WO2015089986A1 - Oled显示器件及其制备方法、oled显示装置 - Google Patents

Oled显示器件及其制备方法、oled显示装置 Download PDF

Info

Publication number
WO2015089986A1
WO2015089986A1 PCT/CN2014/077886 CN2014077886W WO2015089986A1 WO 2015089986 A1 WO2015089986 A1 WO 2015089986A1 CN 2014077886 W CN2014077886 W CN 2014077886W WO 2015089986 A1 WO2015089986 A1 WO 2015089986A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxygen
transport layer
oled display
injection layer
Prior art date
Application number
PCT/CN2014/077886
Other languages
English (en)
French (fr)
Inventor
陈长堤
陆相晚
骆意勇
杨涛
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/422,091 priority Critical patent/US9349986B2/en
Publication of WO2015089986A1 publication Critical patent/WO2015089986A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • OLED display device and preparation method thereof, OLED display device
  • the present invention relates to the field of display technology, and in particular to an OLED display device and a method of fabricating the same, and an OLED display device including the display device. Background technique
  • OLEDs Organic electroluminescent devices
  • TFT ⁇ LCDs Organic electroluminescent devices
  • OLEDs are display devices that are extremely sensitive to moisture and oxygen, especially water vapor. Specifically, if water and oxygen permeate into the environment in which the OLED is located, it is easy to form black spots in the light-emitting area, and the black spots may expand with time.
  • the current main solution is to package OLEDs, including cover technology such as metal cover and glass cover, and thin film packaging technology represented by Bartex thin film encapsulation developed by Vitex Systems.
  • cover technology such as metal cover and glass cover
  • thin film packaging technology represented by Bartex thin film encapsulation developed by Vitex Systems.
  • these prior art methods either have a surface that is not easily flattened (such as a metal cover), are prone to micro-cracks (such as a glass cover), or are costly and complicated in manufacturing processes (such as Barix film packaging technology). Therefore, there is still a need to explore new structures and technologies in the OLED's resistance to water and oxygen. Summary of the invention
  • the present invention provides an OLED display device comprising: a substrate substrate, an anode layer, a hole injection layer, a hole transport layer, a light emitting material layer, an electron transport layer, an electron injection layer, a cathode layer, and a package
  • the hole injection layer, the hole transport layer, the electron transport layer, and/or the electron injection layer are doped with a water-absorbing organic substance and an oxygen-absorbing organic substance.
  • the sum of the mass of the water-absorbing organic substance and the oxygen-absorbing organic substance doped in each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer does not exceed the layer.
  • the water-absorbing organic substance is an aluminum-based composite
  • the oxygen-absorbing organic substance is ascorbic acid and a derivative thereof.
  • the hole injection layer is formed of F4TCNQ, TCNQ, PPDN, CuPC, or TiOPC.
  • the hole transport layer is formed of F4TCNQ, TCNQ, PPDN, CuPC, TiOPC, or TCTA.
  • the electron transport layer Ei l BCP, Bphen, TPBi, Alq3, Liq, Nbphen, or TAZ is formed.
  • the electron injection layer is formed of LiF, LiBq4, or Alq3: Li 3 N is formed.
  • the present invention also provides an OLED display device comprising any of the above-described OLED display devices and driving circuits.
  • the present invention further provides a method for fabricating an OLED display device, comprising the steps of: providing a substrate substrate, a step of forming an anode layer, a step of forming a hole injection layer, and forming a hole transport layer. a step of forming a layer of the luminescent material, a step of forming an electron transport layer, a step of forming an electron injection layer, a step of forming a cathode layer, and a step of forming an encapsulation layer, wherein the hole injection layer is further included in the hole injection layer, Doping the water-absorbing organic matter and sucking in the hole transport layer, the electron transport layer, and/or the electron injection layer or in the material for forming the hole injection layer, the hole transport layer, the electron transport layer, and/or the electron injection layer A step of oxygen organic matter.
  • the sum of the mass of the water-absorbing organic substance and the oxygen-absorbing organic substance doped in each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer does not exceed the layer.
  • the method for fabricating the same, and the OLED display device provided by the above technical solutions a small amount of water-absorbing organic matter and oxygen-absorbing organic matter are cumbersome in the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer.
  • the water-absorbing organic substance preferentially reacts with water vapor to consume water vapor in the device; and the oxygen-absorbing organic substance preferentially reacts with oxygen to consume intruding trace oxygen due to its strong reducing property and easy to be oxidized, thereby making the environment
  • the intruded trace water and oxygen do not enter the luminescent material layer, which avoids problems such as black spots in the illuminating region, thereby improving display quality and display life.
  • it also protects other organic functional layers, effectively avoiding the erosion of water and oxygen. Thereby effectively improving the life of the OLED display device.
  • FIG. 1 is a schematic structural view of an OLED display device according to an embodiment of the present invention.
  • 1 substrate; 2: anode layer; 3: hole injection layer; 4: hole transport layer; 5: luminescent material layer; 6: electron transport layer; 7: electron injection layer; 8: cathode layer; 9: Encapsulation layer.
  • the OLED display device provided by the present invention is a white-emitting OLED display device of a top emission type structure, and its structural schematic diagram is as shown in FIG. 1 , which mainly includes a substrate substrate 1 , which is sequentially formed on a substrate substrate (for example, a glass substrate) 1 .
  • the electron injection layer 7, the electron transport layer 6, the hole injection layer 3, and the hole transport layer 4 are doped with a trace amount of water-absorbing organic matter and oxygen-absorbing organic matter, and the doping quality of the water-absorbing organic substance and the oxygen-absorbing organic substance.
  • the sum does not exceed one thousandth of the total mass of the layer in which it is located.
  • the above-described top emission type white light OLED display device utilizes a small amount of water-absorbing organic matter and oxygen-absorbing organic matter in the electron injection layer 7, the electron transport layer 6, the hole injection layer 3, and the hole transport layer 4.
  • the water-absorbing organic substance and the oxygen-absorbing organic substance preferentially react with a trace amount of water and oxygen permeating from the environment, respectively, thereby preventing the infiltrated trace water and oxygen from entering the light-emitting layer and causing black spots in the light-emitting area, thereby improving display quality. And service life.
  • the lifetime of the OLED can be avoided by the erosion of water and oxygen on other organic functional layers. This embodiment achieves an efficient barrier to the intrusion of traces of water and oxygen from the environment without increasing the cost, thereby increasing the lifetime of the OLED.
  • the material of the base substrate is preferably glass, and may be a transparent material such as plastic.
  • a material having a high work function may be used for the anode layer on the base substrate, preferably transparent indium tin oxide ( ⁇ ?), or a material such as transparent carbon nanotube (CNT) may be used.
  • ⁇ Vacuum magnetron sputtering can be used The method is deposited on a glass substrate.
  • the hole injection layer may be formed of copper phthalocyanine (CuPc) having a good hole injecting ability, or may be composed of 2,3,5,6-tetrafluoro-7,7',8. , 8'-tetracyanodimethyl p-benzoquinone (F4TCNQ), tetracyano p-dimethylphenyl hydrazine (TCNQ), phenanthroline-2,3-dicarbonitrile (PPDN) or titanyl phthalocyanine ( TiOPC) is formed.
  • CuPc copper phthalocyanine
  • F4TCNQ tetracyano p-dimethylphenyl hydrazine
  • PPDN phenanthroline-2,3-dicarbonitrile
  • TiOPC titanyl phthalocyanine
  • the precursor material used for the hole injection layer such as a copper phthalocyanine precursor, is doped with a water absorbing organic substance prior to thermal evaporation.
  • the water-absorbing organic substance may be an aluminum-based composite.
  • the doping mass fraction of the water-absorbing organic matter does not exceed one thousandth.
  • the doping mass fraction of the water-absorbing organic matter may be five ten thousandths.
  • the precursor material used for the hole injection layer such as a copper phthalocyanine precursor, is also doped with an oxygen-absorbing organic substance having a mass fraction of five parts per million before thermal evaporation.
  • the oxygen absorbing organic material may be ascorbic acid and a derivative thereof which are susceptible to oxidation. Since only a small amount of water-absorbing organic matter and oxygen-absorbing organic matter are doped, the hole injecting ability of the hole injecting layer is not affected.
  • the hole transport layer is deposited on the hole injection layer by a vacuum thermal evaporation method.
  • the hole transport layer may be formed of 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA) having good hole transporting ability, or may be 2, 3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4TCNQ), tetracyano-p-dimethylanilinone (TCNQ), phenanthroline-2 , 3-dinitrile (PPDN), copper phthalocyanine (CuPC), or decyloxyphthalocyanine (TiOPC).
  • TCTA 4,4',4"-tris(carbazol-9-yl)triphenylamine
  • F4TCNQ 2, 3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone
  • TPNQ tetra
  • the precursor material used in the hole transport layer such as TCTA precursor, is mixed prior to thermal evaporation.
  • the water-absorbing organic substance may be an aluminum-based composite.
  • the water-absorbing organic matter has a doping mass fraction of not more than one thousandth.
  • the doping mass fraction of the water-absorbing organic substance may be five tenths of a mil.
  • the precursor material used in the hole transporting layer such as a TCTA precursor, is simultaneously doped before thermal evaporation. There is an oxygen absorbing organic matter having a mass fraction of five tenths.
  • the oxygen absorbing organic material may Ascorbic acid and derivatives thereof easily oxidized. Since only a trace amount of water-absorbing dopant and organic substance absorbing organic material, it does not affect the ability of the hole transport layer, a hole transport.
  • a layer of luminescent material is deposited on the hole transport layer by a vacuum thermal evaporation method.
  • the luminescent material layer may include a face-tris(diphenylpyridine ruthenium) using a green phosphorescent material.
  • the electron transport layer is deposited on the light-emitting layer by a vacuum thermal evaporation method.
  • the electron transport layer may be formed of a good electron transporting property of quinoline aluminum (Alq3), or may be III BCP (bath copper), 4,7-diphenyl-1,10-o Bphen, 1,3,5-tris(N-phenylbenzimidazolyl-2-yl)benzene (TPBi), lithium hydroxyquinolate (Liq), 2,9-di(2-naphthalene
  • TPBi 4,7-diphenyl-1,10-o Bphen, 1,3,5-tris(N-phenylbenzimidazolyl-2-yl)benzene
  • Liq lithium hydroxyquinolate
  • 2,9-di(2-naphthalene 2,9-di(2-naphthalene
  • the precursor material used in the electron transport layer is doped with a water-absorbing organic substance prior to thermal evaporation.
  • the water-absorbing organic substance may be an aluminum-based composite.
  • the water-absorbing organic matter has a doping mass fraction of no more than one thousandth.
  • the water-absorbing organic matter doping mass fraction may be five ten thousandths.
  • the precursor materials used in the electron transport layer, such as the Alq3 precursor are also miscellaneous with an oxygen-absorbing organic matter having a mass fraction of five thousandths before thermal evaporation.
  • the oxygen absorbing organic material may be ascorbic acid and a derivative thereof which are easily oxidized. Since only a small amount of water-absorbing organic matter and oxygen-absorbing organic matter are doped, the electron transporting ability of the electron transporting layer is not affected.
  • the electron injecting layer may be formed of a low work function material such as lithium fluoride (LiF) having good electron injecting ability, or may be, for example, lithium octahydroquinolate (LiBq4) or Alq3: Li 3 N (where Li 3 N is lithium nitride) is formed as an n-type dopant, and the dopant material is Alq3 ).
  • the precursor material used in the electron injecting layer, such as the LiF precursor is doped with a water absorbing organic substance prior to thermal evaporation.
  • the water-absorbing organic substance may be an aluminum-based composite.
  • the water-absorbing organic matter has a doping mass fraction of no more than one thousandth.
  • the doping mass fraction of the water-absorbing organic matter may be five ten thousandths.
  • the precursor material used in the electron injecting layer such as the LiF precursor, is also doped with a mass fraction of 10,000 parts before thermal evaporation.
  • Five oxygenated organic matter may be ascorbic acid and a derivative thereof which are easily oxidized. Since only a small amount of water-absorbing oxygen-absorbing organic matter is doped, the electron injecting ability of the electron injecting layer is not affected.
  • a low-resistance Mg/Al cathode layer is deposited on the electron injecting layer by a vacuum thermal evaporation method.
  • a voltage is applied between the cathode layer and the anode layer through an external circuit.
  • the cathode is injected with electrons, the anode injects holes, and the formed electrons and holes meet at the light-emitting layer to generate excitons, thereby exciting the light-emitting material to emit light.
  • a thin film encapsulation layer is typically formed over the OLED display device.
  • the forming method may include: rapidly evaporating the liquid solution, condensing the liquid in the vacuum form on the OLED device prepared in the above step, and drying the film, so that the entire OLED structure is completely sealed and planarized.
  • the liquid solution used may be a hydrocarbon solution containing an aluminum-based composite, and other organic substances which can block water and oxygen.
  • the present invention also provides an OLED display device comprising the above OLED display device and driving circuit.
  • the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer due to the doping of a small amount of water-absorbing organic matter and oxygen-absorbing organic matter, the water-absorbing organic matter preferentially reacts with water vapor, thereby consuming the water vapor;
  • Organic substances such as ascorbic acid and its derivatives
  • oxygen to consume intruding traces of oxygen. Therefore, the trace amount of water and oxygen invaded from the environment do not enter the luminescent material layer, and black spots or the like are generated in the illuminating region, thereby improving display quality and display life.
  • other organic functional layers are also protected, effectively avoiding the erosion of water and oxygen, thereby effectively improving the lifetime of the OLED display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED显示器件及其制备方法、OLED显示装置。OLED器件包括:衬底基板(1)、阳极层(2)、空穴注入层(3)、空穴传输层(4)、发光材料层(5)、电子传输层(6)、电子注入层(7)、阴极层(8)和封装层(9),空穴注入层(3)、空穴传输层(4)、电子传输层(6)和/或电子注入层(7)中掺杂有吸水有机物和吸氧有机物。吸水有机物会优先与水汽反应,消耗掉装置内的水汽;吸氧有机物由于其还原性强,容易被氧化,会优先与氧气反应,消耗侵入的微量氧气,从而使得环境中侵入的微量水和氧不会进入到发光材料层(5),避免了在发光区域产生黑点等不良,提高了显示质量和显示寿命。同时,也保护了其他有机功能层,有效避免了水氧的侵蚀,从而有效提高了OLED显示器件的寿命。

Description

OLED显示器件及其制备方法、 OLED显示装置 技术领域
本发明涉及显示技术领域, 特别是涉及- 种 OLED显示器件及其制备方 法, 和包含该显示器件的 OLED显示装置。 背景技术
有机电致发光器件(OLED) 以其宽视角、 低功耗、 高响应、 高亮度和低 成本等优点而有望成为替代 TFT^LCD的下一代显示技术。虽然 OLED在实验 室的研发技术方面已经比较成熟, 但在量产应用中还存在-一些问题。 其中一 个极其重要的问题之一便是其使用寿命短。 众所周知, OLED 是一种对水汽 和氧气极其敏感的显示器件, 特别是水汽。 具体地, 如果 OLED所在的环境 中渗透进去水和氧, 则容易在发光区域形成黑点, 且黑点会随着时间延长而 扩大。 目前的主要解决手段是对 OLED进行封装, 主要包括金属盖和玻璃盖 等盖板封装技术, 以及以 Vitex Systems公司开发的 Barix薄膜封装层为代表 的薄膜封装技术。但是,这些现有技术手段要么表面不易平整(如金属盖板), 容易产生微裂缝 (如玻璃盖板), 要么成本高, 制作工艺复杂 (如 Barix薄膜 封装技术)。 因此, 在 OLED抗水和氧方面尚需进一歩探索新型结构和技术。 发明内容
本发明的目的是消除或降低外界环境中的水和氧对 OLED使用寿命的影 响。
为了解决上述技术问题, 本发明提供一种 OLED显示器件, 包括: 衬底 基板、 阳极层、 空穴注入层、 空穴传输层、 发光材料层、 电子传输层、 电子 注入层、 阴极层和封装层, 所述空穴注入层、 空穴传输层、 电子传输层和 /或 电子注入层中掺杂有吸水有机物和吸氧有机物。
在本发明的一个示例中, 所述空穴注入层、 空穴传输层、 电子传输层和 电子注入层的每一层中所掺杂的吸水有机物和吸氧有机物的质量之和不超过 该层总质量的千分之一。 在本发明的一个示例中, 所述吸水有机物为铝基复合物, 所述吸氧有机 物为抗坏血酸及其衍生物。
在本发明的一个示例中, 所述空穴注入层由 F4TCNQ、 TCNQ、 PPDN、 CuPC、 或 TiOPC形成。
在本发明的一个示例中, 所述空穴传输层由 F4TCNQ、 TCNQ、 PPDN、 CuPC、 TiOPC、 或 TCTA形成。
在本发明的一个示例中, 所述电子传输层 Ei:l BCP、 Bphen、 TPBi、 Alq3、 Liq、 Nbphen、 或 TAZ形成。
在本发明的一个示例中, 所述电子注入层由 LiF、 LiBq4、 或 Alq3 :Li3N 形成。
本发明还提供了一种 OLED显示装置, 包括任一上述的 OLED显示器件 和驱动电路。
本发明进一歩提供了一种 OLED显示器件的制备方法, 包括以下步骤: 提供衬底基板的歩骤、 形成阳极层的歩骤、 形成空穴注入层的歩骤、 形成空 穴传输层的步骤、 形成发光材料层的歩骤、 形成电子传输层的歩骤、 形成电 子注入层的歩骤、 形成阴极层的歩骤以及形成封装层的步骤, 其中, 还包括 在所述空穴注入层、 空穴传输层、 电子传输层和 /或电子注入层中或者在用于 形成所述空穴注入层、 空穴传输层、 电子传输层和 /或电子注入层的材料中掺 杂吸水有机物和吸氧有机物的歩骤。
在本发明的一个示例中, 所述空穴注入层、 空穴传输层、 电子传输层和 电子注入层的每一层中所掺杂的吸水有机物和吸氧有机物的质量之和不超过 该层总质量的千分之一。
在上述技术方案所提供的 OLED显示器件及其制备方法和 OLED显示装 置中, 空穴注入层、 空穴传输层、 电子注入层和电子传输层中惨杂有微量的 吸水有机物、 吸氧有机物。 所述吸水有机物会优先与水汽反应, 消耗掉装置 内的水汽; 而所述吸氧有机物由于其还原性强、 易于被氧化, 所以会优先与 氧气反应以消耗侵入的微量氧气, 从而使得环境中侵入的微量水、 氧不会进 入到发光材料层, 避免了在发光区域产生黑点等问题, 进而提高了显示质量 和显示寿命。 同时, 还保护了其他有机功能层, 有效避免了水和氧的侵蚀, 从而有效提高了 OLED显示器件的寿命。 附图说明
图 1是本发明实施例 OLED显示器件的结构示意图。
其中, 1 : 衬底基板; 2: 阳极层; 3 : 空穴注入层; 4: 空穴传输层; 5: 发光材料层; 6: 电子传输层; 7: 电子注入层; 8: 阴极层; 9: 封装层。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
本发明提供的 OLED显示器件是顶发射型结构的白光 OLED显示器件, 其结构示意图如图 1所示, 主要包括衬底基板 1, 依次形成在衬底基板 (例 如, 玻璃衬底基板) 1上的阳极层 2、 空穴注入层 3、 空穴传输层 4、 发光材 料层 5、 电子传输层 6、 电子注入层 7、 阴极层 8以及用于封装的薄膜层 (即 封装层) 9。 所述的电子注入层 7、 电子传输层 6、 空穴注入层 3和空穴传输 层 4中均掺杂有微量的吸水有机物和吸氧有机物, 所述吸水有机物和吸氧有 机物的掺杂质量之和不超过其所在层总质量的千分之一。
本实施例所提供的上述顶发射型的白光 OLED显示器件利用在电子注入 层 7、 电子传输层 6、 空穴注入层 3、 空穴传输层 4中均掺杂微量的吸水有机 物和吸氧有机物, 所述吸水有机物和吸氧有机物优先分别与从环境中渗透进 去的微量水和氧反应, 从而避免了渗透进来的微量水和氧进入发光层而在发 光区域造成黑点, 进而提高了显示质量和使用寿命。 此外, 还可避免因为水 和氧对其他有机功能层的侵蚀作用而降低 OLED的使用寿命。 本实施例在不 增加成本的基础上, 实现了高效的阻隔从环境中渗透进来的微量水和氧的侵 蚀, 从而提高了 OLED的寿命。
本实施例的 OLED显示器件的具体结构及制备过程描述如下。
具体地, 衬底基板的材质优选为玻璃, 也可以为塑料等透明材料。 在衬 底基板上的阳极层可以使用高功函的材料, 优选为透明的氧化铟锡 ατο), 也可以使用透明的碳纳米管 (CNT) 等材料。 ΙΤΟ 可以使用真空磁控溅射方 法沉积在玻璃衬底上。
在 ITO阳极层上使用真空热蒸发方法沉积空穴注入层。 在本发明的- 个 示例中, 空穴注入层可以由具有良好空穴注入能力的酞菁铜 (CuPc) 形成, 也可以由 2,3,5,6-四氟 -7,7',8,8'-四氰二甲基对苯醌(F4TCNQ)、 四氰代对二亚 甲基苯醌(TCNQ)、 菲啰啉 -2,3-二腈(PPDN)或钛氧基酞菁(TiOPC )形成。 空穴注入层所使用的前体材料, 例如酞菁铜前体, 在热蒸发之前掺杂有吸水 有机物。 在本发明的一个示例中, 所述吸水有机物可以为铝基复合物。 在本 发明的进 步示例中, 所述吸水有机物的掺杂质量分数不超过千分之一。 在 本发明的再一个示例中, 所述吸水有机物的掺杂质量分数可以为万分之五。 此外, 空穴注入层所使用的前体材料, 例如酞菁铜前体, 在热蒸发之前同时 还掺杂有质量分数为万分之五的吸氧有机物。 在本发明的-一个示例中, 所述 吸氧有机物材料可以为易于氧化的抗坏血酸及其衍生物。 由于只是掺杂微量 的吸水有机物和吸氧有机物, 所以不影响空穴注入层的空穴注入能力。
通过真空热蒸发方法在空穴注入层上沉积空穴传输层。 在本发明的一个 示例中, 空穴传输层可以由良好的空穴传输能力的 4,4',4"-三 (咔唑 -9-基>三苯 胺 (TCTA ) 形成, 也可以由 2,3,5,6-四氟 -7,7',8,8'-四氰二甲基对苯醌 (F4TCNQ)、 四氰代对二亚甲基苯醌 (TCNQ)、 菲啰啉 -2,3-二腈 (PPDN)、 酞菁铜(CuPC)、 或钕氧基酞菁(TiOPC)形成。 所述空穴传输层所使用的前 体材料, 例如 TCTA前体, 在热蒸发之前掺杂有吸水有机物。 在本发明的一 个示例中, 所述吸水有机物可以为铝基复合物。 在本发明的进一步示例中, 所述吸水有机物的掺杂质量分数不超过千分之一。在本发明的再一个示例中, 所述吸水有机物的糁杂质量分数可以为万分之五。 此外, 所述空穴传输层所 使用的前体材料, 例如 TCTA前体, 在热蒸发之前同时掺杂有质量分数为万 分之五的吸氧有机物。 在本发明的一个示例中, 所述吸氧有机物材料可以为 容易氧化的抗坏血酸及其衍生物。 由于只是掺杂微量的吸水有机物和吸氧有 机物, 所以不影响空穴传输层的空穴传输能力。
通过真空热蒸发方法在空穴传输层上沉积发光材料层。 在本发明的一个 示例中, 发光材料层可以包括使用绿光磷光材料面式-三 (二苯基吡啶 合铱
( fac-tris(2-phenylpyridine)iridium, Ir(ppy)3 ) 与红光磷光材料双 (2,4-二苯基- 喹啉) 四 乙 酰丙 酮 合铱(ΙΠ) ( bis(2,4-diphenyl-quinoline)iridium(ni) acetylanetonate, Ir(pq)2acac)共掺杂 TCTA与 1,2,4-三唑衍生物(3,5-二苯基 -4- 萘 -1-基 -1,2,4-三唑, TAZ) 的混合式主发光层, 和使用蓝光磷光材料三 ((3,5- 」二氟 -4-氰基苯基) FI比 ¾)合銥 ( tris((3 ,5-difluoro-4-cyanophenyl)pyridine ) iridium, FCNIr)掺杂 Ν',Ν-:二咔唑基 -3,5-苯(Ν',Ν-dicarbazolyl- 3,5- benzene, mCP) 的 辅发光层。 根据色度学原理, 其中红, 绿, 蓝三色发光材料掺杂于同一发光 层中将会通过混色而产生白光。
通过真空热蒸发方法在发光层上沉积电子传输层。 在本发明的一个示例 中, 电子传输层可以由良好的电子传输能力的喹啉铝 (Alq3 ) 形成, 也可以 I I I BCP (浴铜灵)、 4,7-二苯基 -1,10-邻二氮杂菲 (Bphen)、 1,3,5-三 (N-苯基苯 并咪唑 -2—基)苯(TPBi)、 羟基喹啉锂(Liq)、 2,9-二 (2-萘基) -4,7-二苯基 -1,10- 菲啰啉 (Nbphen)、 或 1,2,4-三唑衍生物 (TAZ) 形成。 电子传输层所使用的 前体材料, 例如 Alq3前体, 在热蒸发之前掺杂有吸水有机物。 在本发明的一 个示例中, 所述吸水有机物可以为铝基复合物。 在本发明的进一歩示例中, 所述吸水有机物的掺杂质量分数不超过千分之一。在本发明的再- 个示例中, 所述吸水有机物掺杂质量分数可以为万分之五。 此外, 电子传输层所使用的 前体材料, 例如 Alq3前体, 在热蒸发之前同时还惨杂有质量分数为万分之五 的吸氧有机物。 在本发明的一个示例中, 所述吸氧有机物材料可以为易于氧 化的抗坏血酸及其衍生物。 由于只是掺杂微量的吸水有机物和吸氧有机物, 所以不影响电子传输层的电子传输能力。
采用真空热蒸发方法在电子传输层上沉积电子注入层。 在本发明的示例 中, 电子注入层可以由良好的电子注入能力的氟化锂(LiF)等低功函的材料 形成, 也可以由例如 8-羟基喹啉硼化锂 (LiBq4) 或 Alq3:Li3N (其中, Li3N 为氮化锂) 作为 n型掺杂剂, 被掺杂材料为 Alq3 ) 形成。 电子注入层所使用 的前体材料, 例如 LiF前体, 在热蒸发之前掺杂有吸水有机物。 在本发明的 一个示例中, 所述吸水有机物可以为铝基复合物。在本发明的进一歩示例中, 所述吸水有机物的掺杂质量分数不超过千分之一。在本发明的再一个示例中, 所述吸水有机物的掺杂质量分数可以为万分之五。 此外, 电子注入层所使用 的前体材料, 例如 LiF前体, 在热蒸发之前同时还掺杂有质量分数为万分之 五的吸氧有机物。 在本发明的一个示例中, 所述吸氧有机物材料可以为易于 氧化的抗坏血酸及其衍生物。 由于只是掺杂微量的吸水吸氧有机物, 所以不 影响电子注入层的电子注入能力。
通过真空热蒸发方法在电子注入层上沉积低电阻的 Mg/Al阴极层。 在阴 极层和阳极层之间通过外接电路加上电压。 利用所述阴极注入电子, 所述阳 极注入空穴, 所形成的电子和空穴在发光层相遇而产生激子, 从而激发发光 材料发光。
在完成制作 OLED器件的上述步骤后, 通常在 OLED显示器件上面形成 薄膜封装层。 其形成方法可以包括: 在先将液态溶液快速蒸发, 在真空环境 中以液体形式凝聚在上述步骤所制备的 OLED器件上, 并将此薄膜烘干, 从 而使整个 OLED结构完全密封和平整化。 所使用的液态溶液可以为含铝基复 合物的烃类溶液、 以及其他的可以阻隔水和氧的有机物。
本发明还提供一种 OLED显示装置, 包括上述的 OLED显示器件和驱动 电路。
当 OLED 器件使用一段时间之后, 环境中可能有微量的水和氧渗透到 OLED 器件内部。 水和氧首先会侵入到空穴注入层、 空穴传输层以及电子注 入层、 电子传输层, 进而才会侵入到位于 OLED最里面的发光材料层。 在空 穴注入层、 空穴传输层和电子注入层、 电子传输层中, 由于掺杂有微量的吸 水有机物和吸氧有机物, 吸水有机物会优先与水汽反应, 从而消耗掉这些水 汽; 而吸氧有机物 (例如抗坏血酸及其衍生物) 由于其还原性强, 容易被氧 化, 会优先与氧气反应, 从而消耗侵入的微量氧气。 所以, 使得从环境中侵 入的微量水和氧不会进入到发光材料层, 避免了在发光区域产生黑点等, 从 而提高了显示质量和显示寿命。 同时, 还保护了其他有机功能层, 有效避免 了水和氧的侵蚀, 从而有效提高了 OLED显示器件的寿命。
以上所述仅是本发明的代表性实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以做出若千改 进和替换, 这些改进和替换也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种 0LED显示器件, 包括: 衬底基板、 阳极层、 空穴注入层、 空穴 传输层、 发光材料层、 电子传输层、 电子注入层、 阴极层和封装层, 其特征 在于, 所述空穴注入层、 空穴传输层、 电子传输层和 /或电子注入层中掺杂有 吸水有机物和吸氧有机物。
2. 如权利要求 1 所述的 OLED 显示器件, 其特征在于, 所述空穴注入 层、 空穴传输层、 电子传输层和 /或电子注入层的每一层中所惨杂的吸水有机 物和吸氧有机物的质量总和不超过该层总质量的千分之一。
3. 如权利要求 1所述的 OLED显示器件, 其特征在于, 所述吸水有机物 为铝基复合物, 所述吸氧有机物为抗坏血酸及其衍生物。
4. 如权利要求 1所述的 OLED显示器件, 其特征在于, 所述空穴注入层 由 F4TCNQ、 TCNQ, PPDN、 CuPC或 TiOPC形成。
5. 如权利要求 1所述的 OLED显示器件, 其特征在于, 所述空穴传输层 由 F4TCNQ、 TCNQ, PPDN、 CuPC, TiOPC或 TCTA形成。
6. 如权利要求 1所述的 OLED显示器件, 其特征在于, 所述电子传输层 由 BCP、 Bphen, TPBi、 Alq3、 Liq、 Nbphen或 TAZ形成。
7. 如权利要求 1所述的 OLED显示器件, 其特征在于, 所述电子注入层 由 LiF、 LiBq4或 Alq3:Li3N形成。
8. 一种 OLED显示装置, 包括如权利要求 1-7中任一项所述的 OLED显 示器件和驱动电路。
9. 一种制备 OLED显示器件的方法, 包括: 提供衬底基板的歩骤; 形成 阳极层的步骤; 形成空穴注入层的步骤; 形成空穴传输层的步骤; 形成发光材 料层的步骤; 形成电子传输层的歩骤; 形成电子注入层的步骤; 形成阴极层的 歩骤; 以及形成封装层的步骤,
其特征在于, 所述方法还包括在所述空穴注入层、 空穴传输层、 电子传 输层和 /或电子注入层中或者在用于形成所述空穴注入层、 空穴传输层、 电子 传输层和 /或电子注入层的材料中掺杂吸水有机物和吸氧有机物的步骤。
10. 如权利要求 9所述的制备方法, 其特征在于, 所述空穴注入层、 空穴 传输层、 电子传输层和电子注入层的每一层中所掺杂的吸水有机物和吸氧有 机物的质量和不超过该层总质量的千分之一(
PCT/CN2014/077886 2013-12-20 2014-05-20 Oled显示器件及其制备方法、oled显示装置 WO2015089986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/422,091 US9349986B2 (en) 2013-12-20 2014-05-20 OLED display device, method for manufacturing the same, and OLED display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310713135.8A CN103681768B (zh) 2013-12-20 2013-12-20 Oled显示器件及其制备方法、oled显示装置
CN201310713135.8 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015089986A1 true WO2015089986A1 (zh) 2015-06-25

Family

ID=50318744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077886 WO2015089986A1 (zh) 2013-12-20 2014-05-20 Oled显示器件及其制备方法、oled显示装置

Country Status (3)

Country Link
US (1) US9349986B2 (zh)
CN (1) CN103681768B (zh)
WO (1) WO2015089986A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681768B (zh) 2013-12-20 2017-01-11 合肥京东方光电科技有限公司 Oled显示器件及其制备方法、oled显示装置
CN104993063A (zh) * 2015-07-17 2015-10-21 京东方科技集团股份有限公司 一种封装件及其制作方法、oled装置
CN105206645B (zh) * 2015-08-31 2018-05-11 深圳市华星光电技术有限公司 Oled显示模组及其显示器
CN107086229B (zh) * 2016-02-16 2020-04-28 上海和辉光电有限公司 一种oled显示装置
PL3516710T3 (pl) * 2016-09-20 2023-08-21 Inuru Gmbh Ograniczająca dyfuzję warstwa bariery elektroaktywnej dla komponentu optoelektronicznego
CN107492601A (zh) * 2017-09-30 2017-12-19 京东方科技集团股份有限公司 一种显示器件及其封装方法、显示装置
DE102020131756A1 (de) 2020-12-01 2022-06-02 Heliatek Gmbh Schichtsystem für ein organisches elektronisches Bauelement
WO2023122902A1 (zh) * 2021-12-27 2023-07-06 京东方科技集团股份有限公司 发光器件及其制备方法、发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000792A (ja) * 2003-06-11 2005-01-06 Futaba Corp 捕水剤及び有機el素子
US20060063030A1 (en) * 2004-09-20 2006-03-23 Deaton Joseph C Organic electroluminescent devices and composition
CN1880377A (zh) * 2005-05-19 2006-12-20 三星Sdi株式会社 导电聚合物组合物以及应用它的有机光电器件
US20070184300A1 (en) * 2003-12-26 2007-08-09 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbent molding and organic electroluminescent element
JP2007242831A (ja) * 2006-03-08 2007-09-20 Seiko Epson Corp 機能液、機能薄膜、エレクトロルミネッセンス素子、エレクトロルミネッセンス装置及び電子機器
CN103681768A (zh) * 2013-12-20 2014-03-26 合肥京东方光电科技有限公司 Oled显示器件及其制备方法、oled显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614175B2 (en) * 2001-01-26 2003-09-02 Xerox Corporation Organic light emitting devices
US6624568B2 (en) * 2001-03-28 2003-09-23 Universal Display Corporation Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
CN100448058C (zh) * 2005-04-13 2008-12-31 清华大学 一种有机电致发光器件
JP4596976B2 (ja) * 2005-05-20 2010-12-15 株式会社 日立ディスプレイズ 有機発光表示装置
CN100546067C (zh) * 2007-03-16 2009-09-30 电子科技大学 一种有机电致发光器件及其制备方法
JP5176459B2 (ja) * 2007-09-28 2013-04-03 大日本印刷株式会社 白色発光素子
CN101369635B (zh) * 2008-09-28 2012-05-30 清华大学 一种倒置型oled显示器件及其制备方法
TW201035058A (en) * 2009-03-31 2010-10-01 Chien-Hong Cheng Organometallic compound and organic light-emitting diode including the same
CN101740724B (zh) * 2009-11-03 2011-07-27 电子科技大学 一种有机电致发光器件及其制备方法
KR20110058126A (ko) * 2009-11-25 2011-06-01 삼성모바일디스플레이주식회사 유기 발광 표시 장치
CN101866944B (zh) * 2010-02-26 2012-07-04 信利半导体有限公司 一种有机电致发光显示器
CN102157703B (zh) * 2011-03-03 2013-04-24 西安文景光电科技有限公司 一种提高亮度的oled器件
US9012902B2 (en) * 2011-03-31 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
DE102012208142B4 (de) * 2012-05-15 2021-05-12 Pictiva Displays International Limited Organisches licht emittierendes bauelement und verfahren zur herstellung eines organischen licht emittierenden bauelements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000792A (ja) * 2003-06-11 2005-01-06 Futaba Corp 捕水剤及び有機el素子
US20070184300A1 (en) * 2003-12-26 2007-08-09 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbent molding and organic electroluminescent element
US20060063030A1 (en) * 2004-09-20 2006-03-23 Deaton Joseph C Organic electroluminescent devices and composition
CN1880377A (zh) * 2005-05-19 2006-12-20 三星Sdi株式会社 导电聚合物组合物以及应用它的有机光电器件
JP2007242831A (ja) * 2006-03-08 2007-09-20 Seiko Epson Corp 機能液、機能薄膜、エレクトロルミネッセンス素子、エレクトロルミネッセンス装置及び電子機器
CN103681768A (zh) * 2013-12-20 2014-03-26 合肥京东方光电科技有限公司 Oled显示器件及其制备方法、oled显示装置

Also Published As

Publication number Publication date
CN103681768B (zh) 2017-01-11
US9349986B2 (en) 2016-05-24
CN103681768A (zh) 2014-03-26
US20150228925A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
US11139445B2 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
Wu et al. White Organic LED with a Luminous Efficacy Exceeding 100 lm W− 1 without Light Out‐Coupling Enhancement Techniques
WO2015089986A1 (zh) Oled显示器件及其制备方法、oled显示装置
US8119258B2 (en) White organic light emitting device (OLED)
Xue et al. Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers
WO2016155475A1 (zh) 有机发光二极管器件及显示面板、显示装置
KR101367584B1 (ko) 유기 발광 소자 및 이의 제조방법
JP2009245747A (ja) 有機発光表示装置
CN101901877A (zh) 发光元件、发光装置、电子设备以及照明装置
CN109585668B (zh) Oled显示器件、显示面板、oled显示器件的制备方法
KR102146104B1 (ko) 유기전계발광소자 및 이를 이용한 유기전계발광표시장치
Lv et al. Improved hole-transporting properties of Ir complex-doped organic layer for high-efficiency organic light-emitting diodes
US20120098002A1 (en) Organic light emitting device
JP4915651B2 (ja) 有機エレクトロルミネッセンス素子
WO2011148801A1 (ja) 有機el素子
US10763448B2 (en) OLED device with buffer layer adjacent light emitting layer
Liu et al. Angle-stable inverted top-emitting white organic light-emitting devices based on gradient-doping electron injection interlayer
KR100796588B1 (ko) 유기전계발광소자의 제조방법
US10665804B2 (en) Organic light emitting diode and display device
TW200805729A (en) Tandem organic electroluminescent elements and uses of the same
KR20160082551A (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR20160082895A (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR20080011623A (ko) 전계발광소자 및 그 제조방법
Kim et al. Effect of electron transport layer engineering based on blue phosphorescent organic light-emitting diodes
Deng et al. Synergy of solid-state solvation and microcavity effects for efficient blue OLEDs based on green thermally activated delayed fluorescence emitter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14422091

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14871797

Country of ref document: EP

Kind code of ref document: A1