WO2015083047A1 - Procede et installation de traitement thermique en continu d'une bande d'acier - Google Patents

Procede et installation de traitement thermique en continu d'une bande d'acier Download PDF

Info

Publication number
WO2015083047A1
WO2015083047A1 PCT/IB2014/066380 IB2014066380W WO2015083047A1 WO 2015083047 A1 WO2015083047 A1 WO 2015083047A1 IB 2014066380 W IB2014066380 W IB 2014066380W WO 2015083047 A1 WO2015083047 A1 WO 2015083047A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
cooling
liquid
oxides
fluid
Prior art date
Application number
PCT/IB2014/066380
Other languages
English (en)
Inventor
Alain GENAUD
Original Assignee
Fives Stein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Stein filed Critical Fives Stein
Priority to US15/101,137 priority Critical patent/US10041140B2/en
Priority to EP14815057.6A priority patent/EP3077554B1/fr
Priority to PL14815057T priority patent/PL3077554T3/pl
Priority to CN201480066167.6A priority patent/CN105793446B/zh
Priority to KR1020167017915A priority patent/KR102317928B1/ko
Priority to ES14815057T priority patent/ES2764095T3/es
Publication of WO2015083047A1 publication Critical patent/WO2015083047A1/fr
Priority to US16/027,980 priority patent/US11193181B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/68Furnace coilers; Hot coilers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/088Iron or steel solutions containing organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/023Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/027Associated apparatus, e.g. for pretreating or after-treating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/027Associated apparatus, e.g. for pretreating or after-treating
    • C23G3/028Associated apparatus, e.g. for pretreating or after-treating for thermal or mechanical pretreatment

Definitions

  • the invention relates to annealing furnaces on continuous heat treatment lines for metal strips, mainly steel sheets, with annealing cycles implementing cooling slopes.
  • This process is particularly suitable for dip galvanizing lines or for combined annealing and dip galvanizing lines.
  • the method and the corresponding installation according to the invention make it possible to carry out heat treatment cycles comprising rapid wet cooling, capable of producing new steels, without the need to stripping the strip after heat treatment.
  • the current lines of continuous annealing of metal strips are composed of successive chambers in which the strip is first heated, then maintained in temperature for a variable time and finally cooled to substantially the ambient temperature to be able to be marketed or undergo further processing.
  • Other combinations of these holding and cooling heating sequences can be performed for more complex processing cycles.
  • the lines following the state of the art, after completion of a metallurgical annealing, are often used to make a metal coating on the surface of the strip to increase its resistance to corrosion.
  • This treatment is generally carried out continuously, by dipping in a bath of molten metal, for example zinc to galvanize the strip, to increase the corrosion resistance of the final product, for example bodywork automobile.
  • Another type of treatment is aluminizing or any other method of coating the strip with a metal alloy.
  • the automotive market seeks to achieve increasingly lightweight bodies while maintaining or increasing their mechanical strength in case of shock to ensure the protection of their occupants. This concern led to two main processes of elaboration, one during treatment thermal annealing of the strip, the other during the stamping of the sheet to achieve, for example a body part of a vehicle.
  • the new heat treatment processes eg for the production of "Martensitic” steels or “THLE” (Very High Elastic Limit) steels, rely on an extremely rapid cooling of the steel after the heating and cooling phases. temperature keeping, for example with cooling rates above 200 ° C / sec, typically above 500 ° C / sec, and sometimes up to or above 1000 ° C / sec. These cooling slopes can not be reached with the conventional cooling techniques by projection of a cooling gas on the band whose maximum cooling slopes are close to 200 ° C / sec. It is then necessary to implement water quench type cooling by water spraying or by spraying a mixture of gas and water on the strip to achieve these cooling slopes.
  • the strip After completion of the metallurgical annealing, the cooling and the chemical reduction treatment of the oxides, the strip is reheated to a temperature of about 460 ° C - 470 ° C to be galvanized by dipping in a line according to the state of art or galvanized on an electrogalvanizing line, for certain applications, if its surface condition prohibits the galvanizing dipping.
  • the succession of heating and cooling, in particular rapid cooling with large slopes creates longitudinal and transverse stresses in the band that can cause permanent deformations on the surface of the band, deformations such as folds or more or less significant undulations. These deformations or folds can cause surface defects on the web by contact of the web with furnace equipment, for example cooling boxes, and cause the disposal of the finished product.
  • the annealing and galvanizing operations can be carried out with tools according to the state of the art but on the other hand stamping equipment are very complex and require the reheating of the sheet which is also greedy in energy.
  • the proposed invention makes it possible to produce the steels with a very high elastic limit expected by automakers with a continuous process comprising rapid wet cooling; this process does not require the cooling of the strip to temperatures below 200 ° C for the reduction of the oxides at temperatures below 100 ° C but allows the continuous galvanizing on the same line and at the same speed what is the annealing.
  • the invention proposes a continuous heat treatment process for a steel strip according to which:
  • the strip passes through successive heat treatment chambers,
  • rapid cooling of the strip in particular greater than 200 ° C./sec, is carried out in at least one of the chambers by projection on the liquid strip, or projection of a fluid composed of gas and liquid or projection a combination of gas and fog-type liquid,
  • the fluid sprayed for cooling is a fluid with a stripping property with respect to the iron oxides or other alloying elements contained in the steel to be treated, in order to limit the oxidation of the strip and to reduce the oxides having can be formed on the strip, to reduce or cancel the surface defects during the operation of metal coating by dipping,
  • the fluid is projected under pressure and at a distance from the strip such that the combined effect of the stripping property and the mechanical action of the projected fluid reduces the oxide layer on the surface of the strip,
  • the temperature of the strip at the end of cooling is that necessary to carry out the desired treatment cycle, in particular between 200 ° C. and 750 ° C., typically greater than 200 ° C.
  • the temperature at the end of cooling can be 460 ° C. cooling is the last stage of the treatment cycle before the coating of the strip by a zinc deposit according to the state of the art. This temperature will be close to 200 ° C if the heat treatment requires it for the realization of additional processing phases that are performed after the rapid cooling section.
  • the pickling liquid sprayed onto the strip is an acidic solution with a pH of less than 5, in particular a solution of formic or boric acid or similar product.
  • the liquid sprayed onto the strip may comprise additives such as, especially surfactants or wetting agents, for example perfluorononanoate, in particular acid inhibitors, in particular benzotriazole or tetrazole.
  • additives such as, especially surfactants or wetting agents, for example perfluorononanoate, in particular acid inhibitors, in particular benzotriazole or tetrazole.
  • the liquid feeds the nozzles which project it on the strip under a pressure lower than 1 bar for low pressure processes and under a pressure greater than 5 bar for high pressure processes and at a distance of the band between 40 and 250. mm.
  • the heating zones situated upstream of the rapid cooling zone may be in a weak reducing atmosphere, in particular with a hydrogen content of less than 5%, or in air, so that the formation of oxides is facilitated, the layer of oxides improving the efficiency of the heat exchange in the heating chamber or chambers, and these formed oxides are subsequently eliminated by the projection of the cooling fluid, in order to reach the quantities of residual oxides compatible with the process or the product quality sought.
  • control system of the parameters of the reduction process in particular the projection of the fluid on the strip in order to reach the amounts of residual oxides compatible with the desired process or product quality.
  • the coolant-cooled bandwidth can be adjusted according to the speed of the line or the characteristics of the band or inlet and outlet temperatures of the strip, in particular for the adjustment of the cooling slope depending on the process or the thermal cycle to be performed.
  • the cooling fluid is projected by nozzles on the strip, and the method is characterized by adapting the cooling parameters of the strip by adjusting the amounts of liquid injected on the strip by each nozzle and for each section of the strip. nozzle width to achieve a theoretical cooling curve depending on the metallurgical process to achieve.
  • the method may include implementing an algorithm for calculating the risk of crease formation at the surface of the web to adjust the longitudinal and transverse cooling slopes.
  • EP Patent No. 10702917.5 published under No. EP 2376662, of the applicant company.
  • the invention also relates to a continuous heat treatment line of a steel strip, for the implementation of the method defined above, comprising:
  • the chambers comprising rapid cooling means, in particular greater than 200 ° C./sec, these cooling means comprising nozzles for projecting onto the liquid strip, or a projection of fluid composed of gas and of liquid or a projection of a combination of gas and fog-type liquid,
  • this line being characterized in that it comprises means for supplying the spray nozzles with a liquid with a stripping property with respect to the iron oxides or other alloying elements contained in the steel to be treated may have formed on the strip, in particular an acid solution with a pH of less than 5,
  • the supply pressure of the nozzles, and the distance of the nozzles to the band are each sufficient independently of one another so that the combined effect of the stripping property and the mechanical action of the liquid sprayed eliminates the layer of iron oxides or other alloying elements contained in the steel to be treated which may have formed on the strip, while maintaining a strip temperature, at the end of cooling, sufficiently high for the deposit of the protective layer.
  • the treatment zones located upstream of the rapid cooling zone may be in a little or no reducing atmosphere, in particular with a hydrogen content of less than 5%, or in air to favor the formation of oxides on the strip during heating, the reduction of these oxides being carried out by the projection of the cooling fluid, in order to achieve the amounts of residual oxides compatible with the desired process or product quality.
  • the line comprises at least one air separation chamber at the inlet and / or outlet of the cooling chamber to isolate this chamber, constituting a wet zone, the upstream and downstream chambers being in a dry atmosphere.
  • the control of the projection nozzles can be ensured by a checker-type control algorithm making it possible to control the cooling of the band section present in the cooling zone in a direction parallel to the axis of the strip and a direction perpendicular to the strip.
  • the axis of the strip in order to reduce the appearance of deformations on the surface of the strip, while achieving the homogeneous metallurgical structure expected at the end of the heat treatment of the strip.
  • EP 00 403 318.9 published under No. EP 1 108795, relating to cooling by jets of gas fractionated checkerboard.
  • the line is equipped with a rinsing zone of the strip at the outlet of the rapid cooling zone.
  • the line can be equipped with air slats, atmosphere or liquid at the wet cooling outlet in order to limit the liquid entrainment by the strip.
  • Each airlock can include a gas suction device in the airlock.
  • the method and the installation according to the invention make it possible to carry out slow, fast or ultra-fast cooling in a line, continuously, without oxidizing the strip and without polluting the upstream and downstream chambers of the line and without causing significant permanent deformation. on the surface of the band.
  • the line according to the method which is the subject of the present invention comprises a rapid cooling zone capable of producing fast cooling slopes, typically above 500 ° C. or possibly exceeding 1000 ° C./secured according to the state of the art. for example according to the method described in patent FR 2 809 418 or patent FR 2 940 978.
  • the pure or demineralised water used in the context of this process according to the state of the art is replaced for example by a mixture pure or demineralised water and one or more acid (s) or a combination of acids and additives such as, for example inhibitors that will reduce the oxides formed by the spraying of fluids on the tape to put in a process for stripping and / or preventing the oxidation of the strip.
  • additives are not mandatory because residual organic acids and compounds are destroyed by the temperature of the zinc bath.
  • Inhibiting agents may however be used to limit the action of the acid following the attack of the oxides and protect the support metal.
  • - Fig. 1 is a schematic view of a continuous line, according to the state of the art, for the heat treatment of a steel strip.
  • Fig. 2 is a view similar to Fig.1 of a continuous line, according to the invention for the heat treatment of a steel strip.
  • FIG. 3 is a front view of a vertical portion of the steel strip with checkerboard-type zones for control of the projection nozzles provided by a control algorithm
  • FIG. 4 is a graphical representation of different cooling curves of the strip, the time being plotted on the abscissa and the strip temperature on the y-axis.
  • Fig. 1 has a vertical annealing line - galvanization according to the state of the art. It is understood that the same method can be realized in a horizontal line.
  • the steel strip 1 successively passes through a preheating chamber 2 and then a heating chamber 3 on sets of rollers 4.
  • the strip then passes through the chamber 5, which corresponds to a slow cooling
  • the chamber 6 corresponding to a cooling conventional or rapid by throwing gas on the strip from cooling boxes 7, and the chamber 8 which is a holding chamber.
  • the strip is fed by a sheath under atmosphere 9 and immersed at one of its ends in a bath of zinc or molten metals 1 1 via a roll 10.
  • the fast cooling chambers by spraying liquid on the strip are isolated from the chambers. upstream and downstream of the furnace by air separation chambers.
  • this sealing is reinforced to prevent the escape of vapors, for example water and acid present in the rapid cooling chamber, in particular by the use of airlock 14, 17 (FIG. 2) as described in FIG. FR 2 903122 or comparable technologies.
  • the function of these chambers is to separate the atmosphere from the humid cooling chamber of the upstream and downstream chambers and to limit the passage of atmosphere containing vapors of acids or chemical compounds used for the reduction of the oxides present on the surface.
  • Atmosphere withdrawals 13, 16 (FIG 2) enable the acid vapors to be discharged to a reprocessing system outside the cooling zone.
  • the line implementing the method according to the invention is equipped with a treatment circuit (not shown) of the coolant of the known type for cooling, the separation of the chemicals formed by the reduction of the oxides as well. that possible foreign bodies but also specific equipment (not shown) for the control of the composition of the coolant, in particular the pH value as a function of the state of the band and its oxidation level to the entry of the cooling zone.
  • the wet rapid cooling zone with acidic or corrosive solutions is made of materials resistant to these chemical compounds, in the liquid phase or in the vapor phase, in particular stainless steels or synthetic materials for the supply and return piping of the products. cooling.
  • Rapid cooling such as those implemented in the invention cause significant constraints that can go as far as causing permanent deformations on the surface of the product, these deformations being unacceptable for the production of products of commercial quality.
  • the area of the cooling zone is partitioned (FIG 3) by the calculation according to the height of the strip and its width, each of the boxes thus obtained is the object of a determination. Constraints in the material caused by cooling to verify that these stresses are below the allowable limit by the material. In this regard, reference can be made to EP 1994188 / WO 2007 096502, on behalf of the applicant company.
  • the result of this calculation is delivered to the computer (not shown) of the line to modulate the cooling parameters such as the speed of the cooling gas and the amount of water or liquid sprayed onto the strip.
  • each part of the strip is the subject of a cooling optimization calculation in order to meet the metallurgical objectives without causing permanent deformation on the surface of the strip.
  • Fig. 2 has a vertical galvanizing line according to the invention.
  • the chambers am and downstream of the rapid cooling zone 6 are unchanged, with respect to FIG. 1.
  • the rapid cooling zone 6 is isolated from the upstream 5 and downstream 8 chambers by locks 14 and 16 according to known technologies, in particular according to FR 2 809 418 with a gas withdrawal 13 and 15 intended to guarantee the absence of comunication. m unication between the atmospheres of the humid cooling chamber 6 and the upstream and downstream chambers.
  • a communication tunnel 17 between the upstream 5 and downstream 8 chambers of the rapid cooling chamber 6 makes it possible to avoid atmospheric communications between these chambers in the case where there is a pressure difference between the chambers 5 and 8.
  • the rapid cooling of the strip 1 is obtained by spraying a liquid on the strip, a combination of liquid projection by a series of nozzles (not visible) and atmosphere by an independent series of nozzles or by the creation a mixture of atmosphere and liquid by a series of combined nozzles.
  • This equipment is represented by the boxes 12 arranged along the strip on a vertical strand, the strip preferably traveling vertically up and down so that the gravity flow of the cooling liquid can be effected towards the temperatures of the coldest bands.
  • Each of the cooling methods listed above are equipped with means of regulating their efficiency which make it possible to control the heat exchange coefficient with the strip as a function of its temperature, of the type of cooling curve to be produced in order to obtain the structure metallurgical desired and avoid the formation of surface defects such as folds or corrugations.
  • Fig. 3 presents the principle of operation of this system for controlling the cooling of the strip. It is seen in front of the part of the band 1 present in the rapid cooling zone 6 with the upper roller 18 and lower 19. On this strip section, a part denoted L corresponds to the zone of the cooling boxes. This length L is divided vertically into a plurality of segments L1, L2 ... L7 in this example and horizontally in three parts for the operator side O, for the center C and for the motor side M. This gives the zones L4O, L4C and L4M.
  • each zone may have a dimension different from the other zones to correspond to the arrangement of the cooling boxes, singularities such as in particular the presence of stabilizing rollers, or to allow a fineness of greater control, especially in areas where the risk of wrinkling or rippling on the surface of the strip is significant.
  • the cooling means are designed to correspond to the zone cutting of the cooled portion of the strip, in particular with control valves controlled by the line control system to adjust the pressure or the flow rate of the fluid as a function of the coefficient. exchange to obtain.
  • the line control system comprises a set of algorithms for calculating the stresses induced in the strip material as a function of the desired cooling, for example to reduce the temperature from 850 ° C to 470 ° C. C in about 1.5 seconds, and will optimize the cooling curve to limit stresses in the band during this cooling.
  • Fig.4 shows this type of cooling between 850 ° C and 470 ° C for a time t:
  • Curve C1 shows weak cooling slopes for high temperatures close to 850 ° C and higher slopes for temperatures around 470 ° C
  • Curve C2 shows a linear cooling slope between the flow temperature 850 ° C and the inlet temperature 450 ° C, Note: or less if the thermal cycle makes it necessary.
  • Curve C3 has larger cooling slopes for the higher temperatures close to
  • the longitudinal cooling curve can thus be optimized to drive the actuators, and the liquid spray nozzles equipping the zones L1 to L7 to obtain the final result without causing surface defects on the strip.
  • the transverse temperature profile of the strip for example at the inlet of the furnace or at the inlet of the cooling section, can be integrated in the calculation in order to plot the actuators and the nozzles of the transverse zones to compensate for a pre-existing profile or voluntarily create a desired temperature profile on the tape.
  • Temperature measuring means may be used upstream or downstream of the cooling zone by the furnace control system in order, in particular, to compensate for a level or an existing temperature profile at the inlet of the furnace. cooling zone or, by a measurement at the exit of this cooling zone, modify the instructions of the actuators to obtain the required effect.
  • the effectiveness of the etching and the reduction of the oxides obtained by the implementation of the process is taken into account. It becomes possible to leave the heating zones, corresponding to chambers 3 and 5, with less sophisticated atmospheres, for example with a lower hydrogen content typically less than 5%, and therefore less reducing, possibly even under air.
  • the surface oxidation of the band obtained during the heating is facilitated in these less reducing atmospheres, and has the effect of increasing the emissivity coefficient of the band which increases the efficiency of the radiative heating and reduces the size and the cost of the facilities.
  • Such a line will be more compact and therefore with an investment cost and a lower operating cost while allowing the realization of improved steel compared to the state of the art.
  • the invention can be used on an annealing line, even if the stress of the galvanization is not present. The advantages of stripping in line, the possibilities of less elaborate atmosphere in the heating zones will however remain present on this type of equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Procédé de traitement thermique en continu d'une bande d'acier selon lequel: la bande traverse des chambres successives de traitement thermique; un refroidissement rapide de la bande, en particulier supérieurà 200°C/sec, est effectué dans l'une au moins des chambres par projection sur la bande de liquide, ou projection d'un fluide composé de gaz et de liquide ou projection d'une combinaison de gaz et de liquide de type brouillard; et, après le refroidissement rapide, une couche métallique protectrice est déposée sur la bande au trempé; le fluide projeté pour le refroidissement de la bande est un fluide à propriété décapante à l'égard des oxydes de fer ou d'autres éléments d'alliages contenus dans l'acier à traiter, pour limiter l'oxydation de la bande et réduire les oxydes ayant pu se former sur la bande pour réduire ou annuler les défauts de surface lors de l'opération de revêtement au trempé; le fluide est projeté sous une pression et à une distance de la bande telles que l'effet combiné de la propriété décapante et de l'action mécanique du fluide projeté réduit la couche d'oxydes à la surface de la bande; et la température de la bande en fin de refroidissement est celle nécessaire pour réaliser le cycle de traitement souhaité, en particulier comprise entre 200 et 750°C, typiquement supérieure à 200°C.

Description

PROCEDE ET INSTALLATION DE TRAITEMENT THERMIQUE EN CONTINU D'UNE BANDE D'ACIER.
L'invention concerne les fours de recuit sur les lignes continues de traitement thermique pour bandes métalliques, principalement de tôles d'aciers, avec des cycles de recuit mettant en œuvre des pentes de refroidissement.
Ce procédé est particulièrement adapté aux lignes de de galvanisation au trempé ou aux lignes combinées de recuit et de galvanisation au trempé.
Le procédé et l'installation correspondante, selon l'invention, permettent de réaliser des cycles de traitement thermiques comprenant des refroidissements rapides humides, à même de produ ire des aciers nouveaux, ceci sans nécessiter de décapage de la bande après traitement thermique.
Les lignes actuelles de recuit continu de bandes métalliques, principalement d'acier, sont composées de chambres successives dans lesquelles la bande est d'abord chauffée, ensuite maintenue en température pendant un temps variable et enfin refroidie jusqu'à pratiquement la température ambiante pour pouvoir être commercialisée ou subir un traitement ultérieur. D'autres combinaisons de ces séquences de chauffage de maintien et de refroidissement peuvent être réalisées pour des cycles de traitement plus complexes.
Les lignes suivant l'état de l'art, après réalisation d'un recuit métallurgique, sont souvent utilisées pour réaliser un revêtement métallique à la surface de la bande pour augmenter sa résistance à la corrosion. Ce traitement s'effectue généralement en continu, au trempé dans un bain de métal en fusion, par exem ple du zinc pour réaliser une galvanisation de la bande, à même d'augmenter la résistance à la corrosion du produit final, par exemple des carrosseries automobile. Com me autre type de traitem ent on peut citer l'aluminiage ou tout autre procédé de revêtement de la bande avec un alliage métallique.
Le marché automobile cherche à réaliser des carrosseries de plus en plus légères tout en maintenant ou en augmentant leur résistance mécanique en cas de choc pour assurer la protection de leurs occupants. Cette préoccupation a débouché sur deux procédés principaux d'élaboration, l'un durant le traitement thermique de recuit de la bande, l'autre durant l'emboutissage de la tôle pour réaliser, par exemple un élément de la carrosserie d'un véhicule.
Les nouveaux procédés de traitement thermiques, par exem p le pou r l'élaboration des aciers appelés « martensitiques » ou aciers « THLE » (Très Haute Limite Elastique), reposent sur un refroidissement extrêmement rapide de l'acier après les phases de chauffage et de maintien en température, par exem ple avec des vitesses de refroidissement supérieures à 200°C/sec, typiquement au-delà de 500°C/sec, et parfois pouvant atteindre ou dépasser 1000°C/sec. Ces pentes de refroidissement ne peuvent être atteintes avec les techniques conventionnelles de refroidissement par projection d'un gaz de refroidissement sur la bande dont les pentes de refroidissement maximum sont voisines de 200°C/sec. Il faut alors mettre en œuvre des refroidissements de type trempe à l'eau par pulvérisation d'eau ou par pulvérisation d'un mélange de gaz et d'eau sur la bande pour réaliser ces pentes de refroidissement. On constate alors que m êm e en uti lisant de l'eau traitée pour réal iser ce refroidissement, il se produit toujours des dépôts d'oxydes en surface de la bande qui entraînent la formation de défauts lors du revêtement métallique au trempé qui peuvent rendre le produit impropre à son utilisation par les clients actuels. La technique suivant l'état de l'art est donc, après réalisation du cycle rapide de traitement thermique de la bande comprenant un refroidissement humide, de refroidir le métal jusqu'à une température proche de la température ambiante pour réaliser un traitement chimique de réduction des oxydes à des températures inférieures à environ 100°C qui est considérée comme une limite actuelle de température pour réaliser ce traitement. En effet, les acides utilisés pour réaliser la réduction des oxydes présents à la surface de la bande sont très agressifs et on cherche à ne pas former de vapeurs qui puissent se dégager dans la halle de fabrication et qui puissent attaquer les équipements périphériques ou créer des conditions de travail inacceptables pour le personnel d'exploitation.
Après réalisation du recuit métallurgique, du refroidissement et du traitement chimique de réduction des oxydes, la bande est à nouveau réchauffée jusqu'à une température d'environ 460°C - 470°C pour être galvanisée au trempé dans une ligne suivant l'état de l'art ou galvanisée sur une ligne d'électrozingage, pour certaines applications, si son état de surface interdit la galvanisation au trempé. La succession de chauffages et de refroidissements, en particulier les refroidissements rapides avec des pentes importantes crée des contraintes longitudinales et transversales dans la bande qui peuvent provoquer des déformations permanentes à la surface de la bande, déformations telles que plis ou ondulations plus ou moins importants. Ces déformations ou plis peuvent provoquer des défauts de surface sur la bande par contact de la bande avec des équipements du four, par exemple des caissons de refroidissement, et causer la mise au rebut du produit fini.
On comprend que la nécessité de réduire les oxydes formés par le refroidissement rapide humide, nécessaire à l'obtention des caractéristiques mécaniques souhaitées pour le produit, entraîne une perte d'énergie importante car il est nécessaire de refroidir la bande jusqu'à la température ambiante pour la traiter chimiquement et ensuite la réchauffer jusqu'à 460°C pour la galvaniser au trempé (revêtement de zinc, aluminium ou d'autres alliages) ou de passer la bande sur une autre ligne de procédé en cas d'électrozingage.
Il est donc impossible pour ce type de traitement de réaliser l'ensemble des opérations de recuit, décapage et de galvanisation en continu sur une ligne unique car il faut refroidir la bande, la traiter chimiquement à froid et ensuite la reprendre pour la galvanisation. Ces opérations intermédiaires rendent le traitement global de l'acier plus long et plus coûteux notamment en énergie. Une autre solution pour obtenir les caractéristiques mécaniques souhaitées sur les bandes a été développée par les sidérurgistes. Elle consiste à réaliser un traitement thermique complet, proche des cycles actuels, qui comprend successivement les opérations de recuit et de galvanisation, pour ensuite emboutir ces tôles à chaud, à des températures voisines de 900°C sur des presses spéciales avec leurs matrices maintenues en température durant toute la durée de l'opération de formage de la pièce. Avec ce procédé, les opérations de recuit et de galvanisation peuvent s'effectuer avec des outils suivant l'état de l'art mais par contre les équipements d'emboutissage sont très complexes et nécessitent le réchauffage de la tôle ce qui est également gourmand en énergie. L'invention proposée permet de réaliser les aciers à très haute limite élastique attendus par les constructeurs autom obi les avec un procédé continu comprenant des refroidissements rapides humides ; ce procédé ne nécessite pas de refroidissement de la bande jusqu'à des températures inférieures à 200°C pour la réduction des oxydes à des températures inférieures à 100°C mais permet de réaliser la galvanisation en continu sur la même ligne et à la même vitesse qu'est réalisé le recuit. Ce procédé supprime les pertes d'énergie des techniques actuelles apportées par ce refroidissement jusqu'à des températures de bande inférieures à 200°C pour une bande de 1 m m d'épaisseur pour réaliser le décapage de la bande, permet un fonctionnement continu sans reprise intermédiaire et assure le revêtement métallique de la bande avec le niveau de qualité apporté par les techniques de revêtement métallique au trempé actuelles. L'invention propose un procédé de traitement thermique en continu d'une bande d'acier selon lequel:
- la bande traverse des chambres successives de traitement thermique,
- un refroidissement rapide de la bande, en particulier supérieur à 200°C/sec, est effectué dans l'une au moins des chambres par projection sur la bande de liquide, ou projection d'un fluide composé de gaz et de liquide ou projection d'une combinaison de gaz et de liquide de type brouillard,
- et, après le refroidissement rapide, une couche métallique protectrice est déposée sur la bande au trempé,
caractérisé en ce que :
- le fluide projeté pour le refroidissement est un fluide à propriété décapante à l'égard des oxydes de fer ou d' autres éléments d'alliages contenus dans l'acier à traiter, pour limiter l'oxydation de la bande et réduire les oxydes ayant pu se former sur la bande, pour réduire ou annuler les défauts de surface lors de l'opération de revêtement métallique au trempé,
- le fluide est projeté sous une pression et à une distance de la bande telles que l'effet combiné de la propriété décapante et de l'action mécanique du fluide projeté réduit la couche d'oxydes à la surface de la bande,
- et en ce que la température de la bande en fin de refroidissement est celle nécessaire pour réaliser le cycle de traitement souhaité, en particulier comprise entre 200°C et 750°C, typiquement supérieure à 200°C. La température en fin de refroidissement peut être de 460°C s i l e refroidissement est la dernière étape du cycle de traitement avant le revêtement de la bande par un dépôt de zinc suivant l'état de l'art. Cette température sera voisine de 200°C si le traitement thermique l'exige pour la réalisation de phases de traitement supplémentaires qui sont réalisées après la section de refroidissement rapide.
De préférence, le liquide à propriété décapante projeté sur la bande est une solution acide de pH inférieur à 5, en particulier une solution d'acide formique ou borique ou produit similaire.
Le liquide projeté sur la bande peut comprendre des additifs tels que, notamment des tensioactifs ou agents mouillants, par exemple le perfluorononanoate en particulier des inhibiteurs de d'acide, notamment le benzotriazole ou le tétrazole.
Avantageusement, le liquide alimente les buses qui le projettent sur la bande sous une pression inférieure à 1 bar pour les procédés basses pressions et sous une pression supérieure à 5 bars pour les procédés hautes pressions et à une distance de la bande comprise entre 40 et 250 mm.
Les zones de chauffage situées en amont de la zone de refroidissement rapide peuvent être sous atmosphère peu réductrice, en particulier avec un taux d'hydrogène inférieur à 5%, ou sous air, de sorte que la formation d'oxydes est facilitée, la couche d' oxydes améliorant l'efficacité des échanges thermiques dans la ou les chambres de chauffage, et ces oxydes formés étant ensuite élim inés par la projection du fluide de refroidissement, afin d'atteindre les quantités d'oxydes résiduels compatibles avec le procédé ou la qualité du produit recherchés.
On prévoit avantageusement la mise en œuvre d'un système de contrôle des paramètres du procédé de réduction, en particulier la projection du fluide sur la bande afin d'atteindre les quantités d'oxydes résiduels compatibles avec le procédé ou la qualité du produit recherchés.
La hauteur de bande refroidie par le fluide de refroidissement peut être ajustée en fonction de la vitesse de la ligne ou des caractéristiques de la bande ou des températures d'entrée et de sortie de la bande, en particulier pour l'ajustement de la pente de refroidissement en fonction du procédé ou du cycle thermique à réaliser. Il en résulte un avantage important qui est la flexibilité du taux de refroidissement (lent - rapide - ultra rapide) ainsi que la flexibilité de la température de sortie, deux points im portants des cycles de traitement thermiques réalisés par et pour les sidérurgistes : un système unique permet de produire toutes sortes d'aciers actuels et pas seulement les nouveaux.
Le fluide de refroidissement est projeté par des buses sur la bande, et le procédé est caractérisé par l'adaptation des paramètres du refroidissement de la bande par l'ajustement des quantités de liquide injecté sur la bande par chaque buse et pour chaque section de la largeur de buse afin de réaliser une courbe théorique de refroidissement en fonction du procédé métallurgique à réaliser.
Le procédé peut comprendre la mise en œuvre d'un algorithme de calcul du risque de formation de plis à la surface de la bande pour ajuster les pentes de refroidissement longitudinales et transversales. A ce sujet, i l peut être fait référence au brevet EP 10702917.5 publié sous n° EP 2376662, de la société déposante.
L'invention est également relative à une ligne continue de traitement thermique d'une bande d'acier, pour la mise en œuvre du procédé défini précédemment, comportant :
- des chambres successives de traitement thermique traversées par la bande,
- l'une au moins des chambres comportant des moyens de refroidissement rapide, en particulier supérieur à 200°C/sec, ces moyens de refroidissement comprenant des buses pour une projection sur la bande de liquide, ou une projection de fluide composé de gaz et de liquide ou une projection d'une combinaison de gaz et de liquide de type brouillard,
- et, à la suite des chambres, un équipement pour déposer sur la bande une couche protectrice, en particulier un équipement de revêtement métallique au trempé,
cette ligne étant caractérisée en ce qu'elle comporte des moyens d'alimentation des buses de projection en un liquide à propriété décapante à l'égard des oxydes de fer ou d'autres éléments d'alliage contenus dans l'acier à traiter ayant pu se former sur la bande, en particulier une solution acide de pH inférieur à 5,
et en ce que la pression d'alimentation des buses, et la distance des buses à la bande sont chacune suffisantes indépendamment l'une de l'autre pour que l'effet combiné de la propriété décapante et de l'action mécanique du liquide projeté élim ine la couche d'oxydes de fer ou d'autres éléments d'alliage contenus dans l'acier à traiter qui a pu se former sur la bande, en conservant une température de bande, en fin de refroidissement, suffisamment élevée pour le dépôt de la couche protectrice.
Les zones de traitement situées en amont de la zone de refroidissement rapide peuvent se trouver sous atmosphère peu ou pas réductrice, en particulier avec un taux d'hydrogène inférieur à 5%, ou sous air pour privilégier la formation d'oxydes sur la bande durant le chauffage, la réduction de ces oxydes étant réalisée par la projection du fluide de refroidissement, afin d'atteindre les quantités d'oxydes résiduels compatibles avec le procédé ou la qualité du produit recherchés.
Avantageusement, la ligne comprend au moins un sas de séparation d'atmosphère en entrée et/ou sortie de la chambre de refroidissement pour isoler cette chambre, constituant une zone humide, les chambres amont et aval étant sous atmosphère sèche.
La commande des buses de projection peut être assurée par un algorithme de pilotage de type damier permettant de contrôler le refroidissement de la section de bande présente dans la zone de refroidissement suivant une direction parallèle à l'axe de la bande et une direction perpendiculaire à l'axe de la bande afin de réduire l'apparition de déformations à la surface de la bande, tout en réalisant la structure métallurgique homogène attendue à l'issue du traitement thermique de la bande. A ce sujet, il peut être fait référence au brevet de la société déposante EP 00 403 318.9 publié sous n° EP 1 108795, relatif à un refroidissement par jets de gaz fractionnés en damier.
Avantageusement, la ligne est équipée d'une zone de rinçage de la bande en sortie de la zone de refroidissement rapide. La ligne peut être équipée de lames d'air, d'atmosphère ou de liquide en sortie de refroidissement humide afin de limiter l'entraînement de liquide par la bande.
Chaque sas d'isolation peut comporter un dispositif d'aspiration du gaz dans le sas.
Le procédé et l'installation selon l'invention permettent de réaliser les refroidissements lents, rapides ou ultra rapides dans une ligne, en continu, sans oxyder la bande et sans polluer les chambres amont et aval de la ligne et sans provoquer de déformation permanente importante à la surface de la bande.
La ligne suivant le procédé objet de la présente invention comprend une zone de refroidissement rapide capable de produire des pentes de refroidissements rapides, typiquement au-delà de 500°C ou pouvant dépasser 1000°C/sec réalisés suivant l'état de l'art, par exemple suivant le procédé décrit dans le brevet FR 2 809 418 ou le brevet FR 2 940 978. L'eau pure ou déminéralisée utilisée dans le cadre de ce procédé suivant l'état de l'art est remplacée par exemple par un mélange d'eau pure ou déminéralisée et d'un ou plusieurs acide(s) ou une combinaison d'acides et d'additifs tels que, par exemple les inhibiteurs qui vont réduire les oxydes formés par la pulvérisation de fluides sur la bande pour mettre en œuvre un procédé de décapage et/ou de prévention de l'oxydation de la bande.
La présence d'additifs n'est pas obligatoire car les acides et composés organiques résiduels sont détruits par la température du bain de zinc. Des agents inhibiteurs peuvent cependant être utilisés pour limiter l'action de l'acide suite à l'attaque des oxydes et protéger le métal support.
Par ce procédé, la présence d'oxydes à la surface de la bande a été fortement réduite ou annulée ce qui permet de réaliser le revêtement métallique de la bande au trempé sur la même installation lors du même process, ceci sans générer de défaut de revêtement avec les niveaux de qualité actuels. Par ce procédé, le refroidissement de la bande, suivant l'état de l'art pour permettre son décapage à basse température, et son réchauffage, depuis la température ambiante ou proche de la température ambiante pour le revêtement, ne sont plus nécessaires. Le procédé de recuit et de galvanisation est continu. L'importante perte d'énergie du procédé suivant l'état de l'art est supprimée car les reprises pour réaliser les différentes opérations sur différents équipements ne sont plus nécessaires. La réalisation du revêtement métal lique par galvanisation au trempé suivant les techniques actuelles permet de conserver les niveaux de qualité attendus par l'industrie aval, ce qui n'était pas le cas avec l'électrozingage.
L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci- après à propos d'exemples de réalisation décrits avec référence aux dessins annexés, mais qui ne sont nullement limitatifs. Sur ces dessins :
- Fig. 1 est une vue schématique d'une ligne continue, selon l'état de l'art, pour le traitement thermique d'une bande d'acier.
- Fig. 2 est une vue semblable à Fig.1 d'une ligne continue, selon l'invention, pour le traitement thermique d'une bande d'acier.
- Fig.3 est une vue de face d'une partie verticale de la bande d'acier avec des zones de type damier pour une commande des buses de projection assurée par un algorithme de pilotage, et
- F i g .4 est u ne représentation graphique de différentes courbes de refroidissement de la bande, le temps étant porté en abscisse et la température de bande en ordonnée.
Fig. 1 présente une ligne de recuit - galvanisation verticale suivant l'état de l'art. On comprend que le même procédé peut être réalisé dans une ligne horizontale.
La bande d'acier 1 traverse successivement une chambre de préchauffage 2 puis de chauffage 3 sur des ensembles de rouleaux 4. Sur cet exemple, la bande traverse ensuite la chambre 5 qui correspond à un refroidissement lent, la chambre 6 qui correspond à un refroidissement classique ou rapide par jets de gaz sur la bande à partir de caissons de refroidissements 7, et la chambre 8 qui est une chambre de maintien. La bande est amenée par une gaine sous atmosphère 9 et immergée à une de ses extrémités dans un bain de zinc ou de métaux en fusion 1 1 via un rouleau 10. Les chambres de refroidissement rapide par pulvérisation de liquide sur la bande sont isolées des cham bres amont et aval du four par des sas de séparation d'atmosphère. Pour la mise en œuvre du procédé suivant l'invention, cette étanchéité est renforcée afin d'éviter la sortie de vapeurs, par exemple d'eau et d'acide présentes dans la chambre de refroidissement rapide, en particulier par l'utilisation de sas 14, 17 (Fig.2) tels que décrits dans FR 2 903122 ou de technologies comparables. La fonction de ces sas est de séparer l'atmosphère de la chambre de refroidissement humide des chambres amont et aval et de limiter le passage d'atmosphère contenant des vapeurs d'acides ou de composés chimiques utilisés pour la réduction des oxydes présents à la surface de la bande. Des soutirages d'atmosphère 13, 16 (Fig. 2) permettent d'évacuer les vapeurs d'acides vers un système de retraitement extérieur à la zone de refroidissement.
On comprend également que la ligne mettant en œuvre le procédé suivant l'invention est équipée d'un circuit de traitement (non représenté) du liquide de refroidissement du type connu pour le refroidissement, la séparation des produits chimiques formés par la réduction des oxydes ainsi que des éventuels corps étrangers mais également d'équipements spécifiques (non représentés) pour le contrôle de la composition du liquide de refroidissement, notamment de la valeur du pH en fonction de l'état de la bande et de son niveau d'oxydation à l'entrée de la zone de refroidissement.
La zone de refroidissement rapide humide avec présence de solutions acides ou corrosives est réalisée en matériaux résistant à ces composés chimiques, en phase liquide ou en phase vapeur, notamment des aciers inoxydables ou des matières synthétiques pour les tuyauteries d'alimentation et de retour des produits de refroidissement.
Les refroidissements rapides tels que ceux m is en œuvre dans l'invention provoquent des contraintes importantes qui peuvent aller jusqu'à provoquer les déformations permanentes à la surface du produit, ces déformations pouvant être rédhibitoires pour la production de produits de qualité commerciale.
Selon l'invention, l a pa rt i e d e l a ba n d e p rése nte d a n s l a zo n e d e refroidissement est partitionnée (Fig. 3) par le calcul suivant la hauteur de la bande et sa largeur, chacune des cases ainsi obtenue fait l'objet d'une détermination des contraintes dans la matière causées par le refroidissement afin de vérifier que ces contraintes sont au-dessous de la limite admissible par le matériau. A ce sujet, il peut être fait référence à EP 1994188 / WO 2007 096502, au nom de la société déposante. Le résultat de ce calcul est délivré au calculateur (non représenté) de la ligne afin de moduler les paramètres du refroidissement tels que la vitesse du gaz de refroidissement et la quantité d'eau ou de liquide projeté sur la bande. Par ce moyen, chaque partie de la bande fait l'objet d'un calcul d'optimisation du refroidissement afin de respecter les objectifs métallurgiques sans provoquer de déformation permanente à la surface de la bande.
Fig. 2 présente une ligne de galvanisation verticale selon l'invention. Les cham bres am ont et aval de la zone de refroidissement rapide 6 sont inchangées, par rapport à Fig. 1 .
La zone de refroidissement rapide 6 est isolée des chambres amont 5 et aval 8 par des sas 1 4 et 16 suivant des technologies connues, en particulier selon FR 2 809 418 avec un soutirage de gaz 13 et 15 destiné à garantir l'absence de com m unication entre les atmosphères de la chambre de refroidissement humide 6 et les chambres amont et aval.
Un tunnel de communication 17 entre les chambres amont 5 et aval 8 de la chambre de refroidissement rapide 6 permet d'éviter les communications d'atmosphères entre ces chambres dans le cas où il existe une différence de pression entre les chambres 5 et 8.
Le refroidissement rapide de la bande 1 est obtenu par projection d'un liquide sur la bande, d'une combinaison de projection de liquide par une série de buses (non visibles) et d'atmosphère par une série indépendante de buses ou par la création d'un mélange d'atmosphère et de liquide par une série de buses combinées. Ces équipements sont représentés par les caissons 12 disposés le long de la bande sur un brin vertical, la bande défilant de façon préférentielle verticalement de haut en bas de façon à ce que l'écoulement gravitaire du liquide de refroidissement puisse s'effectuer vers les températures de bandes les plus froides.
Chacun des procédés de refroidissement listés ci-dessus sont équipés de moyens de régulation de leur efficacité qui permettent de contrôler le coefficient d'échange de chaleur avec la bande en fonction de sa température, du type de courbe de refroidissement à réaliser pour obtenir la structure métallurgique souhaitée et éviter la formation de défauts de surface tels que plis ou ondulations.
Fig. 3 présente le principe de fonctionnement de ce système de contrôle du refroidissement de la bande. On voit en vue de face la partie de la bande 1 présente dans la zone de refroidissement rapide 6 avec le rouleau supérieur 18 et inférieur 19. Sur ce tronçon de bande, une partie notée L correspond à la zone des caissons de refroid issement. Cette longueur L est divisée verticalement en une pluralité de segments L1 , L2... L7 sur cet exemple et horizontalement suivant trois parties pour le côté Opérateurs O, pour le Centre C et pour le côté Moteur M. Ceci donne sur cet exemple les zones L4O, L4C et L4M. Le nombre de zones horizontales et verticales n'est pas limité, chaque zone peut avoir une dimension différente des autre zones pour correspondre à la disposition des caissons de refroidissement, des singularités telles que notamment la présence de rouleaux stabilisateurs, ou pour permettre une finesse de contrôle plus importante, notamment dans les zones où le risque de formation de plis ou d'ondulation sur la surface de la bande est important.
Les moyens de refroidissement sont conçus de façon à correspondre au découpage par zones de la partie refroidie de la bande, notamment avec des vannes de régulation pilotées par le système de contrôle de la ligne pour ajuster la pression ou le débit du fluide en fonction du coefficient d'échange à obtenir.
Le système de contrôle de la ligne comprend un ensemble d'algorithmes de calcul des contraintes induites dans le matériau de la bande en fonction du refroidissement souhaité, par exem p l e pou r passe r u ne ban de de la température de 850°C à 470°C en environ 1 ,5 secondes, et va optimiser la courbe de refroidissement pour limiter les contraintes dans la bande lors de ce refroidissement.
Fig.4 présente ce type de refroidissement entre 850°C et 470°C durant un temps t :
• La courbe C1 montre des pentes de refroidissement faibles pour les températures hautes voisines de 850°C et des pentes plus importantes pour les températures voisines de 470°C, • La courbe C2 montre une pente de refroidissement linéaire entre la température de départ 850°C et celle d'arrivée 450°C, Note : ou moins si le cycle thermique le rend nécessaire.
• La courbe C3 présente des pentes de refroidissement plus importantes pour les températures les plus hautes voisines de
850°C et des pentes plus faibles au voisinage de 470°C.
La courbe de refroidissement longitudinale peut ainsi être optimisée pour piloter les actionneurs, et les buses de projection de liquide, équipant les zones L1 à L7 pour obtenir le résultat final sans provoquer de défauts de surface sur la bande.
De même, le profil transversal de température de la bande, par exemple en entrée de four ou en entrée de section de refroidissement, peut être intégré dans le calcul afin de pi loter les actionneurs et les buses des zones transversales pour compenser un profil préexistant ou créer volontairement un profil de température souhaité sur la bande.
Des moyens de mesure de température (non représentés) peuvent être utilisés en amont ou en aval de la zone de refroidissement par le système de contrôle du four afin, notamment, de compenser un niveau ou un profil de température existant à l'entrée de la zone de refroidissement ou, par une mesure à la sortie de cette zone de refroidissement, modifier les consignes des actionneurs pour obtenir l'effet requis.
Selon une variante de m ise en œuvre de l'invention, on prend en compte l'efficacité du décapage et de la réduction des oxydes obtenus grâce à la mise en œuvre du procédé. Il devient possible de laisser les zones de chauffage, correspondant aux chambres 3 et 5, avec des atmosphères moins élaborées, par exemple avec un taux d'hydrogène plus réduit typiquement inférieur à 5 %, donc moins réductrices, éventuellement même sous air. L'oxydation de surface de la bande obtenue durant le chauffage est facilitée dans ces atmosphères moins réductrices, et a pour effet d'augmenter le coefficient d'émissivité de la bande ce qui augmente l'efficacité du chauffage radiatif et permet de réduire la taille et le coût des installations. Une telle ligne sera plus compacte et donc avec un coût d'investissement et un coût d'exploitation plus faible tout en permettant la réalisation d'acier améliorés par rapport à l'état de l'art. L'invention peut être utilisée sur une ligne de recuit, même si la contrainte de la galvanisation n'est pas présente. Les avantages du décapage en ligne, les possibilités d'atmosphère moins élaborées dans les zones de chauffage resteront cependant présents sur ce type d'équipement.

Claims

REVENDICATIONS
1 . Procédé de traitement thermique en continu d'une bande d'acier selon lequel:
- la bande traverse des chambres successives de traitement thermique,
- un refroidissement rapide de la bande, en particulier supérieur à 200°C/ sec, est effectué dans l'une au moins des chambres par projection sur la bande de liquide, ou projection d'un fluide composé de gaz et de liquide ou projection d'une combinaison de gaz et de liquide de type brouillard,
- et, après le refroidissement rapide, une couche métallique protectrice est déposée sur la bande au trempé,
caractérisé en ce que :
- le fluide projeté pour le refroidissement de la bande est un fluide à propriété décapante à l'égard des oxydes de fer ou d'autres éléments d'alliages contenus dans l'acier à traiter, pour limiter l'oxydation de la bande et réduire les oxydes ayant pu se former sur la bande pour réduire ou annuler les défauts de surface lors de l'opération de revêtement métallique au trempé,
- le fluide est projeté sous une pression et à une distance de la bande telles que l'effet combiné de la propriété décapante et de l'action mécanique du fluide projeté réduit la couche d'oxydes à la surface de la bande,
- et en ce que la température de la bande en fin de refroidissement est celle nécessaire pour réaliser le cycle de traitement souhaité, en particulier comprise entre 200 et 750°C, typiquement supérieure à 200°C.
2. Procédé selon la revendication 1 , caractérisé par la mise en œuvre d'un système de contrôle des paramètres du procédé de réduction, en particulier la projection du fluide sur la bande afin d'atteindre les quantités d'oxydes résiduels compatibles avec le procédé ou la qualité du produit recherchés.
3. Procédé selon la revendication 1 ou 2, selon lequel le fluide de refroidissement est projeté par des buses sur la bande, caractérisé par l'adaptation des paramètres du refroidissement de la bande par l'ajustement des quantités de liquide injecté sur la bande par chaque buse et pour chaque section de la largeur de buse afin de réaliser une courbe théorique de refroidissement en fonction du procédé métallurgique à réaliser.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le liquide à propriété décapante projeté sur la bande est une solution acide de pH inférieur à 5, en particulier une solution d'acide formique ou borique.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le liquide projeté sur la bande comprend des additifs, notamment des tensioactifs ou des agents mouillants en particulier des inhibiteurs de corrosion, notamment le benzotriazole.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le liquide est projeté sous une pression inférieure à 1 bar pour les procédés basses pressions et à une distance de la bande comprise entre 40 et 250 mm.
7. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le liquide est projeté sous une pression supérieure à 5 bars pour les procédés hautes pressions et à une distance de la bande comprise entre 40 et 250 mm.
8. P rocédé selon la revendication 1 , caractérisé en ce que les zones de chauffage situées en amont de la zone de refroidissement rapide sont sous atmosphère peu réductrice, en particulier avec un taux d'hydrogène inférieur à 5%, ou sous air, de sorte que la formation d'oxydes est facilitée, la couche d'oxydes améliorant l'efficacité des échanges therm iques dans la ou les chambres de chauffage, et ces oxydes formés étant ensuite réduits par la projection du fluide de refroidissement afin d'atteindre les quantités d'oxydes résiduels compatibles avec le procédé ou la qualité du produit recherchés.
9. Procédé selon la revendication 1 , caractérisé en ce que la hauteur de bande refroidie par le fluide de refroidissement est ajustée en fonction de la vitesse de la ligne ou des caractéristiques de la bande ou des températures d'entrée et de sortie de la bande.
10. Procédé selon la revendication 2 ou 3, caractérisé par la mise en œuvre d'un algorithme de calcul du risque de formation de plis à la surface de la bande pour ajuster les pentes de refroidissement longitudinales et transversales.
1 1 . Ligne continue de traitement thermique d'une bande d'acier, pour la mise en œuvre d'un procédé selon la revendication 1 , comportant :
- des chambres successives de traitement thermique traversées par la bande,
- l'une au moins des chambres comportant des moyens de refroidissement rapide, en particulier supérieur à 200°C/ sec, ces moyens de refroidissement comprenant des buses pour une projection sur la bande de liquide, ou une projection de fluide composé de gaz et de liquide ou d'une projection d'une combinaison de gaz et de liquide de type brouillard,
- et, à la suite des chambres, un équipement pour déposer sur la bande une couche protectrice, en particulier un équipement de revêtement métallique au trempé,
caractérisée en ce qu'elle comporte des moyens d'alimentation des buses de projection en un liquide à propriété décapante à l'égard des oxydes de fer ou d'autres éléments d'alliages contenus dans l'acier à traiter, ayant pu se former sur la bande, en particulier une solution acide de pH inférieur à 5,
et en ce que la pression d'alimentation des buses, et la distance des buses à la bande sont chacune suffisante indépendamment l'une de l'autre ou que l'effet combiné de la propriété décapante et de l'action mécanique du liquide projeté élimine la couche d'oxydes de fer ou d'autres éléments d'alliages contenus dans l'acier à traiter, qui a pu se former sur la bande, en conservant une température de bande, en fin de refroidissement, suffisamment élevée pour le dépôt de la couche protectrice.
12. Ligne suivant la revendication 9 dans laquelle les zones de traitements situées en amont de la zone de refroidissement rapide se trouvent sous atmosphère peu ou pas réductrice, en particulier avec un taux d'hydrogène inférieur à 5%, ou sous air pour privilégier la formation d'oxydes à la surface de la bande durant le chauffage, la réduction de ces oxydes étant réalisée par la projection du fluide de refroidissement afin d'atteindre les quantités d'oxydes résiduels compatibles avec le procédé ou la qualité du produit recherchés.
13. Ligne selon la revendication 1 1 ou 12, caractérisée en ce qu'elle comprend au moins un sas de séparation d'atmosphère (14, 16) en entrée et sortie de la chambre de refroidissement (6) pour isoler cette chambre qui constitue une zone humide, les chambres amont (5) et aval (8) étant sous atmosphère sèche.
14. Ligne selon l'une quelconque des revendications 1 1 à 13, caractérisée en ce que la commande des buses de projection du fluide de refroidissement est assurée par un algorithme de pilotage de type damier permettant de contrôler le refroid issement de la section de bande présente dans cette zone de refroidissement suivant une direction parallèle à l'axe de la bande et une direction perpendiculaire à l'axe de la bande afin de réduire l'apparition de déformations à la surface de la bande.
15. Ligne selon l'une quelconque des revendications 1 1 à 14, caractérisée en ce qu'elle est équipée d'une zone de rinçage et séchage de la bande en sortie de la zone de refroidissement rapide.
16. Ligne selon l'une quelconque des revendications 1 1 à 15, caractérisée en ce qu'elle est équipée de lames d'air, d'atmosphère ou de liquide en sortie de refroidissement humide afin de limiter l'entraînement de liquide par la bande.
17. Ligne selon la revendication 1 3, caractérisée en ce que chaque sas d'isolation comporte un dispositif d'aspiration (13, 15) du gaz dans le sas.
PCT/IB2014/066380 2013-12-05 2014-11-27 Procede et installation de traitement thermique en continu d'une bande d'acier WO2015083047A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/101,137 US10041140B2 (en) 2013-12-05 2014-11-27 Method for continuous thermal treatment of a steel strip
EP14815057.6A EP3077554B1 (fr) 2013-12-05 2014-11-27 Procede et installation de traitement thermique en continu d'une bande d'acier
PL14815057T PL3077554T3 (pl) 2013-12-05 2014-11-27 Sposób i instalacja do ciągłej obróbki cieplnej taśmy stalowej
CN201480066167.6A CN105793446B (zh) 2013-12-05 2014-11-27 钢带的连续热处理的方法和设备
KR1020167017915A KR102317928B1 (ko) 2013-12-05 2014-11-27 강 스트립의 연속 열처리를 위한 방법 및 장치
ES14815057T ES2764095T3 (es) 2013-12-05 2014-11-27 Procedimiento e instalación de tratamiento térmico continuo de una banda de acero
US16/027,980 US11193181B2 (en) 2013-12-05 2018-07-05 Method and apparatus for continuous thermal treatment of a steel strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1362139 2013-12-05
FR1362139A FR3014447B1 (fr) 2013-12-05 2013-12-05 Procede et installation de traitement thermique en continu d'une bande d'acier

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/101,137 A-371-Of-International US10041140B2 (en) 2013-12-05 2014-11-27 Method for continuous thermal treatment of a steel strip
US16/027,980 Continuation US11193181B2 (en) 2013-12-05 2018-07-05 Method and apparatus for continuous thermal treatment of a steel strip

Publications (1)

Publication Number Publication Date
WO2015083047A1 true WO2015083047A1 (fr) 2015-06-11

Family

ID=50231349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/066380 WO2015083047A1 (fr) 2013-12-05 2014-11-27 Procede et installation de traitement thermique en continu d'une bande d'acier

Country Status (8)

Country Link
US (2) US10041140B2 (fr)
EP (1) EP3077554B1 (fr)
KR (1) KR102317928B1 (fr)
CN (1) CN105793446B (fr)
ES (1) ES2764095T3 (fr)
FR (1) FR3014447B1 (fr)
PL (1) PL3077554T3 (fr)
WO (1) WO2015083047A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420484A (zh) * 2015-12-01 2016-03-23 中国科学院宁波材料技术与工程研究所 一种纳米晶软磁合金带材预处理系统和方法
WO2017196965A1 (fr) 2016-05-10 2017-11-16 United States Steel Corporation Produits d'acier à haute résistance et procédés de recuit pour fabriquer ceux-ci
WO2018172713A1 (fr) 2017-03-22 2018-09-27 Fives Stein Procede et dispositif de refroidissement d'une bande d'acier en defilement dans une section de refroidissement d'une ligne continue
WO2020227438A1 (fr) 2019-05-07 2020-11-12 United States Steel Corporation Procédés de production de produits en tôle d'acier à haute résistance laminés à chaud coulés en continu
WO2021026437A1 (fr) 2019-08-07 2021-02-11 United States Steel Corporation Produits en tôle d'acier zinguée à ductilité élevée
WO2021034851A1 (fr) 2019-08-19 2021-02-25 United States Steel Corporation Produits en acier à haute résistance et procédés de recuit pour les fabriquer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
CN110520552B (zh) * 2017-04-27 2021-06-29 杰富意钢铁株式会社 合金化热浸镀锌钢板的制造方法和连续热浸镀锌装置
RU2702524C1 (ru) * 2018-12-05 2019-10-08 Федеральное государственное бюджетное учреждение науки Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук Способ закалки металлических изделий при термомеханической обработке
KR102004971B1 (ko) * 2018-12-11 2019-10-01 김상호 용융도금강판의 제조방법 및 장치
WO2020122352A1 (fr) * 2018-12-11 2020-06-18 김상호 Procédé de fabrication de tôle d'acier galvanisée à l'état fondu
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate
FR3104178B1 (fr) * 2019-12-09 2022-12-02 Fives Stein Dispositif et procede de traitement thermique des aciers comprenant un refroidissement humide
MX2023008750A (es) * 2021-01-29 2023-08-01 Jfe Steel Corp Aparato de temple rapido y metodo de temple rapido para lamina de metal, y metodo para fabricar lamina de acero.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891130A (ja) * 1981-11-24 1983-05-31 Nippon Kokan Kk <Nkk> 連続焼鈍におけるストリツプの冷却方法
US4561911A (en) * 1983-09-02 1985-12-31 Nippon Steel Corporation Aqueous solution for cooling cold-rolled steel strip in a continuous annealing process
EP1108795A1 (fr) 1999-12-17 2001-06-20 STEIN HEURTEY, Société Anonyme: Procédé et dispositif de réduction des plis de bande dans une zone de refroidissement rapide de ligne de traitement thermique
FR2809418A1 (fr) 2000-05-25 2001-11-30 Stein Heurtey Procede de mise en securisation d'une enceinte de traitement thermique fonctionnant sous atmosphere controlee
WO2007096502A2 (fr) 2006-02-21 2007-08-30 Fives Stein Procede et dispositif de refroidissement et de stabilisation de bande dans une ligne continue.
FR2903122A1 (fr) 2006-06-30 2008-01-04 Stein Heurtey Dispositif de securisation d'un four equipe d'un chauffage et d'un refroidissement rapides fonctionnant sous atmosphere controlee.
EP2103715A1 (fr) * 2007-01-09 2009-09-23 Nippon Steel Corporation Procédé de fabrication d'une tôle d'acier laminée à froid, à résistance élevée, ayant une excellente aptitude au traitement chimique, et appareillage de fabrication approprié
FR2940978A1 (fr) 2009-01-09 2010-07-16 Fives Stein Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985503A (en) * 1975-03-17 1976-10-12 The Sherwin-Williams Company Process for inhibiting metal corrosion
JPS5837116A (ja) * 1981-08-31 1983-03-04 Mitsubishi Electric Corp 光輝連続焼鈍炉の冷却法
JPS58120742A (ja) * 1982-01-11 1983-07-18 Nippon Steel Corp 鋼帯の冷却制御方法
JPS59229422A (ja) * 1983-06-11 1984-12-22 Nippon Steel Corp 連続焼鈍における鋼帯の冷却方法
JPS61147900A (ja) * 1984-12-20 1986-07-05 Hitachi Ltd 鋼帯の連続めっき設備
JPH02170925A (ja) 1988-12-21 1990-07-02 Sumitomo Metal Ind Ltd 連続焼鈍冷間圧延鋼板の製造方法
US5137586A (en) * 1991-01-02 1992-08-11 Klink James H Method for continuous annealing of metal strips
RU2120482C1 (ru) * 1992-06-23 1998-10-20 НКК Корпорейшн Устройство и способ охлаждения металлических полос
KR100260016B1 (ko) * 1996-05-23 2000-06-15 아사무라 타카싯 연속식강대 열처리공정에 있어서 강대의 폭방향 균일 냉각장치
US5697169A (en) * 1996-11-12 1997-12-16 Busch Co. Apparatus for cooling strip and associated method
FR2769696B1 (fr) * 1997-10-15 1999-12-31 Stein Heurtey Systeme de securite pour fours a refroidissement rapide de bandes metalliques
KR20020038888A (ko) * 2000-11-18 2002-05-24 이구택 열연강대의 제조방법 및 산화막제거장치
WO2002081760A1 (fr) * 2001-04-02 2002-10-17 Nippon Steel Corporation Dispositif de refroidissement rapide pour une bande d'acier dans un systeme de recuit
KR100928820B1 (ko) * 2002-12-28 2009-11-27 주식회사 포스코 전기강판제조용 열연소둔강판의 산화막 제거방법,전기강판제조용 열연소둔강판의 제조방법 및 장치
FR2900661B1 (fr) * 2006-05-02 2008-09-26 Stein Heurtey Perfectionnement apporte aux sections de chauffage rapide des lignes de traitement thermique en continu.
JP5130733B2 (ja) * 2007-02-14 2013-01-30 Jfeスチール株式会社 連続焼鈍設備
US20080216925A1 (en) * 2007-03-09 2008-09-11 The Material Works, Ltd. Method and apparatus for producing scale-free sheet metal
EP2009127A1 (fr) * 2007-06-29 2008-12-31 ArcelorMittal France Procédé pour la fabrication d'une feuille d'acier galvanisé ou recuit après galvanisation par régulation DFF
FR2940979B1 (fr) * 2009-01-09 2011-02-11 Fives Stein Procede de refroidissement d'une bande metallique en defilement
FR2947737B1 (fr) * 2009-07-08 2012-05-25 Fives Stein Dispositif de separation d'atmospheres
JP5099265B2 (ja) * 2009-10-01 2012-12-19 新日鐵住金株式会社 連続溶融めっき及び連続焼鈍の兼用設備
FR2953280B1 (fr) * 2009-11-30 2014-10-10 Fives Stein Procede de correction des reglages de combustion d'un ensemble de chambres de combustion et installation mettant en oeuvre le procede
FR2958563A3 (fr) * 2010-04-13 2011-10-14 Fives Stein Procede et dispositif de revetement de bandes metalliques.
CN102031474A (zh) * 2010-12-07 2011-04-27 重庆万达薄板有限公司 高强度热浸镀锌钢带生产方法
JP5071551B2 (ja) * 2010-12-17 2012-11-14 Jfeスチール株式会社 鋼帯の連続焼鈍方法、溶融亜鉛めっき方法
JP5505430B2 (ja) * 2012-01-17 2014-05-28 Jfeスチール株式会社 鋼帯の連続焼鈍炉及び連続焼鈍方法
JP5510495B2 (ja) * 2012-05-24 2014-06-04 Jfeスチール株式会社 鋼帯の連続焼鈍炉、連続焼鈍方法、連続溶融亜鉛めっき設備及び溶融亜鉛めっき鋼帯の製造方法
JP5505461B2 (ja) * 2012-05-24 2014-05-28 Jfeスチール株式会社 鋼帯の連続焼鈍炉、鋼帯の連続焼鈍方法、連続溶融亜鉛めっき設備及び溶融亜鉛めっき鋼帯の製造方法
CN104379776B (zh) * 2012-06-13 2016-07-06 杰富意钢铁株式会社 钢带的连续退火方法、钢带的连续退火装置、熔融镀锌钢带的制造方法以及熔融镀锌钢带的制造装置
CN103233192A (zh) * 2013-05-10 2013-08-07 重庆万达薄板有限公司 高强度热浸镀锌钢带生产方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891130A (ja) * 1981-11-24 1983-05-31 Nippon Kokan Kk <Nkk> 連続焼鈍におけるストリツプの冷却方法
US4561911A (en) * 1983-09-02 1985-12-31 Nippon Steel Corporation Aqueous solution for cooling cold-rolled steel strip in a continuous annealing process
EP1108795A1 (fr) 1999-12-17 2001-06-20 STEIN HEURTEY, Société Anonyme: Procédé et dispositif de réduction des plis de bande dans une zone de refroidissement rapide de ligne de traitement thermique
FR2809418A1 (fr) 2000-05-25 2001-11-30 Stein Heurtey Procede de mise en securisation d'une enceinte de traitement thermique fonctionnant sous atmosphere controlee
WO2007096502A2 (fr) 2006-02-21 2007-08-30 Fives Stein Procede et dispositif de refroidissement et de stabilisation de bande dans une ligne continue.
EP1994188A2 (fr) 2006-02-21 2008-11-26 Fives Stein Procede et dispositif de refroidissement et de stabilisation de bande dans une ligne continue.
FR2903122A1 (fr) 2006-06-30 2008-01-04 Stein Heurtey Dispositif de securisation d'un four equipe d'un chauffage et d'un refroidissement rapides fonctionnant sous atmosphere controlee.
EP2103715A1 (fr) * 2007-01-09 2009-09-23 Nippon Steel Corporation Procédé de fabrication d'une tôle d'acier laminée à froid, à résistance élevée, ayant une excellente aptitude au traitement chimique, et appareillage de fabrication approprié
FR2940978A1 (fr) 2009-01-09 2010-07-16 Fives Stein Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide
EP2376662A1 (fr) 2009-01-09 2011-10-19 Fives Stein Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420484A (zh) * 2015-12-01 2016-03-23 中国科学院宁波材料技术与工程研究所 一种纳米晶软磁合金带材预处理系统和方法
WO2017196965A1 (fr) 2016-05-10 2017-11-16 United States Steel Corporation Produits d'acier à haute résistance et procédés de recuit pour fabriquer ceux-ci
WO2018172713A1 (fr) 2017-03-22 2018-09-27 Fives Stein Procede et dispositif de refroidissement d'une bande d'acier en defilement dans une section de refroidissement d'une ligne continue
EP3601623B1 (fr) 2017-03-22 2021-04-28 Fives Stein Procede et dispositif de refroidissement d'une bande d'acier en defilement dans une section de refroidissement d'une ligne continue
US11162156B2 (en) * 2017-03-22 2021-11-02 Fives Stein Method and device for cooling a steel strip travelling in a continuous line cooling section
WO2020227438A1 (fr) 2019-05-07 2020-11-12 United States Steel Corporation Procédés de production de produits en tôle d'acier à haute résistance laminés à chaud coulés en continu
WO2021026437A1 (fr) 2019-08-07 2021-02-11 United States Steel Corporation Produits en tôle d'acier zinguée à ductilité élevée
WO2021034851A1 (fr) 2019-08-19 2021-02-25 United States Steel Corporation Produits en acier à haute résistance et procédés de recuit pour les fabriquer

Also Published As

Publication number Publication date
KR20160095064A (ko) 2016-08-10
US11193181B2 (en) 2021-12-07
US20180312938A1 (en) 2018-11-01
CN105793446A (zh) 2016-07-20
EP3077554A1 (fr) 2016-10-12
CN105793446B (zh) 2018-07-27
FR3014447A1 (fr) 2015-06-12
EP3077554B1 (fr) 2019-10-02
FR3014447B1 (fr) 2016-02-05
ES2764095T3 (es) 2020-06-02
US20160304984A1 (en) 2016-10-20
US10041140B2 (en) 2018-08-07
PL3077554T3 (pl) 2020-05-18
KR102317928B9 (ko) 2024-01-08
KR102317928B1 (ko) 2021-10-28

Similar Documents

Publication Publication Date Title
EP3077554B1 (fr) Procede et installation de traitement thermique en continu d&#39;une bande d&#39;acier
EP1058588B1 (fr) Installation de fabrication de bandes d&#39;acier inoxydable laminees a froid
US8057604B2 (en) Method and device for descaling metal strip
WO2008142222A1 (fr) Procédé de revêtement d&#39;un substrat et installation de dépôt sous vide d&#39;alliage métallique
WO2009118466A1 (fr) Procédé de revêtement d&#39;une bande métallique et installation de mise en oeuvre du procédé
EP2176438B1 (fr) Ligne combinée de recuit et de galvanisation et procédé de transformation d&#39;une ligne de recuit continu en une telle ligne combinée
FR2738577A1 (fr) Dispositif de refroidissement d&#39;un produit lamine
EP0126696B2 (fr) Procédé de fabrication en continu d&#39;une bande d&#39;acier survieillie portant un revêtement de Zn ou d&#39;alliage Zn-Al
EA019686B1 (ru) Способ покрытия штучных изделий цинксодержащим слоем
JP7218625B2 (ja) 溶融亜鉛めっき鋼管の製造方法
FR3104178A1 (fr) Dispositif et procede de traitement thermique des aciers comprenant un refroidissement humide
FR2559692A1 (fr) Methode de preparation de demi-produits metalliques stratifies, notamment en acier, et dispositif de mise en oeuvre
FR2671809A1 (fr) Procede de galvanisation en continu a haute temperature.
CN117025913A (zh) 一种免涂防锈油q235-w钢种的冷轧生产工艺
BE1011425A3 (fr) Procede de revetement d&#39;une bande d&#39;acier par galvanisation au trempe.
EP4370719A1 (fr) Refroidissement liquide d&#39;une bande en defilement dans une ligne continue
FR2689909A1 (fr) Procédé et installation d&#39;élaboration de produits métallurgiques finis et galvanisés.
EP2173918B1 (fr) Installation de revetement d&#39;une bande metallique
BE901571A (fr) Procede de depot d&#39;un revetement metallique a chaud en continu sur un produit ferreux a la sortie du laminoir.
WO1993007304A1 (fr) Procede pour la galvanisation en ligne d&#39;objets metallurgiques discontinus
EP2927343A1 (fr) Installation et procédé de décapage et de revêtement métallique d&#39;une bande métallique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14815057

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014815057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014815057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15101137

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167017915

Country of ref document: KR

Kind code of ref document: A