WO2015092462A1 - Procédé et système de commande d'un moteur électrique - Google Patents

Procédé et système de commande d'un moteur électrique Download PDF

Info

Publication number
WO2015092462A1
WO2015092462A1 PCT/IB2013/002953 IB2013002953W WO2015092462A1 WO 2015092462 A1 WO2015092462 A1 WO 2015092462A1 IB 2013002953 W IB2013002953 W IB 2013002953W WO 2015092462 A1 WO2015092462 A1 WO 2015092462A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
angular position
electric motor
speed error
sensor
Prior art date
Application number
PCT/IB2013/002953
Other languages
English (en)
Inventor
Mathieu Hubert
Yi Yuan
François AUGER
Original Assignee
Aktiebolaget Skf
Universite De Nantes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aktiebolaget Skf, Universite De Nantes filed Critical Aktiebolaget Skf
Priority to DE112013007712.4T priority Critical patent/DE112013007712T5/de
Priority to PCT/IB2013/002953 priority patent/WO2015092462A1/fr
Publication of WO2015092462A1 publication Critical patent/WO2015092462A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the invention relates to a method for controlling an electric motor with an electric motor controller, and to a system for controlling an electric motor with which such a method can be implemented.
  • the rotation speed of a motor has generally periodic inaccuracies, also named “torque ripple”, which come notably from magnetic interactions between the rotor and the stator of the electric motor. These magnetic interactions are named “cogging torque”.
  • WO-A-03/026105 teaches delivering harmonic control currents, generated on the basis of the magnetic characteristics of the motor, to the controller of the electric motor. This technique needs the knowledge of the torque ripple harmonic profile.
  • None of the known torque ripple mitigation techniques is really efficient at low rotation speed, for instance inferior to 1000 rotations/minute (rpm), and at a high torque, for instance superior to 10% of the maximum torque that the motor can deliver.
  • a repetitive control technique which consists in using, thanks to a sensor and during a turn of the motor, a rotation speed error between the rotation speed detected by the sensor and a rotation speed request, as it input, and then to deliver, at the next turn of the motor, a corrective current computed through the controller algorithm.
  • the detected rotation speed error may change while the stored rotation speed error from the previous predetermined time interval remains constant. This may eventually lead to inaccurate corrections and to a low accuracy of the control of the electric motor.
  • the aim of the invention is to provide a new method and a new system for controlling an electric motor, which permit to exert a repetitive control with a better accuracy than the repetitive control methods and systems of the prior art, even if the motor does not rotate at a constant speed.
  • the repetitive control system according to the invention is able to offer a better accuracy than systems of the prior art. More importantly, it extends the rejection capability of the repetitive controller from constant speeds to variable speeds.
  • the invention concerns a method for controlling a permanent magnets electric motor with an electric motor controller, the method comprising steps consisting in:
  • variations of the rotation speed of the motor do not affect the functionality of the repetitive control, because the rotation speed error resulted from the torque ripple (composed, for example, by the cogging torque, the harmonic torque, and other sources of disturbance) is measured between the sensed angular position and the angular position request instead of being measured between the sensed rotation speed and the rotation speed request.
  • the rotation speed error resulted from the torque ripple is measured between the sensed angular position and the angular position request instead of being measured between the sensed rotation speed and the rotation speed request.
  • such a method may incorporate one or several of the following features:
  • the rotation speed error detections are spaced by a predetermined angular position interval.
  • the predetermined angular position interval depends on the acquisition device capabilities and on the maximum speed of the application.
  • the predetermined angular position interval is comprised between 0,036° and
  • the invention also concerns a system for controlling an electric motor comprising a sensor for sensing the rotation speed of the motor, means for calculating a rotation speed error between a rotation speed request and the rotation speed sensed by the sensor, a repetitive controller adapted to deliver a control current deduced from the control algorithm.
  • This system is characterized in that the sensor also senses the angular position of the rotor of the motor, and wherein the repetitive controller is adapted to, on the basis of the angular position delivered by the sensor, calculate the rotation speed error at predetermined angular position intervals of the rotor of the electric motor.
  • such a system may incorporate one or several of the following features:
  • the repetitive controller comprises at least two memories to which the angular position of the rotor is delivered.
  • An output line of the sensor is connected to the memories of the repetitive controller.
  • the sensor is an analogic sensor.
  • - figure 1 is an electric scheme of a system according to the invention.
  • figure 2, 3 and 4 are three time versus rotation speed charts respectively obtained with two control methods of the prior art and with the method according to the invention.
  • Figure 1 shows a system S for controlling a permanent magnet electric motor M.
  • a non-shown load is connected to the output shaft of motor M.
  • Control system S is adapted to deliver an electric control current C, via an inverter 4.
  • Control system S elaborates control current C on the basis of a rotation speed request R.
  • System S comprises a position sensor 2 which senses the angular position Ps of the rotor of electric motor M.
  • a rotation speed error e is calculated between rotation speed request R and a sensed rotation speed Rs, which is calculated on the basis of the angular position Ps by an integrator 6.
  • Control system S includes a proportional integral speed controller 10 which delivers a proportional integral current Cp.
  • Control system S also includes a repetitive controller 8 which delivers a repetitive control current Crc. The sum of Cp and Crc is made in a summation calculator 11.
  • Control current C is also delivered, via an electric line L1 , to a summation calculator 13 which calculates the difference d between, on a first hand, the sum of Cp and Crc and, on the other hand, control current C.
  • This difference d is delivered to a proportional integral current controller 12 of control system S, which delivers a control voltage V to a pulse width modulation module 14.
  • the output V of pulse width modulation module 14 is delivered to inverter 4.
  • Repetitive controller 8 elaborates repetitive control current Crc on the basis of rotation speed error e.
  • a control system comprising such a repetitive controller is known as a "time-based repetitive control system".
  • the repetitive control technique which is capable of automatically improving its performance by learning from its previous tasks, tracks a repetitive reference or rejects a periodical disturbance. Since the torque ripples of the electric motor are periodic functions of the angular position, the torque ripple reduction can be considered as a periodical disturbance rejection.
  • the rotation speed error calculations are spaced by a predetermined time interval T.
  • a new repetitive control current Crc is calculated on the basis of the rotation speed error e and repetitive control current Crc calculated at the previous error calculation.
  • the repetitive control current Crc is given by the following transfer function:
  • T1 and T2 are two transfer functions
  • L "1 is the inverse Laplace transform
  • T is the time interval
  • is the leading time component, which is a constant deduced during the set-up of the system.
  • Leading time component ⁇ is capable to change the behaviour of the system.
  • repetitive controller 8 is an angle-based repetitive controller, because the rotation speed error e is calculated at predetermined angular position intervals.
  • Repetitive controller 8 comprises a first calculation block B1 and a second calculation block B2, each of calculation blocks B1 and B2 being connected to a memory M1 and M2.
  • the input of calculation block B1 is rotation speed error e
  • the input of calculation block B2 is repetitive control current Crc.
  • Repetitive controller 8 makes an addition between the output of calculation block B1 and the output of calculation block B2, to obtain repetitive control current Crc.
  • repetitive control current is calculated on the basis of the angular speed error e and repetitive control current Crc calculated at the previous angular speed error calculation.
  • Repetitive control current Crc at a given angular position Ps is given by the following transfer function:
  • T1 and T2 are transfer functions associated with calculation blocks B1 and B2
  • L "1 is the inverse Laplace transform
  • A is the angular position interval
  • is the leading angle component, which can also provide a controlling function. This angle is a constant set-up for each application.
  • An output line L2 connects sensor 2 to memories M1 and M2 so that angular position Ps is delivered to memories M1 and M2.
  • the rotation speed error e is calculated at predetermined angular position intervals.
  • the calculation of repetitive control current Crc therefore takes into account angular position Ps of the rotor of motor M. Therefore, in case the rotation speed of motor M changes, the angular position interval, at which rotation speed error calculations take place, remains the same, while the angular position variation during a determined time interval changes when the rotation speed changes.
  • the steps of sensing and delivering angular position Ps to repetitive controller 8 and to calculate rotation speed error e at predetermined angular position intervals A are implemented as add-on method of an existing control method, here the repetitive control method.
  • the rotation speed error e is therefore not artificially disturbed by the variations of the rotation speed of motor M. This permits to more efficiently reduce the torque ripple than the control methods of the prior art and to improve the rotation speed accuracy of electric motor M.
  • the advantages of the angular based repetitive control are more clearly depicted by the time versus rotation speed charts of figures 2, 3 and 4.
  • the chart of figure 2 is obtained with a conventional proportional-integral control system, the chart of figure 3 with a time-based repetitive control system, and the chart of figure 4 with an angle-based repetitive control system.
  • the accuracy performances of the time-based repetitive control system are not consistent when the rotation speed changes.
  • the torque ripple is effectively reduced at 60 rpm, but at 50 rpm and 70 rpm, the torque ripple is not reduced more efficiently than with the proportional-integral control system.
  • the rotation speed error e calculations are preferably spaced by a predetermined angular position interval A, which depends on the acquisition device capabilities and on the maximum rotation speed of the application.
  • the angular position interval A at which the rotation speed errors are calculated is for example comprised between 0.036° and 0.36°.
  • Sensor 2 is an analogic sensor, in order to allow the detection of rotation speed error e at determined angular position intervals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

L'invention concerne un procédé pour commander un moteur électrique (M) à aimants permanents avec un dispositif de commande (S) de moteur électrique, comprenant les étapes consistant à : a) détecter la vitesse de rotation (Rs) du rotor du moteur électrique (M), b) mesurer une erreur de vitesse de rotation (e) entre une demande de vitesse de rotation (R) et la vitesse de rotation (Rs) détectée à l'étape a) c) fournir l'erreur de vitesse de rotation (e) à un dispositif de commande répétitif (8) adapté pour élaborer un courant de correction (Crc) sur base de l'inverse de l'erreur de vitesse de rotation (e). Ce procédé comprend en outre les étapes consistant à : d) détecter la position angulaire (Ps) du rotor du moteur électrique (M), e) fournir la position angulaire (Ps) mesurée à l'étape d) au dispositif de commande répétitif (8) f) détecter l'erreur de vitesse de rotation (e) à des intervalles de position angulaire prédéfinis.
PCT/IB2013/002953 2013-12-20 2013-12-20 Procédé et système de commande d'un moteur électrique WO2015092462A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013007712.4T DE112013007712T5 (de) 2013-12-20 2013-12-20 Verfahren und System zum Steuern eines Elektromotors
PCT/IB2013/002953 WO2015092462A1 (fr) 2013-12-20 2013-12-20 Procédé et système de commande d'un moteur électrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2013/002953 WO2015092462A1 (fr) 2013-12-20 2013-12-20 Procédé et système de commande d'un moteur électrique

Publications (1)

Publication Number Publication Date
WO2015092462A1 true WO2015092462A1 (fr) 2015-06-25

Family

ID=50483392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/002953 WO2015092462A1 (fr) 2013-12-20 2013-12-20 Procédé et système de commande d'un moteur électrique

Country Status (2)

Country Link
DE (1) DE112013007712T5 (fr)
WO (1) WO2015092462A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159062A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种基于插入式快速重复控制器的复合控制方法及系统
CN105159063A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种分数相位超前补偿重复控制器及控制方法
CN106873655A (zh) * 2017-04-13 2017-06-20 北京航空航天大学 一种基于有限维重复控制的磁轴承系统多谐波振动抑制方法
EP3208669A1 (fr) * 2016-02-19 2017-08-23 Siemens Aktiengesellschaft Compensation d'erreurs de position asservie au regime

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0237317A2 (fr) * 1986-03-11 1987-09-16 Matsushita Electric Industrial Co., Ltd. Système de réglage avec une robustesse améliorée contre les perturbations
EP0805383A1 (fr) * 1996-04-30 1997-11-05 Samsung Electronics Co., Ltd. Dispositif de regulation de vitesse d'un moteur rotatif
EP0851571A2 (fr) * 1996-12-25 1998-07-01 Sharp Kabushiki Kaisha Dispositif de commande de la vitesse d'un moteur
WO2003026105A1 (fr) 2001-09-14 2003-03-27 Delphi Technologies, Inc. Procede et appareil de reduction d'ondulation de couple dans des moteurs a aimant permanent, sans balai, sinusoidalement excites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0237317A2 (fr) * 1986-03-11 1987-09-16 Matsushita Electric Industrial Co., Ltd. Système de réglage avec une robustesse améliorée contre les perturbations
EP0805383A1 (fr) * 1996-04-30 1997-11-05 Samsung Electronics Co., Ltd. Dispositif de regulation de vitesse d'un moteur rotatif
EP0851571A2 (fr) * 1996-12-25 1998-07-01 Sharp Kabushiki Kaisha Dispositif de commande de la vitesse d'un moteur
WO2003026105A1 (fr) 2001-09-14 2003-03-27 Delphi Technologies, Inc. Procede et appareil de reduction d'ondulation de couple dans des moteurs a aimant permanent, sans balai, sinusoidalement excites

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159062A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种基于插入式快速重复控制器的复合控制方法及系统
CN105159063A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种分数相位超前补偿重复控制器及控制方法
EP3208669A1 (fr) * 2016-02-19 2017-08-23 Siemens Aktiengesellschaft Compensation d'erreurs de position asservie au regime
WO2017140455A1 (fr) * 2016-02-19 2017-08-24 Siemens Aktiengesellschaft Compensation d'erreurs de position en fonction de la vitesse de rotation
CN106873655A (zh) * 2017-04-13 2017-06-20 北京航空航天大学 一种基于有限维重复控制的磁轴承系统多谐波振动抑制方法

Also Published As

Publication number Publication date
DE112013007712T5 (de) 2016-09-15

Similar Documents

Publication Publication Date Title
US8593093B2 (en) Electric motor control apparatus
CN106374791B (zh) 增量式编码器伺服电机的调零方法及装置
CN105322859A (zh) 电动机控制装置、电动机的磁通估计装置及磁通估计方法
KR102588927B1 (ko) 모터 제어방법
JP6361450B2 (ja) 誘導電動機の制御装置
EP2706659A1 (fr) Système pour corriger une position estimée d'un rotor d'une machine électrique
CN110658453B (zh) 异步电机工作异常检测方法及装置
WO2015092462A1 (fr) Procédé et système de commande d'un moteur électrique
CN112889213B (zh) 电机控制方法、电机及可移动平台
CN110661454A (zh) 双电机同步控制方法、装置、存储介质及车辆
EP2493067B1 (fr) Procédé et appareil pour estimer l'angle de rotor d'un moteur à réluctance synchrone
CN105281616A (zh) 基于霍尔传感器的角度校正方法、装置及永磁同步电机
CN104052360A (zh) 马达控制装置
CN114389504A (zh) 具有开路状况的多相同步马达的最佳扭矩控制
JP5409034B2 (ja) 回転電機制御装置
JP6542304B2 (ja) 回転電機の制御装置及び制御方法
JP6151107B2 (ja) 故障検知装置
US10686392B2 (en) Driving permanent magnet motor based on neutral point voltage
US20180128658A1 (en) Error correction in a vector-based position sensing system
JP2013138548A (ja) 誘導電動機の回転速度制御装置および回転速度制御方法
JP6241331B2 (ja) 電動機の制御装置
JP6032047B2 (ja) モータ制御装置
US20040060348A1 (en) Method for detecting the magnetic flux the rotor position and/or the rotational speed
EP3244528B1 (fr) Dispositif de conversion de puissance et procédé de commande de dispositif de conversion de puissance
CN110492818B (zh) 电机的零位校正方法和校正装置、电机控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013007712

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846249

Country of ref document: EP

Kind code of ref document: A1