WO2015096536A1 - 利用电镀污泥资源化去除废水中氰化物的方法 - Google Patents
利用电镀污泥资源化去除废水中氰化物的方法 Download PDFInfo
- Publication number
- WO2015096536A1 WO2015096536A1 PCT/CN2014/088500 CN2014088500W WO2015096536A1 WO 2015096536 A1 WO2015096536 A1 WO 2015096536A1 CN 2014088500 W CN2014088500 W CN 2014088500W WO 2015096536 A1 WO2015096536 A1 WO 2015096536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyanide
- ldhs
- reaction
- agent
- electroplating sludge
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/10—Treatment of sludge; Devices therefor by pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/18—Cyanides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/40—Valorisation of by-products of wastewater, sewage or sludge processing
Definitions
- the present invention relates to a method for removing cyanide from waste water, and more particularly to a method for removing cyanide from waste water by utilizing electroplating sludge.
- Electroplating sludge is a solid waste generated during the treatment of electroplating wastewater. It contains a large amount of toxic heavy metals such as chromium, cadmium, copper, nickel and zinc, and its composition is very complicated. Electroplating sludge is characterized by high toxicity, easy accumulation, instability, and easy loss. If it is not properly disposed, it will cause serious secondary pollution and is a dangerous solid waste.
- CN 102701549A discloses a novel resource recycling method for electroplating sludge, which can obtain a porous supported ferrite magnet new material under the condition of supplementing an appropriate amount of iron source and agricultural waste, and can be used for efficiently removing mercury ions in water and realizing electroplating sludge.
- CN 102179253A discloses a process for preparing a catalyst by using electroplating sludge and electroplating wastewater, mixing electroplating sludge and wastewater in a certain ratio, co-processing with carbon dioxide, and then calcining the treated product to obtain the catalyst. There is a certain active catalyst to alleviate environmental pollution and realize waste disposal.
- cyanide is highly toxic or highly toxic. It can be quickly absorbed by human skin, eyes or gastrointestinal tract. The lethal dose of oral sodium cyanide is 1-2 mg/kg. In addition, many cyanide-containing compounds can cause acute poisoning.
- Existing denitrification treatment technology for wastewater mainly relies on chemical precipitation, including activated carbon adsorption and chemical oxidation. Law and so on. Since cyanide and heavy metals are easy to form complexes, rapid removal of cyanide can be achieved by co-precipitation of cyanide with various metals.
- CN 103253754A proposes a method for rapidly treating wastewater containing cyanide and zinc-containing nickel.
- co-precipitation is used to induce the preferential formation of Ni(CN) 4 2- anion by cyanide.
- heavy metal ions in the wastewater to control the formation of (Ni)ZnAl-Ni(CN) 4 -LDH in a short time, and achieve the purpose of encapsulation and removal of cyanide in a large area in a short time, the cyanide removal rate can reach 95%. .
- CN 103232104A proposes a treatment method for cyanide/zinc containing wastewater, which adopts a similar method, and the cyanide ion removal rate can reach 50-60%.
- the use of this method to treat other cyanide-containing wastewater containing no heavy metals requires an additional dosage of a large amount of the agent, which is too costly and is not suitable for long-term use.
- the invention aims to remove cyanide from wastewater by utilizing electroplating sludge resource utilization, and not only utilizes heavy metals in the electroplating sludge for resource utilization, but also further reduces waste by using waste to realize the harmlessness of cyanide-containing wastewater.
- the object of the present invention is to utilize electroplating sludge to waste waste, and propose a method for recycling cyanide in wastewater by electroplating sludge.
- the method not only can effectively utilize the heavy metal resources in the electroplating sludge to remove cyanide from the wastewater, but also has the advantages of cost saving and simple process operation.
- the principle of the invention due to the presence of many heavy metal components in the electroplating sludge, such as Ni, Fe, Zn, Cu, Al, Cr, etc., among these heavy metals, the divalent metal cations M II (such as Fe 2+ , Co 2+ , Cu 2 ) +, Zn 2+, Mn 2+, etc.) and the trivalent metal cation M III (Fe 3+, Cr 3+, etc.) is a valid combination, can form two, ternary, and even quaternary hydrotalcite compound (LDHs).
- the divalent metal cations M II such as Fe 2+ , Co 2+ , Cu 2 ) +, Zn 2+, Mn 2+, etc.
- the trivalent metal cation M III Fe 3+, Cr 3+, etc.
- the invention adopts the hydrothermal synthesis method to control the crystallization of heavy metals in the electroplating sludge to form a layer-like structure of hydrotalcite-like (LDHs), and fixes cyanide to the LDHs layered structure by regulating the replacement of the carbonate between the layers by cyanide.
- LDHs hydrotalcite-like
- a method for utilizing electroplating sludge to remove cyanide from wastewater comprising the following steps:
- the electroplating sludge is subjected to carbonization reaction by hydrothermal synthesis method, and after the reaction, a hydrotalcite-like compound solid having a layered structure is formed as a de-cyanide agent for LDHs;
- the LDHs de-cyanide agent of the step (1) is added to the cyanide-containing wastewater, and the LDHs de-cyanide agent removes cyanide in the cyanide-containing wastewater.
- the step (2) is optionally followed by: (3) the LDHs de-cyanide agent after the reaction is introduced into the carbon dioxide under alkaline conditions to regenerate the LDHs de-cyanide agent.
- the invention provides a method for utilizing electroplating sludge resource to remove cyanide from waste water, and more preferably comprises the following steps:
- the electroplating sludge is subjected to a carbonization reaction treatment by a hydrothermal synthesis method, and a hydrotalcite-like compound solid having a layered structure is formed as a LDH de-cyanide agent;
- the cyanide-containing wastewater is adjusted to a weakly acidic condition, and then the LDHs de-cyanide agent is added.
- the weakly acidic condition is mainly for the LDHs de-cyanide agent interlayer carbonate to escape in the form of carbon dioxide, Good replacement with cyanide.
- the cyanide-containing wastewater is adjusted to a pH of 3 to 6 with hydrochloric acid or a sulfuric acid solution, for example, 3.02 to 5.98, 3.3 to 5.6, 3.47 to 5.4, 4 to 5.12, 4.3 to 4.8, 4.56, etc., more preferably 4.
- hydrochloric acid or a sulfuric acid solution for example, 3.02 to 5.98, 3.3 to 5.6, 3.47 to 5.4, 4 to 5.12, 4.3 to 4.8, 4.56, etc., more preferably 4.
- the electroplated sludge is first broken into small particles having a particle diameter of 15 mm or less.
- the small particle sludge reacts with a larger contact area to make the reaction more complete.
- the molar ratio of the divalent heavy metal to the trivalent heavy metal contained in the electroplated sludge is from 1 to 4:1, for example, from 1.02 to 3.9:1, from 1.3 to 3.75:1, from 1.52 to 3.4:1, 1.8. ⁇ 3.2:1, 2 to 2.86:1, 2.3 to 2.6:1, 2.43:1, etc., further preferably 2:1.
- water is added to the electroplated sludge in a mass ratio of electroplating sludge to water of 1:4 to 10, and stirred and mixed to form a slurry.
- the mass ratio may be selected from 1:4.01 to 9.9, 1:4.3 to 9.6, 1:4.8 to 9.42, 1:5.3 to 9.2, 1:6 to 8.4, 1:6.5 to 8, 1:7 to 7.6, etc. It can be used to practice the invention.
- the step (1) is adjusted to a pH of 8 to 12 by using an alkali solution, and for example, 8.01 to 11.89, 8.4 to 11.3, 8.86 to 10.7, 9.2 to 10.3, 9.7, etc., preferably 9, may be selected.
- the alkaline solution is one or a mixture of at least two of sodium hydroxide, sodium carbonate or urea.
- the carbonization reaction temperature in the step (1) is 80 to 1000 ° C, for example, 80.2 to 998 ° C, 100 to 950 ° C, 135 to 904 ° C, 180 to 836 ° C, 230 to 800 ° C, 300 to 725 ° C, 380 °. 700 ° C, 435 to 607 ° C, 500 to 560 ° C, etc., further preferably 150 ° C.
- the reaction pressure is 1 MPa to 1 GPa, for example, 1.02 to 999 MPa, 3 to 920 MPa, 15 to 900 MPa, 50 to 800 MPa, 100 to 724 MPa, 240 to 650 MPa, 350 to 582 MPa, 400 to 520 MPa, 480 MPa, etc., further preferably 3 MPa.
- the reaction time is 6 to 24 hours, for example, 6.02 to 23.8 hours, 6.8 to 21 hours, 8 to 18.5 hours, 10.2 to 16 hours, 11 to 14.3 hours, 12 hours, and the like, and further preferably 8 hours.
- the dosage of the LDHs de-cyanide agent in the step (2) is 0.05-5 g/L, for example, 0.051 to 4.95 g/L, 0.07 to 4.7 g/L, 0.3 to 4.4 g/L, 0.56 to 4.13 g/ L, 0.8 to 4 g/L, 1.3 to 3.4 g/L, 1.8 to 3 g/L, 2.2 to 2.7 g/L, 2.54 g/L or the like, preferably 1 g/L.
- the reaction temperature is 30 to 100 ° C, and for example, 30.01 to 99.6 ° C, 34 to 92 ° C, 40 to 86 ° C, 52 to 80 ° C, 64 ° C or the like, and more preferably 80 ° C may be selected.
- the reaction time is 0.5 to 6 hours, for example, 0.51 to 5.9 hours, 0.7 to 5.4 hours, 1 to 5 hours, 1.4 to 4.2 hours, 1.85 to 3.7 hours, 2 to 3.3 hours, 2.7 hours, and the like, and further preferably 3 hours.
- the pH is adjusted to 8 to 12, for example, 8.02 to 11.8, 8.3 to 11.4, 9 to 11, 9.4 to 10.7, 10, etc., which can be used in the practice of the present invention.
- the reaction temperature is 30 to 100 ° C, for example, 30.1 to 99 ° C, 35 to 90 ° C, 42 to 84 ° C, 50 to 80 ° C, 53 to 74 ° C, 60 to 72 ° C, 65 ° C, etc., further preferably 60 ° C.
- the reaction time is 0.5 to 6 hours, for example, 0.51 to 5.8 hours, 0.6 to 5.4 hours, 1 to 5.2 hours, 1.5 to 4.5 hours, 2 to 4 hours, 2.4 to 3.7 hours, 3.2 hours, and the like, and further preferably 2 hours.
- the invention has the following beneficial effects:
- the invention reduces the environmental pollution by recycling the industrial waste electroplating sludge, and can obtain the de-cyanide agent in situ for the de-cyanide of the wastewater, so that the waste can be fully utilized and the resource recycling and utilization can be realized.
- Electroplating sludge treatment The method for de-cyanide and regeneration is simple in operation, easy to control, simplifying the treatment process, shortening the process flow, and providing necessary conditions for reducing equipment and facility investment.
- the de-cyanide agent obtained by recycling the electroplating sludge according to the present invention has a wide application range and good treatment effect.
- a method for recycling cyanide in wastewater by using electroplating sludge the method specifically comprising the following steps Step:
- the cyanide removal rate in the wastewater can reach 90%.
- a method for recycling cyanide in wastewater by using electroplating sludge specifically comprising the following steps:
- the cyanide-containing wastewater is adjusted to pH 4 with hydrochloric acid or sulfuric acid solution, and the LDHs de-cyanide agent is added, the dosage is 1 g/L, stirring is continued, the reaction temperature is 80 ° C, the reaction time is 3 h, and the LDHs are off.
- the cyanide displaces the cyanide in the cyanide-containing wastewater to fix the cyanide to the layered structure of the LDHs;
- the cyanide removal rate in the wastewater can reach 85%.
- a method for recycling cyanide in wastewater by using electroplating sludge specifically comprising the following steps:
- the cyanide removal rate in the wastewater can reach 82%.
- a method for recycling cyanide in wastewater by using electroplating sludge specifically comprising the following steps:
- the cyanide-containing wastewater is adjusted to pH 4 with hydrochloric acid or sulfuric acid solution, and the LDHs de-cyanide agent is added, the dosage is 3 g/L, stirring is continued, the reaction temperature is 80 ° C, the reaction time is 2 h, and the LDHs are off.
- the cyanide displaces the cyanide in the cyanide-containing wastewater to fix the cyanide to the layered structure of the LDHs;
- the cyanide removal rate in the wastewater can reach 78%.
- the method for removing cyanide from waste water by using electroplating sludge resource according to the present invention has a removal rate of cyanide of about 80% and a maximum of 90%.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Sludge (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
本发明涉及一种利用电镀污泥资源化去除废水中氰化物的方法。所述方法采用水热合成法控制电镀污泥中的重金属晶化形成类水滑石(LDHs)层状结构,并通过调控将氰化物置换层间的碳酸根,将氰化物固定至LDHs层状结构中,达到对废水脱氰的目的,最后经过处理LDHs脱氰剂可再生。与现有技术相比,本发明通过工业废物电镀污泥资源化处理,不但缓解环境污染,而且能获得脱氰剂原位用于废水脱氰,使废物得到充分利用,实现资源化再生利用的目的。电镀污泥处理用于脱氰及再生的方法简化了处理工艺,条件易于控制,适用范围广,处理效果佳。
Description
本发明涉及一种去除废水中氰化物的方法,具体地说,涉及一种利用电镀污泥资源化去除废水中氰化物的方法。
电镀污泥是电镀废水处理过程中产生的固体废物,其中含有大量的铬、镉、铜、镍、锌等有毒重金属,成分十分复杂。电镀污泥具有毒性大、易积累、不稳定、易流失等特点,如不加以妥善处理,任意堆放,将引起严重的二次污染,属于危险固体废弃物。
电镀污泥资源化处理工艺研究较多,但由于电镀污泥中重金属成分复杂,将多种重金属一一提取资源化需要流程长、操作繁琐、成本高,而将电镀污泥进行适当简单处理后用于污染治理,同时发挥多种重金属共存的优势,实现以废制废,是目前电镀污泥资源化的发展趋势。
CN 102701549A公开了一种电镀污泥的新型资源化方法,在补充适量铁源和农业废弃物的条件下得到多孔负载型铁氧磁体新材料,可用于高效去除水中的汞离子,实现电镀污泥的资源化。CN 102179253A公开了一种利用电镀污泥和电镀废水制备催化剂的工艺方法,将电镀污泥和废水按一定比例混合后与二氧化碳协同进行处理,然后将处理后的产物进行煅烧,即可制得其有一定活性的催化剂,缓解环境污染,实现以废制废。
氰化物大多数属于剧毒或高毒类,可经人体皮肤、眼睛或胃肠道迅速吸收,口服氰化钠的致死量为1~2mg/kg,此外很多含氰化合物都可引起急性中毒。现有废水脱氰处理技术主要依靠化学沉淀,还包括活性炭吸附,化学氧化
法等。由于氰化物与重金属容易形成络合物,通过调控可使氰化物与多种金属共沉淀而实现氰化物的快速去除。
CN 103253754A提出了一种快速处理含氰及含锌镍废水的方法,通过调整废水中Ni、Zn与氰化物浓度,采用共沉淀的方法,先诱导氰离子优先形成Ni(CN)4
2-阴离子,再与废水中重金属离子作用,在短时间内调控形成(Ni)ZnAl-Ni(CN)4-LDH,并达到短时间内大面积包裹沉淀除氰的目的,氰离子去除率可达95%。CN 103232104A提出一种含氰/锌废水的处理方法,采用类似的方法,氰离子去除率可达50~60%。但采用这个方法处理其他不含重金属的含氰废水,需要额外投加大量药剂,成本过大,不利于长期使用。
本发明以利用电镀污泥资源化去除废水中氰化物为主要目标,不仅将电镀污泥中的重金属予以资源化利用,还可以进一步以废治废,实现含氰废水的无害化。
发明内容
本发明的目的在于利用电镀污泥以废制废,提出一种电镀污泥资源化去除废水中氰化物的方法。该方法不仅可有效利用电镀污泥中的重金属资源去除废水中的氰化物,而且具有节约成本、过程操作简单的优点。
本发明的原理:由于电镀污泥中存在很多重金属成分,如Ni、Fe、Zn、Cu、Al、Cr等,这些重金属中二价金属阳离子MII(如Fe2+、Co2+、Cu2+、Zn2+、Mn2+等)和三价金属阳离子MIII(Fe3+、Cr3+等)的有效组合,可形成二、三元甚至四元的类水滑石化合物(LDHs)。本发明采用水热合成法控制电镀污泥中的重金属晶化形成类水滑石(LDHs)层状结构,并通过调控将氰化物置换层间的碳酸根,将氰化物固定至LDHs层状结构中,达到对废水脱氰的目的,最后经过处理LDHs脱氰剂可再生,反应过程可如下式表示:
MIIO+M2
IIIO3+OH-+CO2→M1-x
IIMx
III(OH)2(CO3
2-)x/2(LDHs)M1-x
IIMx
III(OH)2(CO3
2-)x/2+CN-+H+→M1-x
IIMx
III(OH)2(CN-)x+CO2+H2OM1-x
IIMx
III(OH)2(CN-)x+CO2+OH-→M1-x
IIMx
III(OH)2(CO3
2-)x/2+CN-+H+
为达此目的,本发明采用以下技术方案:
一种利用电镀污泥资源化去除废水中氰化物的方法,所述方法包括如下步骤:
(1)在碱性条件下,将电镀污泥采用水热合成法进行碳化反应处理,反应后形成具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;
(2)向含氰废水中加入步骤(1)的LDHs脱氰剂,所述LDHs脱氰剂将含氰废水中的氰化物置换去除。
所述步骤(2)后任选进行:(3)将反应后的LDHs脱氰剂在碱性条件下,通入二氧化碳,使LDHs脱氰剂再生。
本发明提供的一种利用电镀污泥资源化去除废水中氰化物的方法,更优选地包括以下步骤:
(1)在一定碱性条件下,将电镀污泥采用水热合成法进行碳化反应处理,反应后形成具有层状结构的类水滑石化合物固体,作为LDH脱氰剂;
(2)调整含氰废水为弱酸性条件,在一定温度下,加入LDH脱氰剂,LDHs脱氰剂将含氰废水中氰化物置换,溶液中的氰化物得以去除,氰化物进入LDHs层状结构中。
(3)LDHs脱氰剂的再生:反应后的LDHs固体,在一定碱性条件下,通入二氧化碳,可将LDHs脱氰剂再生。
所述步骤(2)将含氰废水调整为弱酸性条件,再加入LDHs脱氰剂。所述弱酸性条件主要是为了使LDHs脱氰剂层间碳酸根以二氧化碳的形式逸出,更
好地与氰化物发生置换。
优选地,所述含氰废水用盐酸或硫酸溶液调节pH值至3~6,例如可选择3.02~5.98,3.3~5.6,3.47~5.4,4~5.12,4.3~4.8,4.56等,进一步优选为4。
步骤(1)首先将电镀污泥破碎为粒径为15mm以下的小颗粒。小颗粒的污泥反应接触面积更大,使反应更充分。
优选地,所述电镀污泥中所含二价重金属与三价重金属的摩尔比为1~4∶1,例如可选择1.02~3.9∶1,1.3~3.75∶1,1.52~3.4∶1,1.8~3.2∶1,2~2.86∶1,2.3~2.6∶1,2.43∶1等,进一步优选2∶1。
优选地,按照电镀污泥与水质量比为1∶4~10向电镀污泥中加水,搅拌混合形成浆液。所述质量比可选择1∶4.01~9.9,1∶4.3~9.6,1∶4.8~9.42,1∶5.3~9.2,1∶6~8.4,1∶6.5~8,1∶7~7.6等,皆可用于实施本发明。
所述步骤(1)采用碱溶液将pH值调节至8~12,例如可选择8.01~11.89,8.4~11.3,8.86~10.7,9.2~10.3,9.7等,优选为9。优选地,所述碱溶液为氢氧化钠、碳酸钠或尿素中的一种或至少两种的混合物。
步骤(1)所述碳化反应温度为80~1000℃,例如可选择80.2~998℃,100~950℃,135~904℃,180~836℃,230~800℃,300~725℃,380~700℃,435~607℃,500~560℃等,进一步优选150℃。
优选地,反应压力为1MPa~1Gpa,例如可选择1.02~999MPa,3~920MPa,15~900MPa,50~800MPa,100~724MPa,240~650MPa,350~582MPa,400~520MPa,480MPa等,进一步优选3MPa。
优选地,反应时间为6~24h,例如可选择6.02~23.8h,6.8~21h,8~18.5h,10.2~16h,11~14.3h,12h等,进一步优选8h。
碳化反应后得反应混合物,冷却后的反应混合物经过滤、洗涤,得到具有
层状结构的LDHs脱氰剂。
步骤(2)所述LDHs脱氰剂的投加量为0.05~5g/L,例如可选择0.051~4.95g/L,0.07~4.7g/L,0.3~4.4g/L,0.56~4.13g/L,0.8~4g/L,1.3~3.4g/L,1.8~3g/L,2.2~2.7g/L,2.54g/L等,优选为1g/L。
优选地,反应温度为30~100℃,例如可选择30.01~99.6℃,34~92℃,40~86℃,52~80℃,64℃等,进一步优选80℃。
优选地,反应时间为0.5~6h,例如可选择0.51~5.9h,0.7~5.4h,1~5h,1.4~4.2h,1.85~3.7h,2~3.3h,2.7h等,进一步优选3h。
步骤(3)所述LDHs脱氰剂再生时,调节pH值至8~12,例如可选择8.02~11.8,8.3~11.4,9~11,9.4~10.7,10等,皆可用于实施本发明。
优选地,反应温度为30~100℃,例如可选择30.1~99℃,35~90℃,42~84℃,50~80℃,53~74℃,60~72℃,65℃等,进一步优选60℃。
优选地,反应时间为0.5~6h,例如可选择0.51~5.8h,0.6~5.4h,1~5.2h,1.5~4.5h,2~4h,2.4~3.7h,3.2h等,进一步优选2h。
本发明所述的利用电镀污泥资源化去除废水中氰化物的方法,所述方法具体包括以下步骤:
(1)将电镀污泥破碎至粒径为15mm以下的小颗粒,按照电镀污泥与水质量比为1∶4~10,向电镀污泥中加入水,搅拌混合形成浆液;
(2)采用碱溶液将浆液的pH值调节至8~12,在恒温反应釜中不断搅拌下进行反应,向溶液中通入二氧化碳,反应温度为80~1000℃,压力为1 MPa~1Gpa,反应时间为6~24h,得反应混合物,冷却后的反应混合物经过滤、洗涤,得到具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;
(3)将含氰废水用盐酸或硫酸溶液调节pH值至3~6,加入LDHs脱氰剂,
投加量为0.05~5g/L,不断搅拌,反应温度为30~100℃,反应时间为0.5~6h,所述LDHs脱氰剂将含氰废水中的氰化物置换去除,将氰化物固定至LDHs层状结构中;
(4)所述LDHs脱氰剂再生的过程中,加入碱溶液调节pH值至8~12,通入二氧化碳,不断搅拌,反应温度为30~100℃,反应时间为0.5~6h,使LDHs脱氰剂再生。
与已有技术方案相比,本发明具有以下有益效果:
(1)本发明通过将工业废物电镀污泥资源化处理,不但缓解环境污染,而且能获得脱氰剂原位用于废水脱氰,使废物得到充分利用,实现资源化再生利用的目的。
(2)电镀污泥处理用于脱氰及再生的方法操作简单,条件易于控制,简化了处理工艺,缩短了工艺流程,为减少设备和设施投资提供了必要条件。
(3)本发明涉及的电镀污泥资源化得到的脱氰剂适用范围广,处理效果佳。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
下面通过具体实施方式来进一步说明本发明的技术方案。
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
利用电镀污泥资源化去除废水中氰化物的方法,所述方法具体包括以下步
骤:
(1)将电镀污泥破碎至粒径为15mm以下的小颗粒,按照电镀污泥与水质量比为1∶4,向电镀污泥中加入水,搅拌混合形成浆液;所述电镀污泥中所含二价重金属与三价重金属的摩尔比为2∶1;
(2)采用氢氧化钠溶液将浆液的pH值调节至9,在恒温反应釜中不断搅拌下进行反应,向溶液中通入二氧化碳,反应温度为1000℃,压力为1 MPa,反应时间为24h,得反应混合物,冷却后的反应混合物经过滤、洗涤,得到具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;
(3)将含氰废水用盐酸或硫酸溶液调节pH值至3,加入LDHs脱氰剂,投加量为5g/L,不断搅拌,反应温度为30℃,反应时间为0.5h,所述LDHs脱氰剂将含氰废水中的氰化物置换去除,将氰化物固定至LDHs层状结构中;
(4)所述LDHs脱氰剂再生的过程中,加入尿素溶液调节pH值至12,通入二氧化碳,不断搅拌,反应温度为30℃,反应时间为6h,使LDHs脱氰剂再生。
在本实施例中,废水中氰化物去除率可达90%。
实施例2
利用电镀污泥资源化去除废水中氰化物的方法,所述方法具体包括以下步骤:
(1)将电镀污泥破碎至粒径为15mm以下的小颗粒,按照电镀污泥与水质量比为1∶6,向电镀污泥中加入水,搅拌混合形成浆液;所述电镀污泥中所含二价重金属与三价重金属的摩尔比为3∶1;
(2)采用尿素溶液将浆液的pH值调节至9,在恒温反应釜中不断搅拌下进行反应,向溶液中通入二氧化碳,反应温度为150℃,压力为3 MPa,反应
时间为8h,得反应混合物,冷却后的反应混合物经过滤、洗涤,得到具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;
(3)将含氰废水用盐酸或硫酸溶液调节pH值至4,加入LDHs脱氰剂,投加量为1g/L,不断搅拌,反应温度为80℃,反应时间为3h,所述LDHs脱氰剂将含氰废水中的氰化物置换去除,将氰化物固定至LDHs层状结构中;
(4)所述LDHs脱氰剂再生的过程中,加入氢氧化钠溶液调节pH值至8,通入二氧化碳,不断搅拌,反应温度为100℃,反应时间为0.5h,使LDHs脱氰剂再生。
在本实施例中,废水中氰化物去除率可达85%。
实施例3
利用电镀污泥资源化去除废水中氰化物的方法,所述方法具体包括以下步骤:
(1)将电镀污泥破碎至粒径为15mm以下的小颗粒,按照电镀污泥与水质量比为1∶10,向电镀污泥中加入水,搅拌混合形成浆液;所述电镀污泥中所含二价重金属与三价重金属的摩尔比为4∶1;
(2)采用尿素溶液将浆液的pH值调节至12,在恒温反应釜中不断搅拌下进行反应,向溶液中通入二氧化碳,反应温度为80℃,压力为1 GPa,反应时间为6h,得反应混合物,冷却后的反应混合物经过滤、洗涤,得到具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;
(3)将含氰废水用盐酸或硫酸溶液调节pH值至6,加入LDHs脱氰剂,投加量为0.05g/L,不断搅拌,反应温度为100℃,反应时间为6h,所述LDHs脱氰剂将含氰废水中的氰化物置换去除,将氰化物固定至LDHs层状结构中;
(4)所述LDHs脱氰剂再生的过程中,加入氢氧化钠溶液调节pH值至
10,通入二氧化碳,不断搅拌,反应温度为60℃,反应时间为2h,使LDHs脱氰剂再生。
在本实施例中,废水中氰化物去除率可达82%。
实施例4
利用电镀污泥资源化去除废水中氰化物的方法,所述方法具体包括以下步骤:
(1)将电镀污泥破碎至粒径为15mm以下的小颗粒,按照电镀污泥与水质量比为1∶7,向电镀污泥中加入水,搅拌混合形成浆液;所述电镀污泥中所含二价重金属与三价重金属的摩尔比为1∶1;
(2)采用氢氧化钠溶液将浆液的pH值调节至8,在恒温反应釜中不断搅拌下进行反应,向溶液中通入二氧化碳,反应温度为200℃,压力为5MPa,反应时间为4h,得反应混合物,冷却后的反应混合物经过滤、洗涤,得到具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;
(3)将含氰废水用盐酸或硫酸溶液调节pH值至4,加入LDHs脱氰剂,投加量为3g/L,不断搅拌,反应温度为80℃,反应时间为2h,所述LDHs脱氰剂将含氰废水中的氰化物置换去除,将氰化物固定至LDHs层状结构中;
(4)所述LDHs脱氰剂再生的过程中,加入氢氧化钠溶液调节pH值至9,通入二氧化碳,不断搅拌,反应温度为60℃,反应时间为2h,使LDHs脱氰剂再生。
在本实施例中,废水中氰化物去除率可达78%。
本发明所述的利用电镀污泥资源化去除废水中氰化物的方法,氰化物的去除率可达到80%左右,最高可达90%。
申请人声明,本发明通过上述实施例来说明本发明的方法,但本发明并不
局限于上述操作步骤,即不意味着本发明必须依赖上述操作步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (9)
- 一种利用电镀污泥资源化去除废水中氰化物的方法,其特征在于,所述方法包括如下步骤:(1)在碱性条件下,将电镀污泥采用水热合成法进行碳化反应处理,反应后形成具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;(2)向含氰废水中加入步骤(1)的LDHs脱氰剂,所述LDHs脱氰剂将含氰废水中的氰化物置换去除。
- 如权利要求1所述的方法,其特征在于,所述步骤(2)后任选进行:(3)将反应后的LDHs脱氰剂在碱性条件下,通入二氧化碳,使LDHs脱氰剂再生。
- 如权利要求1或2所述的方法,其特征在于,所述步骤(2)将含氰废水调整为弱酸性条件,再加入LDHs脱氰剂;优选地,所述含氰废水用盐酸或硫酸溶液调节pH值至3~6,进一步优选为4。
- 如权利要求1-3之一所述的方法,其特征在于,步骤(1)首先将电镀污泥破碎为粒径为15mm以下的小颗粒;优选地,所述电镀污泥中所含二价重金属与三价重金属的摩尔比为1~4∶1,进一步优选2∶1;优选地,按照电镀污泥与水质量比为1∶4~10向电镀污泥中加水,搅拌混合形成浆液。
- 如权利要求1-4之一所述的方法,其特征在于,所述步骤(1)采用碱溶液将pH值调节至8~12,优选为9;优选地,所述碱溶液为氢氧化钠、碳酸钠或尿素中的一种或至少两种的混合物。
- 如权利要求1-5之一所述的方法,其特征在于,步骤(1)所述碳化反应温度为80~1000℃,进一步优选150℃;优选地,反应压力为1MPa~1Gpa,进一步优选3MPa;优选地,反应时间为6~24h,进一步优选8h。
- 如权利要求1-6之一所述的方法,其特征在于,步骤(2)所述LDHs脱氰剂的投加量为0.05~5g/L,优选为1g/L;优选地,反应温度为30~100℃,进一步优选80℃;优选地,反应时间为0.5~6h,进一步优选3h。
- 如权利要求2-7之一所述的方法,其特征在于,步骤(3)所述LDHs脱氰剂再生时,调节pH值至8~12;优选地,反应温度为30~100℃,进一步优选60℃;优选地,反应时间为0.5~6h,进一步优选2h。
- 如权利要求1-8之一所述的方法,其特征在于,所述方法包括以下步骤:(1)将电镀污泥破碎至粒径为15mm以下的小颗粒,按照电镀污泥与水质量比为1∶4~10,向电镀污泥中加入水,搅拌混合形成浆液;(2)采用碱溶液将浆液的pH值调节至8~12,在恒温反应釜中不断搅拌下进行反应,向溶液中通入二氧化碳,反应温度为80~1000℃,压力为1MPa~1Gpa,反应时间为6~24h,得反应混合物,冷却后的反应混合物经过滤、洗涤,得到具有层状结构的类水滑石化合物固体,作为LDHs脱氰剂;(3)将含氰废水用盐酸或硫酸溶液调节pH值至3~6,加入LDHs脱氰剂,投加量为0.05~5g/L,不断搅拌,反应温度为30~100℃,反应时间为0.5~6h,所述LDHs脱氰剂将含氰废水中的氰化物置换去除,将氰化物固定至LDHs层 状结构中;(4)所述LDHs脱氰剂再生的过程中,加入碱溶液调节pH值至8~12,通入二氧化碳,不断搅拌,反应温度为30~100℃,反应时间为0.5~6h,使LDHs脱氰剂再生。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310741656.4 | 2013-12-27 | ||
CN201310741656.4A CN103708595B (zh) | 2013-12-27 | 2013-12-27 | 利用电镀污泥资源化去除废水中氰化物的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015096536A1 true WO2015096536A1 (zh) | 2015-07-02 |
Family
ID=50401997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/088500 WO2015096536A1 (zh) | 2013-12-27 | 2014-10-13 | 利用电镀污泥资源化去除废水中氰化物的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103708595B (zh) |
WO (1) | WO2015096536A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110482823A (zh) * | 2019-07-30 | 2019-11-22 | 陕西福天宝环保科技有限公司 | 一种电镀污泥的快速烘干方法 |
CN112941320A (zh) * | 2021-01-22 | 2021-06-11 | 西南林业大学 | 一种生物淋滤与水热合成回收电镀污泥重金属的方法 |
CN112960798A (zh) * | 2021-02-02 | 2021-06-15 | 山东黄金冶炼有限公司 | 一种高浓度含氰废水高效净化及循环利用方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103708595B (zh) * | 2013-12-27 | 2015-06-03 | 中国科学院过程工程研究所 | 利用电镀污泥资源化去除废水中氰化物的方法 |
CN105129952A (zh) * | 2015-09-14 | 2015-12-09 | 江苏隆昌化工有限公司 | 一种去除废水中氰化物的方法 |
CN109772259A (zh) * | 2019-03-18 | 2019-05-21 | 清华大学 | 利用电镀污泥处理电镀废水的方法和重金属离子吸附剂 |
CN110817970B (zh) * | 2019-12-11 | 2022-03-29 | 宝鸡文理学院 | 以给水污泥为原料制备M2+-Al3+-Fe3+类水滑石材料的方法及应用 |
CN111233302B (zh) * | 2020-02-17 | 2021-05-25 | 华南农业大学 | 一种污泥资源化处理利用方法及重金属吸附复合材料 |
CN111282965B (zh) * | 2020-03-06 | 2023-09-12 | 伊犁师范大学 | 一种电镀污泥资源化制备磁性材料ldh的方法 |
CN113184921B (zh) * | 2021-04-23 | 2023-10-13 | 江苏大学 | 基于含镍污泥的ldh基复合材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5055199A (en) * | 1987-11-09 | 1991-10-08 | Aluminum Company Of America | Method for reducing the amount of anionic metal-ligand complex in a solution |
CN102179253A (zh) * | 2011-03-10 | 2011-09-14 | 上海大学 | 利用电镀废水和电镀污泥制备催化剂的方法 |
CN102976467A (zh) * | 2012-11-28 | 2013-03-20 | 常州大学 | 一种电镀废水的处理方法 |
CN103708595A (zh) * | 2013-12-27 | 2014-04-09 | 中国科学院过程工程研究所 | 利用电镀污泥资源化去除废水中氰化物的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101376537A (zh) * | 2008-09-24 | 2009-03-04 | 上海大学 | 含Ni2+、Zn2+、Cr3+电镀废水的处理方法 |
CN102974303A (zh) * | 2012-11-28 | 2013-03-20 | 常州大学 | 一种利用电镀废水合成水滑石的方法 |
CN103232104B (zh) * | 2013-05-17 | 2014-12-10 | 上海大学 | 一种含氰/锌电镀废水的处理方法 |
-
2013
- 2013-12-27 CN CN201310741656.4A patent/CN103708595B/zh active Active
-
2014
- 2014-10-13 WO PCT/CN2014/088500 patent/WO2015096536A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5055199A (en) * | 1987-11-09 | 1991-10-08 | Aluminum Company Of America | Method for reducing the amount of anionic metal-ligand complex in a solution |
CN102179253A (zh) * | 2011-03-10 | 2011-09-14 | 上海大学 | 利用电镀废水和电镀污泥制备催化剂的方法 |
CN102976467A (zh) * | 2012-11-28 | 2013-03-20 | 常州大学 | 一种电镀废水的处理方法 |
CN103708595A (zh) * | 2013-12-27 | 2014-04-09 | 中国科学院过程工程研究所 | 利用电镀污泥资源化去除废水中氰化物的方法 |
Non-Patent Citations (1)
Title |
---|
LIU, JINGLI: "Study on Removal of Nickel and Cyanide from Wastewater by Synthesizing Layer Double Hydroxides In-situ'';", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE;, 15 September 2007 (2007-09-15), pages 43 - 44 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110482823A (zh) * | 2019-07-30 | 2019-11-22 | 陕西福天宝环保科技有限公司 | 一种电镀污泥的快速烘干方法 |
CN112941320A (zh) * | 2021-01-22 | 2021-06-11 | 西南林业大学 | 一种生物淋滤与水热合成回收电镀污泥重金属的方法 |
CN112960798A (zh) * | 2021-02-02 | 2021-06-15 | 山东黄金冶炼有限公司 | 一种高浓度含氰废水高效净化及循环利用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103708595B (zh) | 2015-06-03 |
CN103708595A (zh) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015096536A1 (zh) | 利用电镀污泥资源化去除废水中氰化物的方法 | |
Yang et al. | Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0 | |
TWI418521B (zh) | Treatment method and treatment device of selenium - containing wastewater | |
CN108996642A (zh) | 一种含氯废水的处理方法 | |
CN105293775A (zh) | 采用预氧化和混凝沉淀组合来处理含铊、氨氮废水的方法 | |
JP2009228030A (ja) | 無電解メッキ廃液中残留ニッケルの回収方法 | |
CN101428933A (zh) | 镍氨废水生物制剂配合水解-吹脱处理方法 | |
JP5336932B2 (ja) | 水質浄化材料、水質浄化方法、リン酸肥料前駆体及びリン酸肥料前駆体の製造方法 | |
CN108067216B (zh) | 一种煤催化气化灰渣中碱金属催化剂的回收方法 | |
CN106148733A (zh) | 一种分解白钨矿的方法 | |
KR100997325B1 (ko) | 중금속 함유 폐수의 처리방법 | |
US11535537B2 (en) | Process for removal of selenium from water by dithionite ions | |
CN115301256B (zh) | 一种铜铁层状双金属氢氧化物/二硫化钼复合材料及其制备方法和应用 | |
JP2014097475A (ja) | 石炭ガス化排水の処理方法 | |
JPS6211634B2 (zh) | ||
CN108754179B (zh) | 一种氧化预处理含锌二次物料的方法 | |
CN112495339A (zh) | 一种改性沸石吸附锰离子的方法 | |
JP2001252675A (ja) | 排水中の重金属イオンの除去方法 | |
KR100874740B1 (ko) | 철 니켈 함유 폐액으로부터 철 니켈 함유원료의 제조방법및 이 철 니켈 함유원료를 이용한 스텐레스 용해 원료의제조방법 | |
CN110655142A (zh) | 光电催化处理含氰废水的方法 | |
JPH11207365A (ja) | セレン含有排水の処理方法 | |
CN110876919A (zh) | 高盐废水硝酸根吸附剂的制备方法 | |
JPS58216780A (ja) | 浄水装置 | |
CN111111086B (zh) | 一种含氰贫液沉淀渣的处理方法 | |
CN105129952A (zh) | 一种去除废水中氰化物的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14874818 Country of ref document: EP Kind code of ref document: A1 |