WO2015093194A1 - 計測装置 - Google Patents

計測装置 Download PDF

Info

Publication number
WO2015093194A1
WO2015093194A1 PCT/JP2014/080077 JP2014080077W WO2015093194A1 WO 2015093194 A1 WO2015093194 A1 WO 2015093194A1 JP 2014080077 W JP2014080077 W JP 2014080077W WO 2015093194 A1 WO2015093194 A1 WO 2015093194A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
imaging
light
specified wavelength
wavelength
Prior art date
Application number
PCT/JP2014/080077
Other languages
English (en)
French (fr)
Other versions
WO2015093194A9 (ja
Inventor
照明 與語
秀行 田中
Original Assignee
株式会社オプトン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトン filed Critical 株式会社オプトン
Priority to KR1020157033018A priority Critical patent/KR20160098028A/ko
Priority to US14/892,465 priority patent/US20160091305A1/en
Priority to EP14871691.3A priority patent/EP3086086A4/en
Publication of WO2015093194A1 publication Critical patent/WO2015093194A1/ja
Publication of WO2015093194A9 publication Critical patent/WO2015093194A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the present invention relates to a measuring apparatus for measuring the surface shape of a measurement object.
  • a measuring device that measures the surface shape of a measurement object by three-dimensional image measurement is known.
  • an apparatus including one imaging unit and a shape recognition device is known.
  • One imaging unit is a unit that irradiates light of a prescribed irradiation pattern and images a region irradiated with the light of the irradiation pattern.
  • an imaging unit for example, an imaging unit including one irradiator and two imaging devices has been proposed (see Patent Document 1).
  • the irradiator irradiates a fringe-like (grid-like) light onto a predetermined area.
  • Each of the imaging devices images a common area on the measurement object on which the fringe fringe from the irradiator is projected.
  • Each of the irradiator and the imaging device is fixed to the frame at a predetermined distance and attachment angle. That is, one irradiator and two imaging devices are arranged so that their positional relationship is a predetermined relationship.
  • the shape recognition device in the measuring device described in Patent Document 1 recognizes the surface shape (three-dimensional shape) of the measurement object from the images captured by the respective imaging devices by the active measurement method in the three-dimensional image measurement. . That is, the measuring device described in Patent Document 1 operates one irradiator and two imaging devices as one imaging unit, and changes the surface shape of the measurement object based on the images captured by the imaging devices. recognize.
  • the time length required for recognizing the surface shape of the measurement object in the measurement device is shortened as much as possible.
  • the measurement apparatus of the present invention includes at least two or more irradiation units, at least two or more imaging units, and a measurement unit.
  • each irradiation means irradiates the specified wavelength light which is the light of the specified wavelength with the set irradiation pattern.
  • Each imaging unit is paired with one of the irradiating units, and is arranged so that the positional relationship with the corresponding irradiating unit is a predetermined positional relationship defined in advance. Then, each of the imaging units images an irradiation region of the measurement object onto which the irradiation pattern by the specified wavelength light irradiated by the corresponding irradiation unit is projected.
  • each of the irradiation means uses light of a specified wavelength defined as a different wavelength as the specified wavelength light, and a part of the irradiation pattern is measured on the object to be measured. Irradiation is performed so as to overlap a part of the irradiation pattern from the irradiation means. Then, each of the imaging means passes through the irradiation region of the measurement object on which the irradiation pattern by the specified wavelength light irradiated by the paired irradiation means is projected, and passes the light of the specified wavelength in the paired irradiation means. In addition, an image is taken through a specified wavelength transmission filter that blocks light of wavelengths other than the specified wavelength.
  • the measuring means calculates the surface shape in each irradiation region of the measurement object based on each of the images taken by the imaging means and the specified positional relationship with the irradiation means that makes a pair with the imaging means that picked up each image. measure.
  • a plurality of regions in the measurement object can be imaged at the same timing by a plurality of pairs of irradiation means and imaging means that make a pair. Furthermore, according to one aspect of the measurement apparatus of the present invention, it is not necessary to move one pair of the irradiation unit and the imaging unit that make a pair when imaging a plurality of regions in the measurement object. Therefore, according to one aspect of the measurement apparatus of the present invention, the surface shape over a wide range of the measurement object can be recognized in a short time.
  • the time required to recognize the surface shape of the measurement object can be shortened as much as possible.
  • the measuring apparatus when recognizing the entire surface shape of the measurement object based on each of the images picked up by the plurality of image pickup means, it is necessary to integrate the surface shape in each irradiation region of the measurement object on one plane. There is.
  • the prescribed wavelength light (irradiation pattern) from each of the irradiation means is partially overlapped on the measurement object.
  • the surface shape based on the image imaged by each of the imaging means can be easily integrated on one plane with reference to specific points (for example, specific four points) in a part overlapping each other.
  • the surface shape in each irradiation region recognized from a plurality of images can be easily recognized as the surface shape in one space.
  • the bandwidths of the prescribed wavelengths of the prescribed wavelength light emitted by each of the irradiation means are non-overlapping. For this reason, according to one aspect of the measurement apparatus of the present invention, even if the prescribed wavelength lights (irradiation patterns) from different irradiation means overlap, it is possible to reduce the occurrence of light interference in the region.
  • the measurement apparatus of the present invention it is possible to reduce the occurrence of unnecessary deformation in each irradiation pattern, and it is possible to suppress a reduction in the recognition accuracy of the surface shape of the measurement object.
  • the surface shape over a wide range of the measurement object can be accurately recognized, and the surface shape of the measurement object is recognized. Can be shortened as much as possible.
  • the measuring device of the present invention is applied to an inspection process in a production line that produces a large amount of products, the surface shape of a large number of products can be inspected at high speed.
  • the measurement apparatus of the present invention in one set of the irradiation unit and the imaging unit, even if the measurement target has a complicated surface shape that causes a blind spot, another set of irradiation unit and The blind spot can be covered by the imaging means. For this reason, according to one aspect of the measurement apparatus of the present invention, the surface shape of the measurement object can be accurately recognized even if the measurement object has a complicated surface shape.
  • a housing may be provided in which each of the pair of irradiation means and imaging means is held and stored in a specified positional relationship.
  • one aspect of the measurement apparatus of the present invention may include a cooling unit that cools the irradiation unit and the imaging unit housed in the housing by the gas taken into the housing.
  • the irradiation means and the imaging means housed in the housing can be cooled. For this reason, it can reduce that the member (namely, housing
  • One aspect of the measurement apparatus of the present invention may include a first optical element and a second optical element.
  • a 1st optical element is an optical element provided in the housing
  • the second optical element is on the path of light from the outside of the casing to the imaging means housed in each casing, and is provided on the casing so as to form the outer surface of the casing It is an optical element.
  • the light from the irradiating means is irradiated to the outside via the first optical element provided in the housing, and the imaging means is provided via the second optical element provided in the housing. Light enters.
  • the irradiation pattern does not become a predetermined pattern, or noise appears in the image captured by the imaging means.
  • the measurement accuracy of the surface shape of the measurement object is lowered.
  • the cooling means cools the irradiation means and the imaging means housed in the housing, and the outer surfaces of the first optical element and the second optical element. You may provide the ejection means which ejects toward.
  • the present invention can be realized in various forms such as a program executed by a computer and a measurement method in order to measure the shape of a measurement object in addition to the measurement apparatus described above.
  • a measuring apparatus 1 shown in FIG. 1 is a system that measures the surface shape of a measurement object 100.
  • the measuring device 1 includes a frame 3, a first imaging unit 20, a second imaging unit 50, and a shape measuring device 70.
  • the frame 3 includes side wall portions 5 and 7 and a top plate portion 9 spanned over the upper ends of the side wall portions 5 and 7.
  • the measurement object 100 is arranged in an open space surrounded by the side wall portions 5 and 7 and the top plate portion 9.
  • the measurement object 100 is an object having irregularities on the surface.
  • the measurement object 100 may be, for example, an industrial product that is produced in large quantities in a factory.
  • the measuring device 1 may be used to measure the surface shape of each measurement object 100 in an environment where a large amount of the measurement object 100 moves sequentially. That is, the measuring device 1 may be used in an inspection process in a production line that produces the measurement object 100, and the measurement object 100 may be conveyed by a conveying means such as a belt conveyor.
  • the first imaging unit 20 irradiates light of a prescribed wavelength, which is a wavelength in a prescribed band, with a prescribed irradiation pattern, and images a region irradiated with the light of the prescribed wavelength.
  • a prescribed wavelength which is a wavelength in a prescribed band
  • a prescribed irradiation pattern images a region irradiated with the light of the prescribed wavelength.
  • the light irradiated by the first imaging unit 20 is referred to as a first specified wavelength light
  • the wavelength in the first specified wavelength light is referred to as a first specified wavelength.
  • the second imaging unit 50 irradiates light of a specified wavelength with a specified irradiation pattern, and images a region irradiated with the light of that wavelength.
  • the light emitted by the second imaging unit 50 is referred to as second specified wavelength light
  • the wavelength of the second specified wavelength light is referred to as second specified wavelength. Irradiation of the second specified wavelength light by the second imaging unit 50 is such that part of the irradiation pattern of the second specified wavelength light from the second imaging unit 50 is irradiated with the first specified wavelength light from the first imaging unit 20. It is carried out so as to overlap a part of the pattern.
  • the second specified wavelength light mentioned here is light having a wavelength different from the first specified wavelength (that is, non-overlapping).
  • a red wavelength is assumed as the first specified wavelength
  • a blue wavelength is assumed as the second specified wavelength.
  • the first imaging unit 20 is attached to the frame 3.
  • the first imaging unit 20 is attached to the frame 3 such that the irradiation pattern with the first specified wavelength light is irradiated to the first irradiation region.
  • the first irradiation region is a region defined in advance as a region irradiated with the first specified wavelength light from the first imaging unit 20.
  • the second imaging unit 50 is attached to the frame 3.
  • the second imaging unit 50 is attached to the frame 3 so that the second irradiation region is irradiated with the irradiation pattern by the second specified wavelength light.
  • the second irradiation region is a region defined in advance as a region irradiated with the second specified wavelength light from the second imaging unit 50.
  • the second irradiation region is defined on the outer surface of the measurement object 100 such that a part of the second irradiation region overlaps a part of the first irradiation region.
  • the shape measuring device 70 measures (recognizes) the surface shape of the measuring object 100 based on each of the images picked up by the first image pickup units 20 and 50 according to a known three-dimensional image measuring method.
  • the shape measuring device 70 is configured around a known computer having at least a ROM 71, a RAM 72, and a CPU 73, as shown in FIG.
  • the ROM 71 stores processing programs and / or data that need to retain the stored contents even when the power is turned off.
  • the RAM 72 temporarily stores processing programs and / or data.
  • the CPU 73 executes various processes according to the processing program stored in the ROM 71 and / or the RAM 72.
  • the ROM 71 stores a processing program for the shape measuring apparatus 70 to execute a shape recognition process for recognizing the surface shape of the measurement object 100 based on images captured by the imaging units 20 and 50. .
  • the measurement object 100 is irradiated with light having an irradiation pattern formed in a grid shape in advance, and the measurement object is based on the degree of distortion of the irradiation pattern projected onto the measurement object 100.
  • a method of measuring the surface shape of the object 100 is used.
  • a moire method can be considered.
  • Such a method is a well-known method as described in, for example, Japanese Patent No. 3781438 and Japanese Patent No. 3519698, and therefore detailed description in this embodiment is omitted.
  • ⁇ Imaging unit> Next, the first imaging unit 20 will be described.
  • the first imaging unit 20 shown in FIG. 3 includes one irradiation device 22, one imaging device 30, a housing 42, and a cooling dustproof mechanism 74 (see FIG. 6).
  • the irradiation device 22 is a device that irradiates light with a first specified wavelength in an irradiation pattern, and includes a light emitting unit 24, an irradiation pattern generation unit 26, and a first optical element 28 as shown in FIG. .
  • the light emitting unit 24 is a light emitting device that emits light having a first specified wavelength as first specified wavelength light.
  • the light emitting unit 24 may be configured by a red light emitting diode or a red laser diode.
  • the irradiation pattern generation unit 26 is a member in which slits and / or holes are formed in a shape suitable for the irradiation pattern.
  • the irradiation pattern generation unit 26 irradiates the specified wavelength light by the irradiation pattern by allowing the specified wavelength light emitted from the light emitting unit 24 to pass through the slits and / or holes formed in the irradiation pattern generation unit 26. Is realized.
  • the irradiation pattern in this embodiment is a grid
  • the lattice shape referred to here is, for example, a fringe fringe shape or a lattice pattern.
  • the first optical element 28 is at least one optical element that irradiates the first irradiation region with the first specified wavelength light emitted from the light emitting unit 24 and passed through the irradiation pattern generating unit 26.
  • the first optical element 28 includes, for example, a lens.
  • the first optical element 28 is disposed on the light path from the irradiation device 22 housed in the housing 42 to the outside, and the mounting hole 90 of the front cover 46 is formed so as to form the outer surface of the housing 42. (See FIG. 7).
  • the imaging device 30 images a region (hereinafter referred to as a “first imaging region”) on the measurement object 100 onto which the first specified wavelength light emitted from the irradiation device 22 is projected.
  • the imaging device 30 includes a second optical element 32, a specified wavelength transmission filter 34, and an imaging element 36.
  • the second optical element 32 is at least one optical element that condenses light from the first imaging region.
  • the second optical element 32 includes a lens, for example.
  • the second optical element 32 is disposed on the light path from the outside of the housing 42 to the imaging device 30 and is attached to the mounting hole 91 (FIG. 7) of the front cover 46 so as to form the outer surface of the housing 42. See).
  • the specified wavelength transmission filter 34 is a filter that passes light of the first specified wavelength emitted by the light emitting unit 24 and blocks light of wavelengths other than the first specified wavelength.
  • the image sensor 36 is a well-known image sensor that forms an image, and is, for example, a CCD image sensor and / or a CMOS image sensor. The image sensor 36 images light that has passed through the specified wavelength filter 34.
  • the housing 42 is a case having an open space inside, and includes a case main body 44, a front cover 46, and two annular members 48.
  • the case main body 44 is a case that forms a rectangular parallelepiped with one surface open.
  • the front cover 46 is a plate-like member that covers the open surface of the case main body 44, and is provided with mounting holes 90 and 91.
  • the annular members 48 are ring-shaped members that are fixed to the peripheral edges of the attachment holes 90 and 91, respectively, and have a thickness along the circumferential direction.
  • the housing 42 is assembled with the first optical element 28 and the second optical element 32, so that an inflow port and a jet, which will be described later in detail. It is formed as a sealed container having no opening other than the outlet 89.
  • the irradiation device 22 and the imaging device 30 are stored so as to be held in a predetermined positional relationship (hereinafter referred to as “specified positional relationship”).
  • the specified positional relationship here refers to at least the distance between the irradiation device 22 and the imaging device 30 and the angle formed by the central axis of imaging with respect to the irradiation axis of the first specified wavelength light (that is, the mounting angle).
  • the first imaging unit 20 irradiates the first irradiation region with the irradiation pattern of the first specified wavelength light. Furthermore, the first imaging unit 20 captures an area of the measurement object 100 onto which the irradiation pattern of the first specified wavelength light is projected as a first imaging area, and outputs the captured image to the shape measuring device 70. .
  • the second imaging unit 50 includes one irradiation device 52, one imaging device 60, a housing 43, and a cooling dustproof mechanism 74 (see FIG. 6).
  • the irradiation device 52 is a device that irradiates the second prescribed wavelength light in an irradiation pattern, and includes a light emitting unit 54, an irradiation pattern generation unit 56, and a first optical element 58, as shown in FIG. .
  • the light emitting unit 54 is a light emitting device that emits light of the second specified wavelength.
  • the light emitting unit 54 may be configured by a blue light emitting diode, or may be configured by a blue laser diode.
  • the irradiation pattern generation unit 56 is a member in which slits and / or holes are formed in a shape suitable for the irradiation pattern.
  • the irradiation pattern generation unit 56 allows the second specified wavelength light emitted from the light emitting unit 54 to pass through the slits and / or holes formed in the irradiation pattern generation unit 56, so that the second specification by the irradiation pattern is performed.
  • the irradiation pattern in this embodiment is a grid
  • the lattice shape referred to here is, for example, a fringe fringe shape or a lattice pattern.
  • the first optical element 58 is at least one optical element that irradiates the second irradiation region with the second specified wavelength light emitted from the light emitting section 54 and passed through the irradiation pattern generating section 56.
  • the first optical element 58 is disposed on the path of light from the irradiation device 52 housed in the housing 43 to the outside, and the mounting hole of the front cover 47 is formed so as to form the outer surface of the housing 43. 92 (see FIG. 7).
  • the imaging device 60 images an area (hereinafter referred to as “second imaging region”) on the measurement object 100 onto which the second specified wavelength light emitted from the irradiation device 52 is projected.
  • the imaging device 60 includes a second optical element 62, a specified wavelength transmission filter 64, and an imaging element 66.
  • the second optical element 62 is at least one optical element that condenses light from the second imaging region.
  • the second optical element 62 is disposed on the light path from the outside of the housing 43 to the imaging device 60, and the mounting hole 93 (see FIG. 7) of the front cover 47 so as to form the outer surface of the housing 43. ).
  • the specified wavelength transmission filter 64 is a filter that passes light of the second specified wavelength and blocks light of wavelengths other than the second specified wavelength.
  • the image sensor 66 is a well-known image sensor that forms an image, and includes, for example, a CCD image sensor and / or a CMOS image sensor.
  • the imaging element 66 images light that has passed through the specified wavelength filter 64.
  • casing 43 is a case which has an open space inside, and is provided with one case main body 45, one front cover 47, and two annular members 49.
  • the case main body 45 is a case that forms a rectangular parallelepiped whose one surface is open.
  • the front cover 47 is a plate-like member that covers the open surface of the case body 45, and is provided with mounting holes 92 and 93.
  • the annular members 49 are ring-shaped members fixed to the peripheral edges of the mounting holes 92 and 93, respectively, and have a thickness along the circumferential direction.
  • the irradiation device 52 and the imaging device 60 are stored so as to be held in a specified positional relationship.
  • the prescribed positional relationship referred to here is at least the angle between the central axis of imaging with respect to the distance between the irradiation device 52 and the imaging device 60 and the central axis that irradiates the second prescribed wavelength light (that is, attachment) Angle).
  • the second imaging unit 50 irradiates the second irradiation region with the irradiation pattern of the second specified wavelength light. Further, the second imaging unit 50 captures an area of the measurement object 100 onto which the irradiation pattern of the second specified wavelength light is projected as a second imaging area, and outputs the captured image to the shape measuring device 70. .
  • the shape measuring device 70 that has acquired the image measures the three-dimensional surface shape of each of the first imaging region and the second imaging region in the measurement object 100 by executing a shape recognition process. Then, the shape measuring device 70 executes a coordinate integration process for integrating the surface shapes of the first imaging region and the second imaging region on one plane, and acquires the surface shape of the measurement object 100.
  • the coordinate integration processing here refers to the surface shape of each area based on the captured image with reference to specific points (for example, specific four points) common to the first imaging area and the second imaging area. This is a well-known process of integrating on one plane. This coordinate integration process is a well-known process and may be performed based on a specific point in a portion where the first imaging area and the second imaging area overlap each other, and thus detailed description thereof is omitted here.
  • ⁇ Cooling and dustproof mechanism> Next, a cooling dustproof mechanism provided in each of the first imaging unit 20 and the second imaging unit 50 will be described.
  • cooling and dustproof mechanism provided in the first imaging unit 20 and the cooling and dustproof mechanism provided in the second imaging unit 50 have a common configuration, in this embodiment, the cooling and dustproof mechanism provided in the first imaging unit 20 will be described. The description of the cooling dustproof mechanism included in the second imaging unit 50 is omitted.
  • the cooling dustproof mechanism 74 shown in FIG. 6 is a mechanism that suppresses the temperature rise in the first imaging unit 20 and suppresses dust from adhering to the outer surfaces of the first optical element 28 and the second optical element 32. .
  • the cooling dustproof mechanism 74 includes a suction part 76, a fan 78, an air chamber 80, and a jet part 83.
  • the suction portion 76 is a part of the case main body 44 having an opening (hereinafter referred to as “inflow port”) formed in the case main body 44. It is preferable that a plurality of inflow ports are provided.
  • the fan 78 is a blower that blows air into the casing 42 from an inlet provided in the suction portion 76. A plurality of fans 78 are preferably provided.
  • the air chamber 80 is one room provided in the housing 42 and the air blown by the fan 78 flows in. Further, the air chamber 80 includes a dustproof filter 82 along the air flow path from the inlet to the housing 42.
  • the dustproof filter 82 here is a known filter that blocks the passage of dust and passes air, and for example, a non-woven fabric may be used. It is preferable that a plurality of dustproof filters 82 in the present embodiment are provided.
  • the ejection unit 83 is a mechanism that ejects the air that has passed through the dust filter 82 to the outside of the housing 42.
  • the ejection portion 83 in the present embodiment is formed by the front cover 46 and the annular member 48.
  • the front cover 46 has a plurality of vent holes 84 and 86.
  • the vent holes 84 and 86 are formed around the mounting holes 90 and 91 so that the distances between the vent holes 84 and 86 are equal.
  • the annular member 48 is provided with a ventilation path 88 as shown in FIG.
  • the ventilation path 88 is a hole formed so that a cross-sectional shape obtained by cutting the annular member 48 in the circumferential direction and the axial direction is “L-shaped”.
  • the number of the air passages 88 in this embodiment is the same as the number of the air holes 84 and 86. Further, the air passage 88 is formed to have a diameter substantially the same as that of the air holes 84 and 86.
  • Each air passage 88 has one end of the air passage 88 opposed to each of the air holes 84 and 86 formed in the front cover 46, and the other end of the air passage 88 has the first optical element 28 and It is directed to the inner periphery of the annular member 48 so as to be positioned on the outer surface of the second optical element 32.
  • An opening directed toward the inner periphery of the annular member 48 functions as a jet port 89.
  • the air that has flowed into the housing 42 exchanges heat with the irradiation device 22 and the imaging device 30 to cool the irradiation device 22 and the imaging device 30.
  • the air that has cooled the irradiation device 22 and the imaging device 30 passes through the vent holes 84 and 86 provided in the front cover 46 and flows into the respective air passages 88 provided in the annular member 48.
  • each of the imaging units 20 and 50 irradiates different areas with the first specified wavelength light and the second specified wavelength light, respectively.
  • the measurement apparatus 1 unlike the conventional technique, it is not necessary to sequentially move one imaging unit when imaging a plurality of regions in the measurement object 100, and the measurement object 100 can be widely used. Crossing images can be taken at the same timing.
  • the wavelengths of light emitted by the imaging units 20 and 50 are different (non-overlapping) wavelengths. For this reason, it is possible to reduce the occurrence of interference between the first specified wavelength light from the first imaging unit 20 and the second specified wavelength light from the second imaging unit 50.
  • a part of the irradiation pattern by the first specified wavelength light from the first imaging unit 20 and a part of the irradiation pattern by the second specified wavelength light from the second imaging unit 50 overlap.
  • the first specified wavelength light and the second specified wavelength light can be irradiated.
  • each of the imaging units 20 and 50 images the imaging region via the specified wavelength transmission filters 34 and 64 that pass only the wavelength of light emitted by the imaging units 20 and 50 themselves.
  • the measuring apparatus 1 it can suppress that the measurement precision of the measuring object 100 falls.
  • the three-dimensional surface shape of the measurement object 100 can be recognized with high accuracy, and the time required for recognizing the three-dimensional surface shape of the measurement object 100. Can be shortened as much as possible.
  • the irradiation patterns with light from the imaging units 20 and 50 are partially overlapped on the measurement object 100.
  • the surface shape based on the image imaged by each of the imaging units 20 and 50 can be easily integrated on one plane with reference to specific points (for example, specific four points) in a part overlapping each other.
  • the surface shape in each irradiation region recognized from a plurality of images can be easily recognized as the surface shape in one space. From the above, for example, if the measuring device 1 is applied to an inspection process in a production line that produces a large amount of products, it is possible to inspect the surface shape of a large number of products at high speed.
  • the measuring apparatus 1 even if the measuring object 100 has a complicated surface shape that causes a blind spot in one imaging unit, the blind spot can be covered by another imaging unit. For this reason, according to the measuring apparatus 1, even if it is a measuring object with a complicated surface shape, the surface shape of the measuring object can be recognized with high accuracy.
  • the measuring apparatus 1 includes a cooling dustproof mechanism 74. According to the cooling dustproof mechanism 74, the irradiation devices 22 and 52 and the imaging devices 30 and 60 can be cooled by the air that flows into the housings 42 and 43.
  • fever from the irradiation apparatuses 22 and 52 and the imaging devices 30 and 60 can be suppressed by cooling the irradiation apparatuses 22 and 52 and the imaging devices 30 and 60.
  • FIG. As a result, according to the measuring apparatus 1, it can suppress more reliably that the measurement precision of the surface shape of the measuring object 100 falls.
  • the air taken into the casings 42 and 43 is passed through the first optical elements 28, 58, and the openings from the openings (that is, the jet ports 89) directed to the inner periphery of the annular members 48, 49, and The second optical elements 32 and 62 are sprayed onto the outer surface.
  • the cooling dustproof mechanism 74 it can suppress that dust adheres to the outer surface of the 1st optical elements 28 and 58 and the 2nd optical elements 32 and 62.
  • FIG. According to the measuring apparatus 1, since it can suppress that dust adheres to the outer surface of the 1st optical elements 28 and 58 and the 2nd optical elements 32 and 62, it can maintain an irradiation pattern in the pattern prescribed
  • the first specified wavelength is the wavelength of the red region and the second specified wavelength is the wavelength of the blue region, but each of the first specified wavelength and the second specified wavelength is not limited to this.
  • the first specified wavelength and the second specified wavelength may be any wavelength as long as the bands are non-overlapping, and the bands are not limited to visible light, but in the infrared wavelength region and the ultraviolet wavelength region. There may be.
  • the livestock since the livestock cannot be detected at a wavelength in the ultraviolet region, the livestock can be used as the measurement object 100, and the measuring device 1 can be used for inspection of livestock with meat.
  • lattice form namely, fringe fringe shape
  • the irradiation pattern in this invention is restricted to this.
  • a dot polyka dot pattern
  • the moire method is cited as an example of the shape recognition process for recognizing the surface shape of the measurement object 100, but the shape recognition process in the present invention is not limited to the moire method. That is, as a shape recognition process in the present invention, any method may be used as long as it is a so-called pattern projection method in which a shape is projected and a shape is measured. For example, a shift fringe method and / or moire topography may be used. .
  • the outside air is directly taken into the casings 42 and 43, but the outside air taken into the casings 42 and 43 may be cooled once.
  • the cooling of the outside air may be realized by cooling with a known air conditioner or the like.
  • the imaging unit with which the measuring device of this invention is provided is three or more. It may be.
  • each imaging unit included in the measuring device 1 is arranged such that a part of the irradiation pattern by light from one imaging unit overlaps a part of the irradiation pattern by light from at least one other imaging unit. Need to be.
  • each imaging unit passes through the region of the measuring object 100 irradiated with the light irradiation pattern from each imaging unit through a filter that passes the wavelength of the light from the imaging unit and blocks wavelengths other than the wavelength.
  • a filter that passes the wavelength of the light from the imaging unit and blocks wavelengths other than the wavelength.
  • the surface shape of the measurement object can be measured over a wider range in a short time.
  • omitted a part of structure of the said embodiment as long as the subject could be solved is also embodiment of this invention.
  • an aspect configured by appropriately combining the above embodiment and the modification is also an embodiment of the present invention.
  • all the aspects which can be considered in the limit which does not deviate from the essence of the invention specified by the wording described in the claims are the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

計測装置は、少なくとも2以上の照射手段と、少なくとも2以上の撮像手段と、計測手段とを備える。前記照射手段のそれぞれは、測定対象物において照射パターンの一部分が、他の前記照射手段からの照射パターンの一部分に重なるように照射する。前記撮像手段のそれぞれは、対をなす前記照射手段にて照射された規定波長光による照射パターンが投影された測定対象物の照射領域を、その対をなす照射手段における規定波長の光を通過し、かつ、当該規定波長以外の波長の光を遮断する規定波長透過フィルタを介して撮像する。

Description

計測装置 関連出願の相互参照
 本国際出願は、2013年12月16日に日本国特許庁に出願された日本国特許出願第2013-259112号に基づく優先権を主張するものであり、日本国特許出願第2013-259112号の全内容を本国際出願に援用する。
 本発明は、測定対象物の表面形状を計測する計測装置に関する。
 三次元画像計測により、測定対象物の表面形状を計測する計測装置が知られている。この種の計測装置として、1つの撮像ユニットと、形状認識装置とを備えたものが知られている。
 1つの撮像ユニットは、規定された照射パターンの光を照射し、その照射パターンの光が照射された領域を撮像するユニットである。1つの撮像ユニットとして、例えば、1つの照射器と、2つの撮像装置とを備えたものが提案されている(特許文献1参照)。
 照射器は、予め規定された領域に縞フリンジ状(格子状)の光を照射する。撮像装置それぞれは、測定対象物において、照射器からの縞フリンジが投影された共通の領域を撮像する。そして、照射器と撮像装置それぞれとは、予め規定された距離及び取り付け角度にてフレームに固定されている。すなわち、1つの照射器と2つの撮像装置とは、それぞれの位置関係が予め規定された関係となるように配置されている。
 さらに、特許文献1に記載された計測装置における形状認識装置は、三次元画像計測における能動計測法により、撮像装置それぞれにて撮像した画像から測定対象物の表面形状(三次元形状)を認識する。つまり、特許文献1に記載された計測装置は、1つの照射器と2つの撮像装置とを1つの撮像ユニットとして動作させて、各撮像装置で撮像した画像に基づいて測定対象物の表面形状を認識する。
特許第3781438号
 ところで、計測装置にて表面形状を計測すべき測定対象物としては、大きさが大きい測定対象物や表面形状が複雑な測定対象物も存在する。このような測定対象物の表面形状を、特許文献1に記載された計測装置で計測する場合、縞フリンジ状の光を複数箇所に順次照射するように、1つの撮像ユニットの位置を移動させ、その複数箇所のそれぞれにて画像を撮像する必要がある。
 このため、特許文献1に記載された計測装置では、大きさが大きい測定対象物や表面形状が複雑な測定対象物の表面形状を計測する場合、測定対象物全体の表面形状を認識するまでに要する時間長が長くなるという課題があった。
 そこで、本発明の1つの局面では、計測装置において、測定対象物の表面形状を認識するまでに要する時間長を可能な限り短縮することが好ましい。
 本発明の計測装置は、1つの局面では、少なくとも2以上の照射手段と、少なくとも2以上の撮像手段と、計測手段とを備えている。
 このうち、各照射手段は、規定された規定波長の光である規定波長光を、設定された照射パターンで照射する。各撮像手段は、照射手段の一つと対をなし、かつ、対応する照射手段との位置関係が予め規定された規定位置関係となるように配置されている。そして、撮像手段のそれぞれは、対応する照射手段にて照射された規定波長光による照射パターンが投影された測定対象物の照射領域を撮像する。
 さらに、本発明の計測装置の1つの局面においては、照射手段のそれぞれは、互いに異なる波長として規定された規定波長の光を規定波長光として、測定対象物において、照射パターンの一部分が、他の照射手段からの照射パターンの一部分に重なるように照射する。そして、撮像手段のそれぞれは、対をなす照射手段にて照射された規定波長光による照射パターンが投影された測定対象物の照射領域を、その対をなす照射手段における規定波長の光を通過し、かつ、当該規定波長以外の波長の光を遮断する規定波長透過フィルタを介して撮像する。
 そして、計測手段は、撮像手段で撮像された画像のそれぞれ、及び各画像を撮像した撮像手段と対をなす照射手段との規定位置関係に基づいて、測定対象物の照射領域それぞれにおける表面形状を計測する。
 このような計測装置によれば、測定対象物における複数の領域を、対をなす照射手段と撮像手段との複数の組によって同一タイミングで撮像できる。さらに、本発明の計測装置における1つの局面によれば、測定対象物における複数の領域を撮像する際に、対をなす照射手段と撮像手段との一つの組を移動させる必要がない。したがって、本発明の計測装置における1つの局面によれば、測定対象物の広範囲に渡る表面形状を、少ない時間で認識することができる。
 換言すれば、本発明の計測装置における1つの局面によれば、測定対象物の表面形状を認識するまでに要する時間を可能な限り短縮できる。
 ところで、計測装置においては、複数の撮像手段で撮像した画像それぞれに基づいて測定対象物の表面形状全体を認識する場合、測定対象物の照射領域それぞれにおける表面形状を一つの平面上に統合する必要がある。
 そして、本発明の計測装置における1つの局面では、照射手段のそれぞれからの規定波長光(照射パターン)は、測定対象物において一部分が重なるようになされている。このため、互いに重なる一部分における特定のポイント(例えば、特定の4箇所の点)を基準として、撮像手段のそれぞれで撮像した画像に基づく表面形状を一つの平面上に容易に統合できる。
 この結果、本発明の計測装置における1つの局面によれば、複数の画像から認識した各照射領域における表面形状を、一つの空間における表面形状として容易に認識できる。
 しかも、本発明の計測装置における1つの局面において、照射手段のそれぞれが照射する規定波長光の規定波長は、帯域幅が非重複である。このため、本発明の計測装置における1つの局面によれば、互いに異なる照射手段からの規定波長光(照射パターン)が重なり合ったとしても、当該領域において、光の干渉が生じることを低減できる。
 したがって、本発明の計測装置における1つの局面によれば、各照射パターンに不必要な変形が生じることを低減でき、測定対象物における表面形状の認識精度が低下することを抑制できる。
 以上説明したように、本発明の計測装置における1つの局面によれば、測定対象物の広範囲に渡る表面形状を精度良く認識することができ、しかも、その測定対象物の表面形状を認識するまでに要する時間を可能な限り短縮できる。
 以上のことから、例えば、製品を大量に生産する生産ラインにおける検査工程に、本発明の計測装置を適用すれば、大量の製品の表面形状を高速に検査することが可能となる。
 また、本発明の計測装置における1つの局面によれば、一組の照射手段及び撮像手段では、死角が生じる複雑な表面形状を有した測定対象物であっても、他の組の照射手段及び撮像手段によって、その死角をカバーできる。このため、本発明の計測装置における1つの局面によれば、複雑な表面形状を有した測定対象物であっても、その測定対象物の表面形状を精度良く認識することができる。
 本発明の計測装置における1つの局面においては、対をなす照射手段と撮像手段とのそれぞれを、規定位置関係に保持して収納する筐体を備えていても良い。
 ところで、計測装置においては、対をなす照射手段と撮像手段との位置関係が規定位置関係から変化すると、測定対象物の表面形状の計測精度が低下する。そして、対をなす照射手段と撮像手段との位置関係が規定位置関係から変化する要因として、照射手段や撮像手段からの発熱による温度上昇に起因して、照射手段及び撮像手段が固定された部材が膨張することが考えられる。
 そこで、本発明の計測装置における1つの局面は、筐体内に取り込んだ気体により、当該筐体内に収納されている照射手段と撮像手段とを冷却する冷却手段を備えていても良い。
 このような冷却手段を備えた計測装置によれば、筐体内に収納されている照射手段及び撮像手段を冷却することができる。このため、対をなす照射手段及び撮像手段が固定された部材(即ち、筐体)が膨張することを低減でき、測定対象物の表面形状の計測精度が低下することを抑制できる。
 本発明の計測装置における1つの局面は、第一光学素子と、第二光学素子とを備えていても良い。第一光学素子とは、筐体それぞれに収納されている照射手段からの光の経路上であり、かつ、筐体の外表面を形成するように筐体に設けられた光学素子である。第二光学素子とは、筐体それぞれに収納されている撮像手段への筐体の外部からの光の経路上であり、かつ、筐体の外表面を形成するように筐体に設けられた光学素子である。
 このような計測装置では、照射手段からの光は、筐体に設けられた第一光学素子を介して外部に照射され、撮像手段には、筐体に設けられた第二光学素子を介して光が入射する。
 このため、筐体に設けられた光学素子の外表面に粉塵が付着すると、照射パターンが予め規定されたパターンとならなかったり、撮像手段で撮像した画像にノイズが写り込んだりする。この場合、計測装置においては、測定対象物の表面形状の計測精度が低下する。
 そこで、本発明の計測装置における1つの局面においては、冷却手段にて、筐体に収納されている照射手段と撮像手段とを冷却した気体を、第一光学素子及び第二光学素子の外表面に向けて噴出する噴出手段を備えていても良い。
 このような噴出手段を設けた計測装置によれば、光学素子の外表面に粉塵が付着することを抑制でき、測定対象物の表面形状の計測精度が低下することを抑制できる。
 また、本発明は、前述した計測装置の他、計測対象物の形状を計測するためにコンピュータが実行するプログラム、計測方法等、種々の形態で実現することができる。
計測装置の概略構成を示す説明図である。 規定波長を説明する説明図である。 計測装置が備える撮像ユニットの斜視図である。 撮像ユニットの構成を示すブロック図である。 測定対象物への照射パターン及び照射領域を説明する説明図である。 冷却防塵機構の構成を説明する説明図であり、撮像ユニットの内部構造を示す撮像ユニットの断面図、即ち、図2におけるVI-VI断面図である。 噴出部の一部分を構成する前面カバーの外観を示す斜視図である。 噴出部を構成する前面カバー、及び環状部材の断面図である。
 1…計測装置 3…フレーム 5…側壁部 9…天板部 20,50…撮像ユニット 22,52…照射装置 24,54…発光部 26,56…照射パターン生成部 28,58…第一光学素子 30,60…撮像装置 32,62…第二光学素子 34,64…規定波長透過フィルタ 36,66…撮像素子 42,43…筐体 44,45…ケース本体 46,47…前面カバー 48,49…環状部材 70…形状計測装置 71…ROM 72…RAM 73…CPU 74…冷却防塵機構 76…吸入部 78…ファン 80…空気室 82…防塵フィルタ 83…噴出部 84…通気孔 88…通気路 89…噴出口 90…取付穴 100…測定対象物
 以下に本発明の1例としての実施形態を図面と共に説明する。
〈計測装置〉
 図1に示す計測装置1は、測定対象物100の表面形状を計測するシステムである。
 計測装置1は、フレーム3と、第一撮像ユニット20と,第二撮像ユニット50と、形状計測装置70とを備えている。
 フレーム3は、側壁部5,7と、側壁部5,7の上端に掛け渡された天板部9とを備えている。なお、本実施形態においては、側壁部5,7と天板部9とによって囲まれた開放空間に測定対象物100が配置される。
 この測定対象物100は、表面に凹凸を有した物体である。この測定対象物100は、例えば、工場において多量に生産される工業製品であっても良い。
 そして、計測装置1は、多量の測定対象物100が順次移動する環境において、各測定対象物100の表面形状を計測することに用いられても良い。すなわち、計測装置1は、測定対象物100を生産する生産ラインでの検査工程にて用いられても良く、測定対象物100は、ベルトコンベアなどの搬送手段によって搬送されても良い。
 第一撮像ユニット20は、予め規定された帯域の波長である規定波長の光を、規定された照射パターンにて照射し、その規定波長の光が照射された領域を撮像する。以下、第一撮像ユニット20が照射する光を第一規定波長光と称し、第一規定波長光における波長を第一規定波長と称す。
 また、第二撮像ユニット50は、規定された照射パターンにて規定された波長の光を照射し、その波長の光が照射された領域を撮像する。以下、第二撮像ユニット50が照射する光を第二規定波長光と称し、第二規定波長光における波長を第二規定波長と称す。この第二撮像ユニット50による第二規定波長光の照射は、第二撮像ユニット50からの第二規定波長光の照射パターンの一部が、第一撮像ユニット20からの第一規定波長光の照射パターンの一部に重なるように実施される。
 なお、ここで言う第二規定波長光とは、図2に示すように、第一規定波長とは帯域幅が異なる(即ち、非重複である)波長の光である。
 そして、本実施形態においては、第一規定波長として赤色の波長を想定し、第二規定波長として青色の波長を想定する。
 第一撮像ユニット20は、フレーム3に取り付けられる。この第一撮像ユニット20のフレーム3への取り付けは、第一規定波長光による照射パターンが第一照射領域に照射されるようになされる。なお、第一照射領域とは、第一撮像ユニット20からの第一規定波長光が照射される領域として、予め規定された領域である。
 また、第二撮像ユニット50は、フレーム3に取り付けられる。この第二撮像ユニット50のフレーム3への取り付けは、第二規定波長光による照射パターンが第二照射領域に照射されるようになされる。
 なお、第二照射領域とは、第二撮像ユニット50からの第二規定波長光が照射される領域として、予め規定された領域である。この第二照射領域は、測定対象物100の外表面において、第二照射領域の一部分が、第一照射領域の一部分に重複するように規定されている。
 また、形状計測装置70は、周知の三次元画像計測法に従って、第一撮像ユニット20,50にて撮像された画像それぞれに基づき、測定対象物100の表面形状を計測(認識)する。
 これを実現するために、形状計測装置70は、図1に示すように、ROM71と、RAM72と、CPU73とを少なくとも有した周知のコンピュータを中心に構成されている。
 このうち、ROM71は、電源が切断されても記憶内容を保持する必要がある処理プログラム及び/またはデータを格納する。RAM72は、処理プログラム及び/またはデータを一時的に格納する。CPU73は、ROM71及び/またはRAM72に記憶された処理プログラムに従って各種処理を実行する。
 ROM71には、各撮像ユニット20,50にて撮像した画像に基づいて、測定対象物100の表面形状を認識する形状認識処理を、形状計測装置70が実行するための処理プログラムが格納されている。
 なお、本実施形態では、形状認識処理として、予め格子状に形成された照射パターンによる光を測定対象物100に照射し、測定対象物100に投影された照射パターンの歪み度合いに基づいて測定対象物100の表面形状を計測する手法(いわゆるパターン投影法)を用いる。このパターン投影法の一例として、モアレ法が考えられる。このような手法は、例えば、特許第3781438号、特許第3519698号に記載されているように周知の手法であるため、本実施形態での詳しい説明は省略する。
〈撮像ユニット〉
 次に、第一撮像ユニット20について説明する。
 図3に示す第一撮像ユニット20は、一つの照射装置22と、一つの撮像装置30と、筐体42と、冷却防塵機構74(図6参照)とを備えている。
 照射装置22は、第一規定波長光を照射パターンにて照射する装置であり、図4に示すように、発光部24と、照射パターン生成部26と、第一光学素子28とを備えている。
 発光部24は、第一規定波長の光を第一規定波長光として発光する発光装置である。この発光部24は、例えば、赤色発光ダイオードによって構成されていても良いし、赤色レーザダイオードによって構成されていても良い。
 照射パターン生成部26は、照射パターンに適合する形状にスリット及び/または孔が形成された部材である。この照射パターン生成部26は、当該照射パターン生成部26に形成されたスリット及び/または孔を、発光部24にて発光された規定波長光が通過することで、照射パターンによる規定波長光の照射を実現する。なお、本実施形態における照射パターンは、図5に示すように格子状である。ここで言う格子状とは、例えば、縞フリンジ状、格子模様である。
 第一光学素子28は、発光部24にて発光され、照射パターン生成部26を通過した第一規定波長光を、第一照射領域に照射する少なくとも一つの光学素子である。この第一光学素子28は、例えば、レンズを含む。
 第一光学素子28は、筐体42に収納されている照射装置22から外部への光の経路上に配置され、かつ、筐体42の外表面を形成するように前面カバー46の取付穴90(図7参照)に嵌合される。
 撮像装置30は、測定対象物100において、照射装置22から照射された第一規定波長光が投影された領域(以下、「第一撮像領域」と称す)を撮像する。この撮像装置30は、第二光学素子32と、規定波長透過フィルタ34と、撮像素子36とを備えている。
 第二光学素子32は、第一撮像領域からの光を集光する少なくとも一つの光学素子である。この第二光学素子32は、例えば、レンズを含む。この第二光学素子32は、筐体42の外部から撮像装置30への光の経路上に配置され、かつ、筐体42の外表面を形成するように前面カバー46の取付穴91(図7参照)に嵌合される。
 規定波長透過フィルタ34は、発光部24が発光する第一規定波長の光を通過し、第一規定波長以外の波長の光を遮断するフィルタである。
 撮像素子36は、画像を形成する周知の撮像素子であり、例えば、CCDイメージセンサ及び/またはCMOSイメージセンサである。この撮像素子36は、規定波長フィルタ34を通過した光を撮像する。
 そして、筐体42は、内部に開放空間を有したケースであり、一つのケース本体44と、一つの前面カバー46と、2つの環状部材48とを備えている。ケース本体44は、一つの面が開放した直方体を形成するケースである。前面カバー46は、ケース本体44の開放した面を覆う板状の部材であり、取付穴90,91が穿設されている。環状部材48は、それぞれ、取付穴90,91の周縁に固定されるリング状の部材であり、周方向に沿って厚みを有している。
 なお、筐体42は、ケース本体44と前面カバー46と環状部材48とに加えて、第一光学素子28と、第二光学素子32とを組み立てることで、詳しくは後述する流入口、及び噴出口89以外に開口を有していない密閉容器として形成される。
 その筐体42の内部に形成される開放空間には、照射装置22と撮像装置30とが、予め規定された位置関係(以下、「規定位置関係」と称す)に保持されるように収納される。なお、ここで言う規定位置関係は、少なくとも、照射装置22と撮像装置30との間の距離、及び第一規定波長光の照射軸に対して撮像の中心軸がなす角度(即ち、取り付け角度)によって規定される位置関係である。
 すなわち、第一撮像ユニット20は、第一規定波長光の照射パターンを第一照射領域に照射する。さらに、第一撮像ユニット20は、測定対象物100において、第一規定波長光の照射パターンが投影された領域を第一撮像領域として撮像し、その撮像した画像を形状計測装置70へと出力する。
 次に、第二撮像ユニット50について説明する。
 第二撮像ユニット50は、図3に示すように、一つの照射装置52と、一つの撮像装置60と、筐体43と、冷却防塵機構74(図6参照)とを備えている。
 照射装置52は、第二規定波長光を照射パターンにて照射する装置であり、図4に示すように、発光部54と、照射パターン生成部56と、第一光学素子58とを備えている。
 発光部54は、第二規定波長光を発光する発光装置である。この発光部54は、例えば、青色発光ダイオードによって構成されていても良いし、青色レーザダイオードによって構成されていても良い。
 照射パターン生成部56は、照射パターンに適合する形状にスリット及び/または孔が形成された部材である。この照射パターン生成部56は、当該照射パターン生成部56に形成されたスリット及び/または孔を、発光部54にて発光された第二規定波長光が通過することで、照射パターンによる第二規定波長光の照射を実現する。なお、本実施形態における照射パターンは、図5に示すように、格子状である。ここで言う格子状とは、例えば、縞フリンジ状、格子模様である。
 第一光学素子58は、発光部54にて発光され、照射パターン生成部56を通過した第二規定波長光を、第二照射領域に照射する少なくとも一つの光学素子である。この第一光学素子58は、筐体43に収納されている照射装置52から外部への光の経路上に配置され、かつ、筐体43の外表面を形成するように前面カバー47の取付穴92(図7参照)に嵌合される。
 撮像装置60は、測定対象物100において、照射装置52から照射された第二規定波長光が投影された領域(以下、「第二撮像領域」と称す)を撮像する。この撮像装置60は、第二光学素子62と、規定波長透過フィルタ64と、撮像素子66とを備えている。
 第二光学素子62は、第二撮像領域からの光を集光する少なくとも一つの光学素子である。第二光学素子62は、筐体43の外部から撮像装置60への光の経路上に配置され、かつ、筐体43の外表面を形成するように前面カバー47の取付穴93(図7参照)に嵌合される。
 規定波長透過フィルタ64は、第二規定波長の光を通過し、第二規定波長以外の波長の光を遮断するフィルタである。
 撮像素子66は、画像を形成する周知の撮像素子であり、例えば、CCDイメージセンサ及び/またはCMOSイメージセンサを含む。この撮像素子66は、規定波長フィルタ64を通過した光を撮像する。
 そして、筐体43は、内部に開放空間を有したケースであり、一つのケース本体45と、一つの前面カバー47と、2つの環状部材49とを備えている。ケース本体45は、一つの面が開放した直方体を形成するケースである。前面カバー47は、ケース本体45の開放した面を覆う板状の部材であり、取付穴92,93が穿設されている。環状部材49は、それぞれ、取付穴92,93の周縁に固定されるリング状の部材であり、周方向に沿って厚みを有している。
 その筐体43の開放空間には、照射装置52と撮像装置60とが規定位置関係に保持されるように収納される。なお、ここで言う規定位置関係は、少なくとも、照射装置52と撮像装置60との間の距離、及び第二規定波長光を照射する中心軸に対して撮像の中心軸がなす角度(即ち、取り付け角度)によって規定される位置関係である。
 すなわち、第二撮像ユニット50は、第二規定波長光の照射パターンを第二照射領域に照射する。さらに、第二撮像ユニット50は、測定対象物100において、第二規定波長光の照射パターンが投影された領域を第二撮像領域として撮像し、その撮像した画像を形状計測装置70へと出力する。
 そして、画像を取得した形状計測装置70は、形状認識処理を実行することで、測定対象物100における第一撮像領域及び第二撮像領域それぞれの3次元表面形状を計測する。そして、形状計測装置70は、第一撮像領域及び第二撮像領域それぞれの表面形状を、一つの平面上に統合する座標統合処理を実行し、測定対象物100の表面形状を取得する。
 ここで言う座標統合処理とは、第一撮像領域と第二撮像領域とに共通する特定のポイント(例えば、特定の4箇所の点)を基準として、撮像した画像に基づく領域それぞれの表面形状を一つの平面上に統合する周知の処理である。この座標統合処理は、周知の処理であり、第一撮像領域と第二撮像領域とが互いに重なる一部分における特定のポイントを基準として実施すれば良いため、ここでの詳しい説明を省略する。
〈冷却防塵機構〉
 次に、第一撮像ユニット20及び第二撮像ユニット50のそれぞれが備える冷却防塵機構について説明する。第一撮像ユニット20が備える冷却防塵機構と、第二撮像ユニット50が備える冷却防塵機構とは、共通の構成であるため、本実施形態では、第一撮像ユニット20が備える冷却防塵機構について説明し、第二撮像ユニット50が備える冷却防塵機構については説明を省略する。
 図6に示す冷却防塵機構74は、第一撮像ユニット20内の温度上昇を抑制すると共に、第一光学素子28及び第二光学素子32の外表面に粉塵が付着することを抑制する機構である。
 温度上昇の抑制、及び粉塵の付着の抑制を実現するために、冷却防塵機構74は、吸入部76と、ファン78と、空気室80と、噴出部83とを備えている。
 吸入部76は、ケース本体44に形成された開口(以下、「流入口」と称す)を有したケース本体44の部位である。流入口は、複数設けられていることが好ましい。ファン78は、吸入部76に設けられた流入口から筐体42内に空気を送風する送風機である。ファン78は、複数設けられていることが好ましい。
 空気室80は、筐体42内に設けられた一つの部屋であり、ファン78によって送風された空気が流入する。さらに、空気室80は、流入口から筐体42内への空気の流路に沿って防塵フィルタ82を備えている。ここで言う防塵フィルタ82とは、粉塵の通過を遮断し、かつ、空気を通過する周知のフィルタであり、例えば、不織布を用いれば良い。本実施形態における防塵フィルタ82は、複数設けられていることが好ましい。
 噴出部83は、防塵フィルタ82を通過した空気を筐体42の外部に噴出する機構である。本実施形態における噴出部83は、前面カバー46と環状部材48とによって形成されている。
 前面カバー46には、図7に示すように、複数の通気孔84,86が穿設されている。この通気孔84,86は、取付穴90,91の周囲に、各通気孔84,86の距離が等間隔となるように形成されている。
 さらに、環状部材48は、図8に示すように、通気路88を備えている。この通気路88は、環状部材48を周方向及び軸方向に切断した断面形状が「L字型」となるように形成された孔である。本実施形態の通気路88は、通気孔84,86の個数と同数設けられている。さらに、通気路88は、直径が通気孔84,86と略同じ大きさに形成されている。
 各通気路88は、当該通気路88の一端が、前面カバー46に形成された通気孔84,86のそれぞれに対向する位置に、当該通気路88の他端が、第一光学素子28,及び第二光学素子32の外表面上に位置するように環状部材48の内周に向けられている。この環状部材48の内周に向けられた開口が、噴出口89として機能する。
〈冷却防塵機構の作用〉
 つまり、冷却防塵機構74では、ファン78が動作することで、筐体42の外部から、筐体42の内部に設けられた空気室80に空気(外気)が流入する。そして、空気が流入することで、空気室80の内圧が上昇すると、空気室80内の空気は、防塵フィルタ82を通過して、筐体42内へと流入する。
 そして、筐体42内へと流入した空気は、照射装置22及び撮像装置30と熱交換し、照射装置22及び撮像装置30を冷却する。照射装置22及び撮像装置30を冷却した空気は、前面カバー46に設けられた通気孔84,86を通過して、環状部材48に設けられた各通気路88へと流入する。
 通気孔84,86及び通気路88の流路径が筐体43の開放空間に比べて小さいことから、通気路88に流入した空気は流速が大きくなる。そして、流速が大きくなった空気は、環状部材48の内周に向けられた開口(即ち、噴出口89)から光学素子28,32の外表面へと噴射される。
[実施形態の効果]
 以上説明したように、計測装置1では、撮像ユニット20,50のそれぞれは、第一規定波長光、及び第二規定波長光のそれぞれを、互いに異なる領域に照射する。
 このことから、計測装置1によれば、従来の技術とは異なり、測定対象物100における複数の領域を撮像する際に一つの撮像ユニットを順次移動させる必要がなくなり、測定対象物100の広範囲に渡る画像を同一タイミングに撮像することができる。
 しかも、計測装置1においては、撮像ユニット20,50のそれぞれが照射する光の波長は、互いに異なる(非重複な)波長である。このため、第一撮像ユニット20からの第一規定波長光と第二撮像ユニット50からの第二規定波長光との間で干渉が生じることを低減できる。
 したがって、計測装置1においては、第一撮像ユニット20からの第一規定波長光による照射パターンの一部分と、第二撮像ユニット50からの第二規定波長光による照射パターンの一部分とが重複するように、第一規定波長光及び第二規定波長光を照射できる。しかも、計測装置1では、撮像ユニット20,50のそれぞれは、その撮像ユニット20,50自身が照射した光の波長だけを通過する規定波長透過フィルタ34,64を介して、撮像領域を撮像する。
 よって、その撮像された画像には、各撮像ユニット20,50からの光の照射パターンだけが写り込む。
 この結果、計測装置1によれば、測定対象物100の計測精度が低下することを抑制できる。
 以上説明したように、計測装置1によれば、測定対象物100の三次元表面形状を精度良く認識することができ、しかも、その測定対象物100の三次元表面形状を認識するまでに要する時間を可能な限り短縮できる。
 さらに、計測装置1では、撮像ユニット20,50それぞれからの光による照射パターンは、測定対象物100において一部分が重なるようになされている。このため、互いに重なる一部分における特定のポイント(例えば、特定の4箇所の点)を基準として、撮像ユニット20,50のそれぞれで撮像した画像に基づく表面形状を一つの平面上に容易に統合できる。
 この結果、計測装置1によれば、複数の画像から認識した各照射領域における表面形状を、一つの空間における表面形状として容易に認識できる。
 以上のことから、例えば、製品を大量に生産する生産ラインにおける検査工程に計測装置1を適用すれば、大量の製品の表面形状を高速に検査することが可能となる。
 また、計測装置1によれば、一つの撮像ユニットでは死角が生じる複雑な表面形状を有した測定対象物100であっても、他の撮像ユニットによって、その死角をカバーできる。このため、計測装置1によれば、複雑な表面形状を有した測定対象物であっても、その測定対象物の表面形状を精度良く認識することができる。
 ところで、計測装置1は、冷却防塵機構74を備えている。
 この冷却防塵機構74によれば、筐体42,43内へと流入した空気によって、照射装置22,52及び撮像装置30,60を冷却することができる。
 そして、照射装置22,52及び撮像装置30,60を冷却することで、照射装置22,52及び撮像装置30,60からの発熱に起因した、筐体42,43の形状変化を抑制できる。この結果、計測装置1によれば、測定対象物100の表面形状の計測精度が低下することをより確実に抑制できる。
 さらに、冷却防塵機構74では、筐体42,43内に取り込んだ空気を、環状部材48,49の内周に向けられた開口(即ち、噴出口89)から第一光学素子28,58、及び第二光学素子32,62の外表面へと噴射している。
 このため、冷却防塵機構74によれば、第一光学素子28,58、及び第二光学素子32,62の外表面に粉塵が付着することを抑制できる。
 計測装置1によれば、第一光学素子28,58、及び第二光学素子32,62の外表面に粉塵が付着することを抑制できるため、照射パターンを予め規定されたパターンに維持することや、撮像した画像にノイズが写り込むことを抑制できる。
 この結果、計測装置1によれば、測定対象物100の表面形状の計測精度が低下することをより確実に抑制できる。
[その他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
 例えば、上記実施形態では、第一規定波長を赤色領域の波長とし、第二規定波長を青色領域の波長としていたが、第一規定波長及び第二規定波長のそれぞれは、これに限るものではない。すなわち、第一規定波長及び第二規定波長は、帯域が非重複であればどのような波長であっても良く、その帯域は、可視光に限らず、赤外線の波長領域、紫外線の波長領域であっても良い。特に、紫外線領域の波長であれば、家畜は感知できないため、家畜を測定対象物100とすることができ、家畜の肉付きの検査などに計測装置1を用いることができる。
 また、上記実施形態では、第一撮像ユニット20及び第二撮像ユニット50が照射する光の照射パターンを格子状(即ち、縞フリンジ状)としていたが、本発明における照射パターンは、これに限るものではなく、例えば、ドット(水玉模様)であっても良い。
 さらには、上記実施形態では、測定対象物100の表面形状を認識する形状認識処理の一例として、モアレ法を挙げたが、本発明における形状認識処理は、モアレ法に限るものではない。すなわち、本発明における形状認識処理として、模様を投影して形状を計測する、いわゆるパターン投影法であれば、どのような手法でも良く、例えば、シフトフリンジ法及び/またはモアレトポグラフィであっても良い。
 さらに、上記実施形態の冷却防塵機構74では、筐体42,43内に外気を直接取り込んでいたが、筐体42,43に取り込む外気は、一度冷却されたものであっても良い。この場合、外気の冷却は、周知のエアコンディショナーなどによって冷却することで実現すれば良い。
 また、上記実施形態の計測装置1においては、第一撮像ユニット20と、第二撮像ユニット50との2つの撮像ユニットを備えていたが、本発明の計測装置が備える撮像ユニットは、3つ以上であっても良い。
 この場合、計測装置1が備える各撮像ユニットは、一つの撮像ユニットからの光による照射パターンの一部分が、少なくとも一つの他の撮像ユニットからの光による照射パターンの一部分に重複するように配置されている必要がある。
 そして、照射パターンが重なり合う光を照射する撮像ユニット同士は、その撮像ユニット同士が照射する光の波長の帯域が非重複である必要がある。
 さらに、各撮像ユニットは、各撮像ユニットからの光の照射パターンが照射された測定対象物100の領域を、当該撮像ユニットからの光の波長を通過し当該波長以外の波長を遮断するフィルタを介して撮像するように構成されている必要がある。
 このような計測装置1によれば、測定対象物の表面形状をより広範囲に渡って短い時間で計測できる。
 なお、上記実施形態の構成の一部を、課題を解決できる限りにおいて省略した態様も本発明の実施形態である。また、上記実施形態と変形例とを適宜組み合わせて構成される態様も本発明の実施形態である。また、特許請求の範囲に記載した文言によって特定される発明の本質を逸脱しない限度において考え得るあらゆる態様も本発明の実施形態である。

Claims (3)

  1.  計測装置であって、
     規定された規定波長の光である規定波長光を、設定された照射パターンで照射する少なくとも2以上の照射手段と、
     前記照射手段の一つと対をなし、かつ、対応する前記照射手段との位置関係が予め規定された規定位置関係となるように配置され、対応する前記照射手段にて照射された規定波長光による照射パターンが投影された測定対象物の照射領域を撮像する少なくとも2以上の撮像手段と、
     前記撮像手段それぞれにて撮像した画像、及び前記撮像手段それぞれと対をなす前記照射手段との規定位置関係に基づいて、前記測定対象物の照射領域それぞれにおける表面形状を計測する計測手段と
     を備え、
     前記照射手段のそれぞれは、
     互いに異なる波長として規定された規定波長の光を規定波長光として、前記測定対象物において、前記照射パターンの一部分が、他の前記照射手段からの照射パターンの一部分に重なるように照射し、
     前記撮像手段のそれぞれは、
     対をなす前記照射手段にて照射された規定波長光による照射パターンが投影された測定対象物の照射領域を、その対をなす照射手段における規定波長の光を通過し、かつ、当該規定波長以外の波長の光を遮断する規定波長透過フィルタを介して撮像する
     計測装置。
  2.  対をなす前記照射手段と前記撮像手段とのそれぞれを、前記規定位置関係に保持して収納する筐体と、
     前記筐体内に取り込んだ気体により、当該筐体内に収納されている前記照射手段と前記撮像手段とを冷却する冷却手段と
     を備える、請求項1に記載の計測装置。
  3.  前記筐体それぞれに収納されている前記照射手段からの光の経路上であり、かつ、前記筐体の外表面を形成するように前記筐体に設けられた第一光学素子と、
     前記筐体それぞれに収納されている前記撮像手段への前記筐体の外部からの光の経路上であり、かつ、前記筐体の外表面を形成するように前記筐体に設けられた第二光学素子と、
     前記冷却手段にて、前記筐体に収納されている前記照射手段と前記撮像手段とを冷却した気体を、前記第一光学素子及び前記第二光学素子の外表面に向けて噴出する噴出手段と
     を備える、請求項2に記載の計測装置。
PCT/JP2014/080077 2013-12-16 2014-11-13 計測装置 WO2015093194A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157033018A KR20160098028A (ko) 2013-12-16 2014-11-13 계측 장치
US14/892,465 US20160091305A1 (en) 2013-12-16 2014-11-13 Measurement Device
EP14871691.3A EP3086086A4 (en) 2013-12-16 2014-11-13 Measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013259122A JP2015114309A (ja) 2013-12-16 2013-12-16 計測装置
JP2013-259122 2013-12-16

Publications (2)

Publication Number Publication Date
WO2015093194A1 true WO2015093194A1 (ja) 2015-06-25
WO2015093194A9 WO2015093194A9 (ja) 2016-04-14

Family

ID=53402550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080077 WO2015093194A1 (ja) 2013-12-16 2014-11-13 計測装置

Country Status (5)

Country Link
US (1) US20160091305A1 (ja)
EP (1) EP3086086A4 (ja)
JP (1) JP2015114309A (ja)
KR (1) KR20160098028A (ja)
WO (1) WO2015093194A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101846949B1 (ko) * 2016-05-20 2018-04-09 주식회사 미르기술 다중 광학계를 이용한 복합 검사장치
JP2019192949A (ja) * 2016-09-01 2019-10-31 パナソニックIpマネジメント株式会社 画像処理システム、及び、画像処理方法
JP6408654B1 (ja) 2017-06-16 2018-10-17 株式会社オプトン 検査装置
KR102400937B1 (ko) * 2017-09-21 2022-05-24 (주)테크윙 형상 측정장치
US11040452B2 (en) * 2018-05-29 2021-06-22 Abb Schweiz Ag Depth sensing robotic hand-eye camera using structured light
DE102018216123A1 (de) * 2018-09-21 2020-03-26 Robert Bosch Gmbh Sensoreinheit mit Reinigungsfunktion
DE102019208474A1 (de) * 2019-06-11 2020-12-17 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren und System zum optischen Vermessen eines Objekts mit spiegelnder und/oder teilspiegelnder Oberfläche sowie entsprechende Messanordnung
JP7479626B2 (ja) 2020-04-27 2024-05-09 旭サナック株式会社 センサ、及びこのセンサを備える塗装装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094296A (ja) * 1983-10-31 1985-05-27 清水建設株式会社 センサ−の信号発受面防塵装置
JPH11211434A (ja) * 1998-01-29 1999-08-06 Fuji Photo Optical Co Ltd 3次元イメージスキャナ
JP2000314619A (ja) * 1999-04-28 2000-11-14 Hitachi Constr Mach Co Ltd 光学式偏角測定装置
JP3519698B2 (ja) 2001-04-20 2004-04-19 照明 與語 3次元形状測定方法
JP2004317495A (ja) * 2003-03-31 2004-11-11 Mitsutoyo Corp 非接触三次元形状測定方法及び装置
WO2004111571A1 (en) * 2003-06-12 2004-12-23 UNIVERZA V LJUBLJANI, Fakulteta za strojnistvo Apparatus for determining shape and size of three-dimensional objects
JP2005114642A (ja) * 2003-10-10 2005-04-28 Mitsuru Kawaguchi 立体物形成システムおよび方法
JP3781438B2 (ja) 1993-02-24 2006-05-31 與語 照明 3次元表面形状測定装置
JP2006214785A (ja) * 2005-02-02 2006-08-17 Nec Engineering Ltd 三次元形状計測システム及び計測方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114072B2 (ja) * 1985-09-10 1995-12-06 オリンパス光学工業株式会社 光学式情報読取装置
US6636255B1 (en) * 1998-01-29 2003-10-21 Fuji Photo Optical Co., Ltd. Three-dimensional image scanner and heat-insulating device for optical apparatus
CA2301822A1 (fr) * 2000-03-24 2001-09-24 9071 9410 Quebec Inc. Projection simultanee de plusieurs patrons avec acquisition simultanee pour l'inspection d'objets en trois dimensions
US7286246B2 (en) * 2003-03-31 2007-10-23 Mitutoyo Corporation Method and apparatus for non-contact three-dimensional surface measurement
EP2096403B1 (en) * 2006-04-27 2011-01-26 3D Scanners Ltd Optical scanning probe with a variable aperture at the light projector
JP2011141395A (ja) * 2010-01-06 2011-07-21 Sanyo Electric Co Ltd 投写型映像表示装置
DE102010032725B4 (de) * 2010-07-26 2012-04-26 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9107613B2 (en) * 2011-09-06 2015-08-18 Provel, Inc. Handheld scanning device
US9707896B2 (en) * 2012-10-15 2017-07-18 Magna Electronics Inc. Vehicle camera lens dirt protection via air flow

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094296A (ja) * 1983-10-31 1985-05-27 清水建設株式会社 センサ−の信号発受面防塵装置
JP3781438B2 (ja) 1993-02-24 2006-05-31 與語 照明 3次元表面形状測定装置
JPH11211434A (ja) * 1998-01-29 1999-08-06 Fuji Photo Optical Co Ltd 3次元イメージスキャナ
JP2000314619A (ja) * 1999-04-28 2000-11-14 Hitachi Constr Mach Co Ltd 光学式偏角測定装置
JP3519698B2 (ja) 2001-04-20 2004-04-19 照明 與語 3次元形状測定方法
JP2004317495A (ja) * 2003-03-31 2004-11-11 Mitsutoyo Corp 非接触三次元形状測定方法及び装置
WO2004111571A1 (en) * 2003-06-12 2004-12-23 UNIVERZA V LJUBLJANI, Fakulteta za strojnistvo Apparatus for determining shape and size of three-dimensional objects
JP2005114642A (ja) * 2003-10-10 2005-04-28 Mitsuru Kawaguchi 立体物形成システムおよび方法
JP2006214785A (ja) * 2005-02-02 2006-08-17 Nec Engineering Ltd 三次元形状計測システム及び計測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086086A4

Also Published As

Publication number Publication date
KR20160098028A (ko) 2016-08-18
JP2015114309A (ja) 2015-06-22
EP3086086A1 (en) 2016-10-26
WO2015093194A9 (ja) 2016-04-14
EP3086086A4 (en) 2017-05-17
US20160091305A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
WO2015093194A1 (ja) 計測装置
EP3182391B1 (en) Aspirated smoke detector with improved optical chamber
US9908158B2 (en) Air flow mechanism for image capture and vision systems
US10782126B2 (en) Three-dimensional scanning method containing multiple lasers with different wavelengths and scanner
WO2013144952A4 (en) Three dimensional camera and projector for same
JP6072363B2 (ja) カラーコーディングによる三角測量におけるダイナミクスの増加
CN1735789A (zh) 测距设备
JP2015182159A (ja) 工作機械の工具変位測定装置
JP2017531258A (ja) カメラ画像で投影構造パターンの構造要素を特定する方法および装置
JP2013124985A (ja) 複眼式撮像装置および測距装置
US10794687B2 (en) Shape measurement system and shape measurement method
US20210110530A1 (en) Inspection system and inspection method
JP5687748B2 (ja) 検査装置
JP2015511405A5 (ja)
US9863803B2 (en) Optical processing head having a plurality of optical fibers arranged to surround the light guide and 3D shaping apparatus
JP2008180630A (ja) 流体計測システム、流体計測方法およびコンピュータプログラム
JP7230358B2 (ja) 回折光学素子、光照射装置、光照射システム、投影パターンの補正方法
TWI634309B (zh) 光學檢測設備
US9733067B2 (en) Apparatus for detecting heights of defects on optical glass
JP2005172686A (ja) 両面加工位置計測装置及びその方法
WO2016157349A1 (ja) 形状計測方法およびその装置
US20190270162A1 (en) Machining room
US11001461B2 (en) Component mounting apparatus
KR101879066B1 (ko) 소재 형상 측정장치
CA3073147A1 (en) A device for detecting the profile of a tire tread, and related detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033018

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14892465

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014871691

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871691

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE