WO2015096493A1 - 光伏电池组件 - Google Patents

光伏电池组件 Download PDF

Info

Publication number
WO2015096493A1
WO2015096493A1 PCT/CN2014/084564 CN2014084564W WO2015096493A1 WO 2015096493 A1 WO2015096493 A1 WO 2015096493A1 CN 2014084564 W CN2014084564 W CN 2014084564W WO 2015096493 A1 WO2015096493 A1 WO 2015096493A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic cell
cell module
module according
upper cover
layer
Prior art date
Application number
PCT/CN2014/084564
Other languages
English (en)
French (fr)
Inventor
王申存
孙翔
姜占锋
何龙
Original Assignee
深圳市比亚迪汽车研发有限公司
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市比亚迪汽车研发有限公司, 比亚迪股份有限公司 filed Critical 深圳市比亚迪汽车研发有限公司
Priority to JP2016542934A priority Critical patent/JP6289643B2/ja
Priority to US15/107,716 priority patent/US20160322525A1/en
Priority to KR1020167016827A priority patent/KR101857894B1/ko
Priority to EP14875282.7A priority patent/EP3089220A4/en
Publication of WO2015096493A1 publication Critical patent/WO2015096493A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of solar cells, and more particularly to a photovoltaic cell assembly. Background technique
  • the existing double glass components use tempered glass as the back sheet, UV high permeability EVA or PVB on the front side, and white EVA or PVB on the back side EVA.
  • tempered glass As the back sheet, UV high permeability EVA or PVB on the front side, and white EVA or PVB on the back side EVA.
  • the back of the double glass assembly uses an airtight, impervious glass to prevent moisture from entering the assembly, but the gap between the edges of the two sheets of glass is still a weak link, and moisture can still enter the assembly through the encapsulation film, and Due to the sealing effect of the glass, it is difficult to diffuse out. Under the action of ultraviolet light, the small molecules of acetic acid produced by the decomposition of the EVA encapsulating film will still corrode the cell and reduce the life of the module. In the case of PVB packages, the problem is exacerbated by the high water absorption of PVB.
  • the problem with white EVA or PVB on the back is that the white part is likely to spread to the front side of the cell after long-term use, which blocks the cell sheet, causing hot spots and affecting component efficiency.
  • an object of the present invention is to provide a photovoltaic cell module which is excellent in weather resistance, long in life, and high in ultraviolet absorption rate.
  • a photovoltaic cell assembly includes: a light-transmissive upper cover layer, a first liquid silicone encapsulation layer, a cell sheet group layer, a second liquid silicone encapsulation layer, and a back plate which are sequentially stacked and disposed
  • the outer edges of the upper cover plate and the back plate exceed the outer edges of the first liquid silicone encapsulating layer, the cell stack layer and the second liquid silicone encapsulating layer, and the transparent upper cover and the back plate are further disposed
  • An end seal block the end seal block being located on an outer circumference of the first liquid silicone encapsulation layer, the cell stack layer, and the second liquid silicone encapsulation layer.
  • the photovoltaic cell assembly of the present invention by providing the end seal block, the deficiency of the traditional photovoltaic module edge to expose the package material is compensated, and the moisture and corrosive gas in the environment can be well blocked from entering the component, and the component is slowed down. Attenuate and extend component life.
  • the photovoltaic module of the present invention can also be protected without the use of a sealing block.
  • the light-transmissive upper cover plate and the back plate are both glass plates, since the transparent liquid silica gel is a two-component silica gel, which is liquid at normal temperature, and the two components are evenly mixed at a ratio of 1:1. 7 (T13 (TC laminate can be cured into a thermosetting transparent silica gel, low lamination temperature, energy saving, and help extend the life of the laminator.
  • the front plate is made of rigid glass, which is easier to apply and laminate than the conventional backsheet of polymer material.
  • it has the advantage of being able to convert the ultraviolet light absorbed by the EVA ultraviolet absorber into The electric energy increases the output of the photovoltaic module.
  • the second point is that the new encapsulation film is stable under ultraviolet light, does not degrade to produce small molecules such as acetic acid, corrodes the cell, and has better weather resistance.
  • FIG. 1 is a cross-sectional view of a photovoltaic cell assembly in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic illustration of the photovoltaic cell assembly shown in Figure 1;
  • Figure 3 is a schematic cross-sectional view of the frame of the photovoltaic cell assembly shown in Figure 1;
  • Figure 4 is a developed perspective view of the frame of Figure 2;
  • Figure 5 is a schematic diagram of light reflection of a backing layer in the photovoltaic cell assembly shown in Figure 1;
  • FIG. 6 is a schematic view of a junction box in a photovoltaic cell assembly in accordance with one embodiment of the present invention.
  • Figures 7a and 7b are top and bottom views of the junction box shown in Figure 1;
  • Figure 8 is a schematic illustration of a photovoltaic cell assembly in accordance with another embodiment of the present invention.
  • Figure 9 is a partial enlarged view of the photovoltaic cell assembly shown in Figure 8, showing the assembly of the diode and the junction box;
  • Figure 10 is a schematic view showing the positive and negative junction boxes respectively taken out in the photovoltaic cell assembly shown in Figure 9;
  • Figure 11 is a side view in the direction of A in Figure 10;
  • Figure 12 is a partial schematic view of the backing plate of the photovoltaic cell assembly shown in Figure 9, showing the receiving groove. Reference mark:
  • a second liquid silicone encapsulation layer 14 a second liquid silicone encapsulation layer 14; a backing plate 15; a receiving groove 16;
  • Reflective coating 2 Reflective coating 2 ; end seal block 3 ;
  • a casing 41a a casing 41a; a chamber 40a; sub-chambers 401a, 402a and 403a; Threading hole 41 1a; spacer 42a; conductive block 43a; diode 44a;
  • a casing 41b ; a chamber 410b ; a threading hole 411b ; a conductive sheet 42b ;
  • connection should be understood broadly, and may be either fixed or detachable, unless explicitly stated or defined otherwise.
  • Connected, or connected integrally can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in the specific case for those skilled in the art.
  • a photovoltaic cell module comprises: a body 1 and an end seal block 3.
  • the body 1 includes a light-transmissive upper cover 11 , a first liquid silicone encapsulation layer 12 , a cell stack layer 13 , a second liquid silicone encapsulation layer 14 , and a back plate 15 which are sequentially stacked and disposed in a stack.
  • the outer edges of the light-transmitting upper cover 11 and the back plate 15 exceed the outer edges of the first liquid silicone encapsulating layer 12, the cell stack layer 13, and the second liquid silicone encapsulating layer 14.
  • the transparent silica gel is a film-like structure which is thermoplastic and solid at room temperature. It gradually softens after the temperature rises.
  • Transparent liquid silica gel is a two-component silica gel. It is liquid at room temperature. The two components are uniformly mixed in a ratio of 1:1. After lamination at 5 ( ⁇ 130, it can be cured into a thermosetting transparent silica gel with low lamination temperature and energy saving. And help to extend the life of the laminator.
  • the light transmissive upper cover plate 1 1 and the back plate 15 are both glass plates, which are easier to apply and laminate than conventional back sheets of polymer materials.
  • the light-transmissive upper cover 11 may be ordinary low-iron ultra-white embossed tempered glass or coated low-iron ultra-white tempered tempered glass
  • the back plate 15 may be ordinary low-iron ultra-white embossed tempered glass or ordinary tempered glass.
  • the end seal block 3 is disposed between the light transmissive upper cover 11 and the back plate 15, and the end seal block 3 is located on the first liquid silicone encapsulation layer 12, the cell stack layer 13, and the second liquid silicone encapsulation layer 14.
  • the photovoltaic cell assembly is formed by laminating a light-transmissive upper cover 11, a first liquid silicone encapsulation layer 12, a cell stack layer 13, a second liquid silicone encapsulation layer 14, a backing plate 15, and an end seal block 3.
  • the symbol " /" used in the description of the present application means "he".
  • the photovoltaic cell assembly of the present invention by providing the first liquid silicone encapsulating layer 12 and the second liquid silicone encapsulating layer 14, it is advantageous in that it can transmit ultraviolet light absorbed by the EVA ultraviolet absorber with respect to the conventional EVA encapsulating film. It is converted into electric energy to increase the output of the photovoltaic module.
  • the transparent silica gel layer is stable under ultraviolet light, does not degrade to produce small molecules such as acetic acid, corrodes the cell sheet, and has better weather resistance.
  • the traditional photovoltaic module edge is used to expose the package material to the outside, and the upper and lower layers of the transparent light-transmissive upper cover plate and the back plate can well block the water vapor and corrosiveness in the environment. Gas enters the interior of the assembly, slowing component degradation and extending component life.
  • the method further includes: a reflective coating 2, a junction box 4, and a bezel 6.
  • the reflective coating 2 is provided on the side surface of the back sheet 15 facing the cell stack layer 13 (the lower surface as shown in Figs. 1 and 5).
  • the reflective coating 2 is in the form of a flat network, and the light-transmissive upper cover 11 is frosted glass.
  • the frame 6 is encapsulated on the outer periphery of the body 1 by a sealant. Alternatively, the frame is fixed to the outside of the outer edge of the body 1 by silicone, butyl rubber or double-sided tape.
  • the frame 6 has a notch 60, the junction box 4 is disposed at the notch 60, the junction box 4 is sealed with the body 1 and the frame 6, and the battery panel layer 13 leads the bus bar 131 from between the transparent upper cover 11 and the back plate 15.
  • the junction box 4 is electrically connected to the bus bar 131 to extract the energy of the battery chip.
  • the light transmitted through the gap of the cell can be reflected back to reduce the package loss; by providing a frame, when the external force impacts the edge or the four corners of the battery component, the body 1 can be avoided to the utmost extent.
  • the light-transmissive upper cover 11 and the back plate 15 are crushed, thereby protecting the battery assembly, facilitating transportation and having a long life.
  • the bus bar 131 can be effectively taken out from the edge of the body through the bezel 6.
  • the cross section of the reflective coating 2 is formed into a substantially triangular shape having a vertex angle, and the reflective coating 2 corresponds to an adjacent battery in the battery panel layer 13. Inter-gap, and/or cell edge position settings. Therefore, referring to FIG. 5, the light entering from the light-transmissive upper cover 11 into the cell gap is reflected by the triangular reflective coating 2 with a circular chamfer, and the reflected light is incident on the light-transmitting upper cover 11 to continue. The reflection is used on the battery chip, which further improves the utilization of photons and improves the output power of the battery assembly.
  • the triangular reflective coating 2 with rounded chamfer does not damage the edge of the cell and the encapsulation film, and can fit well in the battery assembly, increasing the safety and mechanical of the battery assembly. Stability and extended service life.
  • the reflective layer corresponding to the gap between adjacent cells in the cell stack layer 13 and/or the edge position of the cell sheet constitutes an integrated network board structure
  • the apex angle of the triangle formed by the cross section of the reflective coating 2 is ⁇ /6-5 ⁇ /6. Further, the apex angle of the triangle is ⁇ /4- ⁇ /2. More preferably, the apex angle of the triangle is ⁇ /3.
  • the cross section of the reflective coating 2 forms a triangle having a base angle ⁇ of 15-85 degrees. Further, the triangle has a base angle ⁇ angle of 30-70 degrees. More preferably, the triangle has a base angle ⁇ angle of 60 degrees. It will be understood by those skilled in the art that the apex angle and the bottom angle of the above triangle can be used arbitrarily.
  • the reflective coating 2 is a white organic polymer layer, including but not limited to a fluorocarbon resin layer, a diallyl polyisophthalate layer, a polyvinylidene fluoride layer, a polyethylene layer, and a polytetrafluoroethylene layer.
  • At least one of the polymer layer and the white silica gel layer has high reflectivity and excellent aging resistance.
  • the reflective coating 2 is adhered to one side of the transparent layer by processes including, but not limited to, spraying, coating, printing, and the like.
  • the junction box 4 is engaged with the outer edge of the body 1 and is glued to the frame 6. Therefore, the junction box 3 is mounted on the edge of the battery pack, instead of being opened or slotted in the back of the assembly, maintaining the complete structure of the back panel 15, which does not form a stress concentration point and is more secure.
  • this distribution of the junction box 3 can reduce the length of the internal bus bar and the external cable of the component with respect to the conventional components, saves cost, and reduces the resistance to increase the power output.
  • one side of the junction box 4 facing the body 1 is provided with two engaging legs (not shown), and the two engaging legs are respectively engaged at the outer edge of the body 1.
  • the junction box 4 is glued to the light transmissive upper cover 11 and the back plate 15 of the body 1.
  • the body 1 is formed in a rectangular shape, and the junction box 4 is three and spaced apart from each other on one of the short sides of the body 1, and each adjacent two junction boxes 4
  • the package connector 8 encapsulating the outer edge of the body 1 corresponding to the notch 60, thereby encapsulating the connector 8 and
  • the bezel 6 collectively protects the edges of the body 1.
  • the outer edges of conventional battery components are usually not protected or only protected by tape. The components of this structure are easily broken due to the corners of the tempered glass, which is less safe, and is dangerous during transportation and installation. Larger.
  • the photovoltaic cell assembly according to the embodiment of the present invention is protected by the U-shaped rigid bezel and the package connector 8, the edge resistance of the battery assembly and the impact resistance of the four corners are greatly improved, and the sealing effect of the battery assembly is further enhanced.
  • the components can also be protected without borders or with tape.
  • the bezel 6 and the package connector 8 can be made of a plurality of materials, respectively.
  • the frame 6 is an aluminum member
  • the package connector 8 is an insulating member.
  • the frame 6 needs to have a grounding hole 64.
  • the bezel 6 and the package connector 8 are both aluminum members, and a grounding hole 64 may be provided in each of the package connectors 8 between adjacent two junction boxes 4.
  • the present invention is not limited thereto, and both the side frame 6 and the package connector 8 may be insulating members. At this time, the bezel 6 and the package connecting member 8 will not need to be provided with the grounding holes 64.
  • the junction box 4 includes: a casing 41a, at least two partitions 42a, a conductive block 43a, a diode 44a, and a connector 45a.
  • the casing 41a has a chamber 410.
  • the side wall of the chamber 410 has a plurality of threading holes 41.
  • the bus bar 131 led out by the battery sheet in the photovoltaic module is adapted to enter the cavity through the threading hole 41 1 .
  • Within chamber 410 as shown in Figures 6 and 7b.
  • At least two partitions 42a are disposed within the chamber 410 to divide the chamber 410 into at least three sub-chambers, for example, the partition 42a may be a plastic piece.
  • a threading hole 41 1 is provided on the side walls of the two sub-chambers of the outermost ends of at least three sub-chambers.
  • the threading hole 41 1 is a rectangular hole as shown in Fig. 7b.
  • a conductive block 43a is disposed in the chamber 410 and extends through at least three sub-chambers to lengthen the length of the conductive block 43a.
  • the bus bar 131 is adapted to be soldered to the conductive block 43a to extract energy from the battery.
  • Diode 44a is disposed in the intermediate subchamber of at least three of the subchambers to prevent the cell from burning out when a hot spot effect is encountered and to prevent current backflow when there is no illumination.
  • the diode 44a is electrically connected to the conductive block 43a, and preferably, the diode 44a is soldered to the conductive block 43a.
  • the connector 45a is located outside the casing 41a and is connected to the conductive block 43a via a cable 46a.
  • the chamber 410 is divided into a plurality of sub-chambers by the partition plate 42a, and the diode 44a is disposed in the intermediate sub-chamber, and the welded portion at the diode 44a is welded when the bus bar 131 is welded. Will not melt, avoiding diode desoldering.
  • the diode 44a fails or the junction box 4 fails, it is only necessary to solder the bus bar 131, or the bus bar 131 can be taken out from the threading hole 41 1 to remove the junction box, which is convenient and time-saving, facilitates maintenance of the power station, and extends the component. life.
  • the double glass photovoltaic module according to the present embodiment may further include a chip type sheet diode 9 soldered on the bus bar 131 and laminated between the light transmissive upper cover plate 1 1 and the back plate 15 , to prevent the battery from burning off when the hot spot effect is encountered, and to prevent current from flowing back when there is no light.
  • a chip type sheet diode 9 soldered on the bus bar 131 and laminated between the light transmissive upper cover plate 1 1 and the back plate 15 , to prevent the battery from burning off when the hot spot effect is encountered, and to prevent current from flowing back when there is no light.
  • the number of partitions 42a is two and the two partitions 42a will chamber 410 is divided into three sub-chambers, namely a first sub-chamber 401a, a second sub-chamber 402a, and a third sub-chamber 403a, wherein the diode 44a is disposed in the most intermediate sub-chamber 402a, as shown in FIG.
  • the subchamber in which the diode 44a is located that is, the second subchamber 402a, is sealed by a potting glue.
  • a potting glue may also be poured.
  • the casing 41a includes a casing and a cover (not shown) that are fastened to each other, and the casing and the casing are sealed by a butyl rubber to ensure waterproofness of the junction box.
  • junction box according to the embodiment of the present invention will be specifically described below with reference to Fig. 6, and the welding of the bus bar 131 and the conductive block 43a will be described as an example.
  • the bus bar 131 led out from the battery piece in the photovoltaic module extends through the threading hole 41 1 into the first sub-chamber 401a and the third sub-chamber 403a, as shown in FIG.
  • the solder remaining in the sub-chamber 401a and the third sub-chamber 403a is heated to solder the bus bar 131 to the conductive block 43a.
  • the potting compound is injected into the second sub-chamber 402a where the diode 44a is located, thereby completing the installation of the junction box.
  • junction box according to the embodiment of the present invention solves the problem that the existing junction box is difficult to replace, and the welding bus bar easily causes the diode to be desoldered, prolonging the service life, and achieving a 40-year long warranty.
  • a photovoltaic cell assembly includes a chip-type thin film diode 9 and a thin-film diode 9 is soldered on the bus bar 131 and laminated between the light-transmitting upper cover 11 and the back plate 15. , to prevent the battery from burning off when the hot spot effect is encountered, and to prevent current from flowing back when there is no light.
  • the junction box 4 is two and formed in an L shape, and the junction box 4 is disposed at two adjacent corners of the body 1, and the bus bar 131 extends into the junction box 4 to take out the energy of the battery.
  • the chip diode 9 is directly soldered to the bus bar 131, and the bus bar 131 is taken out from both ends and soldered to the positive and negative wires at the two corners of the body 1 respectively.
  • the side length of the thin film diode 9 is 8_12 mm.
  • the material of the junction box 4 may be ceramic, thereby improving the tolerance to the environment.
  • the material of the junction box 4 can also be plastic.
  • the thickness H of the diode 9 is less than 0.8 mm, otherwise it will withstand the light transmissive upper cover 11 and the back plate 15 located above and below it.
  • the thickness H of the diode 9 is 0.8-2 mm, and at this time, at least one of the opposite sides of the light-transmitting upper cover 11 and the back plate 15 is formed with the receiving groove 16
  • the diode 9 is substantially in close contact with the light-transmitting upper cover 11 and the back plate 15 located above and below it, so that the heat generated by the diode 9 can be quickly conducted.
  • the junction box 4 includes: a casing 41b, a conductive piece 42b, and a connector 43b.
  • the casing 41b has a chamber 410b therein, and the side wall of the chamber 410b has a threading hole 411b (as shown in FIG. 5).
  • the threading hole 11 is a rectangular hole.
  • the conductive strip 42b is disposed in the chamber 410b, wherein the bus bar 131 extends through the threading hole 411b into the chamber 410b and is connected to the conductive sheet 42b.
  • the plug 43b is located outside the box 41b and is connected to the conductive block through the cable 44b. .
  • the bus bar 131 and the conductive strip 42b may be soldered or snap-fit connections.
  • the photovoltaic cell assembly according to the embodiment of the present invention solves the problem that the existing junction box is difficult to replace, and the solder bus bar easily causes the diode to be desoldered, and the service life is prolonged.
  • the junction box is simple to install, requires fewer cables and bus bars, reduces resistance and increases power output.
  • the adhesive seal member of the butyl rubber member or the polyisobutylene rubber member, or the water vapor transmission rate of less than 0.01 g / m 2 / day, by the photovoltaic module, according to some embodiments of the present invention This makes up for the deficiency of the traditional photovoltaic module edge to expose the packaging material.
  • the water vapor and corrosive gas in the environment can be well blocked from entering the component. Slow down component degradation and extend component life.
  • the double glass battery module according to the present invention has good weather resistance, high structural strength, long life, and high ultraviolet absorption.
  • the photovoltaic cell assembly according to the present invention may further comprise a plurality of fixing devices 5 disposed on a side surface of the backing plate 15 remote from the cell stack layer 13 for fixing Device 5 mounts the entire battery pack somewhere.
  • the back side of the battery assembly is bonded to the four fixing devices 5 by using a high-strength adhesive, whereby the fixing device 5 can be fixed to the bracket for fixing the battery assembly by screws (not shown). Out).
  • This type of installation ensures a more uniform force on the battery components, enhances the load-bearing capacity of the components, and is safer and more reliable.
  • the fixture 5 is provided with a positioning member for fixing the double glass battery assembly to the external carrier.
  • the fixing means 5 are four and evenly distributed on the surface of the backing plate 15, i.e., the back of the entire battery pack. Thereby, it is convenient to mount the entire battery assembly to a certain mounting surface or mounting bracket (not shown).
  • a bezel in a photovoltaic cell module according to an embodiment of the present invention will be described in detail below with reference to Figs. 1 to 4, wherein three of the junction boxes are provided on the short side of the main body as an example.
  • the frame 6 can be fixed to the outside of the outer edge of the body 1 by silicone, butyl rubber or double-sided tape.
  • the frame 6 is formed as a frame structure, and the cross section of the frame 6 has a U-shaped groove, and the width of the groove of the U-shaped groove is larger than the thickness of the body 1 to cover the outer edge of the body 1.
  • the thickness of the frame 6 is l_2 mm, that is, the thickness of each side of the U-shaped groove of the frame 6 is l_2 mm.
  • the outer surface of the bezel 6 is formed with a ridge 62 as shown in FIG.
  • the ribs 62 extend along the length of the bezel 6.
  • the ridges 62 extend straight or curved along the length of the frame 6, for example, may also extend in a spiral.
  • the frame 6 is an integral frame 6 formed by bending a package strip.
  • the package strip is a continuous conductor in which the package strip has at least two predetermined bending positions, a 90-degree V-shaped groove 63 is formed at each predetermined bending position, and a grounding hole 64 is formed in the package strip.
  • a continuous bezel conductor is used because if each side of the bezel conductor is not continuous, the battery assembly needs to be grounded at each side of the installation, which increases cost and is difficult to install.
  • the grounding hole 64 has a diameter of 2-4 mm.
  • the assembly can be directly bent and formed, so that the bent 90-degree V-shaped grooves 63 just form the corners of the frame.
  • the frame 6 and the connecting member 4 are both insulating polymer materials, it is not necessary to open the grounding hole 64 and the plurality of V-shaped grooves 63 on the frame 6, but directly cut out the required size segments for installation, that is, the frame 6 is connected to the connecting member 4 in sequence.
  • the photovoltaic cell module according to the present invention has good weather resistance, high structural strength, long life, and high ultraviolet absorption rate.
  • Particular features, structures, materials or features described in the examples or examples are included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏电池组件,包括:依次层叠设置的透光上盖板(11)、第一液体硅胶封装层(12)、电池片组层(13)、第二液体硅胶封装层(14)、以及背板(15),所述透光上盖板(11)和所述背板(15)的外边缘超过第一液体硅胶封装层(12)、电池片组层(13)和第二液体硅胶封装层(14)的外边缘,所述透光上盖板(11)与背板之间还设置有端部密封块(3),所述端部密封块(3)位于第一液体硅胶封装层(12)、电池片组层(13)和第二液体硅胶封装层(14)的外周。

Description

光伏电池组件
技术领域
本发明涉及太阳能电池领域, 尤其是涉及一种光伏电池组件。 背景技术
现有的双玻组件使用钢化玻璃作为背板, 正面使用紫外高透 EVA或 PVB, 背面一层 EVA使用的是白色 EVA或 PVB。 这种组件以下几个方面的缺陷:
第一, 双玻组件背面使用不透气, 不透水的玻璃, 可以防止水汽进入组件, 但是两 片玻璃的边缘之间的缝隙仍然是一个薄弱环节, 水汽仍然可以透过封装膜进入组件内 部, 并且由于玻璃的密闭作用, 很难扩散出去。 在紫外线作用下, EVA封装膜分解产生 的醋酸小分子仍然会腐蚀电池片, 降低组件寿命。 如果是 PVB封装, 由于 PVB吸水性 很高, 问题会更严重。
第二,背面使用白色 EVA或 PVB存在的问题是白色部分长期使用后很有可能扩散到 电池片的正面, 对电池片形成遮挡, 造成热斑, 影响组件效率。
第三, 组件边缘无框存在安全隐患, 因为钢化玻璃最脆弱的地方在于边缘和四角, 如果保护不当, 很容易造成组件碎裂。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此, 本发明的一个目的在 于提出一种耐候性好、 寿命长且对紫外线吸收率高的光伏电池组件。
根据本发明实施例的一种光伏电池组件, 包括: 依次层叠设置的透光上盖板、 第一 液体硅胶封装层、 电池片组层、 第二液体硅胶封装层、 和背板, 所述透光上盖板和所 述背板的外边缘超过第一液体硅胶封装层、 电池片组层和第二液体硅胶封装层的外边 缘, 所述透光上盖板与背板之间还设置有端部密封块, 所述端部密封块位于第一液体 硅胶封装层、 电池片组层和第二液体硅胶封装层的外周。
根据本发明的光伏电池组件, 通过设置端部密封块, 弥补了传统的光伏组件边缘将 封装材料暴露在外的不足, 能够很好的阻隔环境中的水汽、 腐蚀性气体进入组件内部, 减慢组件衰减, 延长组件寿命。 当然, 本发明的光伏组件也可以不使用密封块做保护。
优选地, 所述透光上盖板和所述背板均为玻璃板, 由于透明液体硅胶是一种双组份 硅胶, 常温下为液态, 两个组分以 1 : 1 均匀混合好后在 7(T13(TC下层压可以固化成为热 固性的透明硅胶, 层压温度低, 节省能源, 且有助于延长层压机寿命。 双玻组件的背板和 前板都是刚性的玻璃, 比高分子材料的常规背板更便于涂胶和层压, 同时相对于传统的 EVA 封装膜其优点在于能够透过被 EVA紫外吸收剂吸收的紫外光线, 转换为电能, 增加光伏组 件的输出; 第二点是新型的封装膜在紫外光照射下很稳定, 不会降解产生醋酸等小分子, 腐蚀电池片, 耐候性更好。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1是根据本发明实施例的光伏电池组件的剖视图;
图 2是图 1中所示的光伏电池组件的示意图;
图 3是图 1中所示的光伏电池组件的边框截面示意图;
图 4是图 2中边框的展开示意图;
图 5是图 1中所示的光伏电池组件中背板层的光反射原理图;
图 6是根据本发明一个实施例的光伏电池组件中接线盒的示意图;
图 7a和图 7b是图 1中所示的接线盒的俯视图和仰视图;
图 8是根据本发明另一个实施例的光伏电池组件的示意图;
图 9是图 8中所示的光伏电池组件中的局部放大图,其中示出了二极管和接线盒的 装配;
图 10是图 9中所示的光伏电池组件中分别引出正极和负极接线盒的示意图; 图 11是图 10中 A向侧视图;
图 12是图 9中所示的光伏电池组件中背板的局部示意图, 其中示出了容纳槽。 附图标记:
本体 1 ;
透光上盖板 11 ; 第一液体硅胶封装层 12 ; 电池片组层 13 ; 汇流条 131 ;
第二液体硅胶封装层 14; 背板 15 ; 容纳槽 16 ;
反光涂层 2 ; 端部密封块 3 ;
接线盒 4;
第一实施例:
盒体 41a; 腔室 40a; 子腔室 401a、 402a和 403a; 穿线孔 41 1a; 隔板 42a; 导电块 43a; 二极管 44a;
接插件 45a; 线缆 46a;
第二实施例:
盒体 41b ; 腔室 410b ; 穿线孔 411b ; 导电片 42b ;
插接件 43b ; 线缆 44b ;
固定装置 5 ;
边框 6 ; 缺口 60 ; U形槽 61 ; 凸条 62 ; V形槽 63 ; 接地孔 64;
密封胶 7 ; 封装连接件 8 ; 薄片二极管 9 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考 附图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语"上"、 "下"、 "前"、 "后"、 "顶"、 "底" 、 "内" 、 "外"等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有 特定的方位、 以特定的方位构造和操作, 因此不能理解为对本发明的限制。 此外, 术 语 "第一" 、 "第二" 仅用于描述目的, 而不能理解为指示或暗示相对重要性或者隐 含指明所指示的技术特征的数量。 由此, 限定有 "第一" 、 "第二" 的特征可以明示 或者隐含地包括一个或者更多个该特征。 在本发明的描述中, 除非另有说明, "多个" 的含义是两个或两个以上。
在本发明的描述中, 需要说明的是, 除非另有明确的规定和限定, 术语 "安装" 、 "相连" 、 "连接" 应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连接; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中 间媒介间接相连, 可以是两个元件内部的连通。 对于本领域的普通技术人员而言, 可 以具体情况理解上述术语在本发明中的具体含义。
下面参考图 1-图 12描述根据本发明实施例的一种光伏电池组件。
根据本发明的光伏电池组件, 包括: 本体 1和端部密封块 3。
如图 1所示, 本体 1包括依次层叠设置的依次层叠设置的透光上盖板 11、 第一液 体硅胶封装层 12、 电池片组层 13、 第二液体硅胶封装层 14、 以及背板 15, 透光上盖 板 11和背板 15的外边缘超过第一液体硅胶封装层 12、电池片组层 13和第二液体硅胶 封装层 14的外边缘。 具体而言, 透明硅胶是一种膜状结构, 为热塑性, 常温下为固态, 温度升高后逐渐软化。透明液体硅胶是一种双组份硅胶,常温下为液态,两个组分以 1 : 1 均匀混合好后在 5(Γ130 下层压可以固化成为热固性的透明硅胶, 层压温度低, 节 省能源, 且有助于延长层压机寿命。
可选地, 透光上盖板 1 1和背板 15均为玻璃板, 比高分子材料的常规背板更便于涂 胶和层压。 例如, 透光上盖板 11可以是普通低铁超白压花钢化玻璃或镀膜低铁超白压 花钢化玻璃, 背板 15可以是普通低铁超白压花钢化玻璃或普通钢化玻璃。 通过采用透 光上盖板 1 1和背板 15, 提高了本体 1的强度, 提高了本体 1的承受载荷的能力。 由于 玻璃有超强的耐候性、 耐老化性能、 绝缘性能和防火性能, 耐磨性能也比高分子背板 高出许多。 使用玻璃作为背板能够很好地增强电池组件的耐老化性能, 而且根据本发 明的光伏电池组件的耐压性能和防火性能也因此得到提高。
端部密封块 3设在透光上盖板 11和背板 15之间,且端部密封块 3位于第一液体硅 胶封装层 12、 电池片组层 13、 和第二液体硅胶封装层 14的外周。 具体而言, 光伏电 池组件为透光上盖板 11、 第一液体硅胶封装层 12、 电池片组层 13、 第二液体硅胶封装 层 14、 背板 15及端部密封块 3层压制成。 其中, 本申请的描述中采用的符号 " /" 表 示 "禾卩" 。
根据本发明的光伏电池组件, 通过设置第一液体硅胶封装层 12和第二液体硅胶封 装层 14, 相对于传统的 EVA封装膜, 其优点在于能够透过被 EVA紫外吸收剂吸收的紫 外光线, 转换为电能, 增加光伏组件的输出; 另外, 透明硅胶层在紫外光照射下很稳 定, 不会降解产生醋酸等小分子, 腐蚀电池片, 耐候性更好。 此外, 通过设置端部密 封块, 弥补了传统的光伏组件边缘将封装材料暴露在外的不足, 结合上下层密实的透 光上盖板和背板, 能够很好的阻隔环境中的水汽、 腐蚀性气体进入组件内部, 减慢组 件衰减, 延长组件寿命。
根据本发明的一些实施例, 还包括: 反光涂层 2、 接线盒 4和边框 6。 反光涂层 2 设在背板 15的朝向电池片组层 13的一侧表面上 (如图 1和图 5中所示的下表面) 。 可选地, 反光涂层 2为平板网络状, 透光上盖板 11为毛玻璃。
边框 6通过密封胶封装在本体 1的外周边上, 可选地, 边框通过硅胶、 丁基橡胶或 双面胶带固定在本体 1的外边缘的外部。 边框 6具有缺口 60, 接线盒 4设置在缺口 60 处, 接线盒 4与本体 1和边框 6封接, 电池片组层 13从透光上盖板 11和背板 15之间 引出汇流条 131, 接线盒 4与汇流条 131电连接以将电池片的能量引出。
由此,通过设置反光涂层,能够将透过电池片间隙的光线反射回去以减少封装损失; 通过设置边框, 当有外力冲击电池组件的边缘或四个拐角时, 可以最大程度地避免本 体 1 的透光上盖板 11和背板 15被撞碎, 由此保护了电池组件, 便于运输且寿命长。 另外, 可以有效地将汇流条 131从本体的边缘通过边框 6引出。
根据本发明的一些实施例, 如图 5所示, 反光涂层 2的截面形成为顶角为圆弧的大 体三角形形状, 反光涂层 2对应于电池片组层 13 中的相邻电池片之间的间隙、 和 /或 电池片边缘位置设置。 由此, 参考图 5, 从透光上盖板 11入到电池片间隙的光线, 在 带圆弧倒角的三角形反光涂层 2进行反射, 反射后的光线入射到透光上盖板 11继续反 射到电池片上利用, 这样就进一步提高了光子的利用率, 提高了电池组件的输出功率。 此外, 在层压工艺中, 带圆弧倒角的三角形反光涂层 2 不会对电池片边缘及封装胶膜 造成破坏, 能够很好的契合在电池组件中, 增加电池组件的安全性及机械稳定性, 延 长了使用寿命。
优选地, 对应于电池片组层 13中的相邻电池片之间的间隙、和 /或电池片边缘位置 设置的反光层组成一体网络板结构,
可选地, 反光涂层 2的截面形成的三角形的顶角弧度为 Π /6-5Π /6。 进一步地, 该 三角形的顶角弧度为 Π /4-Π /2。 更优选地, 该三角形的顶角弧度为 Π /3。 可选地, 反 光涂层 2的截面形成的三角形的底角 α角度为 15-85度。 进一步地, 该三角形的底角 α角度为 30-70度。 更优选地, 该三角形的底角 α角度为 60度。 本领域内普通技术人 员可以理解, 上述三角形的顶角弧度和底角角度可以任意配合使用。
在一些实施例中, 反光涂层 2为白色有机高分子层, 包括但不限于氟碳树脂层、 聚 间苯二甲酸二烯丙酯层、 聚偏氟乙烯层、 聚乙烯层、 聚四氟乙烯层、 氟碳树脂改性聚 合物层、 聚间苯二甲酸二烯丙酯改性聚合物层、 聚偏氟乙烯改性聚合物层、 聚乙烯改 性聚合物层、 聚四氟乙烯改性聚合物层和白色硅胶层中的至少一种, 具有高反射性, 耐老化性优异等特点。 反光涂层 2 通过包括但不限制于喷涂、 涂覆、 印刷等加工工艺 紧密附着在透明层一面。
如图 2和图 8所示, 接线盒 4卡合在本体 1的外边缘, 且与边框 6通过胶封接。 由 此, 接线盒 3安装在电池组件的边缘, 而不是在组件背面开孔或开槽, 保持了背板 15 的完整结构, 不会形成应力集中点, 安全性更高。 另外, 接线盒 3 的这种分布相对于 传统组件可以减少组件内部汇流条和外部线缆的长度, 节省了成本, 并且减少了电阻 增加功率输出。 可选地, 接线盒 4的朝向本体 1的一侧设有两个卡合脚 (图未示出) , 两个卡合脚分别卡合在本体 1 的外边缘处。 进一步地, 在一个可选示例中, 接线盒 4 胶粘在本体 1的透光上盖板 11和背板 15上。
根据本发明的一个实施例, 如图 2所示, 本体 1形成为矩形, 接线盒 4为三个且彼 此间隔开地设在本体 1的其中一个短边上,每相邻两个接线盒 4之间通过封装连接件 8 相连, 封装连接件 8封装对应于缺口 60处的本体 1的外边缘, 由此, 封装连接件 8和 边框 6共同对本体 1 的边缘进行保护。 相较而言, 传统的电池组件的外缘通常不做保 护或仅仅使用胶带保护, 这种结构的组件由于钢化玻璃的边角容易受力而碎裂, 安全 性较低, 运输和安装时风险较大。 而根据本发明实施例的光伏电池组件使用 U型的刚 性边框和封装连接件 8保护后, 电池组件的边缘和四角的抗撞击能力有了大大的提高, 并且进一步加强了电池组件的密封效果。 当然, 组件也可以不使用边框保护或使用胶 带保护。
在本实施例中, 边框 6和封装连接件 8可以分别为多种材料制成。 其中, 在一个可 选示例中, 边框 6为铝材件, 封装连接件 8为绝缘件, 此时边框 6上需要具有一个接 地孔 64。 在另一个可选示例中, 边框 6和封装连接件 8均为铝材件, 每相邻两个接线 盒 4之间的封装连接件 8上可以均设有一个接地孔 64。 当然, 本发明并不限于此, 边 框 6和封装连接件 8可以都为绝缘件, 此时, 边框 6和封装连接件 8都将不需要设置 接地孔 64。
下面具体描述本实施例的接线盒 4的结构。 接线盒 4包括: 盒体 41 a、 至少两个隔 板 42a、导电块 43a、二极管 44a和接插件 45a。如图 6所示,盒体 41a内具有腔室 410, 腔室 410的侧壁上具有多个穿线孔 41 1,光伏组件中电池片引出的汇流条 131适于穿过 穿线孔 41 1进入腔室 410内, 如图 6和图 7b所示。 至少两个隔板 42a设在腔室 410内 以将腔室 410分成至少三个子腔室, 例如隔板 42a可以为塑料件。 穿线孔 41 1设在至 少三个子腔室中最外端的两个子腔室的侧壁上。 可选地, 穿线孔 41 1 为矩形孔, 如图 7b所示。
导电块 43a设在腔室 410内且贯穿至少三个子腔室, 加长了导电块 43a的长度。汇 流条 131适于与导电块 43a焊接连接从而将电池片的能量引出。 二极管 44a设在至少 三个子腔室中的中间子腔室内, 使得在遇到热斑效应时防止电池片烧掉, 且在没有光 照时防止电流倒流。 二极管 44a与导电块 43a电连接, 优选地, 二极管 44a焊接至导 电块 43a上。 接插件 45a位于盒体 41a外且通过线缆 46a与导电块 43a连接。
由此, 根据本发明实施例的接线盒 4, 通过隔板 42a将腔室 410分成多个子腔室, 且二极管 44a设在中间子腔室内, 在焊接汇流条 131时, 二极管 44a处的焊接处不会 融化, 避免了二极管脱焊。 另外, 当二极管 44a失效或接线盒 4失效时, 只需焊下汇 流条 131, 或将汇流条 131从穿线孔 41 1取出就可以取下接线盒, 操作简便省时, 便于 电站维护, 延长组件寿命。 进一步可选地, 根据本实施例的双玻光伏组件还可以包括 贴片式薄片二极管 9, 薄片二极管 9焊接在汇流条 131上且层压在透光上盖板 1 1和背 板 15之间, 使得在遇到热斑效应时防止电池片烧掉, 且在没有光照时防止电流倒流。
根据本发明的一个优选生示例, 隔板 42a 的数量为两个, 且两个隔板 42a将腔室 410分成三个子腔室、 即第一子腔室 401a、 第二子腔室 402a和第三子腔室 403a, 其中 二极管 44a设在最中间的子腔室 402a内, 如图 6所示。 二极管 44a所在的子腔室即第 二子腔室 402a内通过灌封胶密封。 由此, 可以保持二极管 44a周围有导热性良好的灌 封胶, 能够及时降低二极管的温度, 保护二极管。 可选地, 第一子腔室 401a和第三子 腔室 403a内可以保持空腔, 也可以灌入灌封胶。
可选地, 盒体 41a包括相互扣合的盒座和盒盖 (图未示出) , 盒盖和盒座之间通过 丁基橡胶密封, 从而保证接线盒的防水性。
下面参考图 6具体描述根据本发明实施例的接线盒的安装过程,以汇流条 131和导 电块 43a焊接为例进行说明。
如图 6所示,从光伏组件中电池片引出的汇流条 131穿过穿线孔 41 1伸入到第一子 腔室 401a和第三子腔室 403a内, 如图 6所示, 在第一子腔室 401a和第三子腔室 403a 内预留的焊锡加热时将汇流条 131焊接到导电块 43a上。 最后将灌封胶注入到二极管 44a所在的第二子腔室 402a内, 从而完成了接线盒的安装。
根据本发明实施例的接线盒, 解决了现有的接线盒难以更换、 以及焊接汇流条容易 造成二极管脱焊的问题, 延长使用寿命, 可以实现 40年超长质保。
如图 6所示,根据本发明的另一个实施例,光伏电池组件包括贴片式薄片二极管 9 薄片二极管 9焊接在汇流条 131上且层压在透光上盖板 11和背板 15之间, 使得在遇 到热斑效应时防止电池片烧掉, 且在没有光照时防止电流倒流。 此时, 接线盒 4为两 个且分别形成为 L形, 接线盒 4设在本体 1的其中两个相邻拐角处, 汇流条 131伸入 接线盒 4 内从而将电池片的能量引出。 具体而言, 在铺设电池片组层中的电池片矩阵 时, 直接将薄片二极管 9焊接至汇流条 131上, 汇流条 131从两端引出, 分别焊接至 本体 1两个拐角处的正负接线盒上, 如图 8-图 10所示。 可选地, 薄片二极管 9的边长 为 8_12mm
可选地, 接线盒 4的材料可以为陶瓷, 由此可以提高对环境的耐受能力。 当然, 接 线盒 4的材料也可以为塑料。
在其中一个可选示例中, 二极管 9的厚度 H小于 0. 8mm, 否则将会顶住位于其上方 和下方的透光上盖板 11和背板 15。而在本发明的另一个可选示例中, 二极管 9的厚度 H为 0. 8-2mm, 此时在透光上盖板 11和背板 15的相对的侧面中至少一个上形成有容纳 槽 16, 容纳槽 16的总深度 h=H-0. 8 也就是说, 如果透光上盖板 11和背板 15中的 其中一个上设有容纳槽 16时, 该容纳槽的深度为 h=H-0. 8mm; 如果透光上盖板 11和背 板 15上都具有相对应的容纳槽 16时, 两个容纳槽的总深度为 h=H-0. 8mm。 可选地, 如 图 6所示, 容纳槽 16形成在背板 15上。 优选地, 容纳槽 16为正方形槽, 且容纳槽 16的边长比二极管 9的边长大 0. 2mm。 这样, 二极管 9基本上和位于其上方和下方的透光上盖板 11和背板 15近距离接触, 从而可以很快地将二极管 9产生的热量传导出去。
具体地, 接线盒 4包括: 盒体 41b、 导电片 42b和插接件 43b, 盒体 41b内具有腔 室 410b, 腔室 410b的侧壁上具有穿线孔 411b (如图 5所示) , 可选地, 穿线孔 11为 矩形孔。导电片 42b设在腔室 410b内,其中汇流条 131穿过穿线孔 411b伸入腔室 410b 内且与导电片 42b连接, 插接件 43b位于盒体 41b外且通过线缆 44b与导电块连接。 可选地, 汇流条 131和导电片 42b可以为焊接连接或卡合连接。
根据本发明实施例的光伏电池组件, 解决了现有的接线盒难以更换、 以及焊接汇流 条容易造成二极管脱焊的问题, 延长使用寿命。 另外, 接线盒的安装简单, 所需线缆 和汇流条少, 减小了电阻且增大了功率输出。
根据本发明一些实施例的光伏电池组件中,端部密封块 3可以为丁基橡胶件或聚异 丁烯橡胶件、或水汽透过率低于 0. 01g/m2/天的粘结胶件, 由此弥补了传统的光伏组件 边缘将封装材料暴露在外的不足, 结合上下层密实的透光上盖板 1 1和背板 15, 能够很 好的阻隔环境中的水汽、 腐蚀性气体进入组件内部, 减慢组件衰减, 延长组件寿命。 由此, 使得根据本发明的双玻电池组件, 耐候性好、 结构强度高, 寿命长, 对紫外线吸 收率高。
在进一步的实施例中, 根据本发明的光伏电池组件还可以包括多个固定装置 5, 多 个固定装置 5设在背板 15的远离电池片组层 13的一侧表面上, 用于通过固定装置 5 将整个电池组件安装至某处。 具体而言, 如图 2所示, 电池组件的背面使用高强度粘结 胶粘接四块固定装置 5, 由此可以将固定装置 5通过螺钉固定在用于固定电池组件的支架 (图未示出) 上。 这种方式的安装保证电池组件的受力更加均匀, 增强了组件承受载荷的 能力, 更加安全可靠。
如图 2所示, 固定装置 5上设置有用于将双玻电池组件固定在外部载体上的定位件。 可选地, 固定装置 5为四个且均匀分布在背板 15的表面上, 即整个电池组件的背面。 由此, 可以方便地将整个电池组件安装至某个安装表面或安装支架 (图未示出) 上。
下面参考图 1-图 4详细描述根据本发明实施例的光伏电池组件中的边框, 其中以 接线盒为设在本体短边上的三个为例进行说明。
如图 1所示, 边框 6可以通过硅胶、 丁基橡胶或双面胶带固定在本体 1的外边缘的 外部。 边框 6形成为框架结构, 且边框 6的横截面具有 U形槽, U形槽的槽口宽度大于 本体 1的厚度以罩在本体 1的外边缘上。
可选地, 边框 6的厚度为 l_2mm, 即边框 6的 U形槽的每条边的厚度为 l_2mm。 在 一些实施例中, 边框 6的外表面上形成有凸条 62, 如图 3所示。 可选地, 凸条 62沿边 框 6的长度方向延伸。 进一步地, 凸条 62沿边框 6的长度方向直线或曲线延伸, 例如 还可以为螺旋延伸。 通过设置凸条, 可以增加边框 6的整体强度, 并且使得边框 6的 外观更加美观。
边框 6为一条封装条弯折形成的一体边框 6。 具体而言, 该封装条为连续导体, 其 中封装条具有至少两个预定弯折位置, 在每个预定弯折位置处形成 90度的 V形槽 63, 且在封装条上设置接地孔 64。 采用一个连续的边框导体, 原因在于, 如果边框导体的 每段边不连续, 则电池组件在安装时, 每段边都需要接地, 增加成本且安装困难。 优 选地, 接地孔 64的直径为 2-4mm。 另外, 通过将封装条在预定直角位置出形成三个 90 度的 V形槽 63, 使得安装时可以直接折弯成形, 这样折弯后的 90度的 V形槽 63刚好 形成边框的拐角处。
当边框 6和连接件 4均为绝缘的高分子材料件时, 在边框 6上无需开出接地孔 64 和多个 V形槽 63, 而是直接切出需要的尺寸分段进行安装, 即将边框 6与连接件 4依 次连接。
根据本发明的光伏电池组件, 耐候性好、 结构强度高, 寿命长, 对紫外线吸收率高。 在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱 离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种光伏电池组件, 其特征在于, 包括: 依次层叠设置的透光上盖板、 第一液 体硅胶封装层、 电池片组层、 第二液体硅胶封装层和背板, 所述透光上盖板和所述背 板的外边缘超过第一液体硅胶封装层、 电池片组层和第二液体硅胶封装层的外边缘, 所述透光上盖板与背板之间还设置有端部密封块, 所述端部密封块位于第一液体硅胶 封装层、 电池片组层和第二液体硅胶封装层的外周。
2、 根据权利要求 1所述的光伏电池组件, 其特征在于, 所述透光上盖板和所述背 板均为玻璃板。
3、 根据权利要求 1所述的光伏电池组件, 其特征在于, 所述端部密封块为丁基橡 胶件或聚异丁烯橡胶件。
4、 根据权利要求 1所述的光伏电池组件, 其特征在于, 所述光伏电池组件为透光 上盖板、 第一液体硅胶封装层、 电池片组层、 第一液体硅胶封装层、 背板及端部密封 块层压制成。
5、 根据权利要求 2-4中任一项所述的光伏电池组件, 其特征在于, 所述光伏电池 组件周边还包覆有密封胶带。
6、 根据权利要求 2-4中任一项所述的光伏电池组件, 其特征在于, 所述光伏电池 组件周边还封装有边框。
7、 根据权利要求 6所述的光伏电池组件, 其特征在于, 边框为一条封装条弯折形 成的一体边框。
8、 根据权利要求 7所述的光伏电池组件, 其特征在于, 所述封装条上设置接地孔。
9、 根据权利要求 7所述的光伏电池组件, 其特征在于, 所述封装条具有至少两个 预定弯折位置, 在每个预定弯折位置处形成 90度的 V形槽。
10、 根据权利要求 6所述的光伏电池组件, 其特征在于, 所述边框通过密封胶设在 所述光伏电池组件的外周边上。
11、根据权利要求 6所述的光伏电池组件,其特征在于,所述边框形成为框架结构, 且所述边框的横截面具有 u形槽, 所述 U形槽的槽口宽度大于所述光伏电池组件的厚 度以罩在所述光伏电池组件的外边缘上。
12、根据权利要求 11所述的光伏电池组件,其特征在于,所述边框的厚度为 l_2mm。
13、 根据权利要求 11所述的光伏电池组件, 其特征在于, 所述边框的外表面上形 成有凸条, 所述凸条沿所述边框的长度方向延伸。
14、 根据权利要求 6所述的光伏电池组件, 其特征在于, 还包括接线盒, 所述电池 片组层从所述透光上盖板和所述背板之间引出汇流条, 所述接线盒与所述汇流条电连
15、 根据权利要求 14所述的光伏电池组件, 其特征在于, 所述透光上盖板和所述 背板形成为矩形, 所述接线盒为三个且彼此间隔开地设在所述矩形的其中一个短边上。
16、 根据权利要求 2所述的光伏电池组件, 其特征在于, 所述透光上盖板为普通低 铁超白压花钢化玻璃或镀膜低铁超白压花钢化玻璃, 所述背板为普通低铁超白压花钢 化玻璃或普通钢化玻璃。
PCT/CN2014/084564 2013-12-27 2014-08-15 光伏电池组件 WO2015096493A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016542934A JP6289643B2 (ja) 2013-12-27 2014-08-15 光電池モジュール
US15/107,716 US20160322525A1 (en) 2013-12-27 2014-08-15 Photovoltaic cell module
KR1020167016827A KR101857894B1 (ko) 2013-12-27 2014-08-15 광전지 모듈
EP14875282.7A EP3089220A4 (en) 2013-12-27 2014-08-15 Photovoltaic cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320875523.1U CN203746873U (zh) 2013-12-27 2013-12-27 光伏电池组件
CN201320875523.1 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015096493A1 true WO2015096493A1 (zh) 2015-07-02

Family

ID=51346636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084564 WO2015096493A1 (zh) 2013-12-27 2014-08-15 光伏电池组件

Country Status (6)

Country Link
US (1) US20160322525A1 (zh)
EP (1) EP3089220A4 (zh)
JP (1) JP6289643B2 (zh)
KR (1) KR101857894B1 (zh)
CN (1) CN203746873U (zh)
WO (1) WO2015096493A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203746872U (zh) * 2013-12-27 2014-07-30 比亚迪股份有限公司 双玻电池组件
CN104752538A (zh) 2013-12-27 2015-07-01 比亚迪股份有限公司 双玻光伏电池组件
CN203774347U (zh) 2013-12-27 2014-08-13 比亚迪股份有限公司 光伏电池组件
CN203813724U (zh) * 2013-12-27 2014-09-03 比亚迪股份有限公司 双玻光伏电池组件及其边框
CN104753457B (zh) 2013-12-27 2017-05-31 比亚迪股份有限公司 双玻光伏组件
CN203746873U (zh) * 2013-12-27 2014-07-30 比亚迪股份有限公司 光伏电池组件
US10069019B2 (en) 2014-10-31 2018-09-04 Byd Company Limited Solar cell unit, solar cell array, solar cell module and manufacturing method thereof
CN105576057B (zh) * 2014-10-31 2018-06-26 比亚迪股份有限公司 太阳能电池组件及其制备方法
CN105609579A (zh) * 2016-01-07 2016-05-25 湖北京怡硅光电实业有限公司 一种太阳能光伏复合板
CN105649290A (zh) * 2016-01-07 2016-06-08 湖北京怡硅光电实业有限公司 一种外墙装饰板
CN107141619B (zh) * 2017-04-20 2020-10-23 杭州福斯特应用材料股份有限公司 一种具有超低水汽透过率的聚异丁烯背板
CN109346542A (zh) * 2017-08-01 2019-02-15 常州亚玛顿股份有限公司 一种光伏双玻组件结构
CN107634113A (zh) * 2017-09-01 2018-01-26 常州大学 防水汽渗透的双玻组件及制作方法
CN109341607B (zh) * 2018-09-26 2020-09-01 国家电投集团西安太阳能电力有限公司 光伏组件用绝缘隔离条穿刺绝缘距离的检测与判定方法
CN112201717A (zh) * 2020-09-14 2021-01-08 阜宁协鑫集成科技有限公司 一种晶体硅光伏组件封装工艺
CN112165298B (zh) * 2020-09-30 2021-12-28 晶科能源股份有限公司 光伏边框、光伏组件及光伏边框的制造方法
CN114765226A (zh) * 2021-05-24 2022-07-19 北京劲吾新能源科技有限公司 一种减缓uv油墨降解的彩色光伏组件及其制作方法
CN113675288B (zh) * 2021-08-16 2023-11-17 浙江中聚材料有限公司 光伏组件背板样件及其性能测试装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822157B2 (en) * 2001-10-15 2004-11-23 Sharp Kabushiki Kaisha Thin film solar battery module
CN101345267A (zh) * 2008-08-29 2009-01-14 李毅 一种太阳能光电模板及其封装方法
CN102315298A (zh) * 2010-07-07 2012-01-11 无锡尚德太阳能电力有限公司 一种太阳电池组件
CN102952518A (zh) * 2012-05-28 2013-03-06 文仁光 封装太阳能电池片用双组份液体硅胶及制备方法和使用方法
CN203746872U (zh) * 2013-12-27 2014-07-30 比亚迪股份有限公司 双玻电池组件
CN203746873U (zh) * 2013-12-27 2014-07-30 比亚迪股份有限公司 光伏电池组件
CN203774347U (zh) * 2013-12-27 2014-08-13 比亚迪股份有限公司 光伏电池组件
CN203813724U (zh) * 2013-12-27 2014-09-03 比亚迪股份有限公司 双玻光伏电池组件及其边框

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235643A (en) * 1978-06-30 1980-11-25 Exxon Research & Engineering Co. Solar cell module
JPH11103086A (ja) * 1997-07-29 1999-04-13 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP2000080774A (ja) * 1998-09-08 2000-03-21 Mitsubishi Heavy Ind Ltd 太陽電池パネルの構造および設置方法
JP2000323740A (ja) * 1999-05-11 2000-11-24 Hitachi Ltd 集光型太陽光発電装置
US6177627B1 (en) * 1999-06-21 2001-01-23 Ace-Able Engineering Co., Inc. Solar cell array with multiple rows of cells and collapsible reflectors
DE20117716U1 (de) * 2001-10-23 2002-03-14 Würth Solar GmbH & Co. KG, 71672 Marbach Rahmen für Solarmodule
JP2003137611A (ja) * 2001-11-01 2003-05-14 Nitto Denko Corp ガラスフレームのシール構造およびシール方法
DE102004001011B4 (de) * 2003-01-08 2010-04-15 Sumitomo Wiring Systems, Ltd., Yokkaichi Anschlusskastenvorrichtung für ein Solarzellenmodul und ein Verbindungsverfahren für eine Anschlusskastenvorrichtung
JP2004288677A (ja) * 2003-03-19 2004-10-14 Sharp Corp 太陽電池モジュールサブアセンブリおよび複層ガラス型太陽電池モジュール
JP2006019532A (ja) * 2004-07-02 2006-01-19 Sansha Electric Mfg Co Ltd 太陽電池用接続具
JP4656982B2 (ja) * 2005-03-31 2011-03-23 三洋電機株式会社 太陽電池モジュール
US20080185033A1 (en) * 2007-02-06 2008-08-07 Kalejs Juris P Solar electric module
US20090114261A1 (en) * 2007-08-29 2009-05-07 Robert Stancel Edge Mountable Electrical Connection Assembly
AU2007362562A1 (en) * 2007-12-18 2009-06-25 Day4 Energy Inc. Photovoltaic module with edge access to PV strings, interconnection method, apparatus, and system
US20110146793A1 (en) * 2008-07-02 2011-06-23 Saint-Gobain Performance Plastics Chaineux Framed device, seal, and method for manufacturing same
CN102326259A (zh) * 2008-07-02 2012-01-18 圣戈班性能塑料谢纳有限公司 带框器件、密封件及其制造方法
TW201025647A (en) * 2008-10-03 2010-07-01 Toppan Printing Co Ltd Photovoltaic module
DE102009011163A1 (de) * 2008-12-16 2010-07-08 Tesa Se Klebeband, insbesondere zur Verklebung von Photovoltaik-Modulen
US20120048349A1 (en) * 2009-01-09 2012-03-01 Solopower, Inc. Flexible solar modules and manufacturing the same
JP2010165750A (ja) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp 太陽電池モジュール
US20110036390A1 (en) * 2009-08-11 2011-02-17 Miasole Composite encapsulants containing fillers for photovoltaic modules
JP4612731B1 (ja) * 2009-09-29 2011-01-12 富士フイルム株式会社 太陽電池モジュール
JP2011108725A (ja) * 2009-11-13 2011-06-02 Toppan Printing Co Ltd 裏面シート、太陽電池裏面シート及びこれを用いた太陽電池モジュール
JP2012001707A (ja) * 2010-06-17 2012-01-05 Dengiken:Kk 電気絶縁材料粘着テープ
JP3162765U (ja) * 2010-07-05 2010-09-16 景懋光電股▲ふん▼有限公司 太陽エネルギーの接続箱構造
CN102403385A (zh) * 2010-09-07 2012-04-04 杜邦公司 薄膜太阳能电池模块
KR101299504B1 (ko) * 2010-09-20 2013-08-29 엘지전자 주식회사 태양 전지 모듈
WO2012056941A1 (ja) * 2010-10-28 2012-05-03 富士フイルム株式会社 太陽電池モジュールおよびその製造方法
WO2012096548A2 (en) * 2011-01-14 2012-07-19 Lg Innotek Co., Ltd. Solar cell module
JP2012204489A (ja) * 2011-03-24 2012-10-22 Toppan Printing Co Ltd 反射保護シートおよびその製造方法、半導体発電装置
CN202268367U (zh) * 2011-09-29 2012-06-06 晶科能源有限公司 新型太阳能光伏组件
JP2013082764A (ja) * 2011-10-06 2013-05-09 Nitto Denko Corp シーリング組成物、複層ガラスおよび太陽電池パネル
JP6146627B2 (ja) * 2012-05-22 2017-06-14 大日本印刷株式会社 太陽電池モジュール
JP5780209B2 (ja) * 2012-05-29 2015-09-16 信越化学工業株式会社 太陽電池モジュールの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822157B2 (en) * 2001-10-15 2004-11-23 Sharp Kabushiki Kaisha Thin film solar battery module
CN101345267A (zh) * 2008-08-29 2009-01-14 李毅 一种太阳能光电模板及其封装方法
CN102315298A (zh) * 2010-07-07 2012-01-11 无锡尚德太阳能电力有限公司 一种太阳电池组件
CN102952518A (zh) * 2012-05-28 2013-03-06 文仁光 封装太阳能电池片用双组份液体硅胶及制备方法和使用方法
CN203746872U (zh) * 2013-12-27 2014-07-30 比亚迪股份有限公司 双玻电池组件
CN203746873U (zh) * 2013-12-27 2014-07-30 比亚迪股份有限公司 光伏电池组件
CN203774347U (zh) * 2013-12-27 2014-08-13 比亚迪股份有限公司 光伏电池组件
CN203813724U (zh) * 2013-12-27 2014-09-03 比亚迪股份有限公司 双玻光伏电池组件及其边框

Also Published As

Publication number Publication date
KR20160090356A (ko) 2016-07-29
EP3089220A1 (en) 2016-11-02
JP2017501582A (ja) 2017-01-12
CN203746873U (zh) 2014-07-30
EP3089220A4 (en) 2017-01-11
JP6289643B2 (ja) 2018-03-07
US20160322525A1 (en) 2016-11-03
KR101857894B1 (ko) 2018-05-14

Similar Documents

Publication Publication Date Title
WO2015096493A1 (zh) 光伏电池组件
WO2015096492A1 (zh) 光伏电池组件
WO2015096490A1 (zh) 双玻光伏电池组件
WO2015096488A1 (zh) 双玻光伏电池组件及其边框
WO2015096491A1 (zh) 双玻电池组件
CN104377259B (zh) 双玻光伏电池组件
WO2014117541A1 (zh) 一种建筑光伏构件模块
WO2015096489A1 (zh) 双玻光伏组件
WO2017219799A1 (zh) 一种太阳能电池组件
CN104752539A (zh) 双玻光伏组件
CN215897634U (zh) 一种中空光伏组件及一种隐框幕墙
CN212230441U (zh) 一种bipv组件
WO2012003600A1 (zh) 一种太阳电池组件
CN216250760U (zh) 一种高效的抗低温单晶光伏组件
CN201838613U (zh) 一体化散热光伏电池组件
CN111613682A (zh) 一种bipv组件及其制备方法
WO2020011196A1 (zh) 太阳能组件及太阳能系统
CN201667339U (zh) 一种太阳能电池铝塑板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167016827

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107716

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016542934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014875282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875282

Country of ref document: EP