 能見
洋佑 山田
矢野 雅也
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015098053A1 publication Critical patent/WO2015098053A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators

Definitions

  • the present invention relates to an electrolytic capacitor separator and an electrolytic capacitor, and more particularly to a separator suitable for an electrolytic capacitor using an electrolytic solution and an electrolytic capacitor using an electrolytic solution.
  • Electrolytic paper is generally used as a separator for electrolytic capacitors. Since there is a limit in improving the uniformity and denseness of the electrolytic paper, it has been proposed to use a cellulose film as a separator for electrolytic capacitors (Patent Document 1). However, since it is difficult to control the gap between the cellulose fibers to be small, the cellulose film tends to have a large pore diameter. For this reason, a cellulose film is not a desirable separator from the viewpoint of preventing a short circuit that may occur between electrodes of an electrolytic capacitor.
  • a porous film having a small pore diameter can be formed.
  • the polyolefin resin has a low melting point.
  • a separator using a polyolefin-based resin may not satisfy the heat resistance required for an electrolytic capacitor separator.
  • the heat resistance is required when soldering the electrolytic capacitor using, for example, a reflow method.
  • the present invention An electrolytic capacitor separator, A three-dimensional network skeleton composed of epoxy resin; Pores communicating so that ions can move between the front and back surfaces of the separator; The separator for electrolytic capacitors provided with this.
  • the present invention provides: Preparing an epoxy resin composition comprising an epoxy resin, a curing agent and a porogen; A step of molding the cured product of the epoxy resin composition into a sheet shape or curing the sheet-shaped molded product of the epoxy resin composition so as to obtain an epoxy resin sheet; Removing the porogen from the epoxy resin sheet; The manufacturing method of the separator for electrolytic capacitors containing this is provided.
  • the present invention provides: The anode, A cathode, The separator of the present invention disposed between the anode and the cathode; An electrolyte impregnated in the separator; An electrolytic capacitor is provided.
  • Epoxy resin is suitable for forming a porous film with a small pore diameter and has excellent heat resistance.
  • ADVANTAGE OF THE INVENTION According to this invention, the electrical capacitor
  • FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to an embodiment of the present invention.
  • the figure for showing the composition of the parts of the electrolytic capacitor of Drawing 1A Schematic diagram of the cutting process
  • the electrolytic capacitor 100 is an aluminum electrolytic capacitor including an anode 2, a cathode 3, and a separator 4 (electrolytic capacitor separator).
  • the separator 4 is disposed between the anode 2 and the cathode 3.
  • the anode 2, the cathode 3, and the separator 4 are integrally wound to constitute the element body 10.
  • the anode 2 and the cathode 3 are each formed of an aluminum foil.
  • an oxide film Al 2 O 3
  • the separator 4 includes a three-dimensional network skeleton made of an epoxy resin and holes that communicate with each other so that ions can move between the front surface and the back surface of the separator.
  • the element body 10 is accommodated in the cylindrical case 6. That is, the electrolytic capacitor 100 has a cylindrical shape. However, the shape of the electrolytic capacitor 100 is not particularly limited. The electrolytic capacitor 100 may have, for example, a flat square shape. The element body 10 does not necessarily have a winding structure. A plate-like element body may be formed by simply laminating the anode 2, the separator 4, and the cathode 3.
  • the case 6 is made of a metal such as stainless steel or aluminum.
  • the side surface of the case 6 is covered with a sleeve 7 made of a resin film.
  • the case 6 may be formed of a resin material.
  • the electrolytic capacitor 100 further includes an anode lead 2a, a cathode lead 3a, an anode lead wire 2b, a cathode lead wire 3b, and a sealing rubber 9.
  • the anode lead 2a has one end connected to the anode 2 and the other end connected to the anode lead wire 2b.
  • the cathode lead 3a has one end electrically connected to the cathode 3 and the other end connected to the cathode lead wire 3b.
  • the element body 10 is impregnated with an electrolytic solution.
  • the sealing rubber 9 seals the inside of the case 6, fixes the anode lead 2 a and the cathode lead 3 a, and further fixes the element body 10 connected to the leads 2 a and 3 a in the case 6.
  • the anode 2, the cathode 3 and other members constituting the electrolytic capacitor 100 can be used without any particular limitations as long as they are conventionally known.
  • an aluminum electrolytic capacitor has been described as an example, but the present invention is not limited to this, and can be applied to an electrolytic capacitor using an electrolytic solution and a separator.
  • An electrolytic capacitor is a capacitor that uses a coating formed on the surface of an electrode by chemical treatment such as chemical conversion treatment as a dielectric layer.
  • the separator 4 is composed of a porous epoxy resin film having a three-dimensional network skeleton and pores. Adjacent holes may be in communication with each other so that ions can move between the front surface and the back surface of the separator 4, that is, ions can move between the anode 2 and the cathode 3.
  • the separator 4 has a thickness in the range of 5 to 50 ⁇ m, for example. If the separator 4 is too thick, it becomes difficult to move ions between the anode 2 and the cathode 3. Although it is not impossible to manufacture the separator 4 having a thickness of less than 5 ⁇ m, in order to ensure the reliability of the electrolytic capacitor 100, a thickness of 5 ⁇ m, particularly 10 ⁇ m or more is preferable.
  • the separator 4 has, for example, a porosity of 20 to 80%, preferably 20 to 60%, and an average pore diameter of 0.02 to 1 ⁇ m. When the porosity and average pore diameter are adjusted to such ranges, the separator 4 can sufficiently exhibit the required functions.
  • the average pore diameter can be obtained by observing the cross section of the separator 4 with a scanning electron microscope. Specifically, image processing is performed for each of the holes existing in a range of a field width of 60 ⁇ m and a predetermined depth from the surface (for example, 1/5 to 1/100 of the thickness of the separator 4). Thus, the pore diameter can be obtained, and the average value thereof can be obtained as the average pore diameter.
  • Image processing can be performed using, for example, free software “Image J” or “Photoshop” manufactured by Adobe.
  • the separator 4 may have an air permeability (Gurley value) in the range of 1 to 1000 seconds / 100 cm 3 . Since the separator 4 has air permeability in such a range, ions can easily move inside the separator 4.
  • the air permeability can be measured according to a method defined in Japanese Industrial Standard (JIS) P8117.
  • the separator for an electrolytic capacitor (separator 4) of this embodiment includes an epoxy resin porous film having a microporous structure, and short-circuiting between electrodes is less likely to occur. Even when the film thickness is small, short circuiting is unlikely to occur, so this separator is suitable for increasing the capacity of electrolytic capacitors.
  • the separator for electrolytic capacitors of this embodiment includes an epoxy resin porous film, the electrolytic solution has excellent permeability. As a result, the internal resistance in the electrolytic capacitor can be suppressed and the characteristics of the electrolytic capacitor can be improved. Furthermore, in the step of impregnating the separator with the electrolytic solution, the time until the separator is filled with the electrolytic solution can be shortened, so that the productivity of the electrolytic capacitor can be improved.
  • the electrolytic capacitor separator of this embodiment does not contain a filler. For this reason, it is easy to reduce the weight and thickness of the electrolytic capacitor.
  • the electrolytic capacitor separator of this embodiment is excellent in heat resistance because it includes an epoxy resin porous film. Therefore, the holes in the separator are not easily blocked by a change in temperature, and the internal resistance in the separator does not easily fluctuate even when the temperature in the electrolytic capacitor rises.
  • the epoxy resin porous membrane can be produced, for example, by any of the following methods (a), (b), and (c).
  • the methods (a) and (b) are common in that the curing step is performed after the epoxy resin composition is formed into a sheet.
  • the method (c) is characterized in that an epoxy resin block-shaped cured body is formed and the cured body is formed into a sheet shape.
  • Method (a) An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is applied onto a substrate so that a sheet-like molded body of the epoxy resin composition is obtained. Thereafter, the sheet-like molded body of the epoxy resin composition is heated to three-dimensionally crosslink the epoxy resin. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Thereafter, the porogen is removed by washing from the obtained epoxy resin sheet and dried to obtain an epoxy resin porous film having pores communicating with the three-dimensional network skeleton.
  • substrate is not specifically limited, A plastic substrate, a glass substrate, a metal plate, etc. can be used as a board
  • Method (b) An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is applied on the substrate. Thereafter, another substrate is placed on the applied epoxy resin composition to produce a sandwich structure. Note that spacers (for example, double-sided tape) may be provided at the four corners of the substrate in order to ensure a certain distance between the substrates. Next, the sandwich structure is heated to cross-link the epoxy resin three-dimensionally. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Thereafter, the obtained epoxy resin sheet is taken out, the porogen is removed by washing, and dried to obtain an epoxy resin porous membrane having pores communicating with the three-dimensional network skeleton.
  • substrate is not restrict
  • Method (c) An epoxy resin composition containing an epoxy resin, a curing agent and a porogen is filled into a mold having a predetermined shape. Thereafter, a cured product of the cylindrical or columnar epoxy resin composition is produced by three-dimensionally crosslinking the epoxy resin. At that time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen. Then, while rotating the hardening body of an epoxy resin composition centering on a cylinder axis
  • Method (c) will be described in detail.
  • the process of preparing an epoxy resin composition, the process of hardening an epoxy resin, the process of removing a porogen, etc. are common to each method.
  • the material which can be used is common to each method.
  • the epoxy resin porous membrane can be manufactured through the following main steps.
  • An epoxy resin composition is prepared.
  • a cured product of the epoxy resin composition is formed into a sheet.
  • the porogen is removed from the epoxy resin sheet.
  • an epoxy resin composition containing an epoxy resin, a curing agent and a porogen is prepared. Specifically, an epoxy resin and a curing agent are dissolved in a porogen to prepare a uniform solution.
  • an aromatic epoxy resin either an aromatic epoxy resin or a non-aromatic epoxy resin can be used.
  • the aromatic epoxy resin include a polyphenyl-based epoxy resin, an epoxy resin containing a fluorene ring, an epoxy resin containing triglycidyl isocyanurate, an epoxy resin containing a heteroaromatic ring (for example, a triazine ring), and the like.
  • Polyphenyl-based epoxy resins include bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, stilbene type epoxy resins, biphenyl type epoxy resins, and bisphenol A novolak type epoxy resins.
  • Non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, alicyclic glycidyl amine type epoxy resins, and alicyclic glycidyl ester type epoxy resins. Etc. These may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, aromatic glycidylamine type epoxy resin, epoxy resin containing fluorene ring, triglycidyl isocyanurate
  • Preferred is at least one selected from the group consisting of an epoxy resin, an alicyclic glycidyl ether type epoxy resin, an alicyclic glycidyl amine type epoxy resin, and an alicyclic glycidyl ester type epoxy resin. What has an equivalent can be used conveniently.
  • these epoxy resins are used, a uniform three-dimensional network skeleton and uniform pores can be formed, and excellent chemical resistance and high strength can be imparted to the epoxy resin porous film.
  • the epoxy resin composition includes a glycidylamine type epoxy resin, such as a glycidylamine type epoxy resin and a bisphenol A type epoxy resin, a brominated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol.
  • AD type epoxy resin epoxy resin containing fluorene ring, epoxy resin containing triglycidyl isocyanurate, alicyclic glycidyl ether type epoxy resin, and at least one epoxy resin selected from the group consisting of alicyclic glycidyl ester type epoxy resins Including.
  • the glycidyl amine type epoxy resin is an epoxy resin having a structure in which the hydrogen atom of the amino group of the amine compound is substituted with a glycidyl group, and the glycidyl amine type epoxy resin has two or more diglycidyl from the viewpoint of particularly high crosslinkability. It preferably has an amino group.
  • a specific example of such a glycidylamine type epoxy resin is 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (commercially available from Mitsubishi Gas Chemical Company under the trade name “TETRAD®-C”).
  • N, N, N ′, N′-tetraglycidyl-m-xylenediamine (commercially available from Mitsubishi Gas Chemical Co., Ltd. under the trade name “TETRAD (registered trademark) -X”)
  • an epoxy resin having a diglycidylamino group (commercially available from Mitsubishi Gas Chemical Co., Ltd. under the trade name “TETRAD (registered trademark) -X”)
  • an epoxy resin having a diglycidylamino group When using glycidylamine type epoxy resin, uniform three-dimensional network skeleton and uniform pores can be formed, crosslink density after curing is improved, and epoxy resin porous film has high strength, heat resistance and chemical resistance. Can be granted.
  • a glycidylamine type epoxy resin may be used independently and may use 2 or more types together.
  • Aromatic curing agents include aromatic amines (eg, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, dimethylaminomethylbenzene), aromatic acid anhydrides (eg, phthalic anhydride, trimellitic anhydride) , Pyromellitic anhydride), phenol resins, phenol novolac resins, amines containing heteroaromatic rings (for example, amines containing triazine rings), and the like.
  • Non-aromatic curing agents include aliphatic amines (eg, ethylenediamine, 1,4-butylenediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octane.
  • aliphatic amines eg, ethylenediamine, 1,4-butylenediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octane.
  • Alicyclic amines eg, isophoronediamine, menthanediamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro (5,5) undecane adduct, Bis (4-amino-3-methyl Kurohekishiru) methane, bis (4-aminocyclohexyl) methane, these modified products
  • aliphatic polyamide amines containing a polyamine and a dimer acid may be used alone or in combination of two or more.
  • a curing agent having two or more primary amines in the molecule can be suitably used.
  • 1,6-hexanediamine is preferred because of the high crosslink density of the resulting epoxy resin porous membrane, higher chemical stability, and ease of availability and handling.
  • a combination of an epoxy resin and a curing agent a combination of an aromatic epoxy resin and an aliphatic amine curing agent, a combination of an aromatic epoxy resin and an alicyclic amine curing agent, or an alicyclic epoxy resin and an aromatic amine A combination with a curing agent is preferred.
  • excellent heat resistance can be imparted to the porous epoxy resin membrane.
  • the porogen may be a solvent that can dissolve the epoxy resin and the curing agent. Porogens are also used as solvents that can cause reaction-induced phase separation after the epoxy resin and curing agent are polymerized. Specifically, cellosolves such as methyl cellosolve and ethyl cellosolve, esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate, glycols such as polyethylene glycol and polypropylene glycol, polyoxyethylene monomethyl ether and polyoxyethylene Ethers such as dimethyl ether can be used as the porogen. These may be used alone or in combination of two or more.
  • at least one selected from the group consisting of polyethylene glycol having a molecular weight of 200 or less, polypropylene glycol having a molecular weight of 500 or less, polyoxyethylene monomethyl ether, and propylene glycol monomethyl ether acetate can be preferably used.
  • these porogens are used, a uniform three-dimensional network skeleton and uniform pores can be formed. These may be used alone or in combination of two or more.
  • a solvent in which a reaction product of the epoxy resin and the curing agent is soluble can be used as a porogen.
  • porogen include brominated bisphenol A type epoxy resin (“Epicoat 5058” manufactured by Japan Epoxy Resin Co., Ltd.).
  • the porosity, average pore size, and pore size distribution of the epoxy resin porous membrane vary depending on the type of raw material, the mixing ratio of the raw material, and the reaction conditions (for example, heating temperature and heating time during reaction-induced phase separation). Therefore, it is preferable to select optimum conditions in order to obtain the target porosity, average pore diameter, and pore diameter distribution.
  • the reaction conditions for example, heating temperature and heating time during reaction-induced phase separation. Therefore, it is preferable to select optimum conditions in order to obtain the target porosity, average pore diameter, and pore diameter distribution.
  • the co-continuous structure of the crosslinked epoxy resin and porogen is fixed in a specific state and stable. A porous structure can be obtained.
  • the blending ratio of the curing agent to the epoxy resin is, for example, 0.6 to 1.5 in terms of the curing agent equivalent to 1 equivalent of epoxy group.
  • Appropriate curing agent equivalent contributes to improvement of properties such as heat resistance, chemical durability and mechanical properties of the epoxy resin porous membrane.
  • a curing accelerator may be added to the solution in order to obtain the desired porous structure.
  • the curing accelerator include tertiary amines such as triethylamine and tributylamine, and imidazoles such as 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenol-4,5-dihydroxyimidazole. It is done.
  • porogen 40 to 80% by weight of porogen can be used with respect to the total weight of epoxy resin, curing agent and porogen.
  • an epoxy resin porous film having a desired porosity, average pore diameter, and air permeability can be formed.
  • the average pore diameter of the epoxy resin porous membrane As one method for adjusting the average pore diameter of the epoxy resin porous membrane to a desired range, there is a method of using a mixture of two or more epoxy resins having different epoxy equivalents.
  • the difference in epoxy equivalent is preferably 100 or more, and there are cases where an epoxy resin that is liquid at normal temperature and an epoxy resin that is solid at normal temperature are mixed and used.
  • a cured product of the epoxy resin composition is prepared from a solution containing an epoxy resin, a curing agent and a porogen. Specifically, the solution is filled in a mold and heated as necessary. A cured body having a predetermined shape is obtained by three-dimensionally crosslinking the epoxy resin. In that case, a co-continuous structure is formed by phase-separation of a crosslinked epoxy resin and a porogen.
  • the shape of the cured body is not particularly limited. If a columnar or cylindrical mold is used, a cured body having a cylindrical or columnar shape can be obtained. When the cured body has a cylindrical or columnar shape, it is easy to carry out a cutting step (see FIG. 2) described later.
  • the temperature and time required for curing the epoxy resin composition are not particularly limited because they vary depending on the type of epoxy resin and curing agent.
  • a curing treatment can be performed at room temperature.
  • the temperature is about 20 to 40 ° C., and the time is about 3 to 100 hours, preferably about 20 to 50 hours.
  • the temperature is about 40 to 120 ° C., preferably about 60 to 100 ° C., and the time is about 10 to 300 minutes, preferably about 30 to 180 minutes.
  • post-cure post-treatment
  • post-curing conditions are not particularly limited, but the temperature is room temperature or about 50 to 160 ° C., and the time is about 2 to 48 hours.
  • the dimensions of the cured body are not particularly limited.
  • the diameter of the cured body is, for example, 20 cm or more, preferably 30 to 150 cm, from the viewpoint of manufacturing efficiency of the epoxy resin porous film.
  • the length (axial direction) of the cured body can also be appropriately set in consideration of the dimensions of the epoxy resin porous film to be obtained.
  • the length of the cured body is, for example, 20 to 200 cm, preferably 20 to 150 cm, and more preferably 20 to 120 cm from the viewpoint of ease of handling.
  • the cured body is formed into a sheet.
  • the cured body having a cylindrical or columnar shape can be formed into a sheet shape by the following method. Specifically, the cured body 12 is attached to the shaft 14 as shown in FIG.
  • the surface layer portion of the cured body 12 is cut (sliced) at a predetermined thickness using a cutting blade 18 (slicer) so that an epoxy resin sheet 16 having a long shape is obtained.
  • the surface layer portion of the cured body 12 is cut while rotating the cured body 12 relative to the cutting blade 18 around the cylindrical axis O (or columnar axis) of the cured body 12. According to this method, the epoxy resin sheet 16 can be produced efficiently.
  • the line speed when cutting the cured body 12 is in the range of 2 to 70 m / min, for example.
  • the thickness of the epoxy resin sheet 16 is determined according to the target thickness (10 to 50 ⁇ m) of the epoxy resin porous film. Since the thickness slightly decreases when the porogen is removed and dried, the epoxy resin sheet 16 is usually slightly thicker than the target thickness of the epoxy resin porous film.
  • the length of the epoxy resin sheet 16 is not specifically limited, From a viewpoint of the production efficiency of the epoxy resin sheet 16, it is 100 m or more, for example, Preferably it is 1000 m or more.
  • the porogen is extracted from the epoxy resin sheet 16 and removed.
  • the porogen can be removed from the epoxy resin sheet 16 by immersing the epoxy resin sheet 16 in a solvent.
  • the solvent is preferably a halogen-free solvent that does not have a large environmental load.
  • the halogen-free solvent for removing the porogen from the epoxy resin sheet 16 at least one selected from the group consisting of water, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide), and THF (tetrahydrofuran) is used as the porogen. It can be used depending on the type. Also, supercritical fluids such as water and carbon dioxide can be used as a solvent for removing porogen. In order to positively remove the porogen from the epoxy resin sheet 16, ultrasonic cleaning may be performed, or the solvent may be heated and used.
  • the cleaning device for removing the porogen is not particularly limited, and a known cleaning device can be used.
  • a multistage cleaning apparatus having a plurality of cleaning tanks can be suitably used.
  • the number of cleaning stages is more preferably 3 or more.
  • the temperature of the solvent may be changed or the type of the solvent may be changed in the cleaning of each stage.
  • the epoxy resin porous film is dried.
  • the drying conditions are not particularly limited, and the temperature is usually about 40 to 120 ° C., preferably about 50 to 100 ° C., and the drying time is about 10 seconds to 5 minutes.
  • a drying apparatus employing a known sheet drying method such as a tenter method, a floating method, a roll method, or a belt method can be used. A plurality of drying methods may be combined.
  • an epoxy resin porous film having a microporous structure that can be used as the separator 4 can be manufactured very easily. Since the process required at the time of manufacture of a polyolefin porous membrane, for example, an extending process, can be omitted, an epoxy resin porous membrane can be manufactured with high productivity.
  • the separator 4 may be comprised only by the epoxy resin porous film, and may be comprised by the laminated body of an epoxy resin porous film and another porous material.
  • porous materials include polyolefin porous films such as polyethylene porous films and polypropylene porous films, cellulose porous films, and fluororesin porous films.
  • Other porous materials may be provided only on one side of the epoxy resin porous membrane, or may be provided on both sides.
  • the separator 4 may be composed of a laminate of an epoxy resin porous film and a reinforcing material.
  • the reinforcing material include woven fabric and non-woven fabric.
  • the reinforcing material may be provided only on one side of the epoxy resin porous membrane, or may be provided on both sides.
  • RO water means pure water obtained by processing using a reverse osmosis membrane.
  • the test electrode group thus obtained was set in a pressurizing device, and an AC resistance measuring machine (LCR Hitester 3522-50, 10 kHz, manufactured by Hioki Co., Ltd.) was connected to the above two terminal connection portions, Carried out. Pressure was applied until a surface pressure of 0.2 MPa was applied to the test electrode group, and the presence or absence of a short circuit was confirmed from the resistance value. When the resistance value decreased, it was determined that a short circuit occurred. This test was carried out 10 times in total for each example, and the short-circuit rate was X / 10 (the number of short-circuits was 10 times in 10 times).
  • Example 1 In a 3 L cylindrical plastic container, jER (registered trademark) 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of 184 to 194 g / eq.) And TETRAD (registered trademark) -C (glycidylamine) Type epoxy resin, Mitsubishi Gas Chemical Co., Ltd., epoxy equivalent 95-110 g / eq.) 25.0 parts by weight is dissolved in polypropylene glycol (ADEKA Co., Ltd., Adeka Polyether P-400) 211.9 parts by weight, An epoxy resin / polypropylene glycol solution was prepared.
  • the polypropylene glycol was removed by immersion for 12 hours. Then, drying was performed in an 80 ° C. atmosphere for 2 hours to obtain a 48 ⁇ m thick epoxy resin porous film (separator).
  • Example 2 The same procedure as in Example 1 was carried out except that a continuous lathe was sliced with a thickness of 22 ⁇ m using a cutting lathe device to obtain an epoxy resin porous film (separator) having a thickness of 21 ⁇ m.
  • Example 1 Evaluation was carried out in the same manner as in Example 1 except that a cellulose microporous membrane TF40-30 (manufactured by Nippon Kogyo Paper Industries Co., Ltd.) was used instead of the epoxy resin porous membrane.
  • a cellulose microporous membrane TF40-30 manufactured by Nippon Kogyo Paper Industries Co., Ltd.
  • Example 2 Evaluation was performed in the same manner as in Example 1 except that Celgard 2400 (polypropylene porous film, manufactured by Polypore Corporation) was used instead of the epoxy resin porous film.
  • Celgard 2400 polypropylene porous film, manufactured by Polypore Corporation
  • Table 1 shows the evaluation results for the examples and comparative examples.
  • Comparative Example 1 cellulose microporous membrane
  • Comparative Example 2 polyolefin porous membrane
  • the value of the internal resistance by the heat resistance test was very large.
  • the films obtained in Examples 1 and 2 did not cause a short circuit between the electrodes and were excellent in heat resistance.
  • the separator provided by the present invention can be suitably used for electrolytic capacitors such as aluminum electrolytic capacitors.
  • the separator provided by the present invention contributes to miniaturization and high capacity of the capacitor, and also has high-temperature durability, so that it is useful for a capacitor that particularly requires high reliability performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 電極間での短絡の防止と高い耐熱性との両立に適した電解コンデンサ用セパレータを提供する。エポキシ樹脂で構成された三次元網目状骨格と、セパレータの表面と裏面との間でイオンが移動できるように連通している空孔と、を備えた、電解コンデンサ用セパレータを提供する。セパレータの厚さは、例えば5~50μmの範囲とする。このセパレータは、例えば、エポキシ樹脂シートからポロゲンを除去することにより製造することができる。

Description

電解コンデンサ用セパレータ、その製造方法、及びそれを用いた電解コンデンサ
 本発明は、電解コンデンサ用セパレータ、及び電解コンデンサに関し、詳しくは電解液を用いる電解コンデンサに適したセパレータ及び電解液を用いる電解コンデンサに関する。
 電解コンデンサ用セパレータとしては、一般に電解紙が用いられている。電解紙の均一性及び緻密性の向上には限界があるため、電解コンデンサ用セパレータとして、セルロースフィルムを用いることが提案されている(特許文献1)。しかし、セルロースフィルムは、セルロース繊維の間の空隙を小さく制御することが難しいことから、孔径が大きくなる傾向がある。このため、セルロースフィルムは、電解コンデンサの電極間で生じうる短絡を防止する観点からは望ましいセパレータではない。
 一方、ポリオレフィン系樹脂を用いれば、孔径の小さな多孔膜を形成できる。しかし、ポリオレフィン系樹脂はその融点が低い。このため、ポリオレフィン系樹脂を用いたセパレータでは、電解コンデンサ用セパレータに求められる耐熱性を満たせないことがあった。耐熱性は、例えばリフロー方式を用いて電解コンデンサをはんだ付けする際に求められる。
国際公開第2013/069146号
 したがって、本発明は、電極間での短絡の防止と高い耐熱性との両立に適した電解コンデンサ用セパレータを提供することを目的とする。本発明の別の目的は、このような電解コンデンサ用セパレータの製造に適した方法を提供することにある。本発明の更に別の目的は、このような電解コンデンサ用セパレータを備えた電解コンデンサを提供することにある。
 すなわち、本発明は、
 電解コンデンサ用セパレータであって、
 エポキシ樹脂で構成された三次元網目状骨格と、
 前記セパレータの表面と裏面との間でイオンが移動できるように連通している空孔と、
を備えた、電解コンデンサ用セパレータ、を提供する。
 別の側面において、本発明は、
 エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程と、 
 エポキシ樹脂シートが得られるように、前記エポキシ樹脂組成物の硬化体をシート状に成形する又は前記エポキシ樹脂組成物のシート状成形体を硬化させる工程と、
 前記エポキシ樹脂シートから前記ポロゲンを除去する工程と、
を含む、電解コンデンサ用セパレータの製造方法、を提供する。
 別の側面において、本発明は、
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に配置された、本発明のセパレータと、
 前記セパレータに含浸した電解液と、
を備えた、電解コンデンサ、を提供する。
 エポキシ樹脂は、孔径の小さい多孔膜の形成に適し、耐熱性にも優れている。本発明によれば、電極間での電気的な短絡が生じにくく、耐熱性を有する電解コンデンサ用セパレータを得ることができる。また、このセパレータの優れた特性を活かした電解コンデンサを得ることができる。
本発明の一実施形態に係る電解コンデンサの概略断面図 図1Aの電解コンデンサの部品の構成を示すための図 切削工程の概略図
 以下、添付の図面を参照しつつ、本発明の一実施形態を説明する。
 本実施形態に係る電解コンデンサ100は、陽極2、陰極3、セパレータ4(電解コンデンサ用セパレータ)を備えたアルミニウム電解コンデンサである。セパレータ4は、陽極2と陰極3との間に配置されている。陽極2、陰極3及びセパレータ4は、一体的に巻回されて素子本体10を構成している。陽極2及び陰極3は、それぞれアルミニウム箔により形成されている。陽極2の表面には、化成処理により誘電体層として酸化膜(Al23)が形成されている。セパレータ4は、エポキシ樹脂で構成された三次元網目状骨格と、当該セパレータの表面と裏面との間でイオンが移動できるように連通している空孔と、を備えている。
 本実施形態において、素子本体10は円筒形のケース6に収容されている。すなわち、電解コンデンサ100は円筒の形状を有している。しかし、電解コンデンサ100の形状は特に限定されない。電解コンデンサ100は、例えば、扁平な角型の形状を有していてもよい。また、素子本体10は巻回構造を必須としない。陽極2、セパレータ4及び陰極3が単に積層されることによって、板状の素子本体が形成されていてもよい。ケース6は、ステンレス、アルミニウム等の金属で作られている。ケース6の側面は、樹脂フィルムからなるスリーブ7により覆われている。ただし、ケース6は、樹脂材料により形成されていてもよい。
 電解コンデンサ100は、さらに、陽極リード2a、陰極リード3a、陽極リード線2b、陰極リード線3b、および封口ゴム9を備えている。陽極リード2aは、陽極2に接続された一端と、陽極リード線2bに接続された他端とを有する。陰極リード3aは、陰極3に電気的に接続された一端と、陰極リード線3bに接続された他端とを有する。素子本体10には電解液が含浸されている。封口ゴム9は、ケース6内を密閉するとともに、陽極リード2a及び陰極リード3aを固定し、さらには、リード2a、3aに接続した素子本体10をケース6内に固定している。
 電解コンデンサ100を構成する陽極2、陰極3及びその他の部材は、従来から知られていたものを特に制限することなく使用できる。
 上記では、アルミニウム電解コンデンサを例に挙げたが、本発明は、これに限らず、電解液とセパレータとを用いる電解コンデンサに適用できる。電解コンデンサは、化成処理等の化学処理により電極の表面に形成した被膜を誘電体層とするコンデンサである。
 次に、セパレータ4について詳しく説明する。
 本実施形態において、セパレータ4は、三次元網目状骨格と、空孔とを備えたエポキシ樹脂多孔膜で構成されている。セパレータ4の表面と裏面との間でイオンが移動できるように、つまり、陽極2と陰極3との間をイオンが移動できるように、隣り合う空孔は互いに連通していてもよい。セパレータ4は、例えば、5~50μmの範囲の厚さを有する。セパレータ4が厚すぎると、陽極2と陰極3との間のイオンの移動が困難となる。5μm未満の厚さのセパレータ4を製造することは不可能ではないが、電解コンデンサ100の信頼性を確保するうえで、5μm、特に10μm以上の厚さが好ましい。
 セパレータ4は、例えば、20~80%、好ましくは20~60%の範囲の空孔率を有し、0.02~1μmの範囲の平均孔径を有する。空孔率及び平均孔径がこのような範囲に調節されていると、セパレータ4は、必要とされる機能を十分に発揮しうる。
 空孔率は、以下の方法で測定できる。まず、測定対象を一定の寸法(例えば、直径6cmの円形)に切断し、その体積及び重量を求める。得られた結果を次式に代入して空孔率を算出する。
  空孔率(%)=100×(V-(W/D))/V
   V:体積(cm3
   W:重量(g)
   D:構成成分の平均密度(g/cm3
 平均孔径は、走査型電子顕微鏡でセパレータ4の断面を観察して求めることができる。具体的には、視野幅60μm、かつ表面から所定の深さ(例えば、セパレータ4の厚さの1/5~1/100)までの範囲内に存在する空孔のそれぞれについて、画像処理を行って孔径を求め、それらの平均値を平均孔径として求めることができる。画像処理は、例えば、フリーソフト「Image J」又はAdobe社製「Photoshop」を使用して行える。
 また、セパレータ4は、1~1000秒/100cm3の範囲の通気度(ガーレー値)を有していてもよい。セパレータ4がこのような範囲に通気度を有していることにより、セパレータ4の内部をイオンが容易に移動しうる。通気度は、日本工業規格(JIS)P8117に規定された方法に従って測定できる。
 本実施形態の電解コンデンサ用セパレータ(セパレータ4)は、微多孔構造を有するエポキシ樹脂多孔膜を備えており、電極間における短絡が生じにくい。膜厚が薄い場合であっても短絡が生じにくいため、このセパレータは電解コンデンサの高容量化に適している。
 本実施形態の電解コンデンサ用セパレータは、エポキシ樹脂多孔膜を備えているため、電解液の浸透性にも優れている。その結果、電解コンデンサ中での内部抵抗を抑制して、電解コンデンサの特性を向上できる。さらに、セパレータに電解液を含浸させる工程において、セパレータ中に電解液が満たされるまでの時間を短縮できるため、電解コンデンサの生産性を向上できる。
 本実施形態の電解コンデンサ用セパレータはフィラーを含んでいない。このため、電解コンデンサの軽量化及び薄型化が容易となる。
 本実施形態の電解コンデンサ用セパレータは、エポキシ樹脂多孔膜を備えているため、耐熱性に優れている。したがって、セパレータ中の孔が温度の変化によって塞がりにくく、電解コンデンサ中の温度が上昇してもセパレータにおける内部抵抗が変動しにくい。
 次に、セパレータ4に使用されたエポキシ樹脂多孔膜の製造方法を説明する。
 エポキシ樹脂多孔膜は、例えば、下記(a)(b)及び(c)のいずれかの方法で製造することができる。方法(a)及び(b)は、エポキシ樹脂組成物をシート状に成形した後で硬化工程を実施する点で共通している。方法(c)は、エポキシ樹脂のブロック状の硬化体を作り、その硬化体をシート状に成形することを特徴としている。
 方法(a)
 エポキシ樹脂組成物のシート状成形体が得られるように、エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を基板上に塗布する。その後、エポキシ樹脂組成物のシート状成形体を加熱してエポキシ樹脂を三次元架橋させる。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、得られたエポキシ樹脂シートからポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔膜が得られる。基板の種類は特に限定されず、プラスチック基板、ガラス基板、金属板等を基板として使用できる。
 方法(b)
 エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を基板上に塗布する。その後、塗布したエポキシ樹脂組成物の上に別の基板を被せてサンドイッチ構造体を作製する。なお、基板と基板との間に一定の間隔を確保するために、基板の四隅にスペーサー(例えば、両面テープ)を設けてもよい。次に、サンドイッチ構造体を加熱してエポキシ樹脂を三次元架橋させる。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、得られたエポキシ樹脂シートを取り出し、ポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔膜が得られる。基板の種類は特に制限されず、プラスチック基板、ガラス基板、金属板等を基板として使用できる。特に、ガラス基板を好適に使用できる。
 方法(c)
 エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を所定形状の金型内に充填する。その後、エポキシ樹脂を三次元架橋させることによって、円筒状又は円柱状のエポキシ樹脂組成物の硬化体を作製する。その際、エポキシ樹脂架橋体とポロゲンとの相分離により共連続構造が形成される。その後、エポキシ樹脂組成物の硬化体を円筒軸又は円柱軸を中心に回転させながら、硬化体の表層部を所定の厚さに切削して長尺状のエポキシ樹脂シートを作製する。そして、エポキシ樹脂シートに含まれたポロゲンを洗浄によって除去し、乾燥させることにより、三次元網目状骨格と連通する空孔とを有するエポキシ樹脂多孔膜が得られる。
 方法(c)を詳細に説明する。なお、エポキシ樹脂組成物を調製する工程、エポキシ樹脂を硬化させる工程、ポロゲンを除去する工程等は、各方法に共通している。また、使用できる材料も各方法に共通である。
 方法(c)によれば、エポキシ樹脂多孔膜は、以下の主要な工程を経て製造されうる。
(i)エポキシ樹脂組成物を調製する。
(ii)エポキシ樹脂組成物の硬化体をシート状に成形する。
(iii)エポキシ樹脂シートからポロゲンを除去する。
 まず、エポキシ樹脂、硬化剤及びポロゲン(細孔形成剤)を含むエポキシ樹脂組成物を調製する。具体的には、エポキシ樹脂及び硬化剤をポロゲンに溶解させて均一な溶液を調製する。
 エポキシ樹脂としては、芳香族エポキシ樹脂及び非芳香族エポキシ樹脂のいずれも使用可能である。芳香族エポキシ樹脂としては、ポリフェニルベースエポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、複素芳香環(例えば、トリアジン環)を含むエポキシ樹脂等が挙げられる。ポリフェニルベースエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、スチルベン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、テトラキス(ヒドロキシフェニル)エタンベースエポキシ樹脂等が挙げられる。非芳香族エポキシ樹脂としては、脂肪族グリシジルエーテル型エポキシ樹脂、脂肪族グリシジルエステル型エポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂及び脂環族グリシジルエステル型エポキシ樹脂からなる群より選ばれる少なくとも1つが好適であり、これらの中でも6000以下のエポキシ当量を有するものを好適に使用できる。これらのエポキシ樹脂を使用すると、均一な三次元網目状骨格及び均一な空孔を形成できるとともに、エポキシ樹脂多孔膜に優れた耐薬品性及び高い強度を付与できる。
 本発明の一実施形態では、エポキシ樹脂組成物は、グリシジルアミン型エポキシ樹脂を含み、例えばグリシジルアミン型エポキシ樹脂とビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、及び脂環族グリシジルエステル型エポキシ樹脂からなる群より選ばれる少なくとも1つのエポキシ樹脂とを含む。
 グリシジルアミン型エポキシ樹脂は、アミン化合物のアミノ基の水素原子がグリシジル基で置換された構造を有するエポキシ樹脂であり、グリシジルアミン型エポキシ樹脂は、特に高い架橋性の観点から2個以上のジグリシジルアミノ基を有することが好ましい。このようなグリシジルアミン型エポキシ樹脂の具体例としては、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(三菱ガス化学株式会社から商品名「TETRAD(登録商標)-C」として市販されている)、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン(三菱ガス化学株式会社から商品名「TETRAD(登録商標)-X」として市販されている)等の2個のジグリシジルアミノ基を有するエポキシ樹脂等が挙げられる。グリシジルアミン型エポキシ樹脂を使用すると、均一な三次元網目状骨格及び均一な空孔を形成できるとともに、硬化後の架橋密度が向上し、エポキシ樹脂多孔膜に高い強度と耐熱性及び耐薬品性を付与できる。グリシジルアミン型エポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。
 硬化剤としては、芳香族硬化剤及び非芳香族硬化剤のいずれも使用可能である。芳香族硬化剤としては、芳香族アミン(例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルジメチルアミン、ジメチルアミノメチルベンゼン)、芳香族酸無水物(例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸)、フェノール樹脂、フェノールノボラック樹脂、複素芳香環を含むアミン(例えば、トリアジン環を含むアミン)等が挙げられる。非芳香族硬化剤としては、脂肪族アミン類(例えば、エチレンジアミン、1,4-ブチレンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン)、脂環族アミン類(例えば、イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、これらの変性品)、ポリアミン類とダイマー酸とを含む脂肪族ポリアミドアミン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、分子内に一級アミンを2つ以上有する硬化剤を好適に使用できる。具体的には、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ポリメチレンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、1,4-ブチレンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、ジエチレントリアミン、トリエチレンテトラミン、及びテトラエチレンペンタミンからなる群より選ばれる少なくとも1つを好適に使用できる。これらの硬化剤を使用すると、均一な三次元網目状骨格及び均一な空孔を形成できるとともに、エポキシ樹脂多孔膜に高い強度及び適切な弾性を付与できる。得られるエポキシ樹脂多孔膜の架橋密度の高さ、より高い化学的安定性、並びに入手及び取り扱いの容易さから1,6-ヘキサンジアミンが好ましい。
 エポキシ樹脂と硬化剤との組み合わせとしては、芳香族エポキシ樹脂と脂肪族アミン硬化剤との組み合わせ、芳香族エポキシ樹脂と脂環族アミン硬化剤との組み合わせ、又は脂環族エポキシ樹脂と芳香族アミン硬化剤との組み合わせが好ましい。これらの組み合わせにより、エポキシ樹脂多孔膜に優れた耐熱性を付与できる。
 ポロゲンは、エポキシ樹脂及び硬化剤を溶かすことができる溶剤でありうる。ポロゲンは、また、エポキシ樹脂と硬化剤とが重合した後、反応誘起相分離を生じさせることができる溶剤として使用される。具体的には、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類、ポリオキシエチレンモノメチルエーテル、ポリオキシエチレンジメチルエーテル等のエーテル類をポロゲンとして使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、メチルセロソルブ、エチルセロソルブ、分子量600以下のポリエチレングリコール、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ポリプロピレングリコール、ポリオキシエチレンモノメチルエーテル及びポリオキシエチレンジメチルエーテルからなる群より選ばれる少なくとも1つを好適に使用できる。特に、分子量200以下のポリエチレングリコール、分子量500以下のポリプロピレングリコール、ポリオキシエチレンモノメチルエーテル及びプロピレングリコールモノメチルエーテルアセテートからなる群より選ばれる少なくとも1つを好適に使用できる。これらのポロゲンを使用すると、均一な三次元網目状骨格及び均一な空孔を形成できる。これらは単独で用いてもよく、2種以上を併用してもよい。
 また、個々のエポキシ樹脂又は硬化剤と常温で不溶又は難溶であっても、エポキシ樹脂と硬化剤との反応物が可溶となる溶剤についてはポロゲンとして使用可能である。このようなポロゲンとしては、例えば、臭素化ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート5058」)が挙げられる。
 エポキシ樹脂多孔膜の空孔率、平均孔径及び孔径分布は、原料の種類、原料の配合比率及び反応条件(例えば、反応誘起相分離時における加熱温度及び加熱時間)に応じて変化する。そのため、目的とする空孔率、平均孔径、孔径分布を得るために、最適な条件を選択することが好ましい。また、相分離時におけるエポキシ樹脂架橋体の分子量、分子量分布、溶液の粘度、架橋反応速度等を制御することにより、エポキシ樹脂架橋体とポロゲンとの共連続構造を特定の状態で固定し、安定した多孔質構造を得ることができる。
 エポキシ樹脂に対する硬化剤の配合比率は、例えば、エポキシ基1当量に対して硬化剤当量が0.6~1.5である。適切な硬化剤当量は、エポキシ樹脂多孔膜の耐熱性、化学的耐久性、力学特性等の特性の向上に寄与する。
 硬化剤の他に、目的とする多孔質構造を得るために、溶液中に硬化促進剤を添加してもよい。硬化促進剤としては、トリエチルアミン、トリブチルアミン等の三級アミン、2-フェノール-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェノール-4,5-ジヒドロキシイミダゾール等のイミダゾール類が挙げられる。
 エポキシ樹脂、硬化剤及びポロゲンの総重量に対して、例えば40~80重量%のポロゲンを使用できる。適切な量のポロゲンを使用することにより、所望の空孔率、平均孔径及び通気度を有するエポキシ樹脂多孔膜を形成しうる。
 エポキシ樹脂多孔膜の平均孔径を所望の範囲に調節する方法の1つとして、エポキシ当量の異なる2種以上のエポキシ樹脂を混合して用いる方法が挙げられる。その際、エポキシ当量の差は100以上であることが好ましく、常温で液状のエポキシ樹脂と常温で固形のエポキシ樹脂とを混合して用いる場合もある。
 次に、エポキシ樹脂、硬化剤及びポロゲンを含む溶液からエポキシ樹脂組成物の硬化体を作製する。具体的には、溶液を金型に充填し、必要に応じて加熱する。エポキシ樹脂を三次元架橋させることによって、所定の形状を有する硬化体が得られる。その際、エポキシ樹脂架橋体とポロゲンとが相分離することにより、共連続構造が形成される。
 硬化体の形状は特に限定されない。円柱状又は円筒状の金型を使用すれば、円筒又は円柱の形状を有する硬化体を得ることができる。硬化体が円筒又は円柱の形状を有していると、後述する切削工程(図2参照)を実施しやすい。
 エポキシ樹脂組成物を硬化させるために必要な温度及び時間は、エポキシ樹脂及び硬化剤の種類に応じて変化するので特に限定されない。均一な分布及び均一な孔径を持った空孔を有するエポキシ樹脂多孔膜を得るために、室温にて硬化処理を実施することができる。室温硬化の場合、温度は20~40℃程度であり、時間は3~100時間程度、好ましくは20~50時間程度である。加熱硬化の場合、温度は40~120℃程度、好ましくは60~100℃程度であり、時間は10~300分程度、好ましくは30~180分程度である。硬化処理後、エポキシ樹脂架橋体の架橋度を高めるためにポストキュア(後処理)を行ってもよい。ポストキュアの条件は特に制限されないが、温度は室温又は50~160℃程度であり、時間は2~48時間程度である。
 硬化体の寸法は特に限定されない。硬化体が円筒又は円柱の形状を有している場合、エポキシ樹脂多孔膜の製造効率の観点から、硬化体の直径は、例えば20cm以上であり、好ましくは30~150cmである。硬化体の長さ(軸方向)も、得るべきエポキシ樹脂多孔膜の寸法を考慮して適宜設定することができる。硬化体の長さは、例えば20~200cmであり、取扱いやすさの観点から20~150cmであることが好ましく、20~120cmであることがより好ましい。
 次に、硬化体をシート状に成形する。円筒又は円柱の形状を有する硬化体は、以下の方法でシート状に成形されうる。具体的には、図2に示すように、硬化体12をシャフト14に取り付ける。長尺の形状を有するエポキシ樹脂シート16が得られるように、切削刃18(スライサー)を用いて、硬化体12の表層部を所定の厚さで切削(スライス)する。詳細には、硬化体12の円筒軸O(又は円柱軸)を中心として、切削刃18に対して硬化体12を相対的に回転させながら硬化体12の表層部を切削する。この方法によれば、効率的にエポキシ樹脂シート16を作製することができる。
 硬化体12を切削するときのライン速度は、例えば2~70m/minの範囲にある。エポキシ樹脂シート16の厚さは、エポキシ樹脂多孔膜の目標厚さ(10~50μm)に応じて決定される。ポロゲンを除去して乾燥させると厚さが若干減少するので、エポキシ樹脂シート16は、通常、エポキシ樹脂多孔膜の目標厚さよりも若干厚い。エポキシ樹脂シート16の長さは特に限定されないが、エポキシ樹脂シート16の製造効率の観点から、例えば100m以上であり、好ましくは1000m以上である。
 最後に、エポキシ樹脂シート16からポロゲンを抽出し、除去する。具体的には、溶剤にエポキシ樹脂シート16を浸漬することによって、エポキシ樹脂シート16からポロゲンを除去することができる。これにより、セパレータ4として利用できるエポキシ樹脂多孔膜が得られる。溶剤としては、環境に対する負荷が大きくないハロゲンフリーの溶剤が好ましい。
 エポキシ樹脂シート16からポロゲンを除去するためのハロゲンフリーの溶剤として、水、DMF(N,N-ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)及びTHF(テトラヒドロフラン)からなる群より選ばれる少なくとも1つをポロゲンの種類に応じて使用できる。また、水、二酸化炭素等の超臨界流体もポロゲンを除去するための溶剤として使用できる。エポキシ樹脂シート16からポロゲンを積極的に除去するために、超音波洗浄を行ってもよく、また、溶剤を加熱して用いてもよい。
 ポロゲンを除去するための洗浄装置も特に限定されず、公知の洗浄装置を使用できる。エポキシ樹脂シート16を溶剤に浸漬することによってポロゲンを除去する場合には、洗浄槽を複数備えた多段洗浄装置を好適に使用できる。洗浄の段数としては、3段以上がより好ましい。また、カウンターフローを利用することによって、実質的に多段洗浄を行ってもよい。さらに、各段の洗浄で、溶剤の温度を変えたり、溶剤の種類を変えたりしてもよい。
 ポロゲンを除去した後、エポキシ樹脂多孔膜の乾燥処理を行う。乾燥条件は特に限定されず、温度は通常40~120℃程度であり、50~100℃程度が好ましく、乾燥時間は10秒~5分程度である。乾燥処理には、テンター方式、フローティング方式、ロール方式、ベルト方式等の公知のシート乾燥方法を採用した乾燥装置を使用できる。複数の乾燥方法を組み合わせてもよい。
 本実施形態の方法によれば、セパレータ4として使用できる微多孔構造を有するエポキシ樹脂多孔膜を極めて簡単に製造できる。ポリオレフィン多孔膜の製造時に必要である工程、例えば延伸工程を省略できるため、高い生産性でエポキシ樹脂多孔膜を製造できる。
 なお、セパレータ4は、エポキシ樹脂多孔膜のみで構成されていてもよいし、エポキシ樹脂多孔膜と他の多孔質材料との積層体で構成されていてもよい。他の多孔質材料としては、ポリエチレン多孔膜、ポリプロピレン多孔膜等のポリオレフィン多孔膜、セルロース多孔膜、フッ素樹脂多孔膜等が挙げられる。他の多孔質材料は、エポキシ樹脂多孔膜の片面にのみ設けられていてもよいし、両面に設けられていてもよい。
 同様に、セパレータ4は、エポキシ樹脂多孔膜と補強材との積層体で構成されていてもよい。補強材としては、織布、不織布等が挙げられる。補強材は、エポキシ樹脂多孔膜の片面にのみ設けられていてもよいし、両面に設けられていてもよい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明は、これら実施例に限定されるものではない。物性は以下の方法を用いて測定した。なお、以下において、RO水は逆浸透膜を用いて処理して得た純水を意味する。
(空孔率)
 空孔率は、以下の方法で測定した。まず、測定対象を一定の寸法(例えば、直径6cmの円形)に切断し、その体積及び重量を求める。得られた結果を次式に代入して空孔率を算出する。
  空孔率(%)=100×(V-(W/D))/V
   V:体積(cm3
   W:重量(g)
   D:構成成分の平均密度(g/cm3
(短絡率)
 厚さ20μmのアルミニウム箔を30mm角の正方形に切り出した。セパレータを40mm角の正方形に切り出し、電解液である0.5mol/Lのアジピン酸アンモニウム/プロピレンカーボネート溶液に浸漬した後、アルミニウム箔の間に挟み込み、電極群を作製した。次いで、厚さ5mm、35mm角の正方形形状のアルミニウム板を用いて両側から電極群を挟んだ。このアルミニウム板の端面には端子接続部が準備されている。さらにアルミニウム板を、シリコーンゴムシートを用いて両側から挟み込み、試験用電極群を得た。こうして得られた試験用電極群を加圧装置にセットし、上記端子接続部2か所に交流抵抗測定機(日置株式会社製LCRハイテスター3522-50、10kHz)を接続した上で、加圧を実施した。面圧0.2MPaが試験用電極群にかかるまで加圧し、抵抗値より短絡発生の有無を確認した。抵抗値が低下すると短絡が生じたと判断した。この試験を各実施例につき計10回実施し、短絡率X/10(10回中、短絡した回数X回)とした。
(耐熱性試験)
 厚さ1mm、直径10mmのステンレス片と、厚さ1mm、直径20mmのステンレス片とを準備した。電解液として1mol/LのLiBF4/プロピレンカーボネート溶液を準備し、この電解液に直径26mmに打抜いたセパレータを浸漬させた。電解液を含浸させたセパレータを上記ステンレス片の間に挟み、面圧2kg/cm2で加圧した状態で両ステンレス片間の抵抗を交流抵抗測定機(日置株式会社製LCRハイテスター3522-50)を用いて10kHzの交流抵抗を測定した。測定はヒーターを用いて両ステンレス板を160℃に加熱して実施した。内部抵抗値が大きい場合には、高温にさらされた場合にコンデンサとして機能しなくなる。
(実施例1)
 3Lの円筒形のポリ容器にjER(登録商標)828(ビスフェノールA型エポキシ樹脂、三菱化学株式会社製、エポキシ当量184~194g/eq.)100重量部とTETRAD(登録商標)-C(グリシジルアミン型エポキシ樹脂、三菱ガス化学株式会社製、エポキシ当量95~110g/eq.)25.0重量部をポリプロピレングリコール(株式会社ADEKA製、アデカポリエーテルP-400)211.9重量部に溶解させ、エポキシ樹脂/ポリプロピレングリコール溶液を調製した。その後、このポリ容器に1,6-ヘキサンジアミン22.3重量部を添加し、エポキシ樹脂/アミン/ポリプロピレングリコール溶液を調製した。その後、遊星撹拌装置(株式会社シンキー製、商品名「あわとり練太郎(登録商標)」)を用い、約0.7kPaで真空脱泡すると同時に自/公転比率3/4の条件下、公転800rpmの比率で10分間撹拌する手順を2回繰り返した。
 その後、数日間自然冷却させ、ポリ容器からエポキシ樹脂ブロックを取り出し、切削旋盤装置を用いて50μmの厚みで連続的にスライスしてエポキシ樹脂シートを得た。該エポキシ樹脂シートをRO水とDMFとの混合溶媒(体積比でRO水/DMF=1/1)中で10分間超音波洗浄した後、RO水のみで10分間超音波洗浄し、RO水に12時間浸漬させてポリプロピレングリコールを除去した。その後、80℃雰囲気下で乾燥を2時間行って、厚み48μmのエポキシ樹脂多孔膜(セパレータ)を得た。
(実施例2)
 切削旋盤装置を用いて22μmの厚みで連続的にスライスした以外は実施例1と同様に実施し、21μmの厚みを有するエポキシ樹脂多孔膜(セパレータ)を得た。
(比較例1)
 エポキシ樹脂多孔膜の代わりに、セルロース微多孔膜TF40-30(ニッポン高度紙工業株式会社製)を用いた以外は実施例1と同様に実施し、評価を行った。
(比較例2)
 エポキシ樹脂多孔膜の代わりに、セルガード2400(ポリプロピレン多孔質膜、ポリポア株式会社製)を用いた以外は実施例1と同様に実施し、評価を行った。
 実施例及び比較例についての評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1(セルロース微多孔膜)では、短絡率が2/10であった。比較例2(ポリオレフィン系多孔膜)では、耐熱性試験による内部抵抗の値が非常に大きくなった。これに対し、実施例1及び2で得られた膜は、電極間の短絡が生じず、耐熱性にも優れていた。
 本発明によって提供されたセパレータは、アルミニウム電解コンデンサ等の電解コンデンサに好適に使用できる。本発明によって提供されたセパレータは、コンデンサの小型化、高容量化に寄与し、さらに高温耐久性も有するため、高い信頼性能を特に要求されるコンデンサに有用である。

Claims (5)

  1.  電解コンデンサ用セパレータであって、
     エポキシ樹脂で構成された三次元網目状骨格と、
     前記セパレータの表面と裏面との間でイオンが移動できるように連通している空孔と、
    を備えた、電解コンデンサ用セパレータ。
  2.  前記セパレータの厚さが5~50μmの範囲にある、
    請求項1に記載の電解コンデンサ用セパレータ。
  3.  エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製する工程と、
     エポキシ樹脂シートが得られるように、前記エポキシ樹脂組成物の硬化体をシート状に成形する又は前記エポキシ樹脂組成物のシート状成形体を硬化させる工程と、
     前記エポキシ樹脂シートから前記ポロゲンを除去する工程と、
    を含む、電解コンデンサ用セパレータの製造方法。
  4.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に配置された、請求項1に記載のセパレータと、
     前記セパレータに含浸した電解液と、
    を備えた、電解コンデンサ。
  5.  アルミニウム電解コンデンサである、請求項4に記載の電解コンデンサ。
PCT/JP2014/006313 2013-12-25 2014-12-17 電解コンデンサ用セパレータ、その製造方法、及びそれを用いた電解コンデンサ WO2015098053A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013267883A JP2015126030A (ja) 2013-12-25 2013-12-25 電解コンデンサ用セパレータ、その製造方法、及びそれを用いた電解コンデンサ
JP2013-267883 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098053A1 true WO2015098053A1 (ja) 2015-07-02

Family

ID=53477956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006313 WO2015098053A1 (ja) 2013-12-25 2014-12-17 電解コンデンサ用セパレータ、その製造方法、及びそれを用いた電解コンデンサ

Country Status (2)

Country Link
JP (1) JP2015126030A (ja)
WO (1) WO2015098053A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193308A (ja) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd 電解コンデンサおよびその製造方法
JP2008013672A (ja) * 2006-07-06 2008-01-24 Kyoto Institute Of Technology エポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料
JP2010077358A (ja) * 2008-09-29 2010-04-08 Nitto Denko Corp エポキシ樹脂多孔質膜及びその製造方法
WO2010047383A1 (ja) * 2008-10-23 2010-04-29 日東電工株式会社 熱硬化性樹脂多孔シートの製造方法、熱硬化性樹脂多孔シート、及びそれを用いた複合半透膜
JP2013004210A (ja) * 2011-06-13 2013-01-07 Nitto Denko Corp 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193308A (ja) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd 電解コンデンサおよびその製造方法
JP2008013672A (ja) * 2006-07-06 2008-01-24 Kyoto Institute Of Technology エポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料
JP2010077358A (ja) * 2008-09-29 2010-04-08 Nitto Denko Corp エポキシ樹脂多孔質膜及びその製造方法
WO2010047383A1 (ja) * 2008-10-23 2010-04-29 日東電工株式会社 熱硬化性樹脂多孔シートの製造方法、熱硬化性樹脂多孔シート、及びそれを用いた複合半透膜
JP2013004210A (ja) * 2011-06-13 2013-01-07 Nitto Denko Corp 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法

Also Published As

Publication number Publication date
JP2015126030A (ja) 2015-07-06

Similar Documents

Publication Publication Date Title
US9504966B2 (en) Composite semi-permeable membrane and method for producing same
US9186633B2 (en) Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP5921344B2 (ja) 正浸透膜流動システム及び正浸透膜流動システム用複合半透膜
CN102574069B (zh) 复合半透膜的制造方法
JP5934580B2 (ja) エポキシ樹脂多孔質膜、非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス、複合半透膜及びそれらの製造方法
WO2013175762A1 (ja) 非水電解質蓄電デバイス用セパレータの製造方法、及びエポキシ樹脂多孔質膜の製造方法
EP2589620A1 (en) Method for producing porous thermosetting resin sheet and composite separation membrane using same
JP5882140B2 (ja) 熱硬化性樹脂多孔質シートの製造方法および製造装置、ならびに熱硬化性樹脂多孔質シートおよびシートロール
US20130248442A1 (en) Method for producing porous epoxy resin sheet
WO2015098053A1 (ja) 電解コンデンサ用セパレータ、その製造方法、及びそれを用いた電解コンデンサ
WO2015098052A1 (ja) 水系電解質蓄電デバイス用セパレータとその製造方法、及びそれを用いた水系電解質蓄電デバイス
JP2015170394A (ja) 蓄電デバイス用セパレータとその製造方法、及びそれを用いた蓄電デバイス
JP2015168694A (ja) エポキシ樹脂多孔質膜、それを用いた蓄電デバイス用セパレータ及びそれらの製造方法
JP6405187B2 (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
JP2015084297A (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
JP2015182163A (ja) 熱硬化性樹脂シートおよびその製造方法
JP2012011293A (ja) 複合分離膜の製造方法
JP2012072255A (ja) エポキシ樹脂多孔シート及びその製造方法
JP2012217871A (ja) 複合半透膜及びその製造方法
WO2015030025A1 (ja) アルカリ水電解用隔膜の製造方法およびアルカリ水電解用隔膜
JP2012121160A (ja) 熱硬化性樹脂シートの製造方法及び熱硬化性樹脂多孔シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875269

Country of ref document: EP

Kind code of ref document: A1