WO2015093568A1 - 抵抗スポット溶接方法 - Google Patents

抵抗スポット溶接方法 Download PDF

Info

Publication number
WO2015093568A1
WO2015093568A1 PCT/JP2014/083571 JP2014083571W WO2015093568A1 WO 2015093568 A1 WO2015093568 A1 WO 2015093568A1 JP 2014083571 W JP2014083571 W JP 2014083571W WO 2015093568 A1 WO2015093568 A1 WO 2015093568A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
pulsation
energization
resistance spot
spot welding
Prior art date
Application number
PCT/JP2014/083571
Other languages
English (en)
French (fr)
Inventor
富士本 博紀
及川 初彦
山中 晋太郎
高志 今村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to RU2016124112A priority Critical patent/RU2663659C2/ru
Priority to EP14870854.8A priority patent/EP3085485B1/en
Priority to KR1020167007798A priority patent/KR101887789B1/ko
Priority to CA2926914A priority patent/CA2926914A1/en
Priority to MX2016006347A priority patent/MX2016006347A/es
Priority to CN201480056857.3A priority patent/CN105636735B/zh
Priority to ES14870854T priority patent/ES2764835T3/es
Priority to JP2015553603A priority patent/JP6137337B2/ja
Priority to US15/025,459 priority patent/US10406627B2/en
Publication of WO2015093568A1 publication Critical patent/WO2015093568A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies

Definitions

  • the present invention relates to a resistance spot welding method, and more particularly to a resistance spot welding method using an inverter DC power source.
  • An automobile body is assembled by joining press-formed steel sheets mainly by resistance spot welding.
  • resistance spot welding used in the assembly of vehicle bodies, it is necessary to ensure both a nugget diameter according to the plate thickness and suppression of dust generation.
  • a current value capable of obtaining a reference nugget diameter such as 4 ⁇ t is a lower limit (hereinafter referred to as “lower limit current” or “4 ⁇ t current”).
  • the range (hereinafter referred to as “appropriate current range”) defined as the upper limit (hereinafter referred to as “upper limit current” or “chile current”) of the current value at which dust (sputtering) occurs is the spot welding of the steel sheet. It is an important indicator of sex.
  • the lower limit current and the upper limit current are measured in an ideal state with a test piece.
  • the above lower limit current is evaluated in an ideal state at the specimen level.
  • the actual vehicle body is set at a current value that gives 4 ⁇ t at the specimen level due to various disturbance factors such as electrode wear, diversion to the welded point, and gaps between the pressed parts. Even with welding, the nugget diameter may be less than 4 ⁇ t. Therefore, in a mass production line, it is necessary to set a current value that is 1.0 kA or more, preferably 1.5 kA or more higher than the current that provides 4 ⁇ t at the test piece level as a practical lower limit current value.
  • the appropriate current range is 1.0 kA or more, preferably 1.5 kA or more in the test piece level evaluation. Needed. If a predetermined appropriate current range cannot be secured at the test piece level, a current value is set for the current that generates dust in order to stably secure a 4 ⁇ t nugget diameter in spot welding at actual sites with many disturbances. This is because it must be done.
  • inverter DC type resistance spot welder is often used instead of a single-phase AC type in the assembly of automobiles.
  • Inverter DC systems can be used in automated lines, especially because they can reduce the transformer and have the advantage of being mounted on a robot with a small payload.
  • the inverter DC method does not turn on and off the current as in the conventional single-phase AC method, and provides a continuous current, so it has good heat generation efficiency. Therefore, it has been reported that even in the case of a galvanized material of thin sheet steel that is difficult to form a nugget, the nugget is formed from a low current and the appropriate current range is wider than that of the single-phase AC method.
  • Patent Document 1 as shown in FIG. 2, by adopting a two-stage energization method in which main energization is performed after improving the familiarity between the contact surfaces of the steel plates by preliminary energization, in resistance spot welding of high-tensile steel plates A method for suppressing the generation of dust is disclosed.
  • Patent Document 2 As shown in FIG. 3, by adopting an energization method in which the current is stopped after improving the familiarity between the contact surfaces of the steel plates by preliminary energization, and then performing the main energization, A method for suppressing generation of dust in resistance spot welding is disclosed.
  • Patent Document 3 has a three-stage energization process as shown in FIGS. That is, a preliminary energization process which is the first process for forming a nugget, a second process for reducing the current after the preliminary energization to increase the corona bond diameter around the nugget, and a current larger than the pre-energization current after the second process. It is composed of a main energization process which is a third process of flowing and expanding the nugget diameter.
  • Patent Document 3 discloses that by using the pulsation energization method in the third step, the effect of enlarging the energization diameter is increased and generation of dust is suppressed as compared with the continuous energization method.
  • Patent Document 4 discloses a method of suppressing generation of dust in resistance spot welding of a high-tensile steel sheet by resistance spot welding in which the current value is increased while repeating current up and down as shown in FIG. .
  • Non-Patent Document 2 as shown in FIG. 7, in a steel sheet having a thickness of 1.5 mm or more, energization for 120 milliseconds (6 cycles at 50 Hz) or more and 40 milliseconds (2 cycles at 50 Hz) are stopped. A resistance spot welding method that is repeated three or more times is disclosed.
  • the surface of the steel sheet used for hot stamping may be subjected to surface treatment such as zinc plating or aluminum plating in order to prevent the generation of iron scale when heated to a high temperature.
  • the hot stamped steel sheet is not a flat plate but a formed body.
  • a hot stamped high tensile steel sheet including a molded body is referred to as a “hot stamped steel sheet”.
  • a zinc-plated steel sheet, an aluminum-plated steel sheet, or a steel sheet obtained by applying a surface coating to these steel sheets is referred to as a “surface-treated hot stamped steel sheet”.
  • Non-Patent Document 1 reports that this phenomenon occurs, for example, in resistance spot welding of an aluminum plated hot stamped steel sheet.
  • the surface-treated hot stamped steel sheet is used for an oxide film or surface coating whose main component is a metal derived from plating (for example, zinc for zinc-based plating or aluminum for aluminum-based plating). It has a derived oxide film. For this reason, compared with a bare steel plate, the position where current flows on the surface of the steel plate is local, and heat is rapidly generated due to current density concentration. On the other hand, alloying between plating and steel proceeds in the hot stamping process, and the melting point of the alloy formed on the surface of the steel sheet becomes a high temperature close to that of iron. Therefore, compared with a steel plate provided with a plating film before heating, the contact portion between the steel plates is less likely to be softened, so that expansion of the current path is suppressed.
  • a metal derived from plating for example, zinc for zinc-based plating or aluminum for aluminum-based plating.
  • the inverter direct current method has a higher heat generation efficiency than the single-phase alternating current method due to continuous input of current, so that the nugget formation at the initial energization is very fast. For this reason, it is presumed that the growth of the press-contact portion around the nugget cannot catch up and the molten metal cannot be confined to generate medium dust.
  • the resistance at the contact portion between the steel and the electrode is high due to the influence of the oxide film or the like, and the calorific value is increased.
  • the inverter DC system is continuous energization, and does not have a current pause time like single-phase AC, so that it is difficult to obtain a cooling effect by the copper electrode. For this reason, it is presumed that the nugget is likely to grow in the thickness direction, the molten portion reaches just below the outermost layer of the steel plate, and surface dust is generated.
  • Patent Document 1 is a resistance spot welding method for high-tensile steel plates. Since the surface treatment hot stamped steel sheet has a low current value that can be applied without causing dust in the initial first energization, the effect of suppressing dust by expanding the energization path and reducing the current density is not sufficient. For this reason, when current was increased by late energization, cases of middle dust and surface dust were observed, which was insufficient to ensure an appropriate current range.
  • the surface-treated hot stamped steel sheet has a low current value that can be applied without generating dust in the initial first energization.
  • the upper limit current is increased, but when the current is increased in the latter period, a case where medium dust occurs is recognized, which is still insufficient to secure an appropriate current range.
  • the energization method described in Patent Document 4 has the effect of expanding the appropriate current range up to a steel material with a tensile strength of 980 MPa, but in the case of a higher-strength surface-treated hot stamped steel plate, it is medium at the time of the second current increase. Dust and surface dust are likely to occur, and this energization pattern is not suitable for hot stamping material welding.
  • Non-Patent Document 2 Even when the energization is the shortest, 6 cycles (120 milliseconds) are required. In the surface-treated hot stamped steel sheet, medium dust is generated in an energization time shorter than 6 cycles. Therefore, the upper limit current cannot be increased by this energization method. Therefore, if the energization time in pulsation is shortened, the upper limit current increases, but the lower limit current increases due to a decrease in heat generation efficiency, and as a result, the appropriate current range cannot be expanded. For this reason, this method is also not appropriate.
  • An object of the present invention is to apply an inverter DC power source to surface-treated hot stamped steel sheets and overlay resistance spot welding of hot stamped steel sheets. That is, an object of the present invention is to provide an inverter direct power source type resistance spot welding method that can suppress generation of surface dust and medium dust and can secure a wide appropriate current range.
  • the inventor conducted an examination using a 1500 MPa class surface-treated hot stamped steel sheet using an inverter DC spot welding power source and obtained the following knowledge.
  • the nugget can be formed simultaneously with the growth of the corona bond in the first pulsation process. Then, it is considered that the main energization is performed in the second pulsation step, the nugget is grown greatly, and a predetermined nugget diameter can be obtained.
  • the present invention has been made on the basis of the above knowledge, and the gist thereof is the following resistance spot welding method.
  • a resistance spot welding method in which a plurality of steel plates including a high-strength steel plate are overlapped and welded, wherein the energization method is pulsation energization using an inverter DC welding power source, and in a plurality of current pulses constituting pulsation energization,
  • a resistance spot welding method characterized by variably controlling an energization time of each current pulse, an energization stop time that is an interval between current pulses, and a welding current applied by the current pulse.
  • a plurality of continuous current pulses have one or more pulsation steps that are groups of current pulses that can uniformly represent the relationship between the energization time and the energization stop time and the welding current ( The resistance spot welding method according to 1).
  • the first pulsation step has two or more current pulses, the energization time of the current pulses is 5 to 60 milliseconds, and the energization stop time is 5 to 60 milliseconds, respectively.
  • the current pulse energization time is 5 to 60 milliseconds, and the energization stop time is 5 to 60 milliseconds, respectively, and the first pulsation step and the second pulsation step.
  • the welding current in the first pulsation process is 5.0 or more and 14.0 kA or less, and the welding current in the second pulsation process is greater than 5.0 kA and 16.0 kA or less (3) Or the resistance spot welding method as described in (4).
  • Method. (7) Any one of (3) to (6), wherein the welding current in the first pulsation step is a constant value, and the welding current in the second pulsation step is a constant value.
  • resistance spot welding can be performed by increasing the nugget diameter while suppressing the occurrence of surface dust and medium dust even in the case of using an inverter DC power source in overlay resistance spot welding of high-tensile steel sheets. it can. Therefore, by using the resistance spot welding method according to the present invention, it is possible to perform resistance spot welding efficiently and stably even for a steel sheet including a surface-treated hot stamped steel sheet or the like that is very likely to generate dust. Become.
  • the plate assembly to which the present invention is directed is a laminate of at least two steel plates including at least one high-tensile steel plate of 590 MPa class or higher.
  • resistance spot welding is performed on a superposition of two or three steel plates.
  • the type of the high-tensile steel plate is not particularly limited, and can be applied to high-tensile steel plates having a tensile strength of 590 MPa or more, such as precipitation-strengthened steel plates, DP steel plates, TRIP (work-induced transformation) steel plates, hot stamped steel plates, and the like. .
  • the resistance spot welding method according to the present invention is more effective when applied to a plate assembly including a high-tensile steel plate having a tensile strength of 980 MPa or more.
  • a plate assembly including a high strength steel plate having a tensile strength of 1200 MPa or more it is preferable to apply to a plate assembly including a high strength steel plate having a tensile strength of 1500 MPa or more. More preferred.
  • the high-tensile steel plate may be a cold-rolled steel plate or a hot-rolled steel plate. Furthermore, the presence or absence of plating is not questioned, and a plated steel plate or a steel plate without plating may be used. In the case of a plated steel sheet, the type of plating is not particularly limited.
  • the surface-treated hot stamped steel sheet has a zinc-based (pure Zn, Zn-Fe, Zn-Ni, Zn-Al, Zn-Mg, Zn-Mg-Al, etc.) or aluminum-based (Al-Si, etc.) on the surface.
  • An intermetallic compound and an iron-based solid solution are formed by an alloying reaction between the plating film and the base steel. Further, an oxide layer mainly composed of zinc or aluminum is formed on these surfaces.
  • a film mainly composed of zinc oxide may be formed on the surface of the film mainly composed of an intermetallic compound of iron and aluminum in order to improve corrosion resistance.
  • the surface-treated hot stamped steel sheet is considered to be likely to generate medium dust and surface dust because it is a surface state containing such an oxide.
  • the proper current range is often less than 1 kA.
  • the thickness of the high-tensile steel plate there is no particular limitation on the thickness of the high-tensile steel plate.
  • the thickness of a steel plate used for automobile parts or a vehicle body is 0.6 to 3.2 mm, and the resistance spot welding according to the present invention has a sufficient effect in this range.
  • the welding machine used in the present invention is an inverter DC type resistance spot welding machine.
  • Resistance spot welders include a single-phase AC method and an inverter DC method.
  • the single-phase AC method is less likely to generate dust even at a higher current value than the inverter DC method.
  • the inverter DC method exhibits high heat generation efficiency, but tends to generate medium dust and surface dust at a low current value. For this reason, in the inverter DC method, the appropriate current range is narrowed, and the applicability when welding a plate assembly including a high-strength steel plate such as a hot stamped steel plate at an actual site is inferior.
  • the resistance spot welding method according to the present invention is premised on solving the problems of inverter DC spot welding.
  • the pressurization mechanism in resistance spot welding may be either pressurization with a servo motor or pressurization with air.
  • the shape of the gun may be any of a stationary type, a C type, and an X type.
  • the electrode for resistance spot welding is not particularly limited, and examples thereof include a DR type electrode having a tip diameter of 6 to 8 mm.
  • the most typical example is a DR type electrode having a tip diameter of 6 mm and a tip R of 40 mm.
  • the electrode material may be either chromium copper or alumina-dispersed copper electrode, but alumina-dispersed copper is more desirable from the viewpoint of preventing welding and surface dust.
  • Pulsation energization is adopted as the energization method used in the present invention.
  • Pulsation energization is to apply a pulsed constant current while applying pressure to a certain part in resistance spot welding, and is composed of one or more current pulses. Since an inverter DC power supply is used in the present invention, a current pulse (hereinafter also simply referred to as “pulse”) has a rectangular or trapezoidal pulse waveform.
  • FIG. 8A shows a rectangular pulse having a typical pulse waveform.
  • the horizontal axis represents time, and the vertical axis represents the welding current applied.
  • Ia corresponding to the height of the rectangle is a welding current applied.
  • the ta corresponding to the width of the rectangle is a pulse energization time, and the interval ti between adjacent pulses is a so-called interval of pulse energization.
  • the energization time, energization stop time, and welding current can be variably controlled for each pulse. By controlling these, it is possible to realize an energization pattern suitable for welding conditions.
  • FIG. 8B is an example of a pulse change when the welding current draws an arbitrary curve.
  • the shape of the pulse is not limited to a rectangle.
  • the rising part and the falling part may be inclined with respect to time. That is, a trapezoid may be sufficient and an extreme triangle may be sufficient.
  • the pulsation step refers to a group of current pulses that can uniformly represent the relationship between energization time and energization stop time and the welding current in a plurality of continuous current pulses.
  • the current pulse group that can be represented by the function is one pulsation step. It becomes.
  • FIG. 8C shows an example of a pulsation process in which the energization time ta and the pause time ti are constant and the pulse welding current is a linear function of time.
  • 8D shows an example of a pulsation process in which the energization time ta and the pause time ti are constant and the pulse welding current is a quadratic function of time. That is, if the relationship between pulses can be expressed uniformly, it can be called a pulsation process as a group of pulses.
  • FIG. 8 (e) is an explanatory view schematically showing an energization pattern suitable for resistance spot welding of a general hot stamped steel plate or surface-treated hot stamped steel plate found by the present inventors.
  • This resistance spot welding method has a plurality of pulsation steps, but includes a first pulsation step which is the first step and a second pulsation step which follows the first pulsation step. From the maximum welding current in the first pulsation step, The minimum welding current in the second pulsation process is high.
  • the “maximum welding current in the first pulsation process” means the maximum value of the welding current of each pulse in the first pulsation process.
  • the minimum welding current in the second pulsation process means the minimum value of the welding current of each pulse in the second pulsation process.
  • the energization time, rest time, and number of pulses are adjusted according to the material type, thickness, and plate assembly.
  • the first pulsation step can improve the familiarity between the contact surfaces of the steel plates in a short time while expanding the pressure contact portion while exerting the cooling effect of the electrodes.
  • the outermost surface layer is a zinc-plated or aluminum-plated surface-treated hot stamped steel sheet covered with a coating with high electrical resistance, such as zinc oxide
  • the oxide layer on the steel sheet surface is locally applied when the inverter DC power supply is energized. Is destroyed, and the current density of the portion where the oxide layer is destroyed is remarkably increased, so that rapid melting occurs and dust is likely to be generated.
  • vibration due to thermal expansion and contraction can be applied to the contact surface, so that the high melting point oxide layer can be effectively destroyed.
  • the energization time per pulse in the first pulsation process is 5 to 60 milliseconds. If the energization time is less than 5 milliseconds, the heating time is short and heat generation is not sufficient. If it exceeds 60 milliseconds, the heating time is too long, and the occurrence rate of surface dust and medium dust may increase.
  • the energization time is more preferably 15 milliseconds or longer.
  • the energization time is more preferably 45 milliseconds or less, and further preferably 25 milliseconds or less.
  • the welding current in the first pulsation process is desirably 5.0 to 14.0 kA.
  • the upper limit current decreases. It is desirable that the welding current is appropriately adjusted within the range of 5.0 to 14.0 kA so as not to generate dust in the first pulsation process, in consideration of the energization time.
  • the welding current is preferably set in the range of I 1 -3.0 to I 1 -0.2 kA, where the upper limit current in the first pulsation step is I 1 (kA). In order to simplify the setting of the current control device of the spot welder, it is desirable to set the welding current in the first pulsation process to a constant value.
  • the energization stop time (hereinafter also referred to as “stop time”) in the first pulsation process is preferably 5 to 60 milliseconds. If the rest time is less than 5 milliseconds, the rest is short and the cooling is insufficient, and there is a possibility of generating medium dust and surface dust. On the other hand, when the rest time exceeds 60 milliseconds, the cooling effect becomes too large, and there is a possibility that nugget formation in the second pulsation process described later becomes insufficient. More preferably, the pause time is 15 milliseconds or longer. The pause time is more desirably 45 milliseconds or less, and further desirably 25 milliseconds or less.
  • the current waveform in the first pulsation step is preferably a rectangular waveform with a constant energization time and a resting time.
  • an up slope (rising portion is increasing with respect to time) or a down slope (falling portion is It may be a waveform including a slope that decreases with respect to time.
  • FIG. 9 shows an energization method in the first pulsation process of the present invention.
  • 9A shows a rectangular waveform
  • FIG. 9B shows an upslope waveform
  • FIG. 9C shows a waveform including a rectangle after the upslope.
  • FIG. 9D shows a downslope waveform after a rectangular waveform
  • FIG. 9E shows a waveform including both an upslope and a downslope
  • FIG. 9F shows an upslope only for the first energization. It is a waveform.
  • the number of pulses is preferably at least 2 times. This is because in the case of a surface-treated hot stamped steel sheet, the effect of suppressing dust may not be obtained unless pulsation is performed twice or more.
  • the number of pulses is more preferably 3 times or more. In general, the larger the total plate thickness, the greater the number of pulses. However, the number of pulses is preferably 50 or less.
  • the first pulsation step is, for example, 8.3 to 20 milliseconds (50 to 60 Hz, 0.5 to 1 cycle). Therefore, it is desirable to repeat the energization and pause of 5.5 to 12 kA 3 to 25 times.
  • the resistance spot welding method of the present invention includes a second pulsation step after the first pulsation step.
  • the energization path corona bond
  • the second pulsation step can be carried out to enlarge the nugget diameter.
  • the heat generation of the steel sheet can be gradually promoted by making the current into a pulsation form (pulse form).
  • vibration due to thermal expansion and contraction can be applied to the contact surface, so that the high melting point oxide layer can be effectively destroyed.
  • This makes it possible to form multiple energization points (regions where current actually flows) at the contact interface between the electrode and steel plate, and between the steel plate and steel plate, and suppress the increase in current density at the contact interface, thereby rapidly growing the nugget. Can be suppressed.
  • an appropriate current range (second energization current range that does not generate dust and provides a nugget of 4 ⁇ t or more) is generated at 1.5 kA without generating medium dust and surface dust to a high current value. More than that.
  • the nugget diameter can be expanded more stably by setting the minimum welding current in the second pulsation process higher than the maximum welding current in the first pulsation process. It is desirable that the minimum welding current in the second pulsation process be 0.5 kA or more higher than the maximum welding current in the first pulsation process.
  • the energization time per pulse in the second pulsation process is preferably 5 to 60 milliseconds. If the energization time is less than 5 milliseconds, the heating time is short and heat generation is not sufficient. If it exceeds 60 milliseconds, the heating time is too long, and the occurrence rate of surface dust and medium dust may increase.
  • the energization time is more preferably 15 milliseconds or longer.
  • the energization time is more preferably 45 milliseconds or less, and further preferably 25 milliseconds or less.
  • the welding current in the second pulsation process is desirably 5.0 to 16.0 kA.
  • the upper limit current decreases. It is desirable that the welding current is appropriately adjusted so that dust does not occur within the range of 5.0 to 16.0 kA in consideration of the energization time.
  • the welding current is preferably set in a range of I 2 ⁇ 0.2 kA or less, where I 2 (kA) is the upper limit current in the second pulsation process.
  • I 2 (kA) is the upper limit current in the second pulsation process.
  • the energization stop time in the second pulsation process is preferably 5 to 60 milliseconds except for the last. If the rest time is less than 5 milliseconds, the rest is short and the cooling is insufficient, and there is a possibility of generating medium dust and surface dust. On the other hand, if the pause time exceeds 60 milliseconds, the cooling effect becomes too great and it may be difficult to increase the nugget diameter.
  • the pause time is more desirably 45 milliseconds or less, and further desirably 25 milliseconds or less.
  • the energization stop time between the first pulsation process and the second pulsation process is preferably 5 to 120 milliseconds.
  • the pause time between these steps is desirably 10 milliseconds or more, and more desirably 15 milliseconds or more.
  • the pause time between these steps is desirably 60 milliseconds or less, and more desirably 50 milliseconds or less.
  • the rest time between the 2nd and 3rd pulsation processes is no provision in particular about the rest time between the 2nd and 3rd pulsation processes.
  • the number of pulses in the second pulsation process is preferably at least 3 times. This is because the effect of expanding the nugget diameter may not be sufficiently obtained if the number is less than three. More preferably, it is 6 times or more. In general, the larger the total plate thickness, the more the number of pulses may be increased. However, since the effect tends to be saturated even if pulsation is performed exceeding 50 times, the number of pulses is preferably 50 times or less.
  • one more continuous energization or pulsation energization is performed after the second pulsation process for the purpose of improving the toughness of the nugget by controlling the cooling process. You can go. Further energization after the second pulsation process alleviates the solidification segregation of phosphorus in the nugget and improves the toughness of the nugget by making the nugget a tempered martensite structure, improving the strength of the spot welded joint Benefits that can be obtained.
  • FIG. 10 shows an energization method in the second pulsation process of the present invention.
  • FIG. 10A shows the use of the up slope in the second pulsation
  • FIG. 10B shows the use of the rectangular waveform after the up slope.
  • FIG. 10C shows a waveform including a down slope after the rectangular waveform
  • FIG. 10D shows a waveform including the up slope and the down slope.
  • FIG. 10E shows a waveform in which upslope is performed only at the beginning of the second pulsation.
  • FIG. 10F shows a pattern in which pulsation energization is further performed after the second pulsation energization.
  • the resistance spot welding method according to the present invention may further include a holding step of pressing the steel plate with an electrode without passing an electric current after the first pulsation step and the second pulsation step are finished.
  • a holding step of pressing the steel plate with an electrode without passing an electric current after the first pulsation step and the second pulsation step are finished By providing the holding step, solidification cracks in the nugget can be reduced.
  • limiting in particular about the holding time in the case of providing a holding process Since it will lead to the increase in tact time if holding time is too long, it is desirable to set it as 300 milliseconds or less.
  • Al plating was performed by the Sendzimer method.
  • the annealing temperature at this time was about 800 ° C.
  • the Al plating bath contained Si: 9%, and contained Fe eluted from the steel strip.
  • the plating adhesion amount was adjusted to 40 g / m 2 on one side by a gas wiping method.
  • water was sprayed in the cooling state after the plating. After cooling the Al-plated steel sheet, the treatment liquid was applied with a roll coater and baked at about 80 ° C.
  • the treatment liquid was based on nanotek slurry ZnO manufactured by CI Kasei Co., Ltd., and a water-soluble urethane resin as a binder was added up to 30% in the solid content, and carbon black was added up to 10% in the solid content for coloring.
  • the amount of adhesion was measured as the amount of Zn and was 0.8 g / m 2 .
  • the steel plate thus produced was furnace heated (atmospheric atmosphere heating) at 900 ° C. for 5 minutes and then quenched with a water-cooled mold to obtain a test material. Table 1 shows the welding method.
  • the applied pressure was a constant value (350 kgf) in the first pulsation process and the second pulsation process.
  • the example of the present invention does not have a pulsation process because the upper limit current in the second pulsation process can be increased even when two sheets of ZnO film-treated Al plated hot stamped steel sheets are stacked.
  • a wider appropriate current range exceeding 1.5 kA can be obtained at the test piece level, which is wider than the comparative example of stage energization.
  • the current value of the second pulsation process is set to a value of 4 ⁇ t current +1.5 kA or more and less than the dust generation current, so that no dust is generated even when welding actual parts, and the current is shunted and the electrode is worn.
  • Example 1 after performing the first pulsation process at the current values shown in Table 1, the current value in the second pulsation process was changed, and the nugget diameter and the occurrence of dust were investigated.
  • the welding current in the first pulsation process and the second pulsation process was set to a constant value.
  • Table 3 shows the appropriate current range of the second pulsation process for each test number.
  • the example of the present invention can increase the upper limit current in the second pulsation process, and thus has no pulsation process and is more suitable than the comparative example in which one-stage energization was performed. A current range can be obtained.
  • the present invention can obtain a wide appropriate current range exceeding 2.0 kA at a test piece level even in a plate set assuming resistance spot welding of three sheets around a door opening such as an automobile roof rail, B pillar, and side sill. Accordingly, in the present invention, the current value of the second pulsation process is set to a value of 4 ⁇ t current +1.5 kA or more and less than or equal to the dust generation current, so that no dust is generated even in the welding of actual parts and the current is shunted. Even if there is a disturbance due to electrode wear, a spot weld with a nugget diameter of 4 ⁇ t or more can be secured stably. On the other hand, in the comparative example, dust is generated when the current is set to 4 ⁇ t current + 1.5 kA.
  • a 1500 MPa class GA-plated hot stamped steel plate (plating adhesion before hot stamping) Amount: 55 g / m 2 per side.
  • the heating condition was 900 ° C. for 4 minutes furnace heating), and two pieces of resistance spot welding were performed.
  • Table 3 shows the welding methods.
  • the shape of the test piece for performing resistance spot welding was a strip having a width of 30 mm and a length of 100 mm.
  • the applied pressure was a constant value (350 kgf) in the first pulsation process and the second pulsation process.
  • Example 1 after performing the first pulsation process at the current values shown in Table 1, the current value in the second pulsation process was changed, and the nugget diameter and the occurrence of dust were investigated.
  • the welding current in the first pulsation process and the second pulsation process was set to a constant value.
  • Table 4 shows an appropriate current range of the second pulsation process in each test number.
  • the example of the present invention can increase the upper limit current in the second pulsation process, and thus has no pulsation process and is 1 wider than the comparative example in which one-stage energization is performed.
  • An appropriate current range of .5 kA or more can be obtained at the specimen level.
  • the current value of the second pulsation process is set to a value of 4 ⁇ t current +1.5 kA or more and less than or equal to the dust generation current, so that no dust is generated even in the welding of actual parts and the current is shunted. Even if there is a disturbance due to electrode wear, a spot weld with a nugget diameter of 4 ⁇ t or more can be secured stably.
  • dust is generated when the current is set to 4 ⁇ t current + 1.5 kA.
  • resistance spot welding can be performed by increasing the nugget diameter while suppressing the occurrence of surface dust and medium dust even in the case of using an inverter DC power source in overlay resistance spot welding of high-tensile steel sheets. it can. Therefore, if the resistance spot welding method according to the present invention is used, even if it is a steel plate including a surface-treated hot stamped steel plate or the like that is likely to generate dust, it becomes possible to perform resistance spot welding efficiently and stably.
  • the appearance quality of the vehicle body such as the side panel can be improved by suppressing the generation of dust. Moreover, since the adhesion to the movable part of the robot can be prevented, the operation rate of the robot can be improved. Moreover, since post-processes such as deburring due to generation of dust can be omitted, work efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

 高張力鋼板を含む複数の鋼板を重ね合わせて、インバータ直流式スポット溶接電源にてパルセーション通電を行い、電流パルスの通電時間、電流パルスの間隔である通電休止時間、および電流パルスで印加する溶接電流を可変に制御させることにより、最適な溶接条件を得、ホットスタンプ鋼板の抵抗スポット溶接時には、第1パルセーション工程における最大溶接電流より第2パルセーション工程における最小溶接電流が高い抵抗スポット溶接により、インバータ直流電源を用いても表チリおよび中チリの発生を抑制し、広い適正電流範囲を確保する。

Description

抵抗スポット溶接方法
 本発明は、抵抗スポット溶接方法に係り、特にインバータ直流電源を用いた抵抗スポット溶接方法に関する。
 自動車車体はプレス成形された鋼板を、主に抵抗スポット溶接にて接合することで組み立てられる。車体の組立てで使用される抵抗スポット溶接では、板厚に応じたナゲット径の確保とチリの発生抑制の両立が求められる。
 一般的には、例えば4√t(tは板厚(mm)を示す。)等の基準ナゲット径を得られる電流値を下限(以下、「下限電流」または「4√t電流」という。)とし、チリ(スパッタ)が発生する電流値を上限(以下、「上限電流」または「チリ電流」という。)として規定される範囲(以下、「適正電流範囲」という。)が、鋼板のスポット溶接性に関する重要な指標とされる。下限電流、上限電流は試験片での理想的な状態において測定されたものである。
 チリには中チリ(溶接により溶融した母材金属が鋼板の重ね面より飛散する現象)と表チリ(溶接により溶融した母材金属が鋼板と電極の接触面から飛散する現象)とがある。いずれも、飛散し自動車の車体に付着することで表面品質を低下させる。また、溶接用ロボットの可動部に付着することで、設備の稼働不良の要因となる。さらに、スポット溶接部表面に針状に残存する表チリは自動車のワイヤハーネスなどの損傷の原因となるため、グラインダーで研削する必要がある。このため、抵抗スポット溶接においては、中チリおよび表チリは避け、かつ所定のナゲット径を確保することが求められている。
 上記の下限電流は、試験片レベルでの理想的な状態において評価される。しかし、実際の車体の組立てでは、電極の損耗、既溶接点への分流、プレス部品間の隙間等の様々な外乱因子により、試験片レベルで4√tが得られる電流値で実際の車体を溶接しても、ナゲット径が4√tを下回ることがある。そのため、量産ラインにおいては、試験片レベルで4√tが得られる電流よりも1.0kA以上、好ましくは1.5kA以上高い電流値を現実的な下限電流値として設定する必要がある。したがって、量産ラインでチリを生じさせずに安定して4√t以上のナゲット径を得たい場合は、試験片レベルの評価にて適正電流範囲は、1.0kA以上、好ましくは1.5kA以上必要とされる。試験片レベルで所定の適正電流範囲を確保できないと、外乱の多い実際の現場でのスポット溶接において4√tのナゲット径を安定して確保するためにはチリが発生する電流に電流値を設定せざるを得ないためである。
 近年、自動車の組立てでは、単相交流式に代わりインバータ直流方式の抵抗スポット溶接機が用いられることが多くなっている。インバータ直流方式はトランスを小さくできるため、可搬重量の小さいロボットに搭載できるメリットがあるため、特に自動化ラインで多く用いられる。
 インバータ直流方式は、従来用いられてきた単相交流方式のような電流のオンオフがなく、連続的に電流を付与するため、発熱効率が良い。そのため、ナゲットが形成しにくい薄板軟鋼の亜鉛めっき材の場合であっても、低電流からナゲットが形成し適正電流範囲が単相交流方式より広くなることが報告されている。
 一方、インバータ直流電源でナゲットが形成しやすい高張力鋼板を溶接すると、軟鋼板とは逆にチリが発生する電流が低い。即ち、上限電流が低くなり、適正電流範囲が著しく狭くなることがある。
 抵抗スポット溶接において、図1に示すように通電を1回だけ行う1段通電方式は、自動車の抵抗スポット溶接では多く用いられている。しかしながら、1段通電方式では適正電流範囲が狭くなるため、適正電流範囲を広げる通電方式が報告されている。
 特許文献1には、図2に示すように、予備通電により鋼板の接触面同士のなじみを向上させた後に本通電を行う2段通電方式を採用することによって、高張力鋼板の抵抗スポット溶接におけるチリの発生を抑制する方法が開示されている。
 特許文献2には、図3に示すように、予備通電により鋼板の接触面同士のなじみを向上させた後に電流を止め、その後、本通電を行う通電方式を採用することによって、高張力鋼板の抵抗スポット溶接におけるチリの発生を抑制する方法が開示されている。
 特許文献3には、図4および5に示すように、3段階の通電工程を有する。すなわち、ナゲットを形成する第1工程である予備通電工程、予備通電後に電流を降下させナゲットの周囲のコロナボンド径の拡大を図る第2工程、そして第2工程後に予備通電電流よりも大きな電流を流し、ナゲット径を拡大する第3工程である本通電工程から構成されている。予備通電により鋼板の接触面同士のなじみを向上させた後に電流を下げ、その後、一定電流の本通電またはパルセーション状の本通電を行うことによって、高張力鋼板の抵抗スポット溶接におけるチリの発生を抑制する方法が開示されている。さらに特許文献3では、第3工程をパルセーション通電方式にすることにより、通電径拡大効果が大きくなり、連続通電方式に比べてチリ発生が抑制されることが開示されている。
 特許文献4には、図6に示すように電流のアップダウンを繰り返しながら、電流値を上げていく抵抗スポット溶接により、高張力鋼板の抵抗スポット溶接におけるチリ発生を抑制する方法が開示されている。
 非特許文献2には、図7に示すように、板厚1.5mm以上の鋼板において、120ミリ秒(50Hzで6サイクル)以上の通電と40ミリ秒(50Hzで2サイクル)の休止とを3回以上繰り返す抵抗スポット溶接方法が開示されている。
特開2010-188408号公報 特開2003-236674号公報 特開2010-207909号公報 特開2006-181621号公報
LAURENZ, et al:Schweissen Schneiden, 64-10(2012), 654-661. ISO 18278-2 Resistance welding-Weldability- Part 2 Alternative procedure for the assessment of sheet steels for spot welding
 近年、自動車用鋼板として、車体の軽量化および衝突安全性の向上を図るため、高張力鋼板の使用が拡大しつつある。また、ホットスタンプ(鋼板を焼き入れ可能な温度まで加熱しオーステナイト化した後、プレス成形と同時に金型内で冷却し焼き入れする方法。)の適用が広がり、引張強度が1180~2000MPa級の超高強度鋼板のプレス成形部品の多くが、ホットスタンプにより製造されている。
 ホットスタンプに用いる鋼板の表面は、非めっきの他に、高温に加熱した時に鉄スケールの発生を防止するため、亜鉛系めっき、アルミニウム系めっきなどの表面処理が施されるものがある。なお、ホットスタンプされた鋼板は、多くの場合、平板ではなく成形体である。本明細書では、成形体である場合も含めて高張力鋼板をホットスタンプしたものを「ホットスタンプ鋼板」という。また同様に、亜鉛系めっき鋼板、アルミニウム系めっき鋼板やこれらの鋼板にさらに表面コーティングを施した鋼板をホットスタンプしたものを「表面処理ホットスタンプ鋼板」という。
 ホットスタンプ鋼板をインバータ直流電源の抵抗スポット溶接機で溶接すると、軟鋼板とは逆に、単相交流電源を用いた場合よりも低い電流値でチリが発生し、適正電流範囲が狭くなる現象が起きることがある。非特許文献1には、例えばアルミめっきホットスタンプ鋼板の抵抗スポット溶接においてこの現象が起きることが報告されている。
 特に、表面処理ホットスタンプ鋼板は、インバータ直流電源では中チリとともに表チリも出やすく適正電流範囲が著しく狭くなる。このためチリを発生せずに得られるナゲット径も小さくなる。
 これらの原因は解明されていないが、中チリの発生については次のように考えられる。
 スポット溶接部では溶融凝固したナゲットの周囲に電極により加圧された圧接部(コロナボンド部)が存在し、溶融金属を閉じ込めている。溶融金属の内圧がコロナボンド部に作用する外圧を超えると溶融金属を閉じ込めることができなくなり中チリが発生する。一般的には圧接部が狭くなると内圧に耐えきれなくなりチリが発生しやすくなる。このためチリの発生を抑制するには、鋼板―鋼板間のなじみを良くして、圧接部を広げるとともに、ナゲットが徐々に成長するように急激な発熱を避けることが必要である。
 表面処理ホットスタンプ鋼板は、鋼板表面にめっきに由来する金属(例えば、亜鉛系めっきであれば亜鉛を指す。アルミ系めっきであればアルミニウムを指す。)を主成分とする酸化皮膜や表面コーティングに由来する酸化被膜を有している。このため、裸の鋼板と比べて、鋼板表面で電流が流れる位置が局所的となり、電流密度集中により急激に発熱しやすい。一方、ホットスタンプ工程でめっきと鋼との合金化が進行し、鋼板表面に生成した合金の融点も鉄に近い高温になる。そのため、加熱前のめっき皮膜を備える鋼板と比較して、鋼板同士の接触部が軟化しにくいために通電路の拡大が抑制される。特に、インバータ直流方式は連続的な電流の投入により単相交流方式に比べ発熱効率が高いため、通電初期のナゲットの形成が非常に速い。このためナゲットの周囲の圧接部の成長が追い付かず溶融金属を閉じ込めることができなくなり中チリが発生するものと推定される。
 また、表チリの発生原因についても同様である。酸化皮膜等の影響で鋼と電極の接触部での抵抗が高く発熱量が大きくなる。加えて、インバータ直流方式は連続的な通電であり、単相交流のような電流休止時間がないため、銅電極による冷却効果が得られにくい。このためナゲットが板厚方向に成長しやすく、鋼板の最表層直下まで溶融部が達し、表チリが発生するものと推定される。
 特許文献1の方法は高張力鋼板の抵抗スポット溶接方法である。表面処理ホットスタンプ鋼板では初期の第一通電にてチリを生じさせずに付与できる電流値が低いため、通電パスを広げ電流密度を下げることでチリを抑制するという効果は十分ではない。このため、後期の通電で電流を上げると中チリおよび表チリが発生するケースが認められ、適正電流範囲を確保するには不十分であった。
 特許文献2の方法は、特許文献1と同様に、表面処理ホットスタンプ鋼板では初期の第一通電にてチリを発生させずに付与できる電流値が低い。特許文献1に比べ、上限電流は上昇するが、後期で電流を上げると中チリが発生するケースが認められ、適正電流範囲を確保するにはまだ不十分であった。
 特許文献3の方法は、単相交流スポット溶接機の実施例しか示されておらず、インバータ直流スポット溶接機のケースについては確認されていない。加えて、実施例では980MPa高張力鋼のケースについて述べられているが、チリが発生しやすい表面処理ホットスタンプ材のケースについては述べられていない。本発明者らが、インバータ直流スポット溶接機を用いて表面処理ホットスタンプ鋼板にて特許文献3の技術の効果を調査した結果、ナゲット径が4√tとなる電流からチリ発生までの適正電流範囲を1.5kA以上確保することができず、効果はまだ不十分であった。表面チリの発生し易い表面処理ホットスタンプ鋼板の抵抗溶接には、直ぐに適用できない。さらに、単相交流電源方式に比べ電流密度が高くなるインバータ直流電源による抵抗溶接では、なおさらである。
 特許文献4に記載の通電方式は、引張強度が980MPa級の鋼材までは適正電流範囲を広げる効果があるが、より高強度の表面処理ホットスタンプ鋼板では2、3回目の電流アップの時点で中チリや表チリが発生しやすく、本通電パターンはホットスタンプ材の溶接には好適ではない。
 非特許文献2に開示されている通電方式では通電が最も短い場合でも6サイクル(120ミリ秒)である。表面処理ホットスタンプ鋼板では、6サイクルより短い通電時間で中チリが発生するため、この通電方式では上限電流を上昇させることができない。そこで、パルセーションでの通電時間を短くすると、上限電流は上昇するが、発熱効率低下により下限電流が上昇し、結果として、適正電流範囲を広げることはできない。このため、この方法も適切ではない。
 本発明は、表面処理ホットスタンプ鋼板やホットスタンプ鋼板の重ね合わせ抵抗スポット溶接にインバータ直流電源を適用することを課題とする。即ち、表チリおよび中チリの発生を抑制し、且つ広い適正電流範囲を確保できるインバータ直電源方式抵抗スポット溶接方法を提供することを目的とする。
 発明者はインバータ直流式スポット溶接電源を用い、1500MPa級の表面処理ホットスタンプ鋼板を用いて検討を行い以下の知見を得た。
(a)
 パルセーション通電方式を採用することにより冷却と加熱を繰り返す効果があるので、インバータ直流方式にパルセーション通電方式を採用することにより、高い発熱効率による温度上昇を緩和させることができることを見出した。すなわちパルセーション通電の通電時間、休止時間を制御することにより、溶接時の温度上昇を制御し、ナゲット成長速度を制御できることを見出した。これにより急激なナゲット成長を抑制することができる。
(b)
 同時に、電極の加圧力とパルセーション通電での電流制御により、コロナボンドの成長も制御できることを見出した。即ち、パルセーション工程により、熱膨張、収縮による振動を接触面に与えることができるため、特に表面処理ホットスタンプ材で顕著であるが、高融点の酸化物層を効果的に破壊し、電極―鋼板間および鋼板―鋼板間の接触界面に複数の通電点(実際に電流が流れる領域)を形成することができ、接触界面での電流密度の上昇を抑制し急激なナゲット成長も抑制できる。これらの作用により、中チリ、表チリの発生を抑制しつつ短時間でなじみを向上させることができる。
(c)
 ナゲット成長速度とコロナボンド成長速度を適正に制御することにより、チリの発生がなく、且つナゲット径を大きくすることができることを見出した。すなわち、上限電流の低下を抑制し、適正電流範囲を確保することができることを見出した。
(d)
 重ね合わせる鋼板の板厚、硬さ(引張強度)、形状などの因子により、最適な通電パターンは変化する。インバータ直流方式で溶接する場合、これらのさまざまな条件に適合させることが必要となる。このため、1パルスごとの通電時間、印加電流、パルス間隔などを制御することにより、簡便迅速に溶接条件を設定することができ、良好な抵抗スポット溶接が実施できることを見出した。
(e)
 たとえば、同板厚の表面処理ホットスタンプ鋼板をスポット溶接する場合は以下のように2段階パルセーション通電を施すとよいことを見出した。すなわち、鋼板の接触面同士のなじみを向上させて通電パスを拡大させることを目的として、通電および休止を繰り返す第1パルセーション工程を実施した後に、ナゲット径を拡大させることを目的として、第1パルセーション工程より高い電流で通電と休止を繰り返す第2パルセーション工程を実施すると、中チリおよび表チリの発生を抑制しつつ、適正電流範囲が広く安定した抵抗スポット溶接を実施できる。
 これは、第1パルセーション工程で、コロナボンドを成長させると同時にナゲットを形成することができているものと考えられる。そして、第2パルセーション工程で本通電を行い、ナゲットを大きく成長させ、所定のナゲット径を得ることができると考えられる。
 本発明は、上記の知見を基礎として成されたものであり、下記の抵抗スポット溶接方法を要旨とする。
 (1)
 高張力鋼板を含む複数の鋼板を重ね合わせて溶接する抵抗スポット溶接方法であって、通電方式がインバータ直流溶接電源を用いたパルセーション通電であり、パルセーション通電を構成する複数の電流パルスにおいて、それぞれの電流パルスの通電時間、電流パルスの間隔である通電休止時間、および電流パルスで印加する溶接電流を可変に制御することを特徴とする抵抗スポット溶接方法。
 (2)
 連続する複数の電流パルスにおいて、前記通電時間および前記通電休止時間と前記溶接電流の関係を一様に表すことができる電流パルスの群であるパルセーション工程を一つ以上有することを特徴とする(1)に記載の抵抗スポット溶接方法。
 (3)
 複数の前記パルセーション工程を有し、最初のパルセーション工程である第1パルセーション工程とそれに続く第2パルセーション工程において、
 前記第1パルセーション工程における最大溶接電流より前記第2パルセーション工程における最小溶接電流が高いことを特徴とする(2)に記載の抵抗スポット溶接方法。
 (4)
 前記第1パルセーション工程において2以上の電流パルスを有し、電流パルスの通電時間がそれぞれ5~60ミリ秒、通電休止時間がそれぞれ5~60ミリ秒であり、前記第2パルセーション工程において、3以上の電流パルスを有し、電流パルスの通電時間がそれぞれ5~60ミリ秒、通電休止時間がそれぞれ5~60ミリ秒であって、前記第1パルセーション工程と前記第2パルセーション工程の間の通電休止時間が5~120ミリ秒であることを特徴とする(3)に記載の抵抗スポット溶接方法。
 (5)
 前記第1パルセーション工程における溶接電流が5.0以上14.0kA以下であり、前記第2パルセーション工程における溶接電流が5.0kAより大きく16.0kA以下であることを特徴とする(3)または(4)に記載の抵抗スポット溶接方法。
 (6)
 前記第1パルセーション工程における最大溶接電流より前記第2パルセーション工程における最小溶接電流が0.5kA以上高いことを特徴とする(3)~(5)のいずれか一項に記載の抵抗スポット溶接方法。
 (7)
 前記第1パルセーション工程における溶接電流が一定の値であり、かつ、前記第2パルセーション工程における溶接電流が一定の値であることを特徴とする(3)~(6)のいずれか一項に記載の抵抗スポット溶接方法。
 (8)
 前記高張力鋼板の表面が亜鉛系皮膜またはアルミ系皮膜で覆われていることを特徴する(1)~(7)のいずれか一項に記載の抵抗スポット溶接方法。
 (9)
 前記高張力鋼板が、ホットスタンプ加工された鋼板であることを特徴とする(1)~(8)のいずれか一項に記載の抵抗スポット溶接方法。
 本発明によれば、高張力鋼板の重ね合わせ抵抗スポット溶接において、インバータ直流電源を用いた場合でも、表チリおよび中チリの発生を抑制しながらナゲット径を拡大して抵抗スポット溶接を行うことができる。したがって、本発明に係る抵抗スポット溶接方法を用いれば、チリが非常に発生しやすい表面処理ホットスタンプ鋼板等を含む鋼板であっても、効率的に安定して抵抗スポット溶接を行うことが可能になる。
通電を1回だけ行う1段通電方式を模式的に示す説明図である。 特許文献1における通電方式を模式的に示す説明図である。 特許文献2における通電方式を模式的に示す説明図である。 特許文献3における通電方式を模式的に示す説明図である。 特許文献3における通電方式を模式的に示す説明図である。 特許文献4における通電方式を模式的に示す説明図である。 非特許文献2における通電方式を模式的に示す説明図である。 パルセーション通電における電流パルスの説明図である。 本発明における通電時間と電流との関係を模式的に示す説明図であって電流パルスが任意に変化する場合を示す。 本発明における通電時間と電流との関係を模式的に示す説明図であって電流パルスが時間の一次関数に倣って変化する場合を示す。 本発明における通電時間と電流との関係を模式的に示す説明図であって電流パルスが二次関数に倣って変化する場合を示す。 本発明の一態様における通電時間と電流との関係を模式的に示す説明図である。 本発明の第1パルセーション工程における通電方式を模式的に示す説明図である。 本発明の第2パルセーション工程における通電方式を模式的に示す説明図である。
 以下、本発明を実施するための形態を、自動車車体の組立てで広く用いられる抵抗スポット溶接を例に説明する。
 本発明が対象とする板組みは、少なくとも1枚が590MPa級以上の高張力鋼板を含む、2枚以上の鋼鈑を重ね合わせたものである。通常の自動車車体の組立てでは、2枚または3枚の鋼板を重ね合わせたものに対して抵抗スポット溶接が行われる。
 高張力鋼板の種類については、特に制限はなく、例えば、析出強化鋼板、DP鋼板、TRIP(加工誘起変態)鋼板、ホットスタンプ鋼板等の、引張強度が590MPa以上の高張力鋼板に適用可能である。本発明に係る抵抗スポット溶接方法は、引張強度が980MPa以上の高張力鋼板を含む板組みに対して実施することでより効果を発揮する。本発明の作用効果をより一層得るためは、引張強度が1200MPa以上の高張力鋼板を含む板組みに適用するのが好ましく、引張強度が1500MPa以上の高張力鋼板を含む板組みに適用するのがより好ましい。
 また、高張力鋼板は、冷延鋼板でも良く、または熱延鋼板でも良い。さらに、めっきの有無は不問であり、めっき鋼板でも良く、めっきをしていない鋼板でもよい。また、めっき鋼板の場合めっきの種類にも特に制限はない。
 前記の通り、本発明は様々な高張力鋼板で効果が得られるが、本発明の効果が特に発揮されるのは、適正電流範囲が狭い表面処理ホットスタンプ鋼板である。表面処理ホットスタンプ鋼板は、その表面には、亜鉛系(純Zn、Zn-Fe、Zn-Ni、Zn-Al、Zn-Mg、Zn-Mg-Alなど)またはアルミニウム系(Al-Siなど)のめっき皮膜と基材の鋼との合金化反応によって、金属間化合物および鉄基の固溶体が形成されている。さらにこれらの表面には、亜鉛またはアルミニウムを主成分とする酸化物層が形成されている。また、鉄およびアルミニウムの金属間化合物を主成分とする皮膜のさらに表面に、耐食性を向上させるために酸化亜鉛を主成分とした皮膜が形成される場合もある。上述のように、表面処理ホットスタンプ鋼板は、このような酸化物を含む表面状態であることから中チリおよび表チリが発生しやすいと考えられ、インバータ直流電源を用いた1段通電方式の場合、適正電流範囲が1kA未満となることも多い。
 高張力鋼板の板厚について、特に制限はない。一般に、自動車用部品または車体で使用される鋼板の板厚は0.6~3.2mmであり、本発明に係る抵抗スポット溶接は、この範囲において十分な効果を有する。
 本発明で用いる溶接機は、インバータ直流方式の抵抗スポット溶接機である。抵抗スポット溶接機には、単相交流方式およびインバータ直流方式がある。ホットスタンプ鋼板等の高張力鋼板を含む板組みの溶接を行う場合、単相交流方式では、インバータ直流方式と比較して高い電流値でもチリが発生しにくい。一方、インバータ直流方式では、高い発熱効率を発揮するものの、低い電流値で中チリおよび表チリが発生しやすくなる。そのため、インバータ直流方式では適正電流範囲が狭くなり、実際の現場でホットスタンプ鋼板等の高張力鋼板を含む板組みの溶接を行う場合の適用性が劣る。本発明に係る抵抗スポット溶接方法はインバータ直流式スポット溶接の有する課題を解決することを前提としている。
 抵抗スポット溶接での加圧機構は、サーボモータによる加圧でもエアーによる加圧でもどちらでも良い。また、ガンの形状は定置式、C型、X型のいずれを用いても良い。溶接時の加圧力については特に制限はない。抵抗スポット溶接中、一定の加圧力であっても良いし、各工程で加圧力を変化させても良い。加圧力は200~600kgfとするのが望ましい。
 抵抗スポット溶接の電極についても、特に制限はないが、先端径6~8mmのDR型電極が挙げられる。最も代表的な例として、先端径6mm、先端R40mmのDR型電極がある。電極材質としては、クロム銅またはアルミナ分散銅電極のどちらでも良いが、溶着および表チリを防止する観点ではアルミナ分散銅の方が望ましい。
 本発明で用いる通電方式はパルセーション通電方式を採用する。パルセーション通電とは、抵抗スポット溶接において、一定箇所に加圧しながらパルス状の一定電流を印加することであり、一つ以上の電流パルスで構成されている。本発明ではインバータ直流電源を使用するため、電流パルス(以下、単に「パルス」とも言う。)は矩形または台形のパルス波形となる。
 図8(a)に典型的なパルス波形である矩形のパルスを示す。横軸が時間、縦軸が印加する溶接電流を示す。矩形の高さに相当するIaが印加する溶接電流である。矩形の幅に相当するtaがパルスの通電時間、隣接するパルスとの間隔tiがパルスの通電休止時間、いわゆるインターバルである。本発明における溶接方法では、パルスごとに通電時間、通電休止時間、溶接電流を可変に制御することができる。これらを制御することにより、溶接条件に適した通電パターンを実現することができる。図8(b)は、溶接電流が任意曲線を描いた場合のパルス変化の一例である。
 また、パルスの形状は矩形に限らない。立上り部分や立下り部分が時間に対し傾斜してもよい。すなわち、台形であってもよいし、極端には三角形であってもよい。
 本発明においてパルセーション工程とは、連続する複数の電流パルスにおいて、通電時間および通電休止時間と前記溶接電流の関係を一様に表すことができる電流パルスの群をいう。例えば、複数の連続するパルスが、通電時間taおよび休止時間tiが一定で、パルスの溶接電流が時間の関数となっている場合、その関数で表すことができる電流パルス群が一つのパルセーション工程となる。図8(c)に通電時間taおよび休止時間tiが一定で、パルスの溶接電流が時間の一次関数となっているパルセーション工程の例を示す。図8(d)に通電時間taおよび休止時間tiが一定で、パルスの溶接電流が時間の二次関数となっているパルセーション工程の例を示す。即ち、パルス間の関係が一様に表現できれば一群のパルスとしてパルセーション工程と呼ぶことができる。
 図8(e)は、本発明者らが見出した、一般的なホットスタンプ鋼板や表面処理ホットスタンプ鋼板を抵抗スポット溶接する場合に適した通電パターンを模式的に示す説明図である。この抵抗スポット溶接方法は、複数のパルセーション工程を有するが、最初の工程である第1パルセーション工程と、それに続く第2パルセーション工程を備えており、第1パルセーション工程における最大溶接電流より第2パルセーション工程における最小溶接電流が高い。なお、「第1パルセーション工程における最大溶接電流」とは、第1パルセーション工程における各パルスの溶接電流の最大値を意味する。同様に、「第2パルセーション工程における最小溶接電流」とは、第2パルセーション工程における各パルスの溶接電流の最小値を意味する。以下、各工程を詳細に述べる。
 パルセーション工程においては、材料の種類、板厚、板組みによって、通電時間、休止時間およびパルス回数を調整する。本発明の抵抗スポット溶接方法では、まず第1パルセーション工程によって、電極の冷却効果を働かせつつ、短時間で鋼板の接触面同士のなじみを向上させ、圧接部を広げることができる。
 加えて、最表層が、酸化亜鉛など電気抵抗が高い皮膜で覆われた亜鉛めっきやアルミめっきの表面処理ホットスタンプ鋼板の場合、インバータ直流電源で連続通電すると、局所的に鋼板表面の酸化物層が破壊され、酸化物層が破壊された部分の電流密度が著しく上昇することで急激な溶融がおこりチリが発生しやすくなる。通電と休止とが繰り返される第一のパルセーション工程により、熱膨張、収縮による振動を接触面に与えることができるため、高融点の酸化物層を効果的に破壊することができる。これにより電極―鋼板間、および鋼板―鋼板間の接触界面に複数の通電点(実際に電流が流れる領域)を形成することができ、接触界面での電流密度の上昇を抑制し急激なナゲット成長を抑制することができる。これらの作用により、中チリ、表チリの発生を抑制しつつ短時間でなじみを向上させることができる。
 第1パルセーション工程における1パルス当たりの通電時間は、それぞれ5~60ミリ秒であることが望ましい。通電時間が5ミリ秒未満では、加熱時間が短く発熱が十分ではなく、60ミリ秒を超えると、加熱時間が長すぎて、表チリおよび中チリの発生率が高まるおそれがある。通電時間は15ミリ秒以上であるのがより望ましい。また、通電時間は45ミリ秒以下であるのがより望ましく、25ミリ秒以下であるのがさらに望ましい。
 第1パルセーション工程における溶接電流は、5.0~14.0kAであることが望ましい。通常、パルセーションでの通電時間が増加すると、上限電流が低下する。溶接電流は通電時間との兼ね合いから、5.0~14.0kAの範囲内において、第1パルセーション工程でチリが発生しないように適宜調整するのが望ましい。溶接電流は、第1パルセーション工程での上限電流をI(kA)としたとき、I-3.0~I-0.2kAの範囲に設定することが望ましい。また、スポット溶接機の電流制御装置の設定を簡便にするため、第1パルセーション工程における溶接電流を一定の値に設定することが望ましい。
 第1パルセーション工程における通電休止時間(以下「休止時間」ともいう。)は、それぞれ5~60ミリ秒であることが望ましい。休止時間が5ミリ秒未満では、休止が短く冷却が不十分であり中チリおよび表チリが発生するおそれがある。一方、休止時間が60ミリ秒を超えると、冷却効果が大きくなりすぎ、後述の第2パルセーション工程でのナゲット形成が不十分となるおそれがある。休止時間は15ミリ秒以上であるのがより望ましい。また、休止時間は45ミリ秒以下であるのがより望ましく、25ミリ秒以下であるのがさらに望ましい。
 第1パルセーション工程における電流波形は、通電時間および休止時間が一定の矩形波形であることが望ましいが、アップスロープ(立上り部分が時間に対し増加傾斜している)またはダウンスロープ(立下り部分が時間に対し減少傾斜している)を含んだ波形でも良い。本発明の第1パルセーション工程における通電方式を図9に示す。図9(a)は矩形波形、図9(b)はアップスロープ波形、図9(c)はアップスロープ後の矩形を含んだ波形である。また、図9(d)は矩形波形後のダウンスロープ波形、図9(e)はアップスロープとダウンスロープとの両方を含んだ波形、図9(f)は1番目の通電のみアップスロープとなった波形である。
 第1パルセーション工程での、パルス回数は少なくとも2回以上とすることが好ましい。表面処理ホットスタンプ鋼板の場合、2回以上のパルセーションを行わないとチリを抑制する効果が得られない場合があるためである。パルス回数は3回以上とすることがより好ましい。一般には総板厚が大きいほど、パルス回数を増やせば良いが、パルス回数は50回以下とするのが好ましい。
 酸化亜鉛で表面が覆われた表面処理ホットスタンプ鋼板に本発明を適用する場合、第1パルセーション工程としては、例えば、8.3~20ミリ秒(50Hzまたは60Hzで0.5~1サイクル)で5.5~12kAの通電と休止とを3~25回繰り返すのが望ましい。
 本発明の抵抗スポット溶接方法は、第1パルセーション工程後に第2パルセーション工程を備える。第1パルセーション工程を実施することにより通電パス(コロナボンド)を拡大させ、その後に、第2パルセーション工程を実施することによりナゲット径を拡大させることができる。
 第2パルセーション工程は、電流をパルセーション状(パルス状)にすることで、鋼板の発熱を緩やかに促進することができる。加えて熱膨張、収縮による振動を接触面に与えることができるため、高融点の酸化物層を効果的に破壊することができる。これにより電極―鋼板間、および鋼板―鋼板間の接触界面に複数の通電点(実際に電流が流れる領域)を形成することができ、接触界面での電流密度の上昇を抑制し急激なナゲット成長を抑制することができる。これらの作用により高い電流値まで中チリ、表チリを発生させることなく、適正電流範囲(チリを発生させず、かつ4√t以上のナゲットが得られる第2通電の電流範囲)を1.5kA以上に広げることができる。
 第2パルセーション工程において、ナゲット径を十分に大きくするためには、第1パルセーション工程における最大溶接電流よりも第2パルセーション工程における最小溶接電流を高くすることが好ましい。前述のように、実際の量産ラインでは種々の外乱因子によって試験片レベルで評価された下限電流以上の電流値で第2パルセーションを実施しても所望のナゲット径が得られない場合が生じる。しかしながら、第2パルセーション工程における最小溶接電流を、第1パルセーション工程における最大溶接電流よりも高く設定することで、より安定にナゲット径を拡大することができるようになる。第2パルセーション工程における最小溶接電流は、第1パルセーション工程における最大溶接電流よりも0.5kA以上高くすることが望ましい。
 第2パルセーション工程における1パルス当たりの通電時間は、それぞれ5~60ミリ秒であることが望ましい。通電時間が5ミリ秒未満では、加熱時間が短く発熱が十分ではなく、60ミリ秒を超えると、加熱時間が長すぎて、表チリおよび中チリの発生率が高まるおそれがある。通電時間は15ミリ秒以上であるのがより望ましい。また、通電時間は45ミリ秒以下であるのがより望ましく、25ミリ秒以下であるのがさらに望ましい。
 第2パルセーション工程における溶接電流は、5.0~16.0kAであることが望ましい。通常、パルセーションでの通電時間が増加すると、上限電流が低下する。溶接電流は通電時間との兼ね合いから、5.0~16.0kAの範囲内でチリが発生しないように適宜調整するのが望ましい。溶接電流は、第2パルセーション工程での上限電流をI(kA)としたとき、I-0.2kA以下の範囲に設定することが望ましい。また、スポット溶接機の電流制御装置の設定を簡便にするため、第2パルセーション工程における溶接電流を一定の値に設定することが望ましい。
 第2パルセーション工程における通電休止時間は、最後を除いて、それぞれ5~60ミリ秒であることが望ましい。休止時間が5ミリ秒未満では、休止が短く冷却が不十分であり中チリおよび表チリが発生するおそれがある。一方、休止時間が60ミリ秒を超えると、冷却効果が大きくなりすぎ、ナゲット径を拡大するのが困難になるおそれがある。休止時間は45ミリ秒以下であるのがより望ましく、25ミリ秒以下であるのがさらに望ましい。
 第1パルセーション工程と第2パルセーション工程の間における通電休止時間は、5~120ミリ秒であることが望ましい。この休止時間が5ミリ秒未満では、第2パルセーション工程時に過大な発熱が起こり、低い電流値でもチリが発生するようになる。一方、この休止時間が120ミリ秒を超えると、ナゲットが冷却され、第2パルセーション工程において、目標のナゲット径を得るための下限電流が上昇し、結果的に適正電流範囲が狭くなるためである。この工程間の休止時間は10ミリ秒以上であることが望ましく、15ミリ秒以上であるとより望ましい。また、この工程間の休止時間は60ミリ秒以下であるのが望ましく、50ミリ秒以下であるとより望ましい。
 なお、第2パルセーション工程に続くパルセーション工程がある場合、第2と第3パルセーション工程間の休止時間については、特に規定は設けない。
 第2パルセーション工程での、パルス回数は少なくとも3回以上とすることが好ましい。3回以下ではナゲット径の拡大効果が十分には得られない場合があるためである。より好適には、6回以上である。一般には総板厚が大きいほど、パルス回数を増やせば良いが、50回を超えてパルセーションを行っても効果が飽和する傾向があるため、パルス回数は50回以下とするのが好ましい。
 ホットスタンプ鋼板等の高強度材を対象とする場合、冷却過程を制御することでナゲットの靭性を向上させることを目的として、第2パルセーション工程後に、さらに1回の連続通電またはパルセーション通電を行っても良い。第2パルセーション工程後にさらなる通電を行うことによって、ナゲット内のリンの凝固偏析を緩和したり、ナゲットを焼き戻しマルテンサイト組織にしたりすることでナゲットの靭性を向上させ、スポット溶接継手強度を向上できるメリットが得られる。
 本発明の第2パルセーション工程における通電方式を図10に示す。図10(a)は、第2パルセーションでアップスロープを用いたものであり、図10(b)は、アップスロープ後の矩形波形を用いたものである。また、図10(c)は矩形波形後のダウンスロープ、図10(d)アップスロープとダウンスロープとを含んだ波形である。さらに、図10(e)は第二のパルセーションの最初のみ、アップスロープを行った波形である。図10(f)は、第二のパルセーション通電後にさらにパルセーション通電を行うパターンを示した図である。
 本発明に係る抵抗スポット溶接方法は、上記の第1パルセーション工程および第2パルセーション工程が終わった後、電流を流さずに電極で鋼板を押圧する保持工程をさらに備えても良い。保持工程を設けることでナゲット内の凝固割れを低減することができる。保持工程を設ける場合の保持時間については特に制限はないが、保持時間が長すぎるとタクトタイムの増加につながるため、300ミリ秒以下とすることが望ましい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 先端径6mm、先端R40mmのDR型電極(アルミナ分散銅)を備えた、エアー加圧式インバータ直流スポット溶接機を用い、板厚1.0mmの1500MPa級の炉加熱したZnO皮膜処理Alめっきホットスタンプ鋼板2枚を重ね合わせて、抵抗スポット溶接を実施した。抵抗スポット溶接を実施する試験片の形状は、巾30mm、長さ100mmの短冊状とした。なお、本実施例で使用した、ZnO皮膜処理Alめっきホットスタンプ鋼板は下記の方法で作製した。
 板厚1.0mmの冷延鋼板を使用して、ゼンジマー法でAlめっきした。このときの焼鈍温度は約800℃、Alめっき浴はSi:9%を含有し、他に鋼帯から溶出するFeを含有していた。めっき付着量をガスワイピング法で片面40g/mに調整した。Alめっき層の表面粗度を調整するためにめっき後の冷却時に水をスプレー状に噴霧した。Alめっき鋼板を冷却後、処理液をロールコーターで塗布し、約80℃で焼きつけた。処理液は、シーアイ化成(株)社製nanotek slurryのZnOをベースとし、バインダーとして水溶性ウレタン樹脂を固形分中最大30%、着色のためにカーボンブラックを固形分中最大10%添加した。付着量はZn量として測定し、0.8g/mとした。このようにして製造した鋼板を、900℃で5分間炉加熱(大気雰囲気加熱)した後、水冷金型で焼入れし、供試材とした。溶接方法を表1に示す。なお、加圧力は第1パルセーション工程および第2パルセーション工程で一定値(350kgf)とした。
 表1に示す電流値において第1パルセーション工程を実施した後、第2パルセーション工程における電流値を変化させ、ナゲット径およびチリ発生状況の調査を行った。第1パルセーション工程および第2パルセーション工程における溶接電流はそれぞれ一定の値とした。各試験番号における第2パルセーション工程の適正電流範囲を表2に示す。
 表2から分かるように、本発明例は、ZnO皮膜処理Alめっきホットスタンプ鋼板の2枚重ねでも、第2パルセーション工程での上限電流を上昇させることができるため、パルセーション工程を有しない1段通電の比較例よりも幅広く、1.5kAを超える広い適正電流範囲を試験片レベルで得ることができる。
これにより、4√t電流+1.5kA以上、チリ発生電流以下の値に第2パルセーション工程の電流値を設定することで、実部品の溶接でもチリを発生させず、かつ、分流、電極損耗による外乱があってもナゲット径が4√t以上となるスポット溶接部を安定して確保することができる。一方、比較例では4√t電流+1.5kAの電流に設定するとチリが発生する。
 先端径6mm、先端R40mmのDR型電極(アルミナ分散銅)を備えた、エアー加圧式インバータ直流スポット溶接機を用い、板厚0.7mmの270MPa級GAめっき鋼板と、板厚1.0mmの1500MPa級の炉加熱したZnO皮膜処理Alめっきホットスタンプ鋼板と板厚1.2mmの440MPa級非めっき鋼板とを重ね合わせて、抵抗スポット溶接を実施した。抵抗スポット溶接を実施する試験片の形状は、巾30mm、長さ100mmの短冊状とした。なお、ZnO皮膜処理Alめっきホットスタンプ鋼板は実施例1と同じ方法で作製した。溶接方法を表2に示す。なお、加圧力は第1パルセーション工程および第2パルセーション工程で一定値(350kgf)とした。
 実施例1と同じく、表1に示す電流値において第1パルセーション工程を実施した後、第2パルセーション工程における電流値を変化させ、ナゲット径およびチリ発生状況の調査を行った。第1パルセーション工程および第2パルセーション工程における溶接電流はそれぞれ一定の値とした。各試験番号における第2パルセーション工程の適正電流範囲を表3に示す。
 表3から分かるように、本発明例は、第2パルセーション工程での上限電流を上昇させることができるため、パルセーション工程を有せず、1段通電を行った比較例よりも、幅広い適正電流範囲を得ることができる。
 本発明は、自動車のルーフレール、Bピラー、サイドシルなどドア開口部まわりの3枚重ねの抵抗スポット溶接を想定した板組でも2.0kAを超える幅広い適正電流範囲を試験片レベルで得ることができる。これにより、本発明では4√t電流+1.5kA以上、チリ発生電流以下の値に第2パルセーション工程の電流値を設定することで、実部品の溶接でもチリを発生させず、かつ、分流、電極損耗による外乱があってもナゲット径が4√t以上となるスポット溶接部を安定して確保することができる。一方、比較例では4√t電流+1.5kAの電流に設定するとチリが発生する。
 先端径6mm、先端R40mmのDR型電極(クロム銅)を備えた、サーボ加圧式インバータ直流スポット溶接機を用い、板厚1.6mmの1500MPa級のGAめっきホットスタンプ鋼板(ホットスタンプ前のめっき付着量 片側あたり55g/m。加熱条件は900℃で4分炉加熱)を2枚重ね合わせて、抵抗スポット溶接を実施した。溶接方法を表3に示す。抵抗スポット溶接を実施する試験片の形状は、巾30mm、長さ100mmの短冊状とした。なお、加圧力は、第1パルセーション工程および第2パルセーション工程で一定値(350kgf)とした。
 実施例1と同じく、表1に示す電流値において第1パルセーション工程を実施した後、第2パルセーション工程における電流値を変化させ、ナゲット径およびチリ発生状況の調査を行った。第1パルセーション工程および第2パルセーション工程における溶接電流はそれぞれ一定の値とした。各試験番号における第2パルセーション工程の適正電流範囲を表4に示す。
 表4から分かるように、本発明例は、第2パルセーション工程での上限電流を上昇させることができるため、パルセーション工程を有せず、1段通電を行った比較例よりも、幅広く1.5kA以上の適正電流範囲を試験片レベルで得ることができる。これにより、本発明では4√t電流+1.5kA以上、チリ発生電流以下の値に第2パルセーション工程の電流値を設定することで、実部品の溶接でもチリを発生させず、かつ、分流、電極損耗による外乱があってもナゲット径が4√t以上となるスポット溶接部を安定して確保することができる。一方、比較例では4√t電流+1.5kAの電流に設定するとチリが発生する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、高張力鋼板の重ね合わせ抵抗スポット溶接において、インバータ直流電源を用いた場合でも、表チリおよび中チリの発生を抑制しながらナゲット径を拡大して抵抗スポット溶接を行うことができる。したがって、本発明に係る抵抗スポット溶接方法を用いれば、チリが発生しやすい表面処理ホットスタンプ鋼板等を含む鋼板であっても、効率的に安定して抵抗スポット溶接を行うことが可能になる。
 また本発明に係る抵抗スポット溶接方法によれば、チリ発生を抑制することでサイドパネルなど車体の外観品質を向上させることができる。また、ロボットの可動部への付着を防止できるためロボットの稼働率を向上させることができる。また、チリ発生に伴うバリ取りなどの後工程を省略できるため、作業能率の向上を図ることもできる。

Claims (9)

  1.  高張力鋼板を含む複数の鋼板を重ね合わせて溶接する抵抗スポット溶接方法であって、
     通電方式がインバータ直流溶接電源を用いたパルセーション通電であり、
    パルセーション通電を構成する複数の電流パルスにおいて、
    それぞれの電流パルスの通電時間、電流パルスの間隔である通電休止時間、および電流パルスで印加する溶接電流を可変に制御することを特徴とする抵抗スポット溶接方法。
  2.  連続する複数の前記電流パルスにおいて、前記通電時間および前記通電休止時間と前記溶接電流の関係が一様に表すことができる電流パルスの群であるパルセーション工程を一つ以上有することを特徴とする請求項1に記載の抵抗スポット溶接方法。
  3.  複数の前記パルセーション工程を有し、最初のパルセーション工程である第1パルセーション工程とそれに続く第2パルセーション工程において、
     前記第1パルセーション工程における最大溶接電流より前記第2パルセーション工程における最小溶接電流が高いことを特徴とする請求項2に記載の抵抗スポット溶接方法。
  4.  前記第1パルセーション工程において2以上の電流パルスを有し、電流パルスの通電時間がそれぞれ5~60ミリ秒、通電休止時間がそれぞれ5~60ミリ秒であり、
     前記第2パルセーション工程において、3以上の電流パルスを有し、電流パルスの通電時間がそれぞれ5~60ミリ秒、通電休止時間がそれぞれ5~60ミリ秒であって、
     前記第1パルセーション工程と前記第2パルセーション工程の間の通電休止時間が5~120ミリ秒であることを特徴とする請求項3に記載の抵抗スポット溶接方法。
  5.  前記第1パルセーション工程における溶接電流が5.0以上14.0kA以下であり、前記第2パルセーション工程における溶接電流が5.0kAより大きく16.0kA以下であることを特徴とする請求項3または4に記載の抵抗スポット溶接方法。
  6.  前記第1パルセーション工程における最大溶接電流より前記第2パルセーション工程における最小溶接電流が0.5kA以上高いことを特徴とする請求項3~5のいずれか一項に記載の抵抗スポット溶接方法。
  7.  前記第1パルセーション工程における溶接電流が一定の値であり、かつ、前記第2パルセーション工程における溶接電流が一定の値であることを特徴とする請求項3~6のいずれか一項に記載の抵抗スポット溶接方法。
  8.  前記高張力鋼板の表面が亜鉛系皮膜またはアルミ系皮膜で覆われていることを特徴する請求項1~7のいずれか一項に記載の抵抗スポット溶接方法。
  9.  前記高張力鋼板が、ホットスタンプ加工された鋼板であることを特徴とする請求項1~8のいずれか一項に記載の抵抗スポット溶接方法。
PCT/JP2014/083571 2013-12-20 2014-12-18 抵抗スポット溶接方法 WO2015093568A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2016124112A RU2663659C2 (ru) 2013-12-20 2014-12-18 Способ точечной контактной сварки
EP14870854.8A EP3085485B1 (en) 2013-12-20 2014-12-18 Resistance spot welding method
KR1020167007798A KR101887789B1 (ko) 2013-12-20 2014-12-18 저항 스폿 용접 방법
CA2926914A CA2926914A1 (en) 2013-12-20 2014-12-18 Resistance spot welding method
MX2016006347A MX2016006347A (es) 2013-12-20 2014-12-18 Metodo de soldadura por puntos de resistencia.
CN201480056857.3A CN105636735B (zh) 2013-12-20 2014-12-18 电阻点焊方法
ES14870854T ES2764835T3 (es) 2013-12-20 2014-12-18 Método de soldadura por puntos por resistencia
JP2015553603A JP6137337B2 (ja) 2013-12-20 2014-12-18 抵抗スポット溶接方法
US15/025,459 US10406627B2 (en) 2013-12-20 2014-12-18 Resistance spot welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-263272 2013-12-20
JP2013263272 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093568A1 true WO2015093568A1 (ja) 2015-06-25

Family

ID=53402910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083571 WO2015093568A1 (ja) 2013-12-20 2014-12-18 抵抗スポット溶接方法

Country Status (10)

Country Link
US (1) US10406627B2 (ja)
EP (1) EP3085485B1 (ja)
JP (1) JP6137337B2 (ja)
KR (1) KR101887789B1 (ja)
CN (1) CN105636735B (ja)
CA (1) CA2926914A1 (ja)
ES (1) ES2764835T3 (ja)
MX (1) MX2016006347A (ja)
RU (1) RU2663659C2 (ja)
WO (1) WO2015093568A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513965A (zh) * 2015-09-15 2017-03-22 通用汽车环球科技运作有限责任公司 用于在钢点焊期间控制电阻焊接熔核生长和性能的功率脉冲方法
JP2019034341A (ja) * 2017-08-18 2019-03-07 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
WO2019180923A1 (ja) * 2018-03-23 2019-09-26 本田技研工業株式会社 スポット溶接方法
KR20200086730A (ko) 2017-12-19 2020-07-17 닛폰세이테츠 가부시키가이샤 저항 스폿 용접 조인트의 제조 방법
JPWO2020045678A1 (ja) * 2018-08-31 2021-02-18 豊田鉄工株式会社 抵抗スポット溶接方法
JPWO2021033364A1 (ja) * 2019-08-20 2021-02-25
JP2021536369A (ja) * 2018-09-13 2021-12-27 アルセロールミタル 少なくとも2枚の金属基材の組立体の製造のための溶接方法
JP2022500253A (ja) * 2018-09-13 2022-01-04 アルセロールミタル 少なくとも2枚の金属基材の組立体
JP2022500252A (ja) * 2018-09-13 2022-01-04 アルセロールミタル 少なくとも2枚の金属基材の組立体
JP7476957B2 (ja) 2021-04-12 2024-05-01 Jfeスチール株式会社 抵抗スポット溶接方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493093B2 (ja) * 2015-08-27 2019-04-03 新日鐵住金株式会社 抵抗スポット溶接用電源装置
CN108015401B (zh) * 2016-11-04 2020-06-23 宝山钢铁股份有限公司 具有良好接头性能的镀锌高强钢电阻点焊方法
US20210101225A1 (en) * 2017-03-30 2021-04-08 Nippon Steel Corporation Weld joint manufacturing method and weld joint
CN106994551A (zh) * 2017-05-17 2017-08-01 中南大学 一种能有效提高先进高强钢钢板焊点强度的电阻点焊工艺
JP6945929B2 (ja) * 2017-09-28 2021-10-06 ダイハツ工業株式会社 スポット溶接方法及び鋼板部品の製造方法
JP6963282B2 (ja) * 2018-04-20 2021-11-05 株式会社神戸製鋼所 アルミニウム材の抵抗スポット溶接継手、及びアルミニウム材の抵抗スポット溶接方法
JP7364849B2 (ja) * 2019-03-28 2023-10-19 日本製鉄株式会社 スポット溶接継手の製造方法及びスポット溶接機
JP7240672B2 (ja) * 2019-10-18 2023-03-16 株式会社神戸製鋼所 アルミニウム材の抵抗スポット溶接方法、アルミニウム材の抵抗スポット溶接制御装置、および抵抗スポット溶接機
KR102370405B1 (ko) * 2020-02-07 2022-03-04 서울대학교산학협력단 고엔트로피 합금의 접합 방법, 고엔트로피 합금의 접합 장치 및 고엔트로피 합금의 접합 구조체
CN113441826A (zh) * 2021-07-16 2021-09-28 上海交通大学 抑制镀锌高强钢电阻点焊接头液态金属脆裂纹的点焊工艺
CN114101883B (zh) * 2021-11-26 2023-06-02 中国科学院上海光学精密机械研究所 一种用于低熔点涂镀层钢工件的电阻点焊方法
CN114192953A (zh) * 2021-12-20 2022-03-18 南昌江铃集团协和传动技术有限公司 二次脉冲焊接镀锌板工艺
DE102022104981A1 (de) 2022-03-03 2023-09-07 Thyssenkrupp Steel Europe Ag Verfahren zum Widerstandspunktschweißen von gehärteten Stahlblechbauteilen
CN115106633A (zh) * 2022-06-27 2022-09-27 河钢股份有限公司 一种用于热镀锌热成形钢的电阻点焊方法
WO2024006657A1 (en) * 2022-06-30 2024-01-04 Novelis Inc. Systems and methods for improving resistance spot welding with cast aluminum
CN115446437B (zh) * 2022-09-14 2023-11-10 首钢集团有限公司 一种电阻点焊方法、装置、设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293669A (ja) * 1992-04-21 1993-11-09 Ryoda Sato スポット溶接装置及びスポット溶接方法
JP2003236674A (ja) 2002-02-15 2003-08-26 Mazda Motor Corp 高張力鋼板のスポット溶接方法およびその装置
JP2006181621A (ja) 2004-12-28 2006-07-13 Daihatsu Motor Co Ltd スポット抵抗溶接装置
US20100122968A1 (en) * 2008-11-14 2010-05-20 Toyota Motor Engineering & Manufacturing Na Method for implementing spatter-less welding
JP2010188408A (ja) 2009-02-20 2010-09-02 Honda Motor Co Ltd 抵抗溶接の通電方法
JP2010207909A (ja) 2009-02-12 2010-09-24 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法
JP2012040910A (ja) * 2010-08-17 2012-03-01 Honda Motor Co Ltd 車体側部構造
JP2012232327A (ja) * 2011-04-28 2012-11-29 Sanei Shoji Kk せん断補強筋のスポット溶接方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3233116A (en) 1961-11-28 1966-02-01 Gen Electric Control rectifiers having timing means energized in response to load effecting commutation
SU1197796A1 (ru) 1984-05-08 1985-12-15 Центральный Научно-Исследовательский И Проектно-Конструкторский Институт Механизации И Энергетики Лесной Промышленности Способ заточки пил
CH686617A5 (de) * 1992-03-09 1996-05-15 Max Breitmeier Elektrische Speiseschaltung zur Erzeugung von einzeln steuerbaren Stromimpulsen.
RU2243071C2 (ru) * 2002-07-01 2004-12-27 Открытое акционерное общество "АВТОВАЗ" Способ контактной точечной сварки оцинкованных стальных листов
JP4728926B2 (ja) * 2006-10-16 2011-07-20 新日本製鐵株式会社 重ね抵抗スポット溶接方法
EP2460613A4 (en) * 2009-07-31 2015-11-04 Neturen Co Ltd WELDED CONSTRUCTION ELEMENT AND WELDING METHOD
US8278598B2 (en) 2009-08-14 2012-10-02 Arcelormittal Investigacion Y Desarrollo, S.L. Methods and systems for resistance spot welding using direct current micro pulses
KR101593642B1 (ko) 2010-06-29 2016-02-16 한양대학교 산학협력단 인버터 직류 저항 점 용접 시스템, 그의 용접 공정 제어방법 및 그의 퍼지 제어기 설계방법
JP5653116B2 (ja) * 2010-08-03 2015-01-14 株式会社ダイヘン メッキ鋼板の抵抗溶接制御方法
CN103687780A (zh) * 2011-07-12 2014-03-26 本田技研工业株式会社 车辆的侧外面板
UA112663C2 (uk) 2011-09-30 2016-10-10 Арселормітталь Інвестігасіон І Десаррольо, С.Л. Легкі сталеві двері для транспортного засобу і спосіб для їх виготовлення
US9737956B2 (en) * 2013-06-14 2017-08-22 GM Global Technology Operations LLC Resistance spot welding thin gauge steels

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293669A (ja) * 1992-04-21 1993-11-09 Ryoda Sato スポット溶接装置及びスポット溶接方法
JP2003236674A (ja) 2002-02-15 2003-08-26 Mazda Motor Corp 高張力鋼板のスポット溶接方法およびその装置
JP2006181621A (ja) 2004-12-28 2006-07-13 Daihatsu Motor Co Ltd スポット抵抗溶接装置
US20100122968A1 (en) * 2008-11-14 2010-05-20 Toyota Motor Engineering & Manufacturing Na Method for implementing spatter-less welding
JP2010207909A (ja) 2009-02-12 2010-09-24 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
JP2010188408A (ja) 2009-02-20 2010-09-02 Honda Motor Co Ltd 抵抗溶接の通電方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法
JP2012040910A (ja) * 2010-08-17 2012-03-01 Honda Motor Co Ltd 車体側部構造
JP2012232327A (ja) * 2011-04-28 2012-11-29 Sanei Shoji Kk せん断補強筋のスポット溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAURENZ ET AL., SCHWEISSENSCHNEIDEN, vol. 64-10, 2012, pages 654 - 661

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513965B (zh) * 2015-09-15 2018-11-20 通用汽车环球科技运作有限责任公司 用于在钢点焊期间控制电阻焊接熔核生长和性能的功率脉冲方法
CN106513965A (zh) * 2015-09-15 2017-03-22 通用汽车环球科技运作有限责任公司 用于在钢点焊期间控制电阻焊接熔核生长和性能的功率脉冲方法
JP2019034341A (ja) * 2017-08-18 2019-03-07 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
KR20200086730A (ko) 2017-12-19 2020-07-17 닛폰세이테츠 가부시키가이샤 저항 스폿 용접 조인트의 제조 방법
JP7038193B2 (ja) 2018-03-23 2022-03-17 本田技研工業株式会社 スポット溶接方法
WO2019180923A1 (ja) * 2018-03-23 2019-09-26 本田技研工業株式会社 スポット溶接方法
JPWO2019180923A1 (ja) * 2018-03-23 2020-12-03 本田技研工業株式会社 スポット溶接方法
US11850674B2 (en) 2018-03-23 2023-12-26 Honda Motor Co., Ltd. Spot welding method
JPWO2020045678A1 (ja) * 2018-08-31 2021-02-18 豊田鉄工株式会社 抵抗スポット溶接方法
JP2021536369A (ja) * 2018-09-13 2021-12-27 アルセロールミタル 少なくとも2枚の金属基材の組立体の製造のための溶接方法
JP2022500252A (ja) * 2018-09-13 2022-01-04 アルセロールミタル 少なくとも2枚の金属基材の組立体
JP2022500253A (ja) * 2018-09-13 2022-01-04 アルセロールミタル 少なくとも2枚の金属基材の組立体
JP7194269B2 (ja) 2018-09-13 2022-12-21 アルセロールミタル 少なくとも2枚の金属基材の組立体
JP7230183B2 (ja) 2018-09-13 2023-02-28 アルセロールミタル 少なくとも2枚の金属基材の組立体
JP7112602B2 (ja) 2019-08-20 2022-08-03 本田技研工業株式会社 スポット溶接方法
JPWO2021033364A1 (ja) * 2019-08-20 2021-02-25
JP7476957B2 (ja) 2021-04-12 2024-05-01 Jfeスチール株式会社 抵抗スポット溶接方法

Also Published As

Publication number Publication date
EP3085485B1 (en) 2019-10-23
EP3085485A4 (en) 2017-08-23
CN105636735A (zh) 2016-06-01
JP6137337B2 (ja) 2017-05-31
RU2016124112A (ru) 2018-01-25
US20160228973A1 (en) 2016-08-11
KR20160045892A (ko) 2016-04-27
ES2764835T3 (es) 2020-06-04
US10406627B2 (en) 2019-09-10
KR101887789B1 (ko) 2018-08-10
JPWO2015093568A1 (ja) 2017-03-23
CN105636735B (zh) 2019-05-07
RU2663659C2 (ru) 2018-08-08
MX2016006347A (es) 2016-08-01
CA2926914A1 (en) 2015-06-25
EP3085485A1 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6137337B2 (ja) 抵抗スポット溶接方法
JP6094676B2 (ja) 抵抗スポット溶接方法
JP4825882B2 (ja) 高強度焼き入れ成形体及びその製造方法
JP6384603B2 (ja) スポット溶接方法
JP6750762B1 (ja) スポット溶接部材
JP6108018B2 (ja) スポット溶接方法
CN108025387B (zh) 点焊方法
JP5392142B2 (ja) 合金化アルミめっき鋼板またはアルミ合金層を有するプレス部品のスポット溶接方法
JP2018039019A (ja) スポット溶接方法
JP2017047475A (ja) スポット溶接方法
JP2021536369A (ja) 少なくとも2枚の金属基材の組立体の製造のための溶接方法
JP2014088625A (ja) 亜鉛系めっき熱処理鋼材およびその製造方法
JP2022500253A (ja) 少なくとも2枚の金属基材の組立体
WO2020202474A1 (ja) 鋼板、テーラードブランク、熱間プレス成形品、鋼管、及び中空状焼入れ成形品
JPH04371371A (ja) 抵抗スポット溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553603

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167007798

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025459

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014870854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870854

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2926914

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016009609

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006347

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: IDP00201604085

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016124112

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016009609

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160429