WO2015080509A1 - 다베포에틴 알파의 정제 방법 - Google Patents

다베포에틴 알파의 정제 방법 Download PDF

Info

Publication number
WO2015080509A1
WO2015080509A1 PCT/KR2014/011527 KR2014011527W WO2015080509A1 WO 2015080509 A1 WO2015080509 A1 WO 2015080509A1 KR 2014011527 W KR2014011527 W KR 2014011527W WO 2015080509 A1 WO2015080509 A1 WO 2015080509A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
alfa
washing
dabepoetin
anion exchange
Prior art date
Application number
PCT/KR2014/011527
Other languages
English (en)
French (fr)
Inventor
이윤정
김경화
양유희
유정민
김세준
문지현
오후근
이동억
이원정
이정록
이정민
최은영
하경식
Original Assignee
씨제이헬스케어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이헬스케어 주식회사 filed Critical 씨제이헬스케어 주식회사
Priority to JP2016525549A priority Critical patent/JP6232130B2/ja
Priority to US15/039,569 priority patent/US10723775B2/en
Priority to CN201480065236.1A priority patent/CN105764915B/zh
Priority to RU2016123352A priority patent/RU2643365C2/ru
Priority to EP14865782.8A priority patent/EP3075740B1/en
Priority to MX2016005264A priority patent/MX2016005264A/es
Priority to BR112016009421-2A priority patent/BR112016009421B1/pt
Publication of WO2015080509A1 publication Critical patent/WO2015080509A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography

Definitions

  • the present invention relates to a method for purifying darbepoetin alpha that selectively separates only structural subtypes having high sialic acid content from a mixture of structural subtypes of dabepoetin alpha having various sialic acid contents.
  • Darbepoetin Alfa is an analog of EPO in which 5 amino acids in the molecule of erythropoietin (EPO) are substituted to add two N-sugar chains (see WO2001076640).
  • Biochemical properties such as molecular weight and isoelectric point are distinguished from EPO, but they are proteins for promoting red blood cell production such as EPO.
  • dabepoetin alfa has a high sialic acid content and a plasma half-life of mouse, rat, dog, and human is about three times longer than erythropoietin (Pedrazzoli P, Cinieri S, Lorusso V, Gamucci T, Secondino S, Silvestris N 2007 Nov- Dec, 27 (6C), 4421-24; Anticerancer Res.), Have been known to have higher biological activity than natural EPO as degradation in vivo is inhibited.
  • Dabepoetin alfa has up to 22 structural isoforms due to the difference in sialic acid content due to glycation, and higher sialic acid content shows higher isoelectric point and high therapeutic value. Therefore, selective separation and purification of only structural subtypes having high sialic acid content is an important problem in the field of protein therapy using dabepoetin alfa.
  • EPO and EPO analogs include anion exchange cation exchange chromatography, hydrophobic-interaction, size-exclusion chromatography, and the like.
  • WO2010 / 027869 discloses a method for purifying EPO by sequentially applying hydrophobic interactions, anion exchanges, cation exchanges and size exclusion chromatography.
  • WO2003 / 045996 discloses a method for purifying recombinant human EPO by performing reverse phase chromatography, anion exchange and size exclusion chromatography.
  • WO1995 / 005465 discloses a method of applying an anion exchange resin and a C4 resin
  • WO2010 / 008823 describes purifying dabepoetin alfa having a high sialic acid content of isoelectric point 4.5 or less.
  • a flow through process is proposed in which a desired protein flows into a chromatographic treatment solution without being adsorbed to a column of a cation exchange resin.
  • the above methods require enormous cost and time due to the use of several stages of resin, and thus are not suitable for mass production applications.
  • the Republic of Korea Patent Publication 10-2013-0042107 in order to implement a simplified process than the four-step process to adopt a three-step process of sequentially applying anion, hydroxyapatite, anion exchange chromatography, low isoelectric point
  • a method of adsorption and washing under specific pH conditions upon application of secondary anion exchange resin chromatography to selectively separate subtypes in particular, in order to obtain a subtype having a low isoelectric point, a method of adsorbing dabepoetin alfa to a column at pH 4.0 to 5.0 and then washing with a buffer of pH 2.0 to 2.4 is disclosed.
  • the proposed method may be advantageous in terms of time and cost in the mass production process in that the steps are simplified to the conventional process, but mass production at low pH (pH 2.2 ⁇ 2.4) conditions as suggested in the above patents
  • a large amount of toxic acid solution such as HCl is used, which is not preferable in terms of safety.
  • the reaction of subtypes at a given pH condition is not constant when the processing capacity of the column increases at scale-up, it is less reproducible in mass production when controlling the pH conditions of the buffer to obtain a subtype of the desired isoelectric point range. .
  • the process step is simpler than the existing purification method, and it is easier to control the process conditions.
  • the improved method of purifying dabepoetin alfa which can stably reproduce successful process conditions while reducing cost and time in mass production application The demand is high.
  • the present inventors endeavored to develop a method for purifying darbepoetin alfa that is simpler than the existing process but easier to control the process. As a result, it was surprisingly confirmed that only a simple process using anion and arginine can separate dabepoetin alfa having a high sialic acid content in a short time and completed the present invention.
  • the method of the present invention is a novel method of purifying dabepoetin alfa, which is convenient and easy to apply to production. Productivity can be increased.
  • FIG. 6 is an IEF result showing isoelectric points for each fraction of FIG. 5.
  • the present invention provides a method for purifying darbepoetin alpha from a mixture of structural subtypes of darbepoetin alpha having various sialic acid contents.
  • the dabepoetin alfa is purified by anion exchange chromatography comprising washing with a washing buffer containing arginine. It provides a method for purification.
  • the method for purifying darbepoetin alfa comprises performing at least one anion exchange chromatography, wherein performing the anion exchange chromatography is a mixture of various structural subtypes of darbepoetin alfa. Binding to an anion exchange resin, washing the resin with a buffer containing arginine and eluting dabepoetin alfa bound to the column from the chromatography column.
  • the present invention comprises the steps of: (a) loading a mixture comprising darbepoetin alfa having various sialic acid contents into an anion exchange chromatography column to bind darbepoetin alfa to the column; (b) washing the chromatography column with a wash buffer comprising arginine; And (c) eluting darbepoetin alpha retained in the chromatography column from the column.
  • the present invention comprises the steps of: (a) subjecting a biological fluid comprising dabepoetin alfa to anion exchange chromatography to elute a fraction comprising dabepoetin alfa; (b) subjecting the eluate produced in step (a) to hydroxyapatite resin chromatography to elute the fraction comprising dabepoetin alfa; (c) loading the eluate produced in step (b) onto an anion exchange chromatography column to bind dabepoetin alfa to the column; (d) washing said column in step (c) with a wash buffer comprising arginine; And (e) eluting darbepoetin alpha, which is bound to the column in step (d), from the column.
  • Darbepoetin alfa is a recombinant form of the glycoprotein erythropoietin (EPO), in which two amino acids in the molecule of erythropoietin are substituted to add two N-sugar chains. It is a glycoprotein. Biochemical properties such as molecular weight and isoelectric point are distinguished from erythropoietin. Darbepoetin alfa induces red blood cell production and is used as a therapeutic agent for anemia associated with chemotherapy of renal failure or cancer.
  • EPO glycoprotein erythropoietin
  • Dabepoetin alfa has a plasma half-life longer than erythropoietin due to the addition of sugar chains, and there may be various structural isodors depending on the sialic acid content.
  • Structural subtypes with high sugar chains and sialic acid content of dabepoetin alfa have low isoelectric points, and these structural subtypes have high biological activity in vivo. Therefore, the selective separation and purification of only structural subtypes having high sugar chains and sialic acid content with high purity is an important problem in protein therapeutics using the dabepoetin alfa, but to date, the existing purification process uses several stages of resin and thus costs There was a problem that enormously enters time. Therefore, the present inventors have developed a method for separating and purifying only the desired glycosylated dabepoetin alpha in a short time by a simple process.
  • dabepoetin alfa Since dabepoetin alfa has a higher degree of glycosylation than EPO, it has a higher sialic acid content per mole than EPO, which is only 13 moles of sialic acid per mole, and its maximum theoretical value is 22 moles (Development and characterization of novel erythropoiesis). stimulating protein (NESP), British Journal of Cancer (2001) 84 (Supplement 1), 3-10).
  • dabepoetin alfa separated and purified by the purification method of the present invention is characterized in that the sugar chain content and sialic acid content is high, and preferably the dabepo having a structural subtype having an isoelectric point having a low isoelectric point of pH 2.0 to 4.0 Ethyne alpha, more preferably the isoelectric point may be 3.5 or less.
  • biological fluid refers to all cultures containing or derived from cells, cell components or cell products, including but not limited to cell cultures, cell culture supernatants, cell lysates, cell extracts, tissue extracts, Blood, plasma, serum, milk, urine, fractions thereof, and the like.
  • various types of biological fluids as described above may be used.
  • it may be a culture of yeast, plant cells or animal cells, more preferably animal cell cultures in which nucleotides encoding dabepoetin alfa have been transformed by genetic recombination, more preferably the animal
  • the cell may be an animal cell culture in which the cell is CHO (Chinese hamster ovary).
  • the biological fluid of the present invention can be obtained by performing diafiltration using ultrafiltration. Diafiltration using this ultrafiltration method removes less than 10,000 MWCO (Molecuar weight cut off) low-molecular substances (e.g., surfactants, dyes, small peptides, sugar components, etc.) in the culture medium. In addition, it is possible to improve the column adsorption efficiency by exchanging the buffer with a subsequent chromatography equilibration buffer.
  • MWCO Molecuar weight cut off
  • the supernatant of the culture is diafiltered with an ultrafiltration system (using 10 mM sodium phosphate buffer) to perform biological fluids. It was used as.
  • anion exchange chromatography means that molecules can be separated according to their charge by binding a negatively charged (or acidic) molecule to a positively charged support, and the homologue of the molecules (acidic, basic) And neutral) can be easily separated by this technique.
  • resin that can be used in the anion exchange chromatography of the present invention strong anion exchange resins and weak anion exchange resins can be used without limitation, for example, Sephadex, Sepharose, Sauce, Mono, Mini (trade name, GE healthcare), etc.
  • a resin having a functional group of the resin such as Q (Quaternary amine), DEAE (DiEthylAminoEthyl), or QAE (Quaternary Amino Ethyl), may be used.
  • the functional group of the resin may be Q or DEAE, and most preferably Q-sepharose, which is a strong anion exchange resin, may be used.
  • Anion exchange chromatography can be performed by column chromatography, or in batch mode. For commercial manufacturing, it may be desirable to use a batch mode.
  • the anion exchange resin used in the anion exchange chromatography of the present invention can be equilibrated with an aqueous buffer before adsorbing the culture, and may be used Tris-HCl, sodium phosphate buffer and the like as the buffer.
  • anion exchange resin used in the anion exchange resin chromatography of the present invention may be equilibrated with an aqueous buffer before adsorbing the culture.
  • the stationary phase of the adsorption chromatography used in the present invention may include silica, alumina, magnesium oxide and hydroxyapatite, most preferably hydroxyapatite.
  • hydroxyapatite it is known that it is normally used for the removal of nucleic acid, such as DNA.
  • the darbepoetin alpha having high sialic acid content is selectively selected by applying anion exchange chromatography to the fraction of the darbepoetin alpha containing structural subtypes of various sialic acid contents.
  • the step of washing with a washing buffer containing arginine is performed to obtain the structural isoform dabepoetin having an isoelectric point higher than the desired isoelectric point, in order to obtain a darbepoetin alfa, which is a structural isoform having the desired isoelectric point. It may be characterized in that the washing.
  • the anion exchange chromatography is washed using a wash buffer containing arginine.
  • the washing buffer containing arginine may preferably be pH 3.0 or more and 5.0 or less, and further, may include arginine and further include any one or more selected from the group consisting of NaCl and urea (Urea). have.
  • the wash buffer may be one containing more than 5 mM NaCl or less than 90 mM and / or less than 3M or less than 8M urea.
  • a mixture comprising darbepoetin alfa having various sialic acid contents is loaded onto an anion exchange chromatography column to bind darbepoetin alfa to the column and washing the chromatography column with a wash buffer comprising arginine. Washing with a wash buffer before or after with or without arginine, and more preferably washing buffer having a pH of 6 to 8 or less before washing the chromatography column with a wash buffer containing arginine.
  • the first step of washing the column further comprising the step of washing the chromatography column with a wash buffer containing arginine, the second step of washing the column with a wash buffer containing arginine pH 3 or more and pH 5 or less It may be
  • Washing buffers used in the washing step include sodium phosphate buffer, sodium acetate buffer, citrate buffer, glycine-HCl buffer, citric acid-sodium phosphate (citric acid-sodium phosphate) buffer may be used. More preferably, the wash buffer in the first wash may be a sodium phosphate solution at pH 6-8, the wash buffer in the second wash may be a glycine-HCl solution at pH 3-5, and the desired pH range NaCl, Urea, etc. may be further included to achieve ionic strength of the mobile phase.
  • FIGS. 2 and 3 show the chromatographic results when using glycine-HCl with arginine as the wash buffer
  • Figure 3 shows the chromatography results when using sodium acetate buffer containing arginine.
  • dabepoetin alfa with high sialic acid content is eluted. That is, when the pH buffer solution containing arginine is applied, high-quality dabepoetin alpha having a high sialic acid content having an isoelectric point of 2 to 3 is concentrated and eluted around the isoelectric point 2 (see FIGS. 2 and 3 phase arrows). .
  • the present invention further provides a method for purifying darbepoetin alfa that selectively separates only structural subtypes having high sialic acid content by further using gel filtration chromatography. That is, it may be a purification method further comprising the step of applying the anion exchange chromatography eluate obtained by gel filtration chromatography to fractionate.
  • Gel-filtration chromatography can be used to separate protein polymers by separating proteins according to the size of the protein.
  • resin to be used in the gel-filtration chromatography of the present invention Superdex, Super Ross, Sephacryl (trade name: GE healthcare), and the like may be used, and most preferably Sephacryl S-100 and S-200. , S-300 can be used.
  • the gel filtration chromatography is sufficiently equilibrated with a buffer solution, and then the eluate obtained from the anion chromatography using the washing buffer containing arginine is loaded and fractionated into the equilibrated gel filtration chromatography to obtain an eluate having a desired isoelectric point.
  • the sialic acid content in the order of fractions, ie, the fraction eluted first, may be high.
  • 20 mM sodium phosphate containing 140 mM NaCl is filled with about 1.7 L of Sephacryl S-100 to 200 (GE Healthcare, Inc.) resin in an XK-50 / 90 column (GE Healthcare, Inc.).
  • the gel filtration column was equilibrated with sufficient flow of buffer (pH 6.2).
  • the concentrated solution containing dabepoetin alfa was concentrated and flowed about 60 ml into the column at a flow rate of 7.5 ml / min, followed by a sufficient flow of 20 mM sodium phosphate buffer (pH 6.2) containing 140 mM NaCl to obtain sialic acid content.
  • the method for purifying dabepoetin alfa comprises the steps of: (a) subjecting the biological fluid containing dabepoetin alfa to anion exchange chromatography to elute the fraction comprising dabepoetin alfa; (b) subjecting the eluate produced in step (a) to hydroxyapatite resin chromatography to elute the fraction comprising dabepoetin alfa; (c) loading the eluate produced in step (b) onto an anion exchange chromatography column to bind dabepoetin alfa to the column; (d) washing said column in step (c) with a wash buffer comprising arginine; And (e) eluting darbepoetin alfa retained in the column in step (d) from the column.
  • Step (a) is a step of eluting the fraction containing dabepoetin alfa by applying a biological fluid containing dabepoetin alfa to anion exchange chromatography, preferably in a equilibrated anion exchange chromatography column.
  • Biological fluids containing alpha were adsorbed and washed with a pH 6-8 wash buffer containing 10-100 mM NaCl, followed by Dabepo with an elution buffer pH 6-8 containing 100-300 mM NaCl. Eluting the fraction comprising ethyn alpha.
  • anion exchange chromatography of the present invention and the resin constituting the column are the same as described above.
  • the culture medium obtained by expressing dabepoetin alpha from CHO cells transformed with the vector containing dabepoetin alpha is converted into an ultrafiltration system (10 mM sodium phosphate buffer, pH 7.0).
  • XK-50 column filled with anion exchange (Q fast flow, GE Healthcare) resin which was diafiltered using a molecular weight cut off 10,000) and equilibrated with 10 mM sodium phosphate buffer (pH 7.0). After application, the column was equilibrated again with about 2 CV (column volume) of 10 mM sodium phosphate buffer (pH 7.0).
  • Step (b) is carried out by loading the eluate recovered from step (a) into a stationary phase of equilibrated adsorption chromatography more preferably hydroxyapatite resin, followed by a wash buffer of pH 6 to 8 containing 0 to 100 mM sodium phosphate. After washing with, it may be a step of obtaining a fraction containing dabepoetin alfa in the solution coming out without sticking to the resin in the loading and washing.
  • the stationary phase of the adsorption chromatography used in the present invention may include silica, alumina, magnesium oxide and hydroxyapatite, most preferably hydroxyapatite.
  • hydroxyapatite resin chromatography or "hydroxyapatite chromatography” means adsorption chromatography having a fixed phase filled with hydroxyapatite resin, and may be used interchangeably with "hydroxyapatite column”.
  • sodium phosphate buffer potassium phosphate buffer or Tris buffer may be preferably used.
  • the anion exchange resin eluate is applied to an XK-50 column filled with hydroxyapatite resin equilibrated with 7 mM sodium phosphate buffer (pH 7.0), followed by 7 mM sodium phosphate buffer (pH). 7.0) was flowed in a volume of about 3 columns to elute darbepoetin alfa with a lot of sugar chains attached thereto.
  • hydroxyapatite resin chromatography it was confirmed by RP-HPLC that biological impurities were removed and purified into a solution containing a large amount of darbepoetin alfa (FIG. 1C).
  • Example 1 Obtaining a mixture of darbepoetin alpha subtypes having various sialic acid contents by anion exchange chromatography and hydroxyapatite adsorption chromatography
  • anion exchange chromatography was specifically carried out as follows. Approximately 100 mL of anion exchange (Q fast flow, GE Healthcare) resin was charged to the XK-50 column (GE Healthcare) to equilibrate the column with sufficient flow of 10 mM sodium phosphate buffer (pH 7.0). The prepared Q Sepharose FF column was subjected to about 0.1-0.2 l of the diafiltration solution at a flow rate of 15 ml / min, and then again flowed by about 2 CV (column volume) of 10 mM sodium phosphate buffer (pH 7.0) to equilibrate the column. Then, after washing with a wash buffer containing 10 to 100mM NaCl, eluted with an elution buffer of pH 6 to 8 containing 100 to 300 mM NaCl.
  • the hydroxyapatite adsorption chromatography was specifically performed as follows for the eluate which was subjected to the anion exchange chromatography.
  • About 100 ml of hydroxyapatite (GE Healthcare) resin was filled in XK-50 column (GE Healthcare) and the column was equilibrated with sufficient flow of 7 mM sodium phosphate buffer (pH 7.0).
  • About 0.1 L of the diafiltration solution was flowed to the prepared hydroxyapatite column at a flow rate of 10 mL / min, and again 7 mM sodium phosphate buffer (pH 7.0) was flowed about 3 CV (column volume).
  • dabepoetin alfa with various sialic acid contents is included in the solution which is not attached to the resin during loading and washing, and the solutions are collected and the next process is performed.
  • a buffer containing 0.1 to 0.7 M potassium phosphate pH 7 was flowed into the resin to elute the fraction containing dabepoetin alpha and impurities with a low sugar chain to remove it from the resin. It was confirmed by RP-HPLC that the biologically derived impurities were removed and purified into a solution containing a large amount of darbepoetin alfa (FIG. 1).
  • Example 2 Purification of high sialic acid content of dabepoetin alfa by washing with arginine in anion exchange chromatography
  • the washing method applying the arginine in Example 2 was confirmed to be an important element in the purification of the high sialic acid content of dabepoetin alpha.
  • Example 2 the solution containing darbepoetin alfa obtained in Example 1 was adsorbed to Q Sepharose FF, and then the equilibration buffer 10 mM sodium phosphate buffer (pH 7.0) was added at about 2 CV ( column volume) and the column was first washed. Unlike Example 2 in the second wash, instead of glycine-HCl buffer, it was washed with sodium acetate buffer of pH 3 to 5 or less. As a result of the eluting, it was confirmed that the isoelectric point was obtained with a high sialic acid content of bebepoetin of 2 to 3 or less (arrow of FIG. 3).
  • the first and second washes were performed in the same manner as in Example 2 with the exception of a second wash without the addition of arginine.
  • a second wash without the addition of arginine.
  • the isoelectric point was eluted to dabepoetin containing 2 to 3 or lower sialic acid, and the quality was significantly reduced (arrow of FIG. 4).
  • dabepoetin alfa with high sialic acid content can be purified by washing with a buffer containing arginine.
  • a buffer containing arginine By performing gel filtration chromatography and fractionating, it was confirmed that dabepoetin alfa having high sialic acid content of high purity can be purified, thereby having high sialic acid content of high purity using the purification method of the present invention. It was confirmed that bepoetin alfa could be purified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 다양한 시알산 함량을 갖는 다베포에틴 알파의 구조적 아형들의 혼합물로부터 시알산 함량이 높은 구조적 아형만을 선택적으로 분리하는 다베포에틴 알파의 정제 방법에 관한 것이다. 본 발명의 방법은 생산 적용이 편리하고 간편한 신규한 다베포에틴 알파의 정제 방법으로, 본 발명에 의해 다베포에틴 알파의 대량 제조시 고순도의 다베포에틴 알파의 수득은 물론 공정 효율 개선에 따른 비약적인 생산성의 증대가 가능하다.

Description

다베포에틴 알파의 정제 방법
본 발명은 다양한 시알산 함량을 갖는 다베포에틴 알파의 구조적 아형들의 혼합물로부터 시알산 함량이 높은 구조적 아형만을 선택적으로 분리하는 다베포에틴 알파의 정제 방법에 관한 것이다.
다베포에틴 알파 (Darbepoetin Alfa, NESP)는 에리스로포이에틴 (EPO)의 분자 내 아미노산 5개를 치환하여 2개의 N-당쇄를 추가시킨 EPO의 유사체이다(국제공개 WO2001076640호 참조). EPO와는 분자량, 등전점 등 생화학적 특성이 구별되나 EPO와 같은 적혈구 생성 촉진 단백질이다.
다베포에틴 알파는 시알산 함량이 높아 에리스로포이에틴에 비해 마우스, 랫트, 개 및 인간 등에서 혈장 반감기가 약 3배 길기 때문에 (Pedrazzoli P, Cinieri S, Lorusso V, Gamucci T, Secondino S, Silvestris N 2007 Nov-Dec,27(6C),4419-24;Anticancer Res.), 생체 내 분해가 억제됨에 따라 자연상태인 EPO보다 높은 생물학적 활성을 가진다고 알려져 있다.
다베포에틴 알파는 당쇄화에 의한 시알산 함량의 차이로 인해 최대 22개의 구조적 아형(isoform)을 가지며, 시알산 함량이 높을수록 높은 등전점을 보이고 높은 치료적 가치를 보유한다. 따라서, 시알산 함량이 높은 구조적 아형들만을 선택적으로 분리 정제하는 것은 다베포에틴 알파를 이용하는 단백질 치료 분야에서 중요한 문제이다.
종래 EPO 및 EPO 유사체를 정제하는 방법으로는 음이온 교환 양이온 교환 크로마토그래피, 소수성 상호반응(hydrophobic-interaction), 크기배제(size-exclusion) 크로마토그래피 등이 개시되어 있다. 구체적으로는, WO2010/027869에는 소수성 상호반응, 음이온 교환, 양이온 교환 및 크기 배제 크로마토크래피를 순차적으로 적용하여 EPO를 정제하는 방법이 개시되어 있다. WO2003/045996에는 역상 크로마토그래피, 음이온 교환 및 크기 배제 크로마토크래피를 행하여 재조합 인간 EPO를 정제하는 방법이 개시되어 있다.
특히 다베포에틴 알파를 정제하는 방법으로서, WO1995/005465에는 음이온 교환 수지 및 C4 수지를 적용하는 방법이 개시되어 있으며, WO2010/008823에는 등전점 4.5 이하의 시알산 함량이 높은 다베포에틴 알파를 정제하기 위하여 목적하는 단백질이 양이온 교환수지의 컬럼에 흡착되지 않고 크로마토그래피 처리 용액에 흘러나오도록 하는 플로우쓰루(flow through) 공정을 제시하고 있다. 그러나 상기 방법들의 경우 여러 단계의 수지를 이용함으로 인해 비용과 시간이 막대하게 소요되며, 따라서 대량 생산 적용에 적합하지 않은 단점이 있다.
한편 대한민국 공개특허 10-2013-0042107에서는, 상기 4단계의 공정보다 단순화된 공정을 구현하기 위하여 음이온, 하이드록시아파타이트, 음이온 교환 크로마토그래피를 순차적으로 적용하는 3단계의 공정을 채용하고, 등전점이 낮은 아형을 선택적으로 분리하기 위하여 2차 음이온 교환수지 크로마토그래피 적용시 특정의 pH 조건 하에 흡착 및 세척을 행하는 방법을 개시하고 있다. 특히 낮은 등전점을 가지는 아형을 얻기 위하여 pH 4.0~5.0 조건에서 다베포에틴 알파를 컬럼에 흡착시킨 후 pH 2.0~2.4의 완충액으로 세척하는 방법을 개시하고 있다.
상기 제안된 방법은 기존의 공정보다 다소 단계가 간이화되었다는 점에서 대량 생산 공정 적용시 시간 및 비용 측면에서 유리할 수 있지만, 상기 공개특허에서 제시하는 바와 같이 낮은 pH(pH 2.2~2.4) 조건을 대량 생산 조건에서 구현하려면 HCl 등 유독성 산성용액을 대량으로 사용하여야 하므로 안전성 측면에서 바람직하지 않다. 또한 스케일 업 시 컬럼의 처리 용량이 증가할 때 주어진 pH 조건에서 아형의 반응이 일정하지 않기 때문에, 완충액의 pH 조건을 제어하여 원하는 등전점 범위의 아형을 얻으려는 할 경우 대량 생산에서의 재현 가능성이 낮다.
즉, 기존의 다베포에틴 알파의 정제 방법을 이용할 경우 여러 단계의 수지를 이용한 크로마토그래피를 사용하는 복잡한 공정을 거쳐야 하므로 그로 인한 비용과 시간이 막대하게 소요되거나, 기존의 공정단계를 줄여서 정제할 경우 공정 간소화로 인해 감소될 수 있는 정제효과를 보상하기 위해 pH 등 정제 조건을 정밀하게 제어해야 하지만 생산규모가 대형화될수록 이를 제어하기가 용이치 않음을 알 수 있다.
이에, 기존 정제 방법보다 공정 단계가 간소하면서도 공정 조건을 제어하기가 용이하여 대량 생산 적용시 비용 및 시간이 절감되면서도 안정적으로 성공 공정 조건을 재현할 수 있는 개선된 다베포에틴 알파의 정제 방법에 대한 수요가 높다.
본 발명자들은 기존의 공정보다 간소하면서도 공정 제어가 용이한 다베포에틴 알파의 정제 방법을 개발하고자 노력하였다. 그 결과, 놀랍게도 음이온과 아르기닌을 이용한 간이한 공정만으로 시알산 함량이 높은 다베포에틴 알파를 단시간에 분리할 수 있음을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 다양한 시알산 함량을 갖는 다베포에틴 알파의 구조적 아형들의 혼합물로부터 시알산 함량이 높은 다베포에틴 알파의 정제 방법을 제공하는 것이다.
본 발명의 방법은 생산 적용이 편리하고 간편한 신규한 다베포에틴 알파의 정제 방법으로, 본 발명에 의해 다베포에틴 알파의 대량 제조시 고순도의 다베포에틴 알파의 수득은 물론 공정 효율 개선에 따른 비약적인 생산성의 증대가 가능하다.
도 1은 음이온 교환-하이드록시아파타이트 수지 크로마토그래피 정제를 통해 얻은 다베포에틴 알파의 용출액에 대하여 C4 HPLC 분석 크로마토그래피로 순도를 측정한 결과이다.
도 2은 아르기닌을 포함한 글라이신-HCl 완충액을 적용한 음이온 교환 크로마토그래피의 IEF 결과이다.
도 3는 아르기닌을 포함한 소듐-아세테이트 완충액을 적용한 음이온 교환 크로마토그래피의 IEF 결과이다.
도 4은 아르기닌 없이 글라이신-HCl 완충액을 포함한 완충액을 적용한 음이온 교환 크로마토그래피의 IEF 결과이다.
도 5는 음이온 교환 크로마토그래피에 의하여 얻어진 다베포에틴 알파의 분획물에 대하여 겔 여과 크로마토그래피를 수행한 결과이다.
도 6은 도 5의 각 분획별 등전점을 보여주는 IEF 결과이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 다양한 시알산 함량을 갖는 다베포에틴 알파의 구조적 아형들의 혼합물로부터 다베포에틴 알파의 정제 방법을 제공한다.
구체적으로, 다베포에틴 알파의 다양한 아형들의 혼합물로부터 시알산 함량이 높은 구조적 아형만을 선택적으로 분리하기 위해, 아르기닌을 포함한 세척 완충액으로 세척하는 단계를 포함하는 음이온 교환 크로마토그래피에 의해 다베포에틴 알파를 정제하는 방법을 제공한다.
바람직하게, 본 발명에 의한 다베포에틴 알파를 정제하는 방법은 하나 이상의 음이온 교환 크로마토그래피를 수행하는 단계를 포함하고, 상기 음이온 교환 크로마토그래피를 수행하는 단계는 다베포에틴 알파의 다양한 구조적 아형들의 혼합물을 음이온 교환 수지에 결합시키는 단계, 아르기닌을 포함한 완충액으로 상기 수지를 세척하는 단계 및 크로마토그래피 컬럼으로부터 컬럼에 결합된 다베포에틴 알파를 용출하는 단계를 포함한다.
바람직한 일 양태로, 본 발명은 (a) 다양한 시알산 함량을 갖는 다베포에틴 알파를 포함하는 혼합물을 음이온 교환 크로마토그래피 컬럼에 로딩하여 다베포에틴 알파를 컬럼에 결합시키는 단계; (b) 상기 크로마토그래피 컬럼을 아르기닌(Arginine)을 포함한 세척 완충액으로 세척하는 단계; 및 (c) 상기 크로마토그래피 컬럼에 결합이 유지된 다베포에틴 알파를 컬럼으로부터 용출하는 단계를 포함하는, 다베포에틴 알파의 정제 방법일 수 있다.
바람직한 일 양태로, 본 발명은 (a) 다베포에틴 알파를 포함하는 생물학적 유액을 음이온 교환 크로마토그래피에 적용하여 다베포에틴 알파를 포함하는 분획을 용출하는 단계; (b) 단계 (a)에서 생성된 용출액을 하이드록시아파타이트 수지 크로마토그래피에 적용하여 다베포에틴 알파를 포함하는 분획을 용출하는 단계; (c) 단계 (b)에서 생성된 용출액을 음이온 교환 크로마토그래피 컬럼에 로딩하여 다베포에틴 알파를 컬럼에 결합시키는 단계; (d) 단계 (c)에서 상기 컬럼을 아르기닌을 포함한 세척 완충액으로 세척하는 단계; 및 (e) 단계 (d)에서 상기 컬럼에 결합이 유지된 다베포에틴 알파를 컬럼으로부터 용출하는 단계를 포함하는, 다베포에틴 알파의 정제 방법일 수 있다.
이하, 본 발명을 자세히 설명한다.
본 발명에서 사용되는 용어, "다베포에틴 알파 (Darbepoetin alfa)"는 당단백질인 에리스로포이에틴 (erythropoietin, EPO)의 재조합 형태로서, 에리스로포이에틴의 분자 내 아미노산 5개를 치환하여 2개의 N-당쇄를 추가시킨 당단백질이다. 에리스로포이에틴과는 분자량, 등전점 등 생화학적 특성이 구별된다. 다베포에틴 알파는 적혈구 생성을 유도하여, 신부전증 또는 암의 화학치료와 관련된 빈혈 치료제로 이용된다. 다베포에틴 알파는 당쇄의 추가로 인하여 에리스로포이에틴에 비해서 혈장 반감기가 약 3배 이상 길며, 시알산 함량에 따른 구조적 아형 (isodorm)이 다양하게 존재할 수 있다. 다베포에틴 알파의 당쇄 및 시알산 함량이 높은 구조적 아형들은 낮은 등전점을 가지며, 이러한 구조적 아형은 생체 내 높은 생물학적 활성을 가진다. 따라서, 당쇄 및 시알산 함량이 높은 구조적 아형들만을 선택적으로 고순도로 분리 정제하는 것은 상기 다베포에틴 알파를 이용하는 단백질 치료제에서 중요한 문제이나, 현재까지도 기존의 정제 공정은 여러 단계의 수지를 이용하므로 비용과 시간이 막대하게 들어가는 문제점이 있었다. 이에 본 발명자들은 간이한 공정으로 원하는 당쇄화가 높은 다베포에틴 알파만을 단시간에 분리 정제하는 방법을 개발하였다.
다베포에틴 알파는 EPO 대비 당쇄화 정도가 높기 때문에 1몰당 시알산 함량이 최대 13몰에 그치는 EPO보다 1몰당 시알산 함량이 높으며 그 이론적 최대치는 최대 22몰인 것으로 알려져 있다(Development and characterization of novel erythropoiesis stimulating protein (NESP), British Journal of Cancer (2001) 84 (Supplement 1), 3-10).
특히, 본 발명의 정제 방법에 의해 분리 정제되는 다베포에틴 알파는 당쇄 함량 및 시알산 함량이 높은 것을 특징으로 하며, 바람직하게는 등전점이 pH 2.0 내지 4.0로 낮은 등전점을 갖는 구조적 아형을 갖는 다베포에틴 알파일 수 있고, 더 바람직하게는 등전점이 3.5 이하일 수 있다.
본 발명에서 "생물학적 유액"은 세포, 세포 구성요소 또는 세포 산물을 함유하거나 그로부터 유래된 모든 배양액을 말하며, 이에 한정되는 것은 아니나 세포 배양물, 세포 배양 상등액, 세포 용해물, 세포 추출물, 조직 추출물, 혈액, 혈장, 혈청, 밀크, 뇨, 이들의 분획 등을 포함한다. 본 발명의 정제 방법에서는 상기와 같은 다양한 형태의 생물학적 유액을 사용할 수 있다. 바람직하게는, 효모, 식물 세포 또는 동물 세포의 배양액일 수 있으며, 더 바람직하게는 다베포에틴 알파를 코딩하는 뉴클레오티드가 유전자 재조합 방식으로 형질 전환된 동물 세포 배양액을 사용하며, 더욱 바람직하게는 상기 동물세포가 CHO (중국햄스터 난소)인 동물 세포 배양액일 수 있다. 동물 세포 배양액 등을 이용하는 경우, 당해 분야에 공지된 바와 같이, 배양액을 원심분리하여 그 상등액을 이용하는 것이 더욱 바람직하다.
바람직하게는, 본 발명의 생물학적 유액은 한외여과법을 이용한 정용여과를 수행하여 수득할 수 있다. 본 한외여과법을 이용한 정용여과는 배양액 내의 10,000 M.W.C.O.(Molecuar weight cut off) 이하의 저분자 물질 (예를 들어, 계면활성제 (surfactant), 염색약, 저분자 펩타이드 (small peptide), 당성분 등)을 제거할 뿐만 아니라, 이후의 크로마토그래피 평형 완충액으로 완충액을 교환하여 컬럼 흡착 효율을 향상시키는 것이 가능하다.
본 발명의 구체적인 일 실시예에서는 다베포에틴 알파를 포함하는 벡터로 형질전환된 CHO 세포를 배양한 후 배양액의 상등액을 한외 여과 시스템(10 mM 소듐 포스페이트 완충액 이용)으로 정용여과 (diafiltration)하여 생물학적 유액으로 이용하였다.
본 발명에서 "음이온 교환 크로마토그래피"란 양으로 하전된 지지체에 음으로 하전된 (또는 산성) 분자를 결합시키는 것에 의해 분자들을 이들의 전하에 따라 분리할 수 있는 것으로서, 분자들의 동족체 (산성, 염기성 및 중성)는 이 기법에 의해 쉽게 분리할 수 있다. 본 발명의 음이온 교환 크로마토그래피에 사용될 수 있는 수지로는 강음이온 교환 수지와 약음이온 교환 수지를 제한 없이 사용할 수 있으며, 그 예로 세파덱스, 세파로즈, 소스, 모노, 미니 (상품명, GE healthcare) 등일 수 있으며, 이에 제한되는 것은 아니나 상기 수지의 작용기가 Q (Quaternary amine), DEAE (DiEthylAminoEthyl) 또는 QAE (Quaternary Amino Ethyl) 등인 수지를 사용할 수 있다. 바람직하게는 상기 수지의 작용기가 Q 또는 DEAE 일 수 있으며, 가장 바람직하게는 강음이온 교환 수지인 Q-세파로즈를 사용할 수 있다.
음이온 교환 크로마토그래피는 칼럼 크로마토그래피에 의해 수행하거나, 또는 배치 모드(batch mode)로 수행할 수 있다. 상업적 제조인 경우, 배치 모드를 사용하는 것이 바람직할 수 있다. 또한, 본 발명의 음이온 교환 크로마토그래피에 사용되는 음이온 교환 수지는 배양액을 흡착시키기 전에 수성 완충액으로 평형화시킬 수 있으며, 완충액으로는 Tris-HCl, 소듐 포스페이트(sodium phosphate) 완충액 등을 사용할 수 있다.
또한, 본 발명의 음이온 교환 수지 크로마토그래피에 사용되는 음이온 교환 수지는 배양액을 흡착시키기 전에 수성 완충용액으로 평형화시킬 수 있다.
본 발명에서 이용되는 흡착 크로마토그래피의 고정상은 실리카, 알루미나, 마그네슘 옥사이드 및 하이드록시아파타이트를 포함될 수 있으며, 가장 바람직하게는 하이드록시아파타이트일 수 있다. 하이드록시아파타이트의 경우, 통상 DNA 등 핵산의 제거용으로 많이 사용하고 있는 것으로 알려져 있다.
다베포에틴 알파의 분획물로부터 생물학적 불순물을 제거한 뒤, 다양한 시알산 함량의 구조적 아형을 포함하고 있는 상기 다베포에틴 알파의 분획물에 음이온 교환 크로마토그래피를 적용하여 시알산 함량이 높은 다베포에틴 알파를 선택적으로 분리한다. 본 발명의 정제 방법에서 아르기닌을 포함한 세척 완충액으로 세척하는 단계는 목적하는 등전점을 가지는 구조적 아형(isoform)인 다베포에틴 알파를 수득하기 위하여, 목적하는 등전점 보다 높은 등전점을 가지는 구조적 아형 다베포에틴을 세척하는 것을 특징으로 하는 것일 수 있다.
본 발명의 목적상, 상기 음이온 교환 크로마토그래피는 아르기닌을 포함하는 세척 완충액을 사용하여 세척한다.
본 발명에서 아르기닌을 포함하는 세척 완충액은 바람직하게는 pH 3.0 이상 5.0 이하인 것일 수 있으며, 또한, 아르기닌을 포함하며, NaCl 및 우레아(Urea)로 구성된 군에서 선택된 어느 하나 이상을 추가로 포함하는 것일 수 있다. 특히, 상기 세척 완충액은 NaCl을 5mM 이상 90 mM 이하로 포함 및/또는 우레아를 3M 이상 8M 이하로 포함하는 것일 수 있다.
바람직하게는, 다양한 시알산 함량을 갖는 다베포에틴 알파를 포함하는 혼합물을 음이온 교환 크로마토그래피 컬럼에 로딩하여 다베포에틴 알파를 컬럼에 결합시키고, 상기 크로마토그래피 컬럼을 아르기닌을 포함한 세척 완충액으로 세척하기 전 또는 후에 아르기닌을 포함하거나 포함하지 않는 세척 완충액으로 세척하는 단계를 추가로 포함할 수 있으며, 더욱 바람직하게는 상기 크로마토그래피 컬럼을 아르기닌을 포함한 세척 완충액으로 세척하기 전에 pH 6 이상 pH 8 이하인 세척 완충액으로 상기 컬럼을 1차 세척하는 단계를 추가로 포함하고, 상기 크로마토그래피 컬럼을 아르기닌을 포함한 세척 완충액으로 세척하는 단계는 pH 3 이상 pH 5 이하인 아르기닌이 포함된 세척 완충액으로 컬럼을 2차 세척하는 단계인 것일 수 있다.
상기 세척하는 단계에서 사용되는 세척 완충액으로는 소듐 포스페이트 (sodium phosphate) 완충액, 소듐 아세테이트 (sodium acetate) 완충액, 사이트레이트 (citrate) 완충액, 글라이신-HCl (glycin-HCl) 완충액, 사이트릭 에시드-소듐 포스페이트 (citric acid-sodium phosphate) 완충액 등이 사용될 수 있다. 더욱 바람직하게는, 1차 세척시의 세척 완충액은 pH 6 내지 8의 소듐 포스페이트 용액일 수 있고, 2차 세척시의 세척 완충액은 pH 3 내지 5의 글라이신-HCl 용액일 수 있으며, 목적하는 pH 범위나 이동상의 이온세기를 달성하기 위하여 NaCl, Urea 등을 더 포함할 수 있다.
상기 아르기닌을 포함한 세척 완충액의 적용은 시알산 함량이 낮은 다베포에틴 알파를 제거하는 중요한 역할을 한다. 도 2는 세척 완충액으로서 아르기닌이 포함된 글라이신-HCl을 사용한 경우의 크로마토그래피 결과를, 도 3은 아르기닌이 포함된 소듐 아세테이트 완충액을 사용한 경우의 크로마토그래피 결과를 보여준다. 양 경우 모두 시알산 함량이 높은 다베포에틴 알파가 용출됨이 확인된다. 즉, 아르기닌이 포함된 pH 완충액을 적용한 경우 2~3 사이의 등전점을 갖는 시알산 함량이 높은 고품질의 다베포에틴 알파가 특히 등전점 2 주변에 집중되어 용출된다(도 2 및 도 3 상 화살표 참조).
반면, 다른 조건은 동일하게 유지하되 세척 완충액 내에 아르기닌을 포함시키지 않은 경우에는 다베포에틴 알파의 분획물로부터 시알산 함량이 낮은 구조적 아형들이 등전점 3 주변 및 등전점 3 이후에서 다량 용출되어, 다베포에틴 알파의 구조적 아형들에 대한 정제 효과가 현저히 떨어졌음을 확인할 수 있었다(도 4).
아르기닌을 포함한 세척 완충액을 이용하여 세척을 진행한 후, 시알산 함량이 높은 다베포에틴 알파을 용출하는 단계에서 pH 6 내지 8 의 완충액을 이용하여 단계식 염구배(stepwise salt gradient)를 이용하여 용출시킨다.
또 다른 일 실시양태로서, 본 발명은 겔 여과 (gel filtration) 크로마토그래피를 추가로 이용하여 시알산 함량이 높은 구조적 아형만을 선택적으로 분리하는 다베포에틴 알파의 정제 방법을 제공한다. 즉, 상기 수득한 음이온 교환 크로마토그래피 용출액을 겔 여과 크로마토그래피에 적용하여 분획하는 단계를 추가로 포함하는 정제 방법일 수 있다.
겔 여과(gel-filtration) 크로마토그래피란 단백질의 크기(size)에 따라 단백질을 분리하는 방법으로 단백질 중합체의 분리에 사용될 수 있다. 본 발명의 겔 여과(gel-filtration) 크로마토그래피에 사용될 수지로는 수퍼덱스, 수퍼로스, 세파크릴(상품명: GE healthcare) 등이 사용될 수 있으며, 가장 바람직하게는 세파크릴 S-100, S-200, S-300을 사용할 수 있다.
상기 아르기닌을 포함하는 세척 완충액을 이용한 음이온 크로마토그래피에 의하여 얻어진 용출액에 겔 여과 (gel-filtration) 크로마토그래피를 추가적으로 적용함으로써 더욱 높은 시알산 함량과 99% 이상의 순도를 가지는 다베포에틴 알파를 용출할 수 있다.
먼저 겔 여과 크로마토그래피를 완충액으로 충분히 평형화시킨 후, 평형화된 겔 여과 크로마토그래피에 아르기닌을 포함하는 세척 완충액을 이용한 음이온 크로마토그래피로부터 얻어진 용출액을 로딩시킨 후 분획하여, 목적하는 등전점을 가지는 용출액을 얻을 수 있다. 분획의 순서대로, 즉 먼저 용출되는 분획에서의 시알산 함량이 높은 것일 수 있다.
본 발명의 구체적인 일 실시예에서는 약 1.7 L의 세파크릴 S-100 내지 200(GE Healthcare사) 수지를 XK-50/90컬럼 (GE Healthcare사)에 충진하여 140 mM NaCl이 포함된 20 mM 소듐 포스페이트 완충액 (pH 6.2)을 충분히 흘려 겔 여과 컬럼을 평형화시켰다. 이에 다베포에틴 알파가 포함된 용액을 농축하여 약 60 ㎖을 7.5 ㎖/min의 유속으로 컬럼에 흘린 후, 140 mM NaCl이 포함된 20 mM 소듐 포스페이트 완충액 (pH 6.2)을 충분히 흘려 시알산 함량이 높은 다베포에틴 알파를 포함한 용출액을 분획하였다(도 5). 용출액 분획의 순서대로 다베포에틴 알파의 시알산 함량이 높음을 확인하였다(표 1 및 도 6).
또 다른 양태로서 본 발명에 의한 다베포에틴 알파를 정제하는 방법은 (a) 다베포에틴 알파를 포함하는 생물학적 유액을 음이온 교환 크로마토그래피에 적용하여 다베포에틴 알파를 포함하는 분획을 용출하는 단계; (b) 단계 (a)에서 생성된 용출액을 하이드록시아파타이트 수지 크로마토그래피에 적용하여 다베포에틴 알파를 포함하는 분획을 용출하는 단계; (c) 단계 (b)에서 생성된 용출액을 음이온 교환 크로마토그래피 컬럼에 로딩하여 다베포에틴 알파를 컬럼에 결합시키는 단계; (d) 단계 (c)에서 상기 컬럼을 아르기닌을 포함한 세척 완충액으로 세척하는 단계; 및 (e) 단계 (d)에서 상기 컬럼에 결합이 유지된 다베포에틴 알파를 컬럼으로부터 용출하는 단계를 포함하는 것일 수 있다.
상기 각 단계를 구체적으로 설명하면 다음과 같다.
(a) 단계는 다베포에틴 알파를 포함하는 생물학적 유액을 음이온 교환 크로마토그래피에 적용하여 다베포에틴 알파를 포함하는 분획을 용출하는 단계로서, 바람직하게는 평형화된 음이온 교환 크로마토그래피 컬럼에 다베포에틴 알파를 포함하는 생물학적 유액을 가하여 흡착시킨 후, 10 내지 100 mM NaCl이 포함된 pH 6 내지 8의 세척 완충액으로 세척한 후, 100 내지 300 mM NaCl이 포함된 pH 6 내지 8의 용출 완충액으로 다베포에틴 알파를 포함하는 분획을 용출하는 단계일 수 있다.
본 발명의 음이온 교환 크로마토그래피 및 해당 컬럼을 이루는 수지는 상기 설명한 바와 동일하다.
본 발명의 구체적인 일 실시예에서는 다베포에틴 알파를 포함하는 벡터로 형질전환된 CHO 세포로부터 다베포에틴 알파를 발현하여 얻은 배양액 약 1 L를 10 mM 소듐 포스페이트 완충액(pH 7.0)으로 한외 여과 시스템(분자량 컷 오프 10,000)을 이용하여 정용여과 (diafiltration)한 생물학적 유액을, 10 mM 소듐 포스페이트 완충액 (pH 7.0)으로 평형화한 음이온 교환(Q fast flow, GE Healthcare사) 수지가 충진된 XK-50컬럼에 적용한 후, 다시 10mM 소듐 포스페이트 완충액 (pH 7.0)을 약 2 CV (column volume)흘려 컬럼을 평형화하였다. 이후 0 내지 100 mM NaCl이 포함된 세척완충액으로 세척한 후, 100 내지 300 mM NaCl이 포함된 pH 6 내지 8의 용출 완충액으로 용출하였다. 상기 음이온 교환 크로마토그래피 결과, 생물학적 유래의 불순물이 제거되고 다량의 다베포에틴 알파를 포함하는 용액으로 정제되었음을 RP-HPLC를 통해 확인하였다(도 1의 B).
(b) 단계는 평형화된 흡착 크로마토그래피의 고정상 더욱 바람직하게는 하이드록시아파타이트 수지에 (a) 단계로부터 회수된 용출액을 로딩한 후, 0 내지 100 mM 소듐 포스페이트가 포함된 pH 6 내지 8의 세척 완충액으로 세척한 후, 로딩과 세척에서 수지에 붙지 않고 빠져나온 액에서 다베포에틴 알파를 포함하는 분획을 수득하는 단계일 수 있다.
본 발명에서 이용되는 흡착 크로마토그래피의 고정상은 실리카, 알루미나, 마그네슘 옥사이드 및 하이드록시아파타이트를 포함될 수 있으며, 가장 바람직하게는 하이드록시아파타이트일 수 있다. 본 발명에서 용어 "하이드록시아파타이트 수지 크로마토그래피" 또는 "하이드록시아파타이트 크로마토그래피"는 하이드록시아파타이트 수지가 충진된 고정상을 가지는 흡착 크로마토그래피를 의미하며, "하이드록시아파타이트 컬럼"과 혼용될 수 있다.
상기 각 세척 및 용출단계에서 사용되는 완충용액으로는 바람직하게 소듐 포스페이트 (sodium phosphate) 완충용액, 칼륨 포스페이트 (potassium phosphate) 완충용액 또는 트리스 (Tris) 완충용액을 사용할 수 있다.
본 발명의 구체적인 일 실시예에서는 음이온 교환 수지 용출액을, 7 mM 소듐 포스페이트 완충용액 (pH 7.0)으로 평형화한 하이드록시아파타이트 수지가 충진된 XK-50컬럼에 적용한 후, 7 mM 소듐 포스페이트 완충용액 (pH 7.0)을 약 3 컬럼 용량으로 흘려서, 당쇄가 많이 붙어있는 다베포에틴 알파를 용출하였다. 상기 하이드록시아파타이트 수지 크로마토그래피 결과, 생물학적 유래의 불순물이 제거되고 다량의 다베포에틴 알파를 포함하는 용액으로 정제되었음을 RP-HPLC를 통해 확인하였다(도 1의 C).
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1: 음이온 교환 크로마토그래피 및 하이드록시아파타이트 흡착 크로마토그래피에 의하여 다양한 시알산 함량을 갖는 다베포에틴 알파 아형의 혼합물 수득
다베포에틴 알파를 포함하는 벡터로 형질전환된 CHO 세포로부터 다베포에틴 알파를 발현하여 얻은 배양액 약 1 L를 10 mM 소듐 포스페이트 완충액(pH 7.0)으로 한외 여과 시스템(분자량 컷 오프 10,000)을 이용하여 정용여과 (diafiltration)하였다. 이를 음이온 교환 크로마토그래피 및 하이드록시아파타이트 흡착 크로마토그래피를 이용하여 두 개의 컬럼을 순차적으로 진행하였다.
먼저, 음이온 교환 크로마토그래피는 구체적으로 다음과 같이 진행하였다. 약 100 ㎖의 음이온 교환 (Q fast flow, GE Healthcare사) 수지를 XK-50컬럼 (GE Healthcare사)에 충진하여 10 mM 소듐 포스페이트 완충액 (pH 7.0)을 충분히 흘려 컬럼을 평형화시켰다. 준비된 Q 세파로즈 FF 컬럼에 상기 정용여과액 약 0.1-0.2l를 15 ㎖/min의 유속으로 흘린 후, 다시 10mM 소듐 포스페이트 완충액 (pH 7.0)을 약 2 CV (column volume)흘려 컬럼을 평형화하였다. 이후, 10 내지 100mM NaCl이 포함된 세척완충액으로 세척한 후, 100 내지 300 mM NaCl이 포함된 pH 6 내지 8의 용출 완충액으로 용출하였다.
상기 음이온 교환 크로마토그래피를 진행한 용출액에 대하여 하이드록시아파타이트 흡착 크로마토그래피는 구체적으로 다음과 같이 진행하였다. 약 100 ㎖의 하이드록시아파타이트 (GE Healthcare사)수지를 XK-50컬럼 (GE Healthcare사)에 충진하여 7 mM 소듐 포스페이트 완충액 (pH 7.0)을 충분히 흘려 컬럼을 평형화시켰다. 준비된 하이드록시아파타이트 컬럼에 상기 정용여과액 약 0.1 ℓ를 10 ㎖/min의 유속으로 흘린 후, 다시 7 mM 소듐 포스페이트 완충액 (pH 7.0)을 약 3 CV (column volume) 흘렸다.
이때 로딩과 세척에서 수지에 붙지 않고 빠져나온 용액에 시알산 함량이 다양한 다베포에틴 알파가 포함되어 있으며, 이 용액들을 모아 다음 공정을 진행한다. 세척 후, 0.1 내지 0.7 M 칼륨 포스페이트 (potassium phosphate) pH 7 의 완충액을 수지에 흘려 당쇄가 적은 다베포에틴 알파 및 불순물을 함유하는 분획을 용출하여 수지에서 제거시켰다. 생물학적 유래의 불순물이 제거되고 다량의 다베포에틴 알파를 포함하는 용액으로 정제되었음을 RP-HPLC를 통해 확인하였다(도 1).
실시예 2: 음이온 교환 크로마토그래피에 아르기닌을 적용하여 세척하는 방법으로 높은 시알산 함량의 다베포에틴 알파를 정제
약 20 ㎖의 Q 세파로즈 FF (GE Healthcare사) 수지를 XK-26컬럼 (GE Healthcare사)에 충진하여 10 mM 소듐 포스페이트 완충액 (pH 7.0)을 충분히 흘려 컬럼을 평형화시켰다.
상기 실시예 1에서 얻은 다베포에틴 알파가 포함된 용액 약 0.2 ℓ를 5 ㎖/min의 유속으로 컬럼에 흘린 후, 다시 평형화 완충용액인 10mM 소듐 포스페이트 완충액 (pH 7.0)을 약 2 CV (column volume) 흘려 컬럼을 평형화하였다. 이 후 50 mM NaCl이 포함된 10mM 소듐 포스페이트 완충액 (pH 7.0)으로 1차 세척한 후, 우레아, 아르기닌, NaCl이 포함된 pH 3 내지 5 이하의 글라이신-HCl 완충액으로 2차 세척하여 시알산 함량이 낮은 다베포에틴 알파를 함유하는 분획을 세척하였다. 당쇄화 정도가 크고 등전점이 낮은 다베포에틴 알파만을 함유하는 단백질은 190 mM NaCl이 포함된 소듐 포스페이트(pH 6.2) 완충액을 이용하여 용출하였다. 이 세척과정을 통한 높은 품질의 다베포에틴 알파는 IEF를 통해 확인되었다(도 2).
실시예 3: 아르기닌 포함 세척액이 시알산 함량에 미치는 영향 측정
상기 실시예 2에서 아르기닌을 적용하는 세척 방법은 높은 시알산 함량의 다베포에틴 알파를 정제하는 데 있어서 중요한 요소가 됨을 하기 실시예로 확인하였다.
실시예 2에서와 같은 방법으로 상기 실시예 1에서 얻은 다베포에틴 알파가 포함된 용액을 Q 세파로즈 FF에 흡착시킨 뒤, 다시 평형화 완충용액인 10mM 소듐 포스페이트 완충액 (pH 7.0)을 약 2 CV (column volume) 흘려 컬럼을 1차 세척하였다. 단 2차 세척시 실시예 2와 달리 글라이신-HCl 완충액 대신 pH 3 내지 5 이하의 소듐 아세테이트 완충액으로 세척하였다. 용출한 결과, 등전점이 2 내지 3 이하의 높은 시알산 함량의 다베포에틴 함량을 수득됨을 확인하였다(도 3의 화살표).
또 다른 실시양태로, 실시예 2에서 같은 방법으로 1차 세척 및 2차 세척을 실시하되 단 아르기닌을 투입하지 않고 2차 세척하였다. 용출한 결과, 등전점이 2 내지 3 이상의 낮은 시알산을 포함하는 다베포에틴까지 용출되어 품질이 현저히 저하됨을 확인하였다(도 4의 화살표).
이 실시예를 통하여 아르기닌이 낮은 등전점의 시알산 다베포에틴 알파를 얻는 중요한 요소임을 확인할 수 있었다.
실시예 4: 겔 여과 크로마토그래피를 이용하여 높은 시알산 함량의 다베포에틴 정제
약 1.7 L의 세파크릴 S-100 내지 200(GE Healthcare사) 수지를 XK-50/90컬럼 (GE Healthcare사)에 충진하여 140 mM NaCl이 포함된 20 mM 소듐 포스페이트 완충액 (pH 6.2)을 충분히 흘려 컬럼을 평형화시켰다.
상기 실시예 2에서 얻은 다베포에틴 알파가 포함된 용액을 농축하여 약 5㎖을 7.5 ㎖/min의 유속으로 컬럼에 흘린 후, 140 mM NaCl이 포함된 20 mM 소듐 포스페이트 완충액 (pH 6.2)을 충분히 흘려 시알산 함량이 높은 다베포에틴 알파를 포함한 용출액을 분획하였다(도 5). 용출액 분획의 순서대로 다베포에틴 알파의 시알산 함량이 높음을 확인하였다(표 1 및 도 6). 각 분획별 시알산 함량을 나타낸 Wax-HPLC 결과는 하기 표 1과 같다.
표 1
Tetra-sialyated N-Glycan(%)
분획 1 분획 2 분획 3 분획 4 분획 5
53.6 71.1 70.7 64.9 46.7
상기 결과들을 종합하면, 음이온 교환 컬럼을 이용한 경우에 있어서, 아르기닌을 포함하는 완충액을 이용하여 세척과정을 하는 것을 통하여 시알산 함량이 높은 다베포에틴 알파를 정제할 수 있음을 확인하였으며, 또한, 이후 겔 여과 크로마토그래피를 추가로 수행하여 분획한 결과 고순도의 높은 시알산 함량을 가지는 다베포에틴 알파를 정제할 수 있음을 확인함으로써, 본 발명의 정제 방법을 이용하여 고순도의 높은 시알산 함량을 가지는 다베포에틴 알파를 정제할 수 있음을 확인하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있음을 이해할 수 있다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 제한적인 것이 아닌 것으로 이해하여야 한다. 본 발명의 범위는 전술한 상세한 설명보다는 후술되는 특허 청구범위의 의미 및 범위, 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (18)

  1. (a) 다양한 시알산 함량을 갖는 다베포에틴 알파를 포함하는 혼합물을 음이온 교환 크로마토그래피 컬럼에 로딩하여 다베포에틴 알파를 컬럼에 결합시키는 단계;
    (b) 상기 크로마토그래피 컬럼을 아르기닌(Arginine)을 포함한 세척 완충액으로 세척하는 단계; 및
    (c) 상기 크로마토그래피 컬럼에 결합이 유지된 다베포에틴 알파를 컬럼으로부터 용출하는 단계를 포함하는, 다베포에틴 알파의 정제 방법.
  2. 제1항에 있어서, 상기 (c) 단계에서 용출된 다베포에틴 알파는 등전점이 pH 2.0 이상 4.0 이하인 것인, 다베포에틴 알파의 정제 방법.
  3. 제1항에 있어서, 상기 아르기닌을 포함한 세척 완충액은 pH 3.0 이상 내지 5.0 이하인, 다베포에틴 알파의 정제 방법.
  4. 제1항에 있어서, 상기 아르기닌을 포함한 세척 완충액은 아르기닌을 포함하며, NaCl 및 우레아(Urea)로 구성된 군에서 선택된 어느 하나 이상을 추가로 포함하는 것인, 다베포에틴 알파의 정제 방법.
  5. 제4항에 있어서, 상기 세척 완충액은 NaCl을 5mM 이상 90 mM 이하로 포함하는 것인, 다베포에틴 알파의 정제 방법.
  6. 제4항에 있어서, 상기 세척 완충액은 우레아를 3M 이상 8M 이하로 포함하는 것인, 다베포에틴 알파의 정제 방법.
  7. 제1항에 있어서, 상기 (b) 단계는 목적하는 등전점을 가지는 구조적 아형(isoform)인 다베포에틴 알파를 수득하기 위하여, 목적하는 등전점 보다 높은 등전점을 가지는 구조적 아형 다베포에틴을 세척하는 것을 특징으로 하는, 다베포에틴 알파의 정제 방법.
  8. 제1항에 있어서, 상기 (b) 단계 전 또는 후에 아르기닌을 포함하거나 포함하지 않는 세척 완충액으로 세척하는 단계를 추가로 포함하는, 다베포에틴 알파의 정제 방법.
  9. 제1항에 있어서, 상기 (b) 단계 전에 pH 6 이상 pH 8 이하인 세척 완충액으로 상기 컬럼을 1차 세척하는 단계를 추가로 포함하며;
    상기 (b) 단계는 pH 3 이상 pH 5 이하인 아르기닌이 포함된 세척 완충액으로 컬럼을 2차 세척하는 단계인 것인, 다베포에틴 알파의 정제 방법.
  10. 제9항에 있어서, 상기 1차 세척하는 단계의 세척 완충액은 소듐 포스페이트 용액이고;
    상기 2차 세척하는 단계의 세척 완충액은 글라이신-HCl 용액인 것인, 다베포에틴 알파의 정제 방법.
  11. 제1항에 있어서, 상기 생물학적 유액은 효모, 식물세포 또는 동물세포 배양액인 것인, 다베포에틴 알파의 정제 방법.
  12. 제1항에 있어서, 상기 음이온 교환 크로마토그래피 컬럼을 구성하는 수지의 작용기가 Q (Quaternary amine), DEAE (DiEthylAminoEthyl) 및 QAE (Quaternary Amino Ethyl)로 이루어진 군으로부터 선택되는 어느 하나인 것인 방법.
  13. 제1항에 있어서, (d) 상기 (c) 단계에서 수득한 음이온 교환 크로마토그래피 용출액을 겔 여과 크로마토그래피에 적용하여 분획하는 단계를 추가로 포함하는 것인, 다베포에틴 알파의 정제 방법.
  14. (a) 다베포에틴 알파를 포함하는 생물학적 유액을 음이온 교환 크로마토그래피에 적용하여 다베포에틴 알파를 포함하는 분획을 용출하는 단계;
    (b) 단계 (a)에서 생성된 용출액을 흡착 크로마토그래피에 적용하여 다베포에틴 알파를 포함하는 분획을 용출하는 단계; 및
    (c) 단계 (b)에서 생성된 용출액을 음이온 교환 크로마토그래피 컬럼에 로딩하여 다베포에틴 알파를 컬럼에 결합시키는 단계;
    (d) 단계 (c)에서 상기 컬럼을 아르기닌을 포함한 세척 완충액으로 세척하는 단계; 및
    (e) 단계 (d)에서 상기 컬럼에 결합이 유지된 다베포에틴 알파를 컬럼으로부터 용출하는 단계를 포함하는, 다베포에틴 알파의 정제 방법.
  15. 제14항에 있어서, 상기 흡착 크로마토그래피의 고정상은 하이드록시아파타이트 수지인, 다베포에틴 알파의 정제 방법.
  16. 제14항에 있어서, (f) 상기 (e) 단계에서 수득한 음이온 교환 크로마토그래피 용출액을 겔 여과 크로마토그래피에 적용하여 분획하는 단계를 추가로 포함하는 것인, 다베포에틴 알파의 정제 방법.
  17. 제14항에 있어서, 상기 (a) 단계는 평형화된 음이온 교환 수지에 다베포에틴 알파를 포함하는 생물학적 유액을 가하여 흡착시킨 후, 0 내지 100 mM NaCl이 포함된 pH 6 내지 8의 세척 완충액으로 세척한 후, 100 내지 300 mM NaCl이 포함된 pH 6 내지 8의 용출 완충액으로 다베포에틴 알파를 포함하는 분획을 용출하는 단계인 것인, 다베포에틴 알파의 정제 방법.
  18. 제14항에 있어서, 상기 (b) 단계는 평형화된 하이드록시아파타이트 수지에 (a) 단계로부터 회수된 용출액을 로딩한 후, 0 내지 100 mM 소듐 포스페이트가 포함된 pH 6 내지 8의 세척 완충액으로 세척한 후, 로딩과 세척에서 수지에 붙지 않고 빠져나온 액에서 다베포에틴 알파를 포함하는 분획을 수득하는 단계인 것인, 다베포에틴 알파의 정제 방법.
PCT/KR2014/011527 2013-11-29 2014-11-28 다베포에틴 알파의 정제 방법 WO2015080509A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016525549A JP6232130B2 (ja) 2013-11-29 2014-11-28 ダルベポエチンアルファの精製方法
US15/039,569 US10723775B2 (en) 2013-11-29 2014-11-28 Method for purifying darbepoetin alfa
CN201480065236.1A CN105764915B (zh) 2013-11-29 2014-11-28 纯化达依泊汀α的方法
RU2016123352A RU2643365C2 (ru) 2013-11-29 2014-11-28 Способ очистки дарбэпоетина альфа
EP14865782.8A EP3075740B1 (en) 2013-11-29 2014-11-28 Method for purifying darbepoetin alfa
MX2016005264A MX2016005264A (es) 2013-11-29 2014-11-28 Procedimiento para purificar darbepoyetina alfa.
BR112016009421-2A BR112016009421B1 (pt) 2013-11-29 2014-11-28 Método de purificação da darbepoetina alfa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130148026A KR101414897B1 (ko) 2013-11-29 2013-11-29 다베포에틴 알파의 정제 방법
KR10-2013-0148026 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080509A1 true WO2015080509A1 (ko) 2015-06-04

Family

ID=51741060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011527 WO2015080509A1 (ko) 2013-11-29 2014-11-28 다베포에틴 알파의 정제 방법

Country Status (10)

Country Link
US (1) US10723775B2 (ko)
EP (1) EP3075740B1 (ko)
JP (1) JP6232130B2 (ko)
KR (1) KR101414897B1 (ko)
CN (1) CN105764915B (ko)
BR (1) BR112016009421B1 (ko)
HK (1) HK1223633A1 (ko)
MX (1) MX2016005264A (ko)
RU (1) RU2643365C2 (ko)
WO (1) WO2015080509A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428284A4 (en) * 2016-03-09 2019-09-04 JCR Pharmaceuticals CO., LTD. PROCESS FOR PRODUCING MUTANT HUMAN ERYTHROPOIETIN

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258536B1 (ja) * 2017-03-03 2018-01-10 協和発酵キリン株式会社 ダルベポエチン組成物の製造方法およびダルべポエチン産生細胞の培養方法
EP3613486B1 (de) 2018-08-24 2020-10-07 UGA Biopharma GmbH Verfahren und anlage zur reinigung von epo und/oder einem epo-derivat

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005465A1 (en) 1993-08-17 1995-02-23 Amgen Inc. Erythropoietin analogs
WO2001076640A2 (en) 2000-04-07 2001-10-18 Amgen Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
WO2003045996A1 (en) 2001-11-28 2003-06-05 Sandoz Gmbh Chromatographic purification of recombinant human erythropoietin
KR20090064377A (ko) * 2006-09-08 2009-06-18 와이어쓰 친화성 크로마토그래피를 사용하는 단백질 정제에 있어서 아르기닌 세척
WO2010008823A2 (en) 2008-06-24 2010-01-21 Dr . Reddy ' S Laboratories Ltd . Purification of modified cytokines
WO2010027869A1 (en) 2008-09-02 2010-03-11 Amonix, Inc. A high-stiffness, lightweight beam structure
WO2011024024A1 (en) * 2009-08-28 2011-03-03 Avesthagen Limited A process for recovering darbepoeitin alfa isoforms
KR20130042107A (ko) 2011-10-18 2013-04-26 주식회사종근당 낮은 등전점을 갖는 에리스로포이에틴 유사체의 정제방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9917606A (pt) 1998-11-06 2002-12-31 Bio Sidus S A Procedimento para a purificação de eritropoetina humana recombinante a partir de sobrenadantes de cultivo de células e eritropoetina humana recombinante obtida com tal procedimento
US20080314750A1 (en) * 2005-11-18 2008-12-25 Ge Healthcare Bio-Sciences Ab Method for Pre-Fractionation of Complex Samples
WO2011156369A2 (en) * 2010-06-07 2011-12-15 Dr. Reddy's Laboratories Ltd. Purification of modified cytokines
WO2012078376A1 (en) 2010-12-08 2012-06-14 Amgen Inc. Ion exchange chromatography in the presence of an amino acid
JP6151640B2 (ja) * 2011-06-29 2017-06-21 協和発酵キリン株式会社 たん白質の精製方法
WO2015048330A2 (en) * 2013-09-25 2015-04-02 Biogen Idec Ma Inc. On-column viral inactivation methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005465A1 (en) 1993-08-17 1995-02-23 Amgen Inc. Erythropoietin analogs
WO2001076640A2 (en) 2000-04-07 2001-10-18 Amgen Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
WO2003045996A1 (en) 2001-11-28 2003-06-05 Sandoz Gmbh Chromatographic purification of recombinant human erythropoietin
KR20090064377A (ko) * 2006-09-08 2009-06-18 와이어쓰 친화성 크로마토그래피를 사용하는 단백질 정제에 있어서 아르기닌 세척
WO2010008823A2 (en) 2008-06-24 2010-01-21 Dr . Reddy ' S Laboratories Ltd . Purification of modified cytokines
WO2010027869A1 (en) 2008-09-02 2010-03-11 Amonix, Inc. A high-stiffness, lightweight beam structure
WO2011024024A1 (en) * 2009-08-28 2011-03-03 Avesthagen Limited A process for recovering darbepoeitin alfa isoforms
KR20130042107A (ko) 2011-10-18 2013-04-26 주식회사종근당 낮은 등전점을 갖는 에리스로포이에틴 유사체의 정제방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Development and characterization of novel erythropoiesis stimulating protein (NESP", BRITISH JOURNAL OF CANCER, vol. 84, no. 1, 2001, pages 3 - 10
CALDINI, A. ET AL.: "Epoetin alpha, epoetm beta and darbepoet in alla: two-dimensional gel electrophoresis isoforms characterization and mass spectrometry analysis.", PROTEOMICS., vol. 3, no. 6, 2003, pages 937 - 41, XP008147116 *
EJIMA, D. ET AL.: "Improved column chromatography performance using Arginine.", AMERICAN LABORATORY., February 2007 (2007-02-01), XP055346206 *
MORKEBERG, J. ET AL.: "Detect ion of darbepoet in alfa misuse in urine and blood: a preliminary investigation.", MEDICINE & SCIENCE IN SPORTS & EXERCISE., vol. 39, no. 10, 2007, pages 1742 - 7, XP055346209 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428284A4 (en) * 2016-03-09 2019-09-04 JCR Pharmaceuticals CO., LTD. PROCESS FOR PRODUCING MUTANT HUMAN ERYTHROPOIETIN
US10604779B2 (en) 2016-03-09 2020-03-31 Jcr Pharmaceuticals Co., Ltd. Method for production of mutant-type human erythropoietin

Also Published As

Publication number Publication date
HK1223633A1 (zh) 2017-08-04
JP6232130B2 (ja) 2017-11-15
CN105764915A (zh) 2016-07-13
EP3075740A1 (en) 2016-10-05
MX2016005264A (es) 2016-07-08
US10723775B2 (en) 2020-07-28
JP2016538261A (ja) 2016-12-08
CN105764915B (zh) 2019-08-13
EP3075740A4 (en) 2017-06-28
KR101414897B1 (ko) 2014-07-04
BR112016009421B1 (pt) 2021-11-30
EP3075740B1 (en) 2020-04-29
US20170022257A1 (en) 2017-01-26
BR112016009421A8 (pt) 2020-03-24
RU2643365C2 (ru) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6593721B2 (ja) 高純度の組換えヒト血清アルブミンを単離、精製するクロマトグラフ法
WO2012057529A2 (en) Method for purifying human granulocyte-colony stimulating factor from recombinant e. coli
DK175251B1 (da) Renfremstilling af erythropoietin
KR20030005005A (ko) 양이온 교환 크로마토그래피를 통한 약리학적 활성단백질의 정제방법
JP3438735B2 (ja) 上清iv、特にiv−4またはコーンフラクションvまたはそれと類似の上清または画分からヒトアルブミンを単離する方法
WO2015080509A1 (ko) 다베포에틴 알파의 정제 방법
FI70721B (fi) Foerfarande foer framstaellning av maenskligt fibroblast-interferon som homigent protein
Roos et al. Isolation of five active thyrotropin components from human pituitary gland
KR101443257B1 (ko) 낮은 등전점을 갖는 에리스로포이에틴 유사체의 정제방법
WO2024096344A1 (ko) 고순도의 히알루로니다제 정제 방법
WO2013183948A1 (ko) 고당화된 지속형 인간 성장호르몬 단백질 및 이의 제조방법
WO2021006419A1 (en) Refining method of ophthalmic protein pharmaceutical
WO2014204023A1 (ko) 신규한 다베포에틴 알파의 정제 방법
WO2021132958A1 (ko) 여포 자극 호르몬의 정제 방법
KR101460266B1 (ko) 신규한 지속형 인간 성장호르몬의 정제 방법
EP0358463A1 (en) Purification of erythropoietin
WO2022169206A1 (ko) 헤모펙신 및 합토글로빈의 정제 방법
EP3153522A1 (en) Process for the purification of erythropoietin and darbepoetin alfa
WO2014081225A1 (ko) 신규한 지속형 인간 성장호르몬 단량체를 제조하는 방법
RU2473696C1 (ru) ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ И ОЧИСТКИ РЕКОМБИНАНТНОГО ИНТЕРФЕРОНА β-1b ЧЕЛОВЕКА ИЗ ТЕЛЕЦ ВКЛЮЧЕНИЯ
CN116410295A (zh) 一种大肠杆菌表达物的纯化方法
CN114573679A (zh) 分离重组人干扰素α1b异构体的纯化方法
KR100488287B1 (ko) 재조합 인간 상피세포 성장인자의 정제방법
Bobruskin et al. Aqueous Phenolic Extraction: a New Application to IFNβ Purification
WO2015152598A1 (ko) 치료용 면역글로불린 제제 제조에 사용되는 산성 완충액, 이를 이용한 치료용 면역글로불린 제제 제조방법 및 이 제조방법으로 제조된 치료용 면역글로불린 제제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525549

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/005264

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15039569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865782

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016123352

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016009421

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016009421

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160427