WO2015087619A1 - 変倍光学系及びそれを備えた撮像装置、撮像システム - Google Patents

変倍光学系及びそれを備えた撮像装置、撮像システム Download PDF

Info

Publication number
WO2015087619A1
WO2015087619A1 PCT/JP2014/077673 JP2014077673W WO2015087619A1 WO 2015087619 A1 WO2015087619 A1 WO 2015087619A1 JP 2014077673 W JP2014077673 W JP 2014077673W WO 2015087619 A1 WO2015087619 A1 WO 2015087619A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
positive
image
Prior art date
Application number
PCT/JP2014/077673
Other languages
English (en)
French (fr)
Inventor
阿部健一朗
天内隆裕
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2015552357A priority Critical patent/JP6560984B2/ja
Publication of WO2015087619A1 publication Critical patent/WO2015087619A1/ja
Priority to US15/177,050 priority patent/US10274708B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145115Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged ++++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to a variable magnification optical system, an imaging apparatus including the same, and an imaging system.
  • optical zoom as another method of enlarging a part of a photographed image.
  • An optical system capable of performing optical zooming that is, a variable magnification optical system is configured of a plurality of lens groups.
  • the distance between the lens units is changed by moving a part of the lens units among the plurality of lens units, thereby changing the imaging magnification.
  • a microscope zoom objective lens disclosed in Patent Document 1.
  • the number of fields of view is usually about 22 mm.
  • the microscope zoom objective lens described in Patent Document 1 aberrations are corrected with respect to an image height corresponding to a field number of 22 mm.
  • this microscope zoom objective lens can not say that the total length of the optical system is short, it can not be said that the optical system and the microscope are sufficiently miniaturized.
  • the present invention has been made in view of the above, and the overall length of the optical system is short, and the on-axis aberration and the off-axis aberration are well corrected in the observation range equal to or longer than that of a conventional microscope. It is an object of the present invention to provide a variable magnification optical system, an imaging apparatus including the same, and an imaging system.
  • variable magnification optical system of the present invention is An optical system in which the magnification changes from the low magnification end to the high magnification end, A first lens group disposed closest to the object side and having positive refractive power; At least a second lens unit having a positive refractive power, which is disposed on the image side of the first lens unit and has a positive refractive power; During zooming, the distance between the first and second lens groups changes. It is characterized by satisfying the following conditional expression (1). 0 ⁇ 1 / ⁇ HG1 ⁇ 1 (1) here, ⁇ HG1 is an imaging magnification of the first lens group at the high magnification end, It is.
  • Another variable magnification optical system of the present invention is An optical system in which the magnification changes from the low magnification end to the high magnification end, A first lens group disposed closest to the object side and having positive refractive power; At least a second lens unit disposed on the image side of the first lens unit and having negative refractive power; Having a stop disposed closer to the object than the second lens unit, During zooming, the second lens unit moves, and the distance between the first lens unit and the second lens unit changes.
  • the third lens unit is disposed on the image side of the second lens unit, It is characterized by satisfying the following conditional expression (8).
  • ⁇ G2max is the maximum amount of movement of the second lens group on the optical axis
  • D HIGi is the distance on the optical axis from the lens surface closest to the object side of the third lens group at the high magnification end to the image plane, It is.
  • variable magnification optical system of the present invention is An optical system in which the magnification changes from the low magnification end to the high magnification end, A first lens group disposed closest to the object side and having positive refractive power; At least a second lens group disposed on the image side of the first lens group;
  • the variable magnification optical system is an optical system in which the conjugate length changes during zooming, and It has a lens unit that moves during zooming It is characterized in that the following conditional expression (12) is satisfied. 0.01 ⁇
  • the imaging device of the present invention is An imaging apparatus having an imaging element and a variable magnification optical system, An optical image is formed on the imaging device by the variable magnification optical system.
  • the variable magnification optical system is an optical system whose magnification changes from the low magnification end to the high magnification end, and A first lens group disposed closest to the object side and having positive refractive power; At least a second lens group disposed on the image side of the first lens group; During zooming, the distance between the first lens group and the second lens group is variable, It is characterized in that the following conditional expressions (14) and (15) are satisfied.
  • Y is the maximum image height in the entire variable magnification optical system
  • p is the pixel pitch in the imaging device
  • NA H is the object side numerical aperture of the variable magnification optical system at the high magnification end, It is.
  • the imaging system of the present invention is The imaging device described above, A stage for holding an object to be observed; And a light source for illuminating an object.
  • variable power optical system in which the overall length of the optical system is short, and the on-axis aberration and the off-axis aberration are well corrected in the observation range equivalent to the conventional microscope or more An imaging device and an imaging system provided can be provided.
  • FIG. 7 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 1, (a) at the low magnification end and (b) at the high magnification end. is there.
  • FIG. 6 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 1. ) To (d) show the low double end, and (e) to (h) show the state at the high double end.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 7 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 2; ) To (d) show the low double end, (e) to (h) show the intermediate state, and (i) to (l) show the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 7 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 3; ) To (d) show the low double end, (e) to (h) show the intermediate state, and (i) to (l) show the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 18 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 4, (a) at low magnification end, (b) in intermediate state, (c) It is sectional drawing in high magnification end.
  • FIG. 16 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 4. ) To (d) show the low double end, (e) to (h) show the intermediate state, and (i) to (l) show the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 21 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 5; ) To (d) show the low double end, (e) to (h) show the intermediate state, and (i) to (l) show the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 16 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 6.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 24 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 7; ) To (d) show the low double end, (e) to (h) show the intermediate state, and (i) to (l) show the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 24 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 8; ) To (d) show the low double end, (e) to (h) show the intermediate state, and (i) to (l) show the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 24 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 9; ) To (d) show the low double end, (e) to (h) show the intermediate state, and (i) to (l) show the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 21 shows spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 10, (a) (D) shows the low double end, (e) to (h) shows the intermediate state, and (i) to (l) shows the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 21 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 11, (a) at low magnification end, (b) in intermediate state, (c) It is sectional drawing in high magnification end.
  • FIG. 24 shows spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 11.
  • (D) shows the low double end,
  • (e) to (h) shows the intermediate state, and (i) to (l) shows the high double end state.
  • FIG. 21 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 12, (a) at low magnification end, (b) in intermediate state, (c) It is sectional drawing in high magnification end.
  • FIG. 24 shows spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 12; (D) shows the low double end, (e) to (h) shows the intermediate state, and (i) to (l) shows the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 21 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 13, (a) at low magnification end, (b) in intermediate state, (c) It is sectional drawing in high magnification end.
  • FIG. 24 shows spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 13; (D) shows the low double end, (e) to (h) shows the intermediate state, and (i) to (l) shows the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 21 shows spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 14 (a) (D) shows the low double end, (e) to (h) shows the intermediate state, and (i) to (l) shows the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 21 shows spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 15 (a) (D) shows the low double end, (e) to (h) shows the intermediate state, and (i) to (l) shows the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 21 shows spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 16 (a) (D) shows the low double end, (e) to (h) shows the intermediate state, and (i) to (l) shows the high double end state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 24 shows spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 17;
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 24 shows spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the time of infinite object point focusing of the variable magnification optical system according to Example 19 (a)
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • sample is appropriately referred to as “object”
  • sample image is appropriately referred to as “image”.
  • variable magnification optical systems of these embodiments have high resolution because various aberrations are well corrected, and can form an image in a wide observation range.
  • chromatic aberration on the on-axis and off-axis directions is corrected well, and therefore, the case where the photographed image is enlarged by digital zooming by combining with an imaging device having a small pixel pitch. Even in this case, a high resolution enlarged image can be obtained.
  • the low magnification end is the smallest magnification in the variable magnification range
  • the high magnification end is the largest magnification in the variable magnification range.
  • the low magnification is a range of the low magnification end and its vicinity
  • the high magnification is a range of the high magnification end and its vicinity.
  • an optical image is formed by the objective lens and the imaging lens, and the optical image is observed by the eyepiece.
  • the optical image formed by the objective lens and the imaging lens becomes a primary image
  • the virtual surface at the position of the primary image becomes a primary imaging surface.
  • the optical image formed on the image plane of the variable magnification optical system of the present embodiment corresponds to a primary image in the optical system of the microscope. Therefore, the image plane in the following description corresponds to the primary imaging plane in the optical system of the microscope.
  • variable magnification optical system Prior to the description of the variable magnification optical system according to the present embodiment, the basic configuration of the variable magnification optical system according to the present embodiment will be described.
  • variable magnification optical system is an optical system whose magnification changes from the low magnification end to the high magnification end, and is disposed closest to the object side and has a first lens group having positive refractive power, and And at least a second lens group disposed on the image side of the first lens group.
  • the variable magnification optical system of the present embodiment is an optical system in which the magnification changes between the low magnification end and the high magnification end. That is, in the variable magnification optical system of the present embodiment, the imaging magnification (hereinafter referred to as appropriate as the magnification) of the optical system can be changed between the low magnification and the high magnification. Since the magnification is the smallest at the low magnification end, a wider observation range can be obtained compared to the high magnification end. On the other hand, since the magnification is the largest at the high magnification end, the observation range becomes narrower than the low magnification end, but high resolution can be obtained.
  • the imaging magnification hereinafter referred to as appropriate as the magnification
  • the change in magnification includes the magnification change performed in a state in which the conjugate length (the distance from the object to the image) is constant, and the magnification change performed in a state in which the conjugate length changes.
  • variable magnification optical system includes at least a first lens unit disposed closest to the object side and having a positive refractive power, and a second lens unit disposed closer to the image than the first lens unit.
  • numerical aperture on the object side of the optical system (hereinafter simply referred to as “numerical aperture”) is increased, light with a larger divergence angle (diffraction angle) can be made to enter the optical system from the object. As a result, the fine structure of the object can be observed more finely.
  • light with a large divergence angle has a high ray height in the first lens group. If such a ray of light is sharply bent by the first lens group, high-order aberrations are likely to occur in the first lens group.
  • the first lens group has a positive refractive power, so that a ray having a large divergence angle is gradually bent in a region close to the object, that is, the first lens group. .
  • the first lens group has a positive refractive power, so that a ray having a large divergence angle is gradually bent in a region close to the object, that is, the first lens group. .
  • the diverging beam may be converted to a convergent beam by the first lens group, it is not necessary to convert the diverging beam to a converging beam. By doing this, it is possible to make the light flux from the object a light flux with a small divergence angle while suppressing the occurrence of large-order aberrations.
  • the imaging device can be miniaturized.
  • an imaging device there is a microscope, for example.
  • the number of fields of view is usually about 22 mm.
  • the number of fields of view of 22 mm is about 11 mm when converted to the image height of the variable magnification optical system.
  • variable magnification optical system of this embodiment when used for an optical system of a microscope, in order to obtain an observation range equivalent to 22 mm of field of view, the aberration of the variable magnification optical system is well corrected to an image height of about 11 mm. Just do it.
  • a digital microscope observes an image of a captured object image on a monitor.
  • the pixel pitch of the imaging device is sufficiently small with respect to the image height, an observation range equivalent to the field number of 22 mm can be obtained even if the image height is small.
  • the image height is not larger than 11 mm (corresponding to the number of fields of view 22 mm)
  • an observation range corresponding to a larger number of fields of view can be obtained.
  • an imaging element with a small pixel pitch and a large number of pixels (hereinafter, referred to as a predetermined imaging element as appropriate) can be performed by the zoom optical system having higher resolution.
  • a predetermined imaging element as appropriate
  • the variable magnification optical system is an optical system whose magnification changes from the low magnification end to the high magnification end, and is disposed closest to the object side, and is a first lens group having positive refractive power
  • the second lens unit is disposed on the image side of the first lens unit and has a positive refractive power, and the distance between the first lens unit and the second lens unit changes at the time of zooming. It is characterized by satisfying conditional expression (1) of 0 ⁇ 1 / ⁇ HG1 ⁇ 1 (1) here, ⁇ HG1 is an imaging magnification of the first lens group at the high magnification end, It is.
  • variable magnification optical system has the above-described basic configuration, and further makes the second lens group have positive refractive power and changes the distance between the first lens group and the second lens group. I am doing scaling.
  • the variable magnification optical system of the first embodiment the variable magnification is performed in a state where the conjugate length is constant.
  • the combined refracting power of the first lens group and the second lens group is sufficiently increased at high magnification without making the refracting power of the first lens group too large. It becomes possible. In this case, the divergence of the dependent ray can be suppressed in the area near the object at high magnification, so that the optical system can be miniaturized. Moreover, since it is not necessary to give the first lens group an excessive refracting power, it is possible to satisfactorily correct various aberrations in the first lens group, in particular, spherical aberration and field curvature with a relatively small number of lenses. it can.
  • the lens unit when the lens unit is disposed on the image side of the second lens unit, the occurrence of various aberrations in the lens unit disposed on the image side, in particular, the occurrence of spherical aberration, coma aberration, and the like can be suppressed.
  • variable magnification optical system of the present embodiment satisfies the conditional expression (1).
  • the conditional expression (1) even if the lens unit is disposed closer to the image than the second lens unit, the absolute value of the combined magnification of the lens units after the second lens unit does not become too large.
  • the imaging magnification of the entire system can be increased. Therefore, even if the aberration occurs in the first lens group, the expansion of the aberration in the lens groups after the second lens group can be suppressed. As a result, various aberrations in the entire optical system, in particular, spherical aberration and field curvature can be corrected well.
  • variable magnification optical system of the present embodiment various aberrations are corrected well. Therefore, by combining the variable magnification optical system of the present embodiment with a predetermined imaging element, it is possible to further miniaturize the imaging device while maintaining a large observation range.
  • conditional expression (1) it is preferable to satisfy the following conditional expression (1 ′). 0.1 ⁇ 1 / ⁇ HG1 ⁇ 0.9 (1 ′) Moreover, it is more preferable to satisfy the following conditional expression (1 ′ ′) instead of the conditional expression (1). 0.2 ⁇ 1 / ⁇ HG1 ⁇ 0.85 (1 ′ ′) Further, it is more preferable to satisfy the following conditional expression (1 ′ ′ ′) instead of the conditional expression (1). 0.3 ⁇ 1 / ⁇ HG1 ⁇ 0.8 (1 ′ ′ ′)
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (2). 0 ⁇ BF L /Y ⁇ 4.3 (2) here, BF L is the back focus at the low magnification end, Y is the maximum image height in the entire variable magnification optical system, It is.
  • the lens In the region close to the image plane, the height of the off-axis light beam is high, and the diameter of the light beam is small. Further, in this region, the fluctuation of the height of the light beam of off-axis luminous flux and the fluctuation of the luminous flux diameter due to the magnification change are small. Therefore, if the lens can be disposed in this area, it is possible to correct, in particular, off-axis aberrations such as lateral chromatic aberration and curvature of field.
  • conditional expression (2) If the lower limit value of conditional expression (2) is not exceeded, the back focus does not become too small. Therefore, when disposing the lens in a region close to the image plane, the distance between the lens and the imaging device can be increased. As a result, even if ghosting occurs due to multiple reflections between the lens and the imaging device, it is possible to prevent ghosts from being incident on the imaging device surface at a high density.
  • the back focus does not become too large.
  • the back focus can be kept small, it is possible to miniaturize the optical system while securing a sufficient moving space of the lens unit moving at the time of zooming.
  • the image height larger than the pixel pitch
  • a wide observation range corresponding to a larger number of fields can be obtained.
  • the off-axis aberration is favorably corrected at low magnification. Is important.
  • conditional expression (2) it is preferable to satisfy the following conditional expression (2 ′).
  • 0.1 ⁇ BF L / Y ⁇ 4 (2 ′) it is more preferable to satisfy the following conditional expression (2 ′ ′) instead of the conditional expression (2).
  • 0.2 ⁇ BF L / Y ⁇ 3 (2 ′ ′) it is more preferable to satisfy the following conditional expression (2 ′ ′ ′) instead of the conditional expression (2).
  • the stop is disposed on the image side of the second lens unit, the predetermined positive lens unit is disposed on the image side of the stop, and the predetermined positive lens unit is positive. It is preferable that the lens unit has a refracting power as well as a smaller distance from the stop at the high magnification end compared to the low magnification end.
  • the stop is disposed on the image side of the first lens group and the second lens group, and a predetermined positive lens group is disposed on the image side of the stop.
  • a lens group having positive refractive power is disposed on the image side of the stop. This makes it possible to suppress the height of the light beam from becoming too high while converging the off-axis light beam that has passed through the stop, particularly at low magnification. Therefore, the diameter of the optical system can be reduced, and off-axis aberrations can be corrected well.
  • the emission angle becomes large at low magnification. Therefore, by providing the above-described configuration, the diameter reduction of the optical system and the favorable correction effect of the off-axis aberration become remarkable when the total length of the optical system is shortened.
  • the distance between the stop and the lens unit having positive refractive power decreases at high magnification.
  • the principal surface of the optical system can be positioned on the object side, and the above-described function of suppressing the height of the light beam from becoming too high while converging the off-axis light beam passing through the stop is reduced. Can be obtained to obtain a desired imaging magnification.
  • a lens group having a positive refractive power or a lens group having a negative refractive power may be disposed between the stop and a predetermined positive lens group.
  • the predetermined positive lens group at least include two or more positive lenses and one or more negative lenses.
  • the predetermined positive lens group has two or more positive lenses
  • the positive refractive power of the predetermined positive lens group can be shared by these positive lenses.
  • the predetermined positive lens group has one or more negative lenses
  • axial chromatic aberration and magnification chromatic aberration in the predetermined positive lens group can be corrected well.
  • variable magnification optical system of the present embodiment various aberrations are corrected well. Therefore, by combining the variable magnification optical system of the present embodiment with a predetermined imaging element, it is possible to further miniaturize the imaging device while maintaining a large observation range.
  • the positive lens and the negative lens may be cemented.
  • a plurality of predetermined positive lens groups are disposed on the image side of the stop, and the first predetermined positive lens group is one of the plurality of predetermined positive lens groups: It is preferable to arrange
  • ⁇ Gpmax is a positive lens group among all combinations for selecting two lens groups from the three or more lens groups when the predetermined positive lens group is composed of three or more lens groups. Of the amount of change in the spacing on the optical axis of the lens, the largest amount of change.
  • the amount of change in the distance between the two predetermined positive lens groups does not become too large.
  • the amount of movement of the lens unit is the amount of change in the distance between the lens unit and the image plane, and the distance between the lens unit and the image plane is calculated based on the image plane. For example, when the distance between the lens group and the image plane is D L at the low magnification end and D H at the high magnification end, the movement amount of the lens group is
  • conditional expression (3) it is preferable to satisfy the following conditional expression (3 ′). 0.01 ⁇ Gpmax / ⁇ Gpobj ⁇ 0.5 (3 ′) Further, it is more preferable to satisfy the following conditional expression (3 ′ ′) instead of the conditional expression (3). 0.02 ⁇ Gpmax / ⁇ Gpobj ⁇ 0.4 (3 ′ ′) Further, it is more preferable to satisfy the following conditional expression (3 ′ ′ ′) instead of the conditional expression (3). 0.03 ⁇ Gpmax / ⁇ Gpobj ⁇ 0.35 (3 ′ ′ ′)
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (4). 0.1 ⁇ f G1 / f G2 ⁇ 5 (4) here, f G1 is the focal length of the first lens group, f G2 is the focal length of the second lens group, It is.
  • the focal length of the first lens unit will not be too small.
  • various aberrations in the first lens group in particular, spherical aberration and field curvature can be corrected well.
  • the focal length of the first lens unit does not become too large.
  • conditional expression (4) it is preferable to satisfy the following conditional expression (4 ′). 0.2 ⁇ f G1 / f G2 ⁇ 4 (4 ′) Further, it is more preferable to satisfy the following conditional expression (4 ′ ′) instead of the conditional expression (4). 0.3 ⁇ f G1 / f G2 ⁇ 3 (4 ′ ′) Further, it is more preferable to satisfy the following conditional expression (4 ′ ′ ′) instead of the conditional expression (4). 0.4 ⁇ f G1 / f G2 ⁇ 2 (4 ′ ′ ′)
  • the stop moves from the image side to the object side at the time of zooming from the low magnification end to the high magnification end.
  • the movement of the stop during zooming changes the moving space of the lens group with respect to the entire length of the optical system. Therefore, the entire length of the optical system can be shortened while securing a desired magnification.
  • lateral chromatic aberration occurs in each of the lens unit located on the object side of the stop and the lens unit located on the image side of the stop.
  • the variable magnification optical system of this embodiment it is possible to balance the magnification chromatic aberration generated in each lens group regardless of the magnification change. Therefore, the lateral chromatic aberration of the entire optical system can be well corrected at both the low magnification and the high magnification.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (5).
  • f G1 is the focal length of the first lens group
  • f LGp is a focal length of a predetermined positive lens group at a low magnification end
  • the focal length of the predetermined positive lens unit does not become too large.
  • the focal length of the predetermined positive lens group will not be too small.
  • curvature of field and magnification chromatic aberration occur in a predetermined positive lens group, it is possible to suppress the generation amount from becoming too large. Therefore, in particular, off-axis aberration at low magnification can be favorably corrected.
  • f LGp is the focal length of one predetermined positive lens group.
  • f LGp is the focal length of this one lens group.
  • f LG p Is a combined focal length of the first predetermined positive lens group, the negative lens group, and the second predetermined positive lens group.
  • conditional expression (5) it is preferable to satisfy the following conditional expression (5 ′). 0.3 ⁇ f G1 / f LGp ⁇ 8 (5 ′) Further, it is more preferable to satisfy the following conditional expression (5 ′ ′) instead of the conditional expression (5). 0.35 ⁇ f G1 / f LGp ⁇ 4 (5 ′ ′) Further, it is more preferable to satisfy the following conditional expression (5 ′ ′ ′) instead of the conditional expression (5). 0.4 ⁇ f G1 / f LGp ⁇ 2 (5 ′ ′ ′)
  • variable magnification optical system of the present embodiment it is preferable that one or more predetermined positive lenses be provided, and a high dispersion glass material be used for the predetermined positive lens.
  • a high dispersion glass material has a high value of the partial dispersion ratio ⁇ gf. Therefore, by using a high dispersion glass material for the positive lens, it is possible to satisfactorily correct the chromatic aberration of g-line that is overcorrected.
  • the high dispersion glass material refers to a glass material having an Abbe number of 30 or less.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (6).
  • D HGpop is the distance on the optical axis from the lens surface closest to the object side to the object-side main surface in a predetermined positive lens group at the high magnification end
  • D HGpoi is the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side in the predetermined positive lens group at the high magnification end
  • the value of D HGpop is a positive value, and is located on the object side
  • the value of D HGpop is a negative value.
  • the positive refractive power of the object-side lens surface of the predetermined positive lens group does not become too large in the vicinity of the diaphragm where the height of the axial ray is high. It is possible to Therefore, it is possible to correct particularly the spherical aberration well.
  • the configuration of the predetermined positive lens group be the configuration of the telephoto and to position the principal point of the predetermined positive lens group on the object side .
  • a predetermined positive lens group is positioned in the vicinity of the stop. That is, since strong positive refractive power is given in the vicinity of the stop, the divergence of the on-axis light beam and the off-axis light beam can be suppressed. Therefore, it is possible to sufficiently correct curvature of field while suppressing the occurrence of coma. As a result, it is possible to miniaturize the optical system while enlarging the observation range, and to properly correct aberrations such as coma and field curvature.
  • the lens unit on the image side of the predetermined positive lens unit may have a negative refracting action. By doing this, it is possible to secure a desired magnification while shortening the overall length of the optical system.
  • D HGpoi is the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side in one predetermined positive lens group.
  • D HGpoi is the most image in a predetermined positive lens group positioned closest to the image side from the lens surface closest to the object side in the predetermined positive lens group positioned closest to the object side It is the distance on the optical axis to the side lens surface.
  • conditional expression (6) it is preferable to satisfy the following conditional expression (6 ′). -0.7 ⁇ D HGpop / D HGPoi ⁇ 0.55 (6 ′) Further, it is more preferable to satisfy the following conditional expression (6 ′ ′) instead of the conditional expression (6). -0.3 ⁇ D HGpop / D HGPoi ⁇ 0.5 (6 ′ ′) Further, it is more preferable to satisfy the following conditional expression (6 ′ ′ ′) instead of the conditional expression (6). 0 ⁇ D HGpop / D HGPoi ⁇ 0.3 (6 ''')
  • variable magnification optical system of the present embodiment it has an aperture stop and a predetermined negative lens group, and the predetermined negative lens group has negative refractive power and is disposed adjacent to the aperture It is preferable to satisfy conditional expression (7) of
  • a predetermined negative lens group is disposed adjacent to the stop.
  • that the diaphragm and the lens unit are adjacent means that the lens unit is not disposed between the diaphragm and the lens unit.
  • D s Gnos is a distance at which the value is maximized between the low magnification end and the high magnification end when the value changes during zooming.
  • conditional expression (7) it is preferable to satisfy the following conditional expression (7 ′).
  • conditional expression (7 ′ ′) instead of the conditional expression (7).
  • conditional expression (7 ′ ′ ′) instead of the conditional expression (7).
  • the predetermined negative lens group at least includes at least one positive lens and at least one negative lens, and the positive lens has a higher dispersion than the negative lens. It is preferable to use a glass material of
  • a high dispersion glass material has a high value of the partial dispersion ratio ⁇ gf. Therefore, by using a glass material having a large value of the partial dispersion ratio ⁇ gf as a positive lens, it is possible to satisfactorily correct the chromatic aberration of g-line that is overcorrected.
  • variable magnification optical system of the present embodiment it is preferable that the positive lens and the negative lens be cemented.
  • the predetermined negative lens group is disposed adjacent to the stop.
  • the ray height is high. Therefore, a predetermined negative lens group disposed in the vicinity of the stop is configured by a positive lens and a negative lens. Since the pair of the positive lens and the negative lens has a large chromatic aberration correction function, it is possible to suppress the occurrence of color coma by joining the lens pair.
  • variable magnification optical system is an optical system whose magnification varies from the low magnification end to the high magnification end, and is disposed closest to the object side and has a first lens group having positive refractive power, And a second lens unit disposed on the image side of the first lens unit and having negative refractive power, having a stop disposed on the object side of the second lens unit, and changing magnification
  • the second lens group moves, the distance between the first lens group and the second lens group changes, and the third lens group is disposed closer to the image than the second lens group, and the following conditional expression (8 It is characterized by satisfying.
  • ⁇ G2max is the maximum amount of movement of the second lens group on the optical axis
  • D HIGi is the distance on the optical axis from the lens surface closest to the object side of the third lens group at the high magnification end to the image plane, It is.
  • variable magnification optical system has the above-described basic configuration, and further causes the second lens unit to have a negative refractive power, and moves the second lens unit to move the first lens unit and the first lens unit.
  • the magnification is changed by changing the distance between the two lens units.
  • the stop is disposed closer to the object than the second lens unit, and the third lens unit is disposed closer to the image than the second lens unit.
  • the scaling is performed with the length fixed.
  • the second lens group has negative refractive power, it is possible to make the lens diameter smaller on the object side than the stop.
  • the third lens unit is disposed on the image side of the second lens unit.
  • the stop may be disposed inside the first lens group, or may be disposed between the first lens group and the second lens group.
  • variable magnification optical system of the present embodiment satisfies the conditional expression (8).
  • conditional expression (8) By not falling short of the lower limit value of conditional expression (8), it is possible to shorten the total length of the optical system while sufficiently securing the moving amount of the second lens unit which mainly bears the zooming action. It becomes possible. Further, in each of the first lens group and the second lens group, a desired variable magnification ratio can be secured without excessively increasing the absolute value of the refractive power. Therefore, various aberrations, in particular, field curvature can be corrected well in each of the first lens group and the second lens group. As a result, the aberration of the entire optical system can be corrected in a well-balanced manner, and each aberration can be corrected well.
  • the distance from the object-side lens of the third lens unit to the image plane does not become too short at high magnification. Therefore, when the magnification is high, a desired magnification can be obtained without the lens configuration of the third lens group becoming an extreme telephoto configuration. As a result, various aberrations in the third lens group, in particular spherical aberration and coma, can be corrected well.
  • variable magnification optical system of the present embodiment various aberrations are corrected well. Therefore, by combining the variable magnification optical system of the present embodiment with a predetermined imaging element, it is possible to further miniaturize the imaging device while maintaining a large observation range.
  • conditional expression (8) it is preferable to satisfy the following conditional expression (8 ′). 0.2 ⁇ ⁇ G2max / D HIGi ⁇ 1.7 (8 ′) Further, it is more preferable to satisfy the following conditional expression (8 ′ ′) instead of the conditional expression (8). 0.3 ⁇ ⁇ G2max / D HIGi ⁇ 1.5 (8 ′ ′) Further, it is more preferable to satisfy the following conditional expression (8 ′ ′ ′) instead of the conditional expression (8). 0.35 ⁇ ⁇ G2max / D HIGi ⁇ 1 (8 ′ ′ ′)
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (2). 0 ⁇ BF L /Y ⁇ 4.3 (2) here, BF L is the back focus at the low magnification end, Y is the maximum image height in the entire variable magnification optical system, It is.
  • conditional expression (2) has already been described, so the description will be omitted.
  • variable magnification optical system of the present embodiment it is preferable to have one or more predetermined positive lenses, and use a glass material of high dispersion for the predetermined positive lenses.
  • a high dispersion glass material has a high value of the partial dispersion ratio ⁇ gf. Therefore, by using a high dispersion glass material for the positive lens, it is possible to satisfactorily correct the chromatic aberration of g-line that is overcorrected.
  • the high dispersion glass material refers to a glass material having an Abbe number of 30 or less.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (4-1). ⁇ 2.5 ⁇ f G1 / f G2 ⁇ ⁇ 0.2 (4-1) here, f G1 is the focal length of the first lens group, f G2 is the focal length of the second lens group, It is.
  • the focal length of the second lens unit does not become too small.
  • the divergence of the axial light beam and the divergence of the off-axial light beam in the second lens group can be suppressed so as not to be too strong. Therefore, various aberrations, mainly coma at low magnification, and spherical aberration at high magnification can be corrected well.
  • the focal length of the second lens unit does not become too large.
  • the change in the distance between the first lens group and the second lens group makes it possible to produce most of the magnification change.
  • the negative refractive power of the second lens unit does not become too small, it is possible to sufficiently correct curvature of field particularly at high magnification.
  • conditional expression (4-1 ′) it is preferable to satisfy the following conditional expression (4-1 ′). ⁇ 2.4 ⁇ f G1 / f G2 ⁇ ⁇ 0.25 (4-1 ′) Further, it is more preferable to satisfy the following conditional expression (4-1 ′ ′) in place of the conditional expression (4-1). ⁇ 2.2 ⁇ f G1 / f G2 ⁇ ⁇ 0.3 (4-1 ′ ′) Further, it is more preferable to satisfy the following conditional expression (4-1 ′ ′ ′), instead of the conditional expression (4-1). ⁇ 2 ⁇ f G1 / f G2 ⁇ ⁇ 0.35 (4-1 ′ ′ ′)
  • the third lens unit has a positive refracting power, and is disposed closer to the second lens unit on the image side than the second lens unit, and during zooming It is preferable that the distance between the second lens unit and the third lens unit changes, and the following conditional expression (9) is satisfied. ⁇ 7.5 ⁇ f G3 / f G2 ⁇ ⁇ 1 (9) here, f G2 is the focal length of the second lens group, f G3 is the focal length of the third lens group, It is.
  • a third lens unit having a positive refractive power is disposed on the image side of the second lens unit.
  • the focal length of the third lens unit does not become too large. Therefore, especially at low magnification, it is possible to suppress the height of the light beam from becoming too high while converging the off-axis light flux diverged by the second lens unit by the third lens unit. Therefore, the diameter of the optical system can be reduced, and off-axis aberrations can be corrected well.
  • the focal length of the third lens unit does not become too short. Therefore, it is possible to suppress the generation of various aberrations generated in the third lens unit, in particular, the coma aberration and the lateral chromatic aberration. As a result, various aberrations of the entire optical system, in particular, off-axis aberrations at low magnification can be corrected well.
  • conditional expression (9 ′ ) it is preferable to satisfy the following conditional expression (9 ′). -7 ⁇ f G3 / f G2 ⁇ -1.3 (9 ') Further, it is more preferable to satisfy the following conditional expression (9 ′ ′) instead of the conditional expression (9). ⁇ 6 ⁇ f G3 / f G2 ⁇ ⁇ 1.7 (9 ′ ′) Further, it is more preferable to satisfy the following conditional expression (9 ′ ′ ′) instead of the conditional expression (9). ⁇ 5 ⁇ f G3 / f G2 ⁇ ⁇ 2 (9 ′ ′ ′)
  • the third lens unit having positive refractive power is disposed on the image side of the second lens unit, and one or more lens units on the image side of the third lens unit It is preferable to have a lens group and to satisfy the following conditional expression (10). 0.07 ⁇ f HG1G3 / f HGI ⁇ 1 (10) here, f HG1G3 is a combined focal length of the first lens group at the high magnification end, the second lens group, and the third lens group, f HGI is a combined focal length of a lens unit located on the image side of the third lens unit at the high magnification end, It is.
  • conditional expression (10) If the lower limit value of conditional expression (10) is not exceeded, the focal length of the lens unit positioned on the image side of the third lens unit will not be too large. In this case, a desired magnification can be obtained at high magnification without excessively increasing the magnification of the lens unit positioned on the image side of the third lens unit. Therefore, the aberration generated in the first to third lens groups is reduced on the image plane. As a result, various aberrations, mainly, spherical aberration and axial chromatic aberration at high magnification can be corrected well.
  • the combined focal length of the lens units from the first lens unit to the third lens unit does not become too small.
  • the off-axis light beam incident on the lens unit located on the image side of the third lens unit while suppressing the divergence of the off-axis light beam emitted from the object with a large numerical aperture.
  • various aberrations, in particular, curvature of field and lateral chromatic aberration can be favorably corrected while suppressing the occurrence of coma aberration in the lens unit positioned on the image side of the third lens unit.
  • conditional expression (10) it is preferable to satisfy the following conditional expression (10 ′). 0.08 ⁇ f HG1G3 / f HGI ⁇ 0.9 (10 ′) Further, it is more preferable to satisfy the following conditional expression (10 ′ ′) instead of the conditional expression (10). 0.1 ⁇ f HG1G3 / f HGI ⁇ 0.8 (10 ′ ′) Further, it is more preferable to satisfy the following conditional expression (10 ′ ′ ′) instead of the conditional expression (10). 0.2 ⁇ f HG1G3 / f HGI ⁇ 0.7 (10 ′ ′ ′)
  • the second lens group at least includes one or more positive lenses and one or more negative lenses, and the positive lens has a dispersion higher than that of the negative lens. It is preferable to use a glass material.
  • a high dispersion glass material has a high value of the partial dispersion ratio ⁇ gf. Therefore, by using a glass material having a large value of the partial dispersion ratio ⁇ gf as a positive lens, it is possible to satisfactorily correct the chromatic aberration of g-line that is overcorrected.
  • the second lens group have two or more negative lenses.
  • the negative refractive power of the second lens group can be shared by two or more negative lenses. This makes it possible to suppress excessive correction of spherical aberration in the second lens unit. Therefore, it is possible to stably and favorably correct the spherical aberration of the entire optical system regardless of the magnification change.
  • the first lens group have two or more sets of cemented lenses.
  • axial chromatic aberration can be well corrected while giving the first lens group a strong refracting action. Furthermore, by cementing the lens, it is possible to correct well the chromatic aberration of magnification and the color coma.
  • the second lens unit has a diverging action.
  • the aberration in the first lens unit is enlarged by the lens unit positioned closer to the image than the first lens unit. Therefore, the good correction of the axial chromatic aberration and the lateral chromatic aberration in the first lens group largely contributes to the good correction of the axial chromatic aberration and the lateral chromatic aberration in the entire optical system.
  • variable magnification optical system of the present embodiment has one or more positive lenses and one or more negative lenses on the image side of the third lens unit, and among the positive lenses and the negative lenses, It is preferable that the object-side positive lens disposed closest to the object side and the image-side negative lens disposed closest to the image satisfy the following conditional expression (11). 0.5 ⁇ D Hpn / D Hpi ⁇ 0.99 (11) D Hpn is the distance on the optical axis from the object side of the object-side positive lens at the high magnification end to the image side of the image-side negative lens, D Hpi is the distance on the optical axis from the object side of the object-side positive lens at the high magnification end to the image plane, It is.
  • the configuration of the lens unit located closer to the image side than the third lens it is possible to make the configuration of the lens unit located closer to the image side than the third lens to be a telephoto configuration.
  • the back focus can be shortened, the entire length of the optical system can be shortened.
  • the negative lens can be disposed at a position where the light beam diameter of the light converged by the positive lens becomes sufficiently small, it is possible to correct the field curvature well.
  • the back focus can be appropriately secured. As a result, even if ghosting occurs due to multiple reflections between the lens and the imaging device, it is possible to prevent ghosts from being incident on the imaging device surface at a high density.
  • conditional expression (11 ) it is preferable to satisfy the following conditional expression (11 ′). 0.55 ⁇ D Hpn / D Hpi ⁇ 0.95 (11 ′) Further, it is more preferable to satisfy the following conditional expression (11 ′ ′) instead of the conditional expression (11). 0.6 ⁇ D Hpn / D Hpi ⁇ 0.93 (11 ′ ′) Further, it is more preferable to satisfy the following conditional expression (11 ′ ′ ′) instead of the conditional expression (11). 0.65 ⁇ D Hpn / D Hpi ⁇ 0.9 (11 ′ ′ ′)
  • variable magnification optical system is an optical system whose magnification changes from the low magnification end to the high magnification end, and is disposed closest to the object side and has a first lens group having positive refractive power,
  • the variable magnification optical system has at least a second lens group disposed on the image side of the first lens group, and the variable magnification optical system is an optical system whose conjugate length changes at the time of zooming, and moves at the time of zooming And the following conditional expression (12) is satisfied. 0.01 ⁇
  • variable magnification optical system has the above-described basic configuration, and further includes a lens group that moves during zooming.
  • the conjugate length changes with the magnification change.
  • variable magnification optical system of the present embodiment satisfies the conditional expression (12).
  • conditional expression (12) By not falling below the lower limit value of the conditional expression (12), it is possible to secure a sufficient amount of change in conjugate length when zooming.
  • the relative positions of the lens units with respect to the three positions of the object position, the image position and the stop position can be adjusted regardless of the distance between the lens units. Therefore, various aberrations, in particular, lateral chromatic aberration and distortion can be corrected well.
  • variable magnification optical system of the present embodiment various aberrations are corrected well. Therefore, by combining the variable magnification optical system of the present embodiment with a predetermined imaging element, it is possible to further miniaturize the imaging device while maintaining a large observation range.
  • conditional expression (12 ′) it is preferable to satisfy the following conditional expression (12 ′).
  • conditional expression (12 ′ ′) it is more preferable to satisfy the following conditional expression (12 ′ ′) instead of the conditional expression (12).
  • conditional expression (12 ′ ′ ′) instead of the conditional expression (12).
  • the first lens group preferably includes the first object side lens disposed closest to the object side, and preferably satisfies the following conditional expression (13).
  • An optical system having a large numerical aperture on the object side is used as an optical system of a microscope.
  • the depth of field is generally small, it is necessary to accurately adjust the distance from the first object side lens to the object.
  • an actuator used for zooming or focusing it is generally difficult for an actuator used for zooming or focusing to have both a wide drive width and a high positional accuracy. From such a thing, higher positional accuracy can be easily realized by reducing the drive width.
  • conditional expression (13) By not exceeding the upper limit value of the conditional expression (13), it is possible to suppress the amount of change in the distance from the first object side lens to the object due to zooming to a small value. Therefore, it is possible to adjust the position of the lens group with high accuracy.
  • conditional expression (13 ) it is preferable to satisfy the following conditional expression (13 ′).
  • conditional expression (13 ′ ′) instead of the conditional expression (13).
  • conditional expression (13 ′ ′ ′) instead of the conditional expression (13).
  • the first lens group move so as to make the distance from the first lens group to the object constant.
  • the stage and the first lens group move substantially integrally during zooming.
  • the focus position does not significantly shift.
  • substantially integral means that the stage and the first lens group are driven by the same actuator for zooming.
  • each of the first lens group and the stage may be driven by different actuators. Therefore, when the magnification change is performed in a state where the fine adjustment of the distance satisfies the conditional expression (13), the drive of the stage and the first lens group is regarded as substantially integral even if the drive is performed by different actuators.
  • variable magnification optical system of the present embodiment is an optical system in which the magnification changes from the low magnification end to the high magnification end, and the first lens group having positive refractive power in order from the object side; And one or two lens groups having a positive refractive power, and one or two lens groups having a negative refractive power, which are adjacent to each other during zooming It is preferable that the distance to the lens group changes.
  • the stop be disposed between the second lens group and one or two lens groups having positive refractive power. Further, it is preferable that the stop move together with the second lens unit.
  • variable power optical system includes five lens groups, and in order from the object side, a first lens group having positive refractive power and a second lens having positive refractive power.
  • a lens group, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power, and adjacent lens groups at the time of zooming It is preferable that the distance between
  • the lens disposed closest to the image side is preferably a meniscus lens having a convex surface directed to the image side.
  • the lens positioned second from the image side is preferably a biconvex positive lens.
  • the object side surface in the lens disposed closest to the object side, preferably has a convex surface facing the object side.
  • the object side surface preferably has a convex surface facing the object side.
  • the lens disposed closest to the image side is preferably a meniscus lens having a convex surface facing the object side.
  • the lens disposed closest to the object side preferably has a convex image surface facing the image side. Further, in the fourth lens group, it is preferable that, in the lens disposed closest to the image side, the object side face has a convex surface facing the image side. In the fourth lens group, it is preferable that the lens disposed closest to the object side have positive refractive power. In the fourth lens group, it is preferable that the lens disposed closest to the image side have negative refractive power.
  • the lens disposed closest to the object side has a convex surface facing the image side. Further, in the fifth lens group, it is preferable that the lens disposed closest to the image side has the object side surface convex on the image side. In the fifth lens group, it is preferable that the lens disposed closest to the object side have positive refractive power. In the fifth lens group, the lens disposed closest to the image side preferably has negative refractive power.
  • variable magnification optical system of the present embodiment is an optical system in which the magnification changes from the low magnification end to the high magnification end, and in order from the object side, the first lens group having positive refractive power and the negative And a fourth lens group having a positive refractive power, and a fourth lens group having a positive refractive power, and the distance between adjacent lens groups during zooming is It is preferable to change.
  • the stop be disposed in the first lens group or between the first lens group and the second lens group.
  • the lens disposed closest to the image side is preferably a plano-convex lens.
  • the lens disposed closest to the image side it is preferable that the lens disposed closest to the image side have a positive refractive power.
  • the lens disposed closest to the object side has a convex surface facing the object side on the image side surface.
  • the lens disposed closest to the image side has a convex surface facing the object side.
  • the lens disposed closest to the object side have negative refractive power.
  • the lens disposed closest to the image side preferably has positive refractive power.
  • the lens disposed closest to the object is preferably a biconvex positive lens.
  • the lens disposed closest to the image side has a convex surface facing the object side on the image side surface.
  • the object side surface preferably has a convex surface facing the object side.
  • the lens disposed closest to the image side preferably has a convex image side facing the object side.
  • variable magnification optical system is an optical system in which the magnification changes from the low magnification end to the high magnification end, and one or two lens groups having positive refractive power in order from the object side And one lens group having negative refractive power, one or two lens groups having positive refractive power, and one or two lens groups having negative refractive power, during zooming Preferably, the distance between adjacent lens groups is changed.
  • the stop is in one or two lens groups having positive refractive power located closest to the object side, or one or two lens groups having positive refractive power located on the most object side, It is preferable to be disposed between one lens group having negative refractive power.
  • variable power optical system includes five lens groups, and in order from the object side, a first lens group having positive refractive power and a second lens having positive refractive power.
  • a lens group, a third lens group having a negative refractive power, a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power, and adjacent lens groups during zooming It is preferable that the distance between
  • the lens disposed closest to the object side is preferably a meniscus lens having a convex surface facing the image side.
  • the object side face has a convex surface facing the object side.
  • the lens disposed closest to the object side have positive refractive power.
  • the lens disposed closest to the image side have a positive refractive power.
  • the lens disposed closest to the object side is preferably a meniscus lens having a convex surface facing the image side.
  • the lens disposed closest to the image side is preferably a meniscus lens having a convex surface facing the image side.
  • the lens disposed closest to the object side preferably has positive refractive power.
  • the lens disposed closest to the object side is preferably a meniscus lens having a convex surface facing the image side.
  • the lens disposed closest to the image side is preferably a meniscus lens having a convex surface facing the image side.
  • the lens disposed closest to the object side preferably has positive refractive power.
  • the lens disposed closest to the object side is preferably a biconvex positive lens.
  • the lens disposed closest to the image side is preferably a biconcave negative lens.
  • the fourth lens group is composed of, in order from the object side, a biconvex positive lens, a biconvex positive lens, and a biconcave negative lens.
  • the lens disposed closest to the object side has a convex object facing the object side.
  • the lens disposed closest to the image side is preferably a biconcave negative lens.
  • the lens disposed closest to the image side preferably has negative refractive power.
  • adjacent lenses are resin lenses.
  • the number of adjacent lenses may be two or more.
  • the lens is made of resin
  • a method of pressing the lens into the lens frame is used as a lens holding method, or a frame is formed on the edge of one lens and another lens is fitted to this frame.
  • a scheme can be used. By using such a method, decentering between lenses can be reduced.
  • the image pickup apparatus of the present embodiment is an image pickup apparatus having an image pickup element and a variable magnification optical system, and an optical image is formed on the image pickup element by the variable magnification optical system, and the variable magnification optical system has a low magnification.
  • An optical system whose magnification changes from the end to the high magnification end, and is disposed closest to the object side, and has a first lens group having positive refractive power, and a first lens group disposed closer to the image side than the first lens group
  • the zoom lens according to the present invention is characterized in that it has at least a 2-lens group, and the distance between the first lens group and the second lens group is variable during zooming, and the following conditional expressions (14) and (15) are satisfied. .
  • Y is the maximum image height in the entire variable magnification optical system
  • p is the pixel pitch in the imaging device
  • NA H is the object side numerical aperture of the variable magnification optical system at the high magnification end, It is.
  • variable magnification optical system used in the image pickup apparatus of this embodiment has the above-described basic configuration.
  • the technical significance of the basic configuration has already been described, so the description is omitted.
  • the number of fields of view is usually about 22 mm.
  • the number of fields of view of 22 mm is about 11 mm when converted to the image height of the variable magnification optical system.
  • variable magnification optical system of this embodiment when used for an optical system of a microscope, the aberration of the variable magnification optical system is favorably corrected to an image height of about 11 mm in order to obtain an observation range equivalent to 22 mm of field of view. Need to be.
  • a digital microscope observes an image of a captured object image on a monitor.
  • the pixel pitch of the imaging device is sufficiently small with respect to the image height, an observation range equivalent to the field number of 22 mm can be obtained even if the image height is small.
  • the image height is not larger than 11 mm (corresponding to the number of fields of view 22 mm)
  • an observation range corresponding to a larger number of fields of view can be obtained. In this case, it is needless to say that the zoom optical system is required to have higher resolution.
  • the Airy disc diameter on the primary imaging plane is about 28 ⁇ m.
  • the conditional expressions (14) and (15) it is possible to secure a sufficiently high resolution in the variable magnification optical system. In this case, it is possible to obtain an image of an object at a sufficiently fine sampling pitch with respect to the image height. Therefore, without making the image height in the variable magnification optical system larger than 11 mm, it is possible to obtain an observation range with a field number of about 22 mm or a wide observation range corresponding to a field number of 22 mm or more.
  • the image height of 4.5 mm is the lower limit value of the conditional expression (14).
  • the aberration is corrected well to an image height of 4.5 mm in the variable magnification optical system, an observation range corresponding to a field number of 22 mm can be realized.
  • the image height in which the aberration is well corrected is about 9 mm, a wide observation range equivalent to the field number of 44 mm can be realized although the image height is smaller than that of a normal microscope.
  • the image height in the variable magnification optical system can be increased with high resolution without increasing the image height corresponding to the number of fields in a normal microscope.
  • An observation range equal to or greater than that of the microscope can be taken. Therefore, it is possible to realize an image pickup apparatus capable of obtaining an image with high resolution and small size while maintaining a wide observation range.
  • the pixel pitch of the imaging device be 3 ⁇ m or less.
  • conditional expression (14 ) instead of the conditional expression (14), it is preferable to satisfy the following conditional expression (14 ′). 3500 ⁇ 2 ⁇ Y / p (14 ′) Further, it is more preferable to satisfy the following conditional expression (14 ′ ′) instead of the conditional expression (14). 4000 ⁇ 2 ⁇ Y / p (14 ′ ′) Further, it is more preferable to satisfy the following conditional expression (14 ′ ′ ′) instead of the conditional expression (14). 4800 ⁇ 2 ⁇ Y / p (14 ′ ′ ′)
  • conditional expression (15 ′) it is preferable to satisfy the following conditional expression (15 ′).
  • 0.1 ⁇ NA H (15 ′) it is more preferable to satisfy the following conditional expression (15 ′ ′) instead of the conditional expression (15).
  • 0.12 ⁇ NA H (15 '') it is more preferable to satisfy the following conditional expression (15 ′ ′ ′) instead of the conditional expression (15).
  • the imaging device of this embodiment satisfies the following conditional expression (16).
  • ⁇ H 90 is the diameter of 90% encircled energy of the point image intensity distribution on the best image plane when the point image of wavelength e is formed near the approximate center of the imaging device at the high magnification end of the variable magnification optical system
  • p is the pixel pitch in the imaging device
  • the imaging device can be miniaturized while maintaining high resolution. Especially at high magnification, high resolution is required.
  • the point image intensity distribution has a spread, light representing the point image intensity distribution is received by a plurality of pixels.
  • the light intensity in the periphery decreases sharply compared to the center.
  • most of the light ie, most of the encircled energy, is concentrated near the center of the point image. Therefore, high resolution can be obtained if most of the light of encircled energy is incident on one pixel located at the center of the point image.
  • variable magnification optical system used in the image pickup apparatus of the present embodiment, various aberrations are corrected well to such an extent that light occupying most of encircled energy is incident on one pixel. Therefore, by combining the variable magnification optical system of the present embodiment with a predetermined imaging element, it is possible to further miniaturize the imaging device while maintaining a large observation range.
  • conditional expression (16 ′) it is preferable to satisfy the following conditional expression (16 ′). 2 ⁇ H90 / p ⁇ 9 (16 ') Further, it is more preferable to satisfy the following conditional expression (16 ′ ′) instead of the conditional expression (16). 3 ⁇ H90 / p ⁇ 8 (16 ′ ′) Moreover, it is more preferable to satisfy the following conditional expression (16 ′ ′ ′) instead of the conditional expression (16). 4 ⁇ H90 / p ⁇ 6 (16 ''')
  • the imaging device of this embodiment satisfies the following conditional expression (17). 0.06 ⁇ NA ' H (17) here, NA ' H is the numerical aperture on the image side of the variable magnification optical system at the high magnification end, It is.
  • variable magnification optical system By increasing the numerical aperture on the image side of the variable magnification optical system, it is possible to form an image with a resolution suitable for an imaging device with a small pixel pitch.
  • high-magnification observation requires higher resolution. Therefore, by satisfying the conditional expression (17) at high magnification, good imaging can be performed in the variable magnification optical system even if an imaging device having a pixel pitch of 3 ⁇ m or less is used. Further, by combining this variable magnification optical system with an image pickup device having a small pixel pitch, it becomes possible to miniaturize the apparatus while maintaining a large observation range.
  • conditional expression (17 ′) it is preferable to satisfy the following conditional expression (17 ′). 0.08 ⁇ NA ' H (17') Further, it is more preferable to satisfy the following conditional expression (17 ′ ′) instead of the conditional expression (17). 0.1 ⁇ NA ' H (17'') Moreover, it is more preferable to satisfy the following conditional expression (17 ′ ′ ′) instead of the conditional expression (17). 0.12 ⁇ NA ' H (17''')
  • the imaging device of this embodiment satisfies the following conditional expression (18). -7 ⁇ LT L / p ⁇ 7 (18) here, LT L is a distance between the centers of gravity at the low power end of the variable power optical system, heavy inter-axis distance of 70% of the position of the maximum image height, center of gravity and the d-line of the point spread at the C line Distance between the point image intensity distribution and p is the pixel pitch in the imaging device, It is.
  • the imaging performance at the periphery of the image is important.
  • it is required of the variable magnification optical system that the magnification chromatic aberration at the peripheral portion is small. It is possible to suppress the extent to which digital correction (image processing) is performed on the color blur produced in the image due to the magnification chromatic aberration.
  • digital correction image processing
  • the amount of color bleeding due to magnification chromatic aberration of the variable magnification optical system is too large with respect to the pixel pitch, even digital correction can not be sufficiently corrected.
  • the point image intensity distribution is also asymmetric.
  • LT L rather than seek from the center of gravity of the point spread, it may be obtained from the position of the maximum intensity in the point spread function.
  • conditional expression (18 ′) it is preferable to satisfy the following conditional expression (18 ′).
  • -5 ⁇ LT L / p ⁇ 5 (18 ') it is more preferable to satisfy the following conditional expression (18 ′ ′) instead of the conditional expression (18).
  • -4 ⁇ LT L / p ⁇ 4 (18 '') it is more preferable to satisfy the following conditional expression (18 ′ ′ ′) instead of the conditional expression (18).
  • the imaging device of this embodiment satisfies the following conditional expression (19).
  • AT H is the difference in the vicinity of substantially the center of the imaging device, the best focus position of the best focus position and the d-line on the C line
  • p is the pixel pitch in the imaging device, It is.
  • imaging performance at the center of the image is important.
  • high resolution is required, and in particular, it is required of the variable magnification optical system that axial chromatic aberration is small.
  • the depth of focus is increased by decreasing the numerical aperture on the image side or increasing the spherical aberration, thereby reducing color blur due to axial chromatic aberration.
  • conditional expression (19 ′) it is preferable to satisfy the following conditional expression (19 ′).
  • -40 ⁇ AT H / p ⁇ 40 (19 ') it is more preferable to satisfy the following conditional expression (19 ′ ′) instead of the conditional expression (19).
  • -35 ⁇ AT H / p ⁇ 35 (19 '') it is more preferable to satisfy the following conditional expression (19 ′ ′ ′) instead of the conditional expression (19).
  • the imaging device of this embodiment satisfies the following conditional expressions (20) and (21). -7 ° ⁇ CRA Lobj ⁇ 7 ° (20) -7 ° ⁇ CRA Hobj ⁇ 7 ° (21) here, CRA Lobj is the angle between the object-side chief ray at the low magnification end and the optical axis, CRA Hobj is the angle between the object-side chief ray at the high magnification end and the optical axis, The object-side chief ray is a chief ray that reaches 90% of the maximum image height among the chief rays incident on the first lens group, It is. As for positive and negative angles, the angle measured in the clockwise direction from the optical axis is negative, and the angle measured in the counterclockwise direction is positive.
  • variable magnification optical system By not falling below the lower limit value of conditional expressions (20) and (21) and not exceeding the upper limit value, it is possible to appropriately ensure the telecentricity on the object side in the variable magnification optical system. . That is, the off-axis chief ray entering the first lens group from the object can be made more parallel to the optical axis. As a result, it is possible to make the variable magnification optical system used in the imaging apparatus of the present embodiment an optical system that is more telecentric on the object side.
  • the angle between the object side chief ray and the optical axis is the angle at an arbitrary position between the object plane and the object side lens surface of the first lens group.
  • the variation in magnification is small. That is, even if the distance from the optical system to the object slightly changes, the fluctuation of the size of the optical image formed by the optical system can be suppressed. From such a thing, for example, when the optical system used for the imaging device of this embodiment is used for dimension measurement, the object position with respect to the optical system slightly changes in the optical axis direction, thereby the distance from the optical system to the object There is little variation in the size of the optical image even if there is a slight change in. Therefore, in the imaging device of the present embodiment, the size of the object can be accurately measured even if the distance from the optical system to the object changes a little.
  • the size of the object is the size in the plane perpendicular to the optical axis.
  • conditional expression (20 ′) it is preferable to satisfy the following conditional expression (20 ′).
  • -6 ° ⁇ CRA Lobj ⁇ 6 ° (20 ') it is more preferable to satisfy the following conditional expression (20 ′ ′) instead of the conditional expression (20).
  • -5.5 ° ⁇ CRA Lobj ⁇ 5.5 ° (20 '') it is more preferable to satisfy the following conditional expression (20 ′ ′ ′) instead of the conditional expression (20).
  • conditional expression (21 ) instead of the conditional expression (21), it is preferable to satisfy the following conditional expression (21 ′). -6 ° ⁇ CRA Hobj ⁇ 6 ° (21 ') Moreover, it is more preferable to satisfy the following conditional expression (21 ′ ′) instead of the conditional expression (21). -5.5 ° ⁇ CRA Hobj ⁇ 5.5 ° (21 ′ ′) Further, it is more preferable to satisfy the following conditional expression (21 ′ ′ ′) instead of the conditional expression (21). -5 ° ⁇ CRA Hobj ⁇ 5 ° (21 ''')
  • the imaging device of the present embodiment it is preferable to automatically focus while detecting the contrast of the image of the optical image.
  • the user of the imaging device can smoothly perform observation at different magnifications.
  • variable magnification in the variable magnification optical system can also be automatically performed. In this way, for example, when the user performs observation at different magnifications, it is possible to change to different magnifications with one touch. In addition, it is possible to automate low-magnification rough observation and high-magnification detailed observation in a series of sequences.
  • the imaging device of the present embodiment it is preferable to focus by moving the imaging element in the optical axis direction.
  • the distance from the variable magnification optical system to the object In order to increase the object-side numerical aperture of the variable magnification optical system at the time of high magnification and to realize good aberration correction, in many cases, the distance from the variable magnification optical system to the object must be shortened. However, in the optical system in which the distance from the variable magnification optical system to the object is shortened, if the method of focusing by changing the distance to the object, the optical system collides with the object, and one of them is broken. It can happen.
  • variable magnification optical system of the present embodiment has a relatively small depth of focus on the image side. Therefore, the movement amount of the imaging device can be reduced. Because of this, as a focusing method, a method of moving the imaging device in the optical axis direction for focusing is suitable.
  • the image pickup apparatus of the present embodiment is characterized by having any one of the above-described variable magnification optical systems and an image pickup element.
  • the imaging system of the present embodiment is characterized by including any one of the above-described imaging devices, a stage for holding an object to be observed, and a light source for illuminating the object.
  • the position of the object relative to the imaging device can be stably held.
  • the resolution of the imaging device can be fully utilized, and a good image can be obtained.
  • the noise at the time of imaging can be reduced by irradiating the object with the illumination light by the illumination device. As a result, it is possible to obtain a high resolution image.
  • the imaging system of the present embodiment it is preferable to focus by moving the stage in the optical axis direction.
  • the zoom optical system used in the imaging apparatus of the present embodiment becomes a telecentric optical system on the object side by satisfying (20) and (21).
  • variation in image size due to magnification variation due to focusing or distortion is suppressed by changing the distance to the object and focusing. Therefore, the size of the object can be measured more accurately.
  • the movable body can be made relatively lightweight. . As a result, accurate focusing is possible.
  • each conditional expression since the function can be made more reliable by limiting either or both of a lower limit and an upper limit, it is preferable. Further, for each conditional expression, only the upper limit value or the lower limit value of the numerical range of the more limited conditional expression may be limited. Further, in limiting the numerical range of the conditional expression, the upper limit value or the lower limit value of each of the above conditional expressions may be set as the upper limit value or the lower limit value of the other conditional expressions.
  • variable magnification optical system according to an aspect of the present invention will be described in detail based on the drawings.
  • the present invention is not limited by this embodiment.
  • the positive and negative refractive powers are based on the paraxial radius of curvature.
  • FIG. 1 is a cross-sectional view (lens cross-sectional view) along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 1, wherein (a) is a low magnification end Sectional view, (b) is a sectional view at the high magnification end.
  • C represents a cover glass
  • I represents an imaging surface of an imaging device.
  • FIG. 2 is an aberration diagram at the time of infinite object point focusing of the variable magnification optical system according to Example 1.
  • FIG. Here, "FIY" indicates the image height.
  • the symbols in the aberration diagrams are common to the examples described later.
  • (a), (b), (c) and (d) respectively indicate spherical aberration (SA), astigmatism (AS) and distortion (DT) at the low magnification end.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC Lateral chromatic aberration
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • the variable magnification optical system of Example 1 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. And a third lens group G3 of positive refractive power and a fourth lens group G4 of negative refractive power.
  • S indicates a stop (hereinafter referred to as an aperture stop S)
  • C indicates a cover glass
  • I indicates an imaging surface of an imaging element.
  • the first lens group G1 is composed of a biconcave negative lens L1, a positive meniscus lens L2 with a convex surface facing the object side, and a biconvex positive lens L3.
  • the biconcave negative lens L1 and the positive meniscus lens L2 are cemented.
  • the second lens group G2 includes a biconvex positive lens L4, a biconvex positive lens L5, a biconcave negative lens L6, a positive meniscus lens L7 having a convex surface on the image side, and a negative meniscus having a convex surface on the image side It consists of a lens L8.
  • the positive meniscus lens L7 and the negative meniscus lens L8 are cemented.
  • the third lens group G3 has a positive meniscus lens L9 having a convex surface on the image side, a negative meniscus lens L10 having a convex surface on the image side, a positive meniscus lens L11 having a convex surface on the image side, and a convex surface on the object side And a biconvex positive lens L13, a biconvex positive lens L14, and a biconcave negative lens L15.
  • the positive meniscus lens L9, the negative meniscus lens L10, and the positive meniscus lens L11 are cemented.
  • the fourth lens group G4 is composed of a positive meniscus lens L16 with a convex surface facing the image side, and a biconcave negative lens L17.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the negative meniscus lens L8 on the image side than the second lens group G2.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, and the aperture stop S moves to the object side with the second lens group G2,
  • the third lens group G3 moves to the object side, and the fourth lens group G4 is fixed.
  • the lens group being fixed means that the lens group is stationary.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 increases.
  • the aspheric surface includes both surfaces of the biconvex positive lens L3, both surfaces of the biconvex positive lens L4, both surfaces of the biconvex positive lens L5, both surfaces of the biconcave negative lens L6, and both surfaces of the positive meniscus lens L12. It is used for 20 surfaces: both surfaces of the positive lens L13, both surfaces of the biconvex positive lens L14, both surfaces of the biconcave negative lens L15, both surfaces of the positive meniscus lens L16, and both surfaces of the biconcave negative lens L17.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.1 ⁇ m. Further, the third lens group G3 corresponds to a predetermined positive lens group. The fourth lens group G4 has a resin lens.
  • FIG. 3 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 2, wherein (a) is a cross sectional view at a low magnification end; ) Is a cross-sectional view in an intermediate state, and FIG. Also in Examples 3 to 19 described later, lens cross-sectional views and aberration diagrams at a low magnification end, an intermediate state, and a high magnification end are shown.
  • FIG. 4 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 2.
  • FIG. 4 In these aberration diagrams, (a), (b), (c) and (d) respectively indicate spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration at the low magnification end. (CC) is shown.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration at the low magnification end.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • (i), (j), (k) and (l) indicate spherical aberration (SA), astigmatism (AS), distortion (DT) and lateral chromatic aberration (CC) at the high magnification end, respectively. ing.
  • the variable magnification optical system of Example 2 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. It has a third lens group G3 of positive refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 has a negative meniscus lens L1 having a convex surface on the object side, a positive meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a positive meniscus lens having a convex surface on the image side It consists of L4.
  • the negative meniscus lens L1 and the positive meniscus lens L2 are cemented.
  • the second lens group G2 is composed of a biconvex positive lens L5, a biconvex positive lens L6, a biconcave negative lens L7, a biconvex positive lens L8, and a negative meniscus lens L9 having a convex surface facing the image side.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the third lens group G3 is composed of a biconvex positive lens L10, a biconcave negative lens L11, a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface directed to the object side.
  • the biconvex positive lens L10, the biconcave negative lens L11, and the biconvex positive lens L12 are cemented.
  • the fourth lens group G4 is composed of a biconvex positive lens L14, a biconvex positive lens L15, and a biconcave negative lens L16.
  • the fifth lens group G5 is composed of a positive meniscus lens L17 with a convex surface facing the image side, a positive meniscus lens L18 with a convex surface facing the image side, and a biconcave negative lens L19.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the negative meniscus lens L9 on the image side than the second lens group G2.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, and the aperture stop S moves to the object side with the second lens group G2,
  • the third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 narrows from the low magnification end to the middle and widens from the middle to the high magnification end.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the aspheric surface includes an object side surface of the biconvex positive lens L3, an image side surface of the positive meniscus lens L4, both surfaces of the biconvex positive lens L5, both surfaces of the biconvex positive lens L6, and both surfaces of the biconcave negative lens L7.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.1 ⁇ m.
  • the third lens group G3 and the fourth lens group G4 correspond to a predetermined positive lens group.
  • the second lens group G2, the fourth lens group G4, and the fifth lens group G5 have resin lenses.
  • FIG. 5 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 3.
  • FIG. 6 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 3.
  • a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S are arranged in order from the object side. It has a third lens group G3 of positive refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 has a negative meniscus lens L1 having a convex surface on the object side, a positive meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a positive meniscus lens having a convex surface on the image side It consists of L4.
  • the negative meniscus lens L1 and the positive meniscus lens L2 are cemented.
  • the biconvex positive lens L3 and the positive meniscus lens L4 are cemented.
  • the second lens group G2 is composed of a biconvex positive lens L5, a biconvex positive lens L6, a biconcave negative lens L7, a biconvex positive lens L8, and a negative meniscus lens L9 having a convex surface facing the image side.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the third lens group G3 is composed of a negative meniscus lens L10 having a convex surface on the object side, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface on the object side.
  • the negative meniscus lens L10 and the biconvex positive lens L11 are cemented.
  • the fourth lens group G4 is composed of a biconvex positive lens L13, a biconvex positive lens L14, and a biconcave negative lens L15.
  • the fifth lens group G5 is composed of a positive meniscus lens L16 having a convex surface on the image side, a negative meniscus lens L17 having a convex surface on the image side, and a negative meniscus lens L18 having a convex surface on the image side.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the negative meniscus lens L9 on the image side than the second lens group G2.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, and the aperture stop S moves to the object side with the second lens group G2,
  • the third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the aspheric surface includes both surfaces of the biconvex positive lens L5, both surfaces of the biconvex positive lens L6, both surfaces of the biconcave negative lens L7, both surfaces of the biconvex positive lens L13, and both surfaces of the biconvex positive lens L14. It is used for 14 surfaces of both surfaces of concave negative lens L15, and both surfaces of negative meniscus lens L18.
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.8 ⁇ m.
  • the third lens group G3 and the fourth lens group G4 correspond to a predetermined positive lens group.
  • the second lens group G2 and the fourth lens group G4 have resin lenses.
  • FIG. 7 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 4.
  • FIG. 8 is an aberration diagram at the time of infinity object point focusing of the variable magnification optical system according to Example 4.
  • the variable magnification optical system of Example 4 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. It has a third lens group G3 of positive refractive power, a fourth lens group G4 of negative refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 has a negative meniscus lens L1 having a convex surface on the object side, a positive meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a positive meniscus lens having a convex surface on the image side It consists of L4.
  • the negative meniscus lens L1 and the positive meniscus lens L2 are cemented.
  • the biconvex positive lens L3 and the positive meniscus lens L4 are cemented.
  • the second lens group G2 is composed of a biconvex positive lens L5, a biconvex positive lens L6, a biconcave negative lens L7, a biconvex positive lens L8, and a negative meniscus lens L9 having a convex surface facing the image side.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the third lens group G3 has a negative meniscus lens L10 with a convex surface facing the object side, a biconvex positive lens L11, a negative meniscus lens L12 with a convex surface facing the object side, a biconvex positive lens L13, and a biconvex positive lens. It consists of a lens L14 and a biconcave negative lens L15.
  • the negative meniscus lens L10 and the biconvex positive lens L11 are cemented.
  • the fourth lens group G4 is composed of a positive meniscus lens L16 with a convex surface facing the image side, and a biconcave negative lens L17.
  • the fifth lens group G5 is composed of a biconvex positive lens L18 and a biconcave negative lens L19.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the negative meniscus lens L9 on the image side than the second lens group G2.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, and the aperture stop S moves to the object side with the second lens group G2,
  • the third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 increases.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the aspheric surface includes both surfaces of the biconvex positive lens L5, both surfaces of the biconvex positive lens L6, both surfaces of the biconcave negative lens L7, both surfaces of the biconvex positive lens L13, and both surfaces of the biconvex positive lens L14. It is used for 14 surfaces of both surfaces of concave negative lens L15, and both surfaces of biconcave negative lens L19.
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.2 ⁇ m.
  • the third lens group G3 corresponds to a predetermined positive lens group.
  • the second lens group G2 and the third lens group G3 have resin lenses.
  • FIG. 9 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 5.
  • FIG. 10 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 5.
  • variable magnification optical system of Example 5 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S It has a third lens group G3 of positive refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface on the image side, a biconcave negative lens L2, a biconvex positive lens L3, and a negative meniscus lens L4 having a convex surface on the image side.
  • the positive meniscus lens L1 and the biconcave negative lens L2 are cemented.
  • the biconvex positive lens L3 and the negative meniscus lens L4 are cemented.
  • the second lens group G2 is composed of a positive meniscus lens L5 having a convex surface on the object side, a biconcave negative lens L6, a biconvex positive lens L7, and a negative meniscus lens L8 having a convex surface on the image side.
  • the biconvex positive lens L7 and the negative meniscus lens L8 are cemented.
  • the third lens group G3 is composed of a negative meniscus lens L9 having a convex surface on the object side, a biconvex positive lens L10, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface on the object side.
  • the negative meniscus lens L9 and the biconvex positive lens L10 are cemented.
  • the fourth lens group G4 is composed of a positive meniscus lens L13 with a convex surface facing the image side and a negative meniscus lens L14 with a convex surface facing the image side.
  • the fifth lens group G5 is composed of a positive meniscus lens L15 with a convex surface facing the image side, and a biconcave negative lens L16.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the negative meniscus lens L8 on the image side than the second lens group G2.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, and the aperture stop S moves to the object side with the second lens group G2,
  • the third lens group G3 moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 extends from the low magnification end to the middle and narrows from the middle to the high magnification end.
  • the distance between the third lens group G3 and the fourth lens group G4 extends from the low magnification end to the middle and narrows from the middle to the high magnification end.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the aspheric surface includes 10 surfaces: both surfaces of the positive meniscus lens L5, both surfaces of the biconcave negative lens L6, both surfaces of the biconvex positive lens L11, both surfaces of the negative meniscus lens L12, and both surfaces of the biconcave negative lens L16. It is used.
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.2 ⁇ m.
  • the third lens group G3 corresponds to a predetermined positive lens group.
  • the second lens group G2 and the third lens group G3 have resin lenses.
  • FIG. 11 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 6.
  • FIG. 12 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 6.
  • the variable magnification optical system of Example 6 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. And a third lens group G3 of negative refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 has a positive meniscus lens L1 having a convex surface on the image side, a negative meniscus lens L2 having a convex surface on the image side, a positive meniscus lens L3 having a convex surface on the image side, and a biconvex positive lens It consists of L4.
  • the positive meniscus lens L1, the negative meniscus lens L2, and the positive meniscus lens L3 are cemented.
  • the second lens group G2 is composed of a positive meniscus lens L5 having a convex surface on the image side, a biconvex positive lens L6, and a negative meniscus lens L7 having a convex surface on the image side.
  • the biconvex positive lens L6 and the negative meniscus lens L7 are cemented.
  • the third lens group G3 is composed of a positive meniscus lens L8 with a convex surface facing the image side and a negative meniscus lens L9 with a convex surface facing the image side.
  • the fourth lens group G4 is composed of a biconvex positive lens L10, a biconvex positive lens L11, and a biconcave negative lens L12.
  • the biconvex positive lens L11 and the biconcave negative lens L12 are cemented.
  • the fifth lens group G5 has a positive meniscus lens L13 having a convex surface on the object side, a negative meniscus lens L14 having a convex surface on the object side, a positive meniscus lens L15 having a convex surface on the image side, and a biconcave negative lens It consists of L16.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L8 on the object side than the third lens group G3.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, the aperture stop S is fixed, and the third lens group G3 is image side After moving to the object side, it moves to the object side, the fourth lens group G4 moves to the object side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 increases.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the distance between the aperture stop S and the third lens group G3 extends from the low magnification end to the middle and narrows from the middle to the high magnification end.
  • an image side surface of the positive meniscus lens L5 an image side surface of the biconvex positive lens L10, an object side surface of the positive meniscus lens L13, and an object side surface of the biconcave negative lens L16.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.1 ⁇ m.
  • the fourth lens group G4 corresponds to a predetermined positive lens group.
  • the third lens group G3 corresponds to a predetermined negative lens group.
  • FIG. 13 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 7.
  • FIG. 14 is an aberration drawing of the zoom optical system according to Example 7 when focusing on an infinite object point.
  • the variable magnification optical system of Example 7 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. And a third lens group G3 of negative refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface on the image side, a biconcave negative lens L2, a biconvex positive lens L3, and a positive meniscus lens L4 having a convex surface on the object side.
  • the positive meniscus lens L1, the biconcave negative lens L2, and the biconvex positive lens L3 are cemented.
  • the second lens group G2 is composed of a positive meniscus lens L5 having a convex surface on the image side, a positive meniscus lens L6 having a convex surface on the image side, and a negative meniscus lens L7 having a convex surface on the image side.
  • the positive meniscus lens L6 and the negative meniscus lens L7 are cemented.
  • the third lens group G3 is composed of a positive meniscus lens L8 with a convex surface facing the image side and a negative meniscus lens L9 with a convex surface facing the image side.
  • the fourth lens group G4 is composed of a biconvex positive lens L10, a biconvex positive lens L11, and a biconcave negative lens L12.
  • the biconvex positive lens L11 and the biconcave negative lens L12 are cemented.
  • the fifth lens group G5 is composed of a biconvex positive lens L13, a biconcave negative lens L14, a biconvex positive lens L15, and a biconcave negative lens L16.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L8 on the object side than the third lens group G3.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, the aperture stop S is fixed, and the third lens group G3 is fixed.
  • the fourth lens group G4 moves to the object side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 increases.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.2 ⁇ m.
  • the fourth lens group G4 corresponds to a predetermined positive lens group.
  • the third lens group G3 corresponds to a predetermined negative lens group.
  • FIG. 15 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 8.
  • FIG. 16 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 8.
  • the variable magnification optical system of Example 8 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. And a third lens group G3 of negative refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface on the image side, a positive meniscus lens L2 having a convex surface on the image side, and a positive meniscus lens L3 having a convex surface on the object side.
  • the second lens group G2 is composed of a positive meniscus lens L4 having a convex surface on the image side, a positive meniscus lens L5 having a convex surface on the image side, and a negative meniscus lens L6 having a convex surface on the image side.
  • the positive meniscus lens L5 and the negative meniscus lens L6 are cemented.
  • the third lens group G3 is composed of a positive meniscus lens L7 having a convex surface facing the image side and a negative meniscus lens L8 having a convex surface facing the image side.
  • the fourth lens group G4 is composed of a biconvex positive lens L9, a biconvex positive lens L10, and a biconcave negative lens L11.
  • the biconvex positive lens L10 and the biconcave negative lens L11 are cemented.
  • the fifth lens group G5 is composed of a negative meniscus lens L12 with a convex surface facing the object side, a biconvex positive lens L13, and a biconcave negative lens L14.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L7 on the object side than the third lens group G3.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, the aperture stop S is fixed, and the third lens group G3 is fixed.
  • the fourth lens group G4 moves to the object side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 increases.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • an image side surface of the positive meniscus lens L4 an image side surface of the biconvex positive lens L9, an object side surface of the negative meniscus lens L12, and an object side surface of the biconcave negative lens L14.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.8 ⁇ m.
  • the fourth lens group G4 corresponds to a predetermined positive lens group.
  • the third lens group G3 corresponds to a predetermined negative lens group.
  • FIG. 17 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 9.
  • FIG. 18 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 9.
  • the variable magnification optical system of Example 9 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S.
  • a third lens group G3 of positive refractive power, a fourth lens group G4 of positive refractive power, a fifth lens group G5 of negative refractive power, and a sixth lens group G6 of positive refractive power Have.
  • the first lens group G1 is composed of a negative meniscus lens L1 having a convex surface on the image side, a positive meniscus lens L2 having a convex surface on the image side, a biconvex positive lens L3, and a biconcave negative lens L4.
  • the negative meniscus lens L1 and the positive meniscus lens L2 are cemented.
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the second lens group G2 is composed of a biconvex positive lens L5, a positive meniscus lens L6 having a convex surface on the image side, and a negative meniscus lens L7 having a convex surface on the image side.
  • the positive meniscus lens L6 and the negative meniscus lens L7 are cemented.
  • the third lens group G3 is composed of a positive meniscus lens L8 with a convex surface facing the image side, and a biconcave negative lens L9.
  • the positive meniscus lens L8 and the biconcave negative lens L9 are cemented.
  • the fourth lens group G4 is composed of a biconvex positive lens L10, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the biconvex positive lens L12 and the biconcave negative lens L13 are cemented.
  • the fifth lens group G5 is composed of a positive meniscus lens L14 with a convex surface facing the image side, and a biconcave negative lens L15.
  • the sixth lens group G6 is composed of a biconvex positive lens L16 and a biconcave negative lens L17.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L8 on the object side than the third lens group G3.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, and then moves to the image side, and the aperture stop S is fixed.
  • the third lens group G3 is fixed, the fourth lens group G4 moves to the object side, the fifth lens group G5 moves to the object side, and the sixth lens group G6 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 narrows from the low magnification end to the middle and widens from the middle to the high magnification end.
  • the distance between the second lens group G2 and the third lens group G3 extends from the low magnification end to the middle and narrows from the middle to the high magnification end.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the distance between the fifth lens group G5 and the sixth lens group G6 increases.
  • Aspheric surfaces are used as four sides of the image side of the biconvex positive lens L5, the image side of the biconvex positive lens L11, the object side of the positive meniscus lens L14, and the object side of the biconcave negative lens L17. .
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.2 ⁇ m.
  • the fourth lens group G4 corresponds to a predetermined positive lens group.
  • the fourth lens group G4 has a resin lens.
  • FIG. 19 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 10.
  • FIG. 20 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 10.
  • the variable magnification optical system of Example 10 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S A third lens group G3 of negative refractive power, a fourth lens group G4 of positive refractive power, a fifth lens group G5 of negative refractive power, and a sixth lens group G6 of negative refractive power Have.
  • the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a biconvex positive lens L3, and a biconcave negative lens L4.
  • the positive meniscus lens L1 and the biconvex positive lens L2 are cemented.
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the second lens group G2 is composed of a biconvex positive lens L5, a positive meniscus lens L6 having a convex surface on the image side, and a negative meniscus lens L7 having a convex surface on the image side.
  • the positive meniscus lens L6 and the negative meniscus lens L7 are cemented.
  • the third lens group G3 is composed of a positive meniscus lens L8 with a convex surface facing the image side and a negative meniscus lens L9 with a convex surface facing the image side.
  • the positive meniscus lens L8 and the negative meniscus lens L9 are cemented.
  • the fourth lens group G4 is composed of a biconvex positive lens L10, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the biconvex positive lens L12 and the biconcave negative lens L13 are cemented.
  • the fifth lens group G5 is composed of a positive meniscus lens L14 with a convex surface facing the image side, and a biconcave negative lens L15.
  • the sixth lens group G6 is composed of a positive meniscus lens L16 with a convex surface facing the object side, and a biconcave negative lens L17.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L8 on the object side than the third lens group G3.
  • the first lens group G1 is fixed, the second lens group G2 moves to the object side, the aperture stop S is fixed, and the third lens group G3 is image side
  • the fourth lens group G4 moves to the object side, the fifth lens group G5 moves to the object side, and the sixth lens group G6 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 increases.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the distance between the fifth lens group G5 and the sixth lens group G6 increases.
  • Aspheric surfaces are used as four sides of the image side of the biconvex positive lens L5, the image side of the biconvex positive lens L11, the object side of the positive meniscus lens L14, and the object side of the biconcave negative lens L17. .
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.2 ⁇ m.
  • the fourth lens group G4 corresponds to a predetermined positive lens group.
  • the third lens group G3 corresponds to a predetermined negative lens group.
  • the fourth lens group G4 has a resin lens.
  • FIG. 21 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 11.
  • FIG. 22 is an aberration drawing of the zoom optical system according to Example 11 when focusing on an infinite object point.
  • the variable power optical system of Example 11 includes, in order from the object side, a first lens group G1 of positive refractive power, an aperture stop S, and a second lens group G2 of negative refractive power. And a third lens group G3 of positive refractive power and a fourth lens group G4 of positive refractive power.
  • the first lens group G1 includes a biconcave negative lens L1, a biconvex positive lens L2, a biconvex positive lens L3, a negative meniscus lens L4 having a convex surface facing the object side, a biconvex positive lens L5, and a biconvex lens. It consists of a positive lens L6, a negative meniscus lens L7 having a convex surface facing the object side, a biconvex positive lens L8, and a positive meniscus lens L9 having a convex surface facing the object side.
  • the biconcave negative lens L1 and the biconvex positive lens L2 are cemented. Further, the negative meniscus lens L4 and the biconvex positive lens L5 are cemented. Further, the negative meniscus lens L7 and the biconvex positive lens L8 are cemented.
  • the second lens group G2 is composed of a biconcave negative lens L10, a negative meniscus lens L11 with a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 with a convex surface facing the object side.
  • the biconcave negative lens L10 and the negative meniscus lens L11 are cemented.
  • the biconcave negative lens L12 and the positive meniscus lens L13 are cemented.
  • the third lens group G3 is composed of a biconvex positive lens L14, a negative meniscus lens L15 having a convex surface facing the object side, and a positive meniscus lens L16 having a convex surface facing the object side.
  • the negative meniscus lens L15 and the positive meniscus lens L16 are cemented.
  • the fourth lens group G4 includes a biconvex positive lens L17, a biconcave negative lens L18, a positive meniscus lens L19 having a convex surface on the object side, a negative meniscus lens L20 having a convex surface on the object side, and And a positive meniscus lens L21 having a convex surface.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L9 on the image side than the first lens group G1.
  • the first lens group G1 is fixed, the aperture stop S is fixed, the second lens group G2 moves to the image side, and the third lens group G3 is on the image side
  • the fourth lens group G4 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 increases.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • Two aspheric surfaces are used: the object side surface of the biconvex positive lens L17 and the image side surface of the positive meniscus lens L21.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.1 ⁇ m.
  • FIG. 23 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 12.
  • FIG. 24 is an aberration drawing of the zoom optical system according to Example 12 when focusing on an infinite object point.
  • variable magnification optical system of Example 12 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of negative refractive power, and positive refractive power. And a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 has a positive meniscus lens L1 having a convex surface on the image side, a negative meniscus lens L2 having a convex surface on the image side, a biconvex positive lens L3, and a positive meniscus lens having a convex surface on the image side L 4, biconvex positive lens L 5, biconcave negative lens L 6, negative meniscus lens L 7 convex on the object side, biconvex positive lens L 8, biconvex positive lens L 9, convex surface on the object side It comprises a negative meniscus lens L10, a biconvex positive lens L11, and a plano-convex positive lens L12.
  • the positive meniscus lens L1 and the negative meniscus lens L2 are cemented. Further, the biconvex positive lens L5 and the biconcave negative lens L6 are cemented. Further, the negative meniscus lens L7 and the biconvex positive lens L8 are cemented. Further, the negative meniscus lens L10 and the biconvex positive lens L11 are cemented.
  • the second lens group G2 has a negative meniscus lens L13 having a convex surface on the object side, a positive meniscus lens L14 having a convex surface on the object side, a biconcave negative lens L15, and a positive meniscus lens having a convex surface on the object side It consists of L16.
  • the negative meniscus lens L13 and the positive meniscus lens L14 are cemented.
  • the biconcave negative lens L15 and the positive meniscus lens L16 are cemented.
  • the third lens group G3 is composed of a biconvex positive lens L17, a biconvex positive lens L18, and a biconcave negative lens L19.
  • the biconvex positive lens L18 and the biconcave negative lens L19 are cemented.
  • the fourth lens group G4 includes a biconvex positive lens L20, a biconvex positive lens L21, a biconcave negative lens L22, a negative meniscus lens L23 having a convex surface facing the object side, a biconvex positive lens L24, and an object side And a positive meniscus lens L25 having a convex surface, and a biconcave negative lens L26.
  • the biconvex positive lens L21 and the biconcave negative lens L22 are cemented.
  • the aperture stop S is disposed in the first lens group G1 between the biconvex positive lens L11 and the planoconvex positive lens L12.
  • the first lens group G1 is fixed, the aperture stop S is fixed, the second lens group G2 moves to the image side, and the third lens group G3 is on the image side
  • the fourth lens group G4 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 increases.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • Two aspheric surfaces are used: an object side surface of the biconvex positive lens L20 and an image side surface of the biconcave negative lens L26.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.8 ⁇ m.
  • FIG. 25 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 13.
  • FIG. 26 is an aberration drawing of the zoom optical system according to Example 13 when focusing on an infinite object point.
  • the variable magnification optical system of Example 13 includes, in order from the object side, a first lens group G1 of positive refractive power, an aperture stop S, and a second lens group G2 of negative refractive power. It has a third lens group G3 of positive refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the image side, a positive meniscus lens L2 having a convex surface facing the image side, a biconvex positive lens L3, a biconcave negative lens L4, and a biconvex positive lens.
  • a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
  • the negative meniscus lens L1 and the positive meniscus lens L2 are cemented.
  • the biconcave negative lens L4 and the biconvex positive lens L5 are cemented.
  • the biconvex positive lens L6 and the biconcave negative lens L7 are cemented.
  • the biconcave negative lens L8 and the biconvex positive lens L9 are cemented.
  • the negative meniscus lens L11 and the biconvex positive lens L12 are cemented.
  • the second lens group G2 has a negative meniscus lens L14 with a convex surface facing the object side, a positive meniscus lens L15 with a convex surface facing the object side, a biconcave negative lens L16, and a positive meniscus lens with a convex surface facing the object side It consists of L17.
  • the negative meniscus lens L14 and the positive meniscus lens L15 are cemented.
  • the biconcave negative lens L16 and the positive meniscus lens L17 are cemented.
  • the third lens group G3 is composed of a positive meniscus lens L18 with a convex surface facing the image side, a biconvex positive lens L19, a biconvex positive lens L20, and a biconcave negative lens L21.
  • the biconvex positive lens L20 and the biconcave negative lens L21 are cemented.
  • the fourth lens group G4 is composed of a biconvex positive lens L22, a biconcave negative lens L23, and a biconvex positive lens L24.
  • the biconvex positive lens L22 and the biconcave negative lens L23 are cemented.
  • the fifth lens group G5 is composed of a biconvex positive lens L25, a biconcave negative lens L26, and a biconcave negative lens L27.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L13 on the image side than the first lens group G1.
  • the first lens group G1 is fixed, the aperture stop S is fixed, the second lens group G2 moves to the image side, and the third lens group G3 is on the image side
  • the fourth lens group G4 moves to the object side, and then moves to the image side, and the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 increases.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 narrows from the low magnification end to the middle and widens from the middle to the high magnification end.
  • the distance between the fourth lens group G4 and the fifth lens group G5 extends from the low magnification end to the middle and narrows from the middle to the high magnification end.
  • An aspheric surface is used on one surface of the image side of the biconcave negative lens L27.
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.2 ⁇ m.
  • FIG. 27 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 14.
  • FIG. 28 is an aberration drawing of the zoom optical system according to Example 14 when focusing on an infinite object point.
  • variable magnification optical system of Example 14 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of negative refractive power, and positive refractive power. And a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 includes a biconvex positive lens L1, a positive meniscus lens L2 having a convex surface facing the image side, a biconcave negative lens L3, a biconvex positive lens L4, a biconvex positive lens L5, and a planoconvex It consists of a positive lens L6.
  • the positive meniscus lens L2 and the biconcave negative lens L3 are cemented.
  • the second lens group G2 is composed of a biconcave negative lens L7, a positive meniscus lens L8 having a convex surface facing the object side, a biconcave negative lens L9, and a positive meniscus lens L10 having a convex surface facing the object side.
  • the biconcave negative lens L7 and the positive meniscus lens L8 are cemented.
  • the biconcave negative lens L9 and the positive meniscus lens L10 are cemented.
  • the third lens group G3 is composed of a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the biconvex positive lens L12 and the biconcave negative lens L13 are cemented.
  • the fourth lens group G4 has a positive meniscus lens L14 with a convex surface facing the object side, a biconvex positive lens L15, a biconcave negative lens L16, a biconcave negative lens L17, a biconvex positive lens L18, and an object side And a positive meniscus lens L19 having a convex surface, and a biconcave negative lens L20.
  • the biconvex positive lens L15 and the biconcave negative lens L16 are cemented.
  • the aperture stop S is disposed in the first lens group G1 between the biconvex positive lens L5 and the planoconvex positive lens L6.
  • the first lens group G1 is fixed, the aperture stop S is fixed, the second lens group G2 moves to the image side, and the third lens group G3 is on the image side After moving to the object side, it moves to the object side, and the fourth lens group G4 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 increases.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 narrows from the low magnification end to the middle and widens from the middle to the high magnification end.
  • An aspheric surface is used on one surface of the image side of the biconcave negative lens L20.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.8 ⁇ m.
  • FIG. 29 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 15.
  • FIG. 30 is an aberration drawing of the zoom optical system according to Example 15 when focusing on an infinite object point.
  • variable power optical system of Example 15 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of negative refractive power, and positive refractive power. And a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 has a positive meniscus lens L1 having a convex surface on the image side, a negative meniscus lens L2 having a convex surface on the image side, a biconvex positive lens L3, and a positive meniscus lens having a convex surface on the image side L4, biconvex positive lens L5, biconcave negative lens L6, biconcave negative lens L7, biconvex positive lens L8, biconvex positive lens L9, and negative meniscus lens L10 having a convex surface facing the object side And a biconvex positive lens L11 and a planoconvex positive lens L12.
  • the positive meniscus lens L1 and the negative meniscus lens L2 are cemented. Further, the biconvex positive lens L5 and the biconcave negative lens L6 are cemented. The biconcave negative lens L7 and the biconvex positive lens L8 are cemented. Further, the negative meniscus lens L10 and the biconvex positive lens L11 are cemented.
  • the second lens group G2 is composed of a biconcave negative lens L13, a positive meniscus lens L14 having a convex surface directed to the object side, a biconcave negative lens L15, and a positive meniscus lens L16 having a convex surface directed to the object side.
  • the third lens group G3 is composed of a biconvex positive lens L17, a biconvex positive lens L18, and a biconcave negative lens L19.
  • the biconvex positive lens L18 and the biconcave negative lens L19 are cemented.
  • the fourth lens group G4 includes a biconvex positive lens L20, a biconvex positive lens L21, a biconcave negative lens L22, a negative meniscus lens L23 having a convex surface facing the object side, a biconvex positive lens L24, and an object side And a positive meniscus lens L25 having a convex surface, and a biconcave negative lens L26.
  • the biconvex positive lens L21 and the biconcave negative lens L22 are cemented.
  • the aperture stop S is disposed in the first lens group G1 between the biconvex positive lens L11 and the planoconvex positive lens L12.
  • the first lens group G1 is fixed, the aperture stop S is fixed, the second lens group G2 moves to the image side, and the third lens group G3 is on the image side After moving to the object side, it moves to the object side, and the fourth lens group G4 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 increases.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 narrows from the low magnification end to the middle and widens from the middle to the high magnification end.
  • the aspheric surface includes an object side surface of the biconcave negative lens L13, an image side surface of the positive meniscus lens L14, an object side surface of the biconcave negative lens L15, an image side surface of the positive meniscus lens L16, and an object side of the biconvex positive lens L20. And the image-side surface of the biconcave negative lens L26.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.8 ⁇ m. Further, the second lens group G2 has a resin lens.
  • FIG. 31 is a cross-sectional view along an optical axis showing an optical configuration at the time of infinite object point focusing of a variable magnification optical system according to Example 16.
  • FIG. 32 is an aberration diagram at the time of infinite object point focusing of a variable magnification optical system according to Example 16.
  • the variable magnification optical system of Example 16 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. It has a third lens group G3 of positive refractive power, a fourth lens group G4 of negative refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface facing the object side, and a biconvex positive lens L2.
  • the second lens group G2 is composed of a biconvex positive lens L3, a biconvex positive lens L4, a biconcave negative lens L5, a biconvex positive lens L6, and a negative meniscus lens L7 having a convex surface facing the image side.
  • the biconvex positive lens L6 and the negative meniscus lens L7 are cemented.
  • the third lens group G3 has a negative meniscus lens L8 with a convex surface facing the object side, a biconvex positive lens L9, a negative meniscus lens L10 with a convex surface facing the object side, a biconvex positive lens L11, and a biconvex positive lens. It consists of a lens L12 and a biconcave negative lens L13. Here, the negative meniscus lens L8 and the biconvex positive lens L9 are cemented.
  • the fourth lens group G4 is composed of a positive meniscus lens L14 with a convex surface facing the image side, and a biconcave negative lens L15.
  • the fifth lens group G5 is composed of a positive meniscus lens L16 with a convex surface facing the image side, and a biconcave negative lens L17.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the negative meniscus lens L7 on the image side than the second lens group G2.
  • the first lens group G1 moves to the object side
  • the second lens group G2 moves to the object side
  • the aperture stop S moves to the object side with the second lens group G2
  • the third lens group G3 moves to the object side
  • the fourth lens group G4 moves to the object side
  • the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 increases.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the aspheric surface includes both surfaces of the biconvex positive lens L3, both surfaces of the biconvex positive lens L4, both surfaces of the biconcave negative lens L5, both surfaces of the biconvex positive lens L11, and both surfaces of the biconvex positive lens L12. It is used for 14 surfaces of both surfaces of concave negative lens L13, and both surfaces of biconcave negative lens L17.
  • variable magnification optical system of this embodiment is an optical system suitable for an image pickup element having a pixel pitch of 2.2 ⁇ m.
  • the third lens group G3 corresponds to a predetermined positive lens group.
  • the second lens group G2 and the third lens group G3 have resin lenses.
  • FIG. 33 is a cross-sectional view along the optical axis showing the optical configuration at the time of infinite object point focusing of the variable magnification optical system according to Example 17.
  • FIG. 34 is an aberration drawing of the zoom optical system according to Example 17 when focusing on an infinite object point.
  • the variable magnification optical system of Example 17 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of positive refractive power, and an aperture stop S. And a third lens group G3 of negative refractive power, a fourth lens group G4 of positive refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 is composed of a positive meniscus lens L1 having a convex surface facing the image side, a biconvex positive lens L2, and a positive meniscus lens L3 having a convex surface facing the object side.
  • the second lens group G2 is composed of a positive meniscus lens L4 having a convex surface on the image side, a positive meniscus lens L5 having a convex surface on the image side, and a negative meniscus lens L6 having a convex surface on the image side.
  • the positive meniscus lens L5 and the negative meniscus lens L6 are cemented.
  • the third lens group G3 is composed of a positive meniscus lens L7 having a convex surface facing the image side and a negative meniscus lens L8 having a convex surface facing the image side.
  • the positive meniscus lens L7 and the negative meniscus lens L8 are cemented.
  • the fourth lens group G4 is composed of a biconvex positive lens L9, a biconvex positive lens L10, and a biconcave negative lens L11.
  • the biconvex positive lens L10 and the biconcave negative lens L11 are cemented.
  • the fifth lens group G5 is composed of a negative meniscus lens L12 with a convex surface facing the object side, a biconvex positive lens L13, and a biconcave negative lens L14.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L7 on the object side than the third lens group G3.
  • the first lens group G1 moves to the object side and then to the image side
  • the second lens group G2 moves to the image side and then to the image side
  • the aperture stop S is fixed
  • the third lens group G3 is fixed
  • the fourth lens group G4 moves to the object side
  • the fifth lens group G5 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 is narrowed.
  • the distance between the second lens group G2 and the third lens group G3 extends from the low magnification end to the middle and narrows from the middle to the high magnification end.
  • the distance between the third lens group G3 and the fourth lens group G4 is narrowed.
  • the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.8 ⁇ m.
  • the fourth lens group G4 corresponds to a predetermined positive lens group.
  • the third lens group G3 corresponds to a predetermined negative lens group.
  • FIG. 35 is a cross-sectional view along an optical axis showing an optical arrangement at the time of infinite object point focusing of a variable magnification optical system according to Example 18.
  • FIG. FIG. 36 is an aberration drawing of the zoom optical system according to Example 18 when focusing on an infinite object point.
  • the variable magnification optical system of Example 18 includes, in order from the object side, a first lens group G1 of positive refractive power, a second lens group G2 of negative refractive power, and a positive refractive power. And a fourth lens group G4 having a negative refractive power.
  • the first lens group G1 has a positive meniscus lens L1 having a convex surface on the image side, a negative meniscus lens L2 having a convex surface on the image side, a biconvex positive lens L3, and a positive meniscus lens having a convex surface on the image side L 4, biconvex positive lens L 5, biconcave negative lens L 6, negative meniscus lens L 7 convex on the object side, biconvex positive lens L 8, biconvex positive lens L 9, convex surface on the object side It comprises a negative meniscus lens L10, a biconvex positive lens L11, and a plano-convex positive lens L12.
  • the positive meniscus lens L1 and the negative meniscus lens L2 are cemented. Further, the biconvex positive lens L5 and the biconcave negative lens L6 are cemented. The negative meniscus lens L7 and the biconvex positive lens L8 are cemented. Further, the negative meniscus lens L10 and the biconvex positive lens L11 are cemented.
  • the second lens group G2 is composed of a biconcave negative lens L13, a positive meniscus lens L14 having a convex surface directed to the object side, a biconcave negative lens L15, and a positive meniscus lens L16 having a convex surface directed to the object side.
  • the third lens group G3 is composed of a biconvex positive lens L17, a biconvex positive lens L18, and a biconcave negative lens L19.
  • the biconvex positive lens L18 and the biconcave negative lens L19 are cemented.
  • the fourth lens group G4 has a positive meniscus lens L20 with a convex surface facing the image, a biconvex positive lens L21, a biconcave negative lens L22, a negative meniscus lens L23 with a convex surface facing the object, and a biconvex positive lens. It comprises a lens L24, a positive meniscus lens L25 with a convex surface facing the object side, and a biconcave negative lens L26.
  • the biconvex positive lens L21 and the biconcave negative lens L22 are cemented.
  • the aperture stop S is disposed in the first lens group G1 between the biconvex positive lens L11 and the planoconvex positive lens L12.
  • the first lens group G1 moves to the object side
  • the aperture stop S moves to the object side with the first lens group G1
  • the second lens group G2 moves to the image side
  • the third lens group G3 moves to the object side
  • the fourth lens group G4 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 increases.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 increases.
  • the aspheric surface includes an object side surface of the biconcave negative lens L13, an image side surface of the positive meniscus lens L14, an object side surface of the biconcave negative lens L15, an image side surface of the positive meniscus lens L16, and an object side of the positive meniscus lens L20. And six surfaces with the image side surface of the biconcave negative lens L26.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.8 ⁇ m. Further, the second lens group G2 has a resin lens.
  • FIG. 37 is a cross-sectional view along an optical axis showing an optical arrangement at the time of infinite object point focusing of a variable magnification optical system according to Example 19.
  • FIG. 38 is an aberration drawing of the zoom optical system according to Example 19 when focusing on an infinite object point.
  • the variable magnification optical system of Example 19 includes, in order from the object side, a first lens group G1 of positive refractive power, an aperture stop S, and a second lens group G2 of negative refractive power. It has a third lens group G3 of positive refractive power, a fourth lens group G4 of negative refractive power, and a fifth lens group G5 of negative refractive power.
  • the first lens group G1 includes a biconcave negative lens L1, a biconvex positive lens L2, a biconvex positive lens L3, a biconcave negative lens L4, a biconvex positive lens L5, and a biconvex positive lens L6. It comprises a concave negative lens L7, a biconcave negative lens L8, a biconvex positive lens L9, a biconvex positive lens L10, and a positive meniscus lens L11 having a convex surface directed to the object side.
  • the biconcave negative lens L1 and the biconvex positive lens L2 are cemented.
  • the biconcave negative lens L4 and the biconvex positive lens L5 are cemented.
  • the biconvex positive lens L6 and the biconcave negative lens L7 are cemented.
  • the biconcave negative lens L8 and the biconvex positive lens L9 are cemented.
  • the second lens group G2 has a negative meniscus lens L12 having a convex surface on the object side, a positive meniscus lens L13 having a convex surface on the object side, a biconcave negative lens L14, and a positive meniscus lens having a convex surface on the object side It consists of L15.
  • the negative meniscus lens L12 and the positive meniscus lens L13 are cemented.
  • the biconcave negative lens L14 and the positive meniscus lens L15 are cemented.
  • the third lens group G3 is composed of a biconvex positive lens L16, a biconvex positive lens L17, a biconvex positive lens L18, and a biconcave negative lens L19.
  • the biconvex positive lens L18 and the biconcave negative lens L19 are cemented.
  • the fourth lens group G4 is composed of a biconvex positive lens L20 and a biconcave negative lens L21.
  • the biconvex positive lens L20 and the biconcave negative lens L21 are cemented.
  • the fifth lens group G5 is composed of a biconvex positive lens L22, a biconcave negative lens L23, and a biconcave negative lens L24.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. More specifically, the aperture stop S is disposed closer to the positive meniscus lens L11 on the image side than the first lens group G1.
  • the first lens group G1 moves to the object side
  • the aperture stop S moves to the object side with the first lens group G1
  • the second lens group G2 moves to the object side
  • the third lens group G3 moves to the object side
  • the fourth lens group G4 moves to the object side, and then moves to the image side, and the fourth lens group G4 is fixed.
  • the distance between the lens units changes as follows.
  • the distance between the first lens group G1 and the second lens group G2 increases.
  • the distance between the second lens group G2 and the third lens group G3 is narrowed.
  • the distance between the third lens group G3 and the fourth lens group G4 increases.
  • the distance between the fourth lens group G4 and the fifth lens group G5 extends from the low magnification end to the middle and narrows from the middle to the high magnification end.
  • An aspheric surface is used on one surface of the image side of the biconcave negative lens L24.
  • variable magnification optical system of the present embodiment is an optical system suitable for an imaging device having a pixel pitch of 1.8 ⁇ m.
  • r 1, r 2,... Are the radius of curvature of each lens surface
  • d 1, d 2,... Are the thicknesses or air gaps of each lens
  • nd 1, nd 2 are the Abbe numbers of each lens
  • * is an aspheric surface
  • the middle is an intermediate state
  • NA is the numerical aperture on the object side
  • is a magnification
  • the focal length is the focal length of the entire optical system
  • IH indicates the image height
  • fb indicates the back focus.
  • the total length is obtained by adding the back focus to the distance from the lens front surface to the lens final surface.
  • the back focus is the air conversion of the distance from the lens final surface to the paraxial image surface.
  • the optical axis direction is z
  • the direction orthogonal to the optical axis is y
  • the conical coefficient is k
  • the aspherical coefficient is A4, A6, A8, A10, A12, A14
  • the following equation Is represented by z (y 2 / r) / [1 + ⁇ 1-(1 + k) (y / r) 2 ⁇ 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 + A 12 y 12 + A 14 y 14
  • E or e represents a power of 10.
  • Numerical embodiment 1 Unit mm Plane data Plane number r d nd dd Object plane 1. 1.36 1 -309.327 8.77 1.69895 30.13 2 19.593 9.86 1.56384 60.67 3 169.774 1.49 4 * 87.226 9.97 1.49700 81.61 5 *-27.825 variable 6 * 195.646 2.29 1.49700 81.61 7 * -65.067 0.07 8 * 193.037 4.44 1.63484 23.91 9 *-50.359 0.05 10 * -55.705 0.50 1.583 60 30.33 11 * 117.155 1.58 12 -387.151 7.75 1.49700 81.61 13-25.140 0.50 1.72047 34.71 14-39.322 1.14 15 (Aperture) ⁇ ⁇ Variable 16-419.588 7.85 1.49700 81.61 17-27.193 0.50 1.72047 34.71 18 -1483.065 6.81 1.49700 81.61 19-37.318 18.14 20 * 109.722
  • Numerical embodiment 2 Unit mm Plane data Plane number r d nd dd Object plane 1.0 1.08 1 105.320 9.00 1.69895 30.13 2 19.430 9.10 1.56384 60.67 3 77.997 0.11 4 * 56.271 6.22 1.49700 81.61 5-43.741 0.06 6-43.716 2.89 1.84666 23.78 7 * -39.010 variable 8 * 273.740 2.78 1.49700 81.61 9 * -63.
  • Numerical embodiment 4 Unit mm Plane data Plane number r d nd dd Object plane 1. 1.11 1 42.854 4.88 1.75520 27.51 2 9.449 4.66 1.78800 47.37 3 47.957 0.10 4 30.363 2.69 1.59522 67.74 5 -29.253 1.47 200001 19.32 6 -18.329 Variable 7 * 123.257 1.68 1.49700 81.61 8 *-32.060 0.99 9 * 35.047 2.01 1.63484 23.91 10 *-79.370 0.25 11 * -1821.839 1.00 1.583 60 30.33 12 * 14.209 1.49 13 55.686 4.49 1.49700 81.61 14 -10.603 1.09 1.72047 34.71 15 -16.874 0.10 16 (aperture) ⁇ ⁇ variable 17 21.884 1.00 1.59551 39.24 18 13.326 4.51 1.49700 81.61 19-47.
  • Numerical embodiment 7 Unit mm Plane data Plane number r d nd dd Object plane 1. 1.22 1 -16.843 4.32 200001 19.32 2-8.636 1.72 1.84666 23.78 3 911.147 2.27 1.83481 42.71 4-9.828 0.10 5 14.525 6.33 1.72916 54.68 6 19.870 Variable 7 -43.494 2.26 1.53366 55.96 8 * -10.891 0.10 9 -253.131 3.87 1.60300 65.44 10 -6.779 1.00 1.72047 34.71 11 -23.734 Variable 12 (F-stop) 1.
  • Numerical embodiment 8 Unit mm Plane data Plane number r d nd dd Object plane 1. 1.39 1-11.331 6.04 2.00119 19.32 2 -13.131 0.10 3-946.281 3.29 1.67480 57.97 4-14. 337 0.10 5 10.192 2.00 1.49700 81.55 6 10.568 Variable 7-51.413 2.81 1.53366 55.96 8 * -11.529 0.10 9 -91.616 4.93 1.60300 65.44 10 -7.195 1.00 1.72047 34.71 11 -23.922 Variable 12 (F-stop) 1.
  • Numerical embodiment 13 Unit mm Plane data Plane number r d nd dd Object plane 1. 1.37 1-40. 987 10.00 1. 83400 37. 16 2-52.459 10.00 1.84666 23.78 3-39.893 0.10 4 941.821 10.00 1.88300 40.80 5 -32.540 5.27 6-49.992 10.00 1.75520 27.51 7 53.602 10.00 1.84666 23.78 8 -53.191 0.11 9 246.374 6.73 1.49700 81.54 10-27.066 1.03 1.61293 37.00 11 159.021 1.30 12 -370.480 1.03 1.72047 34.71 13 54.649 7.11 1.49700 81.54 14-43.003 0.10.
  • Numerical embodiment 14 Unit mm Plane data Plane number r d nd dd Object plane 15. 15.84 1 514.184 5.89 1.49700 81.61 2-22. 397 19.71 3-123.845 2.23 1.49700 81.61 4-8.839 1.00 1.67300 38.15 5 28.890 3.54 6 217.991 3.39 1.55332 71.68 7-16.459 0.10 8 18.406 1.99 1.49700 81.61 9 -80.696 0.10 10 (aperture) ⁇ 0.10 11 1.
  • Numerical embodiment 16 Unit mm Plane data Plane number r d nd dd Object plane 1. 1.35 1 43.231 9.70 1.76200 40.10 2 57.098 0.10 3 32.147 4.09 1.67003 47.23 4 -18.329 Variable 5 * 107.325 1.67 1.49700 81.61 6 *-33.414 0.10 7 * 33.505 1.96 1.63484 23.91 8 * -101.909 0.70 9 * -8.0366e + 6 1.00 1.583 60 30.33 10 * 13.965 1.29 11 42.408 4.84 1.49700 81.61 12-10.327 1.00 1.72047 34.71 13 -18.267 0.10 14 (aperture) ⁇ ⁇ variable 15 22.493 1.00 1.61293 37.00 16 13.296 5.25 1.49700 81.61 17-31.912 0.10 18 31.545 1.00 1.80518 25.42 19 16.499 0.84 20 * 22.520 2.82 1.53366 55.96 21 *-54.016 0.10 22 * 19.42
  • Numerical embodiment 17 Unit mm Plane data Plane number r d nd dd Object plane 1. 1.39 1-11.055 6.31 1.88300 40.76 2 -11.606 0.10 3 35.525 3.92 1.7130 53.87 4-26. 903 0.64 5 8.245 2.21 1.49700 81.61 6 7.987 Variable 7 -102.909 2.33 1.53366 55.96 8 *-12.159 0.10 9 -95.469 4.28 1.60300 65.44 10 -6.261 1.00 1.72047 34.71 11 -20.461 Variable 12 (F-stop) 1.
  • Numerical embodiment 18 Unit mm Plane data Plane number r d nd dd Object plane ⁇ ⁇ Variable 1 -22.158 7.87 200001 19.32 2-10.000 5.52 1.80518 25.42 3 -64.870 0.10 4 514.184 8.30 1.88300 40.76 5 -29.149 0.10 6 -49.162 2.15 1.92286 20.88 7-21.
  • FIG. 39 is a view showing a microscope which is an optical apparatus of the present embodiment.
  • the microscope 1 is an upright microscope. As shown in FIG. 39, the microscope 1 includes a main body 2, a stage 3, an imaging unit 4, an illumination unit 5, a sighting knob 6, a variable magnification optical system 7, and an imaging element 8.
  • the main body 2 is provided with a stage 3, an imaging unit 4 and a sighting knob 6.
  • the sample is placed on the stage 3.
  • the movement of the stage 3 in the optical axis direction is performed by the aiming knob 6.
  • the stage 3 is moved by the operation (rotation) of the aiming knob 6, whereby focusing on the sample can be performed.
  • a moving mechanism (not shown) is provided between the main body 2 and the stage 3.
  • the imaging unit 4 is provided with a lighting unit 5.
  • the imaging unit 4 and the illumination unit 5 are located above the stage 3.
  • the lighting elements 5a are arranged in a ring shape.
  • the lighting element 5a is, for example, an LED.
  • variable magnification optical system 7 Inside the imaging unit 4, a variable magnification optical system 7 and an imaging device 8 are disposed.
  • the variable magnification optical system 7 for example, the variable magnification optical system of Example 1 is used.
  • the tip of the variable magnification optical system 7 is located at the center of the illumination unit 5.
  • Illumination light is emitted from the illumination unit 5 to the sample.
  • the illumination is epi-illumination.
  • Reflected light and fluorescence from the sample pass through the variable magnification optical system 7 and enter the imaging device 8.
  • a specimen image (optical image) is formed on the imaging surface of the imaging device 8.
  • the sample image is photoelectrically converted by the imaging device 8 to obtain an image of the sample.
  • the image of the sample is displayed on a display (not shown). In this way, the observer can observe the image of the specimen.
  • the microscope 1 includes the variable magnification optical system 7 (the variable magnification optical system of the present embodiment).
  • this variable magnification optical system 7 is an optical system with a short overall length, it has a wide imaging range, aberrations are well corrected, and high resolution. Therefore, with the microscope 1, various aberrations are corrected well over a wide range, and a bright and clear sample image can be obtained.
  • variable magnification optical system is disposed in the imaging unit
  • the present invention is not limited to this.
  • the variable magnification optical system and the imaging device of this embodiment can be disposed in a frame member for holding the lens.
  • the variable magnification optical system of the present embodiment can be revolver-mounted as in the existing objective lens. In this way, the existing objective lens and the variable magnification optical system of the present embodiment can be switched and used.
  • variable magnification optical system of the present invention is not limited to this, and can be applied as an optical apparatus, for example, to an electronic imaging device (lens unit for portable camera, notebook PC, portable information terminal).
  • the imaging unit 4 includes the variable magnification optical system 7 and the imaging device 8
  • the imaging unit 4 can be regarded as an imaging device.
  • the microscope 1 since the microscope 1 includes the imaging unit 4, the stage 3 and the illumination unit 5 (illumination device), it can be called an imaging system.
  • the stage 3 is connected to the main body 2 via the aiming mechanism (the aiming knob 6) in FIG. 39, the stage 3 may be directly attached to the main body 2 without the movement mechanism. By doing this, the imaging unit 4 and the stage 3 can be integrated via the main body 2.
  • FIG. 40 is a view showing a microscope which is an optical apparatus of the present embodiment.
  • the microscope 10 is an upright microscope.
  • the same components as those of the microscope 1 (FIG. 39) will be assigned the same reference numerals and descriptions thereof will be omitted.
  • variable magnification optical system 11 Inside the imaging unit 4, a variable magnification optical system 11 and an imaging device 8 are disposed.
  • the variable magnification optical system 11 for example, the variable magnification optical system of Example 1 is used.
  • the illumination unit 5 is provided on the variable magnification optical system 7 side.
  • the illumination unit 12 is provided on the opposite side of the variable magnification optical system 11 with the stage 3 interposed therebetween. Thereby, the microscope 10 can perform transmission illumination.
  • the illumination unit 12 is composed of a light source unit 13 and a light guide fiber 14.
  • the light source unit 13 includes, for example, a halogen lamp, a mercury lamp, a xenon lamp, an LED, and a laser as a light source.
  • the light source unit 13 includes a lens.
  • the illumination light emitted from the light source is incident on the incident end 15 of the light guide fiber 14 through the lens.
  • the illumination light entering the light guide fiber 14 is transmitted through the light guide fiber 14 and exits from the exit end 16.
  • the exit end 16 of the light guide fiber 14 is connected to the stage 3 by a holding mechanism (not shown).
  • the emission end 16 of the light guide fiber 14 is located on the lower surface of the stage 3. Therefore, the illumination light emitted from the emission end 16 is irradiated onto the sample from the lower side of the stage 3 toward the variable magnification optical system 11 side. Thus, in the microscope 10, transmission illumination is performed.
  • the light guide fiber 14 may be held by means other than the stage 3.
  • the emission end 16 of the light guide fiber 14 may be positioned on the upper surface of the stage 3 (on the variable magnification optical system 11 side). By doing this, epi-illumination can be performed in the microscope 10 as in the case of the microscope 1.
  • Transmitted light and fluorescence from the sample pass through the variable magnification optical system 11 and enter the imaging device 8.
  • a specimen image (optical image) is formed on the imaging surface of the imaging device 8.
  • the sample image is photoelectrically converted by the imaging device 8 to obtain an image of the sample.
  • the image of the sample is displayed on a display (not shown). In this way, the observer can observe the image of the specimen.
  • the microscope 10 also includes a variable magnification optical system 11 (a variable magnification optical system of the present embodiment).
  • this variable magnification optical system 11 is an optical system with a short overall length, it has a wide imaging range, aberrations are well corrected, and high resolution. Therefore, with the microscope 10, various aberrations are corrected well over a wide range, and a bright and clear sample image can be obtained.
  • the microscope 10 may be epi-illumination. Further, the arrangement of each member constituting the microscope 10 can be changed in design as appropriate.
  • FIG. 41 is a view showing a microscope which is an optical apparatus of the present embodiment.
  • the microscope 20 is an inverted microscope.
  • the microscope 20 includes a main body 21, a stage 22, an imaging unit 4, a variable magnification optical system 23, an imaging element 8, a sighting knob 24, a transmissive illumination light source 25, a reflection mirror 26, and a condenser lens 27.
  • variable magnification optical system 23 inside the imaging unit 4, the variable magnification optical system 23 and the imaging device 8 are disposed.
  • the variable magnification optical system 23 for example, the variable magnification optical system of Example 1 is used.
  • the main body 21 is provided with a stage 22, an imaging unit 4 and a sighting knob 24.
  • the sample is placed on the stage 22.
  • the movement of the imaging unit 4 in the optical axis direction is performed by the aiming knob 24.
  • the imaging unit 4 is moved by the operation (rotation) of the aiming knob 24, whereby focusing on the sample can be performed.
  • a moving mechanism (not shown) is provided in the main body 21, and the imaging unit 4 is held by the moving mechanism.
  • the main body 21 is provided with a transmission illumination light source 25, a reflection mirror 26 and a condenser lens 27.
  • the transmission illumination light source 25, the reflection mirror 26 and the condenser lens 27 are disposed above the stage 22.
  • the illumination light emitted from the transmission illumination light source 25 is reflected by the reflection mirror 26 and enters the condenser lens 27.
  • the condenser lens 27 is located on the upper surface of the stage 22. Therefore, the illumination light emitted from the condenser lens 27 is irradiated onto the sample from the upper side of the stage 22 toward the variable magnification optical system 23 side. In this way, the microscope 20 performs transmission illumination.
  • the microscope 20 also includes the variable magnification optical system 23 (the variable magnification optical system of the present embodiment).
  • this variable magnification optical system 23 is an optical system with a short overall length, it has a wide imaging range, aberrations are well corrected, and high resolution. Therefore, with the microscope 1, various aberrations are corrected well over a wide range, and a bright and clear sample image can be obtained.
  • the arrangement of each member constituting the microscope 20 can be changed in design as appropriate.
  • FIG. 42 is a view showing a microscope which is an optical apparatus of the present embodiment.
  • FIG. 26 (a) is a view showing the entire configuration of the microscope, and
  • FIG. 26 (b) is a view showing a state in which the microscope 30 is fixed.
  • the microscope 30 is a portable microscope.
  • the microscope 30 includes a probe unit 31, a control box 32, a light guide fiber 33, a cable 34, an imaging unit 4, a variable magnification optical system 35, an imaging device 8, an illumination light guide 36, and a light source 37.
  • variable magnification optical system 35 and an imaging element 8 are disposed inside the imaging unit 4.
  • variable magnification optical system of Example 1 is used as the variable magnification optical system 35.
  • the probe unit 31 and the control box 32 are connected by a light guide fiber 33 and a cable 34.
  • the control box 32 has a light source 37 and a processing unit (not shown).
  • the processing unit processes the video signal from the probe unit 31.
  • the probe unit 31 has a size that can be held by the user.
  • the probe unit 31 has an imaging unit 4 and a light guide 36 for illumination.
  • the illumination light guide 36 is disposed on the outer peripheral side of the imaging unit 4.
  • the illumination light guide 36 is optically connected to the light guide fiber 33.
  • the illumination light emitted from the light source 37 is transmitted in the light guide fiber 33 and enters the illumination light guide 36.
  • the illumination light is transmitted through the illumination light guide 36 and emitted from the probe unit 31. In this way, epi-illumination is performed in the microscope 30.
  • Reflected light and fluorescence from the sample pass through the variable magnification optical system 35 and enter the imaging device 8.
  • a specimen image (optical image) is formed on the imaging surface of the imaging device 8.
  • the sample image is photoelectrically converted by the imaging device 8 to obtain an image of the sample.
  • the image of the sample is displayed on a display (not shown). In this way, the observer can observe the image of the specimen.
  • the probe unit 31 is connected to the control box 32 by the light guide fiber 33 and the cable 34. Therefore, the position and orientation of the probe unit 31 can be freely set. In this case, fixation of the posture (position and orientation) of the probe unit 31 is performed by the hand of the observer. However, fixation by the observer's hand may not be sufficiently stable.
  • the probe unit 31 may be held by the gantry 38 as shown in FIG. 26 (b). By doing this, the posture (position and orientation) of the probe unit 31 can be stabilized.
  • the mount 38 is provided with a sighting knob 39.
  • the movement of the probe unit 31 (imaging unit 4) in the optical axis direction is performed by the aiming knob 39.
  • the probe unit 31 is moved by the operation (rotation) of the aiming knob 39, whereby focusing on the sample can be performed.
  • a moving mechanism (not shown) is provided in the rack 38.
  • the microscope 30 also includes the variable magnification optical system 35 (the variable magnification optical system of the present embodiment).
  • this variable magnification optical system 35 is an optical system with a short overall length, it has a wide imaging range, aberrations are well corrected, and high resolution. Therefore, with the microscope 30, various aberrations are corrected well over a wide range, and a bright and clear sample image can be obtained.
  • the arrangement of each member constituting the microscope 30 can be changed as appropriate in design.
  • variable magnification optical systems among the variable magnification optical systems of Examples 1 to 19 can be used for each of the microscope 1, the microscope 10, the microscope 20, and the microscope 30.
  • the present invention can take various modifications without departing from the scope of the invention. Further, the number of shapes shown in the above embodiments is not necessarily limited. In addition, in each lens or in each lens, a lens which is not illustrated in each of the above embodiments and which has substantially no refractive power may be disposed. In addition to the above-described inventions, the invention also includes the following inventions.
  • (Appendix 1) An optical system in which the magnification changes from the low magnification end to the high magnification end, A first lens group disposed closest to the object side and having positive refractive power; And at least a second lens group having a positive refractive power, which is disposed on the image side of the first lens group, During zooming, the distance between the first and second lens groups changes.
  • a variable magnification optical system characterized by satisfying the following conditional expression (1). 0 ⁇ 1 / ⁇ HG1 ⁇ 1 (1) here, ⁇ HG1 is an imaging magnification of the first lens group at the high magnification end, It is.
  • (Appendix 2) The variable magnification optical system according to Additional Item 1, characterized by satisfying the following conditional expression (2).
  • BF L is the back focus at the low magnification end
  • Y is the maximum image height in the entire variable magnification optical system
  • It is.
  • a stop is disposed on the image side of the second lens unit
  • a predetermined positive lens group is disposed on the image side of the stop
  • a predetermined positive lens group is a lens group having a positive refractive power and a smaller distance from the stop at the high magnification end compared to the low magnification end, the magnification change according to claim 1 or 2 Optical system.
  • Appendix 4 The variable power optical system according to Additional Item 3, wherein the predetermined positive lens group at least includes two or more positive lenses and one or more negative lenses.
  • a plurality of predetermined positive lens groups are disposed on the image side of the stop, The first predetermined positive lens group is disposed closest to the object side among the plurality of predetermined positive lens groups, 4.
  • the variable magnification optical system according to Additional Item 3 satisfying the following conditional expression (3). 0 ⁇ ⁇ Gpmax / ⁇ Gpobj ⁇ 0.6 (3) here, ⁇ Gpmax is the largest amount of change in the distance between any two predetermined positive lens groups on the optical axis of the predetermined positive lens group, ⁇ Gp obj is the maximum amount of movement of the first predetermined positive lens group on the optical axis, It is.
  • ⁇ Gpmax is a positive lens group among all combinations for selecting two lens groups from the three or more lens groups when the predetermined positive lens group is composed of three or more lens groups. Of the amount of change in the spacing on the optical axis of the lens, the largest amount of change.
  • Appendix 6 The variable magnification optical system according to any one of appendices 1 to 5, wherein the following conditional expression (4) is satisfied. 0.1 ⁇ f G1 / f G2 ⁇ 5 (4) here, f G1 is the focal length of the first lens group, f G2 is the focal length of the second lens group, It is. (Appendix 7) 7.
  • variable magnification optical system according to any one of items 1 to 6, wherein the stop moves from the image side to the object side at the time of zooming from the low magnification end to the high magnification end.
  • Appendix 8 4.
  • Appendix 9 Have one or more predetermined positive lenses, 8.
  • variable magnification optical system according to any one of Additional Items 1 to 8, characterized in that a high dispersion glass material is used for a predetermined positive lens.
  • Appendix 10 The variable magnification optical system according to any one of Additional Items 3 to 5, and 9 characterized by satisfying the following conditional expression (6).
  • D HGpop is the distance on the optical axis from the lens surface closest to the object side to the object-side main surface in a predetermined positive lens group at the high magnification end
  • D HGpoi is the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side in the predetermined positive lens group at the high magnification end
  • It is. (Appendix 11) Having an aperture stop and a predetermined negative lens group, The predetermined negative lens group has negative refractive power and is disposed adjacent to the stop, 10.
  • the variable magnification optical system according to any one of appendices 1 to 10, characterized by satisfying the following conditional expression (7).
  • the predetermined negative lens group includes at least one or more positive lenses and one or more negative lenses.
  • the variable magnification optical system according to Additional Item 11 wherein a glass material having a dispersion higher than that of the negative lens is used for the positive lens.
  • the variable power optical system according to Additional Item 12 wherein a positive lens and a negative lens are cemented.
  • (Appendix 14) An optical system in which the magnification changes from the low magnification end to the high magnification end, A first lens group disposed closest to the object side and having positive refractive power; At least a second lens unit disposed on the image side of the first lens unit and having negative refractive power; Having a stop disposed closer to the object than the second lens unit, During zooming, the second lens unit moves, and the distance between the first lens unit and the second lens unit changes.
  • the third lens unit is disposed on the image side of the second lens unit, A variable magnification optical system characterized by satisfying the following conditional expression (8).
  • variable magnification optical system according to Additional Item 14, satisfying the following conditional expression (2). 0 ⁇ BF L /Y ⁇ 4.3 (2) here, BF L is the back focus at the low magnification end, Y is the maximum image height in the entire variable magnification optical system, It is.
  • variable magnification optical system having one or more predetermined positive lenses
  • Appendix 17 The variable magnification optical system according to any one of additional items 14 to 16, characterized by satisfying the following conditional expression (4-1). ⁇ 2.5 ⁇ f G1 / f G2 ⁇ ⁇ 0.2 (4-1) here, f G1 is the focal length of the first lens group, f G2 is the focal length of the second lens group, It is.
  • the third lens group has positive refractive power, and is disposed on the image side of the second lens group so as to be adjacent to the second lens group, During zooming, the distance between the second and third lens groups changes.
  • the variable magnification optical system according to any one of Additional Items 14 to 17, which satisfies the following Conditional Expression (9). ⁇ 7.5 ⁇ f G3 / f G2 ⁇ ⁇ 1 (9) here, f G2 is the focal length of the second lens group, f G3 is the focal length of the third lens group, It is.
  • a third lens unit having positive refractive power is disposed on the image side of the second lens unit, It has one or more lens units on the image side of the third lens unit, 19.
  • variable power optical system according to any one of additional items 14 to 18, characterized by satisfying the following conditional expression (10). 0.07 ⁇ f HG1G3 / f HGI ⁇ 1 (10) here, f HG1G3 is a combined focal length of the first lens group at the high magnification end, the second lens group, and the third lens group, f HGI is a combined focal length of a lens unit located on the image side of the third lens unit at the high magnification end, It is. (Appendix 20)
  • the second lens group at least includes one or more positive lenses and one or more negative lenses, 22.
  • a variable magnification optical system according to any one of Additional Items 14 to 19, characterized in that a glass material having a dispersion higher than that of the negative lens is used for the positive lens.
  • Appendix 21 The variable power optical system according to any one of Additional Items 14 to 20, wherein the second lens group includes two or more negative lenses.
  • Appendix 22 22. The variable power optical system of any one of appendices 14 to 21, wherein the first lens group has two or more sets of cemented lenses.
  • Appendix 23 It has one or more positive lenses and one or more negative lenses on the image side of the third lens group, It is characterized in that among the positive lens and the negative lens, the object-side positive lens disposed closest to the object side and the image-side negative lens disposed closest to the image satisfy the following conditional expression (11): Item 23.
  • the variable magnification optical system according to any one of items 18 to 22.
  • D Hpn is the distance on the optical axis from the object side of the object-side positive lens at the high magnification end to the image side of the image-side negative lens
  • D Hpi is the distance on the optical axis from the object side of the object-side positive lens at the high magnification end to the image plane
  • variable magnification optical system An optical system in which the magnification changes from the low magnification end to the high magnification end, A first lens group disposed closest to the object side and having positive refractive power; At least a second lens group disposed on the image side of the first lens group;
  • the variable magnification optical system is an optical system in which the conjugate length changes during zooming, and It has a lens unit that moves during zooming
  • the first lens group has a first object side lens disposed closest to the object side, 24.
  • An imaging apparatus having an imaging element and a variable magnification optical system, An optical image is formed on the imaging device by the variable magnification optical system.
  • the variable magnification optical system is an optical system whose magnification changes from the low magnification end to the high magnification end, and A first lens group disposed closest to the object side and having positive refractive power; At least a second lens group disposed on the image side of the first lens group; During zooming, the distance between the first lens group and the second lens group is variable,
  • An imaging apparatus characterized by satisfying the following conditional expressions (14) and (15).
  • ⁇ H 90 is the diameter of 90% encircled energy of the point image intensity distribution on the best image plane when the point image of wavelength e is formed near the approximate center of the imaging device at the high magnification end of the variable magnification optical system
  • p is the pixel pitch in the imaging device, It is.
  • LT L is a distance between the centers of gravity at the low power end of the variable power optical system, heavy inter-axis distance of 70% of the position of the maximum image height, center of gravity and the d-line of the point spread at the C line Distance between the point image intensity distribution and p is the pixel pitch in the imaging device, It is. (Appendix 31) 30.
  • AT H is the difference in the vicinity of substantially the center of the imaging device, the best focus position of the best focus position and the d-line on the C line
  • p is the pixel pitch in the imaging device, It is. (Appendix 32) 30.
  • CRA Lobj is the angle between the object-side chief ray at the low magnification end and the optical axis
  • CRA Hobj is the angle between the object-side chief ray at the high magnification end and the optical axis
  • the object-side chief ray is a chief ray that reaches 90% of the maximum image height among the chief rays incident on the first lens group, It is.
  • positive and negative angles the angle measured in the clockwise direction from the optical axis is negative, and the angle measured in the counterclockwise direction is positive.
  • (Appendix 33) The imaging device according to any one of appendices 27 to 32, characterized in that focusing is performed automatically while detecting the contrast of the image of the optical image.
  • (Appendix 34) 34 The imaging apparatus according to any one of Additional Items 27 to 33, wherein focusing is performed by moving the imaging element in the optical axis direction.
  • (Appendix 35) In the imaging device according to any one of appendices 27 to 34, An imaging apparatus comprising the variable magnification optical system according to any one of the items 1 to 26, as the optical system. (Appendix 36) 14. The variable magnification optical system according to any one of appendices 1 to 13, characterized by satisfying the following conditional expression (12).
  • the first lens group has a first object side lens disposed closest to the object side, 28.
  • ⁇ wd is the maximum amount of change in the distance from the object to the object side surface of the first object side lens
  • D wdmax is the maximum distance of the distance from the object to the object side surface of the first object side lens, It is.
  • Appendix 38 38.
  • Appendix 39 24.
  • the first lens group has a first object side lens disposed closest to the object side, 40.
  • variable power optical system in which the overall length of the optical system is short, and the on-axis aberration and the off-axis aberration are favorably corrected in the observation range equivalent to the conventional microscope or more And it is suitable for the imaging device provided with the same, and an imaging system.

Abstract

 変倍光学系及びそれを備えた撮像装置、撮像システムであって、変倍光光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、最も物体側に配置され、正の屈折力を有する第1レンズ群G1と、第1レンズ群よりも像側に配置され、正の屈折力を有する第2レンズ群G2と、を少なくとも有し、変倍時に、第1レンズ群G1と第2レンズ群G2との間隔が変化し、以下の条件式(1)を満足する。 0<1/βHG1<1 (1) ここで、 βHG1は、高倍端での第1レンズ群の結像倍率、 である。

Description

変倍光学系及びそれを備えた撮像装置、撮像システム
 本発明は、変倍光学系及びそれを備えた撮像装置、撮像システムに関するものである。
 従来、ある程度の広さ(面積)を持つ標本を観察する場合、最初に、標本全体を観察して詳細に観察したい部位を特定し、その後、詳細に観察したい部位を拡大して観察する手法がとられている。標本全体を撮影することができると、撮影した画像の一部をデジタル的に拡大し、拡大した画像を表示することができる。なお、画像のデジタル的な拡大はデジタルズームと呼ばれる。
 一方、撮影した画像の一部を拡大する別の方法として、光学的なズームがある。光学的なズームができる光学系、すなわち、変倍光学系は複数のレンズ群で構成されている。変倍光学系では、複数のレンズ群のうちの一部のレンズ群を移動させることで、レンズ群の間隔を変化させ、これにより、結像倍率を変化させている。このような変倍光学系として、特許文献1に開示された顕微鏡ズーム対物レンズがある。
特許4576402号公報
 顕微鏡では、視野数は通常22mm程度である。特許文献1に記載の顕微鏡ズーム対物レンズは、視野数22mmに相当する像高に対して収差が補正されている。しかしながら、この顕微鏡ズーム対物レンズは、光学系の全長が短いとはいえないため、光学系や顕微鏡が十分に小型化されているとはいえない。
 また、特許文献1に記載の顕微鏡ズーム対物レンズにおいて、視野数22mmに相当する像高を維持しながら光学系の全長を短縮しようとすると、収差補正が困難となるので、所望の分解能を達成することが困難となる。また、観察範囲(実視野)を広げるために、視野数22mm以上の像高に対応できるようにしようとすると、光学系がさらに大型化し、かつ、軸上および軸外の収差補正がより困難になる。
 本発明は、上記に鑑みてなされたものであって、光学系の全長が短く、従来の顕微鏡と同等の観察範囲、あるいはそれ以上の観察範囲において、軸上収差と軸外収差が良好に補正された変倍光学系及びそれを備えた撮像装置、撮像システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の変倍光学系は、
 低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 第1レンズ群よりも像側に配置され、正の屈折力を有する第2レンズ群と、を少なくとも有し、
 変倍時に、第1レンズ群と第2レンズ群との間隔が変化し、
 以下の条件式(1)を満足することを特徴とする。
 0<1/βHG1<1   (1)
 ここで、
 βHG1は、高倍端での第1レンズ群の結像倍率、
である。
 また、本発明の別の変倍光学系は、
 低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 第1レンズ群よりも像側に配置され、負の屈折力を有する第2のレンズ群と、を少なくとも有し、
 第2レンズ群よりも物体側に配置された絞りを有し、
 変倍時に、第2レンズ群は移動して、第1レンズ群と第2レンズ群との間隔が変化し、
 第2レンズ群よりも像側に、第3レンズ群が配置され、
 以下の条件式(8)を満足することを特徴とする。
 0.15≦ΔG2max/DHIGi≦2   (8)
 ここで、
 ΔG2maxは、第2レンズ群の光軸上の移動量のうち、最大となる移動量、
 DHIGiは、高倍端での第3レンズ群の最も物体側のレンズ面から像面までの光軸上の距離、
である。
 また、本発明の別の変倍光学系は、
 低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、
 変倍光学系は、変倍時に共役長が変化する光学系であって、
 変倍時に移動するレンズ群を有し、
 以下の条件式(12)を満足することを特徴とする。
 0.01≦|Δiomax/Δmax|≦5   (12)
 ここで、
 Δiomaxは、共役長の変化量のうち、最大となる変化量、
 Δmaxは、移動するレンズ群の移動量のうち、最大となる移動量、
である。
 また、本発明の撮像装置は、
 撮像素子と、変倍光学系と、を有する撮像装置であって、
 変倍光学系によって、撮像素子上に光学像が形成され、
 変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、
 変倍時に、第1レンズ群と第2レンズ群との間隔が可変であり、
 以下の条件式(14)、(15)を満足することを特徴とする。
 3000≦2×Y/p   (14)
 0.08≦NAH   (15)
 ここで、
 Yは、変倍光学系全系における最大像高、
 pは、撮像素子における画素ピッチ、
 NAHは、高倍端での変倍光学系の物体側の開口数、
である。
 また、本発明の撮像システムは、
 上述の撮像装置と、
 観察対象となる物体を保持するステージと、
 物体を照明する光源と、を備えたことを特徴とする。
 本発明によれば、光学系の全長が短く、従来の顕微鏡と同等の観察範囲、あるいはそれ以上の観察範囲において、軸上収差と軸外収差が良好に補正された変倍光学系及びそれを備えた撮像装置、撮像システムを提供することができる。
実施例1に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は高倍端での断面図である。 実施例1に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は高倍端での状態を示している。 実施例2に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例2に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例3に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例3に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例4に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例4に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例5に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例5に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例6に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例6に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例7に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例7に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例8に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例8に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例9に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例9に係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例10に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例10係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例11に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例11係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例12に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例12係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例13に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例13係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例14に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例14係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例15に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例15係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例16に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例16係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例17に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例17係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例18に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例18係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 実施例19に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は低倍端、(b)は中間状態、(c)は高倍端での断面図である。 実施例19係る変倍光学系の無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)~(d)は低倍端、(e)~(h)は中間状態、(i)~(l)は高倍端での状態を示している。 撮像装置及び撮像システムの構成を示す図である。 他の撮像装置及び撮像システムの構成を示す図である。 他の撮像装置及び撮像システムの構成を示す図である。 他の撮像装置及び撮像システムの構成を示す図であって、(a)は顕微鏡の全体構成を示す図、(b)は顕微鏡を固定した状態を示す図である。
 実施例の説明に先立ち、本発明のある態様に係る実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
 また、以下の説明では、「標本」を、適宜「物体」とし、「標本像」を、適宜「像」とする。
 また、本実施形態の変倍光学系を用いた撮像装置では、撮影で得た画像をデジタルズームして拡大表示することができる。そのため、これらの実施形態の変倍光学系は、諸収差が良好に補正されているので高い分解能を有すると共に、広い観察範囲の像を形成することができる。これらの実施形態の変倍光学系では、特に、軸上と軸外の色収差が良好に補正されているので、画素ピッチの小さい撮像素子と組み合わせることで、撮影した画像をデジタルズームして拡大した場合であっても、高い解像度の拡大画像が得られる。
 また、以下の説明において、低倍端は変倍範囲のうちで最小の倍率、高倍端は変倍範囲のうちで最大の倍率である。また、低倍時は低倍端とその近傍の範囲、高倍時は高倍端とその近傍の範囲である。
 また、顕微鏡では、対物レンズと結像レンズによって光学像が形成され、その光学像を接眼レンズで観察する。この場合、結像が2回行われることから、対物レンズと結像レンズによって形成された光学像が一次像になり、一次像の位置における仮想面が一次結像面になる。本実施形態の変倍光学系の像面に形成された光学像は、顕微鏡の光学系における一次像に該当する。よって、以下の説明における像面は、顕微鏡の光学系における一次結像面に該当する。
 本実施形態の変倍光学系の説明に先立って、本実施形態の変倍光学系が有する基本構成について説明する。
 基本構成では、変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、最も物体側に配置され、正の屈折力を有する第1レンズ群と、第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有する。
 本実施形態の変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系である。すなわち、本実施形態の変倍光学系では、光学系の結像倍率(以下、適宜、倍率とする)を、低倍と高倍との間で変化させることができる。低倍端では倍率が最も小さいため、高倍端に比べて広い観察範囲を得ることができる。一方、高倍端では倍率が最も大きいため、低倍端に比べて観察範囲は狭くなるが、高い分解能を得ることができる。なお、倍率の変化、すなわち変倍には、共役長(物体から像までの距離)が一定の状態で行われる変倍と、共役長が変化する状態で行われる変倍とが含まれる。
 そして、変倍光学系は、最も物体側に配置され、正の屈折力を有する第1レンズ群と、第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有する。
 光学系の物体側の開口数(以下、単に「開口数」という)を大きくすると、より大きな発散角(回折角)の光を、物体から光学系に入射させることができる。その結果、物体の微細構造を、より細かく観察することができる。しかしながら、発散角が大きい光は、第1レンズ群における光線高が高い。このような光線を第1レンズ群で急激に曲げると、第1レンズ群において高次収差が発生しやすくなる。
 本実施形態の変倍光学系では、第1レンズ群が正の屈折力を持つことで、発散角が大きい光線を、物体に近い領域、すなわち、第1レンズ群で徐々に曲げるようにしている。このようにすることで、小型化な光学系でありながら、特に高倍時において、微細な構造の光学像を高い解像度で形成することが可能となる。
 なお、第1レンズ群で発散光束を収束光束にしても良いが、必ずしも発散光束を収斂光束にする必要はない。このようにすることで、高次収差が大きく発生することを抑えつつ、物体からの光束を発散角の小さい光束にできる。
 また、変倍光学系の像面に撮像素子を配置することで、撮像装置の小型化が可能となる。ここで、撮像装置としては、例えば、顕微鏡がある。顕微鏡では、視野数は通常22mm程度である。視野数22mmは、変倍光学系の像高に換算すると11mm程度になる。
 そこで、本実施形態の変倍光学系を顕微鏡の光学系に用いる場合、視野数22mmに相当する観察範囲を得るためには、変倍光学系は像高11mm程度まで収差が良好に補正されていれば良い。
 デジタル顕微鏡では、撮像した物体像の画像をモニタ上で観察する。このデジタル顕微鏡においては、像高に対して撮像素子の画素ピッチが十分に小さければ、像高が小さくても、視野数22mmに相当する観察範囲が得られる。また、像高を11mm(視野数22mm相当)よりも大きくしなくても、より大きな視野数に相当する観察範囲が得られる。
 そこで、より高い分解能を変倍光学系が有することで、画素ピッチが小さく、画素数が多い撮像素子(以下、適宜、所定の撮像素子とする)との組み合わが可能になる。その結果、像高を大きくしなくても、従来の顕微鏡と比べてより大きな視野数に相当する観察範囲を得ることができる。
 第1実施形態の変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、最も物体側に配置され、正の屈折力を有する第1レンズ群と、第1レンズ群よりも像側に配置され、正の屈折力を有する第2レンズ群と、を少なくとも有し、変倍時に、第1レンズ群と第2レンズ群との間隔が変化し、以下の条件式(1)を満足することを特徴とする。
 0<1/βHG1<1   (1)
 ここで、
 βHG1は、高倍端での第1レンズ群の結像倍率、
である。
 第1実施形態の変倍光学系は、上述の基本構成を備え、更に、第2レンズ群に正の屈折力を持たせると共に、第1レンズ群と第2レンズ群との間隔を変化させて変倍を行っている。なお、第1実施形態の変倍光学系では、共役長が一定の状態で変倍が行われる。
 基本構成の技術的意義については既に説明しているので、説明は省略する。
 第2レンズ群に正の屈折力を持たせることにより、第1レンズ群の屈折力を大きくしすぎることなく、高倍時に第1レンズ群と第2レンズ群との合成屈折力を十分に大きくすることが可能となる。この場合、高倍時に物体に近い領域で従属光線の発散を抑えることが可能となるので、光学系の小型化ができる。しかも、第1レンズ群に過剰な屈折力を持たせる必要がなくなるため、比較的少ないレンズ枚数で第1レンズ群内での諸収差、特に、球面収差や像面湾曲を良好に補正することができる。
 また、第2レンズ群よりも像側にレンズ群を配置した場合、像側に配置したレンズ群での諸収差の発生、特に、球面収差やコマ収差などの発生を抑えることができる。
 そして、本実施形態の変倍光学系は、条件式(1)を満足する。
 条件式(1)を満足することによって、第2レンズ群よりも像側にレンズ群を配置したとしても、第2レンズ群以降のレンズ群の合成倍率の絶対値が大きくなりすぎることなく、光学系全体での結像倍率を高めることができる。そのため、第1レンズ群で収差が発生しても、第2レンズ群以降のレンズ群での収差の拡大を抑えることができる。その結果、光学系全体での諸収差、特に、球面収差や像面湾曲を良好に補正することが可能となる。
 このように、本実施形態の変倍光学系では、諸収差が良好に補正されている。そのため、本実施形態の変倍光学系を所定の撮像素子と組み合わせることで、観察範囲を大きく保ちながら、撮像装置をより小型化することが可能となる。
 ここで、条件式(1)に代えて、以下の条件式(1’)を満足することが好ましい。
 0.1<1/βHG1<0.9   (1’)
 また、条件式(1)に代えて、以下の条件式(1’’)を満足することがより好ましい。
 0.2<1/βHG1<0.85   (1’’)
 また、条件式(1)に代えて、以下の条件式(1’’’)を満足することがより好ましい。
 0.3<1/βHG1<0.8   (1’’’)
 なお、本実施形態の変倍光学系は、以下の条件式(2)を満足することが好ましい。
 0<BFL/Y≦4.3   (2)
 ここで、
 BFLは、低倍端でのバックフォーカス、
 Yは、変倍光学系全系における最大像高、
である。
 像面に近い領域では、軸外光束の光線高が高く、光束径が小さくなる。また、この領域では、変倍による軸外光束の光線高の変動や光束径の変動が小さい。そのため、この領域にレンズを配置することができれば、特に倍率色収差や像面湾曲などの軸外収差を良好に補正することが可能となる。
 条件式(2)の下限値を下回らないようにすることで、バックフォーカスが小さくなりすぎない。そのため、像面に近い領域にレンズを配置する場合に、レンズと撮像素子の間隔を広くすることができる。その結果、レンズと撮像素子との多重反射によってゴーストが発生しても、ゴーストが高密度で撮像素子面に入射することを防ぐことが可能となる。
 条件式(2)の上限値を上回らないようにすることで、バックフォーカスが大きくなりすぎない。この場合、バックフォーカスを小さく抑えることができるので、変倍時に移動するレンズ群の移動スペースを十分に確保しながら、光学系を小型化することが可能となる。
 また、画素ピッチに対して像高を大きくすることで、より大きな視野数に相当する広い観察範囲を得ることができるが、この場合、特に、低倍時において軸外収差を良好に補正することが重要になる。条件式(2)の上限値を上回らないようにすることで、バックフォーカスを小さく抑えることができるので、像面に近い領域にレンズを配置することができる。これにより、軸外収差を良好に補正することが可能となる。よって良好な結像性能を保ちながら、より大きな視野数に相当する広い観察範囲を得ることができる。
 ここで、条件式(2)に代えて、以下の条件式(2’)を満足することが好ましい。
 0.1<BFL/Y≦4   (2’)
 また、条件式(2)に代えて、以下の条件式(2’’)を満足することがより好ましい。
 0.2<BFL/Y≦3   (2’’)
 また、条件式(2)に代えて、以下の条件式(2’’’)を満足することがより好ましい。
 0.3<BFL/Y≦2   (2’’’)
 また、本実施形態の変倍光学系では、第2レンズ群よりも像側に、絞りが配置され、絞りよりも像側に、所定の正レンズ群が配置され、所定の正レンズ群は正の屈折力を有すると共に、低倍端に比べて高倍端での絞りとの間隔が小さくなるレンズ群であることが好ましい。
 本実施形態の変倍光学系では、第1レンズ群や第2レンズ群よりも像側に絞りが配置され、絞りよりも像側に所定の正レンズ群が配置されている。このようにすることで、絞りよりも像側に、正の屈折力を有するレンズ群が配置されることになる。これにより、特に、低倍時において、絞りを通過した軸外光束を収斂させながら、その光線高が高くなりすぎないように抑えることが可能になる。そのため、光学系の細径化が可能になり、また、軸外収差を良好に補正することが可能となる。
 特に、光学系の全長を短縮すると、軸外光束が絞りから射出するとき、その射出角が低倍時で大きくなる。そのため、上述の構成を備えることで、光学系の細径化と軸外収差の良好な補正効果が、光学系の全長を短縮した場合に顕著となる。
 また、絞りよりも像側に所定の正レンズ群を配置することによって、高倍時には、絞りと正の屈折力を有するレンズ群との間隔が小さくなる。これにより、光学系の主面を物体側に位置させることができ、また、絞りを通過した軸外光束を収斂させながら、その光線高が高くなりすぎないように抑える、という前述の働きを小さくすることができるため、所望の結像倍率を得ることができる。
 なお、絞りと所定の正レンズ群との間に、正の屈折力を有するレンズ群、又は負の屈折力を有するレンズ群を配置させてもよい。
 また、本実施形態の変倍光学系では、所定の正レンズ群は、2枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有することが好ましい。
 所定の正レンズ群が正レンズを2枚以上有することで、所定の正レンズ群の正の屈折力をこれらの正レンズに分担させることができる。これにより、軸外光束を段階的に屈折させることが可能になるため、コマ収差の発生を抑制することが可能となる。また、所定の正レンズ群が負レンズを1枚以上有することで、所定の正レンズ群内での軸上色収差及び倍率色収差を良好に補正することができる。
 このように、本実施形態の変倍光学系では、諸収差が良好に補正されている。そのため、本実施形態の変倍光学系を所定の撮像素子と組み合わせることで、観察範囲を大きく保ちながら、撮像装置をより小型化することが可能となる。
 なお、正レンズと負レンズは、接合されていてもよい。
 また、本実施形態の変倍光学系では、絞りよりも像側に、所定の正レンズ群が複数配置され、第1の所定の正レンズ群は、複数の所定の正レンズ群のうちで、最も物体側に配置され、以下の条件式(3)を満足することが好ましい。
 0<ΔGpmax/ΔGpobj≦0.6   (3)
 ここで、
 ΔGpmaxは、所定の正レンズ群のうち何れか2つの所定の正レンズ群の光軸上の間隔の変化量のうち、最大となる変化量、
 ΔGpobjは、第1の所定の正レンズ群の光軸上の移動量のうち、最大となる移動量、
である。
 ここで、ΔGpmaxは、所定の正レンズ群が3つ以上のレンズ群から構成される場合、当該3つ以上のレンズ群から2つのレンズ群を選択する全ての組み合わせの中で、正レンズ群の光軸上の間隔の変化量のうち、最大となる変化量である。
 所定の正レンズ群を複数配置し、変倍時に、2つの所定の正レンズ群の間隔を変化させることにより、変倍を行っても像面が変動しないようにすることが可能となる。
 条件式(3)の上限値を上回らないようにすることで、2つの所定の正レンズ群の間隔の変化量が大きくなりすぎない。この場合、所定の正レンズ群が一つの場合の機能を、複数の所定の正レンズ群全体で発揮することが可能となる。よって、所定の正レンズ群が複数配置された場合においても、諸収差、特に、低倍時の軸外収差を良好に補正することができる。
 なお、レンズ群の移動量は、レンズ群と像面との間の距離の変化量であって、レンズ群と像面との間の距離は像面を基準として算出する。例えば、レンズ群と像面との間の距離が低倍端でDL、高倍端でDHの場合、レンズ群の移動量は|DH-DL|になる。
 ここで、条件式(3)に代えて、以下の条件式(3’)を満足することが好ましい。
 0.01<ΔGpmax/ΔGpobj≦0.5   (3’)
 また、条件式(3)に代えて、以下の条件式(3’’)を満足することがより好ましい。
 0.02<ΔGpmax/ΔGpobj≦0.4   (3’’)
 また、条件式(3)に代えて、以下の条件式(3’’’)を満足することがより好ましい。
 0.03<ΔGpmax/ΔGpobj≦0.35   (3’’’)
 また、本実施形態の変倍光学系は、以下の条件式(4)を満足することが好ましい。
 0.1≦fG1/fG2≦5   (4)
 ここで、
 fG1は、第1レンズ群の焦点距離、
 fG2は、第2レンズ群の焦点距離、
である。
 条件式(4)の下限値を下回らないようにすることで、第1レンズ群の焦点距離が小さくなりすぎない。その結果、比較的少ないレンズ枚数で、第1レンズ群内での諸収差、特に、球面収差や像面湾曲を良好に補正することができる。
 条件式(4)の上限値を上回らないようにすることで、第1レンズ群の焦点距離が大きくなりすぎない。その結果、第1レンズ群から射出する軸上光束や軸外光束の発散を抑えることができる。また、特に、第2レンズ群に入射する光束径が、高倍時に大きくなりすぎないように抑えることができる。このようなことから、諸収差、特に、低倍時の球面収差やコマ収差を良好に補正することができる。
 ここで、条件式(4)に代えて、以下の条件式(4’)を満足することが好ましい。
 0.2≦fG1/fG2≦4   (4’)
 また、条件式(4)に代えて、以下の条件式(4’’)を満足することがより好ましい。
 0.3≦fG1/fG2≦3   (4’’)
 また、条件式(4)に代えて、以下の条件式(4’’’)を満足することがより好ましい。
 0.4≦fG1/fG2≦2   (4’’’)
 また、本実施形態の変倍光学系では、低倍端から高倍端への変倍時に、絞りが像側から物体側に移動することが好ましい。
 変倍時に絞りが移動することによって、光学系の全長に対するレンズ群の移動スペースが大きくなる。そのため、所望の倍率を確保しながら、光学系の全長を短縮することが可能となる。
 また、絞りより物体側にあるレンズ群と絞りより像側にあるレンズ群の各々で、倍率色収差が発生する。ここで、本実施形態の変倍光学系では、変倍によらず、各々のレンズ群で発生する倍率色収差のバランスをとることができる。そのため、低倍時と高倍時の両方で、光学系全体の倍率色収差を良好に補正することができる。
 また、本実施形態の変倍光学系は、以下の条件式(5)を満足することが好ましい。
 0.2≦fG1/fLGp≦10   (5)
 ここで、
 fG1は、第1レンズ群の焦点距離、
 fLGpは、低倍端での所定の正レンズ群の焦点距離、
である。
 条件式(5)の下限値を下回らないようにすることで、所定の正レンズ群の焦点距離が大きくなりすぎない。その結果、低倍時において、絞りを通過した軸外光束を収斂させながら、その光線高が高くなりすぎないように抑えることが可能になる。そのため、光学系の全長の短縮と細径化の両立が可能になり、また、軸外収差、特に、コマ収差を良好に補正することが可能となる。
 条件式(5)の上限値を上回らないようにすることで、所定の正レンズ群の焦点距離が小さくなりすぎない。その結果、所定の正レンズ群内で像面湾曲や倍率色収差などが発生しても、その発生量が大きくなりすぎないように抑えることが可能となる。そのため、特に、低倍時での軸外収差を良好に補正することが可能となる。
 なお、所定の正レンズ群が1つの場合、fLGpは、1つの所定の正レンズ群の焦点距離である。
 また、所定の正レンズ群が複数の場合、最も絞り側に位置する所定の正レンズ群から最も像側に位置する所定の正レンズ群までを1つのレンズ群とみなす。そして、この1つのレンズ群を、所定の正レンズ群とみなす。よって、所定の正レンズ群が複数の場合、fLGpは、この1つのレンズ群の焦点距離である。例えば、絞りの像側に、物体側から像側に順に、第1の所定の正レンズ群と、負レンズ群と、第2の所定の正レンズ群と、が配置されている場合、fLGpは、当該第1の所定の正レンズ群と、当該負レンズ群と、当該第2の所定の正レンズ群との合成の焦点距離である。
 ここで、条件式(5)に代えて、以下の条件式(5’)を満足することが好ましい。
 0.3≦fG1/fLGp≦8   (5’)
 また、条件式(5)に代えて、以下の条件式(5’’)を満足することがより好ましい。
 0.35≦fG1/fLGp≦4   (5’’)
 また、条件式(5)に代えて、以下の条件式(5’’’)を満足することがより好ましい。
 0.4≦fG1/fLGp≦2   (5’’’)
 また、本実施形態の変倍光学系では、所定の正レンズを1つ以上有し、所定の正レンズに、高分散の硝材が用いられていることが好ましい。
 C線とd線との間で軸上色収差と倍率色収差を補正すると、g線の色収差が補正過剰になることがある。ここで、一般的に、高分散の硝材は部分分散比θgfの値が高い。そこで、高分散の硝材を正レンズに用いることで、補正過剰になってしまうg線の色収差を良好に補正することができる。
 なお、ここでの高分散の硝材とは、アッベ数が30以下の硝材を指す。
 また、本実施形態の変倍光学系は、以下の条件式(6)を満足することが好ましい。
 -1≦DHGpop/DHGpoi≦0.65   (6)
 ここで、
 DHGpopは、高倍端での所定の正レンズ群における最も物体側のレンズ面から物体側主面までの光軸上の距離、
 DHGpoiは、高倍端での所定の正レンズ群における最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離、
である。
 ここで、物体側主面が、所定の正レンズ群における最も物体側のレンズ面よりも像側に位置している場合、DHGpopの値は正の値となり、物体側に位置している場合、DHGpopの値は負の値となる。
 条件式(6)の下限値を下回らないようにすることで、軸上光線の光線高が高い絞り近傍において、所定の正レンズ群の物体側レンズ面の正の屈折力が大きくなりすぎないようにすることが可能となる。そのため、特に球面収差を良好に補正することが可能となる。
 条件式(6)の上限値を上回らないようにすることで、所定の正レンズ群の構成をテレフォトの構成にして、所定の正レンズ群の主点を物体側に位置させることが可能となる。このようにすると、高倍時に、絞り近傍に所定の正レンズ群が位置することになる。すなわち、絞りの近傍に強い正の屈折力を持たせることになるので、軸上光束と軸外光束の発散を抑えられる。そのため、コマ収差の発生を抑えながら、像面湾曲を十分に補正することが可能となる。その結果、観察範囲を大きくしながら光学系を小型化し、またコマ収差や像面湾曲などの収差を良好に補正することが可能となる。
 なお、所定の正レンズ群よりも像側のレンズ群に、負の屈折作用を持たせても良い。このようにすることで、光学系の全長を短くしながら、所望の倍率を確保することができる。
 また、所定の正レンズ群が1つの場合、DHGpoiは、1つの所定の正レンズ群における最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離である。また、所定の正レンズ群が複数の場合、DHGpoiは、最も物体側に位置する所定の正レンズ群における最も物体側のレンズ面から、最も像側に位置する所定の正レンズ群における最も像側のレンズ面までの光軸上の距離である。
 ここで、条件式(6)に代えて、以下の条件式(6’)を満足することが好ましい。
 -0.7≦DHGpop/DHGpoi≦0.55   (6’)
 また、条件式(6)に代えて、以下の条件式(6’’)を満足することがより好ましい。
 -0.3≦DHGpop/DHGpoi≦0.5   (6’’)
 また、条件式(6)に代えて、以下の条件式(6’’’)を満足することがより好ましい。
 0≦DHGpop/DHGpoi≦0.3   (6’’’)
 また、本実施形態の変倍光学系では、絞りと、所定の負レンズ群と、を有し、所定の負レンズ群は負の屈折力を有すると共に、絞りと隣り合うように配置され、以下の条件式(7)を満足することが好ましい。
 |DsGno/φHs|≦1   (7)
 ここで、
 DsGnoは、絞りから所定の負レンズ群における最も絞り側のレンズ面までの光軸上の距離、
 φHsは、高倍端での絞りの直径、
である。
 本実施形態の変倍光学系では、所定の負レンズ群が絞りと隣り合うように配置されている。ここで、絞りとレンズ群とが隣り合うとは、絞りとレンズ群との間にレンズ群が配置されていないことを意味する。そして、条件式(7)を満足することで、絞りの近傍に、負の屈折力を有するレンズ群を配置することができる。これにより、特に、高倍時の軸上色収差を良好に補正しつつ、変倍による倍率色収差の変動を抑えることができる。そのため、変倍時に絞りを固定、又はその移動量を極力小さくしても、変倍による倍率色収差の変動を抑えながら、軸上色収差を良好に補正することが可能となる。
 なお、DsGnosは、変倍に際してその値が変化する場合は、低倍端から高倍端までの間で最大となるときの距離である。
 ここで、条件式(7)に代えて、以下の条件式(7’)を満足することが好ましい。
 |DsGno/φHs|≦0.6   (7’)
 また、条件式(7)に代えて、以下の条件式(7’’)を満足することがより好ましい。
 |DsGno/φHs|≦0.4   (7’’)
 また、条件式(7)に代えて、以下の条件式(7’’’)を満足することがより好ましい。
 |DsGno/φHs|≦0.3   (7’’’)
 また、本実施形態の変倍光学系では、所定の負レンズ群は、1枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有し、正レンズに、負レンズよりも高分散の硝材を用いていることが好ましい。
 高分散の硝材を用いた正レンズを、所定の負レンズ群内に配置することで、色収差の補正作用が過剰になることを防ぐことができる。そのため、特に、高倍時の軸上色収差を良好に補正することが可能となる。
 また、C線とd線との間で軸上色収差と倍率色収差を補正すると、g線の色収差が補正過剰になることがある。ここで、一般的に、高分散の硝材は部分分散比θgfの値が高い。そこで、部分分散比θgfの値が大きい硝材を正レンズとして用いることで、補正過剰になってしまうg線の色収差を良好に補正することができる。
 また、本実施形態の変倍光学系では、正レンズと負レンズとが接合されていることが好ましい。
 所定の負レンズ群は、絞りと隣り合うように配置されている。ここで、絞りの近傍では、光線高が高くなる。そこで、絞り近傍に配置された所定の負レンズ群を、正レンズと負レンズとで構成する。正レンズと負レンズの一対は色収差補正作用が大きいので、レンズ対を接合することにより、色コマ収差の発生を抑えることができる。
 第2実施形態の変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、最も物体側に配置され、正の屈折力を有する第1レンズ群と、第1レンズ群よりも像側に配置され、負の屈折力を有する第2のレンズ群と、を少なくとも有し、第2レンズ群よりも物体側に配置された絞りを有し、変倍時に、第2レンズ群は移動して、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群よりも像側に、第3レンズ群が配置され、以下の条件式(8)を満足することを特徴とする。
 0.15≦ΔG2max/DHIGi≦2   (8)
 ここで、
 ΔG2maxは、第2レンズ群の光軸上の移動量のうち、最大となる移動量、
 DHIGiは、高倍端での第3レンズ群の最も物体側のレンズ面から像面までの光軸上の距離、
である。
 第2実施形態の変倍光学系は、上述の基本構成を備え、更に、第2レンズ群に負の屈折力を持たせると共に、第2レンズ群を移動させることで、第1レンズ群と第2レンズ群と間隔を変化させ、これにより変倍を行っている。加えて、絞りを第2レンズ群よりも物体側に配置すると共に、第2レンズ群よりも像側に、第3レンズ群を配置し、なお、第2実施形態の変倍光学系では、共役長が一定の状態で変倍が行われる。
 基本構成の技術的意義については既に説明しているので、説明は省略する。
 第2レンズ群が負の屈折力を持つことにより、絞りよりも物体側でレンズ径を小さくすることが可能になる。
 また、絞りを第2レンズ群よりも物体側に配置することにより、変倍時に絞りを固定、又はその移動量を極力小さくしても、変倍による入射瞳位置の変動を抑えることが可能となる。その結果、変倍によらず、テレセントリック性を適切に確保することができる。
 また、第2レンズ群よりも像側に、第3レンズ群が配置されている。
 また、このような光学系にすることにより、観察範囲を大きく保ちながら、装置を小型化することが可能となる。
 なお、絞りは第1レンズ群の内部に配置しても良く、第1レンズ群と第2レンズ群との間に配置しても良い。
 そして、本実施形態の変倍光学系は、条件式(8)を満足する。
 条件式(8)の下限値を下回らないようにすることで、変倍作用を主に負担している第2レンズ群の移動量を十分に確保しながら、光学系の全長を短縮することが可能となる。また、第1レンズ群と第2レンズ群の各々で、屈折力の絶対値を大きくしすぎることなく、所望の変倍比を確保することができる。そのため、第1レンズ群と第2レンズ群の各々で、諸収差、特に、像面湾曲を良好に補正することができる。その結果、光学系全体の収差をバランスよく補正でき、また、各々の収差も良好に補正することができる。
 条件式(8)の上限値を上回らないようにすることで、高倍時に第3レンズ群の物体側レンズから像面までの距離が短くなりすぎない。そのため、高倍時に、第3レンズ群のレンズ構成が極端にテレフォト構成になることなく、所望の倍率が得られる。その結果、第3レンズ群での諸収差、特に、球面収差やコマ収差を良好に補正することができる。
 このように、本実施形態の変倍光学系では、諸収差が良好に補正されている。そのため、本実施形態の変倍光学系を所定の撮像素子と組み合わせることで、観察範囲を大きく保ちながら、撮像装置をより小型化することが可能となる。
 ここで、条件式(8)に代えて、以下の条件式(8’)を満足することが好ましい。
 0.2≦ΔG2max/DHIGi≦1.7   (8’)
 また、条件式(8)に代えて、以下の条件式(8’’)を満足することがより好ましい。
 0.3≦ΔG2max/DHIGi≦1.5   (8’’)
 また、条件式(8)に代えて、以下の条件式(8’’’)を満足することがより好ましい。
 0.35≦ΔG2max/DHIGi≦1   (8’’’)
 なお、本実施形態の変倍光学系は、以下の条件式(2)を満足することが好ましい。
 0<BFL/Y≦4.3   (2)
 ここで、
 BFLは、低倍端でのバックフォーカス、
 Yは、変倍光学系全系における最大像高、
である。
 条件式(2)の技術的意義は既に説明したので、説明は省略する。
 また、本実施形態の変倍光学系では、所定の正レンズを1つ以上有し、所定の正レンズに高分散の硝材を用いていることが好ましい。
 C線とd線との間で軸上色収差と倍率色収差を補正すると、g線の色収差が補正過剰になることがある。ここで、一般的に、高分散の硝材は部分分散比θgfの値が高い。そこで、高分散の硝材を正レンズに用いることで、補正過剰になってしまうg線の色収差を良好に補正することができる。
 なお、ここでの高分散の硝材とは、アッベ数が30以下の硝材を指す。
 また、本実施形態の変倍光学系は、以下の条件式(4-1)を満足することが好ましい。
 -2.5≦fG1/fG2≦-0.2   (4-1)
 ここで、
 fG1は、第1レンズ群の焦点距離、
 fG2は、第2レンズ群の焦点距離、
である。
 条件式(4-1)の下限値を下回らないようにすることで、第2レンズ群の焦点距離が小さくなりすぎない。この場合、第2レンズ群での軸上光束の発散と軸外光束の発散が強くなりすぎないように抑制することができる。そのため、諸収差、低倍時では主にコマ収差を、高倍時では主に球面収差を良好に補正することができる。
 条件式(4-1)の上限値を上回らないようにすることで、第2レンズ群の焦点距離が大きくなりすぎない。この場合、第1レンズ群と第2レンズ群との間隔の変化によって、変倍作用の大部分を生じさせることが可能になる。しかも、両者の間隔の変化量を大きくしすぎることなく、所望の変倍比を得ることが可能となる。そのため、光学系の全長の短縮が可能となる。また、第2レンズ群の負の屈折力が小さくなりすぎないために、特に、高倍時での像面湾曲を十分に補正することが可能となる。
 ここで、条件式(4-1)に代えて、以下の条件式(4-1’)を満足することが好ましい。
 -2.4≦fG1/fG2≦-0.25   (4-1’)
 また、条件式(4-1)に代えて、以下の条件式(4-1’’)を満足することがより好ましい。
 -2.2≦fG1/fG2≦-0.3   (4-1’’)
 また、条件式(4-1)に代えて、以下の条件式(4-1’’’)を満足することがより好ましい。
 -2≦fG1/fG2≦-0.35   (4-1’’’)
 また、本実施形態の変倍光学系では、第3レンズ群は正の屈折力を有すると共に、第2レンズ群よりも像側に、第2レンズ群に隣り合うように配置され、変倍時、第2レンズ群と第3レンズ群との間隔が変化し、以下の条件式(9)を満足することが好ましい。
 -7.5≦fG3/fG2≦-1   (9)
 ここで、
 fG2は、第2レンズ群の焦点距離、
 fG3は、第3レンズ群の焦点距離、
である。
 第2レンズ群よりも像側に正の屈折力を有する第3レンズ群を配置している。
 条件式(9)の下限値を上回らないようにすることで、第3レンズ群の焦点距離が大きくなりすぎない。そのため、特に、低倍時において、第2レンズ群で発散した軸外光束を第3レンズ群で収斂させながら、その光線高が高くなりすぎないように抑えることが可能になる。そのため、光学系の細径化が可能になり、また、軸外収差を良好に補正することが可能となる。
 条件式の(9)上限値を上回らないようにすることで、第3レンズ群の焦点距離が短くなりすぎない。そのため、第3レンズ群内で発生する諸収差、特に、コマ収差や倍率色収差の発生を抑えることが可能となる。その結果、光学系全体の諸収差、特に、低倍時の軸外収差を良好に補正することが可能となる。
 ここで、条件式(9)に代えて、以下の条件式(9’)を満足することが好ましい。
 -7≦fG3/fG2≦-1.3   (9’)
 また、条件式(9)に代えて、以下の条件式(9’’)を満足することがより好ましい。
 -6≦fG3/fG2≦-1.7   (9’’)
 また、条件式(9)に代えて、以下の条件式(9’’’)を満足することがより好ましい。
 -5≦fG3/fG2≦-2   (9’’’)
 また、本実施形態の変倍光学系では、第2レンズ群よりも像側に、正の屈折力を有する第3レンズ群が配置され、第3レンズ群よりも像側に、1つ以上のレンズ群を有し、以下の条件式(10)を満足することが好ましい。
 0.07≦fHG1G3/fHGI≦1   (10)
 ここで、
 fHG1G3は、高倍端での第1レンズ群と、第2レンズ群と、第3レンズ群との合成焦点距離、
 fHGIは、高倍端での第3レンズ群よりも像側に位置するレンズ群の合成焦点距離、
である。
 条件式(10)の下限値を下回らないようにすることで、第3レンズ群よりも像側に位置するレンズ群の焦点距離が大きくなりすぎない。この場合、第3レンズ群よりも像側に位置するレンズ群の倍率を大きくしすぎることなく、高倍時に所望の倍率を得ることができる。そのため、第1レンズ群から第3レンズ群までで発生した収差が、像面では縮小されることになる。その結果、諸収差、主に、高倍時の球面収差や軸上色収差を良好に補正することが可能となる。
 条件式(10)の上限値を上回らないようにすることで、第1レンズ群から第3レンズ群までのレンズ群の合成焦点距離が小さくなりすぎない。この場合、高倍時、大きな開口数で物体から射出した軸外光束の発散を抑えた状態で、第3レンズ群よりも像側に位置するレンズ群へこの軸外光束を入射させることが可能となる。そのため、第3レンズ群よりも像側に位置するレンズ群でのコマ収差の発生を抑えながら、諸収差、特に、像面湾曲や倍率色収差を良好に補正することが可能となる。
 ここで、条件式(10)に代えて、以下の条件式(10’)を満足することが好ましい。
 0.08≦fHG1G3/fHGI≦0.9   (10’)
 また、条件式(10)に代えて、以下の条件式(10’’)を満足することがより好ましい。
 0.1≦fHG1G3/fHGI≦0.8   (10’’)
 また、条件式(10)に代えて、以下の条件式(10’’’)を満足することがより好ましい。
 0.2≦fHG1G3/fHGI≦0.7   (10’’’)
 また、本実施形態の変倍光学系では、第2レンズ群は、1枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有し、正レンズに、負レンズよりも高分散の硝材を用いていることが好ましい。
 高分散の硝材を用いた正レンズを、負の屈折力を有する第2レンズ群内に配置することで、特に、高倍時の軸上色収差を良好に補正することが可能となる。
 また、C線とd線との間で軸上色収差と倍率色収差を補正すると、g線の色収差が補正過剰になることがある。ここで、一般的に、高分散の硝材は部分分散比θgfの値が高い。そこで、部分分散比θgfの値が大きい硝材を正レンズとして用いることで、補正過剰になってしまうg線の色収差を良好に補正することができる。
 また、本実施形態の変倍光学系では、第2レンズ群は、2枚以上の負レンズを有することが好ましい。
 このようにすることで、第2レンズ群の負の屈折力を2枚以上の負レンズに分担させることができる。これにより、第2レンズ群内での球面収差が過剰補正になることを抑えることが可能となる。そのため、光学系全体の球面収差を、変倍によらず安定して良好に補正することが可能となる。
 また、本実施形態の変倍光学系では、第1レンズ群は、2組以上の接合レンズを有することが好ましい。
 このようにすることで、第1レンズ群に強い屈折作用を持たせながら、軸上色収差を良好に補正することができる。更に、レンズが接合されていることによって、倍率色収差や色コマ収差も良好に補正することが可能となる。
 特に、本実施形態の変倍光学系では、第2レンズ群に発散作用を持たせている。このような光学系においては、第1レンズ群での収差が第1レンズ群よりも像側に位置するレンズ群によって拡大されてしまう。そのため、第1レンズ群で軸上色収差や倍率色収差が良好に補正されていることは、光学系全体での軸上色収差や倍率色収差の良好な補正に大きく寄与する。
 また、本実施形態の変倍光学系では、第3レンズ群よりも像側に、1枚以上の正レンズと、1枚以上の負レンズと、を有し、正レンズと負レンズのうち、最も物体側に配置された物体側正レンズと、最も像側に配置された像側負レンズが、以下の条件式(11)を満足することが好ましい。
 0.5≦DHpn/DHpi≦0.99   (11)
 DHpnは、高倍端での物体側正レンズの物体側面から像側負レンズの像側面までの光軸上の距離、
 DHpiは、高倍端での物体側正レンズの物体側面から像面までの光軸上の距離、
である。
 第3レンズ群よりも像側に、少なくとも正レンズと負レンズをそれぞれ1枚以上配置し、それらの間隔を適切にするにより、軸外収差が良好に補正された状態を保ちながら、光学系の全長を短縮することが可能となる。
 条件式(11)の下限値を下回らないようにすることで、第3レンズよりも像側に位置するレンズ群の構成をテレフォト構成にすることが可能となる。この場合、バックフォーカスが短縮できるので、光学系の全長を短縮することができる。また、正レンズで収斂した光の光束径が十分に小さくなる位置に負レンズを配置できるので、像面湾曲を良好に補正することが可能となる。
 条件式(11)の上限値を上回らないようにすることで、バックフォーカスを適切に確保することができる。これにより、レンズと撮像素子との多重反射によってゴーストが発生しても、ゴーストが高密度で撮像素子面に入射することを防ぐことが可能となる。
 ここで、条件式(11)に代えて、以下の条件式(11’)を満足することが好ましい。
 0.55≦DHpn/DHpi≦0.95   (11’)
 また、条件式(11)に代えて、以下の条件式(11’’)を満足することがより好ましい。
 0.6≦DHpn/DHpi≦0.93   (11’’)
 また、条件式(11)に代えて、以下の条件式(11’’’)を満足することがより好ましい。
 0.65≦DHpn/DHpi≦0.9   (11’’’)
 第3実施形態の変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、最も物体側に配置され、正の屈折力を有する第1レンズ群と、第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、変倍光学系は、変倍時に共役長が変化する光学系であって、変倍時に移動するレンズ群を有し、以下の条件式(12)を満足することを特徴とする。
 0.01≦|Δiomax/Δmax|≦5   (12)
 ここで、
 Δiomaxは、共役長の変化量のうち、最大となる変化量、
 Δmaxは、移動するレンズ群の移動量のうち、最大となる移動量、
である。
 第3実施形態の変倍光学系は、上述の基本構成を備え、更に、変倍時に移動するレンズ群を有する。また、本実施形態の変倍光学系では、変倍に伴って共役長が変化する。
 基本構成の技術的意義については既に説明しているので、説明は省略する。
 そして、本実施形態の変倍光学系は、条件式(12)を満足する。
 条件式(12)の下限値を下回らないようにすることで、変倍したときの共役長の変化量を十分に確保することができる。この場合、どの倍率においても、物体位置、像位置及び絞り位置の3つの位置に対する各レンズ群の相対的な位置を、レンズ群の間隔によらず調整することができる。そのため、諸収差、特に、倍率色収差や歪曲収差を良好に補正することが可能となる。
 条件式(12)の上限値を上回らないようにすることで、変倍したときの共役長の変化量が大きくなりすぎないようにすることができる。そのため、光学系を大型化せずに、変倍によらず移動するレンズ群の移動スペースを十分に確保することができ、また、収差を良好に補正できる。
 このように、本実施形態の変倍光学系では、諸収差が良好に補正されている。そのため、本実施形態の変倍光学系を所定の撮像素子と組み合わせることで、観察範囲を大きく保ちながら、撮像装置をより小型化することが可能となる。
 ここで、条件式(12)に代えて、以下の条件式(12’)を満足することが好ましい。
 0.1≦|Δiomax/Δmax|≦3   (12’)
 また、条件式(12)に代えて、以下の条件式(12’’)を満足することがより好ましい。
 0.15≦|Δiomax/Δmax|≦2   (12’’)
 また、条件式(12)に代えて、以下の条件式(12’’’)を満足することがより好ましい。
 0.2≦|Δiomax/Δmax|≦1   (12’’’)
 なお、本実施形態の変倍光学系では、第1レンズ群は、最も物体側に配置された第1物体側レンズを有し、以下の条件式(13)を満足することが好ましい。
 |Δwd/Dwdmax|≦0.5   (13)
 ここで、
 Δwdは、物体から第1物体側レンズの物体側面までの距離の変化量のうち、最大となる変化量、
 Dwdmaxは、物体から第1物体側レンズの物体側面までの距離のうち、最大となる距離、
である。
 物体側の開口数が大きい光学系は、顕微鏡の光学系として使われる。このような光学系では、一般的に被写界深度が小さいので、第1物体側レンズから物体までの距離の調整を精度よく行う必要がある。一方で、変倍やフォーカスで使用されるアクチュエータは、一般的に、広い駆動幅と高い位置精度とを両立することは難しい。このようなことから、駆動幅を小さくすることで、より高い位置精度が容易に実現できる。
 条件式(13)の上限値を上回らないようすることで、変倍による第1物体側レンズから物体までの距離の変化量を小さく抑えることが可能となる。よって、精度のよいレンズ群の位置調整が可能となる。
 ここで、条件式(13)に代えて、以下の条件式(13’)を満足することが好ましい。
 |Δwd/Dwdmax|≦0.4   (13’)
 また、条件式(13)に代えて、以下の条件式(13’’)を満足することがより好ましい。
 |Δwd/Dwdmax|≦0.35   (13’’)
 また、条件式(13)に代えて、以下の条件式(13’’’)を満足することがより好ましい。
 |Δwd/Dwdmax|≦0.3   (13’’’)
 また、本実施形態の変倍光学系では、第1レンズ群から物体までの距離が一定になるように、第1レンズ群が移動することが好ましい。
 このようにすることで、例えば、物体をステージに載置した場合、変倍時にステージと第1レンズ群が略一体となって移動することになる。これにより、第1レンズ群から物体までの距離を大きく変動させることなく変倍することができる。そのため、物体と変倍光学系とが衝突することを避けることができる。また、第1レンズ群とステージの各々を、異なるアクチュエータで駆動しても、フォーカス位置が大幅にずれることがない。
 なお、ここでの略一体とは、変倍のためにステージと第1レンズ群とが同一のアクチュエータによって駆動される状態のことを指している。なお、第1レンズ群から物体までの距離を微調整するために、上述のように、第1レンズ群とステージの各々を、異なるアクチュエータで駆動する場合がある。そこで、距離の微調整が条件式(13)を満足する状態で変倍が行われる場合、異なるアクチュエータによる駆動であっても、ステージと第1レンズ群の駆動は略一体とみなす。
 また、本実施形態の変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する1つまたは2つのレンズ群と、負の屈折力を有する1つまたは2つのレンズ群と、からなり、変倍時に、隣り合うレンズ群との間隔が変化することが好ましい。ここで、絞りは、第2レンズ群と、正の屈折力を有する1つまたは2つのレンズ群と、の間に、配置されていることが好ましい。また、絞りは、第2レンズ群と共に移動することが好ましい。
 より具体的には、本実施形態の変倍光学系は、5つのレンズ群によって構成され、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、からなり、変倍時に、隣り合うレンズ群との間隔が変化することが好ましい。
 ここで、第1レンズ群において、最も像側に配置されたレンズは、像側に凸面を向けたメニスカスレンズであることが好ましい。また、第1レンズ群において、像側から2番目に位置するレンズは、両凸正レンズであることが好ましい。
 また、第2レンズ群において、最も物体側に配置されたレンズは、物体側面が、物体側に凸面を向けていることが好ましい。また、第2レンズ群において、像側から物体側に向けて、像側に凸面を向けた負メニスカスレンズと、両凸正レンズと、両凹負レンズと、を配置することが好ましい。
 また、第3レンズ群において、最も物体側に配置されたレンズは、物体側面が物体側に凸面を向けていることが好ましい。また、第3レンズ群において、最も像側に配置されたレンズは、物体側に凸面を向けたメニスカスレンズであることが好ましい。
 また、第4レンズ群において、最も物体側に配置されたレンズは、像側面が、像側に凸面を向けていることが好ましい。また、第4レンズ群において、最も像側に配置されたレンズは、物体側面が、像側に凸面を向けていることが好ましい。また、第4レンズ群において、最も物体側に配置されたレンズは、正の屈折力を有することが好ましい。また、第4レンズ群において、最も像側に配置されたレンズは、負の屈折力を有することが好ましい。
 また、第5レンズ群において、最も物体側に配置されたレンズは、像側に凸面を向けていることが好ましい。また、第5レンズ群において、最も像側に配置されたレンズは、物体側面が、像側に凸面を向けていることが好ましい。また、第5レンズ群において、最も物体側に配置されたレンズは、正の屈折力を有することが好ましい。また、第5レンズ群において、最も像側に配置されたレンズは、負の屈折力を有することが好ましい。
 また、本実施形態の変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、からなり、変倍時に、隣り合うレンズ群との間隔が変化することが好ましい。
 ここで、絞りは、第1レンズ群内、または、第1レンズ群と、第2レンズ群と、の間に、配置されていることが好ましい。
 ここで、第1レンズ群において、最も像側に配置されたレンズは、平凸レンズであることが好ましい。また、第1レンズ群において、最も像側に配置されたレンズは、正の屈折力を有することが好ましい。
 また、第2レンズ群において、最も物体側に配置されたレンズは、像側面が、物体側に凸面を向けていることが好ましい。また、第2レンズ群において、最も像側に配置されたレンズは、物体側に凸面を向けていることが好ましい。また、第2レンズ群において、最も物体側に配置されたレンズは、負の屈折力を有することが好ましい。また、第2レンズ群において、最も像側に配置されたレンズは、正の屈折力を有することが好ましい。
 また、第3レンズ群において、最も物体側に配置されたレンズは、両凸正レンズであることが好ましい。また、第3レンズ群において、最も像側に配置されたレンズは、像側面が物体側に凸面を向けていることが好ましい。
 また、第4レンズ群において、最も物体側に配置されたレンズは、物体側面が、物体側に凸面を向けていることが好ましい。また、第4レンズ群において、最も像側に配置されたレンズは、像側面が、物体側に凸面を向けていることが好ましい。また、第4レンズ群において、最も物体側に配置されたレンズは、正の屈折力を有することが好ましい。
 また、本実施形態の変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、物体側から順に、正の屈折力を有する1つまたは2つのレンズ群と、負の屈折力を有する1つのレンズ群と、正の屈折力を有する1つまたは2つのレンズ群と、負の屈折力を有する1つまたは2つのレンズ群と、からなり、変倍時に、隣り合うレンズ群との間隔が変化することが好ましい。
 ここで、絞りは、最も物体側に位置する正の屈折力を有する1つまたは2つのレンズ群内、または、最も物体側に位置する正の屈折力を有する1つまたは2つのレンズ群と、負の屈折力を有する1つのレンズ群と、の間に配置されることが好ましい。
 より具体的には、本実施形態の変倍光学系は、5つのレンズ群によって構成され、物体側から順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群と、からなり、変倍時に、隣り合うレンズ群との間隔が変化することが好ましい。
 ここで、第1レンズ群において、最も物体側に配置されたレンズは、像側に凸面を向けたメニスカスレンズであることが好ましい。また、第1レンズ群において、最も像側に配置されたレンズは、物体側面が、物体側に凸面を向けていることが好ましい。また、第1レンズ群において、最も物体側に配置されたレンズは、正の屈折力を有することが好ましい。また、第1レンズ群において、最も像側に配置されたレンズは、正の屈折力を有することが好ましい。
 また、第2レンズ群において、最も物体側に配置されたレンズは、像側に凸面を向けたメニスカスレンズであることが好ましい。また、第2レンズ群において、最も像側に配置されたレンズは、像側に凸面を向けたメニスカスレンズであることが好ましい。また、第2レンズ群において、最も物体側に配置されたレンズは、正の屈折力を有することが好ましい。また、第2レンズ群において、最も像側に配置されたレンズは、負の屈折力を有することが好ましい。
 また、第3レンズ群において、最も物体側に配置されたレンズは、像側に凸面を向けたメニスカスレンズであることが好ましい。また、第3レンズ群において、最も像側に配置されたレンズは、像側に凸面を向けたメニスカスレンズであることが好ましい。また、第3レンズ群において、最も物体側に配置されたレンズは、正の屈折力を有することが好ましい。また、第3レンズ群において、最も像側に配置されたレンズは、負の屈折力を有することが好ましい。
 また、第4レンズ群において、最も物体側に配置されたレンズは、両凸正レンズであることが好ましい。また、第4レンズ群において、最も像側に配置されたレンズは、両凹負レンズであることが好ましい。また、第4レンズ群は、物体側から順に、両凸正レンズと、両凸正レンズと、両凹負レンズと、からなることが好ましい。
 また、第5レンズ群において、最も物体側に配置されたレンズは、物体側面が物体側に凸面を向けていることが好ましい。また、第5レンズ群において、最も像側に配置されたレンズは、両凹負レンズであることが好ましい。また、第5レンズ群において、最も像側に配置されたレンズは、負の屈折力を有することが好ましい。
 また、レンズ群を構成するレンズのうち、隣り合うレンズは樹脂レンズであることが好ましい。このとき、隣り合うレンズの数は2以上であっても良い。
 このようにすることで、レンズ群を軽量化することができる。また、レンズが樹脂で構成されていることで、レンズの保持方式として、レンズ枠へレンズを圧入する方式や、一方のレンズのコバに枠を形成してこの枠に他のレンズを嵌合させる方式を用いることができる。このような方式を用いることとで、レンズ間の偏心を小さくすることができる。
 本実施形態の撮像装置は、撮像素子と、変倍光学系と、を有する撮像装置であって、変倍光学系によって、撮像素子上に光学像が形成され、変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、最も物体側に配置され、正の屈折力を有する第1レンズ群と、第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、変倍時に、第1レンズ群と第2レンズ群との間隔が可変であり、以下の条件式(14)、(15)を満足することを特徴とする。
 3000≦2×Y/p   (14)
 0.08≦NAH   (15)
 ここで、
 Yは、変倍光学系全系における最大像高、
 pは、撮像素子における画素ピッチ、
 NAHは、高倍端での変倍光学系の物体側の開口数、
である。
 本実施形態の撮像装置に用いられる変倍光学系は、上述の基本構成を備えている。基本構成の技術的意義については既に説明しているので、説明は省略する。
 そして、本実施形態の撮像装置は、条件式(14)、(15)を満足する。
 撮像装置としては、例えば、顕微鏡がある。顕微鏡では、視野数は通常22mm程度である。視野数22mmは、変倍光学系の像高に換算すると11mm程度になる。
 そこで、本実施形態の変倍光学系を顕微鏡の光学系に用いる場合は、視野数22mmに相当する観察範囲を得るために、変倍光学系は像高11mm程度まで収差が良好に補正されている必要がある。
 デジタル顕微鏡では、撮像した物体像の画像をモニタ上で観察する。このデジタル顕微鏡においては、像高に対して撮像素子の画素ピッチが十分に小さければ、像高が小さくても、視野数22mmに相当する観察範囲が得られる。また、像高を11mm(視野数22mm相当)よりも大きくしなくても、より大きな視野数に相当する観察範囲が得られる。この場合、より高い分解能を有することが、変倍光学系に要求されることは言うまでもない。
 通常の顕微鏡では、1次結像面でのエアリーディスク径は28μm程度である。このことを考慮すると、条件式(14)と(15)を満足することにより、変倍光学系において十分に高い分解能を確保することができる。この場合、像高に対して十分に細かいサンプリングピッチで、物体の画像の取得が可能となる。そのため、変倍光学系における像高を11mmよりも大きくすることなく、視野数22mm程度の観察範囲、又は視野数22mm以上に相当する広い観察範囲を得ることができる。
 例えば、撮像素子の画素ピッチが3μmの場合、像高4.5mmmが条件式(14)の下限値となる。この場合、変倍光学系において像高4.5mmまで収差が良好に補正されていれば、視野数22mmに相当する観察範囲を実現することができる。また、収差が良好に補正されている像高を9mm程度にすると、通常の顕微鏡に比べて小さい像高であるにもかかわらず、視野数44mmに相当する広い観察範囲を実現することができる。
 このように、条件式(14)、(15)を満足することにより、変倍光学系における像高を通常の顕微鏡における視野数に相当する像高よりも大きくすることなく、高い分解能で、通常の顕微鏡と同等あるいはそれ以上の観察範囲を撮影することができる。そのため、広い観察範囲を保ちつつ、小型化で、しかも解像度の高い画像が得られる撮像装置を実現することが可能となる。
 なお、より小型で観察範囲が広い撮像装置を実現するためには、撮像素子の画素ピッチは3μm以下であることが望ましい。
 ここで、条件式(14)に代えて、以下の条件式(14’)を満足することが好ましい。
 3500≦2×Y/p   (14’)
 また、条件式(14)に代えて、以下の条件式(14’’)を満足することがより好ましい。
 4000≦2×Y/p   (14’’)
 また、条件式(14)に代えて、以下の条件式(14’’’)を満足することがより好ましい。
 4800≦2×Y/p   (14’’’)
 ここで、条件式(15)に代えて、以下の条件式(15’)を満足することが好ましい。
 0.1≦NAH   (15’)
 また、条件式(15)に代えて、以下の条件式(15’’)を満足することがより好ましい。
 0.12≦NAH   (15’’)
 また、条件式(15)に代えて、以下の条件式(15’’’)を満足することがより好ましい。
 0.2≦NAH   (15’’’)
 なお、本実施形態の撮像装置は、以下の条件式(16)を満足することが好ましい。
 1.0<εH90/p<10   (16)
 ここで、
 εH90は、変倍光学系の高倍端において、波長e線の点像を撮像素子の略中心付近に形成したときの、ベスト像面での点像強度分布の90%エンサークルドエネルギーの直径、
 pは、撮像素子における画素ピッチ、
である。
 デジタル顕微鏡においては、撮像素子の画素ピッチに釣り合った結像性能を変倍光学系に持たせることで、高い分解能を維持したままで撮像装置の小型化が可能となる。特に高倍時には、高い分解能が必要になる。
 点像強度分布は広がりを持っているので、点像強度分布を示す光は複数の画素で受光される。しかしながら、点像強度分布では、周辺の光強度が中心に比べて急激に減少する。この場合、光の大半、すなわち、エンサークルドエネルギーの大半が点像の中心付近に集中している。よって、点像中心に位置する1つの画素に、エンサークルドエネルギーの大半の光が入射すれば、高い分解能を得ることができる。
 条件式(16)の下限値を下回らないようにすることで、変倍光学系の結像性能に対して十分に小さいピッチでサンプリングすることが可能となるので、高い分解能を実現することが可能となる。また、サンプリングピッチよりも高い周波数成分を持つ構造まで高いコントラストで結像する必要がなくなるため、光学系を小型化することが可能となる。
 条件式(16)の上限値を上回らないようにすることで、高倍時に、エンサークルドエネルギーの大半を占める光が1つの画素に入射するようになる。そのため、例えば、物体が濃淡のパターンを持つ場合、濃淡のピッチが撮像素子のナイキスト周波数程度となるまで、十分に高いコントラストで物体の光学像を形成することが可能となる。
 このように、本実施形態の撮像装置に用いる変倍光学系では、エンサークルドエネルギーの大半を占める光が1つの画素に入射する程度まで諸収差が良好に補正されている。そのため、本実施形態の変倍光学系を所定の撮像素子と組み合わせることで、観察範囲を大きく保ちながら、撮像装置をより小型化することが可能となる。
 ここで、条件式(16)に代えて、以下の条件式(16’)を満足することが好ましい。
 2<εH90/p<9   (16’)
 また、条件式(16)に代えて、以下の条件式(16’’)を満足することがより好ましい。
 3<εH90/p<8   (16’’)
 また、条件式(16)に代えて、以下の条件式(16’’’)を満足することがより好ましい。
 4<εH90/p<6   (16’’’)
 また、本実施形態の撮像装置は、以下の条件式(17)を満足することが好ましい。
 0.06<NA’H   (17)
 ここで、
 NA’Hは、高倍端での変倍光学系の像側の開口数、
である。
 変倍光学系の像側の開口数を大きくすることで、画素ピッチが小さい撮像素子に好適な分解能での結像が可能となる。また、上述のように、高倍時の観察では、より高い分解能が必要になる。そこで、高倍時に条件式(17)を満足することにより、3μm以下の画素ピッチを有する撮像素子を用いた場合であっても、変倍光学系において良好な結像が可能となる。また、この変倍光学系と画素ピッチの小さい撮像素子とを組み合わせることにより、観察範囲を大きく保ちながら、装置をより小型化することが可能となる。
 ここで、条件式(17)に代えて、以下の条件式(17’)を満足することが好ましい。
 0.08<NA’H   (17’)
 また、条件式(17)に代えて、以下の条件式(17’’)を満足することがより好ましい。
 0.1<NA’H   (17’’)
 また、条件式(17)に代えて、以下の条件式(17’’’)を満足することがより好ましい。
 0.12<NA’H   (17’’’)
 また、本実施形態の撮像装置は、以下の条件式(18)を満足することが好ましい。
 -7<LTL/p<7   (18)
 ここで、
 LTLは、変倍光学系の低倍端における重心間距離であって、該重心間距離は、最大像高の70%の位置での、C線での点像強度分布の重心とd線での点像強度分布の重心との間の距離、
 pは、撮像素子における画素ピッチ、
である。
 低倍時の観察では、像の周辺部での結像性能が重要となる。低倍時は、特に、周辺部の倍率色収差が小さいことが変倍光学系には求められる。倍率色収差によって画像に生じた色にじみは、デジタル補正(画像処理)を行うことである程度は抑えることができる。しかしながら、変倍光学系の倍率色収差による色にじみの量が画素ピッチに対して大きすぎると、デジタル補正でも十分に補正しきれない。
 条件式(18)の下限値を下回らないようにすると共に、上限値を上回らないようにすることで、低倍時における倍率色収差の発生量を小さくすることができる。これにより、画像の周辺部における色にじみの発生を、低倍時においても良好に抑えられるので、デジタル補正の必要がなくなる。あるいは、デジタル補正が必要になったとしても、色にじみを良好にデジタル補正することができる。その結果、観察時の色にじみを良好に抑えることができる。
 なお、製造誤差などにより、収差が回転非対称である場合、点像強度分布も非対称になる。このような場合、LTLは、点像強度分布の重心から求めるのではなく、点像強度分布における最大強度の位置から求めれば良い。
 ここで、条件式(18)に代えて、以下の条件式(18’)を満足することが好ましい。
 -5<LTL/p<5   (18’)
 また、条件式(18)に代えて、以下の条件式(18’’)を満足することがより好ましい。
 -4<LTL/p<4   (18’’)
 また、条件式(18)に代えて、以下の条件式(18’’’)を満足することがより好ましい。
 -3<LTL/p<3   (18’’’)
 また、本実施形態の撮像装置は、以下の条件式(19)を満足することが好ましい。
 -50<ATH/p<50   (19)
 ここで、
 ATHは、撮像素子の略中心付近における、C線でのベストピント位置とd線でのベストピント位置との差、
 pは、撮像素子における画素ピッチ、
である。
 高倍時の観察では、像の中心部での結像性能が重要となる。高倍時は高い分解能が必要で、特に、軸上色収差が小さいことが変倍光学系には求められる。ここで、画素ピッチが大きい場合には、像側の開口数を小さくしたり、球面収差を大きくしたりすることで、焦点深度を大きくし、これにより、軸上色収差による色にじみを軽減することができる。
 しかしながら、画素ピッチが小さくなると、像側の開口数を小さくして焦点深度を大きくすることが困難となる。そこで、条件式(19)の下限値を下回らないようにすると共に、上限値を上回らないようすることで、画素ピッチが小さい撮像素子を用いた場合であっても、画像の中心部における色にじみの発生を、高倍時であっても良好に抑えることができる。
 ここで、条件式(19)に代えて、以下の条件式(19’)を満足することが好ましい。
 -40<ATH/p<40   (19’)
 また、条件式(19)に代えて、以下の条件式(19’’)を満足することがより好ましい。
 -35<ATH/p<35   (19’’)
 また、条件式(19)に代えて、以下の条件式(19’’’)を満足することがより好ましい。
 -30<ATH/p<30   (19’’’)
 また、本実施形態の撮像装置は、以下の条件式(20)、(21)を満足することが好ましい。
 -7°<CRALobj<7°   (20)
 -7°<CRAHobj<7°   (21)
 ここで、
 CRALobjは、低倍端での物体側主光線と光軸とのなす角度、
 CRAHobjは、高倍端での物体側主光線と光軸とのなす角度、
 物体側主光線は、第1レンズ群に入射する主光線のうち、最大像高の90%の位置に到達する主光線、
である。
 角度の正負は、光軸から時計回りの方向に測った場合の角度を負、反時計回りの方向に測ったときの角度を正とする。
 条件式(20)、(21)の下限値を下回らないようにすると共に、上限値を上回らないようすることで、変倍光学系において、物体側でのテレセントリック性を適切に確保することができる。すなわち、物体から第1レンズ群に入射する軸外主光線を、より光軸と平行にすることができる。これにより、本実施形態の撮像装置に用いられる変倍光学系を、より物体側でテレセントリックな光学系にすることができる。なお、物体側主光線と光軸とのなす角度は、物体面から第1レンズ群の物体側レンズ面までの間の任意の位置における角度である。
 物体側でテレセントリックな光学系では、倍率の変動が少ない。すなわち、光学系から物体までの距離が多少変化しても、光学系によって形成された光学像の大きさの変動を抑えることができる。このようなことから、例えば、本実施形態の撮像装置に用いられる光学系を寸法計測に用いた場合、光学系に対する物体位置が光軸方向で多少変化し、これにより光学系から物体までの距離が多少変化しても、光学像の大きさの変動は少ない。よって、本実施形態の撮像装置では、光学系から物体までの距離が多少変化しても、物体の大きさを正確に計測することができる。なお、物体の大きさは、光軸と垂直な面内における大きさのことである。
 ここで、条件式(20)に代えて、以下の条件式(20’)を満足することが好ましい。
 -6°<CRALobj<6°   (20’)
 また、条件式(20)に代えて、以下の条件式(20’’)を満足することがより好ましい。
 -5.5°<CRALobj<5.5°   (20’’)
 また、条件式(20)に代えて、以下の条件式(20’’’)を満足することがより好ましい。
 -5°<CRALobj<5°   (20’’’)
 ここで、条件式(21)に代えて、以下の条件式(21’)を満足することが好ましい。
 -6°<CRAHobj<6°   (21’)
 また、条件式(21)に代えて、以下の条件式(21’’)を満足することがより好ましい。
 -5.5°<CRAHobj<5.5°   (21’’)
 また、条件式(21)に代えて、以下の条件式(21’’’)を満足することがより好ましい。
 -5°<CRAHobj<5°   (21’’’)
 また、本実施形態の撮像装置では、光学像の画像のコントラストを検知しながら、自動的にフォーカスすることが好ましい。
 物体へのフォーカスを自動的に行うことによって、撮像装置の使用者は異なる倍率の観察をスムーズに行うことが可能となる。
 なお、変倍光学系における変倍も自動で行うことができることが好ましい。このようにすれば、例えば、使用者が異なる倍率での観察を行う際に、異なる倍率への変更をワンタッチで行うことができる。また、低倍での概略な観察と高倍での詳細な観察を、一連のシーケンスで自動化することが可能となる。
 また、本実施形態の撮像装置では、撮像素子を光軸方向に動かすことによってフォーカスすることが好ましい。
 高倍時に変倍光学系の物体側の開口数を大きくして、かつ良好な収差補正を実現するためには、変倍光学系から物体までの距離を短くせざるを得ない場合が多い。しかしながら、変倍光学系から物体までの距離を短くした光学系で、物体までの距離を変化させてフォーカスする方法をとると、光学系と物体とが衝突してしまい、いずれかが破損してしまうことがあり得る。
 特に、画像のコントラストを検知しながら、自動的にフォーカスする場合は、使用者が手動でフォーカスする場合に比べて、一般的に光学系あるいはステージの移動量を大きくとる必要があるため、光学系と物体とが衝突する可能性が高くなる。
 変倍光学系から物体までの距離を変化させずにフォーカスするには、最も物体側に位置するレンズ群以外のレンズ群を移動させる方法と、撮像素子を移動させる方法とがある。ここで、フォーカシングによる倍率の変動や収差の変動が抑えられることから、フォーカス方法としては撮像素子を移動させる方法が望ましい。
 通常の顕微鏡では像側の焦点深度が大きいため、撮像素子を動かしてフォーカスする場合には、撮像素子の移動量を非常に大きくする必要があった。これに対して、本実施形態の変倍光学系は、像側の焦点深度が比較的小さい。そのため、撮像素子の移動量を小さくすることができる。このようなことから、フォーカス方法としては、撮像素子を光軸方向に動かしてフォーカスする方法が適している。
 また、本実施形態の撮像装置は、上述のいずれかの変倍光学系と、撮像素子と、を有することを特徴とする。
 本実施形態の撮像システムは、上述のいずれかの撮像装置と、観察対象となる物体を保持するステージと、物体を照明する光源と、を備えたことを特徴とする。
 観察対象となる物体を保持するステージを備えることで、撮像装置に対する物体の位置を安定的に保持することができる。これにより、所定の撮像素子を用いた場合に、撮像素子の解像力を最大限に活かすことができるので、良好な画像を得ることができる。
 更に、照明装置により物体に照射光を照射することで、撮像時のノイズを低減することができる。その結果、解像度の高い画像を取得することが可能になる。
 なお、本実施形態の撮像システムでは、ステージを光軸方向に動かすことによってフォーカスすることが好ましい。
 本実施形態の撮像装置に用いられる変倍光学系は、(20)、(21)を満足することで、物体側でテレセントリックな光学系になる。物体側でテレセントリック性が確保されている光学系では、物体までの距離を変化させてフォーカスすることによって、フォーカシングによる倍率変動やディストーションによる像の大きさの変動が抑えられる。そのため、物体の大きさを、より正確に測定することが可能となる。
 物体までの距離を変化させる方法として、光学系と撮像素子とを同時に動かす方法と、ステージを動かす方法とがあるが、ステージを動かす方法をとることによって可動体を比較的軽量化することができる。その結果、精度の良いフォーカシングが可能となる。
 なお、各条件式について、下限値、上限値の何れかまたは双方を限定することで、その機能をより確実にできるので好ましい。また、各条件式について、より限定した条件式の数値範囲の上限値あるいは下限値のみを限定しても構わない。また、条件式の数値範囲を限定するにあたっては、上記の各条件式の上限値又は下限値を、上記の他の条件式の上限値又は下限値としても良い。
 以下に、本発明のある態様に係る変倍光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、屈折力の正、負は近軸曲率半径に基づく。
 実施例1に係る変倍光学系について説明する。図1は、実施例1に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図(レンズ断面図)であって、(a)は低倍端での断面図、(b)は高倍端での断面図である。なお、以下全ての実施例において、断面図中、Cはカバーガラス、Iは撮像素子の撮像面を示している。
 図2は、実施例1に係る変倍光学系の無限遠物点合焦時における収差図である。ここで、“FIY”は像高を示している。なお、収差図における記号は、後述の実施例においても共通である。
 また、図2の収差図において、(a)、(b)、(c)、(d)は、それぞれ、低倍端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示している。
 また、(e)、(f)、(g)、(h)は、それぞれ、高倍端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示している。
 実施例1の変倍光学系は、図1に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、負の屈折力の第4レンズ群G4と、を有している。なお、実施例1~19において、レンズ断面図中、Sは絞り(以下、開口絞りSとする)を示し、Cはカバーガラスを示し、Iは撮像素子の撮像面を示している。
 第1レンズ群G1は、両凹負レンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、両凸正レンズL3と、からなる。ここで、両凹負レンズL1と正メニスカスレンズL2とは接合されている。
 第2レンズ群G2は、両凸正レンズL4と、両凸正レンズL5と、両凹負レンズL6と、像側に凸面を向けた正メニスカスレンズL7と、像側に凸面を向けた負メニスカスレンズL8と、からなる。ここで、正メニスカスレンズL7と負メニスカスレンズL8とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL9と、像側に凸面を向けた負メニスカスレンズL10と、像側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、両凸正レンズL13と、両凸正レンズL14と、両凹負レンズL15と、からなる。ここで、正メニスカスレンズL9、負メニスカスレンズL10及び正メニスカスレンズL11は接合されている。
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL16と、両凹負レンズL17と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第2レンズ群G2よりも像側で、負メニスカスレンズL8の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは第2レンズ群G2と共に物体側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は固定である。なお、レンズ群が固定とは、レンズ群が静止しているということである。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は広がる。
 非球面は、両凸正レンズL3の両面と、両凸正レンズL4の両面と、両凸正レンズL5の両面と、両凹負レンズL6の両面と、正メニスカスレンズL12の両面と、両凸正レンズL13の両面と、両凸正レンズL14の両面と、両凹負レンズL15の両面と、正メニスカスレンズL16の両面と、両凹負レンズL17の両面との20面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.1μmの撮像素子に好適な光学系である。また、第3レンズ群G3が所定の正レンズ群に該当する。また、第4レンズ群G4は樹脂レンズを有する。
 次に、実施例2に係る変倍光学系について説明する。図3は、実施例2に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図であって、(a)は低倍端での断面図、(b)は中間状態での断面図、(c)は高倍端での断面図である。後述の実施例3~19においても、低倍端、中間状態及び高倍端でのレンズ断面図と収差図とが示されている。
 図4は、実施例2に係る変倍光学系の無限遠物点合焦時における収差図である。これらの収差図において、(a)、(b)、(c)、(d)は、それぞれ、低倍端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示している。
 また、(e)、(f)、(g)、(h)は、それぞれ中間状態における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示している。
 また、(i)、(j)、(k)、(l)は、それぞれ、高倍端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示している。
 実施例2の変倍光学系は、図3に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、両凸正レンズL3と、像側に凸面を向けた正メニスカスレンズL4と、からなる。ここで、負メニスカスレンズL1と正メニスカスレンズL2とは接合されている。
 第2レンズ群G2は、両凸正レンズL5と、両凸正レンズL6と、両凹負レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、からなる。ここで、両凸正レンズL8と負メニスカスレンズL9とは接合されている。
 第3レンズ群G3は、両凸正レンズL10と、両凹負レンズL11と、両凸正レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、からなる。ここで、両凸正レンズL10、両凹負レンズL11及び両凸正レンズL12は接合されている。
 第4レンズ群G4は、両凸正レンズL14と、両凸正レンズL15と、両凹負レンズL16と、からなる。
 第5レンズ群G5は、像側に凸面を向けた正メニスカスレンズL17と、像側に凸面を向けた正メニスカスレンズL18と、両凹負レンズL19と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第2レンズ群G2よりも像側で、負メニスカスレンズL9の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは第2レンズ群G2と共に物体側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は、低倍端から中間までは狭まり、中間から高倍端までは広がる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、両凸正レンズL3の物体側面と、正メニスカスレンズL4の像側面と、両凸正レンズL5の両面と、両凸正レンズL6の両面と、両凹負レンズL7の両面と、正メニスカスレンズL13の両面と、両凸正レンズL14の両面と、両凸正レンズL15の両面と、両凹負レンズL16の両面と、正メニスカスレンズL17の物体側面と、正メニスカスレンズL18の両面と、両凹負レンズL19の両面との21面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.1μmの撮像素子に好適な光学系である。また、第3レンズ群G3と第4レンズ群G4が所定の正レンズ群に該当する。また、第2レンズ群G2、第4レンズ群G4及び第5レンズ群G5は樹脂レンズを有する。
 次に、実施例3に係る変倍光学系について説明する。図5は、実施例3に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図6は実施例3に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例3の変倍光学系は、図5に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、両凸正レンズL3と、像側に凸面を向けた正メニスカスレンズL4と、からなる。ここで、負メニスカスレンズL1と正メニスカスレンズL2とは接合されている。また、両凸正レンズL3と正メニスカスレンズL4とは接合されている。
 第2レンズ群G2は、両凸正レンズL5と、両凸正レンズL6と、両凹負レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、からなる。ここで、両凸正レンズL8と負メニスカスレンズL9とは接合されている。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、からなる。ここで、負メニスカスレンズL10と両凸正レンズL11とは接合されている。
 第4レンズ群G4は、両凸正レンズL13と、両凸正レンズL14と、両凹負レンズL15と、からなる。
 第5レンズ群G5は、像側に凸面を向けた正メニスカスレンズL16と、像側に凸面を向けた負メニスカスレンズL17と、像側に凸面を向けた負メニスカスレンズL18と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第2レンズ群G2よりも像側で、負メニスカスレンズL9の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは第2レンズ群G2と共に物体側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、両凸正レンズL5の両面と、両凸正レンズL6の両面と、両凹負レンズL7の両面と、両凸正レンズL13の両面と、両凸正レンズL14の両面と、両凹負レンズL15の両面と、負メニスカスレンズL18の両面との14面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.8μmの撮像素子に好適な光学系である。また、第3レンズ群G3と第4レンズ群G4が所定の正レンズ群に該当する。また、第2レンズ群G2と第4レンズ群G4は樹脂レンズを有する。
 次に、実施例4に係る変倍光学系について説明する。図7は、実施例4に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図8は実施例4に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例4の変倍光学系は、図7に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、負の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、両凸正レンズL3と、像側に凸面を向けた正メニスカスレンズL4と、からなる。ここで、負メニスカスレンズL1と正メニスカスレンズL2とは接合されている。また、両凸正レンズL3と正メニスカスレンズL4とは接合されている。
 第2レンズ群G2は、両凸正レンズL5と、両凸正レンズL6と、両凹負レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、からなる。ここで、両凸正レンズL8と負メニスカスレンズL9とは接合されている。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凸正レンズL13と、両凸正レンズL14と、両凹負レンズL15と、からなる。ここで、負メニスカスレンズL10と両凸正レンズL11とは接合されている。
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL16と、両凹負レンズL17と、からなる。
 第5レンズ群G5は、両凸正レンズL18と、両凹負レンズL19と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第2レンズ群G2よりも像側で、負メニスカスレンズL9の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは第2レンズ群G2と共に物体側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は広がる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、両凸正レンズL5の両面と、両凸正レンズL6の両面と、両凹負レンズL7の両面と、両凸正レンズL13の両面と、両凸正レンズL14の両面と、両凹負レンズL15の両面と、両凹負レンズL19の両面との14面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.2μmの撮像素子に好適な光学系である。また、第3レンズ群G3が所定の正レンズ群に該当する。また、第2レンズ群G2と第3レンズ群G3は樹脂レンズを有する。
 次に、実施例5に係る変倍光学系について説明する。図9は、実施例5に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図10は実施例5に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例5の変倍光学系は、図9に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、両凹負レンズL2と、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、からなる。ここで、正メニスカスレンズL1と両凹負レンズL2とは接合されている。また、両凸正レンズL3と負メニスカスレンズL4とは接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL5と、両凹負レンズL6と、両凸正レンズL7と、像側に凸面を向けた負メニスカスレンズL8と、からなる。ここで、両凸正レンズL7と負メニスカスレンズL8とは接合されている。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL9と、両凸正レンズL10と、両凸正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、からなる。ここで、負メニスカスレンズL9と両凸正レンズL10とは接合されている。
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL13と、像側に凸面を向けた負メニスカスレンズL14と、からなる。
 第5レンズ群G5は、像側に凸面を向けた正メニスカスレンズL15と、両凹負レンズL16と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第2レンズ群G2よりも像側で、負メニスカスレンズL8の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは第2レンズ群G2と共に物体側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は、低倍端から中間までは広がり、中間から高倍端までは狭まる。第3レンズ群G3と第4レンズ群G4との間隔は、低倍端から中間までは広がり、中間から高倍端までは狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、正メニスカスレンズL5の両面と、両凹負レンズL6の両面と、両凸正レンズL11の両面と、負メニスカスレンズL12の両面と、両凹負レンズL16の両面との10面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.2μmの撮像素子に好適な光学系である。また、第3レンズ群G3が所定の正レンズ群に該当する。また、第2レンズ群G2と第3レンズ群G3は樹脂レンズを有する。
 次に、実施例6に係る変倍光学系について説明する。図11は、実施例6に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図12は実施例6に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例6の変倍光学系は、図11に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、像側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた正メニスカスレンズL3と、両凸正レンズL4と、からなる。ここで、正メニスカスレンズL1、負メニスカスレンズL2及び正メニスカスレンズL3は接合されている。
 第2レンズ群G2は、像側に凸面を向けた正メニスカスレンズL5と、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、からなる。ここで、両凸正レンズL6と負メニスカスレンズL7とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL8と、像側に凸面を向けた負メニスカスレンズL9と、からなる。
 第4レンズ群G4は、両凸正レンズL10と、両凸正レンズL11と、両凹負レンズL12と、からなる。ここで、両凸正レンズL11と両凹負レンズL12とは接合されている。
 第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、像側に凸面を向けた正メニスカスレンズL15と、両凹負レンズL16と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第3レンズ群G3よりも物体側で、正メニスカスレンズL8の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは固定であり、第3レンズ群G3は像側に移動した後、物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は広がる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。また、開口絞りSと第3レンズ群G3との間隔は、低倍端から中間までは広がり、中間から高倍端までは狭まる。
 非球面は、正メニスカスレンズL5の像側面と、両凸正レンズL10の像側面と、正メニスカスレンズL13の物体側面と、両凹負レンズL16の物体側面との4面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.1μmの撮像素子に好適な光学系である。また、第4レンズ群G4が所定の正レンズ群に該当する。また、第3レンズ群G3が、所定の負レンズ群に該当する。
 次に、実施例7に係る変倍光学系について説明する。図13は、実施例7に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図14は実施例7に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例7の変倍光学系は、図13に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、両凹負レンズL2と、両凸正レンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、からなる。ここで、正メニスカスレンズL1、両凹負レンズL2及び両凸正レンズL3は接合されている。
 第2レンズ群G2は、像側に凸面を向けた正メニスカスレンズL5と、像側に凸面を向けた正メニスカスレンズL6と、像側に凸面を向けた負メニスカスレンズL7と、からなる。ここで、正メニスカスレンズL6と負メニスカスレンズL7とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL8と、像側に凸面を向けた負メニスカスレンズL9と、からなる。
 第4レンズ群G4は、両凸正レンズL10と、両凸正レンズL11と、両凹負レンズL12と、からなる。ここで、両凸正レンズL11と両凹負レンズL12とは接合されている。
 第5レンズ群G5は、両凸正レンズL13と、両凹負レンズL14と、両凸正レンズL15と、両凹負レンズL16と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第3レンズ群G3よりも物体側で、正メニスカスレンズL8の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは固定であり、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は広がる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、正メニスカスレンズL5の像側面と、両凸正レンズL10の像側面と、両凸正レンズL13の物体側面と、両凹負レンズL16の物体側面との4面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.2μmの撮像素子に好適な光学系である。また、第4レンズ群G4が所定の正レンズ群に該当する。また、第3レンズ群G3が、所定の負レンズ群に該当する。
 次に、実施例8に係る変倍光学系について説明する。図15は、実施例8に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図16は実施例8に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例8の変倍光学系は、図15に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、像側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、からなる。
 第2レンズ群G2は、像側に凸面を向けた正メニスカスレンズL4と、像側に凸面を向けた正メニスカスレンズL5と、像側に凸面を向けた負メニスカスレンズL6と、からなる。ここで、正メニスカスレンズL5と負メニスカスレンズL6とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL7と、像側に凸面を向けた負メニスカスレンズL8と、からなる。
 第4レンズ群G4は、両凸正レンズL9と、両凸正レンズL10と、両凹負レンズL11と、からなる。ここで、両凸正レンズL10と両凹負レンズL11とは接合されている。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL12と、両凸正レンズL13と、両凹負レンズL14と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第3レンズ群G3よりも物体側で、正メニスカスレンズL7の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは固定であり、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は広がる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、正メニスカスレンズL4の像側面と、両凸正レンズL9の像側面と、負メニスカスレンズL12の物体側面と、両凹負レンズL14の物体側面との4面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.8μmの撮像素子に好適な光学系である。また、第4レンズ群G4が所定の正レンズ群に該当する。また、第3レンズ群G3が、所定の負レンズ群に該当する。
 次に、実施例9に係る変倍光学系について説明する。図17は、実施例9に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図18は実施例9に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例9の変倍光学系は、図17に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、正の屈折力の第6レンズ群G6と、を有している。
 第1レンズ群G1は、像側に凸面を向けた負メニスカスレンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、からなる。ここで、負メニスカスレンズL1と正メニスカスレンズL2とは接合されている。また、両凸正レンズL3と両凹負レンズL4とは接合されている。
 第2レンズ群G2は、両凸正レンズL5と、像側に凸面を向けた正メニスカスレンズL6と、像側に凸面を向けた負メニスカスレンズL7と、からなる。ここで、正メニスカスレンズL6と負メニスカスレンズL7とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL8と、両凹負レンズL9と、からなる。ここで、正メニスカスレンズL8と両凹負レンズL9とは接合されている。
 第4レンズ群G4は、両凸正レンズL10と、両凸正レンズL11と、両凸正レンズL12と、両凹負レンズL13と、からなる。ここで、両凸正レンズL12と両凹負レンズL13とは接合されている。
 第5レンズ群G5は、像側に凸面を向けた正メニスカスレンズL14と、両凹負レンズL15と、からなる。
 第6レンズ群G6は、両凸正レンズL16と、両凹負レンズL17と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第3レンズ群G3よりも物体側で、正メニスカスレンズL8の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動した後、像側に移動し、開口絞りSは固定であり、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は物体側に移動し、第6レンズ群G6は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は、低倍端から中間までは狭まり、中間から高倍端までは広がる。第2レンズ群G2と第3レンズ群G3との間隔は、低倍端から中間までは広がり、中間から高倍端までは狭まる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。第5レンズ群G5と第6レンズ群G6との間隔は広がる。
 非球面は、両凸正レンズL5の像側面と、両凸正レンズL11の像側面と、正メニスカスレンズL14の物体側面と、両凹負レンズL17の物体側面との4面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.2μmの撮像素子に好適な光学系である。また、第4レンズ群G4が所定の正レンズ群に該当する。また、第4レンズ群G4は樹脂レンズを有する。
 次に、実施例10に係る変倍光学系について説明する。図19は、実施例10に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図20は実施例10に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例10の変倍光学系は、図19に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、負の屈折力の第6レンズ群G6と、を有している。
 第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズL1と、両凸正レンズL2と、両凸正レンズL3と、両凹負レンズL4と、からなる。ここで、正メニスカスレンズL1と両凸正レンズL2とは接合されている。また、両凸正レンズL3と両凹負レンズL4とは接合されている。
 第2レンズ群G2は、両凸正レンズL5と、像側に凸面を向けた正メニスカスレンズL6と、像側に凸面を向けた負メニスカスレンズL7と、からなる。ここで、正メニスカスレンズL6と負メニスカスレンズL7とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL8と、像側に凸面を向けた負メニスカスレンズL9と、からなる。ここで、正メニスカスレンズL8と負メニスカスレンズL9とは接合されている。
 第4レンズ群G4は、両凸正レンズL10と、両凸正レンズL11と、両凸正レンズL12と、両凹負レンズL13と、からなる。ここで、両凸正レンズL12と両凹負レンズL13とは接合されている。
 第5レンズ群G5は、像側に凸面を向けた正メニスカスレンズL14と、両凹負レンズL15と、からなる。
 第6レンズ群G6は、物体側に凸面を向けた正メニスカスレンズL16と、両凹負レンズL17と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第3レンズ群G3よりも物体側で、正メニスカスレンズL8の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は物体側に移動し、開口絞りSは固定であり、第3レンズ群G3は像側に移動した後、物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は物体側に移動し、第6レンズ群G6は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は広がる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。第5レンズ群G5と第6レンズ群G6との間隔は広がる。
 非球面は、両凸正レンズL5の像側面と、両凸正レンズL11の像側面と、正メニスカスレンズL14の物体側面と、両凹負レンズL17の物体側面との4面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.2μmの撮像素子に好適な光学系である。また、第4レンズ群G4が所定の正レンズ群に該当する。また、第3レンズ群G3が所定の負レンズ群に該当する。また、第4レンズ群G4は樹脂レンズを有する。
 次に、実施例11に係る変倍光学系について説明する。図21は、実施例11に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図22は実施例11に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例11の変倍光学系は、図21に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、開口絞りSと、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、を有している。
 第1レンズ群G1は、両凹負レンズL1と、両凸正レンズL2と、両凸正レンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、両凸正レンズL5と、両凸正レンズL6と、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、からなる。
 ここで、両凹負レンズL1と両凸正レンズL2とは接合されている。また、負メニスカスレンズL4と両凸正レンズL5とは接合されている。また、負メニスカスレンズL7と両凸正レンズL8とは接合されている。
 第2レンズ群G2は、両凹負レンズL10と、物体側に凸面を向けた負メニスカスレンズL11と、両凹負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、からなる。ここで、両凹負レンズL10と負メニスカスレンズL11とは接合されている。また、両凹負レンズL12と正メニスカスレンズL13とは接合されている。
 第3レンズ群G3は、両凸正レンズL14と、物体側に凸面を向けた負メニスカスレンズL15と、物体側に凸面を向けた正メニスカスレンズL16と、からなる。ここで、負メニスカスレンズL15と正メニスカスレンズL16とは接合されている。
 第4レンズ群G4は、両凸正レンズL17と、両凹負レンズL18と、物体側に凸面を向けた正メニスカスレンズL19と、物体側に凸面を向けた負メニスカスレンズL20と、物体側に凸面を向けた正メニスカスレンズL21と、からなる。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配置されている。より具体的には、開口絞りSは、第1レンズ群G1よりも像側で、正メニスカスレンズL9の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、開口絞りSは固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は像側に移動し、第4レンズ群G4は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は広がる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。
 非球面は、両凸正レンズL17の物体側面と、正メニスカスレンズL21の像側面との2面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.1μmの撮像素子に好適な光学系である。
 次に、実施例12に係る変倍光学系について説明する。図23は、実施例12に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図24は実施例12に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例12の変倍光学系は、図23に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、像側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、像側に凸面を向けた正メニスカスレンズL4と、両凸正レンズL5と、両凹負レンズL6と、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、両凸正レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、平凸正レンズL12と、からなる。
 ここで、正メニスカスレンズL1と負メニスカスレンズL2とは接合されている。また、両凸正レンズL5と両凹負レンズL6とは接合されている。また、負メニスカスレンズL7と両凸正レンズL8とは接合されている。また、負メニスカスレンズL10と両凸正レンズL11とは接合されている。
 第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、両凹負レンズL15と、物体側に凸面を向けた正メニスカスレンズL16と、からなる。ここで、負メニスカスレンズL13と正メニスカスレンズL14とは接合されている。また、両凹負レンズL15と正メニスカスレンズL16とは接合されている。
 第3レンズ群G3は、両凸正レンズL17と、両凸正レンズL18と、両凹負レンズL19と、からなる。ここで、両凸正レンズL18と両凹負レンズL19とは接合されている。
 第4レンズ群G4は、両凸正レンズL20と、両凸正レンズL21と、両凹負レンズL22と、物体側に凸面を向けた負メニスカスレンズL23と、両凸正レンズL24と、物体側に凸面を向けた正メニスカスレンズL25と、両凹負レンズL26と、からなる。ここで、両凸正レンズL21と両凹負レンズL22とは接合されている。
 開口絞りSは、第1レンズ群G1中で、両凸正レンズL11と平凸正レンズL12との間に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、開口絞りSは固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は像側に移動し、第4レンズ群G4は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は広がる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。
 非球面は、両凸正レンズL20の物体側面と、両凹負レンズL26の像側面との2面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.8μmの撮像素子に好適な光学系である。
 次に、実施例13に係る変倍光学系について説明する。図25は、実施例13に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図26は実施例13に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例13の変倍光学系は、図25に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、開口絞りSと、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、像側に凸面を向けた負メニスカスレンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、両凸正レンズL5と、両凸正レンズL6と、両凹負レンズL7と、両凹負レンズL8と、両凸正レンズL9と、両凸正レンズL10と、物体側に凸面を向けた負メニスカスレンズL11と、両凸正レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、からなる。
 ここで、負メニスカスレンズL1と正メニスカスレンズL2とは接合されている。また、両凹負レンズL4と両凸正レンズL5とは接合されている。また、両凸正レンズL6と両凹負レンズL7とは接合されている。また、両凹負レンズL8と両凸正レンズL9とは接合されている。また、負メニスカスレンズL11と両凸正レンズL12とは接合されている。
 第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL14と、物体側に凸面を向けた正メニスカスレンズL15と、両凹負レンズL16と、物体側に凸面を向けた正メニスカスレンズL17と、からなる。ここで、負メニスカスレンズL14と正メニスカスレンズL15とは接合されている。また、両凹負レンズL16と正メニスカスレンズL17とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL18と、両凸正レンズL19と、両凸正レンズL20と、両凹負レンズL21と、からなる。ここで、両凸正レンズL20と両凹負レンズL21とは接合されている。
 第4レンズ群G4は、両凸正レンズL22と、両凹負レンズL23と、両凸正レンズL24と、からなる。ここで、両凸正レンズL22と両凹負レンズL23とは接合されている。
 第5レンズ群G5は、両凸正レンズL25と、両凹負レンズL26と、両凹負レンズL27と、からなる。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配置されている。より具体的には、開口絞りSは、第1レンズ群G1よりも像側で、正メニスカスレンズL13の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、開口絞りSは固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は像側に移動し、第4レンズ群G4は物体側に移動した後、像側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は広がる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は、低倍端から中間までは狭まり、中間から高倍端までは広がる。第4レンズ群G4と第5レンズ群G5との間隔は、低倍端から中間までは広がり、中間から高倍端までは狭まる。
 非球面は、両凹負レンズL27の像側面の1面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.2μmの撮像素子に好適な光学系である。
 次に、実施例14に係る変倍光学系について説明する。図27は、実施例14に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図28は実施例14に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例14の変倍光学系は、図27に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、を有している。
 第1レンズ群G1は、両凸正レンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凹負レンズL3と、両凸正レンズL4と、両凸正レンズL5と、平凸正レンズL6と、からなる。ここで、正メニスカスレンズL2と両凹負レンズL3とは接合されている。
 第2レンズ群G2は、両凹負レンズL7と、物体側に凸面を向けた正メニスカスレンズL8と、両凹負レンズL9と、物体側に凸面を向けた正メニスカスレンズL10と、からなる。ここで、両凹負レンズL7と正メニスカスレンズL8とは接合されている。また、両凹負レンズL9と正メニスカスレンズL10とは接合されている。
 第3レンズ群G3は、両凸正レンズL11と、両凸正レンズL12と、両凹負レンズL13と、からなる。ここで、両凸正レンズL12と両凹負レンズL13とは接合されている。
 第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL14と、両凸正レンズL15と、両凹負レンズL16と、両凹負レンズL17と、両凸正レンズL18と、物体側に凸面を向けた正メニスカスレンズL19と、両凹負レンズL20と、からなる。ここで、両凸正レンズL15と両凹負レンズL16とは接合されている。
 開口絞りSは、第1レンズ群G1中で、両凸正レンズL5と平凸正レンズL6との間に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、開口絞りSは固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は像側に移動した後、物体側に移動し、第4レンズ群G4は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は広がる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は、低倍端から中間までは狭まり、中間から高倍端までは広がる。
 非球面は、両凹負レンズL20の像側面の1面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.8μmの撮像素子に好適な光学系である。
 次に、実施例15に係る変倍光学系について説明する。図29は、実施例15に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図30は実施例15に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例15の変倍光学系は、図29に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、像側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、像側に凸面を向けた正メニスカスレンズL4と、両凸正レンズL5と、両凹負レンズL6と、両凹負レンズL7と、両凸正レンズL8と、両凸正レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、平凸正レンズL12と、からなる。
 ここで、正メニスカスレンズL1と負メニスカスレンズL2とは接合されている。また、両凸正レンズL5と両凹負レンズL6とは接合されている。両凹負レンズL7と両凸正レンズL8とは接合されている。また、負メニスカスレンズL10と両凸正レンズL11とは接合されている。
 第2レンズ群G2は、両凹負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、両凹負レンズL15と、物体側に凸面を向けた正メニスカスレンズL16と、からなる。
 第3レンズ群G3は、両凸正レンズL17と、両凸正レンズL18と、両凹負レンズL19と、からなる。ここで、両凸正レンズL18と両凹負レンズL19とは接合されている。
 第4レンズ群G4は、両凸正レンズL20と、両凸正レンズL21と、両凹負レンズL22と、物体側に凸面を向けた負メニスカスレンズL23と、両凸正レンズL24と、物体側に凸面を向けた正メニスカスレンズL25と、両凹負レンズL26と、からなる。ここで、両凸正レンズL21と両凹負レンズL22とは接合されている。
 開口絞りSは、第1レンズ群G1中で、両凸正レンズL11と平凸正レンズL12との間に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は固定であり、開口絞りSは固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は像側に移動した後、物体側に移動し、第4レンズ群G4は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は広がる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は、低倍端から中間までは狭まり、中間から高倍端までは広がる。
 非球面は、両凹負レンズL13の物体側面と、正メニスカスレンズL14の像側面と、両凹負レンズL15の物体側面と、正メニスカスレンズL16の像側面と、両凸正レンズL20の物体側面と、両凹負レンズL26の像側面との6面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.8μmの撮像素子に好適な光学系である。また、第2レンズ群G2は樹脂レンズを有する。
 次に、実施例16に係る変倍光学系について説明する。図31は、実施例16に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図32は実施例16に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例16の変倍光学系は、図31に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、負の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズL1と、両凸正レンズL2と、からなる。
 第2レンズ群G2は、両凸正レンズL3と、両凸正レンズL4と、両凹負レンズL5と、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、からなる。ここで、両凸正レンズL6と負メニスカスレンズL7とは接合されている。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL8と、両凸正レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、両凸正レンズL12と、両凹負レンズL13と、からなる。ここで、負メニスカスレンズL8と両凸正レンズL9とは接合されている。
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL14と、両凹負レンズL15と、からなる。
 第5レンズ群G5は、像側に凸面を向けた正メニスカスレンズL16と、両凹負レンズL17と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第2レンズ群G2よりも像側で、負メニスカスレンズL7の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は物体側に移動し、第2レンズ群G2は物体側に移動し、開口絞りSは第2レンズ群G2と共に物体側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は広がる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、両凸正レンズL3の両面と、両凸正レンズL4の両面と、両凹負レンズL5の両面と、両凸正レンズL11の両面と、両凸正レンズL12の両面と、両凹負レンズL13の両面と、両凹負レンズL17の両面との14面に用いられている。
 本実施例の変倍光学系は、画素ピッチが2.2μmの撮像素子に好適な光学系である。また、第3レンズ群G3が所定の正レンズ群に該当する。また、第2レンズ群G2と第3レンズ群G3は樹脂レンズを有する。
 次に、実施例17に係る変倍光学系について説明する。図33は、実施例17に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図34は実施例17に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例17の変倍光学系は、図33に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、開口絞りSと、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、両凸正レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、からなる。
 第2レンズ群G2は、像側に凸面を向けた正メニスカスレンズL4と、像側に凸面を向けた正メニスカスレンズL5と、像側に凸面を向けた負メニスカスレンズL6と、からなる。ここで、正メニスカスレンズL5と負メニスカスレンズL6とは接合されている。
 第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズL7と、像側に凸面を向けた負メニスカスレンズL8と、からなる。ここで、正メニスカスレンズL7と負メニスカスレンズL8とは接合されている。
 第4レンズ群G4は、両凸正レンズL9と、両凸正レンズL10と、両凹負レンズL11と、からなる。ここで、両凸正レンズL10と両凹負レンズL11とは接合されている。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL12と、両凸正レンズL13と、両凹負レンズL14と、からなる。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より具体的には、開口絞りSは、第3レンズ群G3よりも物体側で、正メニスカスレンズL7の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は物体側に移動した後、像側に移動し、第2レンズ群G2は物体側に移動した後、像側に移動し、開口絞りSは固定であり、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は狭まる。第2レンズ群G2と第3レンズ群G3との間隔は、低倍端から中間までは広がり、中間から高倍端までは狭まる。第3レンズ群G3と第4レンズ群G4との間隔は狭まる。第4レンズ群G4と第5レンズ群G5との間隔は広がる。
 非球面は、正メニスカスレンズL4の像側面と、両凸正レンズL9の像側面と、負メニスカスレンズL12の物体側面と、両凹負レンズL14の両面との4面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.8μmの撮像素子に好適な光学系である。また、第4レンズ群G4が所定の正レンズ群に該当する。また、第3レンズ群G3が所定の負レンズ群に該当する。
 次に、実施例18に係る変倍光学系について説明する。図35は、実施例18に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図36は実施例18に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例18の変倍光学系は、図35に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、負の屈折力の第4レンズ群G4と、を有している。
 第1レンズ群G1は、像側に凸面を向けた正メニスカスレンズL1と、像側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、像側に凸面を向けた正メニスカスレンズL4と、両凸正レンズL5と、両凹負レンズL6と、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、両凸正レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、平凸正レンズL12と、からなる。
 ここで、正メニスカスレンズL1と負メニスカスレンズL2とは接合されている。また、両凸正レンズL5と両凹負レンズL6とは接合されている。負メニスカスレンズL7と両凸正レンズL8とは接合されている。また、負メニスカスレンズL10と両凸正レンズL11とは接合されている。
 第2レンズ群G2は、両凹負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、両凹負レンズL15と、物体側に凸面を向けた正メニスカスレンズL16と、からなる。
 第3レンズ群G3は、両凸正レンズL17と、両凸正レンズL18と、両凹負レンズL19と、からなる。ここで、両凸正レンズL18と両凹負レンズL19とは接合されている。
 第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズL20と、両凸正レンズL21と、両凹負レンズL22と、物体側に凸面を向けた負メニスカスレンズL23と、両凸正レンズL24と、物体側に凸面を向けた正メニスカスレンズL25と、両凹負レンズL26と、からなる。ここで、両凸正レンズL21と両凹負レンズL22とは接合されている。
 開口絞りSは、第1レンズ群G1中で、両凸正レンズL11と平凸正レンズL12との間に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は物体側に移動し、開口絞りSは第1レンズ群G1と共に物体側に移動し、第2レンズ群G2は像側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は広がる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は広がる。
 非球面は、両凹負レンズL13の物体側面と、正メニスカスレンズL14の像側面と、両凹負レンズL15の物体側面と、正メニスカスレンズL16の像側面と、正メニスカスレンズL20の物体側面と、両凹負レンズL26の像側面との6面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.8μmの撮像素子に好適な光学系である。また、第2レンズ群G2は樹脂レンズを有する。
 次に、実施例19に係る変倍光学系について説明する。図37は、実施例19に係る変倍光学系の無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。図38は実施例19に係る変倍光学系の無限遠物点合焦時における収差図である。
 実施例19の変倍光学系は、図37に示すように、物体側より順に、正の屈折力の第1レンズ群G1と、開口絞りSと、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、負の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5と、を有している。
 第1レンズ群G1は、両凹負レンズL1と、両凸正レンズL2と、両凸正レンズL3と、両凹負レンズL4と、両凸正レンズL5と、両凸正レンズL6と、両凹負レンズL7と、両凹負レンズL8と、両凸正レンズL9と、両凸正レンズL10と、物体側に凸面を向けた正メニスカスレンズL11と、からなる。
 ここで、両凹負レンズL1と両凸正レンズL2とは接合されている。また、両凹負レンズL4と両凸正レンズL5とは接合されている。また、両凸正レンズL6と両凹負レンズL7とは接合されている。また、両凹負レンズL8と両凸正レンズL9とは接合されている。
 第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、両凹負レンズL14と、物体側に凸面を向けた正メニスカスレンズL15と、からなる。ここで、負メニスカスレンズL12と正メニスカスレンズL13とは接合されている。また、両凹負レンズL14と正メニスカスレンズL15とは接合されている。
 第3レンズ群G3は、両凸正レンズL16と、両凸正レンズL17と、両凸正レンズL18と、両凹負レンズL19と、からなる。ここで、両凸正レンズL18と両凹負レンズL19とは接合されている。
 第4レンズ群G4は、両凸正レンズL20と、両凹負レンズL21と、からなる。ここで、両凸正レンズL20と両凹負レンズL21とは接合されている。
 第5レンズ群G5は、両凸正レンズL22と、両凹負レンズL23と、両凹負レンズL24と、からなる。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配置されている。より具体的には、開口絞りSは、第1レンズ群G1よりも像側で、正メニスカスレンズL11の近傍に配置されている。
 低倍端から高倍端への変倍時、第1レンズ群G1は物体側に移動し、開口絞りSは第1レンズ群G1と共に物体側に移動し、第2レンズ群G2は物体側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は物体側に移動した後、像側に移動し、第4レンズ群G4は固定である。
 また、低倍端から高倍端への変倍時、レンズ群の間隔は次のように変化する。第1レンズ群G1と第2レンズ群G2との間隔は広がる。第2レンズ群G2と第3レンズ群G3との間隔は狭まる。第3レンズ群G3と第4レンズ群G4との間隔は広がる。第4レンズ群G4と第5レンズ群G5との間隔は、低倍端から中間までは広がり、中間から高倍端までは狭まる。
 非球面は、両凹負レンズL24の像側面の1面に用いられている。
 本実施例の変倍光学系は、画素ピッチが1.8μmの撮像素子に好適な光学系である。
 次に、上記各実施例の光学系を構成する光学部材の数値データを掲げる。なお、各実施例の数値データにおいて、r1、r2、…は各レンズ面の曲率半径、d1、d2、…は各レンズの肉厚または空気間隔、nd1、nd2、…は各レンズのd線での屈折率、νd1、νd2、…は各レンズのアッべ数、*印は非球面、中間は中間状態、NAは物体側の開口数,βは倍率、焦点距離は光学系全系の焦点距離、IHは像高、fbはバックフォーカス、を示している。なお、全長は、レンズ最前面からレンズ最終面までの距離にバックフォーカスを加えたものである。バックフォーカスは、レンズ最終面から近軸像面までの距離を空気換算して表したものである。
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10、A12、A14としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10+A12y12+A14y14
 また、E又はeは10のべき乗を表している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例1
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.36
      1      -309.327      8.77     1.69895    30.13
      2        19.593      9.86     1.56384    60.67
      3       169.774      1.49
      4*       87.226      9.97     1.49700    81.61
      5*      -27.825      可変
      6*      195.646      2.29     1.49700    81.61
      7*      -65.067      0.07
      8*      193.037      4.44     1.63484    23.91
      9*      -50.359      0.05
     10*      -55.705      0.50     1.58360    30.33
     11*      117.155      1.58
     12      -387.151      7.75     1.49700    81.61
     13       -25.140      0.50     1.72047    34.71
     14       -39.322      1.14
     15(絞り)  ∞        可変
     16      -419.588      7.85     1.49700    81.61
     17       -27.193      0.50     1.72047    34.71
     18     -1483.065      6.81     1.49700    81.61
     19       -37.318     18.14
     20*      109.722      1.76     1.84666    23.78
     21*      160.100      7.52
     22*       32.393      8.64     1.53366    55.96
     23*     -107.509      0.05
     24*       50.087      6.12     1.63484    23.91
     25*      -95.106      0.05
     26*     -103.168      3.30     1.58360    30.33
     27*       16.792      可変
     28*      -33.163      2.02     1.53366    55.96
     29*      -19.376      6.82
     30*      -11.318      1.35     1.53366    55.96
     31*       49.066      1.15
     32          ∞        0.30     1.51633    64.14
     33          ∞        2.00
   像面          ∞

非球面データ
第4面
k=-19.735
A4=1.38433e-06,A6=1.56209e-08,A8=7.39496e-13
第5面
k=-0.510
A4=-4.14171e-06,A6=-2.64065e-09,A8=1.84736e-11
第6面
k=-94.142
A4=-4.70906e-06,A6=-1.40159e-09,A8=-1.17602e-12
第7面
k=-8.518
A4=2.73566e-06,A6=1.80370e-08,A8=-6.72571e-12
第8面
k=-18.494
A4=5.31697e-07,A6=1.14493e-08,A8=-2.38222e-11
第9面
k=2.412
A4=2.38083e-06,A6=-5.01743e-09,A8=1.48766e-11
第10面
k=-1.452
A4=3.36824e-06,A6=2.13590e-09,A8=1.71100e-11
第11面
k=1.976
A4=-3.10983e-06,A6=8.70979e-09,A8=-7.12690e-12
第20面
k=-1.901
A4=-2.70949e-07,A6=-1.49730e-09,A8=6.66247e-13
第21面
k=-83.263
A4=-8.31318e-07,A6=3.83390e-10,A8=-4.09608e-13
第22面
k=-1.372
A4=-2.44219e-06,A6=4.74755e-09,A8=-7.17140e-12
第23面
k=-58.415
A4=3.99030e-07,A6=-1.24591e-09,A8=1.66221e-12
第24面
k=-8.499
A4=-3.71357e-06,A6=3.76244e-09,A8=2.52674e-12
第25面
k=-4.070
A4=7.72606e-07
第26面
k=-2.188
A4=8.90733e-07
第27面
k=-1.108
A4=-1.06462e-05,A6=4.28130e-08,A8=-5.96472e-11
第28面
k=-1.146
A4=2.15466e-05,A6=3.87834e-07,A8=-7.79721e-10
第29面
k=-4.685
A4=-3.46506e-05,A6=5.90726e-07,A8=-1.63146e-09
第30面
k=-1.349
A4=1.28211e-04,A6=-1.09079e-06,A8=2.14386e-09
第31面
k=-2.255
A4=1.19890e-06,A6=2.63532e-07,A8=-2.51907e-09

各種データ
                      低倍端    高倍端
    NA               0.23      0.61
    β                -1.33     -3.56
    焦点距離(mm)      14.45      5.83
    IH(mm)          11.00     11.00
    fb (in air)      3.35      3.35
    全長 (in air)    178.53    178.53

      d5              32.47      0.05
      d15             15.62      1.38
      d27              7.76     54.42

各群焦点距離
  f1=73.27    f2=55.92    f3=59.97    f4=-23.38
数値実施例2
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.08
      1       105.320      9.00     1.69895    30.13
      2        19.430      9.10     1.56384    60.67
      3        77.997      0.11
      4*       56.271      6.22     1.49700    81.61
      5       -43.741      0.06
      6       -43.716      2.89     1.84666    23.78
      7*      -39.010      可変
      8*      273.740      2.78     1.49700    81.61
      9*      -63.097      3.11
     10*       71.013      3.34     1.63484    23.91
     11*     -147.957      0.05
     12*    -1103.715      0.50     1.58360    30.33
     13*       33.167      4.18
     14       543.275     10.00     1.49700    81.61
     15       -23.848      2.88     1.72047    34.71
     16       -33.305      1.00
     17(絞り)  ∞        可変
     18       154.618      7.91     1.49700    81.61
     19       -41.703      0.50     1.72047    34.71
     20        88.450      9.80     1.49700    81.61
     21       -58.806      1.14
     22*       97.787      3.05     1.91082    35.25
     23*      183.088      可変
     24*       39.185      8.11     1.53366    55.96
     25*     -273.061      0.05
     26*       39.379      6.99     1.63484    23.91
     27*     -130.804      0.05
     28*     -272.693      2.97     1.58360    30.33
     29*       16.301      可変
     30*     -143.895      3.21     1.53366    55.96
     31       -29.718      1.08
     32*      -66.754      3.13     1.53366    55.96
     33*      -46.956      8.53
     34*      -12.948      1.00     1.53366    55.96
     35*       24.888      2.14
     36          ∞        0.30     1.51633    64.14
     37          ∞        2.00
   像面          ∞

非球面データ
第4面
k=0.089
A4=8.91611e-07,A6=2.23110e-09
第7面
k=-0.957
A4=-4.63936e-06,A6=-3.47489e-09
第8面
k=-10.000
A4=-7.98501e-06,A6=1.93962e-08
第9面
k=-10.000
A4=3.27233e-06,A6=9.66518e-09
第10面
k=4.111
A4=2.92694e-06,A6=-1.83189e-09
第11面
k=-10.000
A4=4.52716e-06,A6=1.06832e-08
第12面
k=7.852
A4=4.90830e-06,A6=2.68297e-09
第13面
k=-1.026
A4=-3.21839e-06,A6=9.95260e-10
第22面
k=2.149
A4=1.62847e-07,A6=-1.92713e-09
第23面
k=-5.323
A4=-1.67614e-06,A6=-9.82428e-10
第24面
k=-1.465
A4=-3.87411e-06,A6=-1.34487e-09
第25面
k=-10.000
A4=1.92162e-06,A6=-3.25394e-09
第26面
k=-2.915
A4=-5.00971e-06,A6=1.89801e-09
第27面
k=-4.067
A4=8.80372e-07,A6=7.56366e-10
第28面
k=-9.876
A4=2.61002e-06,A6=4.22180e-10
第29面
k=-1.001
A4=-9.35453e-06,A6=1.30478e-09
第30面
k=-10.000
第32面
k=6.084
A4=-8.44512e-05,A6=-3.38609e-08
第33面
k=5.446
A4=-6.60035e-05,A6=1.83701e-08
第34面
k=-3.939
A4=-2.61809e-05,A6=4.45113e-09
第35面
k=-1.141
A4=-9.96483e-06,A6=1.22337e-08

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.42      0.61
    β                -1.33     -2.45     -3.56
    焦点距離(mm)      17.07      9.07      6.29
    IH(mm)          11.00     11.00     11.00
    fb (in air)      4.33      4.33      4.33
    全長 (in air)    198.81    198.81    198.81

      d7              22.18      2.54      0.48
      d17             35.30     21.56      0.05
      d23             15.08     11.57     14.39
      d29              9.18     46.07     66.82

各群焦点距離
  f1=67.39    f2=58.98    f3=117.51    f4=159.94    f5=-28.91
数値実施例3
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.06
      1        41.070      4.74     1.75520    27.51
      2         8.563      4.60     1.78800    47.37
      3        46.948      0.10
      4        29.514      2.70     1.59522    67.74
      5       -31.813      1.48     2.00178    19.32
      6       -18.329      可変
      7*      124.136      1.65     1.49700    81.61
      8*      -32.236      0.10
      9*       34.819      1.92     1.63484    23.91
     10*      -76.356      0.92
     11*    -1104.670      1.00     1.58360    30.33
     12*       14.613      1.43
     13       113.857      4.12     1.49700    81.61
     14        -9.920      1.00     1.72047    34.71
     15       -15.135      0.10
     16(絞り)  ∞        可変
     17        20.535      1.00     1.59551    39.24
     18        13.158      4.13     1.49700    81.61
     19       -52.800      0.10
     20       551.336      1.05     1.76182    26.52
     21        40.653      可変
     22*       17.515      2.90     1.53366    55.96
     23*     -153.994      0.10
     24*       23.195      3.29     1.63484    23.91
     25*      -29.612      0.25
     26*      -35.687      1.05     1.58360    30.33
     27*        8.518      可変
     28       -29.192      3.00     2.00178    19.32
     29       -16.510      4.68
     30       -12.512      3.00     1.49710    81.56
     31      -105.755      2.57
     32*       -3.402      1.02     1.53366    55.96
     33*       -8.695      1.31
     34          ∞        0.30     1.51633    64.14
     35          ∞        2.50
   像面          ∞

非球面データ
第7面
k=47.232
A4=-4.87695e-05,A6=2.41891e-07
第8面
k=-11.183
A4=1.81009e-05,A6=1.99065e-07
第9面
k=3.846
A4=2.44426e-05,A6=-1.06377e-07
第10面
k=2.516
A4=3.51230e-05,A6=3.38996e-07
第11面
k=16896.538
A4=4.48222e-05,A6=8.30907e-08
第12面
k=-1.054
A4=-2.73924e-05,A6=1.11887e-07
第22面
k=-1.395
A4=-2.91406e-05,A6=-3.66094e-08
第23面
k=3.305
A4=1.49379e-05,A6=-5.54436e-08
第24面
k=-3.573
A4=4.30854e-05,A6=9.13174e-08
第25面
k=-4.313
A4=7.28845e-06,A6=2.68236e-08
第26面
k=-0.827
A4=2.51707e-05,A6=-2.46076e-08
第27面
k=-1.066
A4=-8.82735e-05,A6=-3.26902e-07
第32面
k=-1.904
A4=-1.01943e-03
第33面
k=-10.000
A4=-4.34032e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -3.39     -5.55     -9.06
    焦点距離(mm)       4.42      2.59      1.58
    IH(mm)           5.50      5.50      5.50
    fb (in air)      4.00      4.00      4.00
    全長 (in air)    109.37    109.37    109.37

      d6               7.54      1.08      0.20
      d16             23.30     15.60      0.20
      d21             17.13      8.89      6.92
      d27              3.38     25.78     44.03

各群焦点距離
  f1=16.64    f2=29.03    f3=67.90    f4=83.05    f5=-11.69
数値実施例4
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.11
      1        42.854      4.88     1.75520    27.51
      2         9.449      4.66     1.78800    47.37
      3        47.957      0.10
      4        30.363      2.69     1.59522    67.74
      5       -29.253      1.47     2.00178    19.32
      6       -18.329      可変
      7*      123.257      1.68     1.49700    81.61
      8*      -32.060      0.99
      9*       35.047      2.01     1.63484    23.91
     10*      -79.370      0.25
     11*    -1821.839      1.00     1.58360    30.33
     12*       14.209      1.49
     13        55.686      4.49     1.49700    81.61
     14       -10.603      1.09     1.72047    34.71
     15       -16.874      0.10
     16(絞り)  ∞        可変
     17        21.884      1.00     1.59551    39.24
     18        13.326      4.51     1.49700    81.61
     19       -47.870      0.10
     20        80.799      1.00     1.78472    25.68
     21        29.165      5.82
     22*       17.839      2.84     1.53366    55.96
     23*     -141.412      0.10
     24*       22.568      3.24     1.63484    23.91
     25*      -31.098      0.30
     26*      -37.031      1.04     1.58360    30.33
     27*        8.668      可変
     28       -57.439      3.00     1.84666    23.78
     29       -19.966      5.00
     30       -13.457      1.98     1.59551    39.24
     31        74.133      可変
     32        38.638      2.63     1.76200    40.10
     33       -12.934      2.19
     34*       -3.874      1.00     1.53366    55.96
     35*       30.228      0.57
     36          ∞        0.30     1.51633    64.14
     37          ∞        1.50
   像面          ∞

非球面データ
第7面
k=7.235
A4=-5.19614e-05,A6=2.50133e-07
第8面
k=-11.739
A4=1.81171e-05,A6=1.75172e-07
第9面
k=3.564
A4=2.27492e-05,A6=-8.52746e-08
第10面
k=2.968
A4=3.49251e-05,A6=3.28246e-07
第11面
k=8348.181
A4=4.68276e-05,A6=9.24375e-08
第12面
k=-1.075
A4=-2.82301e-05,A6=1.11162e-07
第22面
k=-1.371
A4=-2.87639e-05,A6=-5.26359e-08
第23面
k=-19.954
A4=1.60354e-05,A6=-4.06352e-08
第24面
k=-3.428
A4=-4.23418e-05,A6=8.62975e-08
第25面
k=-4.256
A4=6.91696e-06,A6=1.81029e-08
第26面
k=-1.204
A4=2.61385e-05,A6=8.71331e-09
第27面
k=-1.081
A4=-9.08593e-05,A6=-2.43864e-07
第34面
k=-1.883
A4=-6.54448e-06
第35面
k=-10.000
A4=7.00971e-05

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.66     -4.36     -7.12
    焦点距離(mm)       4.56      2.81      1.84
    IH(mm)           5.50      5.50      5.50
    fb (in air)      2.26      2.26      2.26
    全長 (in air)    105.01    105.01    105.01

      d6               3.39      0.39      0.20
      d16             25.00     13.89      0.20
      d27             11.29     18.68     21.14
      d31              0.38      7.10     18.52

各群焦点距離
  f1=17.19    f2=29.75    f3=35.13    f4=-57.28    f5=-20.79
数値実施例5
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.36
      1       -78.153      4.96     1.75520    27.51
      2       -13.906      4.72     1.78800    47.37
      3        54.471      0.11
      4        40.308      3.57     1.59522    67.74
      5       -16.355      1.18     2.00178    19.32
      6       -18.329      可変
      7*       12.651      3.12     1.63484    23.91
      8*      564.542      0.10
      9*     -728.186      1.00     1.58360    30.33
     10*        7.738      1.00
     11        14.801      2.08     1.49700    81.61
     12        -7.983      2.50     1.72047    34.71
     13       -16.723      0.10
     14(絞り)  ∞        可変
     15        19.213      4.68     1.59551    39.24
     16        12.883      7.13     1.49700    81.61
     17       -42.488      0.10
     18*       30.451      2.72     1.53366    55.96
     19*      -92.785      0.10
     20*       20.461      4.44     1.58360    30.33
     21*        9.664      可変
     22       -74.424      2.53     1.84666    23.78
     23       -19.328      0.60
     24       -15.389      1.00     1.59551    39.24
     25       -36.051      可変
     26       -72.453      1.98     1.76200    40.10
     27       -12.030      2.28
     28*       -4.538      1.00     1.53366    55.96
     29*       37.108      0.48
     30          ∞        0.30     1.51633    64.14
     31          ∞        2.00
   像面          ∞

非球面データ
第7面
k=-2.624
A4=-2.10322e-05,A6=-5.31733e-06
第8面
k=-63842.190
A4=-8.43938e-06,A6=-9.93994e-06
第9面
k=42349.007
A4=3.74549e-05,A6=4.18833e-06
第10面
k=-1.256
A4=-3.46706e-05,A6=5.68753e-06
第18面
k=-4.651
A4=-3.33705e-05,A6=-2.06561e-07
第19面
k=-8.744
A4=2.17150e-05,A6=1.27134e-07
第20面
k=-2.856
A4=-3.37340e-05,A6=5.80900e-07
第21面
k=-1.171
A4=-8.70252e-05,A6=7.56291e-07
第28面
k=-1.739
A4=-7.16893e-05
第29面
k=-10.000
A4=9.52379e-05

各種データ
                      低倍端     中間     高倍端
    NA               0.08      0.13      0.22
    β                -0.90     -1.50     -2.50
    焦点距離(mm)      10.73      7.64      4.88
    IH(mm)           5.50      5.50      5.50
    fb (in air)      2.67      2.67      2.67
    全長 (in air)     84.48     84.48     84.48

      d6              20.87      8.96      2.21
      d14              6.26     10.50      6.04
      d21              1.28      7.14      6.65
      d25              0.38      2.19     13.89

各群焦点距離
  f1=45.53    f2=37.73    f3=24.41    f4=90.21    f5=-15.55
数値実施例6
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.55
      1       -21.654      5.00     1.80610    40.88
      2       -10.000      3.96     1.84666    23.78
      3      -548.726      3.88     1.49700    81.54
      4       -12.343      0.10
      5        80.653      2.42     1.91082    35.25
      6       -66.283      可変
      7       -75.999      3.80     1.53366    55.96
      8*      -17.526      0.10
      9       281.305      6.49     1.60300    65.44
     10       -12.656      1.00     1.72047    34.71
     11       -51.571      可変
     12(絞り)  ∞        可変
     13       -18.025      2.31     1.84666    23.78
     14       -13.172      0.22
     15       -12.839      1.00     1.78590    44.20
     16       -27.471      可変
     17        30.565      5.56     1.53366    55.96
     18*      -21.816      0.10
     19        21.908      5.65     1.49700    81.54
     20       -19.546      1.00     1.72047    34.71
     21        26.502      可変
     22*       12.910      3.15     1.53366    55.96
     23        52.038      0.10
     24        14.630      2.36     1.88300    40.76
     25         7.838      2.64
     26       -76.371      9.78     1.84666    23.78
     27       -18.327      0.83
     28*       -7.935      1.00     1.53366    55.96
     29        18.435      0.85
     30          ∞        0.30     1.51633    64.14
     31          ∞        1.50
   像面          ∞

非球面データ
第8面
k=0.000
A4=6.77268e-06
第18面
k=0.000
A4=2.15805e-05
第22面
k=0.000
A4=-2.55392e-06
第28面
k=0.000
A4=6.29028e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -1.35     -2.06     -3.55
    焦点距離(mm)      12.73      8.02      4.17
    IH(mm)           5.50      5.50      5.50
    fb (in air)      2.55      2.55      2.55
    全長 (in air)    112.02    112.02    112.02

      d6              22.68      9.74      0.92
      d11              0.10     13.04     21.86
      d12              2.41      3.65      2.41
      d16             21.75     14.24      0.20
      d21              0.10      6.37     21.65

各群焦点距離
  f1=23.06    f2=33.06    f3=-79.41    f4=28.31    f5=-18.28
数値実施例7
単位  mm

面データ
  面番号         r          d         nd       νd 
  物体面         ∞        1.22
      1       -16.843      4.32     2.00178    19.32
      2        -8.636      1.72     1.84666    23.78
      3       911.147      2.27     1.83481    42.71
      4        -9.828      0.10
      5        14.525      6.33     1.72916    54.68
      6        19.870      可変
      7       -43.494      2.26     1.53366    55.96
      8*      -10.891      0.10
      9      -253.131      3.87     1.60300    65.44
     10        -6.779      1.00     1.72047    34.71
     11       -23.734      可変
     12(絞り)  ∞        1.34
     13       -14.179      2.90     2.00178    19.32
     14       -10.167      0.37
     15        -9.637      1.00     1.80000    29.84
     16       -24.621      可変
     17        21.318      3.34     1.53366    55.96
     18*      -22.052      0.10
     19        14.906      3.32     1.49700    81.54
     20       -26.784      2.82     1.72047    34.71
     21        15.222      可変
     22*       50.082      1.97     1.53366    55.96
     23       -21.025      0.10
     24       -27.546      3.00     1.65844    50.88
     25        12.611     18.41
     26        14.962      2.54     2.00100    29.13
     27      -528.141      4.90
     28*       -8.213      1.00     1.53366    55.96
     29         9.675      1.19
     30          ∞        0.30     1.51633    64.14
     31          ∞        1.50
   像面          ∞

非球面データ
第8面
k=0.000
A4=-9.17289e-06
第18面
k=0.000
A4=3.54433e-05
第22面
k=0.000
A4=8.77643e-06
第28面
k=0.000
A4=6.73848e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.81     -4.34     -7.13
    焦点距離(mm)       7.60      4.25      2.43
    IH(mm)           4.75      4.75      4.75
    fb (in air)      2.89      2.89      2.89
    全長 (in air)    100.91    100.91    100.91

      d6               7.52      2.32      1.30
      d11              0.10      5.30      6.32
      d16             20.55     11.68      0.20
      d21              0.79      9.66     21.14

各群焦点距離
  f1=10.33    f2=21.29    f3=-62.18    f4=23.61    f5=-14.82
数値実施例8
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.39
      1       -11.331      6.04     2.00178    19.32
      2       -13.131      0.10
      3      -946.281      3.29     1.67480    57.97
      4       -14.337      0.10
      5        10.192      2.00     1.49700    81.55
      6        10.568      可変
      7       -51.413      2.81     1.53366    55.96
      8*      -11.529      0.10
      9       -91.616      4.93     1.60300    65.44
     10        -7.195      1.00     1.72047    34.71
     11       -23.922      可変
     12(絞り)  ∞        1.73
     13       -13.536      1.96     2.00178    19.32
     14       -10.172      0.15
     15        -9.971      1.00     1.80000    29.84
     16       -22.978      可変
     17        27.381      3.57     1.53366    55.96
     18*      -19.808      0.10
     19        14.731      3.93     1.49700    81.54
     20       -22.234      3.34     1.72047    34.71
     21        15.522      可変
     22*       55.729      2.00     1.53366    55.96
     23        11.191     17.90
     24        12.797      3.15     2.00100    29.13
     25      -215.539      3.11
     26*       -9.081      1.00     1.53366    55.96
     27         9.711      1.34
     28          ∞        0.30     1.51633    64.14
     29          ∞        1.50
   像面          ∞

非球面データ
第8面
k=0.000
A4=7.01903e-06
第18面
k=0.000
A4=2.60215e-05
第22面
k=0.000
A4=5.62828e-05
第26面
k=0.000
A4=5.80353e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.18     -3.57     -5.83
    焦点距離(mm)      16.47      7.96      4.39
    IH(mm)           4.75      4.75      4.75
    fb (in air)      3.04      3.04      3.04
    全長 (in air)    100.91    100.91    100.91

      d6              13.55      5.34      2.99
      d11              0.10      8.31     10.66
      d16             20.15     11.49      0.20
      d21              0.77      9.43     20.72

各群焦点距離
  f1=13.10    f2=23.49    f3=-63.12    f4=24.18    f5=-27.20
数値実施例9
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.22
      1       -18.725      4.32     2.00178    19.32
      2       -31.804      2.51     1.83481    42.71
      3        -9.912      0.10
      4        10.558      3.45     1.78800    47.37
      5       -20.000      2.50     1.69895    30.13
      6         9.835      可変
      7        31.215      2.45     1.53366    55.96
      8*      -11.432      0.10
      9       -22.184      3.65     1.60300    65.44
     10        -5.405      1.00     1.72047    34.71
     11       -23.159      可変
     12(絞り)  ∞        0.47
     13       -68.998      2.78     2.00178    19.32
     14       -10.619      1.00     1.75520    27.51
     15       101.173      可変
     16        28.719      2.10     1.53366    55.96
     17      -160.043      0.10
     18        43.831      2.52     1.53366    55.96
     19*      -27.949      0.10
     20        14.708      3.28     1.49700    81.54
     21       -36.048      7.91     1.72825    28.46
     22        12.092      可変
     23*     -221.872      3.00     1.53366    55.96
     24       -12.551      0.10
     25       -25.159      3.00     1.60562    43.70
     26         6.695      可変
     27        12.943      5.00     1.84666    23.78
     28       -30.308      1.30
     29*       -7.934      2.00     1.53366    55.96
     30        15.330      0.78
     31          ∞        0.30     1.51633    64.14
     32          ∞        1.50
   像面          ∞

非球面データ
第8面
k=0.000
A4=2.69320e-05
第19面
k=0.000
A4=2.55226e-05
第23面
k=0.000
A4=-9.20183e-05
第29面
k=0.000
A4=9.37257e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.66     -4.36     -7.21
    焦点距離(mm)       6.86      3.73      2.21
    IH(mm)           4.75      4.75      4.75
    fb (in air)      2.48      2.48      2.48
    全長 (in air)     86.53     86.53     86.53

      d6               4.16      1.00      1.34
      d11              0.10      3.26      2.92
      d15             19.12      9.82      0.42
      d22              1.15     10.21     19.58
      d26              4.80      5.04      5.07

各群焦点距離
  f1=10.62    f2=22.62    f3=627.38    f4=18.35    f5=-13.98
  f6=55.65
数値実施例10
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.28
      1       111.248      4.32     2.00178    19.32
      2       158.973      1.45     1.83481    42.71
      3       -30.896      1.17
      4        22.697      8.39     1.78800    47.37
      5       -20.000      2.50     1.69895    30.13
      6        27.829      可変
      7        22.875      2.93     1.53366    55.96
      8*       -8.265      0.10
      9        -9.474      1.77     1.60300    65.44
     10        -5.539      5.00     1.72047    34.71
     11       -20.878      可変
     12(絞り)  ∞        0.47
     13       -41.774      2.83     2.00178    19.32
     14       -13.304      1.00     1.75520    27.51
     15     -4072.041      可変
     16        38.371      1.63     1.53366    55.96
     17      -615.493      0.10
     18        33.168      2.66     1.53366    55.96
     19*      -23.894      0.10
     20        14.457      2.97     1.49700    81.54
     21       -43.409      5.18     1.72825    28.46
     22        13.946      可変
     23*      -72.077      3.00     1.53366    55.96
     24       -12.453      0.10
     25      -544.479      3.00     1.60562    43.70
     26         7.266      可変
     27        10.977      5.00     1.84666    23.78
     28        12.750      1.35
     29*       -8.703      2.00     1.53366    55.96
     30        48.121      0.29
     31          ∞        0.30     1.51633    64.14
     32          ∞        1.50
   像面          ∞

非球面データ
第8面
k=0.000
A4=8.73539e-05
第19面
k=0.000
A4=3.09691e-05
第23面
k=0.000
A4=-2.50616e-04
第29面
k=0.000
A4=9.69394e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.10      0.16      0.26
    β                -1.14     -1.84     -2.99
    焦点距離(mm)      12.62      6.55      3.83
    IH(mm)           4.75      4.75      4.75
    fb (in air)      1.98      1.98      1.98
    全長 (in air)     90.94     90.94     90.94

      d6               8.84      1.49      0.44
      d11              0.10      7.48      8.47
      d15             18.19      9.34      0.20
      d22              1.38      9.46     17.73
      d26              1.43      2.17      3.10

各群焦点距離
  f1=17.71    f2=27.43    f3=-216.23    f4=19.30    f5=-22.79
  f6=-32.66
数値実施例11
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        2.20
      1       -12.923      2.88     1.83400    37.16
      2        13.709      9.75     1.65100    56.16
      3       -16.604      0.20
      4       182.555      5.85     1.59522    67.74
      5       -22.860      1.46
      6        92.504     10.00     1.78800    47.37
      7        28.295      9.88     1.49700    81.54
      8       -35.089     10.14
      9        87.517      4.49     1.49700    81.54
     10       -40.197      0.89
     11       287.579      1.44     1.80400    46.57
     12        20.222      6.32     1.43875    94.93
     13       -60.068      0.10
     14        37.768      2.16     1.51823    58.96
     15        90.424      0.87
     16(絞り)  ∞        可変
     17       -54.403      1.00     1.74100    52.64
     18        31.130      1.00     1.75520    27.51
     19        30.568      1.63
     20       -88.325      1.00     1.51823    58.96
     21        21.260      2.53     1.80518    25.43
     22        92.998      可変
     23        43.273      3.46     1.48749    70.23
     24       -69.631      0.10
     25        46.333      1.70     1.72047    34.71
     26        18.841      4.31     1.48749    70.23
     27       167.650      可変
     28*       25.488      6.25     1.59074    65.51
     29      -162.990      3.45
     30      -102.457      4.97     1.74964    30.84
     31        71.456     24.55
     32        14.091      3.33     1.84666    23.78
     33        23.716      0.17
     34        14.431      2.28     1.80518    25.42
     35         6.611      1.54
     36         7.048      5.11     1.75501    51.16
     37*        7.407      1.06
     38          ∞        0.30     1.51633    64.14
     39          ∞        3.00
   像面          ∞

非球面データ
第28面
k=0.000
A4=-2.44186e-06
第37面
k=0.000
A4=1.73815e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -1.33     -2.18     -3.56
    焦点距離(mm)     520.87    714.51     16.03
    IH(mm)           3.00      3.00      3.00
    fb (in air)      4.26      4.26      4.26
    全長 (in air)    177.29    177.29    177.29

      d16              0.83     24.79     38.01
      d22             19.54     12.06      0.10
      d27             17.84      1.36      0.10

各群焦点距離
  f1=18.81    f2=-25.27    f3=52.53    f4=44.84 
数値実施例12
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.27
      1       -22.784      7.97     2.00178    19.32
      2       -10.000      7.01     1.84666    23.78
      3      -120.689      0.10
      4       514.184      9.49     1.88300    40.80
      5       -27.131      0.10
      6       -73.294      2.43     1.84666    23.78
      7       -27.362      0.10
      8        42.765      5.81     1.49700    81.54
      9       -18.172      1.00     1.57501    41.50
     10        45.777      1.29
     11      2516.925      1.00     1.72047    34.71
     12        32.396      4.09     1.49700    81.54
     13       -44.446      0.10
     14        48.583      2.57     1.49700    81.54
     15      -164.344      0.10
     16        47.475      1.70     1.80400    46.57
     17        20.378      4.13     1.43875    94.93
     18      -109.125      6.77
     19(絞り)  ∞        0.10
     20          ∞        1.45     1.58144    40.75
     21       -90.909      可変
     22      1800.703      1.00     1.72342    37.95
     23        13.735      2.46     1.84666    23.78
     24        46.722      1.31
     25       -37.078      1.00     1.67300    38.15
     26        19.701      1.54     1.84666    23.78
     27        31.766      可変
     28        45.153      2.51     1.72916    54.68
     29      -124.530      0.10
     30        41.325      7.02     1.69680    55.53
     31    -22428.139      2.69     1.72047    34.71
     32        25.110      可変
     33*       36.836      4.21     1.72903    54.04
     34       -48.356      0.10
     35        77.143      5.14     1.72916    54.68
     36       -24.384      6.01     1.90366    31.32
     37        56.361      5.00
     38        83.989      2.99     1.80610    33.27
     39        35.268     19.30
     40        89.478      4.68     1.84666    23.78
     41       -35.056      0.10
     42        18.574      7.76     2.00178    19.32
     43        16.654      1.84
     44       -39.853      1.00     1.75501    51.16
     45*       17.859      1.06
     46          ∞        0.30     1.51633    64.14
     47          ∞        5.00
   像面          ∞

非球面データ
第33面
k=0.000
A4=-6.49017e-06
第45面
k=0.000
A4=-1.78428e-05

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.20     -3.57     -5.82
    焦点距離(mm)      53.32     17.10      6.73
    IH(mm)           5.50      5.50      5.50
    fb (in air)      6.25      6.25      6.25
    全長 (in air)    168.62    168.62    168.62

      d21              0.20     15.41     26.47
      d27             15.91     11.10      0.35
      d32             11.17      0.77      0.46

各群焦点距離
  f1=14.92    f2=-22.16    f3=60.23    f4=29.18
数値実施例13
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.37
      1       -40.987     10.00     1.83400    37.16
      2       -52.459     10.00     1.84666    23.78
      3       -39.893      0.10
      4       941.821     10.00     1.88300    40.80
      5       -32.540      5.27
      6       -49.992     10.00     1.75520    27.51
      7        53.602     10.00     1.84666    23.78
      8       -53.191      0.11
      9       246.374      6.73     1.49700    81.54
     10       -27.066      1.03     1.61293    37.00
     11       159.021      1.30
     12      -370.480      1.03     1.72047    34.71
     13        54.649      7.11     1.49700    81.54
     14       -43.003      0.10
     15       345.717      1.92     1.60562    43.70
     16      -299.011      0.10
     17       100.141      1.00     1.80400    46.57
     18        39.990      4.78     1.43875    94.93
     19     -2588.894      0.10
     20        44.827      4.01     1.55332    71.68
     21       238.990      0.69
     22(絞り)  ∞        可変
     23       606.831      1.00     1.72047    34.71
     24        15.793      2.83     1.84666    23.78
     25        65.887      1.27
     26       -50.551      1.00     1.90366    31.32
     27        26.061      1.77     2.00178    19.32
     28        60.158      可変
     29     -1382.268      2.98     1.74320    49.34
     30       -54.311      0.10
     31       148.232      3.04     1.72903    54.04
     32      -251.038     13.53
     33        88.724      5.33     1.69680    55.53
     34       -35.525      1.71     1.85026    32.27
     35        63.954      可変
     36        40.123     10.00     1.69100    54.82
     37       -72.626     10.00     1.84666    23.78
     38        48.338     12.91
     39        56.312      9.96     1.76182    26.52
     40      -122.904      可変
     41        37.520      7.01     1.80810    22.76
     42       -69.737      1.19
     43       -42.881      4.58     1.55332    71.68
     44        33.293      4.04
     45       -31.896      3.94     1.55332    71.68
     46*       24.848      0.78
     47          ∞        0.30     1.51633    64.14
     48          ∞        3.78
   像面          ∞

非球面データ
第46面
k=0.000
A4=-1.79537e-05

各種データ
                      低倍端     中間     高倍端
    NA               0.11      0.23      0.61
    β                -1.25     -2.43     -6.52
    焦点距離(mm)     756.14     38.15      6.44
    IH(mm)           5.50      5.50      5.50
    fb (in air)      4.75      4.75      4.75
    全長 (in air)    271.52    271.52    271.52

      d22              0.20     35.65     74.82
      d28             40.06     23.80      0.85
      d35             29.80      1.82      7.44
      d40             13.15     21.94      0.10

各群焦点距離
  f1=27.17    f2=-29.13    f3=62.73    f4=60.88    f5=-41.12
数値実施例14
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞       15.84
      1       514.184      5.89     1.49700    81.61
      2       -22.397     19.71
      3      -123.845      2.23     1.49700    81.61
      4        -8.839      1.00     1.67300    38.15
      5        28.890      3.54
      6       217.991      3.39     1.55332    71.68
      7       -16.459      0.10
      8        18.406      1.99     1.49700    81.61
      9       -80.696      0.10
     10(絞り)  ∞        0.10
     11          ∞        1.19     1.58144    40.75
     12       -70.716      可変
     13       -29.442      1.00     1.80139    45.45
     14        16.540      1.18     1.84666    23.78
     15        22.667      0.82
     16       -52.742      1.00     1.74100    52.64
     17        19.274      1.65     1.84666    23.78
     18       393.247      可変
     19        33.105      5.41     1.69680    55.53
     20       -35.152      0.84
     21        43.213      8.12     1.69680    55.53
     22       -14.179      1.00     1.72047    34.71
     23        23.564      可変
     24        34.073      2.23     1.72903    54.04
     25       217.333      0.10
     26        41.188      6.04     1.72916    54.68
     27       -13.176      1.00     1.90366    31.32
     28       685.273      1.08
     29       -45.052      1.00     1.78472    25.68
     30        23.447      0.41
     31        18.238      4.12     2.00178    19.32
     32      -231.364      0.13
     33        11.031      4.15     1.72916    54.68
     34        22.882      1.45
     35      -254.659      1.13     1.78472    25.68
     36*        9.874      2.28
     37          ∞        0.30     1.51633    64.14
     38          ∞        6.00
   像面          ∞

非球面データ
第36面
k=0.000
A4=8.44498e-05

各種データ
                      低倍端     中間     高倍端
    NA               0.05      0.08      0.12
    β                -0.44     -0.71     -1.13
    焦点距離(mm)      33.51     32.58     21.26
    IH(mm)           5.50      5.50      5.50
    fb (in air)      8.48      8.48      8.48
    全長 (in air)    108.28    108.28    108.28

      d12              0.29      6.90     10.52
      d18             15.59      9.20      0.10
      d23              0.81      0.59      6.07

各群焦点距離
  f1=26.76    f2=-13.42    f3=29.14    f4=38.82
数値実施例15
単位  mm

面データ
  面番号         r          d         nd       νd 
  物体面         ∞        1.26
      1       -22.799      8.02     2.00178    19.32
      2       -10.000      6.07     1.84666    23.78
      3      -127.010      0.10
      4       514.184      9.02     1.88300    40.80
      5       -35.317      0.10
      6       -76.547      2.66     1.84666    23.78
      7       -22.563      0.10
      8        44.285      5.43     1.49700    81.54
      9       -16.636      1.00     1.56732    42.82
     10        45.768      1.23
     11      -814.468      1.00     1.72047    34.71
     12        31.752      3.97     1.49700    81.54
     13       -38.947      0.10
     14        48.375      2.54     1.49700    81.54
     15      -121.012      0.10
     16        43.876      1.00     1.80440    39.59
     17        19.275      3.80     1.49700    81.61
     18      -244.353      0.61
     19(絞り)  ∞        0.10
     20          ∞        1.41     1.58144    40.75
     21      -110.055      可変
     22*     -108.127      1.00     1.53366    55.96
     23        21.294      0.10
     24        17.087      1.91     1.63484    23.91
     25*       36.179      1.33
     26*      -67.414      1.00     1.53366    55.96
     27        19.991      0.46
     28        25.954      1.28     1.63484    23.91
     29*       31.912      可変
     30        40.306      2.77     1.72916    54.68
     31      -162.235      0.10
     32        48.391      5.96     1.72342    37.95
     33       -16.834      1.00     1.72047    34.71
     34        25.124      可変
     35*       30.385      5.11     1.72903    54.04
     36       -41.941      0.10
     37       125.058      4.59     1.69680    55.53
     38       -21.149      4.09     1.91082    35.25
     39        47.612      0.71
     40       111.847      2.04     1.80000    29.84
     41        47.347     34.06
     42        60.461      5.15     1.84666    23.78
     43       -45.615      0.10
     44        17.276      8.24     1.80810    22.76
     45        15.879      1.85
     46       -46.940      1.00     1.85026    32.27
     47*       16.929      1.12
     48          ∞        0.30     1.51633    64.14
     49          ∞        5.00
   像面          ∞

非球面データ
第22面
k=0.000
A4=-6.17401e-06
第25面
k=0.000
A4=2.85432e-05
第26面
k=0.000
A4=2.24191e-05
第29面
k=0.000
A4=-1.94648e-05
第35面
k=0.000
A4=-8.31031e-06
第47面
k=0.000
A4=-1.45299e-05

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.20     -3.57     -5.82
    焦点距離(mm)      30.47     16.18      7.07
    IH(mm)           5.50      5.50      5.50
    fb (in air)      6.31      6.31      6.31
    全長 (in air)    168.63    168.63    168.63

      d21              0.26     16.81     28.69
      d29             18.03     12.60      0.23
      d34             11.69      0.57      1.06

各群焦点距離
  f1=14.14    f2=-24.35    f3=73.60    f4=31.94
数値実施例16
単位  mm

面データ
  面番号       r          d         nd        νd
  物体面         ∞        1.35
      1        43.231      9.70     1.76200    40.10
      2        57.098      0.10
      3        32.147      4.09     1.67003    47.23
      4       -18.329      可変
      5*      107.325      1.67     1.49700    81.61
      6*      -33.414      0.10
      7*       33.505      1.96     1.63484    23.91
      8*     -101.909      0.70
      9*       -8.0366e+6  1.00     1.58360    30.33
     10*       13.965      1.29
     11        42.408      4.84     1.49700    81.61
     12       -10.327      1.00     1.72047    34.71
     13       -18.267      0.10
     14(絞り)  ∞        可変
     15        22.493      1.00     1.61293    37.00
     16        13.296      5.25     1.49700    81.61
     17       -31.912      0.10
     18        31.545      1.00     1.80518    25.42
     19        16.499      0.84
     20*       22.520      2.82     1.53366    55.96
     21*      -54.016      0.10
     22*       19.422      3.27     1.63484    23.91
     23*      -25.541      0.45
     24*      -30.483      1.18     1.58360    30.33
     25*        8.393      可変
     26       -40.913      2.38     1.84666    23.78
     27       -15.464      6.15
     28       -14.833      1.53     1.70000    48.08
     29        69.314      可変
     30     -2448.807      2.25     1.75500    52.32
     31       -11.550      2.43
     32*       -3.805      1.55     1.53366    55.96
     33*       53.678      0.32
     34          ∞        0.30     1.51633    64.14
     35          ∞        1.50
   像面          ∞

非球面データ
第5面
k=-151.903
A4=-6.05656e-05,A6=2.88945e-07
第6面
k=-10.719
A4=1.97656e-05,A6=2.16972e-07
第7面
k=3.055
A4=1.91538e-05,A6=-6.99611e-08
第8面
k=-5.065
A4=3.62227e-05,A6=3.44566e-07
第9面
k=-1.15125e+23
A4=4.69062e-05,A6=1.05024e-07
第10面
k=-1.072
A4=-2.81467e-05,A6=7.64679e-08
第20面
k=-1.107
A4=-2.47911e-05,A6=-4.27580e-08
第21面
k=-1.937
A4=1.40297e-05,A6=-6.62424e-08
第22面
k=-3.162
A4=-4.05322e-05,A6=6.65571e-08
第23面
k=-4.366
A4=7.04818e-06,A6=2.75944e-08
第24面
k=-1.195
A4=2.69706e-05,A6=2.26935e-08
第25面
k=-1.062
A4=-8.69007e-05,A6=5.53276e-08
第32面
k=-1.627
A4=-6.41757e-05
第33面
k=-10.000
A4=-3.45899e-05

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.66     -4.36     -7.12
    焦点距離(mm)       3.75      2.55      1.74
    IH(mm)           5.50      5.50      5.50
    fb (in air)      2.01      2.01      2.01
    全長 (in air)     80.46     86.36     98.54

      d4               4.10      1.45      0.20
      d14              6.08      3.23      0.20
      d25              9.06     11.22     12.61
      d29              0.34      9.58     24.65

各群焦点距離
  f1=18.12    f2=31.26    f3=30.63    f4=-92.49    f5=-16.15
数値実施例17
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.39
      1       -11.055      6.31     1.88300    40.76
      2       -11.606      0.10
      3        35.525      3.92     1.71300    53.87
      4       -26.903      0.64
      5         8.245      2.21     1.49700    81.61
      6         7.987      可変
      7      -102.909      2.33     1.53366    55.96
      8*      -12.159      0.10
      9       -95.469      4.28     1.60300    65.44
     10        -6.261      1.00     1.72047    34.71
     11       -20.461      可変
     12(絞り)  ∞        1.61
     13       -12.688      2.17     2.00178    19.32
     14        -8.524      1.00     1.80000    29.84
     15       -30.929      可変
     16        25.638      3.53     1.53366    55.96
     17*      -17.746      0.10
     18        14.492      3.66     1.49700    81.54
     19       -21.933      6.30     1.69895    30.13
     20        12.811      可変
     21*       26.959      2.00     1.53366    55.96
     22         8.270     10.81
     23        13.080      2.75     1.82115    24.06
     24       -59.563      3.45
     25*       -8.224      1.00     1.53366    55.96
     26        13.053      0.94
     27          ∞        0.30     1.51633    64.14
     28          ∞        1.50
   像面          ∞

非球面データ
第8面
k=0.000
A4=1.07108e-05
第17面
k=0.000
A4=4.31973e-05
第21面
k=0.000
A4=9.86864e-05
第25面
k=0.000
A4=7.42389e-04

各種データ
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.18     -3.57     -5.83
    焦点距離(mm)      10.02      5.35      2.95
    IH(mm)           4.75      4.75      4.75
    fb (in air)      2.64      2.64      2.64
    全長 (in air)     89.02     89.53     81.81

      d6               9.99      4.01      2.77
      d11              0.10      6.59      0.10
      d15             16.48      9.57      0.20
      d20              0.55      7.46     16.83

各群焦点距離
  f1=11.95    f2=21.07    f3=-40.96    f4=20.20    f5=-18.31
数値実施例18
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        可変
      1       -22.158      7.87     2.00178    19.32
      2       -10.000      5.52     1.80518    25.42
      3       -64.870      0.10
      4       514.184      8.30     1.88300    40.76
      5       -29.149      0.10
      6       -49.162      2.15     1.92286    20.88
      7       -21.169      0.10
      8        52.434      4.76     1.49700    81.54
      9       -14.067      1.00     1.56732    42.82
     10        49.694      0.57
     11       131.131      1.00     1.71736    29.52
     12        24.619      3.48     1.49700    81.54
     13       -43.305      0.10
     14        41.039      2.11     1.49700    81.54
     15      -237.199      0.10
     16        41.438      1.00     1.80440    39.59
     17        16.705      3.24     1.49700    81.61
     18      -499.930      0.10
     19(絞り)  ∞        0.10
     20          ∞        1.42     1.58144    40.75
     21       -79.663      可変
     22*      -48.415      1.00     1.53366    55.96
     23        34.525      0.10
     24        24.319      1.86     1.63484    23.91
     25*      198.494      1.02
     26*      -29.143      1.00     1.53366    55.96
     27        21.359      0.11
     28        22.635      1.12     1.63484    23.91
     29*       24.666      可変
     30        30.973      3.70     1.72916    54.68
     31       -49.186      0.10
     32        34.091      3.80     1.72916    54.68
     33       -34.101      1.00     1.71736    29.52
     34        27.835      可変
     35*     -297.555      1.53     1.72903    54.04
     36       -50.238      0.10
     37        45.319      4.28     1.69680    55.53
     38       -15.110      3.44     1.91082    35.25
     39        37.743     12.29
     40      9142.672      1.00     1.69680    55.53
     41        27.912      3.93
     42        41.712      3.93     1.84666    23.78
     43       -26.474      0.10
     44        17.156      7.95     1.80810    22.76
     45        16.815      1.98
     46       -19.556      1.00     1.69680    55.53
     47*       18.003      0.84
     48          ∞        0.30     1.51633    64.14
     49          ∞        5.00
   像面          ∞

非球面データ
第22面
k=0.000
A4=-9.78567e-06
第25面
k=0.000
A4=2.55328e-05
第26面
k=0.000
A4=5.13966e-05
第29面
k=0.000
A4=-1.05555e-05
第35面
k=0.000
A4=-1.83517e-05
第47面
k=0.000
A4=-1.29699e-04

各種データ(d0は物体面におけるdの値である。)
                      低倍端     中間     高倍端
    NA               0.23      0.37      0.61
    β                -2.19     -3.57     -5.82
    焦点距離(mm)      15.06     11.20      5.11
    IH(mm)           5.50      5.50      5.50
  fb (in air)      6.03      6.03      6.03
  全長 (in air)    124.31    135.94    139.46

      d0               1.26      1.01      0.93
      d21              0.31     17.54     26.22
      d29             16.77     10.41      0.29
      d34              1.76      2.52      7.47

各群焦点距離
  f1=12.35    f2=-21.91    f3=26.38    f4=-115.20
数値実施例19
単位  mm

面データ
  面番号         r          d         nd       νd
  物体面         ∞        1.35
      1       -39.532      9.74     1.90366    31.32
      2        23.654      9.75     2.00100    29.13
      3       -36.653      0.10
      4       941.821      9.62     1.86400    40.58
      5       -26.876      0.10
      6       -36.098      9.15     1.76182    26.52
      7        64.408      8.53     1.84666    23.78
      8       -49.688      0.10
      9       185.423      5.72     1.49700    81.54
     10       -22.161      1.00     1.62004    36.26
     11       115.347      1.20
     12      -280.013      1.00     1.72047    34.71
     13        46.267      5.34     1.49700    81.54
     14       -44.160      0.10
     15       264.207      2.83     1.43875    94.93
     16       -70.753      0.10
     17        54.206      2.71     1.55332    71.68
     18       547.062      0.28
     19(絞り)  ∞        可変
     20      4894.995      1.00     1.72047    34.71
     21        18.521      3.19     1.84666    23.78
     22        83.205      1.69
     23       -45.352      1.00     1.90366    31.32
     24        23.618      2.32     2.00178    19.32
     25        57.491      可変
     26      3791.290      3.02     1.74320    49.34
     27       -44.426      0.10
     28        72.431      2.41     1.72903    54.04
     29      -603.236      0.10
     30        36.123      5.97     1.74100    52.64
     31       -91.650      3.40     1.85026    32.27
     32        37.543      可変
     33        26.851      3.90     1.72916    54.68
     34      -100.532      1.00     1.84666    23.78
     35        27.575      可変
     36        24.285      3.71     1.80810    22.76
     37       -45.497      1.42
     38       -33.596      1.39     1.55332    71.68
     39        47.907      6.25
     40       -27.385      2.54     1.55332    71.68
     41*       18.759      1.62
     42          ∞        0.30     1.51633    64.14
     43          ∞        2.61
   像面          ∞

非球面データ
第41面
k=0.000
A4=5.45815e-06

各種データ
                      低倍端     中間     高倍端
    NA               0.11      0.23      0.61
    β                -1.26     -2.43     -6.51
    焦点距離(mm)      32.90     20.74      5.35
    IH(mm)           5.50      5.50      5.50
    fb (in air)      4.42      4.42      4.42
    全長 (in air)    168.17    198.03    241.71

      d19              0.20     27.61     54.61
      d25             28.14     17.06      1.05
      d32              1.87     12.75     65.62
      d35             21.75     24.42      4.23

各群焦点距離
  f1=21.80    f2=-27.33    f3=32.47    f4=-428.68    f5=-155.34
 実施例1~19における条件式(1)~(21)の値を掲げる。なお、ハイフン(-)は、該当する構成がないか、条件式を満足しないことを示している。

  条件式             実施例1   実施例2   実施例3   実施例4   実施例5
(1)1/βHG1              0.62      0.75      0.57      0.57      0.70
(2)BFL/Y                0.31      0.40      0.75      0.43      0.51
(3)ΔGpmaxGpobj          -        0.06      0.34       -         -
(4)fG1/fG2               1.31      1.14      0.57      0.58      1.21
(4-1)fG1/fG2              -         -         -         -         -
(5)fG1/fLGp              1.22      1.09      0.44      0.49      1.87
(6)DHGpop/DHGpoi            0.57      0.49      0.22      0.21      0.37
(7)|DsGnoHs|           -         -         -         -         -
(8)ΔG2max/DHIGi            -         -         -         -         -
(9)fG3/fG2                -         -         -         -         -
(10)fHG1G3/fHGI            -         -         -         -         -
(11)DHpn/DHpi             -         -         -         -         -
(12)|Δiomaxmax|        -         -         -         -         -
(13)|Δwd/Dwdmax|          -         -         -         -         -
(14)2×Y/p         20000     20000      3929      5000      5000
(15)NAH                 0.61      0.61      0.61      0.61      0.22
(16)εH90/p             5.63      5.68      5.51      5.53      5.30
(17)NA'H                0.17      0.17      0.07      0.09      0.09
(18)LTL/p              -0.9      -0.5      -0.8      -0.5       0.3
(19)ATH/p              14.2      13.3       2.7       3.5      10.5
(20)CRALobj              3.6       1.7      -1.3      -0.3       3.9
(21)CRAHobj              4.8       2.5       0.3       0.4       5.8

  条件式             実施例6   実施例7   実施例8   実施例9   実施例10
(1)1/βHG1              0.44      0.48      0.46      0.65      0.90
(2)BFL/Y                0.48      0.63      0.66      0.54      0.44
(3)ΔGpmaxGpobj           -         -         -         -         -
(4)fG1/fG2               0.70      0.49      0.56      0.47      0.65
(4-1)fG1/fG2              -         -         -         -         -
(5)fG1/fLGp              0.81      0.44      0.54      0.58      0.92
(6)DHGpop/DHGpoi            0.24      0.13      0.14      0.29      0.27
(7)|DsGnoHs|           0.21      0.12      0.14       -        0.05
(8)ΔG2max/DHIGi           -         -         -         -         -
(9)fG3/fG2                -         -         -         -         -
(10)fHG1G3/fHGI            -         -         -         -         -
(11)DHpn/DHpi             -         -         -         -         -
(12)|Δiomaxmax         -         -         -         -         -
(13)|Δwd/Dwdmax|          -         -         -         -         -
(14)2×Y/p         10000      4318      5278      4318      4318
(15)NAH                  0.61      0.61      0.61      0.61      0.26
(16)εH90/p             6.10      5.51      5.43      5.56      5.40
(17)NA'H                0.17      0.09      0.10      0.08      0.09
(18)LTL/p              -1.1      -0.6      -0.2      -0.3       0.4
(19)ATH/p              44.0      29.5      27.5      17.6       5.2
(20)CRALobj             -1.5      -3.5      -3.5      -1.8      -3.6
(21)CRAHobj             -5.0      -2.2      -3.0      -0.9      -2.1

  条件式             実施例11  実施例12  実施例13  実施例14  実施例15
(1)1/βHG1               -         -         -         -         -
(2)BFL/Y                1.45      1.16      0.88      1.56      1.17
(3)ΔGpmaxGpobj           -         -         -         -         -
(4)fG1/fG2                -         -         -         -         -
(4-1)fG1/fG2            -0.74     -0.67     -0.93     -1.99     -0.58
(5)fG1/fLGp               -         -         -         -         -
(6)DHGpop/DHGpoi            -         -         -         -         -
(7)|DsGnoHs|           -         -         -         -         -
(8)ΔG2max/DHIGi           0.57      0.34      0.73      0.19      0.34
(9)fG3/fG2              -2.08     -2.72     -2.15     -2.17     -3.02
(10)fHG1G3/fHGI           0.26      0.22      0.10      0.65      0.23
(11)DHpn/DHpi            0.80      0.90      0.93      0.71      0.91
(12)|Δiomaxmax|        -         -         -         -         -
(13)|Δwd/Dwdmax|          -         -         -         -         -
(14)2×Y/p          5455      6111      5000      6111      6111
(15)NAH                 0.61      0.61      0.61      0.12      0.61
(16)εH90/p             5.56      5.53      5.02      5.42      5.46
(17)NA'H                0.17      0.10      0.09      0.11      0.10
(18)LTL/p               1.9       1.4       3.4       2.8       1.5
(19)ATH/p              31.2      22.6      22.0       3.2      19.6
(20)CRALobj              0.5      -1.0      -0.4       1.8       3.6
(21)CRAHobj              0.2      -0.2       0.0       2.5       1.4

  条件式             実施例16  実施例17  実施例18  実施例19
(1)1/βHG1              0.59      0.46       -         -
(2)BFL/Y                0.38      0.58      1.12      0.82
(3)ΔGpmaxGpobj          -         -         -         -
(4)fG1/fG2               0.58      0.57       -         -
(4-1)fG1/fG2             -         -       -0.56     -0.80
(5)fG1/fLGp              0.59      0.59       -         - 
(6)DHGpop/DHGpoi           0.19      0.21       -         -
(7)|DsGnoHs|           -        0.14       -         -
(8)ΔG2max/DHIGi           -         -        0.17      0.17
(9)fG3/fG2                -         -       -1.20     -1.19
(10)fHG1G3/fHGI            -         -       -0.09     -0.16
(11)DHpn/DHpi             -         -        0.87      0.84
(12)|Δiomaxmax|       0.67      0.47      1.00      1.00
(13)|Δwd/Dwdmax|          0.00      0.00      0.27      0.00
(14)2×Y/p          5000      5278      6111      6111
(15)NAH                 0.61      0.61      0.61      0.61
(16)εH90/p             5.45      5.43      5.44      6.16
(17)NA'H                0.09      0.10      0.10      0.09
(18)LTL/p              -0.9      -0.4       1.1       3.1
(19)ATH/p               5.9      30.7      31.2      35.8
(20)CRALobj             -0.1      -3.3       3.7       2.1
(21)CRAHobj              0.5       0.9       1.5       0.5
 図39は、本実施形態の光学機器である顕微鏡を示す図である。顕微鏡1は正立型の顕微鏡である。図39に示すように、顕微鏡1は、本体2、ステージ3、撮像部4、照明ユニット5、照準ノブ6、変倍光学系7、撮像素子8を備える。
 本体2には、ステージ3、撮像部4及び照準ノブ6が設けられている。ステージ3の上には、標本が載置される。ステージ3の光軸方向への移動は、照準ノブ6によって行なわれる。照準ノブ6の操作(回転)によってステージ3を移動させ、これにより、標本に対するピント合わせができる。そのために、本体2とステージ3との間に移動機構(不図示)が設けられている。
 撮像部4には、照明ユニット5が設けられている。撮像部4と照明ユニット5は、ステージ3の上方に位置している。照明ユニット5には、照明素子5aが輪帯状に配置されている。照明素子5aとしては、例えば、LEDがある。
 撮像部4の内部には、変倍光学系7と撮像素子8が配置されている。変倍光学系7には、例えば、実施例1の変倍光学系が用いられている。変倍光学系7の先端は、照明ユニット5の中央部に位置している。
 照明ユニット5から、標本に照明光が照射される。この場合、照明は落射照明になる。標本からの反射光や蛍光は、変倍光学系7を通過して撮像素子8に入射する。撮像素子8の撮像面には、標本像(光学像)が形成される。標本像は撮像素子8によって光電変換され、これにより標本の画像が得られる。標本の画像は表示装置(不図示)に表示される。このようにして、観察者は、標本の画像を観察できる。
 ここで、顕微鏡1は、変倍光学系7(本実施形態の変倍光学系)を備えている。この変倍光学系7は、全長が短い光学系でありながら、広い撮影範囲を有し、収差が良好に補正され、高い分解能を有する。そのため、顕微鏡1では、広い範囲で諸収差が良好に補正され、明るく鮮明な標本像が得られる。
 なお、上記の例では、変倍光学系を撮像部に配置したが、これに限られない。例えば、同焦点距離が75mmの対物レンズでは、レンズを保持する枠部材に、本実施例の変倍光学系と撮像素子を配置できる。この場合、既存の対物レンズと同様に、本実施例の変倍光学系をレボルバー取り付けることができる。このようにすれば、既存の対物レンズと本実施形態の変倍光学系を切り替えて使用できる。
 また、上記変倍光学系を用いる光学機器として顕微鏡の例を用いて説明した。しかしながら、本発明の変倍光学系は、これに限られず、光学機器として、たとえば電子撮像装置(携帯カメラ用レンズユニット、ノートPC、携帯情報端末)へ適用できる。
 なお、撮像部4は変倍光学系7と撮像素子8を備えているので、撮像部4を撮像装置と見なすことができる。この場合、顕微鏡1は、撮像部4、ステージ3及び照明ユニット5(照明装置)を備えているので、撮像システムということができる。なお、図39では、ステージ3は、照準機構(照準ノブ6)を介して本体2に接続されているが、移動機構を介さずにステージ3を本体2に直接取り付けても良い。このようにすることで、本体2を介して、撮像部4とステージ3とを一体化することができる。
 図40は、本実施形態の光学機器である顕微鏡を示す図である。顕微鏡10は、正立型の顕微鏡である。顕微鏡1(図39)と同じ構成については同じ番号を付し、説明は省略する。
 撮像部4の内部には、変倍光学系11と撮像素子8が配置されている。変倍光学系11には、例えば、実施例1の変倍光学系が用いられている。
 顕微鏡1では、変倍光学系7側に照明ユニット5が設けられていた。これに対して、顕微鏡10では、ステージ3を挟んで変倍光学系11と反対側に照明ユニット12が設けられている。これにより、顕微鏡10では透過照明が行える。照明ユニット12は、光源部13とライトガイドファイバ14とで構成されている。
 光源部13は、光源として、例えばハロゲンランプ、水銀ランプ、キセノンランプ、LED、レーザを備える。また、光源部13はレンズを備える。光源から出射した照明光は、レンズを介してライトガイドファイバ14の入射端15に入射する。ライトガイドファイバ14に入射した照明光は、ライトガイドファイバ14内を伝達して出射端16から出射する。
 ライトガイドファイバ14の出射端16は、保持機構(不図示)によってステージ3に接続されている。ここで、ライトガイドファイバ14の出射端16は、ステージ3の下面に位置している。よって、出射端16から出射した照明光は、ステージ3の下側から変倍光学系11側に向かって標本に照射される。このようにして、顕微鏡10では透過照明が行われる。
 なお、ライトガイドファイバ14の保持はステージ3で行っているが、ステージ3以外の手段でライトガイドファイバ14を保持しても良い。また、ライトガイドファイバ14の出射端16をステージ3の上面(変倍光学系11側)に位置させても良い。このようにすることで、顕微鏡1と同様に、顕微鏡10において落射照明を行うことができる。
 標本からの透過光や蛍光は、変倍光学系11を通過して撮像素子8に入射する。撮像素子8の撮像面には、標本像(光学像)が形成される。標本像は撮像素子8によって光電変換され、これにより標本の画像が得られる。標本の画像は表示装置(不図示)に表示される。このようにして、観察者は、標本の画像を観察できる。
 顕微鏡10も、変倍光学系11(本実施形態の変倍光学系)を備えている。この変倍光学系11は、全長が短い光学系でありながら、広い撮影範囲を有し、収差が良好に補正され、高い分解能を有する。そのため、顕微鏡10では、広い範囲で諸収差が良好に補正され、明るく鮮明な標本像が得られる。なお、顕微鏡10は落射照明であっても構わない。また、顕微鏡10を構成する各部材の配置は、適宜設計変更可能である。
 図41は、本実施形態の光学機器である顕微鏡を示す図である。顕微鏡20は、倒立型の顕微鏡である。顕微鏡20は、本体21、ステージ22、撮像部4、変倍光学系23、撮像素子8、照準ノブ24、透過照明光源25、反射ミラー26、コンデンサレンズ27を備える。
 ここで、撮像部4の内部には、変倍光学系23と撮像素子8が配置されている。変倍光学系23には、例えば、実施例1の変倍光学系が用いられている。
 本体21には、ステージ22、撮像部4及び照準ノブ24が設けられている。ステージ22の上には、標本が載置される。撮像部4の光軸方向への移動は、照準ノブ24によって行なわれる。照準ノブ24の操作(回転)によって撮像部4を移動させ、これにより、標本に対するピント合わせができる。そのために、本体21内には移動機構(不図示)が設けられ、移動機構に撮像部4が保持されている。
 また、本体21には、透過照明光源25、反射ミラー26及びコンデンサレンズ27が設けられている。透過照明光源25、反射ミラー26及びコンデンサレンズ27は、ステージ22の上方に配置されている。透過照明光源25から出射した照明光は反射ミラー26で反射され、コンデンサレンズ27に入射する。コンデンサレンズ27は、ステージ22の上面に位置している。よって、コンデンサレンズ27から出射した照明光は、ステージ22の上側から変倍光学系23側に向かって標本に照射される。このようにして、顕微鏡20では透過照明が行われる。
 顕微鏡20も、変倍光学系23(本実施形態の変倍光学系)を備えている。この変倍光学系23は、全長が短い光学系でありながら、広い撮影範囲を有し、収差が良好に補正され、高い分解能を有する。そのため、顕微鏡1では、広い範囲で諸収差が良好に補正され、明るく鮮明な標本像が得られる。なお、顕微鏡20を構成する各部材の配置は、適宜設計変更可能である。
 図42は、本実施形態の光学機器である顕微鏡を示す図である。図26(a)は顕微鏡の全体構成を示す図、(b)は顕微鏡30を固定した状態を示す図である。
 顕微鏡30は、携帯型の顕微鏡である。顕微鏡30は、プローブ部31、コントロールボックス32、ライトガイドファイバ33、ケーブル34、撮像部4、変倍光学系35、撮像素子8、照明用導光体36、光源37を備える。
 撮像部4の内部には、変倍光学系35と撮像素子8が配置されている。変倍光学系35には、例えば、実施例1の変倍光学系が用いられている。
 プローブ部31とコントロールボックス32は、ライトガイドファイバ33とケーブル34により接続されている。コントロールボックス32は、光源37と処理部(不図示)とを有する。処理部は、プローブ部31からの映像信号を処理する。
 プローブ部31は、使用者が手に持つことができる大きさである。プローブ部31は、撮像部4と照明用導光体36とを有する。照明用導光体36は撮像部4の外周側に配置されている。照明用導光体36はライトガイドファイバ33と光学的に接続されている。光源37から出射した照明光はライトガイドファイバ33内を伝達して、照明用導光体36に入射する。照明光は照明用導光体36内を伝達して、プローブ部31から出射する。このようにして、顕微鏡30では落射照明が行われる。
 標本からの反射光や蛍光は、変倍光学系35を通過して撮像素子8に入射する。撮像素子8の撮像面には、標本像(光学像)が形成される。標本像は撮像素子8によって光電変換され、これにより標本の画像が得られる。標本の画像は表示装置(不図示)に表示される。このようにして、観察者は、標本の画像を観察できる。
 プローブ部31は、ライトガイドファイバ33とケーブル34によりコントロールボックス32に接続されている。そのため、プローブ部31の位置や向きを自由に設定することができる。この場合、プローブ部31の姿勢(位置や向き)の固定は、観察者の手で行うことになる。しかしながら、観察者の手による固定では、十分に安定しない場合がある。
 プローブ部31の姿勢(位置や向き)を安定させるためには、図26(b)に示すように架台38でプローブ部31を保持すれば良い。このようにすることで、プローブ部31の姿勢(位置や向き)を安定させることができる。
 なお、架台38には、照準ノブ39が設けられている。プローブ部31(撮像部4)の光軸方向への移動は、照準ノブ39によって行なわれる。照準ノブ39の操作(回転)によってプローブ部31を移動させ、これにより、標本に対するピント合わせができる。そのために、架台38内には移動機構(不図示)が設けられている。
 顕微鏡30も、変倍光学系35(本実施形態の変倍光学系)を備えている。この変倍光学系35は、全長が短い光学系でありながら、広い撮影範囲を有し、収差が良好に補正され、高い分解能を有する。そのため、顕微鏡30では、広い範囲で諸収差が良好に補正され、明るく鮮明な標本像が得られる。なお、顕微鏡30を構成する各部材の配置は、適宜設計変更可能である。
 なお、顕微鏡1、顕微鏡10、顕微鏡20、顕微鏡30の各々には、実施例1~19の変倍光学系のうちのどの変倍光学系でも用いることができる。
 このように、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。また、上記各実施例により示された形状枚数には必ずしも限定されない。また、各レンズ内又は各レンズ外に、上記各実施例に図示されていないレンズであって実質的に屈折力を有さないレンズを配置してもよい。
 また、本発明には、上述の発明の他に以下の発明も含まれる。
(付記項1)
 低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 前記第1レンズ群よりも像側に配置され、正の屈折力を有する第2レンズ群と、を少なくとも有し、
 変倍時に、第1レンズ群と第2レンズ群との間隔が変化し、
 以下の条件式(1)を満足することを特徴とする変倍光学系。
 0<1/βHG1<1   (1)
 ここで、
 βHG1は、高倍端での第1レンズ群の結像倍率、
である。
(付記項2)
 以下の条件式(2)を満足することを特徴とする付記項1に記載の変倍光学系。
 0<BFL/Y≦4.3   (2)
 ここで、
 BFLは、低倍端でのバックフォーカス、
 Yは、変倍光学系全系における最大像高、
である。
(付記項3)
 第2レンズ群よりも像側に、絞りが配置され、
 絞りよりも像側に、所定の正レンズ群が配置され、
 所定の正レンズ群は正の屈折力を有すると共に、低倍端に比べて高倍端での絞りとの間隔が小さくなるレンズ群であることを特徴とする付記項1又は2に記載の変倍光学系。
(付記項4)
 所定の正レンズ群は、2枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有することを特徴とする付記項3に記載の変倍光学系。
(付記項5)
 絞りよりも像側に、所定の正レンズ群が複数配置され、
 第1の所定の正レンズ群は、複数の所定の正レンズ群のうちで、最も物体側に配置され、
 以下の条件式(3)を満足することを特徴とする付記項3に記載の変倍光学系。
 0<ΔGpmax/ΔGpobj≦0.6   (3)
 ここで、
 ΔGpmaxは、所定の正レンズ群のうち何れか2つの所定の正レンズ群の光軸上の間隔の変化量のうち、最大となる変化量、
 ΔGpobjは、第1の所定の正レンズ群の光軸上の移動量のうち、最大となる移動量、
である。
 ここで、ΔGpmaxは、所定の正レンズ群が3つ以上のレンズ群から構成される場合、当該3つ以上のレンズ群から2つのレンズ群を選択する全ての組み合わせの中で、正レンズ群の光軸上の間隔の変化量のうち、最大となる変化量である。
(付記項6)
 以下の条件式(4)を満足することを特徴とする付記項1から5のいずれか一項に記載の変倍光学系。
 0.1≦fG1/fG2≦5   (4)
 ここで、
 fG1は、第1レンズ群の焦点距離、
 fG2は、第2レンズ群の焦点距離、
である。
(付記項7)
 低倍端から高倍端への変倍時に、絞りが像側から物体側に移動することを特徴とする付記項1から6のいずれか一項に記載の変倍光学系。
(付記項8)
 以下の条件式(5)を満足することを特徴とする付記項3に記載の変倍光学系。
 0.2≦fG1/fLGp≦10   (5)
 ここで、
 fG1は、第1レンズ群の焦点距離、
 fLGpは、低倍端での所定の正レンズ群の焦点距離、
である。
(付記項9)
 所定の正レンズを1つ以上有し、
 所定の正レンズに、高分散の硝材が用いられていることを特徴とする付記項1から8のいずれか一項に記載の変倍光学系。
(付記項10)
 以下の条件式(6)を満足することを特徴とする付記項3から5、9のいずれか一項に記載の変倍光学系。
 -1≦DHGpop/DHGpoi≦0.65   (6)
 ここで、
 DHGpopは、高倍端での所定の正レンズ群における最も物体側のレンズ面から物体側主面までの光軸上の距離、
 DHGpoiは、高倍端での所定の正レンズ群における最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離、
である。
(付記項11)
 絞りと、所定の負レンズ群と、を有し、
 所定の負レンズ群は負の屈折力を有すると共に、絞りと隣り合うように配置され、
 以下の条件式(7)を満足することを特徴とする付記項1から10のいずれか一項に記載の変倍光学系。
 |DsGno/φHs|≦1   (7)
 ここで、
 DsGnoは、絞りから所定の負レンズ群における最も絞り側のレンズ面までの光軸上の距離、
 φHsは、高倍端での絞りの直径、
である。
(付記項12)
 所定の負レンズ群は、1枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有し、
 正レンズに、負レンズよりも高分散の硝材を用いていることを特徴とする付記項11に記載の変倍光学系。
(付記項13)
 正レンズと負レンズとが接合されていることを特徴とする付記項12に記載の変倍光学系。
(付記項14)
 低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 第1レンズ群よりも像側に配置され、負の屈折力を有する第2のレンズ群と、を少なくとも有し、
 第2レンズ群よりも物体側に配置された絞りを有し、
 変倍時に、第2レンズ群は移動して、第1レンズ群と第2レンズ群との間隔が変化し、
 第2レンズ群よりも像側に、第3レンズ群が配置され、
 以下の条件式(8)を満足することを特徴とする変倍光学系。
 0.15≦ΔG2max/DHIGi≦2   (8)
 ここで、
 ΔG2maxは、第2レンズ群の光軸上の移動量のうち、最大となる移動量、
 DHIGiは、高倍端での第3レンズ群の最も物体側のレンズ面から像面までの光軸上の距離、
である。
(付記項15)
 以下の条件式(2)を満足することを特徴とする付記項14に記載の変倍光学系。
 0<BFL/Y≦4.3   (2)
 ここで、
 BFLは、低倍端でのバックフォーカス、
 Yは、変倍光学系全系における最大像高、
である。
(付記項16)
 所定の正レンズを1つ以上有し、
 所定の正レンズに高分散の硝材が用いていることを特徴とする付記項14又は15に記載の変倍光学系。
(付記項17)
 以下の条件式(4-1)を満足することを特徴とする付記項14から16のいずれか一項に記載の変倍光学系。
 -2.5≦fG1/fG2≦-0.2   (4-1)
 ここで、
 fG1は、第1レンズ群の焦点距離、
 fG2は、第2レンズ群の焦点距離、
である。
(付記項18)
 第3レンズ群は正の屈折力を有すると共に、第2レンズ群よりも像側に、第2レンズ群に隣り合うように配置され、
 変倍時、第2レンズ群と第3レンズ群との間隔が変化し、
 以下の条件式(9)を満足することを特徴とする付記項14から17のいずれか一項に記載の変倍光学系。
 -7.5≦fG3/fG2≦-1   (9)
 ここで、
 fG2は、第2レンズ群の焦点距離、
 fG3は、第3レンズ群の焦点距離、
である。
(付記項19)
 第2レンズ群よりも像側に、正の屈折力を有する第3レンズ群が配置され、
 第3レンズ群よりも像側に、1つ以上のレンズ群を有し、
 以下の条件式(10)を満足することを特徴とする付記項14から18のいずれか一項に記載の変倍光学系。
 0.07≦fHG1G3/fHGI≦1   (10)
 ここで、
 fHG1G3は、高倍端での第1レンズ群と、第2レンズ群と、第3レンズ群との合成焦点距離、
 fHGIは、高倍端での第3レンズ群よりも像側に位置するレンズ群の合成焦点距離、
である。
(付記項20)
 第2レンズ群は、1枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有し、
 正レンズに、負レンズよりも高分散の硝材を用いていることを特徴とする付記項14から19のいずれか一項に記載の変倍光学系。
(付記項21)
 第2レンズ群は、2枚以上の負レンズを有することを特徴とする付記項14から20のいずれか一項に記載の変倍光学系。
(付記項22)
 第1レンズ群は、2組以上の接合レンズを有することを特徴とする付記項14から21のいずれか一項に記載の変倍光学系。
(付記項23)
 第3レンズ群よりも像側に、1枚以上の正レンズと、1枚以上の負レンズと、を有し、
 正レンズと負レンズのうち、最も物体側に配置された物体側正レンズと、最も像側に配置された像側負レンズが、以下の条件式(11)を満足することを特徴とする付記項18から22のいずれか一項に記載の変倍光学系。
 0.5≦DHpn/DHpi≦0.99   (11)
 DHpnは、高倍端での物体側正レンズの物体側面から像側負レンズの像側面までの光軸上の距離、
 DHpiは、高倍端での物体側正レンズの物体側面から像面までの光軸上の距離、
である。
(付記項24)
 低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、
 変倍光学系は、変倍時に共役長が変化する光学系であって、
 変倍時に移動するレンズ群を有し、
 以下の条件式(12)を満足することを特徴とする変倍光学系。
 0.01≦|Δiomax/Δmax|≦5   (12)
 ここで、
 Δiomaxは、共役長の変化量のうち、最大となる変化量、
 Δmaxは、移動するレンズ群の移動量のうち、最大となる移動量、
である。
(付記項25)
 第1レンズ群は、最も物体側に配置された第1物体側レンズを有し、
 以下の条件式(13)を満足することを特徴とする付記項24に記載の変倍光学系。
 |Δwd/Dwdmax|≦0.5   (13)
 ここで、
 Δwdは、物体から第1物体側レンズの物体側面までの距離の変化量のうち、最大となる変化量、
 Dwdmaxは、物体から第1物体側レンズの物体側面までの距離のうち、最大となる距離、
である。
(付記項26)
 第1レンズ群から物体までの距離が一定になるように、第1レンズ群が移動することを特徴とする付記項24又は25に記載の変倍光学系。
(付記項27)
 撮像素子と、変倍光学系と、を有する撮像装置であって、
 変倍光学系によって、撮像素子上に光学像が形成され、
 変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、
 最も物体側に配置され、正の屈折力を有する第1レンズ群と、
 第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、
 変倍時に、第1レンズ群と第2レンズ群との間隔が可変であり、
 以下の条件式(14)、(15)を満足することを特徴とする撮像装置。
 3000≦2×Y/p   (14)
 0.08≦NAH   (15)
 ここで、
 Yは、変倍光学系全系における最大像高、
 pは、撮像素子における画素ピッチ、
 NAHは、高倍端での変倍光学系の物体側の開口数、
である。
(付記項28)
 以下の条件式(16)を満足することを特徴とする付記項27に記載の撮像装置。
 1.0<εH90/p<10   (16)
 ここで、
 εH90は、変倍光学系の高倍端において、波長e線の点像を撮像素子の略中心付近に形成したときの、ベスト像面での点像強度分布の90%エンサークルドエネルギーの直径、
 pは、撮像素子における画素ピッチ、
である。
(付記項29)
 以下の条件式(17)を満足することを特徴とする付記項27又は28に記載の撮像装置。
 0.06<NA’H   (17)
 ここで、
 NA’Hは、高倍端での変倍光学系の像側の開口数、
である。
(付記項30)
 以下の条件式(18)を満足することを特徴とする付記項27から29の何れか一項に記載の撮像装置。
 -7<LTL/p<7   (18)
 ここで、
 LTLは、変倍光学系の低倍端における重心間距離であって、該重心間距離は、最大像高の70%の位置での、C線での点像強度分布の重心とd線での点像強度分布の重心との間の距離、
 pは、撮像素子における画素ピッチ、
である。
(付記項31)
 以下の条件式(19)を満足することを特徴とする付記項27から30の何れか一項に記載の撮像装置。
 -50<ATH/p<50   (19)
 ここで、
 ATHは、撮像素子の略中心付近における、C線でのベストピント位置とd線でのベストピント位置との差、
 pは、撮像素子における画素ピッチ、
である。
(付記項32)
 以下の条件式(20)、(21)を満足することを特徴とする付記項27から31の何れか一項に記載の撮像装置。
 -7°<CRALobj<7°   (20)
 -7°<CRAHobj<7°   (21)
 ここで、
 CRALobjは、低倍端での物体側主光線と光軸とのなす角度、
 CRAHobjは、高倍端での物体側主光線と光軸とのなす角度、
 物体側主光線は、第1レンズ群に入射する主光線のうち、最大像高の90%の位置に到達する主光線、
である。
 角度の正負は、光軸から時計回りの方向に測った場合の角度を負、反時計回りの方向に測ったときの角度を正とする。
(付記項33)
 光学像の画像のコントラストを検知しながら、自動的にフォーカスすることを特徴とする付記項27から32のいずれか一項に記載の撮像装置。
(付記項34)
 撮像素子を光軸方向に動かすことによってフォーカスすることを特徴とする付記項27から33のいずれか一項に記載の撮像装置。
(付記項35)
 付記項27から34の何れか一項に記載の撮像装置において、
 光学系として、付記項1から26のいずれか一項に記載の変倍光学系が用いられていることを特徴とする撮像装置。
(付記項36)
 以下の条件式(12)を満足することを特徴とする付記項1から13の何れか一項に記載の変倍光学系。
 0.01≦|Δiomax/Δmax|≦5   (12)
 ここで、
 Δiomaxは、共役長の変化量のうち、最大となる変化量、
 Δmaxは、移動するレンズ群の移動量のうち、最大となる移動量、
である。
(付記項37)
 第1レンズ群は、最も物体側に配置された第1物体側レンズを有し、
 以下の条件式(13)を満足することを特徴とする付記項36に記載の変倍光学系。
 |Δwd/Dwdmax|≦0.5   (13)
 ここで、
 Δwdは、物体から第1物体側レンズの物体側面までの距離の変化量のうち、最大となる変化量、
 Dwdmaxは、物体から第1物体側レンズの物体側面までの距離のうち、最大となる距離、
である。
(付記項38)
 第1レンズ群から物体までの距離が一定になるように、第1レンズ群が移動することを特徴とする付記項36又は37に記載の変倍光学系。
(付記項39)
 以下の条件式(12)を満足することを特徴とする付記項14から23の何れか一項に記載の変倍光学系。
 0.01≦|Δiomax/Δmax|≦5   (12)
 ここで、
 Δiomaxは、共役長の変化量のうち、最大となる変化量、
 Δmaxは、移動するレンズ群の移動量のうち、最大となる移動量、
である。
(付記項40)
 第1レンズ群は、最も物体側に配置された第1物体側レンズを有し、
 以下の条件式(13)を満足することを特徴とする付記項39に記載の変倍光学系。
 |Δwd/Dwdmax|≦0.5   (13)
 ここで、
 Δwdは、物体から第1物体側レンズの物体側面までの距離の変化量のうち、最大となる変化量、
 Dwdmaxは、物体から第1物体側レンズの物体側面までの距離のうち、最大となる距離、
である。
(付記項41)
 第1レンズ群から物体までの距離が一定になるように、第1レンズ群が移動することを特徴とする付記項39又は40に記載の変倍光学系。
 以上のように、本発明は、光学系の全長が短く、従来の顕微鏡と同等の観察範囲、あるいはそれ以上の観察範囲において、軸上収差と軸外収差が良好に補正された変倍光学系及びそれを備えた撮像装置、撮像システムに適している。
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 G5 第5レンズ群
 G6 第6レンズ群
 S 絞り(開口絞り)
 C カバーガラス
 I 撮像面(像面)
 L1~L27 レンズ
 1、10、20、30、40 顕微鏡(光学機器)
 2、21、38、41 本体
 3、22、42 ステージ
 4 撮像部
 5、12、45 照明ユニット
 5a 照明素子
 6、24、39、44 照準ノブ
 7、11、23、35、43 変倍光学系
 8 撮像素子
 13、46 光源部
 14 ライトガイドファイバ
 15 入射端
 16 出射端
 25 透過照明光源
 26 反射ミラー
 27 コンデンサレンズ
 31 プローブ部
 32 コントロールボックス
 33 ライトガイドファイバ
 34 ケーブル
 36 照明用導光体
 37 光源
 38 架台
 47 接続部
 48 ビームスプリッタ
 49 第1の光路
 50 第2の光路

Claims (37)

  1.  低倍端から高倍端までの間で倍率が変化する光学系であって、
     最も物体側に配置され、正の屈折力を有する第1レンズ群と、
     前記第1レンズ群よりも像側に配置され、正の屈折力を有する第2レンズ群と、を少なくとも有し、
     変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、
     以下の条件式(1)を満足することを特徴とする変倍光学系。
     0<1/βHG1<1   (1)
     ここで、
     βHG1は、高倍端での前記第1レンズ群の結像倍率、
    である。
  2.  以下の条件式(2)を満足することを特徴とする請求項1に記載の変倍光学系。
     0<BFL/Y≦4.3   (2)
     ここで、
     BFLは、低倍端でのバックフォーカス、
     Yは、前記変倍光学系全系における最大像高、
    である。
  3.  前記第2レンズ群よりも像側に、絞りが配置され、
     前記絞りよりも像側に、所定の正レンズ群が配置され、
     前記所定の正レンズ群は正の屈折力を有すると共に、低倍端に比べて高倍端での前記絞りとの間隔が小さくなるレンズ群であることを特徴とする請求項1又は2に記載の変倍光学系。
  4.  前記所定の正レンズ群は、2枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有することを特徴とする請求項3に記載の変倍光学系。
  5.  絞りよりも像側に、前記所定の正レンズ群が複数配置され、
     第1の所定の正レンズ群は、複数の前記所定の正レンズ群のうちで、最も物体側に配置され、
     以下の条件式(3)を満足することを特徴とする請求項3に記載の変倍光学系。
     0<ΔGpmax/ΔGpobj≦0.6   (3)
     ここで、
     ΔGpmaxは、前記所定の正レンズ群のうち何れか2つの前記所定の正レンズ群の光軸上の間隔の変化量のうち、最大となる変化量、
     ΔGpobjは、前記第1の所定の正レンズ群の光軸上の移動量のうち、最大となる移動量、
    である。
     ここで、ΔGpmaxは、所定の正レンズ群が3つ以上のレンズ群から構成される場合、当該3つ以上のレンズ群から2つのレンズ群を選択する全ての組み合わせの中で、正レンズ群の光軸上の間隔の変化量のうち、最大となる変化量である。
  6.  以下の条件式(4)を満足することを特徴とする請求項1から5のいずれか一項に記載の変倍光学系。
     0.1≦fG1/fG2≦5   (4)
     ここで、
     fG1は、前記第1レンズ群の焦点距離、
     fG2は、前記第2レンズ群の焦点距離、
    である。
  7.  低倍端から高倍端への変倍時に、絞りが像側から物体側に移動することを特徴とする請求項1から6のいずれか一項に記載の変倍光学系。
  8.  以下の条件式(5)を満足することを特徴とする請求項3に記載の変倍光学系。
     0.2≦fG1/fLGp≦10   (5)
     ここで、
     fG1は、前記第1レンズ群の焦点距離、
     fLGpは、低倍端での前記所定の正レンズ群の焦点距離、
    である。
  9.  所定の正レンズを1つ以上有し、
     前記所定の正レンズに、高分散の硝材が用いられていることを特徴とする請求項1から8のいずれか一項に記載の変倍光学系。
  10.  以下の条件式(6)を満足することを特徴とする請求項3から5、9のいずれか一項に記載の変倍光学系。
     -1≦DHGpop/DHGpoi≦0.65   (6)
     ここで、
     DHGpopは、高倍端での前記所定の正レンズ群における最も物体側のレンズ面から物体側主面までの光軸上の距離、
     DHGpoiは、高倍端での前記所定の正レンズ群における最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離、
    である。
  11.  絞りと、所定の負レンズ群と、を有し、
     前記所定の負レンズ群は負の屈折力を有すると共に、前記絞りと隣り合うように配置され、
     以下の条件式(7)を満足することを特徴とする請求項1から10のいずれか一項に記載の変倍光学系。
     |DsGno/φHs|≦1   (7)
     ここで、
     DsGnoは、前記絞りから前記所定の負レンズ群における最も絞り側のレンズ面までの光軸上の距離、
     φHsは、高倍端での前記絞りの直径、
    である。
  12.  前記所定の負レンズ群は、1枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有し、
     前記正レンズに、前記負レンズよりも高分散の硝材を用いていることを特徴とする請求項11に記載の変倍光学系。
  13.  前記正レンズと前記負レンズとが接合されていることを特徴とする請求項12に記載の変倍光学系。
  14.  低倍端から高倍端までの間で倍率が変化する光学系であって、
     最も物体側に配置され、正の屈折力を有する第1レンズ群と、
     前記第1レンズ群よりも像側に配置され、負の屈折力を有する第2のレンズ群と、を少なくとも有し、
     前記第2レンズ群よりも物体側に配置された絞りを有し、
     変倍時に、前記第2レンズ群は移動して、前記第1レンズ群と前記第2レンズ群との間隔が変化し、
     前記第2レンズ群よりも像側に、第3レンズ群が配置され、
     以下の条件式(8)を満足することを特徴とする変倍光学系。
     0.15≦ΔG2max/DHIGi≦2   (8)
     ここで、
     ΔG2maxは、前記第2レンズ群の光軸上の移動量のうち、最大となる移動量、
     DHIGiは、高倍端での前記第3レンズ群の最も物体側のレンズ面から像面までの光軸上の距離、
    である。
  15.  以下の条件式(2)を満足することを特徴とする請求項14に記載の変倍光学系。
     0<BFL/Y≦4.3   (2)
     ここで、
     BFLは、低倍端でのバックフォーカス、
     Yは、前記変倍光学系全系における最大像高、
    である。
  16.  所定の正レンズを1つ以上有し、
     前記所定の正レンズに高分散の硝材が用いていることを特徴とする請求項14又は15に記載の変倍光学系。
  17.  以下の条件式(4-1)を満足することを特徴とする請求項14から16のいずれか一項に記載の変倍光学系。
     -2.5≦fG1/fG2≦-0.2   (4-1)
     ここで、
     fG1は、前記第1レンズ群の焦点距離、
     fG2は、前記第2レンズ群の焦点距離、
    である。
  18.  前記第3レンズ群は正の屈折力を有すると共に、前記第2レンズ群よりも像側に、前記第2レンズ群に隣り合うように配置され、
     変倍時、前記第2レンズ群と前記第3レンズ群との間隔が変化し、
     以下の条件式(9)を満足することを特徴とする請求項14から17のいずれか一項に記載の変倍光学系。
     -7.5≦fG3/fG2≦-1   (9)
     ここで、
     fG2は、前記第2レンズ群の焦点距離、
     fG3は、前記第3レンズ群の焦点距離、
    である。
  19.  前記第2レンズ群よりも像側に、正の屈折力を有する第3レンズ群が配置され、
     前記第3レンズ群よりも像側に、1つ以上のレンズ群を有し、
     以下の条件式(10)を満足することを特徴とする請求項14から18のいずれか一項に記載の変倍光学系。
     0.07≦fHG1G3/fHGI≦1   (10)
     ここで、
     fHG1G3は、高倍端での前記第1レンズ群と、前記第2レンズ群と、前記第3レンズ群との合成焦点距離、
     fHGIは、高倍端での第3レンズ群よりも像側に位置するレンズ群の合成焦点距離、
    である。
  20.  前記第2レンズ群は、1枚以上の正レンズと、1枚以上の負レンズと、を少なくとも有し、
     前記正レンズに、前記負レンズよりも高分散の硝材を用いていることを特徴とする請求項14から19のいずれか一項に記載の変倍光学系。
  21.  前記第2レンズ群は、2枚以上の負レンズを有することを特徴とする請求項14から20のいずれか一項に記載の変倍光学系。
  22.  前記第1レンズ群は、2組以上の接合レンズを有することを特徴とする請求項14から21のいずれか一項に記載の変倍光学系。
  23.  前記第3レンズ群よりも像側に、1枚以上の正レンズと、1枚以上の負レンズと、を有し、
     前記正レンズと前記負レンズのうち、最も物体側に配置された物体側正レンズと、最も像側に配置された像側負レンズが、以下の条件式(11)を満足することを特徴とする請求項18から22のいずれか一項に記載の変倍光学系。
     0.5≦DHpn/DHpi≦0.99   (11)
     DHpnは、高倍端での前記物体側正レンズの物体側面から前記像側負レンズの像側面までの光軸上の距離、
     DHpiは、高倍端での前記物体側正レンズの物体側面から像面までの光軸上の距離、
    である。
  24.  低倍端から高倍端までの間で倍率が変化する光学系であって、
     最も物体側に配置され、正の屈折力を有する第1レンズ群と、
     前記第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、
     前記変倍光学系は、変倍時に共役長が変化する光学系であって、
     変倍時に移動するレンズ群を有し、
     以下の条件式(12)を満足することを特徴とする変倍光学系。
     0.01≦|Δiomax/Δmax|≦5   (12)
     ここで、
     Δiomaxは、共役長の変化量のうち、最大となる変化量、
     Δmaxは、前記移動するレンズ群の移動量のうち、最大となる移動量、
    である。
  25.  前記第1レンズ群は、最も物体側に配置された第1物体側レンズを有し、
     以下の条件式(13)を満足することを特徴とする請求項24に記載の変倍光学系。
     |Δwd/Dwdmax|≦0.5   (13)
     ここで、
     Δwdは、物体から前記第1物体側レンズの物体側面までの距離の変化量のうち、最大となる変化量、
     Dwdmaxは、物体から前記第1物体側レンズの物体側面までの距離のうち、最大となる距離、
    である。
  26.  前記第1レンズ群から物体までの距離が一定になるように、前記第1レンズ群が移動することを特徴とする請求項24又は25に記載の変倍光学系。
  27.  撮像素子と、変倍光学系と、を有する撮像装置であって、
     前記変倍光学系によって、前記撮像素子上に光学像が形成され、
     前記変倍光学系は、低倍端から高倍端までの間で倍率が変化する光学系であって、
     最も物体側に配置され、正の屈折力を有する第1レンズ群と、
     前記第1レンズ群よりも像側に配置された第2レンズ群と、を少なくとも有し、
     変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が可変であり、
     以下の条件式(14)、(15)を満足することを特徴とする撮像装置。
     3000≦2×Y/p   (14)
     0.08≦NAH   (15)
     ここで、
     Yは、前記変倍光学系全系における最大像高、
     pは、前記撮像素子における画素ピッチ、
     NAHは、高倍端での前記変倍光学系の物体側の開口数、
    である。
  28.  以下の条件式(16)を満足することを特徴とする請求項27に記載の撮像装置。
     1.0<εH90/p<10   (16)
     ここで、
     εH90は、前記変倍光学系の高倍端において、波長e線の点像を前記撮像素子の略中心付近に形成したときの、ベスト像面での点像強度分布の90%エンサークルドエネルギーの直径、
     pは、前記撮像素子における画素ピッチ、
    である。
  29.  以下の条件式(17)を満足することを特徴とする請求項27又は28に記載の撮像装置。
     0.06<NA’H   (17)
     ここで、
     NA’Hは、高倍端での前記変倍光学系の像側の開口数、
    である。
  30.  以下の条件式(18)を満足することを特徴とする請求項27から29の何れか一項に記載の撮像装置。
     -7<LTL/p<7   (18)
     ここで、
     LTLは、前記変倍光学系の低倍端における重心間距離であって、該重心間距離は、最大像高の70%の位置での、C線での点像強度分布の重心とd線での点像強度分布の重心との間の距離、
     pは、前記撮像素子における画素ピッチ、
    である。
  31.  以下の条件式(19)を満足することを特徴とする請求項27から30の何れか一項に記載の撮像装置。
     -50<ATH/p<50   (19)
     ここで、
     ATHは、前記撮像素子の略中心付近における、C線でのベストピント位置とd線でのベストピント位置との差、
     pは、前記撮像素子における画素ピッチ、
    である。
  32.  以下の条件式(20)、(21)を満足することを特徴とする請求項27から31の何れか一項に記載の撮像装置。
     -7°<CRALobj<7°   (20)
     -7°<CRAHobj<7°   (21)
     ここで、
     CRALobjは、低倍端での物体側主光線と光軸とのなす角度、
     CRAHobjは、高倍端での物体側主光線と光軸とのなす角度、
     前記物体側主光線は、前記第1レンズ群に入射する主光線のうち、最大像高の90%の位置に到達する主光線、
    である。
     角度の正負は、光軸から時計回りの方向に測った場合の角度を負、反時計回りの方向に測ったときの角度を正とする。
  33.  前記光学像の画像のコントラストを検知しながら、自動的にフォーカスすることを特徴とする請求項27から32のいずれか一項に記載の撮像装置。
  34.  前記撮像素子を光軸方向に動かすことによってフォーカスすることを特徴とする請求項27から33のいずれか一項に記載の撮像装置。
  35.  請求項1から26のいずれか一項に記載の変倍光学系と、撮像素子と、を有する撮像装置。
  36.  請求項27から35のいずれか一項に記載の撮像装置と、
     観察対象となる物体を保持するステージと、
     物体を照明する光源と、を備えたことを特徴とする撮像システム。
  37.  前記ステージを光軸方向に動かすことによってフォーカスすることを特徴とする請求項36に記載の撮像システム。
PCT/JP2014/077673 2013-12-11 2014-10-17 変倍光学系及びそれを備えた撮像装置、撮像システム WO2015087619A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015552357A JP6560984B2 (ja) 2013-12-11 2014-10-17 変倍光学系及びそれを備えた撮像装置、撮像システム
US15/177,050 US10274708B2 (en) 2013-12-11 2016-06-08 Variable magnification optical system, and image pickup apparatus and image pickup optical system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013256384 2013-12-11
JP2013-256384 2013-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/177,050 Continuation US10274708B2 (en) 2013-12-11 2016-06-08 Variable magnification optical system, and image pickup apparatus and image pickup optical system using the same

Publications (1)

Publication Number Publication Date
WO2015087619A1 true WO2015087619A1 (ja) 2015-06-18

Family

ID=53370937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077673 WO2015087619A1 (ja) 2013-12-11 2014-10-17 変倍光学系及びそれを備えた撮像装置、撮像システム

Country Status (3)

Country Link
US (1) US10274708B2 (ja)
JP (1) JP6560984B2 (ja)
WO (1) WO2015087619A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111260A (ja) * 2015-12-15 2017-06-22 オリンパス株式会社 顕微鏡対物レンズ
WO2018185955A1 (ja) * 2017-04-04 2018-10-11 株式会社タムロン 変倍光学系及び撮像装置
US20180359404A1 (en) * 2017-06-07 2018-12-13 Olympus Corporation Observation device
CN109061861A (zh) * 2018-08-27 2018-12-21 中国科学院苏州生物医学工程技术研究所 一种无超半球的显微镜物镜
CN109716202A (zh) * 2016-09-18 2019-05-03 莱卡照相机股份公司 用于自动对焦应用的、焦距固定和结构长度恒定的镜头
TWI767395B (zh) * 2020-11-04 2022-06-11 財團法人國家實驗研究院 光學取像透鏡組合及包含其之電子取像裝置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297057B2 (ja) * 2013-11-18 2018-03-20 オリンパス株式会社 撮像装置及び撮像システム
WO2017145265A1 (ja) * 2016-02-23 2017-08-31 Hoya株式会社 内視鏡用変倍光学系及び内視鏡
JP6649287B2 (ja) * 2017-01-05 2020-02-19 富士フイルム株式会社 ズームレンズおよび撮像装置
CN109856758B (zh) * 2017-11-30 2021-08-24 信泰光学(深圳)有限公司 成像镜头
CN113900227B (zh) * 2021-10-09 2022-07-05 中国科学院苏州生物医学工程技术研究所 一种大视场高分辨宽波段的物镜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282227A (en) * 1975-12-27 1977-07-09 Minolta Camera Co Ltd Automatic diaphragm stop adaptor
JPS5713849B1 (ja) * 1969-09-08 1982-03-19
JPH0584918U (ja) * 1992-04-21 1993-11-16 大日本スクリーン製造株式会社 略テレセントリックなズームレンズ
JPH08210987A (ja) * 1995-02-02 1996-08-20 Olympus Optical Co Ltd 欠陥検出用顕微鏡装置
JPH09101458A (ja) * 1995-10-06 1997-04-15 Minolta Co Ltd ズームレンズ
JP2000275516A (ja) * 1999-03-25 2000-10-06 Tochigi Nikon Corp 撮像レンズ
JP2004264714A (ja) * 2003-03-04 2004-09-24 Olympus Corp 撮像光学系及び撮像光学系を用いた光学装置
JP2007093974A (ja) * 2005-09-28 2007-04-12 Nikon Corp ズームレンズ
JP2011118159A (ja) * 2009-12-03 2011-06-16 Olympus Corp 顕微鏡用ズームレンズ
JP2011128371A (ja) * 2009-12-17 2011-06-30 Samsung Electronics Co Ltd ズームレンズ及び撮像装置
JP2011191743A (ja) * 2010-02-16 2011-09-29 Canon Inc 光学系および光学機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713849A (en) 1980-06-30 1982-01-23 Nec Corp Automatic correction system for optical position of solid image pickup element
JP3018642B2 (ja) 1991-09-27 2000-03-13 富士通株式会社 インク吸引キャップ
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
SE516092C2 (sv) 1995-01-25 2001-11-19 Valeo Engine Cooling Ab Värmeväxlartank för montering i en oljekylare, förfarande för framställning av en sådantank, samt värmeväxlare
JP4576402B2 (ja) 2000-11-08 2010-11-10 オリンパス株式会社 顕微鏡ズーム対物レンズ
JP4274764B2 (ja) * 2002-09-02 2009-06-10 オリンパス株式会社 ズームレンズ及びそれを用いたカメラ
US8385002B2 (en) 2009-12-17 2013-02-26 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713849B1 (ja) * 1969-09-08 1982-03-19
JPS5282227A (en) * 1975-12-27 1977-07-09 Minolta Camera Co Ltd Automatic diaphragm stop adaptor
JPH0584918U (ja) * 1992-04-21 1993-11-16 大日本スクリーン製造株式会社 略テレセントリックなズームレンズ
JPH08210987A (ja) * 1995-02-02 1996-08-20 Olympus Optical Co Ltd 欠陥検出用顕微鏡装置
JPH09101458A (ja) * 1995-10-06 1997-04-15 Minolta Co Ltd ズームレンズ
JP2000275516A (ja) * 1999-03-25 2000-10-06 Tochigi Nikon Corp 撮像レンズ
JP2004264714A (ja) * 2003-03-04 2004-09-24 Olympus Corp 撮像光学系及び撮像光学系を用いた光学装置
JP2007093974A (ja) * 2005-09-28 2007-04-12 Nikon Corp ズームレンズ
JP2011118159A (ja) * 2009-12-03 2011-06-16 Olympus Corp 顕微鏡用ズームレンズ
JP2011128371A (ja) * 2009-12-17 2011-06-30 Samsung Electronics Co Ltd ズームレンズ及び撮像装置
JP2011191743A (ja) * 2010-02-16 2011-09-29 Canon Inc 光学系および光学機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111260A (ja) * 2015-12-15 2017-06-22 オリンパス株式会社 顕微鏡対物レンズ
CN109716202A (zh) * 2016-09-18 2019-05-03 莱卡照相机股份公司 用于自动对焦应用的、焦距固定和结构长度恒定的镜头
CN109716202B (zh) * 2016-09-18 2021-06-22 莱卡照相机股份公司 用于自动对焦应用的、焦距固定和结构长度恒定的镜头
WO2018185955A1 (ja) * 2017-04-04 2018-10-11 株式会社タムロン 変倍光学系及び撮像装置
US11229349B2 (en) 2017-04-04 2022-01-25 Tamron Co., Ltd. Variable-magnification optical system and imaging apparatus
US20180359404A1 (en) * 2017-06-07 2018-12-13 Olympus Corporation Observation device
US10897580B2 (en) * 2017-06-07 2021-01-19 Olympus Corporation Observation device that controls numerical aperture in accordance with specified observation scope
CN109061861A (zh) * 2018-08-27 2018-12-21 中国科学院苏州生物医学工程技术研究所 一种无超半球的显微镜物镜
CN109061861B (zh) * 2018-08-27 2020-11-13 中国科学院苏州生物医学工程技术研究所 一种无超半球的显微镜物镜
TWI767395B (zh) * 2020-11-04 2022-06-11 財團法人國家實驗研究院 光學取像透鏡組合及包含其之電子取像裝置

Also Published As

Publication number Publication date
US10274708B2 (en) 2019-04-30
JP6560984B2 (ja) 2019-08-14
JPWO2015087619A1 (ja) 2017-03-16
US20160282592A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6560984B2 (ja) 変倍光学系及びそれを備えた撮像装置、撮像システム
JP6297057B2 (ja) 撮像装置及び撮像システム
JP5646278B2 (ja) 顕微鏡アダプタユニット
JP2017078763A (ja) ズームレンズ及びそれを有する撮像装置
WO2012141023A1 (ja) ズームレンズ、撮像装置、ズームレンズの製造方法
JP6006014B2 (ja) 顕微鏡、顕微鏡システム及び画像合成方法
JP6418888B2 (ja) ズームレンズ及びそれを有する光学機器
EP2610662B1 (en) Microscope optical assembly and microscope system
JP5465018B2 (ja) ズームレンズ及びそれを有する光学機器
JP2007156078A (ja) ズームレンズ系
JP3713250B2 (ja) 接眼変倍光学系
JP6532451B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2019124796A (ja) 結像光学系、画像投射装置およびカメラシステム
JP2017181720A (ja) ズームレンズ及びそれを有する撮像装置
JP2015094868A (ja) ズームレンズ及びそれを有する撮像装置
WO2011102091A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP4862368B2 (ja) ズーム顕微鏡
WO2011070943A1 (ja) 顕微鏡用ズームレンズ、顕微鏡
JP6503383B2 (ja) ズーム撮像装置
US11327289B2 (en) Observation telescope
JP2009205063A (ja) 顕微鏡用対物レンズ
JP7178554B2 (ja) ズームレンズ系とそれを備える撮像装置およびカメラシステム
JP2010019945A (ja) ズームレンズ、これを有する光学機器及び変倍方法
JP2013125126A (ja) 有限系ズームレンズ及びこれを備える光学機器
JP2017161848A (ja) 光学系、光学機器および光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868754

Country of ref document: EP

Kind code of ref document: A1