WO2015080171A1 - 無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法 - Google Patents

無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法 Download PDF

Info

Publication number
WO2015080171A1
WO2015080171A1 PCT/JP2014/081293 JP2014081293W WO2015080171A1 WO 2015080171 A1 WO2015080171 A1 WO 2015080171A1 JP 2014081293 W JP2014081293 W JP 2014081293W WO 2015080171 A1 WO2015080171 A1 WO 2015080171A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
glass substrate
less
free glass
cao
Prior art date
Application number
PCT/JP2014/081293
Other languages
English (en)
French (fr)
Inventor
博文 ▲徳▼永
和孝 小野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015550970A priority Critical patent/JP6447510B2/ja
Priority to CN201480065338.3A priority patent/CN105992749B/zh
Priority to KR1020167013811A priority patent/KR102249898B1/ko
Publication of WO2015080171A1 publication Critical patent/WO2015080171A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention is a non-alkali glass substrate which is suitable for various display glass substrates and photomask glass substrates and which is made thin by etching using hydrofluoric acid (HF) and substantially does not contain an alkali metal oxide, and
  • HF hydrofluoric acid
  • the present invention relates to a method for thinning an alkali-free glass substrate.
  • the following characteristics have been required for various display glass substrates, particularly those in which a metal or oxide thin film is formed on the surface.
  • alkali metal oxide When an alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics, so that the alkali metal ions are not substantially contained.
  • the strain point When exposed to a high temperature in the thin film forming process, the strain point is high so that the deformation (thermal shrinkage) associated with glass deformation and glass structural stabilization can be minimized.
  • BHF buffered hydrofluoric acid
  • ITO various acids used for etching metal electrodes
  • ITO various acids used for etching metal electrodes
  • resistant to alkali of resist stripping solution Resistant to alkali of resist stripping solution.
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • a glass having a small average thermal expansion coefficient is required to increase productivity and thermal shock resistance by increasing the temperature raising / lowering rate of the heat treatment for producing a liquid crystal display.
  • Patent Document 1 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but the average coefficient of thermal expansion at 50 to 350 ° C. exceeds 50 ⁇ 10 ⁇ 7 / ° C.
  • the alkali-free glass described in Patent Document 2 has a high strain point and can be molded by a float process, and is said to be suitable for applications such as a display substrate and a photomask substrate.
  • a process of thinning (thinning) the plate thickness by applying an etching process to the glass substrate surface after the array / color filter bonding step is widely employed.
  • the surface of a glass substrate having a plate thickness of 0.4 mm to 0.7 mm is etched with an etching solution containing hydrofluoric acid (HF) (hereinafter referred to as “hydrofluoric acid etching process”) to obtain a plate thickness of 0.
  • HF hydrofluoric acid
  • the object of the present invention is to solve the above disadvantages, to have a high strain point, a low viscosity, particularly a low temperature T 4 at which the glass viscosity is 10 4 dPa ⁇ s, a high etching rate during the hydrofluoric acid etching treatment, and a hydrofluoric acid
  • the present invention provides an alkali-free glass substrate and a method for thinning an alkali-free glass substrate, which have high strength after etching, are hardly bent even when they are thin, and hardly cause problems such as color unevenness even when stress is applied.
  • the present invention relates to a non-alkali glass substrate having a thickness of 0.4 mm or less that has been thinned by a hydrofluoric acid (HF) etching process to a thickness of 5 ⁇ m or more, and the non-alkali glass substrate is the following non-alkali glass, and is made thin.
  • HF hydrofluoric acid
  • an alkali-free glass substrate having a specific elastic modulus of 31 MNm / kg or more and a photoelastic constant of 30 nm / MPa / cm or less in the later alkali-free glass substrate. Temperature at which the strain point is 680 to 735 ° C., the average coefficient of thermal expansion at 50 to 350 ° C.
  • the temperature T 4 at which T 2 is 1710 ° C. or lower and the glass viscosity is 10 4 dPa ⁇ s is 1310 ° C.
  • MgO + CaO + SrO + BaO 2 is 15.5-21
  • the alkali-free glass substrate of the present invention has an average breaking load measured by a ball-on-ring (BOR) method using a ring having a diameter of 30 mm, R of 2.5 mm, and a ball of 10 mm in diameter of 300 N in terms of a plate thickness of 0.4 mm.
  • BOR ball-on-ring
  • the present invention is a method for thinning an alkali-free glass substrate
  • the alkali-free glass substrate is the following alkali-free glass, and at least one main surface of the alkali-free glass substrate is immersed in an etching solution (25 ° C., 5% HF aqueous solution) containing hydrofluoric acid (HF).
  • etching solution 25 ° C., 5% HF aqueous solution
  • HF hydrofluoric acid
  • the strain point is 680 to 735 ° C.
  • the average coefficient of thermal expansion at 50 to 350 ° C. is 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C.
  • the glass viscosity is 10 2 dPa ⁇ s.
  • the temperature T 4 at which T 2 is 1710 ° C. or lower and the glass viscosity is 10 4 dPa ⁇ s is 1310 ° C.
  • MgO + CaO + SrO + BaO 2 is 15.5-21
  • the alkali-free glass substrate of the present invention has a high strain point, a low temperature T 4 at which the glass viscosity becomes 10 4 dPa ⁇ s, a high etching rate during the hydrofluoric acid etching treatment, and a high strength after the hydrofluoric acid etching treatment. Because it is difficult to bend even if it is thin and it is difficult to cause problems such as color unevenness even when stress is applied, it is used in the field of portable displays such as small and medium-sized LCDs and OLEDs, especially mobiles, digital cameras and mobile phones. It is suitable as a thin glass substrate having a plate thickness of 0.4 mm or less.
  • the alkali-free glass substrate of the present invention can also be used as a glass substrate for a magnetic disk.
  • an alkali-free glass substrate using a glass raw material prepared to have the following glass composition is used.
  • the temperature T 4 at which T 2 is 1710 ° C. or lower and the glass viscosity is 10 4 dPa ⁇ s is 1310 ° C.
  • MgO + CaO + SrO + BaO 2 is 15.5-21
  • the composition range of each component will be described. If the SiO 2 content is less than 63% (mol%, the same unless otherwise specified), the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. It is preferably 64% or more, more preferably 65% or more, further preferably 66% or more, and particularly preferably 66.5% or more. Preferably it is 66.5% or more, more preferably 67% or more. If it exceeds 74%, the etching rate decreases, the glass solubility decreases, and the devitrification temperature increases. 70% or less is preferable, 69% or less is more preferable, and 68% or less is more preferable.
  • Al 2 O 3 increases Young's modulus to suppress deflection after thinning, suppresses phase separation of glass, lowers thermal expansion coefficient, increases strain point, increases fracture toughness value and increases glass strength. If it is less than 11.5%, this effect does not appear, and other components that increase the expansion are increased, resulting in an increase in thermal expansion. It is preferably 12% or more, 12.5% or more, and more preferably 13% or more. If it exceeds 16%, the solubility of the glass may be deteriorated, or the devitrification temperature may be increased. It is preferably 15% or less, more preferably 14% or less, and further preferably 13.5% or less.
  • B 2 O 3 improves the melting reactivity of the glass, lowers the devitrification temperature, and improves the BHF resistance, but this effect is not sufficiently exhibited at 1.5% or less, and the strain point is excessive. It tends to increase or become a haze problem after treatment with BHF. 2% or more is preferable, and 3% or more is more preferable. However, if the amount is too large, the photoelastic constant increases, and problems such as color unevenness are likely to occur when stress is applied. On the other hand, if B 2 O 3 exceeds 5%, the surface roughness after thinning becomes large, and the strength after thinning becomes low. In addition, the strain point decreases and the Young's modulus decreases. 4.5% or less is preferable and 4% or less is more preferable.
  • MgO increases the Young's modulus without increasing the specific gravity, so the problem of deflection can be reduced by increasing the specific modulus.
  • the alkaline earth has the characteristics that the expansion is not increased and the strain point is not excessively lowered, and the solubility is improved. Further, the fracture toughness value is improved to increase the glass strength. However, if the content is less than 5.5%, this effect is not sufficiently exhibited, and the density is increased because the ratio of other alkaline earths is increased. 6% or more, more preferably 7% or more, 7.5% or more, 8% or more, more preferably more than 8%, more preferably 8.1% or more, more preferably 8.3% or more, and particularly preferably 8.5% or more preferable. If it exceeds 13%, the devitrification temperature may increase. It is preferably 12% or less, more preferably 11% or less, and particularly preferably 10% or less.
  • CaO has the characteristics that the specific elastic modulus is increased next to MgO in alkaline earth, the expansion is not increased, the density is kept low, and the strain point is not excessively lowered, and the solubility is improved. If it is less than 1.5%, the above-described effect due to the addition of CaO is not sufficiently exhibited. It is preferably 2% or more, more preferably 3% or more, further preferably 3.5% or more, and particularly preferably 4% or more. However, if it exceeds 12%, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ), which is a CaO raw material, may be mixed. It is preferably 10% or less, more preferably 9% or less, further preferably 8% or less, and particularly preferably 7% or less.
  • SrO improves the solubility without increasing the devitrification temperature of the glass, but if it is less than 1.5%, this effect does not appear sufficiently. 2% or more is preferable, 2.5% or more is more preferable, and 3% or more is more preferable. However, if it exceeds 9%, the expansion coefficient may increase. It is preferably 7% or less, more preferably 6% or less and 5% or less.
  • BaO is not essential, but can be contained to improve solubility. However, if the amount is too large, the expansion and density of the glass are excessively increased, so the content is made 1% or less. Less than 1% is preferable, 0.5% or less is more preferable, and it is preferable not to contain substantially. “Substantially not contained” means not containing any inevitable impurities.
  • ZrO 2 may be incorporated up to 2% in order to increase the Young's modulus, to lower the glass melting temperature, or to promote crystal precipitation during firing. If it exceeds 2%, the glass becomes unstable or the relative dielectric constant ⁇ of the glass increases. Preferably it is 1.5% or less, More preferably, it is 1.0% or less, More preferably, it is 0.5% or less, and it is especially preferable not to contain substantially.
  • MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, preferably 0.37 or more, and more preferably 0.4 or more.
  • CaO / (MgO + CaO + SrO + BaO) is 0.50 or less, preferably 0.48 or less, and more preferably 0.45 or less.
  • SrO / (MgO + CaO + SrO + BaO) is 0.50 or less, preferably 0.40 or less, more preferably 0.30 or less, more preferably 0.27 or less, and further preferably 0.25 or less.
  • Al 2 O 3 ⁇ (MgO / (MgO + CaO + SrO + BaO)) is preferably 4.3 or more because the Young's modulus can be increased. 4.5 or more is preferable, 4.7 or more is more preferable, and 5.0 or more is further more preferable.
  • Alkali metal oxides such as Na 2 O and K 2 O may be added for the purpose of heating an electric booster.
  • the content of the alkali metal oxide is increased, alkali metal ions diffuse into the thin film and deteriorate the film characteristics. This causes a problem when used as a substrate glass for various displays, but the alkali metal oxide in the glass composition. Is less than 2000 mol ppm, it is difficult to cause such a problem. More preferably, it is 1500 mol ppm or less, 1300 mol ppm or less, and 1000 mol ppm or less.
  • the glass raw material preferably does not substantially contain P 2 O 5 .
  • the amount of impurities as impurities is preferably 23 mol ppm or less, more preferably 18 mol ppm or less, further preferably 11 mol ppm or less, and particularly preferably 5 mol ppm or less.
  • the glass raw material does not substantially contain PbO, As 2 O 3 , or Sb 2 O 3 .
  • ZnO, Fe 2 O 3 , SO 3 , F, Cl, SnO 2 in total amount is 1% or less, preferably 0.5% or less, more preferably 0 .3% or less, more preferably 0.15% or less, and particularly preferably 0.1% or less. It is preferable that ZnO is not substantially contained.
  • the production of the alkali-free glass substrate of the present invention is performed, for example, according to the following procedure.
  • the raw materials of each component are prepared so as to become target components, which are continuously charged into a melting furnace, heated to 1500-1800 ° C. and melted.
  • the molten glass is formed into a plate-like glass ribbon having a predetermined plate thickness by a forming apparatus, and the glass ribbon is gradually cooled and then cut to obtain an alkali-free glass substrate.
  • an alkali-free glass substrate of the present invention at least one of the two principal surfaces of the alkali-free glass substrate is subjected to hydrofluoric acid (HF) etching treatment so that the alkali-free glass substrate is 5 ⁇ m or more. Thinned.
  • HF hydrofluoric acid
  • the thickness of the display using the alkali-free glass substrate can be reduced, and the display can be reduced in weight. If a thin plate, that is, a non-alkali glass substrate with a small plate thickness is used from the beginning without being thinned by the etching process, it is necessary to handle a large thin plate in the device manufacturing process, etc. performed during display manufacturing.
  • the thickness is preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, and particularly preferably 200 ⁇ m or more.
  • the thickness of the alkali-free glass substrate after thinning is 0.4 mm or less. If it exceeds 0.4 mm, the effect of reducing the weight and thickness of the display cannot be obtained. More preferably, it is 0.35 mm or less, More preferably, it is 0.25 mm or less.
  • the plate thickness of the alkali-free glass substrate before being thinned is preferably 0.3 mm or more.
  • the thickness is less than 0.3 mm, it is necessary to handle a large thin plate in the device manufacturing process and the like, and problems such as conveyance trouble and cracking due to self-weight deflection are likely to occur.
  • it is 0.4 mm or more, Most preferably, it is 0.45 mm or more.
  • it exceeds 0.75 mm, the time required for thinning the display for lightening and thinning may become too long. More preferably, it is 0.65 mm or less, More preferably, it is 0.55 mm or less.
  • a chemical solution containing hydrofluoric acid is used as the chemical solution for the etching process. Etching can be performed with an alkaline chemical solution, but a chemical solution containing hydrofluoric acid has a higher etching rate and can be etched smoothly.
  • the concentration of hydrofluoric acid contained in the chemical solution is more preferably 1% by mass or more, further preferably 3% by mass or more, and particularly preferably 5% by mass or more.
  • an acid other than hydrofluoric acid such as hydrochloric acid, nitric acid or sulfuric acid to the chemical solution.
  • At the time of etching at least one main surface of the alkali-free glass substrate is immersed in a chemical solution containing hydrofluoric acid. Depending on the fluorine concentration in the chemical solution, the alkali-free glass substrate is thinned by a predetermined amount by being immersed for a predetermined time.
  • the chemical liquid is fluidized by at least one of stirring, bubbling, ultrasonic waves, and showering. Instead of flowing the chemical solution, the alkali-free glass substrate may be moved by at least one method of rocking and rotating.
  • the elution amount per unit area and unit time which is an index of the etching rate, is 0.00.
  • Etching is performed under conditions of 17 (mg / cm 2 ) / min or more. If it is less than 0.17 (mg / cm 2 ) / min, the time required for thinning may be too long. More preferably, it is 0.18 (mg / cm 2 ) / min or more.
  • the alkali-free glass substrate thinned by the method of the present invention has high strength after thinning.
  • the main surface on the etched side of the non-alkali glass substrate after thinning is a ring having a diameter of 30 mm and R of 2.5 mm (the cross section of the ring is a circle) R is the radius of the circle) and a ball with a diameter of 10 mm
  • the average breaking load measured by the ball-on-ring (BOR) method (with the surface to be evaluated facing down on the ring) is the thickness of the plate It is preferable that it is 300 N or more in terms of 0.4 mm.
  • the diameter of the ring is a diameter of a circle passing through the center of the cross section.
  • the outermost diameter of the ring is 35 mm and the innermost diameter is 25 mm.
  • the average breaking load means the average value of the measurement results obtained by measuring the breaking load by the BOR method a plurality of times. In the examples described later, the measurement of the breaking load by the BOR method was carried out five times, and the average value of the measurement results was taken as the average breaking load.
  • the average breaking load measured by the BOR method is less than 300 N in terms of a plate thickness of 0.4 mm, the surface strength of the alkali-free glass substrate is low, and the glass substrate breaks during handling during display manufacturing (for example, support pins, etc.) Thus, the glass substrate is broken in a process of lifting the alkali-free glass substrate after device fabrication), and the strength after thinning may be a problem. More preferably, it is 350 N or more.
  • Sheet thickness conversion by the BOR method is performed according to the following procedure.
  • the breaking load W (N) in terms of the plate thickness of 0.4 mm is set to t (mm), and the BOR method is used.
  • the obtained breaking load is w (N)
  • it can be obtained from the relational expression of W w ⁇ 0.16 / t 2 .
  • the alkali-free glass substrate thinned by the method of the present invention has a surface strength of 500 MPa or more by three-point bending of the etched main surface (surface to be evaluated) of the alkali-free glass substrate after thinning. Preferably there is. If the pressure is less than 500 MPa, a display using a thin alkali-free glass substrate may easily cause problems such as cracking when used as a portable display. More preferably, it is 800 MPa or more, More preferably, it is 1000 MPa or more, Especially preferably, it is 1200 MPa or more, Most preferably, it is 1500 MPa or more.
  • the surface strength by three-point bending of the main surface on the etched side of the alkali-free glass substrate after thinning is measured as follows. With the evaluation surface protected with a seal, the glass substrate is scribed with a point scriber, cut, and then the evaluation surface is peeled off so that the non-scribe side faces down and a 3-point bending jig with a span of 10 mm and R1.5 mm Install on top. The surface strength by three-point bending is calculated from the breaking load when the jig is pushed with a R1.5 mm jig from the scribe side of the upper surface. When scratches enter the evaluation surface, the strength becomes low.
  • the environment in which the average breaking load is measured by the BOR method or by three-point bending is a temperature of 22 ⁇ 2 ° C. and a humidity of 40 ⁇ 10%.
  • the surface roughness of the main surface on the etched side of the alkali-free glass substrate after thinning is 1 ⁇ m square Ra in AFM measurement is 0.75 nm or less. It is preferable that If it exceeds 0.75 nm, the strength of the alkali-free glass substrate may be lowered. More preferably, it is 0.7 nm or less.
  • the alkali-free glass substrate of the present invention has a strain point of 680 ° C. or higher and 735 ° C. or lower. Since the alkali-free glass substrate of the present invention has a strain point of 680 ° C. or higher, thermal shrinkage during panel production can be suppressed. Further, a laser annealing method can be applied as a method for manufacturing the p-Si TFT. 685 degreeC or more is more preferable, and 690 degreeC or more is further more preferable. In addition, since the alkali-free glass substrate of the present invention has a strain point of 680 ° C.
  • a high strain point application for example, a plate thickness of 0.7 mm or less, preferably 0.5 mm or less, more preferably 0.3 mm or less. It is suitable for a display substrate or an illumination substrate for organic EL, or a thin display substrate or illumination substrate having a thickness of 0.3 mm or less, preferably 0.1 mm or less.
  • a sheet glass having a plate thickness of 0.7 mm or less, further 0.5 mm or less, further 0.3 mm or less, and further 0.1 mm or less the drawing speed at the time of forming tends to increase. Rises and the compaction of the glass tends to increase. In this case, compaction can be suppressed when the glass is a high strain point glass.
  • the strain point is 735 ° C. or lower, it is not necessary to raise the temperature of the float bath and the exit of the float bath so much that it affects the life of the metal member located in the float bath and on the downstream side of the float bath. Few. 725 ° C or lower is more preferable, 715 ° C or lower is further preferable, and 710 ° C or lower is particularly preferable. Moreover, in order to improve the plane strain of the glass, it is necessary to increase the temperature at the portion entering the annealing furnace from the float bath outlet, but it is not necessary to increase the temperature at this time. For this reason, a load is not applied to the heater used for heating, and the life of the heater is hardly affected.
  • the alkali-free glass substrate of the present invention has a glass transition point of preferably 730 ° C. or higher, more preferably 740 ° C. or higher, and further preferably 750 ° C. or higher for the same reason as the strain point. Moreover, 780 degrees C or less is preferable, 775 degrees C or less is more preferable, and 770 degrees C or less is especially preferable.
  • the alkali-free glass substrate of the present invention has an average thermal expansion coefficient at 50 to 350 ° C. of 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C., has high thermal shock resistance, and increases productivity during panel manufacture. Can be high.
  • the average coefficient of thermal expansion at 50 to 350 ° C. is preferably 35 ⁇ 10 ⁇ 7 / ° C. or more.
  • the average thermal expansion coefficient at 50 to 350 ° C. is preferably 42 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 41 ⁇ 10 ⁇ 7 / ° C. or less, and further preferably 40 ⁇ 10 ⁇ 7 / ° C. or less.
  • the non-alkali glass substrate of the present invention preferably has a specific gravity of 2.62 or less, more preferably 2.60 or less, and even more preferably 2.58 or less.
  • the temperature T 2 at which the viscosity ⁇ becomes 10 2 poise is 1710 ° C. or less, more preferably 1700 ° C. or less, still more preferably 1690 ° C. or less, particularly preferably Since it is 1680 ° C. or lower and 1670 ° C. or lower, dissolution is relatively easy.
  • the alkali-free glass substrate of the present invention has a temperature T 4 at which the viscosity ⁇ becomes 10 4 poise is 1310 ° C. or less, preferably 1305 ° C. or less, more preferably 1300 ° C. or less, further preferably less than 1300 ° C., 1295 ° C. or less, It is 1290 ° C. or lower and is suitable for float forming.
  • the alkali-free glass substrate of the present invention preferably has a devitrification temperature of 1315 ° C. or less because it is easy to form by the float process. Preferably they are 1300 degrees C or less, 1300 degrees C or less, 1290 degrees C or less, More preferably, it is 1280 degrees C or less.
  • the difference between the temperature T 4 (temperature at which the glass viscosity ⁇ becomes 10 4 poise, unit: ° C.) and the devitrification temperature (T 4 ⁇ devitrification temperature), which is a standard of float moldability and fusion moldability, is preferably Is ⁇ 20 ° C. or higher, ⁇ 10 ° C. or higher, further 0 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher.
  • the devitrification temperature is obtained by putting crushed glass particles in a platinum dish and performing heat treatment for 17 hours in an electric furnace controlled at a constant temperature. It is an average value of the maximum temperature at which crystals are deposited inside and the minimum temperature at which crystals are not deposited.
  • the alkali-free glass substrate of the present invention has a specific modulus of 31 MNm / kg or more. If it is less than 31 MNm / kg, problems such as conveyance troubles and cracks due to self-weight deflection are likely to occur. Preferably it is 32 MNm / kg or more, more preferably 33 MNm / kg or more.
  • the alkali-free glass substrate of the present invention has a Young's modulus of preferably 78 GPa or more, 79 GPa or more, 80 GPa or more, more preferably 81 GPa or more, and further preferably 82 GPa or more.
  • the alkali-free glass substrate of the present invention preferably has a photoelastic constant of 30 nm / MPa / cm or less. Due to the birefringence of the glass substrate due to stress generated during the manufacturing process of the liquid crystal display panel and the liquid crystal display device, a phenomenon in which the black display becomes gray and the contrast of the liquid crystal display decreases may be observed. By setting the photoelastic constant to 30 nm / MPa / cm or less, this phenomenon can be suppressed small. Preferably it is 29 nm / MPa / cm or less, More preferably, it is 28.5 nm / MPa / cm or less, More preferably, it is 28 nm / MPa / cm or less.
  • the alkali-free glass substrate of the present invention has a photoelastic constant of preferably 23 nm / MPa / cm or more, more preferably 25 nm / MPa / cm or more, considering the ease of securing other physical properties.
  • the photoelastic constant can be measured by a disk compression method at a measurement wavelength of 546 nm.
  • the alkali-free glass substrate of the present invention preferably has a relative dielectric constant of 5.6 or more.
  • the sensing sensitivity of the touch sensor is improved, the driving voltage is reduced, From the viewpoint of power saving, it is better that the glass substrate has a higher relative dielectric constant.
  • the relative dielectric constant is 5.8 or more, More preferably, it is 6.0 or more, More preferably, it is 6.2 or more, Most preferably, it is 6.4 or more.
  • the relative dielectric constant can be measured by the method described in JIS C-2141.
  • the alkali-free glass substrate of the present invention preferably has a small amount of shrinkage during heat treatment.
  • the heat treatment process is different between the array side and the color filter side. Therefore, particularly in a high-definition panel, when the thermal shrinkage rate of glass is large, there is a problem in that dot displacement occurs during fitting.
  • the evaluation of the heat shrinkage rate can be measured by the following procedure. The sample is held at a temperature of glass transition point + 100 ° C. for 10 minutes and then cooled to room temperature at 40 ° C. per minute. Here measuring the total length of the sample (the L 0). Next, it is heated to 600 ° C. at 100 ° C./hour, held at 600 ° C.
  • the heat shrinkage rate is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 60 ppm or less, further 55 ppm or less, and particularly preferably 50 ppm or less.
  • Examples 1 to 6, Comparative Examples 1 and 2 The raw material of each component was prepared so that it might become the target composition shown in Table 1, and it melt
  • the obtained glass substrate is mirror-polished and then etched on one side of the glass substrate so that the plate thickness is 0.7 mm to 0.4 mm while bubbling with a mixed acid of 8% by mass hydrofluoric acid and 10% by mass hydrochloric acid. And thinned.
  • Table 2 shows the average breaking load in terms of the plate thickness of 0.4 mm obtained from the measurement results. Further, in the same procedure as described above, the surface roughness on the etched surface when the plate thickness was etched by 30 ⁇ m was determined by the following method. The results are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 本発明は、フッ酸(HF)エッチング処理により5μm以上薄板化された、板厚0.4mm以下の無アルカリガラス基板であって、前記無アルカリガラス基板が所定の無アルカリガラスであり、薄板化後の前記無アルカリガラス基板における、比弾性率が31MNm/kg以上であり、光弾性定数が30nm/MPa/cm以下である、無アルカリガラス基板に関する。

Description

無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法
 本発明は、各種ディスプレイ用ガラス基板やフォトマスク用ガラス基板として好適な、フッ酸(HF)を用いたエッチング処理により薄板化された、アルカリ金属酸化物を実質上含有しない無アルカリガラス基板、および無アルカリガラス基板の薄板化方法に関する。
 従来、各種ディスプレイ用ガラス基板、特に表面に金属ないし酸化物薄膜等を形成するものでは、以下に示す特性が要求されてきた。
(1)アルカリ金属酸化物を含有していると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、実質的にアルカリ金属イオンを含まないこと。
(2)薄膜形成工程で高温にさらされる際に、ガラスの変形およびガラスの構造安定化に伴う収縮(熱収縮)を最小限に抑えうるように、歪点が高いこと。
(3)半導体形成に用いる各種薬品に対して充分な化学耐久性を有すること。特にSiOやSiNのエッチングのためのバッファードフッ酸(BHF:フッ酸とフッ化アンモニウムの混合液)、およびITOのエッチングに用いる塩酸を含有する薬液、金属電極のエッチングに用いる各種の酸(硝酸、硫酸等)、レジスト剥離液のアルカリに対して耐久性のあること。
(4)内部および表面に欠点(泡、脈理、インクルージョン、ピット、キズ等)がないこと。
 上記の要求に加えて、近年では、以下のような状況にある。
(5)ディスプレイの軽量化が要求され、ガラス自身も密度の小さいガラスが望まれる。
(6)ディスプレイの軽量化が要求され、ガラス基板の薄板化が望まれる。
(7)これまでのアモルファスシリコン(a-Si)タイプの液晶ディスプレイに加え、若干熱処理温度の高い多結晶シリコン(p-Si)タイプの液晶ディスプレイが作製されるようになってきた(a-Si:約350℃→p-Si:350~550℃)。
(8)液晶ディスプレイ作製熱処理の昇降温速度を速くして、生産性を上げたり耐熱衝撃性を上げるために、ガラスの平均熱膨張係数の小さいガラスが求められる。
 一方、エッチングのドライ化が進み、耐BHF性に対する要求が弱くなってきている。これまでのガラスは、耐BHF性を良くするために、Bを6~10モル%含有するガラスが多く用いられてきた。しかし、Bは歪点を下げる傾向がある。Bを含有しないまたは含有量の少ない無アルカリガラスの例としては以下のようなものがある。
 特許文献1にはBを0~5モル%含有するガラスが開示されているが、50~350℃での平均熱膨張係数が50×10-7/℃を超える。
 特許文献2に記載の無アルカリガラスは、歪点が高く、フロート法による成形ができ、ディスプレイ用基板、フォトマスク用基板等の用途に好適であるとされている。
日本国特開平5-232458号公報 日本国特開平10-45422号公報 日本国再公表特許2009-066624号公報
 一方、中小型の液晶ディスプレイ(LCD)や有機ELディスプレイ(OELD)、特にモバイル、デジタルカメラや携帯電話等の携帯型ディスプレイの分野では、ディスプレイの軽量化、薄型化が重要な課題となっている。更なるガラス基板の薄板化を実現するために、アレイ・カラーフィルタ貼合わせ工程後に、ガラス基板表面にエッチング処理を施し、板厚を薄くする(薄板化する)工程が広く採用されている。例えば、板厚0.4mm~0.7mmのガラス基板の表面を、フッ酸(HF)を含有するエッチング液でエッチング処理(以下、『フッ酸エッチング処理』という。)して、板厚0.1mm~0.4mmのガラス基板とすることが行われている(特許文献3参照)。
 フッ酸エッチング処理でガラス基板を薄板化する場合、(1)フッ酸エッチング処理時のエッチング速度が大きいこと、および、(2)エッチング処理後のガラス基板が十分な強度を有することが求められる。
 しかしながら、高品質のp-Si TFTの製造方法として固相結晶化法があるが、これを実施するためには、歪点をさらに高くすることが求められる。
 また、ガラス製造プロセス、特に溶解、成形における要請から、ガラスの粘性、特にガラス粘度が10dPa・sとなる温度Tを低くすることが求められている。
 本発明の目的は、上記欠点を解決し、歪点が高く、低粘性、特にガラス粘度が10dPa・sとなる温度Tが低く、フッ酸エッチング処理時のエッチング速度が大きく、フッ酸エッチング処理後の強度が高く、薄くてもたわみにくく、かつ応力が加わっても色ムラなどの問題が発生しにくい、無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法の提供である。
 本発明は、フッ酸(HF)エッチング処理により5μm以上薄板化された、板厚0.4mm以下の無アルカリガラス基板であって、前記無アルカリガラス基板が下記の無アルカリガラスであり、薄板化後の前記無アルカリガラス基板における、比弾性率が31MNm/kg以上であり、光弾性定数が30nm/MPa/cm以下である、無アルカリガラス基板を提供する。
 歪点が680~735℃であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1310℃以下であって、酸化物基準のモル%表示で
SiO2        63~74、
Al      11.5~16、
        1.5超5以下、
MgO         5.5~13、
CaO         1.5~12、
SrO        1.5~9、
BaO         0~1、
ZrO        0~2を含有し
MgO+CaO+SrO+BaO が15.5~21であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下である無アルカリガラス。
 本発明の無アルカリガラス基板は、直径が30mmでRが2.5mmのリングと直径10mmのボールを用いたボールオンリング(BOR)法で測定した平均破壊荷重が板厚0.4mm換算で300N以上であることが好ましい。
 また、本発明は、無アルカリガラス基板の薄板化方法であって、
 前記無アルカリガラス基板が下記の無アルカリガラスであり、前記無アルカリガラス基板の少なくとも一方の主面を、フッ酸(HF)を含有するエッチング液(25℃、5%HF水溶液)に浸漬して、単位面積および単位時間当たりの溶出量が、0.17(mg/cm)/分以上となる条件で、前記無アルカリガラス基板を5μm以上薄板化する、無アルカリガラス基板の薄板化方法を提供する。
 歪点が680~735℃であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1310℃以下であって、酸化物基準のモル%表示で
SiO       63~74、
Al      11.5~16、
        1.5超5以下、
MgO         5.5~13、
CaO         1.5~12、
SrO        1.5~9、
BaO         0~1、
ZrO        0~2を含有し
MgO+CaO+SrO+BaO が15.5~21であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下である無アルカリガラス。
 本発明の無アルカリガラス基板は、歪点が高く、ガラス粘度が10dPa・sとなる温度Tが低く、フッ酸エッチング処理時のエッチング速度が大きく、フッ酸エッチング処理後の強度が高く、薄くてもたわみにくく、かつ応力が加わっても色ムラなどの問題が発生しにくいため、中小型のLCD、OLED、特にモバイル、デジタルカメラや携帯電話等の携帯型ディスプレイの分野で使用される、板厚0.4mm以下の薄板ガラス基板として好適である。本発明の無アルカリガラス基板は、磁気ディスク用ガラス基板としても使用できる。
 以下、本発明の無アルカリガラス基板の薄板化方法を説明する。
 本発明の無アルカリガラス基板の薄板化方法では、下記ガラス組成となるように調合したガラス原料を用いた無アルカリガラス基板を使用する。
 歪点が680~735℃であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1310℃以下であって、酸化物基準のモル%表示で
SiO        63~74、
Al       11.5~16、
         1.5超5以下、
MgO         5.5~13、
CaO         1.5~12、
SrO        1.5~9、
BaO         0~1、
ZrO        0~2を含有し
MgO+CaO+SrO+BaO が15.5~21であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下である無アルカリガラス。
 次に各成分の組成範囲について説明する。SiOは63%(モル%、以下特記しないかぎり同じ)未満では、歪点が充分に上がらず、かつ、熱膨張係数が増大し、密度が上昇する。64%以上が好ましく、65%以上がより好ましく、66%以上がさらに好ましく、66.5%以上が特に好ましい。好ましくは66.5%以上、より好ましくは67%以上である。74%超では、エッチング速度が低下し、ガラスの溶解性が低下し、失透温度が上昇する。70%以下が好ましく、69%以下がより好ましく、68%以下がさらに好ましい。
 Alはヤング率を上げて薄板化後のたわみを抑制し、かつガラスの分相性を抑制し、熱膨脹係数を下げ、歪点を上げ、破壊靱性値が向上してガラス強度を上げるが、11.5%未満ではこの効果があらわれず、また、ほかの膨張を上げる成分を増加させることになるため、結果的に熱膨張が大きくなる。12%以上、12.5%以上、さらに13%以上が好ましい。16%超ではガラスの溶解性が悪くなったり、失透温度を上昇させるおそれがある。15%以下が好ましく、14%以下がより好ましく、13.5%以下がさらに好ましい。
 Bは、ガラスの溶解反応性をよくし、失透温度を低下させ、耐BHF性を改善するが、1.5%以下ではこの効果が十分あらわれず、また、歪点が過度に高くなったり、BHFによる処理後にヘイズの問題になりやすい。2%以上が好ましく、3%以上がより好ましい。しかし、多すぎると光弾性定数が大きくなり、応力が加わった場合に色ムラなどの問題が発生しやすくなる。また、Bが5%超では薄板化後の表面粗さが大きくなり、薄板化後の強度が低くなる。また、歪点が下がり、ヤング率が小さくなる。4.5%以下が好ましく、4%以下がより好ましい。
 MgOは、比重を上げずにヤング率を上げるため、比弾性率を高くすることでたわみの問題を軽減できる。また、アルカリ土類の中では膨張を高くせず、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させる。また、破壊靱性値が向上してガラス強度を上げるが、5.5%未満ではこの効果が十分あらわれず、また他のアルカリ土類比率が高くなることから密度が高くなる。6%以上、さらに7%以上が好ましく、7.5%以上、8%以上さらに8%超がより好ましく、8.1%以上さらには8.3%以上が好ましく、8.5%以上が特に好ましい。13%超では失透温度が上昇するおそれがある。12%以下が好ましく、11%以下がより好ましく、10%以下が特に好ましい。
 CaOは、MgOに次いでアルカリ土類中では比弾性率を高くし、膨張を高くせず、密度を低く維持し、かつ歪点を過大に低下させないという特徴を有し、溶解性も向上させる。1.5%未満では上述したCaO添加による効果が十分あらわれない。2%以上が好ましく、3%以上がより好ましく、3.5%以上がさらに好ましく、4%以上が特に好ましい。しかし、12%を超えると、失透温度が上昇したり、CaO原料である石灰石(CaCO)中の不純物であるリンが、多く混入するおそれがある。10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下が特に好ましい。
 SrOは、ガラスの失透温度を上昇させず溶解性を向上させるが、1.5%未満ではこの効果が十分あらわれない。2%以上が好ましく、2.5%以上がより好ましく、3%以上がさらに好ましい。しかし、9%を超えると膨脹係数が増大するおそれがある。7%以下が好ましく、6%以下、5%以下がより好ましい。
 BaOは必須ではないが溶解性向上のために含有できる。しかし、多すぎるとガラスの膨張と密度を過大に増加させるので1%以下とする。1%未満が好ましく、0.5%以下がより好ましく、さらに実質的に含有しないことが好ましい。実質的に含有しないとは、不可避的不純物を除き含有しない意味である。
 ZrOは、ヤング率を上げるために、ガラス溶融温度を低下させるために、または焼成時の結晶析出を促進するために、2%まで含有してもよい。2%超ではガラスが不安定になる、またはガラスの比誘電率εが大きくなる。好ましくは1.5%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下であり、実質的に含有しないことが特に好ましい。
 MgO、CaO、SrO、BaOは合量で15.5%よりも少ないと、ガラス粘度が10dPa・sとなる温度Tが高くなり、フロート成形の際にフロートバスの筐体構造物やヒーターの寿命を極端に短くする恐れがある。また、エッチング速度が遅く、光弾性定数が大きくなり、また溶解性が低下する。16%以上が好ましく、17%以上がさらに好ましい。21%よりも多いと、熱膨張係数を小さくできないという難点が生じるおそれがある。20%以下、19%以下、さらに18%以下が好ましい。
 MgO、CaO、SrOおよびBaOの合量が上記を満たし、かつ、下記の条件を満たすことにより、失透温度を上昇させることなしに、ヤング率、比弾性率を上昇させ、さらにガラスの粘性、特にTを下げることができる。
 MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、0.37以上が好ましく、0.4以上がより好ましい。
 CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、0.48以下が好ましく、0.45以下がより好ましい。
 SrO/(MgO+CaO+SrO+BaO)が0.50以下であり、0.40以下が好ましく、0.30以下がより好ましく、0.27以下がより好ましく、0.25以下がさらに好ましい。
 本発明の無アルカリガラスにおいて、Al×(MgO/(MgO+CaO+SrO+BaO))が4.3以上であることがヤング率を高められるので好ましい。4.5以上が好ましく、4.7以上がより好ましく、5.0以上がさらに好ましい。
 NaO、KOなどのアルカリ金属酸化物は、電気ブースター加熱などの目的で添加してもよい。アルカリ金属酸化物を含有量が高くなると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、各種ディスプレイ用基板ガラスとしての使用時に問題となるが、ガラス組成中のアルカリ金属酸化物を含有量が2000モルppm以下であれば、このような問題を生じにくい。より好ましくは1500モルppm以下、1300モルppm以下、1000モルppm以下である。
 なお、本発明の無アルカリガラス基板を用いたディスプレイ製造時にガラス表面に設ける金属ないし酸化物薄膜の特性劣化を生じさせないために、ガラス原料はPを実質的に含有しないことが好ましい。不純物としての混入量は23モルppm以下が好ましく、18モルppm以下がより好ましく、11モルppm以下がさらに好ましく、5モルppm以下が特に好ましい。さらに、ガラスのリサイクルを容易にするため、ガラス原料はPbO、As、Sbは実質的に含有しないことが好ましい。
 ガラスの溶解性、清澄性、成形性を改善するため、ZnO、Fe、SO、F、Cl、SnOを総量で1%以下、好ましくは0.5%以下、より好ましくは0.3%以下、さらに好ましくは0.15%以下、特に好ましくは0.1%以下含有できる。ZnOは実質的に含有しないことが好ましい。
 本発明の無アルカリガラス基板の製造は、たとえば、以下の手順で実施する。
 各成分の原料を目標成分になるように調合し、これを溶解炉に連続的に投入し、1500~1800℃に加熱して溶融する。この溶融ガラスを成形装置にて、所定の板厚の板状のガラスリボンに成形し、このガラスリボンを徐冷後切断することによって、無アルカリガラス基板を得ることができる。
 本発明では、フロート法にて板状のガラスリボンに成形することが好ましい。
 本発明の無アルカリガラス基板の薄板化方法では、無アルカリガラス基板の2つの主面のうち、少なくとも一方の主面をフッ酸(HF)エッチング処理することにより、該無アルカリガラス基板が5μm以上薄板化される。薄板化されることにより、無アルカリガラス基板を用いたディスプレイの厚さを低減することができ、かつディスプレイを軽量化することができる。
 エッチング処理により薄板化せずに、最初から薄板、すなわち、板厚が小さい無アルカリガラス基板を使用すると、ディスプレイ製造時に実施されるデバイス作製工程などで、大きな薄板をハンドリングする必要があるため、自重たわみによる搬送トラブル(例えば、搬送時の接触による基板へのキズの発生等。以下、同様)や基板の割れなどの問題が生じやすい。好ましくは10μm以上、さらに好ましくは100μm以上、特に好ましくは200μm以上薄板化される。
 本発明の無アルカリガラス基板の薄板化方法では、薄板化後の無アルカリガラス基板の板厚は0.4mm以下である。0.4mm超では、ディスプレイの軽量化や薄型化の効果が得られない。より好ましくは0.35mm以下、さらに好ましくは0.25mm以下である。
 薄板化される前の無アルカリガラス基板の板厚は0.3mm以上であることが好ましい。0.3mm未満だと、デバイス作製工程などで大きな薄板をハンドリングする必要があるため、自重たわみによる搬送トラブルや割れなどの問題が生じやすい。より好ましくは0.4mm以上、特に好ましくは0.45mm以上である。しかし、0.75mm超だと、ディスプレイの軽量化や薄型化のための薄板化に要する時間が長くなりすぎるおそれがある。より好ましくは0.65mm以下、さらに好ましくは0.55mm以下である。
 エッチング処理のための薬液は、フッ酸(HF)を含む薬液を用いる。アルカリ性の薬液によっても、エッチング処理は可能であるが、フッ酸を含む薬液の方がエッチング速度が速く、かつ平滑にエッチングすることができる。薬液に含まれるフッ酸濃度は、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましく、5質量%以上であることが特に好ましい。また、フッ酸に加え、塩酸、硝酸、硫酸などのフッ酸以外の酸を薬液に加えることが好ましい。
 エッチング処理時には、無アルカリガラス基板の少なくとも一方の主面を、フッ酸を含む薬液に浸漬させる。薬液中のフッ素濃度に応じて、所定時間浸漬させることで、無アルカリガラス基板が所定量薄板化される。
 エッチング処理において、薬液が撹拌、バブリング、超音波、シャワー、のうち少なくともいずれか1種類以上の方法で流動されていることが好ましい。薬液を流動する代わりに、無アルカリガラス基板を揺動、回転、のうち少なくともいずれか1種類以上の方法で移動させてもよい。
 本発明の無アルカリガラス基板の薄板化方法では、25℃の5質量%フッ酸(HF)に浸漬した場合に、エッチング速度の指標となる、単位面積および単位時間当たりの溶出量が、0.17(mg/cm)/分以上となる条件でエッチング処理を実施する。0.17(mg/cm)/分未満だと、薄板化に要する時間が長くなりすぎるおそれがある。より好ましくは0.18(mg/cm)/分以上である。
 本発明の方法により薄板化された無アルカリガラス基板は、薄板化後の強度が高い。具体的には、薄板化後の無アルカリガラス基板のエッチング処理された側の主面(評価したい側の面)を、直径が30mmでRが2.5mmのリング(リングの断面は円でありRはその円の半径)と、直径10mmのボールと、を用いたボールオンリング(BOR)法(評価したい側の面を下向きにしてリング上に乗せる)で測定した平均破壊荷重が、板厚0.4mm換算で300N以上であると好ましい。ここで、リングの直径とは断面の中央を通る円の直径であり、直径30mm、R=2.5mmのリングの場合は、リングの最外径は35mm、最内径は25mmとなる。
 また、平均破壊荷重とは、BOR法による破壊荷重の測定を複数回実施し、それらによって得られた測定結果の平均値を意味する。なお、後述する実施例では、BOR法による破壊荷重の測定を5回実施し、それらの測定結果の平均値を平均破壊荷重とした。
 BOR法で測定した平均破壊荷重が板厚0.4mm換算で300N未満だと、無アルカリガラス基板の表面強度が低く、ディスプレイ製造時におけるハンドリング時等にガラス基板が割れるなど(例えば、支持ピン等で、デバイス作製後の無アルカリガラス基板を持ち上げるような工程でガラス基板が割れるなど)、薄板化後の強度が問題となるおそれがある。より好ましくは350N以上である。
 BOR法での板厚換算は以下の手順にて行う。
 BOR法ではガラス基板表面に発生する応力は板厚の二乗に反比例するため、板厚0.4mm換算の破壊荷重W(N)は、ガラス基板の板厚をt(mm)とし、BOR法により得られる破壊荷重をw(N)とするとき、W=w×0.16/tの関係式より求めることができる。
 本発明の方法により薄板化された無アルカリガラス基板は、薄板化後の無アルカリガラス基板のエッチング処理された側の主面(評価したい側の面)の3点曲げによる面強度が500MPa以上であることが好ましい。500MPa未満だと、薄板化された無アルカリガラス基板を用いたディスプレイが、携帯型ディスプレイとして用いられる際に、割れなどの問題が生じやすくなるおそれがある。より好ましくは800MPa以上、さらに好ましくは1000MPa以上、特に好ましくは1200MPa以上、最も好ましくは1500MPa以上である。
 薄板化後の無アルカリガラス基板のエッチング処理された側の主面(評価したい側の面)の3点曲げによる面強度は以下のように測定する。評価面をシールで保護した状態で、ガラス基板をポイントスクライバーにてスクライブし、切断した後、評価面のシールをはがして非スクライブ側が下になるようにスパン10mm、R1.5mmの3点曲げジグの上に設置する。上面のスクライブ側からR1.5mmのジグにて押した際の破壊荷重から、3点曲げによる面強度を算出する。
 評価面にキズが入ると低強度となるので、薄板後は評価面にはさわらない状態で維持する必要がある。曲げ試験において、端面に破壊起点がある場合は面強度ではなく端面強度を測定していることになるため、起点が面内にある場合の試験結果のみを採用し、平均破壊荷重を求める。
 なお、本明細書において、BOR法により、または、3点曲げにより、平均破壊荷重を測定する場合の環境は、温度22±2℃、湿度40±10%とする。
 本発明の方法により薄板化された無アルカリガラス基板は、薄板化後の無アルカリガラス基板のエッチング処理された側の主面における表面粗さは、AFM測定において1μm四方のRaが0.75nm以下であることが好ましい。0.75nm超だと、無アルカリガラス基板の強度が低くなるおそれがある。より好ましくは0.7nm以下である。
 本発明の無アルカリガラス基板は、歪点が680℃以上735℃以下である。
 本発明の無アルカリガラス基板は、歪点が680℃以上であるため、パネル製造時の熱収縮を抑えられる。また、p-Si TFTの製造方法としてレーザーアニールによる方法を適用することができる。685℃以上がより好ましく、690℃以上がさらに好ましい。
 また、本発明の無アルカリガラス基板は、歪点が680℃以上であるため、高歪点用途(例えば、板厚0.7mm以下、好ましくは0.5mm以下、より好ましくは0.3mm以下の有機EL用のディスプレイ用基板または照明用基板、あるいは板厚0.3mm以下、好ましくは0.1mm以下の薄板のディスプレイ用基板または照明用基板)に適している。
 板厚0.7mm以下、さらには0.5mm以下、さらには0.3mm以下、さらには0.1mm以下の板ガラスの成形では、成形時の引き出し速度が速くなる傾向があるため、ガラスの仮想温度が上昇し、ガラスのコンパクションが増大しやすい。この場合、高歪点ガラスであると、コンパクションを抑制することができる。
 一方、歪点が735℃以下であるため、フロートバス内及びフロートバス出口の温度をあまり高くする必要が無く、フロートバス内及びフロートバス下流側に位置する金属部材の寿命に影響を及ぼすことが少ない。725℃以下がより好ましく、715℃以下がさらに好ましく、710℃以下が特に好ましい。
 また、ガラスの平面歪が改善するため、フロートバス出口から徐冷炉に入る部分で温度を高くする必要があるが、この際の温度をあまり高くする必要がない。このため、加熱に使用するヒータに負荷がかかることがなく、ヒータの寿命に影響を及ぼすことが少ない。
 また本発明の無アルカリガラス基板は、歪点と同様の理由で、ガラス転移点が好ましくは730℃以上であり、より好ましくは740℃以上であり、さらに好ましくは750℃以上である。また、780℃以下が好ましく、775℃以下がさらに好ましく、770℃以下が特に好ましい。
 また本発明の無アルカリガラス基板は、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であり、耐熱衝撃性が大きく、パネル製造時の生産性を高くできる。本発明の無アルカリガラス基板において、50~350℃での平均熱膨張係数は好ましくは35×10-7/℃以上である。50~350℃での平均熱膨張係数は好ましくは42×10-7/℃以下、より好ましくは41×10-7/℃以下、さらに好ましくは40×10-7/℃以下である。
 さらに、本発明の無アルカリガラス基板は、比重が好ましくは2.62以下であり、より好ましくは2.60以下であり、さらに好ましくは2.58以下である。
 また、本発明の無アルカリガラス基板は、粘度ηが10ポイズ(dPa・s)となる温度Tが1710℃以下であり、より好ましくは1700℃以下、さらに好ましくは1690℃以下、特に好ましくは1680℃以下、1670℃以下になっているため溶解が比較的容易である。
 さらに、本発明の無アルカリガラス基板は粘度ηが10ポイズとなる温度Tが1310℃以下、好ましくは1305℃以下、より好ましくは1300℃以下、さらに好ましくは1300℃未満、1295℃以下、1290℃以下であり、フロート成形に適している。
 また、本発明の無アルカリガラス基板は失透温度が、1315℃以下であることがフロート法による成形が容易となることから好ましい。好ましくは1300℃以下、1300℃未満、1290℃以下、より好ましくは1280℃以下である。また、フロート成形性やフュージョン成形性の目安となる温度T(ガラス粘度ηが10ポイズとなる温度、単位:℃)と失透温度との差(T-失透温度)は、好ましくは-20℃以上、-10℃以上、さらには0℃以上、より好ましくは10℃以上、さらに好ましくは20℃以上、特に好ましくは30℃以上である。
 本明細書における失透温度は、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面及び内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
 また、本発明の無アルカリガラス基板は、比弾性率が31MNm/kg以上である。31MNm/kg未満では、自重たわみによる搬送トラブルや割れなどの問題が生じやすい。好ましくは32MNm/kg以上、より好ましくは33MNm/kg以上である。
 また、本発明の無アルカリガラス基板は、ヤング率は78GPa以上が好ましく、79GPa以上、80GPa以上、さらに81GPa以上がより好ましく、82GPa以上がさらに好ましい。
 また、本発明の無アルカリガラス基板は、光弾性定数が30nm/MPa/cm以下であることが好ましい。
 液晶ディスプレイパネル製造工程や液晶ディスプレイ装置使用時に発生した応力によってガラス基板が複屈折性を有することにより、黒の表示がグレーになり、液晶ディスプレイのコントラストが低下する現象が認められることがある。光弾性定数を30nm/MPa/cm以下とすることにより、この現象を小さく抑えることができる。好ましくは29nm/MPa/cm以下、より好ましくは28.5nm/MPa/cm以下、さらに好ましくは28nm/MPa/cm以下である。
 また、本発明の無アルカリガラス基板は、他の物性確保の容易性を考慮すると、光弾性定数が好ましくは23nm/MPa/cm以上、より好ましくは25nm/MPa/cm以上である。
 なお、光弾性定数は円盤圧縮法により測定波長546nmにて測定できる。
 また、本発明の無アルカリガラス基板は、比誘電率が5.6以上であることが好ましい。
 日本国特開2011-70092号公報に記載されているような、インセル型のタッチパネル(液晶ディスプレイパネル内にタッチセンサを内蔵したもの)の場合、タッチセンサのセンシング感度の向上、駆動電圧の低下、省電力化の観点から、ガラス基板の比誘電率が高いほうがよい。比誘電率を5.6以上とすることにより、タッチセンサのセンシング感度が向上する。好ましくは5.8以上、より好ましくは6.0以上、さらに好ましくは6.2以上、特に好ましくは6.4以上である。
 なお、比誘電率はJIS C-2141に記載の方法で測定できる。
 本発明の無アルカリガラス基板は、熱処理時の収縮量が小さいことが好ましい。液晶パネル製造においては、アレイ側とカラーフィルター側では熱処理工程が異なる。そのため、特に高精細パネルにおいて、ガラスの熱収縮率が大きい場合、嵌合時にドットのずれが生じるという問題がある。なお、熱収縮率の評価は次の手順で測定できる。試料をガラス転移点+100゜Cの温度で10分間保持した後、毎分40゜Cで室温まで冷却する。ここで試料の全長(Lとする)を計測する。次に、毎時100゜Cで600゜Cまで加熱し、600゜Cで80分間保持し、毎時100゜Cで室温まで冷却し、再度試料の全長を計測し、600゜Cでの熱処理前後における試料の収縮量(ΔLとする)を計測する。熱処理前の試料全長と収縮量の比(ΔL/L)を熱収縮率とする。上記評価方法において、熱収縮率は好ましくは100ppm以下、より好ましくは80ppm以下、さらに好ましくは60ppm以下さらには55ppm以下、特に好ましくは50ppm以下である。
(実施例1~6、比較例1、2)
 各成分の原料を、表1に示す目標組成になるように調合し、連続溶融窯にて溶解を行い、フロート法にて板成形を行い、無アルカリガラス基板を得た。
 得られたガラス基板を鏡面研磨後、8質量%フッ酸、10質量%塩酸による混酸にて、バブリングを行いながら板厚が0.7mmから0.4mmになるよう、ガラス基板の片面のエッチング処理を行い、薄板化を行った。
 薄板化後のガラス基板を用いて、直径30mm、R=2.5mmのSUS製リングと直径10mmのSUS製ボールとを用いたボールオンリング(BOR)法にて破壊荷重の測定を5回実施し、それらの測定結果から得られた板厚0.4mm換算の平均破壊荷重を表2に示す。
 また、上記と同様の手順で、板厚を30μmエッチング処理した場合の、エッチング処理面における表面粗さを下記手法で求めた。結果を下記表2に示す。
[AFMによる表面粗さの測定方法]
 ガラス基板のエッチング処理面について、Park Systems社製XE-HDMにて、スキャンレートを1Hzとし、1μm四方の表面粗さRaを求める。
 さらに、フッ酸エッチング処理時のエッチング速度の指標として、25℃、5質量%のフッ酸水溶液に無アルカリガラス基板を浸漬した際の、単位面積および単位時間当たりの溶出量を下記手順で評価した。結果を表2に示す。かっこは計算値を示す。
[単位面積および単位時間当たりの溶出量の測定方法]
 鏡面研磨された40mm四方に切断した無アルカリガラス基板を洗浄後、質量を測定する。25℃の5質量%フッ酸に20分間浸漬し、浸漬後の質量を測定する。サンプル寸法から表面積を算出し、質量減少量を表面積で割ったのち、さらに浸漬時間で割ることで、単位面積および単位時間当たりの溶出量を求める。
 なお、上記の手順で得られた無アルカリガラス基板については、歪点、ヤング率、比弾性率、光弾性定数、比誘電率も測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2013年11月28日出願の日本特許出願2013-246801に基づくものであり、その内容はここに参照として取り込まれる。

Claims (3)

  1.  フッ酸(HF)エッチング処理により5μm以上薄板化された、板厚0.4mm以下の無アルカリガラス基板であって、前記無アルカリガラス基板が下記の無アルカリガラスであり、薄板化後の前記無アルカリガラス基板における、比弾性率が31MNm/kg以上であり、光弾性定数が30nm/MPa/cm以下である、無アルカリガラス基板。
     歪点が680~735℃であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1310℃以下であって、酸化物基準のモル%表示で
    SiO        63~74、
    Al       11.5~16、
             1.5超5以下、
    MgO         5.5~13、
    CaO         1.5~12、
    SrO        1.5~9、
    BaO         0~1、
    ZrO        0~2を含有し
    MgO+CaO+SrO+BaO が15.5~21であり、
    MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下である無アルカリガラス。
  2.  前記無アルカリガラス基板は、直径が30mmでRが2.5mmのリングと直径10mmのボールを用いたボールオンリング(BOR)法で測定した平均破壊荷重が板厚0.4mm換算で300N以上である、請求項1に記載の無アルカリガラス基板。
  3.  無アルカリガラス基板の薄板化方法であって、
     前記無アルカリガラス基板が下記の無アルカリガラスであり、前記無アルカリガラス基板の少なくとも一方の主面を、フッ酸(HF)を含有するエッチング液(25℃、5%HF水溶液)に浸漬して、単位面積および単位時間当たりの溶出量が、0.17(mg/cm)/分以上となる条件で、前記無アルカリガラス基板を5μm以上薄板化する、無アルカリガラス基板の薄板化方法。
     歪点が680~735℃であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1310℃以下であって、酸化物基準のモル%表示で
    SiO       63~74、
    Al      11.5~16、
            1.5超5以下、
    MgO         5.5~13、
    CaO         1.5~12、
    SrO        1.5~9、
    BaO         0~1、
    ZrO        0~2を含有し
    MgO+CaO+SrO+BaO が15.5~21であり、
    MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下である無アルカリガラス。
PCT/JP2014/081293 2013-11-28 2014-11-26 無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法 WO2015080171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015550970A JP6447510B2 (ja) 2013-11-28 2014-11-26 無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法
CN201480065338.3A CN105992749B (zh) 2013-11-28 2014-11-26 无碱玻璃基板及无碱玻璃基板的减薄方法
KR1020167013811A KR102249898B1 (ko) 2013-11-28 2014-11-26 무알칼리 유리 기판, 및 무알칼리 유리 기판의 박판화 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-246801 2013-11-28
JP2013246801 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015080171A1 true WO2015080171A1 (ja) 2015-06-04

Family

ID=53199110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081293 WO2015080171A1 (ja) 2013-11-28 2014-11-26 無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法

Country Status (5)

Country Link
JP (1) JP6447510B2 (ja)
KR (1) KR102249898B1 (ja)
CN (1) CN105992749B (ja)
TW (1) TWI639571B (ja)
WO (1) WO2015080171A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084952A1 (ja) * 2014-11-28 2016-06-02 旭硝子株式会社 液晶ディスプレイパネル
JP2021061614A (ja) * 2016-04-05 2021-04-15 Agc株式会社 透光性の開口部材
JP2021514921A (ja) * 2018-02-22 2021-06-17 コーニング インコーポレイテッド Hfエッチング後に低い粗さを有する無アルカリホウケイ酸塩ガラス
US11319241B2 (en) * 2016-12-30 2022-05-03 Tunghsu Group Co., Ltd. Composition for preparing glass, glass article and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263421A (ja) * 1996-03-28 1997-10-07 Asahi Glass Co Ltd 無アルカリガラスおよびフラットディスプレイパネル
JP2000302475A (ja) * 1999-04-12 2000-10-31 Carl Zeiss:Fa アルカリ非含有アルミノ硼珪酸ガラスとその用途
WO2009157378A1 (ja) * 2008-06-25 2009-12-30 旭硝子株式会社 無アルカリガラス基板のエッチング方法及び表示デバイス
WO2011001920A1 (ja) * 2009-07-02 2011-01-06 旭硝子株式会社 無アルカリガラスおよびその製造方法
JP2012082130A (ja) * 2010-10-06 2012-04-26 Corning Inc 高熱および化学安定性を有する無アルカリガラス組成物
WO2013099970A1 (ja) * 2011-12-28 2013-07-04 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116789A (en) 1991-08-12 1992-05-26 Corning Incorporated Strontium aluminosilicate glasses for flat panel displays
JP3804112B2 (ja) 1996-07-29 2006-08-02 旭硝子株式会社 無アルカリガラス、無アルカリガラスの製造方法およびフラットディスプレイパネル
CN103121796B (zh) * 2006-02-10 2017-03-29 康宁股份有限公司 具有高的热稳定性和化学稳定性的玻璃组合物及其制备方法
KR20090066624A (ko) 2007-12-20 2009-06-24 주식회사 엘지화학 내스크래치성이 향상된 열가소성 난연수지 조성물
EP2650262A1 (en) * 2010-12-07 2013-10-16 Asahi Glass Company, Limited Alkali free glass and method for producing alkali free glass
KR101632546B1 (ko) * 2012-12-21 2016-06-21 코닝 인코포레이티드 개선된 총 피치 안정성을 갖는 유리
JP2017007870A (ja) * 2013-11-13 2017-01-12 旭硝子株式会社 板ガラスの製造方法
JP2017030976A (ja) * 2013-12-04 2017-02-09 旭硝子株式会社 ガラス基板の仕上げ研磨方法、および、該方法で仕上げ研磨された無アルカリガラス基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263421A (ja) * 1996-03-28 1997-10-07 Asahi Glass Co Ltd 無アルカリガラスおよびフラットディスプレイパネル
JP2000302475A (ja) * 1999-04-12 2000-10-31 Carl Zeiss:Fa アルカリ非含有アルミノ硼珪酸ガラスとその用途
WO2009157378A1 (ja) * 2008-06-25 2009-12-30 旭硝子株式会社 無アルカリガラス基板のエッチング方法及び表示デバイス
WO2011001920A1 (ja) * 2009-07-02 2011-01-06 旭硝子株式会社 無アルカリガラスおよびその製造方法
JP2012082130A (ja) * 2010-10-06 2012-04-26 Corning Inc 高熱および化学安定性を有する無アルカリガラス組成物
WO2013099970A1 (ja) * 2011-12-28 2013-07-04 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084952A1 (ja) * 2014-11-28 2016-06-02 旭硝子株式会社 液晶ディスプレイパネル
JPWO2016084952A1 (ja) * 2014-11-28 2017-10-05 旭硝子株式会社 液晶ディスプレイパネル
US10386686B2 (en) 2014-11-28 2019-08-20 AGC Inc. Liquid crystal display panel
JP2019219663A (ja) * 2014-11-28 2019-12-26 Agc株式会社 液晶ディスプレイパネル
US11586084B2 (en) 2014-11-28 2023-02-21 AGC Inc. Liquid crystal display panel
JP2021061614A (ja) * 2016-04-05 2021-04-15 Agc株式会社 透光性の開口部材
JP7067601B2 (ja) 2016-04-05 2022-05-16 Agc株式会社 透光性の開口部材
US11319241B2 (en) * 2016-12-30 2022-05-03 Tunghsu Group Co., Ltd. Composition for preparing glass, glass article and use thereof
JP2021514921A (ja) * 2018-02-22 2021-06-17 コーニング インコーポレイテッド Hfエッチング後に低い粗さを有する無アルカリホウケイ酸塩ガラス
JP7489318B2 (ja) 2018-02-22 2024-05-23 コーニング インコーポレイテッド Hfエッチング後に低い粗さを有する無アルカリホウケイ酸塩ガラス

Also Published As

Publication number Publication date
JP6447510B2 (ja) 2019-01-09
KR20160091332A (ko) 2016-08-02
JPWO2015080171A1 (ja) 2017-03-16
CN105992749B (zh) 2020-11-03
CN105992749A (zh) 2016-10-05
TW201529518A (zh) 2015-08-01
TWI639571B (zh) 2018-11-01
KR102249898B1 (ko) 2021-05-11

Similar Documents

Publication Publication Date Title
JP6086119B2 (ja) 無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法
JP6168053B2 (ja) 無アルカリガラスおよびこれを用いた無アルカリガラス板の製造方法
KR102345199B1 (ko) 무알칼리 유리
JP6187475B2 (ja) 無アルカリガラス基板
JP2017007870A (ja) 板ガラスの製造方法
WO2015030013A1 (ja) 無アルカリガラス
JP6447510B2 (ja) 無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法
JP6344397B2 (ja) 無アルカリガラス
CN106458701B (zh) 无碱玻璃
CN104334507B (zh) 无碱玻璃基板及无碱玻璃基板的减薄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550970

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167013811

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865911

Country of ref document: EP

Kind code of ref document: A1