WO2015079922A1 - 高電圧発生装置及びそれを備えたx線撮影装置 - Google Patents

高電圧発生装置及びそれを備えたx線撮影装置 Download PDF

Info

Publication number
WO2015079922A1
WO2015079922A1 PCT/JP2014/080022 JP2014080022W WO2015079922A1 WO 2015079922 A1 WO2015079922 A1 WO 2015079922A1 JP 2014080022 W JP2014080022 W JP 2014080022W WO 2015079922 A1 WO2015079922 A1 WO 2015079922A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
divided
high voltage
secondary winding
voltage generator
Prior art date
Application number
PCT/JP2014/080022
Other languages
English (en)
French (fr)
Inventor
美奈 小川
高野 博司
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to CN201480062683.1A priority Critical patent/CN105723810A/zh
Priority to US15/035,379 priority patent/US20160286636A1/en
Priority to JP2015550641A priority patent/JPWO2015079922A1/ja
Publication of WO2015079922A1 publication Critical patent/WO2015079922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F2027/408Association with diode or rectifier

Definitions

  • the present invention relates to an X-ray imaging apparatus that performs X-ray imaging, and more particularly to a technique for miniaturizing a high voltage transformer in an X-ray high voltage apparatus for an X-ray imaging apparatus.
  • the X-ray imaging apparatus is an apparatus that creates and displays an X-ray image of a subject based on a transmitted X-ray dose acquired by irradiating the subject with X-rays.
  • a device that reconstructs and displays cross-sectional images of a subject based on transmitted X-ray doses from various angles acquired by irradiating the subject with X-rays is called an X-ray CT (Computed Tomography) device. .
  • a high-voltage transformer is a power device that converts the height of an AC voltage using electromagnetic induction.
  • the input voltage is set to a higher voltage, for example, about 100 kV to 140 kV. Convert to voltage.
  • the main transformer has a plurality of secondary windings, each of which is connected to a voltage doubler rectifier circuit, and these outputs are connected in series to generate a higher voltage. It is disclosed.
  • an object of the present invention is to provide a high voltage generator having a high voltage transformer that is miniaturized while maintaining insulation between the secondary winding and the iron core, and an X-ray imaging apparatus including the high voltage generator. is there.
  • the present invention provides a high voltage transformer having a primary winding, a secondary winding, and an iron core, and a high voltage rectifier that rectifies an AC voltage output from the high voltage transformer into a DC voltage.
  • the secondary winding and the iron core are divided in the direction of magnetic flux generated by an alternating current flowing through the primary winding, and each divided secondary winding has a divided secondary winding.
  • a dielectric is disposed between each of the divided iron cores wound so as to correspond to each other.
  • the present invention also provides an X-ray imaging apparatus comprising an X-ray source that irradiates a subject with X-rays and an X-ray high-voltage device that supplies power to the X-ray source, the X-ray high-voltage device Comprises a high voltage transformer having a primary winding, a secondary winding and an iron core, and a high voltage rectifier for rectifying an AC voltage output from the high voltage transformer into a DC voltage, and the secondary winding;
  • the iron core is divided in the direction of the magnetic flux generated by the alternating current flowing through the primary winding, and the divided secondary windings are wound around the divided iron cores so as to correspond respectively.
  • a dielectric is disposed between each of the iron cores.
  • the high voltage generator which has a high voltage transformer reduced in size, maintaining the insulation between a secondary winding and an iron core, and an X-ray imaging apparatus provided with the same can be provided. .
  • FIG. 1 is a block diagram showing the overall configuration of an X-ray CT apparatus which is an example of an X-ray imaging apparatus. As shown in FIG. 1, the X-ray CT apparatus 1 includes a scan gantry unit 100 and an operation unit 120.
  • the scan gantry unit 100 includes an X-ray tube device 101, a rotating disk 102, a collimator 103, an X-ray detector 106, a data collection device 107, a bed device 105, a gantry control device 108, and a bed control device 109. And an X-ray control device 110.
  • the X-ray tube apparatus 101 is an apparatus that irradiates a subject placed on the bed apparatus 105 with X-rays, and serves as an X-ray source.
  • the collimator 103 is a device that limits the radiation range of X-rays emitted from the X-ray tube device 101.
  • the rotating disk 102 includes an opening 104 into which the subject placed on the bed apparatus 105 enters, and is equipped with an X-ray tube device 101 and an X-ray detector 106, and rotates around the subject.
  • the X-ray detector 106 is a device that measures the spatial distribution of transmitted X-rays by detecting X-rays that are disposed opposite to the X-ray tube device 101 and transmitted through the subject.
  • 102 is one-dimensionally arranged in the rotation direction of 102, or a large number of detection elements are two-dimensionally arranged in the rotation direction of the rotating disk 102 and the rotation axis direction.
  • the data collection device 107 is a device that collects the X-ray dose detected by the X-ray detector 106 as digital data.
  • the gantry control device 108 is a device that controls the rotation and inclination of the rotary disk 102.
  • the bed control device 109 is a device that controls the vertical and horizontal movements of the bed device 105.
  • the X-ray control device 110 is a device that controls electric power input to the X-ray tube device 101. The X-ray control device 110 will be described later in detail.
  • the operation unit 120 includes an input device 121, an image processing device 122, a display device 125, a storage device 123, and a system control device 124.
  • the input device 121 is a device for inputting a subject's name, examination date and time, imaging conditions, and the like.
  • the input device 121 is a keyboard, a pointing device, a touch panel, or the like.
  • the image processing apparatus 122 is an apparatus that reconstructs a CT image by performing arithmetic processing on measurement data transmitted from the data collection apparatus 107.
  • the display device 125 is a device that displays a CT image or the like created by the image processing device 122, and is specifically a CRT (Cathode-Ray Tube) or a liquid crystal display.
  • the storage device 123 is a device that stores data collected by the data collection device 107, image data of a CT image created by the image processing device 122, and the like. Specifically, the storage device 123 is an HDD (Hard Disk Drive) or the like.
  • the system control device 124 is a device that controls these devices, the gantry control device 108, the bed control device 109, and the X-ray control device 110.
  • the X-ray tube device 101 is controlled by the X-ray controller 110 controlling the power input to the X-ray tube device 101 based on the imaging conditions input from the input device 121, particularly the X-ray tube voltage and X-ray tube current. Irradiates the subject with X-rays according to imaging conditions.
  • the X-ray detector 106 detects X-rays irradiated from the X-ray tube apparatus 101 and transmitted through the subject with a large number of X-ray detection elements, and measures the distribution of transmitted X-rays.
  • the rotating disk 102 is controlled by the gantry control device 108, and rotates based on the imaging conditions input from the input device 121, particularly the rotation speed.
  • the couch device 105 is controlled by the couch control device 109 and operates based on the imaging conditions input from the input device 121, particularly the helical pitch.
  • X-ray irradiation from the X-ray tube apparatus 101 and transmission X-ray distribution measurement by the X-ray detector 106 are repeated along with the rotation of the rotating disk 102, whereby projection data from various angles is acquired.
  • the projection data is associated with a view representing each angle, a channel (ch) number and a column number that are detection element numbers of the X-ray detector 106.
  • the acquired projection data from various angles is transmitted to the image processing device 122.
  • the image processing device 122 reconstructs the CT image by performing back projection processing on the transmitted projection data from various angles.
  • the CT image obtained by the reconstruction is displayed on the display device 125.
  • the X-ray CT apparatus 1 may be connected to an in-hospital server or an out-of-hospital server via a network (not shown), and necessary data may be read from each server in a timely manner.
  • the X-ray control device 110 will be described with reference to FIG.
  • the X-ray control device 110 includes a converter 202, an inverter 203, a high voltage transformer 41, and a high voltage rectifier 42.
  • the converter 202 is connected to the AC power source 201 and is a device that converts the AC voltage of the AC power source 201 into a DC voltage.
  • the inverter 203 is connected to the converter 202 and is a device that converts a DC voltage output from the converter 202 into an AC voltage.
  • the AC voltage output from the inverter 203 has a higher frequency than the AC voltage output from the AC power supply 201.
  • the high voltage transformer 41 is connected to the inverter 203 and is a device that boosts the AC voltage output from the inverter 203.
  • the high voltage rectifier 42 is connected to the high voltage transformer 41 and rectifies the AC voltage boosted by the high voltage transformer 41 into a DC voltage.
  • the output terminal of the high-voltage rectifier 42 is connected to the X-ray tube device 101, and a DC voltage output from the high-voltage rectifier 42 is applied to the X-ray tube device 101, so that the X-ray tube device 101 to the X-ray tube Is irradiated.
  • the high voltage transformer 41 and the high voltage rectifier 42 are collectively referred to as a high voltage generator 204.
  • the high voltage generator 204 may be mounted on the rotating disk 102, and the inverter 203 and the converter 202 may or may not be mounted on the rotating disk 102.
  • the high voltage transformer 41 includes a primary winding 411, a plurality of secondary windings 412a1 to 412d1, and an iron core 413.
  • Each of the plurality of secondary windings 412a1 to 412d1 has the same number of turns and is connected to the voltage doubler rectifier circuits 421a to 421d of the high voltage rectifier 42.
  • the voltage output from each of the voltage doubler rectifier circuits 421a to 421d becomes a DC voltage corresponding to twice the AC voltage output from each secondary winding 412a1 to 412d1.
  • the outputs of the plurality of voltage doubler rectifier circuits 421a to 421d are connected in series, and one of the output terminals of the high voltage rectifier 42 is set to the ground potential.
  • the high voltage rectifier 42 is used in a so-called neutral point grounding type X-ray tube apparatus.
  • a voltage generator may be used.
  • the wiring configuration of the high voltage rectifier 42 is not limited to the example of FIG.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the high voltage transformer 41 of the present embodiment.
  • the primary winding 411 and the plurality of secondary windings 412a1 to 412d1 are wound around the iron core 413.
  • a fluctuating magnetic flux in the direction of arrow 400 is generated in the iron core 213.
  • the generated fluctuating magnetic flux causes electromagnetic induction, causing each of the secondary windings 412a1 to 412d1 to generate a voltage obtained by multiplying the turn ratio between the primary winding and each secondary winding by the voltage applied to the primary winding.
  • the shape of the iron core 413 is roughly a shape in which U-shapes are combined to face each other, and one of the legs of the iron core 413 is configured to be divided in the magnetic flux direction.
  • the primary winding 411 is wound around the leg 413-1 of the iron core 413 that is not divided, and the secondary windings 412a1 to 412d1 are wound around the legs 413a1 to 413d1 on the divided side.
  • the iron core 413-1 is at ground potential, and this embodiment is also the same.
  • Secondary windings 412a1 to 412d1 are wound around the divided iron cores 413a1 to 413d1, respectively, so as to correspond to each other.
  • the secondary windings 412a1 to 412d1 are not directly wound around the divided iron cores 413a1 to 413d1, but are wound around the iron cores 413a1 to 413d1 via bobbins described later.
  • the bobbin of this embodiment is an insulator and has a shape as shown in FIG.
  • the potential of each divided iron core will be described.
  • the potential of the voltage doubler rectifier circuit will be described.
  • the secondary winding and the voltage doubler rectifier circuit of the high voltage transformer 41 according to the present embodiment are divided into four parts.
  • Each of the voltage rectifier circuits 421a to 421d may generate 35 kV.
  • the output terminals of the voltage doubler rectifier circuits 421a to 421d are connected in series, the reference potential with respect to the ground potential of the voltage doubler rectifier circuits 421a to 421d is different every 35 kV.
  • the potential at point A is ⁇ 35 kV
  • point B is ⁇ 70 kV
  • point C is ⁇ 105 kV
  • point D is ⁇ 140 kV.
  • the potential difference between the divided iron cores 413a1 to 413d1 and the secondary windings 412a1 to 412d1 wound around each of the iron cores 413a1 to 413d1 is smaller than that when the iron core is not divided.
  • Line 412 can be brought closer.
  • the divided iron cores 413a1 to 413d1 have different potentials depending on the corresponding secondary windings 412a1 to 412d1, and the iron core 413-1 is at the ground potential, and therefore, between the divided iron cores.
  • the potential difference between the iron core 413-1 and the iron core 413a1, between the iron core 413a1 and the iron core 413b1, between the iron core 413b1 and the iron core 413c1, and between the iron core 413c1 and the iron core 413d1 is equal, and between the iron core 413-1 and the iron core 413d1. Is 4 times the potential difference between the other iron cores.
  • dielectrics 414, 414a1 to 414d1 are disposed between the iron cores.
  • the size and material of the dielectrics 414 and 414a1 to 414d1 may be appropriate according to the potential difference between the iron cores.
  • insulating oil or a Mylar sheet as a dielectric PTFE (P oly T etra F luoro E thlene: polytetrafluoroethylene) is used.
  • PTFE P oly T etra F luoro E thlene: polytetrafluoroethylene
  • a high resistance material such as PTFE is used as the dielectric, the potential of each iron core can be stabilized, and the electric field changes uniformly in the high-voltage transformer 41. Can be relaxed.
  • the iron core 413 and the secondary winding 412 can be brought closer to each other as compared with the case where the iron core 413 is not divided. It is possible to provide a high-voltage generator having a high-voltage transformer that is miniaturized while maintaining the insulation, and an X-ray imaging apparatus including the high-voltage generator.
  • Electrodes 415a1 to 415d1 are provided on the cross section perpendicular to the magnetic flux direction of the divided iron cores 413a1 to 413d1, and these electrodes 415a1 to 415d1 are electrically connected to one terminals A2 to D2 of the secondary windings 412a1 to 412d1. ing. For this reason, each of the electrodes 415a1 to 415d1 and the divided iron cores 413a1 to 413d1 has the same potential as one of the terminals A2 to D2 of the secondary windings 412a1 to 412d1, so the potentials of the divided iron cores 413a1 to 413d1 are Don't float. As a result, even in a transient state such as when the X-ray control device 111 is started up, the electric field changes uniformly in the high voltage transformer 41, so that the risk of dielectric breakdown due to electric field concentration can be reduced.
  • a third embodiment will be described with reference to FIG.
  • the difference from the first or second embodiment is the arrangement of the secondary windings 412a1 to 412d1 and the divided iron cores 413a1 to 413d1. That is, the iron cores are arranged so as not to adjoin iron cores having a large potential difference, and the maximum potential difference between the iron cores is reduced.
  • a description will be given centering on differences from the second embodiment.
  • the secondary windings 412a1 and 412b1 and the iron cores 413a1 and 413b1 close to the ground potential are disposed at positions adjacent to the iron core 413-1 around which the primary winding 411 is wound at the ground potential.
  • High potential secondary windings 412c1 and 412d1 and iron cores 413c1 and 413d1 are arranged at positions away from the iron core 413-1 which is the ground potential.
  • the arrangement is as shown in FIG. 6, and the iron cores 413, 413a1, 413c1, 413d1, and 413b1 are arranged along the magnetic flux direction. That is, the iron cores having different potentials are alternately arranged from the outside in the order of decreasing potential.
  • the potential difference between the iron core 413-1 and the iron core 413a1 and between the iron core 413c1 and the iron core 413d1 is equal, between the iron core 413a1 and the iron core 413c1, and the iron core 413d1.
  • the potential differences between the iron core 413b1 and between the iron core 413b1 and the iron core 413-1 are equal.
  • the potential difference between the iron core 413a1 and the iron core 413c1 is twice as large as the potential difference between the iron core 413-1 and the iron core 413a1, and electric field concentration can be suppressed.
  • the equipotential lines around the secondary winding are almost symmetrical in the direction of the magnetic flux.
  • the maximum potential difference between the iron cores can be reduced, and the equipotential lines around the secondary winding are almost symmetrical in the magnetic flux direction, and the insulation by electric field concentration is achieved. The risk of destruction can be reduced.
  • a fourth embodiment will be described with reference to FIGS.
  • the difference from the second embodiment is that the primary winding 411 is divided and each of the divided secondary windings 412a1 to 412d1 is further divided.
  • a description will be given centering on differences from the second embodiment.
  • FIG. 7 is a diagram showing an internal wiring configuration of the high voltage generator 204 of the present embodiment.
  • the difference from FIG. 3 showing the wiring configuration of the second embodiment is that the primary winding of the high voltage transformer 41 is divided into two in parallel, and the output of the inverter 203 is connected to each of the primary windings 411 and 4112. It is a point to be supplied.
  • Each of the divided secondary windings 412a1 to 412d1 is further divided in the series direction, and 412a1 and 412a2, 412b1 and 412b2, 412c1 and 412c2, and 412d1 and 412d2 are connected in series.
  • FIG. 8 is a schematic cross-sectional view showing the structure of the high voltage transformer 41 of the present embodiment.
  • the difference from FIG. 5 showing the structure of the second embodiment is that both legs of the iron core 413 are divided in the magnetic flux direction, and the primary winding 411, the secondary windings 412a1 to 412d1, and the primary winding are respectively provided on both legs.
  • the wire 4112 and the secondary windings 412a2 to 412d2 are wound around.
  • the secondary windings 412a1, 412a2 wound around both legs of the iron core 413 are These terminals are connected in series, and both terminals of these series connections are connected to the voltage doubler rectifier circuit 421a.
  • the iron cores 413a1 and 413a2 around which the secondary windings 412a1 and 412a2 are wound are connected to one terminal of the secondary winding 412a2 that is a DC potential and fixed to the potential A2.
  • the iron core 413d1 around which the secondary windings 412d1, 412d2 having the highest potential are wound is not divided, and both the secondary windings 412d1, 412d2 are wound around the same iron core 413d1.
  • the winding is wound around both legs of the iron core 413 in the same shape, a symmetric high-voltage transformer can be configured. Further, since the potentials of the left and right windings are substantially equal, the insulation distance between the left and right can be shortened as compared with the first to third embodiments.
  • the secondary windings 412a1, 412b1, 412a2, 412b2 and the iron cores 413a1, 413b1, close to the ground potential, at positions adjacent to the iron core 413-1 around which the primary windings 411, 4112 are wound at the ground potential 413a2 and 413b2 are arranged. Further, high potential secondary windings 412c1, 412d1, 412c2, 412d2 and iron cores 413c1, 413d1, 413c2, 413d2 are arranged at positions away from the iron core 413-1 which is the ground potential.
  • the iron core 413-2 around which the winding is not wound may have a ground potential, or may have the same potential as the other divided iron cores 413b1 and 413b2. Furthermore, the iron core 413-2 may not be divided.
  • the iron core 413 has a structure as shown in FIG. 9, and the arrangement along the magnetic flux direction of the iron core 413 is the iron core 413-1, 413a1, 413c1, 413d1, 413b1, 413-2, 413b2, 413d2, 413c2. 413a2.
  • the equipotential lines are symmetrical left and right, and the potentials of the left and right windings are substantially equal.
  • the insulation distance can be shortened.
  • the iron core 413-2 that is exposed without being wound with the winding can be set at a low potential.
  • electric field concentration can be suppressed.
  • the occupied volume can be made smaller in the left-right direction, and the maximum potential difference between the iron cores can be reduced compared to the fourth embodiment.
  • the equipotential lines around the next winding are almost symmetrical in the magnetic flux direction, and the risk of dielectric breakdown due to electric field concentration can be mitigated. As a result, it is possible to provide a high voltage transformer having a smaller occupied volume.
  • the high voltage transformer should be fixed to the casing of the high voltage generator 204 that is at ground potential. Becomes easy.
  • FIG. 10 is an enlarged cross-sectional view of a part of the divided iron core.
  • the divided iron core 413b1 is electrically insulated from other iron cores via dielectrics 414a1 and 414b1.
  • the secondary winding 412b1 is wound around a bobbin 417b made of a conductive material.
  • the secondary winding 412b1 is configured with an insulating material 418b interposed between the layers. Since the bobbin 417b, which is a conductive material, is connected to one terminal that is a DC potential of the secondary winding 412b1, the potential thereof is the same as that of one terminal B2 of the secondary winding 412b1. With this configuration, the potential of the divided iron core 413b1 becomes equal to the potential of the bobbin 417b, so that transient electric field concentration due to floating of the potential of the iron core 413b1 can be avoided.
  • the divided iron core is not provided with an electrode and only the bobbin material is made conductive, a simple configuration can be achieved.
  • Electrodes 415a1 are provided not only on one of the cross sections perpendicular to the magnetic flux direction of the divided iron cores 413a1 to 413d1 and 413a2 to 413d2, but on both cross sections.
  • FIG. 11 is an enlarged cross-sectional view of a part of the divided iron core. Electrodes 415a1 are provided on both cross sections of the divided iron core 413b1, and one terminal of the secondary winding 412b1 is connected to the electrode 415a1. With such a configuration, the divided iron core 413b1 has the same potential as the terminal B2. Further, when a material having a high volume resistivity is used for the divided iron core 413b1, the electric potentials of the divided iron cores can be further stabilized by making the electric potentials of both cross sections of the divided iron cores equal.
  • the eighth embodiment will be described with reference to FIG. The difference from the sixth embodiment is that the bobbins are connected to each other.
  • Fig. 12 is an enlarged cross-sectional view of a part of the iron core, winding, and bobbin.
  • a bobbin 417 around which the divided winding 412 is wound is connected via an insulator 418.
  • the insulator 418 for example, a PTFE member having the same physical property value as the insulating oil is desirable. Further, the insulator 418 may be provided with a hole for ensuring the fluidity of the insulating oil that fills the periphery of the iron core 413.
  • the divided windings can be handled in a lump, so that productivity can be improved.
  • FIG. 12 Although only the configuration of the secondary winding is shown in FIG. 12, when the primary winding and the secondary winding are wound around the same leg of the iron core as shown in FIGS. 8 and 9, a bobbin for the primary winding is further provided.
  • the structure which connects may be sufficient.
  • the ninth embodiment will be described with reference to FIG.
  • the difference from the sixth embodiment is that the size of the dielectric 414 disposed between the iron cores is larger than that of the iron core 413 in the direction perpendicular to the magnetic flux.
  • Fig. 13 is an enlarged cross-sectional view of a part of the iron core, winding, and bobbin.
  • the dielectric 414 disposed between the iron cores 413 protrudes from the iron core 413 in the direction orthogonal to the magnetic flux.
  • the bobbin 417 which is a conductive substance, is sandwiched from the magnetic flux direction by the dielectric 414 protruding from the iron core 413.
  • the secondary winding is divided in the magnetic flux direction, but the iron core is not divided. Further, since the divided secondary windings have different potential differences with respect to the iron core, the distance from the iron core to each secondary winding is set according to the potential difference.
  • FIG. 14 is a perspective view of a main part of the high voltage transformer 41 of the present embodiment
  • FIG. 15 is a cross-sectional view of FIG.
  • the primary winding 411 and the secondary winding 412 are wound around both legs of the iron core 413.
  • the secondary winding 412 is divided into four in the magnetic flux direction, and the secondary windings 412a1 to 412d1 are arranged in the magnetic flux direction.
  • the secondary windings 412a1 to 412d1 have different potentials.
  • each of the secondary windings 412a1 to 412d1 has a potential difference of V, 2V, 3V, and 4V with respect to the iron core 413 that is the ground potential.
  • the distance between the iron core 413 and each of the secondary windings 412a1 to 412d1 is set according to the potential difference. For example, when the distance between the iron core 413 and the secondary winding 412a1 is d, the distance between the iron core 413 and the other secondary windings 412b1 to 412d1 is set to 2d, 3d, and 4d, respectively.
  • the distance between the secondary winding having a high potential and the iron core is increased, the distance between the other secondary winding and the iron core is decreased, and the distance between the secondary winding and the iron core is reduced. It is possible to provide a high voltage generator having a high voltage transformer that is miniaturized while maintaining insulation.
  • the divided secondary windings are arranged concentrically. Since the divided secondary windings have different potential differences with respect to the iron core, the distance from the iron core to each secondary winding is set according to the potential difference.
  • FIG. 16 is a schematic sectional view showing the structure of the high voltage transformer 41 of the present embodiment.
  • a primary winding 411 and a secondary winding 412 are wound around both legs of the iron core 413.
  • the secondary winding 412 is divided into four, and the secondary windings 412a1 to 412d1 are arranged in a direction orthogonal to the magnetic flux.
  • Each of the secondary windings 412a1 to 412d1 has a different potential. That is, when the high voltage transformer 41 outputs a voltage of 4V, each of the secondary windings 412a1 to 412d1 has a potential difference of V, 2V, 3V, and 4V with respect to the iron core 413 that is the ground potential.
  • the secondary windings 412a1 to 412d1 are arranged according to the potential difference between the iron core 413 and the secondary windings 412a1 to 412d1.
  • each secondary winding is set such that the distance between the iron core 413 and the other secondary windings 412b1 to 412d1 is 2d, 3d, and 4d, respectively.
  • the lines are arranged concentrically.
  • the equipotential lines around the secondary winding are not complicated, and each secondary winding can be compactly arranged in the magnetic flux direction. It is possible to provide a high voltage generator having a high voltage transformer that is miniaturized while maintaining insulation between the secondary winding and the iron core.
  • a voltage doubler rectifier circuit was used for the high voltage rectifier circuit, but a rectifier circuit comprising a smoothing capacitor in a bridge type rectifier circuit combining four diodes, or a boost rectifier circuit such as a Cockcroft-Walton circuit, etc. It is obvious that the same effect can be obtained even when it is configured in a multistage series.
  • X-ray CT device 100 scan gantry unit, 101 X-ray tube device, 102 rotating disk, 103 collimator, 104 opening, 105 bed, 106 X-ray detector, 107 data collection device, 108 gantry control device, 109 bed control Device, 110 X-ray control device, 120 console, 121 input device, 122 image operation device, 123 storage device, 124 system control device, 125 display device, 201 AC power supply, 202 converter, 203 inverter, 204 high voltage generator, 41 High voltage transformer, 42 High voltage rectifier, 411, 4112 Primary winding, 412a1-412d1, 412a2-412d2 Secondary winding, 413, 413-1, 413-2, 413a1-413d1, 413a2-413d2 Iron core, 414 , 414a1 to 414d1, 414a2 to 414d2 dielectric, 415a1 to 415d1, 415a2 to 415d2 electrode, 416, 416a1 to 416d1, 416a

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)

Abstract

 二次巻線と鉄心との間の絶縁を維持しながら小型化した高電圧変圧器を有する高電圧発生装置を提供するために、一次巻線と二次巻線と鉄心を有する高電圧変圧器と、前記高電圧変圧器から出力される交流電圧を直流電圧に整流する高電圧整流器とを備え、前記二次巻線と前記鉄心は、前記一次巻線に交流電流が流れることにより発生する磁束の方向に分割され、分割された各鉄心には、分割された各二次巻線がそれぞれ対応するように巻き付けられ、分割された各鉄心の間には誘電体が配置されていることを特徴とする。

Description

高電圧発生装置及びそれを備えたX線撮影装置
 本発明は、X線撮影を行なうX線撮影装置に係り、特にX線撮影装置用のX線高電圧装置内の高電圧変圧器を小型化する技術に関する。
 X線撮影装置は、被検体にX線を照射することにより取得した透過X線量に基づいて被検体のX線画像を作成・表示する装置である。特に、被検体の周囲からX線を照射して取得した様々な角度からの透過X線量に基づいて、被検体の断面画像を再構成・表示する装置はX線CT(Computed Tomography)装置と呼ばれる。
 これらのX線撮影装置では、設置面積の縮減、小型軽量化に対する要求が高まっている。X線撮影装置の一構成要素であるX線高電圧装置の中の高電圧変圧器が装置容積に占める割合は大きく、高電圧変圧器を小型化することが装置全体の小型化に有効である。高電圧変圧器は電磁誘導を利用して交流電圧の高さを変換する電力機器であり、X線高電圧装置に使用される場合には入力電圧をより高い電圧、例えば100kV~140kV程度の高電圧に変換する。すなわち高電圧変圧器の二次巻線では絶縁距離を確保する必要があり小型化のための工夫が必要となる。特にX線CT装置では、被検体が入る開口部をより大きくすることが望まれていることからも、高電圧変圧器の小型化は重要である。
 特許文献1には、主変圧器が複数の二次巻線を有しており、各々に倍電圧整流回路が接続され、これらの出力が直列に接続されることで、より高い電圧を生成することが開示されている。
特開2003-244957号公報
 しかしながら、特許文献1のように複数の二次巻線を有する構成であっても、一般的に接地電圧とされる鉄心と二次巻線との間には高電圧が発生するので、鉄心と二次巻線との間の絶縁距離を考慮すると、高電圧変圧器の小型化は困難である。
 そこで本発明の目的は、二次巻線と鉄心との間の絶縁を維持しながら小型化した高電圧変圧器を有する高電圧発生装置と、それを備えたX線撮影装置を提供することである。
 上記目的を達成するために本発明は、一次巻線と二次巻線と鉄心を有する高電圧変圧器と、前記高電圧変圧器から出力される交流電圧を直流電圧に整流する高電圧整流器とを備え、前記二次巻線と前記鉄心は、前記一次巻線に交流電流が流れることにより発生する磁束の方向に分割され、分割された各鉄心には、分割された各二次巻線がそれぞれ対応するように巻き付けられ、分割された各鉄心の間には誘電体が配置されていることを特徴とする。
 また、本発明は、被検体にX線を照射するX線源と、前記X線源に電力を供給するX線高電圧装置を備えたX線撮影装置であって、前記X線高電圧装置は、一次巻線と二次巻線と鉄心を有する高電圧変圧器と、前記高電圧変圧器から出力される交流電圧を直流電圧に整流する高電圧整流器とを備え、前記二次巻線と前記鉄心は、前記一次巻線に交流電流が流れることにより発生する磁束の方向に分割され、分割された各鉄心には、分割された各二次巻線がそれぞれ対応するように巻き付けられ、分割された各鉄心の間には誘電体が配置されていることを特徴とする。
 本発明によれば、二次巻線と鉄心との間の絶縁を維持しながら小型化した高電圧変圧器を有する高電圧発生装置と、それを備えたX線撮影装置を提供することができる。
本発明のX線CT装置の全体構成を示すブロック図 本発明のX線制御装置の構成を示すブロック図 第1の実施形態の高電圧発生装置の配線図 第1の実施形態の高電圧変圧器の構成図 第2の実施形態の高電圧変圧器の構成図 第3の実施形態の高電圧発生器の構成図 第4の実施形態の高電圧変圧装置の配線図 第4の実施形態の高電圧変圧器の構成図 第5の実施形態の高電圧変圧器の構成図 第6の実施形態の高電圧変圧器の構成図 第7の実施形態の高電圧変圧器の構成図 第8の実施形態の高電圧変圧器の構成図 第9の実施形態の高電圧変圧器の構成図 第10の実施形態の高電圧変圧器の要部の斜視図 図14の断面図 第11の実施形態の高電圧変圧器の構成図
 以下、添付図面に従って本発明の好ましい実施形態について説明する。なお、以下の説明及び添付図面において、同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略することにする。
 図1はX線撮影装置の一例であるX線CT装置の全体構成を示すブロック図である。図1に示すようにX線CT装置1は、スキャンガントリ部100と操作ユニット120を備える。
 スキャンガントリ部100は、X線管装置101と、回転円盤102と、コリメータ103と、X線検出器106と、データ収集装置107と、寝台装置105と、ガントリ制御装置108と、寝台制御装置109と、X線制御装置110を備えている。X線管装置101は寝台装置105上に載置された被検体にX線を照射する装置であって、X線源となる。コリメータ103はX線管装置101から照射されるX線の放射範囲を制限する装置である。
 回転円盤102は、寝台装置105上に載置された被検体が入る開口部104を備えるとともに、X線管装置101とX線検出器106を搭載し、被検体の周囲を回転するものである。X線検出器106は、X線管装置101と対向配置され被検体を透過したX線を検出することにより透過X線の空間的な分布を計測する装置であり、多数の検出素子を回転円盤102の回転方向に1次元に配列したもの、あるいは多数の検出素子を回転円盤102の回転方向と回転軸方向との2次元に配列したものである。
 データ収集装置107は、X線検出器106で検出されたX線量をデジタルデータとして収集する装置である。ガントリ制御装置108は回転円盤102の回転及び傾斜を制御する装置である。寝台制御装置109は、寝台装置105の上下前後左右動を制御する装置である。X線制御装置110はX線管装置101に入力される電力を制御する装置である。X線制御装置110については、後で詳細に説明する。
 操作ユニット120は、入力装置121と、画像処理装置122と、表示装置125と、記憶装置123と、システム制御装置124を備えている。入力装置121は、被検体氏名、検査日時、撮影条件等を入力するための装置であり、具体的にはキーボードやポインティングデバイス、タッチパネル等である。画像処理装置122は、データ収集装置107から送出される計測データを演算処理してCT画像の再構成を行う装置である。表示装置125は、画像処理装置122で作成されたCT画像等を表示する装置であり、具体的にはCRT(Cathode-Ray Tube)や液晶ディスプレイ等である。記憶装置123は、データ収集装置107で収集したデータ及び画像処理装置122で作成されたCT画像の画像データ等を記憶する装置であり、具体的にはHDD(Hard Disk Drive)等である。システム制御装置124は、これらの装置及びガントリ制御装置108と寝台制御装置109とX線制御装置110を制御する装置である。
 入力装置121から入力された撮影条件、特にX線管電圧やX線管電流等に基づきX線制御装置110がX線管装置101に入力される電力を制御することにより、X線管装置101は撮影条件に応じたX線を被検体に照射する。X線検出器106は、X線管装置101から照射され被検体を透過したX線を多数のX線検出素子で検出し、透過X線の分布を計測する。回転円盤102はガントリ制御装置108により制御され、入力装置121から入力された撮影条件、特に回転速度等に基づいて回転する。寝台装置105は寝台制御装置109によって制御され、入力装置121から入力された撮影条件、特にらせんピッチ等に基づいて動作する。
 X線管装置101からのX線照射とX線検出器106による透過X線分布の計測が回転円盤102の回転とともに繰り返されることにより、様々な角度からの投影データが取得される。投影データは、各角度を表すビュー(View)と、X線検出器106の検出素子番号であるチャネル(ch)番号及び列番号と対応付けられる。取得された様々な角度からの投影データは画像処理装置122に送信される。画像処理装置122は送信された様々な角度からの投影データを逆投影処理することによりCT画像を再構成する。再構成して得られたCT画像は表示装置125に表示される。
 なお、X線CT装置1は、図示されないネットワークを介して、院内のサーバや院外のサーバに接続されていても良く、各サーバから必要なデータを適時読み込んでも良い。
 図2を用いてX線制御装置110について説明する。X線制御装置110は、コンバータ202とインバータ203と高電圧変圧器41と高電圧整流器42とを備えている。コンバータ202は、交流電源201に接続されており、交流電源201の交流電圧を直流電圧に変換する装置である。インバータ203は、コンバータ202に接続されており、コンバータ202から出力される直流電圧を交流電圧に変換する装置である。
 インバータ203から出力される交流電圧は、交流電源201から出力される交流電圧より高い周波数を有している。高電圧変圧器41は、インバータ203に接続されており、インバータ203から出力される交流電圧を昇圧する装置である。高電圧整流器42は、高電圧変圧器41に接続されており、高電圧変圧器41で昇圧された交流電圧を直流電圧に整流する。高電圧整流器42の出力端子はX線管装置101に接続されており、高電圧整流器42から出力される直流電圧がX線管装置101に印加されることにより、X線管装置101からX線が照射される。
 なお、高電圧変圧器41と高電圧整流器42とをまとめて高電圧発生装置204と呼ぶ。X線制御装置110のうち、少なくとも高電圧発生装置204が回転円盤102に搭載されればよく、インバータ203とコンバータ202とは回転円盤102に搭載されてもされなくても良い。
 {第1の実施形態}
 本発明の要部である高電圧変圧器41とその周辺の詳細構成について説明する。
 図3を用いて高電圧発生装置204の内部の配線構成について説明する。高電圧変圧器41は一次巻線411と、複数の二次巻線412a1~412d1と、鉄心413とを有する。複数の二次巻線412a1~412d1のそれぞれは、同じ巻数であり、高電圧整流器42の倍電圧整流回路421a~421dに接続されている。倍電圧整流回路421a~421dのそれぞれから出力される電圧は、各二次巻線412a1~412d1から出力される交流電圧の2倍に対応する直流電圧となる。複数の倍電圧整流回路421a~421dの出力は直列接続されており、高電圧整流器42の出力端子の一方は接地電位とされる。
 なお、高電圧整流器42の両端子の電位差が2Vである場合に一方の電位をV、他方の電位を-Vとなるようにして、いわゆる中性点接地型のX線管装置に用いられる高電圧発生装置としても良い。また、高電圧整流器42の配線構成は図3の例に限られない。
 図4は、本実施形態の高電圧変圧器41の構造を示した断面概略図である。一次巻線411と複数の二次巻線412a1~412d1とは鉄心413に巻き付けられている。一次巻線411に交流電流が流れることにより、鉄心213内に矢印400の方向の変動磁束が発生する。発生した変動磁束は電磁誘導を引き起こし、二次巻線412a1~412d1のそれぞれに、一次巻線と各二次巻線との巻数比に一次巻線への印加電圧を乗じた電圧を発生させる。
 鉄心413の形状は、おおよそはU型を向かい合わせに組み合わせた形状であり、鉄心413の片方の脚を磁束方向に分割した構成としているのが本実施形態の特徴である。分割されていない側の鉄心413の脚413-1には一次巻線411が巻き付けられ、分割された側の脚413a1~413d1には二次巻線412a1~412d1が巻き付けられる。多くの場合、鉄心413-1は接地電位であり、本実施形態も同様である。分割された鉄心413a1~413d1には、二次巻線412a1~412d1がそれぞれ対応するように巻き付けられる。なお、二次巻線412a1~412d1は分割された鉄心413a1~413d1に直接巻き付けられるのではなく、後述するボビンを介して鉄心413a1~413d1にそれぞれ巻き付けられる。本実施形態のボビンは絶縁物であり、図10に示すような形状を有する。
 次に、分割された各鉄心の電位について説明する。まず、倍電圧整流回路の電位について説明する。図3で示した高電圧発生装置204の出力電圧を例えば-140kVとするには、本実施形態の高電圧変圧器41の二次巻線及び倍電圧整流回路は4分割されているので、倍電圧整流回路421a~421dのそれぞれが35kVを生成すれば良い。また倍電圧整流回路421a~421dの出力端子は直列に接続されているので、倍電圧整流回路421a~421dの接地電位に対する基準電位は35kV毎に異なる。具体的には、点Aの電位が-35kV、点Bは-70kV、点Cは-105kV、点Dは-140kVという電位となる。
 図4の分割された鉄心413a1~413d1は、電気的にはどこにも接続されていないので電位が浮遊することになり、最も近くにある二次巻線412a1~412d1とほぼ等しい電位となる。
 つまり分割された鉄心413a1~413d1と、鉄心413a1~413d1のそれぞれに巻き付けられた二次巻線412a1~412d1との電位差は、鉄心が分割されない場合に比べて小さくなるので、鉄心413と二次巻線412とを近づけることができる。
 なお、分割された鉄心413a1~413d1は、対応する二次巻線412a1~412d1に応じて異なる電位を有しており、また鉄心413-1は接地電位であるので、分割された鉄心の間には電位差が生じる。本実施形態では、鉄心413-1と鉄心413a1間、及び鉄心413a1と鉄心413b1間、鉄心413b1と鉄心413c1間、鉄心413c1と鉄心413d1間の電位差は等しく、鉄心413-1と鉄心413d1間の電位差は他の鉄心間の電位差の4倍となる。これらの電位差を電気的に絶縁するために各鉄心間には誘電体414、414a1~414d1が配置される。誘電体414、414a1~414d1の大きさ及び材質は、鉄心間の電位差に応じて適切なものとすれば良い。例えば、誘電体として絶縁油やマイラーシート、PTFE(PolyTetraFluoroEthlene:ポリテトラフルオロエチレン)等が用いられる。誘電体414、414a1~414d1の材質が同じである場合、誘電体414の大きさを他の誘電体414a1~414d1の4倍とする。
 また誘電体としてPTFEのような高抵抗体を用いると各鉄心の電位を安定させることが可能となり、高電圧変圧器41内では一様に電界が変化するので、電界集中による絶縁破壊の危険性を緩和できる。
 以上述べたように、本実施形態の構成によれば、鉄心413が分割されていない場合に比べて、鉄心413と二次巻線412とを近づけられるので、鉄心と二次巻線との間の絶縁を維持しながら小型化した高電圧変圧器を有する高電圧発生装置と、それを備えたX線撮影装置を提供することが可能となる。
 {第2の実施形態}
 図5を用いて第2の実施形態について説明する。第1の実施形態と異なる点は、分割された各二次巻線の一方の端子と分割された各鉄心とが同電位となるように構成されている点である。以下、第一の実施形態と異なる箇所を中心に説明する。
 分割された鉄心413a1~413d1の磁束方向と直交する断面には電極415a1~415d1が備えられ、この電極415a1~415d1は二次巻線412a1~412d1の一方の端子A2~D2と電気的に接続している。このため、電極415a1~415d1及び分割された鉄心413a1~413d1のそれぞれは、二次巻線412a1~412d1の一方の端子A2~D2と同電位となるので、分割された鉄心413a1~413d1の電位を浮遊させずにすむ。その結果、X線制御装置111の起動時など過渡的な状態においても、高電圧変圧器41内では一様に電界が変化するので、電界集中による絶縁破壊の危険性を緩和できる。
 {第3の実施形態}
 図6を用いて第3の実施形態について説明する。第1または第2の実施形態と異なる点は、二次巻線412a1~412d1及び分割された鉄心413a1~413d1の配置である。すなわち、電位差の大きい鉄心を隣接させないように各鉄心を配置し、鉄心間の最大電位差を低減させる。
以下、第2の実施形態と異なる箇所を中心に説明する。
 本実施形態では、接地電位であって一次巻線411が巻き付けられる鉄心413-1に隣接する位置に、接地電位に近い二次巻線412a1、412b1及び鉄心413a1、413b1が配置される。また接地電位である鉄心413-1から離れた位置には高い電位の二次巻線412c1、412d1及び鉄心413c1、413d1が配置される。具体的には図6に示すような配置であり、鉄心413の磁束方向に沿った並びは鉄心413-1、413a1、413c1、413d1、413b1となる。すなわち、異なる電位を有する各鉄心を、電位の低い順に外側から互い違いに配置する。
 図6に示した断面図のように鉄心413を配置することにより、鉄心413-1と鉄心413a1間、及び鉄心413c1と鉄心413d1間の電位差は等しく、鉄心413a1と鉄心413c1間、及び鉄心413d1と鉄心413b1間、鉄心413b1と鉄心413-1間の電位差は等しくなる。さらに鉄心413a1と鉄心413c1間の電位差は、鉄心413-1と鉄心413a1間の電位差の2倍におさまり、電界集中を抑制することができる。また二次巻線周辺の等電位線は磁束方向においてほぼ対称となる。
 本実施形態によれば、第2の実施形態と比較して、鉄心間の最大電位差を低減させることができ、二次巻線周辺の等電位線が磁束方向においてほぼ対称となり、電界集中による絶縁破壊の危険性を緩和できる。
 {第4の実施形態}
 図7及び図8を用いて第4の実施形態について説明する。第2の実施形態と異なる点は、一次巻線411が分割されるとともに、分割された二次巻線412a1~412d1のそれぞれが更に分割されている点である。以下、第2の実施形態と異なる箇所を中心に説明する。
 図7は、本実施形態の高電圧発生装置204の内部の配線構成を示す図である。第2の実施形態の配線構成を示した図3との違いは、高電圧変圧器41の一次巻線が二並列に分割されており、一次巻線411、4112のそれぞれにインバータ203の出力が供給される点である。また、分割された二次巻線412a1~412d1のそれぞれは直列方向にさらに分割されており、412a1と412a2、412b1と412b2、412c1と412c2、412d1と412d2がそれぞれ直列に接続されている。
 図8は、本実施形態の高電圧変圧器41の構造を示した断面概略図である。第2の実施形態の構造を示した図5との違いは、鉄心413の両脚が磁束方向に分割されており、両脚のそれぞれに、一次巻線411と二次巻線412a1~412d1、一次巻線4112と二次巻線412a2~412d2、が巻き付けられている点である。本実施形態の巻線構造を説明するために、例えば二次巻線412a1、412a2及び倍電圧整流回路421aの一回路に着目すると、鉄心413の両脚に巻き付けられた二次巻線412a1、412a2は直列接続されており、これらの直列接続の両端子が倍電圧整流回路421aに接続されている。二次巻線412a1、412a2が巻き付けられる鉄心413a1、413a2は、直流の電位である二次巻線412a2の一方の端子に接続され電位A2に固定されている。最高電位を有する二次巻線412d1、412d2が巻き付けられる鉄心413d1は分割されておらず、両二次巻線412d1、412d2が同じ鉄心413d1に巻き付けられている。
 本実施形態によれば、鉄心413の両脚に同様な形状で巻線が巻き付けられるので、左右対称の高電圧変圧器を構成することができる。また、その左右の巻き線の電位はほぼ等しいので、第1乃至第3の実施形態に比べて左右間の絶縁距離を短くすることができる。
 すなわち、本実施形態によれば左右方向に関してより小さな高電圧変圧器を構成することが可能となり、占有容積のより小さい高電圧変圧器を提供することが可能となる。
 {第5の実施形態}
 図9を用いて第4の実施形態について説明する。本実施形態は、第4の実施形態における二次巻線412a1~412d1、412a2~412d2及び分割された鉄心413a1~413d1、413a2~413d2を第3の実施形態と同じように配置したものである。以下、第4の実施形態と異なる箇所を中心に説明する。
 本実施形態では、接地電位であって一次巻線411、4112が巻き付けられる鉄心413-1に隣接する位置に、接地電位に近い二次巻線412a1、412b1、412a2、412b2及び鉄心413a1、413b1、413a2、413b2が配置される。また接地電位である鉄心413-1から離れた位置には高い電位の二次巻線412c1、412d1、412c2、412d2及び鉄心413c1、413d1、413c2、413d2が配置される。
 巻線が巻き付けられない鉄心413-2は、接地電位としても良いし、分割された別の鉄心413b1、413b2と同電位としても良い。さらに鉄心413-2は分割しなくてもよい。
 鉄心413は、具体的には図9に示すような構造であり、鉄心413の磁束方向に沿った並びは鉄心413-1、413a1、413c1、413d1、413b1、413-2、413b2、413d2、413c2、413a2となる。図9に示した断面図のように鉄心413を配置することにより、等電位線は左右に対称となり、その左右の巻き線の電位はほぼ等しいので、第4の実施形態と同様に、左右間の絶縁距離を短くすることができる。また、巻線が巻き付けられずにむき出しになる鉄心413-2は低い電位とすることができる。さらに、第3の実施形態と同様に、電界集中を抑制することができる。
 本実施形態によれば、第4の実施形態と同様に、左右方向に関してより占有容積を小さくできるとともに、第4の実施形態と比較して、鉄心間の最大電位差を低減させることができ、二次巻線周辺の等電位線が磁束方向においてほぼ対称となり、電界集中による絶縁破壊の危険性を緩和できる。その結果、占有容積のより小さい高電圧変圧器を提供することが可能となる。
 また、鉄心413-1は接地電位であり、鉄心413-2は接地電位若しくは比較的に低い電位であるので、接地電位である高電圧発生装置204の筐体に高電圧変圧器を固定することが容易となる。
 {第6の実施形態}
 図10を用いて第6の実施形態について説明する。第1乃至5の実施形態と異なる点は、二次巻線の一方の端子を分割された鉄心に接続しない点と、二次巻線が巻き付けられるボビンが絶縁物ではなく導電性の物質である点である。
 図10は、分割された鉄心の一部を拡大した断面図である。分割された鉄心413b1は、誘電体414a1及び414b1を介して他の鉄心と電気的に絶縁されている。二次巻線412b1は、導電性素材のボビン417bに巻かれており、巻数が多く層を成す場合には、層間に絶縁材418bを介して構成されている。導電性素材のボビン417bは、二次巻線412b1の直流電位である一方の端子と接続されているので、その電位は二次巻線412b1の一方の端子B2と同じ電位となる。このように構成することで、分割された鉄心413b1の電位はボビン417bの電位と等しくなるので、鉄心413b1の電位が浮遊することによる過渡的な電界集中を避けることができる。
 本実施形態によれば、分割された鉄心が電極を備えることなく、ボビンの素材を導電性にするだけなので、単純な構成にすることが可能である。
 {第7の実施形態}
 図11を用いて第7の実施形態について説明する。第1乃至5の実施形態と異なる点は、分割された鉄心413a1~413d1、413a2~413d2の磁束方向と直交する断面の一方だけではなく両断面に電極415a1が備えられる点である。
 図11は、分割された鉄心の一部を拡大した断面図である。分割された鉄心413b1の両断面には電極415a1が備えられ、電極415a1に二次巻線412b1の一方の端子が接続される。このような構成により、分割された鉄心413b1は端子B2と同じ電位になる。また、分割された鉄心413b1に体積抵抗率の高い素材を用いた場合、分割された鉄心の両断面の電位を等しくすることで、分割された鉄心の電位をより安定させることができる。
 {第8の実施形態}
 図12を用いて第8の実施形態について説明する。第6の実施形態と異なる点は、ボビン同士が連結している点である。
 図12は、鉄心・巻線・ボビンの一部を拡大した断面図である。分割された巻線412が巻き付けられるボビン417は絶縁体418を介して連結している。絶縁体418には、例えばPTFEで絶縁油と同じ物性値をもつ部材が望ましい。また、絶縁体418には、鉄心413の周囲を満たす絶縁油の流動性を確保するための穴を設けても良い。
 本実施形態によれば、第6の実施形態に比べ、分割された巻線を一塊で扱うことができるため、生産性を向上できる。
 なお図12には二次巻線の構成のみ示したが、図8、9のように一次巻線と二次巻線を鉄心の同じ脚に巻き付ける場合には、一次巻線用のボビンをさらに連結する構成でも良い。
 {第9の実施形態}
 図13を用いて第9の実施形態について説明する。第6の実施形態と異なる点は、各鉄心間に配置される誘電体414の大きさが、磁束と直交する方向において鉄心413よりも大きい点である。
 図13は、鉄心・巻線・ボビンの一部を拡大した断面図である。鉄心413間に配置される誘電体414は、磁束と直交する方向において、鉄心413からはみ出している。導電性の物質であるボビン417は鉄心413からはみ出た誘電体414により磁束方向から挟まれる。このような構造により、本実施形態では第8の実施形態と比較して支持構造を簡略化できるとともに部品点数も少なくてよく生産性が向上する。
 なお、図13には二次巻線の構成のみ示したが、図8、9のように一次巻線と二次巻線を鉄心の同じ脚に巻き付ける場合には、一次巻線用のボビンをさらに連結する構成でも良い。
 {第10の実施形態}
 図14及び15を用いて第10の実施形態について説明する。本実施形態では、二次巻線は磁束方向において分割されているものの、鉄心は分割されていない。また、分割された二次巻線は鉄心に対してそれぞれ異なる電位差を有するため、その電位差に応じて鉄心から各二次巻線までの距離が設定される。
 図14は本実施形態の高電圧変圧器41の要部の斜視図であり、図15は図14の断面図である。他の実施形態と同様に、鉄心413の両脚に一次巻線411と二次巻線412が巻き付けられる。二次巻線412は磁束方向において4つに分割されており、各二次巻線412a1~412d1が磁束方向に並べられる。また各二次巻線412a1~412d1はそれぞれ異なる電位を有する。すなわち、高電圧変圧器41が4Vの電圧を出力する場合、各二次巻線412a1~412d1はそれぞれ接地電位である鉄心413に対し、V、2V、3V、4Vの電位差を有することになる。本実施形態では、鉄心413と各二次巻線412a1~412d1との電位差に応じて両者間の距離が設定される。例えば、鉄心413と二次巻線412a1との距離がdである場合、鉄心413と他の二次巻線412b1~412d1との距離はそれぞれ2d、3d、4dに設定される。
 本実施形態によれば、高い電位を有する二次巻線と鉄心との距離は長くなるものの、他の二次巻線と鉄心との距離は短くなり、二次巻線と鉄心との間の絶縁を維持しながら小型化した高電圧変圧器を有する高電圧発生装置を提供することが可能となる。
 {第11の実施形態}
 図16を用いて第11の実施形態について説明する。本実施形態では、分割された二次巻線が同心円状に配置される。分割された二次巻線は鉄心に対してそれぞれ異なる電位差を有するため、その電位差に応じて鉄心から各二次巻線までの距離が設定される。
 図16は本実施形態の高電圧変圧器41の構造を示した断面概略図である。鉄心413の両脚に一次巻線411と二次巻線412が巻き付けられる。二次巻線412は4つに分割されており、磁束と直交する方向に各二次巻線412a1~412d1が並べられる。各二次巻線412a1~412d1はそれぞれ異なる電位を有する。すなわち、高電圧変圧器41が4Vの電圧を出力する場合、各二次巻線412a1~412d1はそれぞれ接地電位である鉄心413に対し、V、2V、3V、4Vの電位差を有することになる。本実施形態では、鉄心413と各二次巻線412a1~412d1との電位差に応じて、各二次巻線412a1~412d1が配置される。例えば、鉄心413と二次巻線412a1との距離がdである場合、鉄心413と他の二次巻線412b1~412d1との距離がそれぞれ2d、3d、4dになるように、各二次巻線が同心円状に配置される。
 本実施形態によれば、第10の実施形態に比べ、二次巻線周辺の等電位線が複雑にならずにすむとともに、磁束方向において各二次巻線をコンパクトに配置することが可能となり、二次巻線と鉄心との間の絶縁を維持しながら小型化した高電圧変圧器を有する高電圧発生装置を提供することが可能となる。
 以上、様々な実施形態について説明したが、本発明はこれらに限定されない。例えば、高電圧整流回路には、倍電圧整流回路を用いたが、ダイオードを4つ組み合わせたブリッジ型整流回路に平滑コンデンサを構成した整流回路や、コッククロフト・ウォルトン回路などといった昇圧整流回路を用いて多段直列に構成した場合にも同様な効果が得られることは自明である。
 1 X線CT装置、100 スキャンガントリ部、101 X線管装置、102 回転円盤、103 コリメータ、104 開口部、105 寝台、106 X線検出器、107 データ収集装置、108 ガントリ制御装置、109 寝台制御装置、110 X線制御装置、120 操作卓、121 入力装置、122 画像演算装置、123 記憶装置、124 システム制御装置、125 表示装置、201 交流電源、202 コンバータ、203 インバータ、204 高電圧発生装置、41 高電圧変圧器、42 高電圧整流器、411、4112 一次巻線、412a1~412d1、412a2~412d2 二次巻線、413、413-1、413-2、413a1~413d1、413a2~413d2 鉄心、414、414a1~414d1、414a2~414d2 誘電体、415a1~415d1、415a2~415d2 電極、416、416a1~416d1、416a2~416d2 誘電体(高抵抗体)、417b、417c ボビン、418 絶縁体、421a~421d 倍電圧整流回路

Claims (8)

  1.  一次巻線と二次巻線と鉄心を有する高電圧変圧器と、前記高電圧変圧器から出力される交流電圧を直流電圧に整流する高電圧整流器とを備え、
     前記二次巻線と前記鉄心は、前記一次巻線に交流電流が流れることにより発生する磁束の方向に分割され、
     分割された各鉄心には、分割された各二次巻線がそれぞれ対応するように巻き付けられ、
     分割された各鉄心の間には誘電体が配置されていることを特徴とする高電圧発生装置。
  2.  請求項1に記載の高電圧発生装置において、
     分割された鉄心は、前記磁束と直交する断面の少なくとも一方に電極を有しており、
     前記電極には分割された各二次巻線の一方の端子が電気的に接続されていることを特徴とする高電圧発生装置。
  3.  請求項1に記載の高電圧発生装置において、
     分割された各鉄心は、各鉄心が有する電位の低い順に外側から互い違いに配置されることを特徴とする高電圧発生装置。
  4.  請求項1に記載の高電圧発生装置において、
     前記鉄心は2つの脚を有しており、両脚ともに前記磁束の方向に分割されており、
     各脚に前記一次巻線と分割された各二次巻線が巻き付けられることを特徴とする高電圧発生装置。
  5.  請求項1に記載の高電圧発生装置において、
     分割された各二次巻線が巻き付けられる各ボビンが導電体であって、
     分割された各二次巻線の一方の端子が前記ボビンに電気的に接続されていることを特徴とする高電圧発生装置。
  6.  請求項5に記載の高電圧発生装置において、
     前記各ボビンは絶縁体を介して前記磁束の方向に連結していることを特徴とする高電圧発生装置。
  7.  請求項5に記載の高電圧発生装置において、
     分割された各鉄心の間に配置された誘電体は、磁束と直交する方向において各鉄心よりも大きく、
     前記各ボビンは前記誘電体により前記磁束の方向から挟まれることを特徴とする高電圧発生装置。
  8.  被検体にX線を照射するX線源と、前記X線源に電力を供給するX線高電圧装置を備えたX線撮影装置であって、
     前記X線高電圧装置は、一次巻線と二次巻線と鉄心を有する高電圧変圧器と、前記高電圧変圧器から出力される交流電圧を直流電圧に整流する高電圧整流器とを備え、
     前記二次巻線と前記鉄心は、前記一次巻線に交流電流が流れることにより発生する磁束の方向に分割され、
     分割された各鉄心には、分割された各二次巻線がそれぞれ対応するように巻き付けられ、
     分割された各鉄心の間には誘電体が配置されていることを特徴とするX線撮影装置。
PCT/JP2014/080022 2013-11-26 2014-11-13 高電圧発生装置及びそれを備えたx線撮影装置 WO2015079922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480062683.1A CN105723810A (zh) 2013-11-26 2014-11-13 高电压发生装置及具备高电压发生装置的x射线拍摄装置
US15/035,379 US20160286636A1 (en) 2013-11-26 2014-11-13 High-voltage generator and x-ray scanning apparatus therewith
JP2015550641A JPWO2015079922A1 (ja) 2013-11-26 2014-11-13 高電圧発生装置及びそれを備えたx線撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013243662 2013-11-26
JP2013-243662 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079922A1 true WO2015079922A1 (ja) 2015-06-04

Family

ID=53198869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080022 WO2015079922A1 (ja) 2013-11-26 2014-11-13 高電圧発生装置及びそれを備えたx線撮影装置

Country Status (4)

Country Link
US (1) US20160286636A1 (ja)
JP (1) JPWO2015079922A1 (ja)
CN (1) CN105723810A (ja)
WO (1) WO2015079922A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092820A (ja) * 2016-12-05 2018-06-14 キヤノンメディカルシステムズ株式会社 X線高電圧装置及び医用画像診断装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421966B (zh) * 2019-08-22 2022-03-29 南京南瑞继保电气有限公司 一种固态变压器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315085A (ja) * 1992-04-30 1993-11-26 Hitachi Medical Corp インバータ式x線装置
JPH09266093A (ja) * 1996-03-29 1997-10-07 Shimadzu Corp インバータ式x線高電圧装置
JP2007281186A (ja) * 2006-04-06 2007-10-25 Hitachi Metals Ltd 複合磁心およびリアクトル

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866086A (en) * 1972-06-28 1975-02-11 Matsushita Electric Ind Co Ltd Flyback transformer apparatus
NL8403704A (nl) * 1984-12-06 1986-07-01 Philips Nv Generator voor het opwekken van een hoge gelijkspanning.
US4777465A (en) * 1986-04-28 1988-10-11 Burr-Brown Corporation Square toroid transformer for hybrid integrated circuit
US5010314A (en) * 1990-03-30 1991-04-23 Multisource Technology Corp. Low-profile planar transformer for use in off-line switching power supplies
DE19538488C1 (de) * 1995-10-16 1996-11-28 Siemens Ag Transformator für eine Gleichrichterschaltung
US6738275B1 (en) * 1999-11-10 2004-05-18 Electromed Internationale Ltee. High-voltage x-ray generator
US7026905B2 (en) * 2000-05-24 2006-04-11 Magtech As Magnetically controlled inductive device
JP4306209B2 (ja) * 2002-09-09 2009-07-29 株式会社日立メディコ 中性点接地方式のx線発生装置及びこれを用いたx線ct装置
US6933824B2 (en) * 2003-02-05 2005-08-23 Mcgraw-Edison Company Polymer sheet core and coil insulation for transformers
US7005955B2 (en) * 2003-04-23 2006-02-28 Hewlett-Packard Development Company, L.P. Inductor or transformer having a ferromagnetic core that is formed on a printed circuit board
US7353587B2 (en) * 2004-11-01 2008-04-08 Vlt, Inc. Forming distributed gap magnetic cores
WO2009037822A1 (ja) * 2007-09-19 2009-03-26 Panasonic Corporation トランスとこれを用いた電源装置
JP4465635B2 (ja) * 2008-03-17 2010-05-19 トヨタ自動車株式会社 リアクトル装置
US20090257560A1 (en) * 2008-04-14 2009-10-15 Infimed, Inc. 3d poly-phase transformer
US8014176B2 (en) * 2008-07-25 2011-09-06 Cirrus Logic, Inc. Resonant switching power converter with burst mode transition shaping
BRPI1010687A2 (pt) * 2009-06-15 2016-03-15 Univ Northwest "transformador de núcleo segmentado"
US20110187485A1 (en) * 2010-02-04 2011-08-04 Tdk Corporation Transformer having sectioned bobbin
US9036784B2 (en) * 2010-02-09 2015-05-19 Hitachi Medical Corporation Power converter, X-ray CT apparatus, and X-ray imaging apparatus
KR101320164B1 (ko) * 2010-12-21 2013-10-23 삼성전기주식회사 전원 공급 장치 및 이를 갖는 디스플레이 장치
US8570768B2 (en) * 2011-04-15 2013-10-29 Power Integrations, Inc. Low-cost transformer assembly
DE102011107252A1 (de) * 2011-07-14 2013-01-17 Schneider Electric Sachsenwerk Gmbh Spule zur Strombegrenzung
JP5874959B2 (ja) * 2011-10-11 2016-03-02 住友電装株式会社 リアクトルおよびその製造方法
JP2013144038A (ja) * 2012-01-16 2013-07-25 Toshiba Corp X線ct装置
JP5964619B2 (ja) * 2012-03-15 2016-08-03 株式会社タムラ製作所 リアクトル、及びリアクトルの製造方法
US9076581B2 (en) * 2012-04-30 2015-07-07 Honeywell International Inc. Method for manufacturing high temperature electromagnetic coil assemblies including brazed braided lead wires
JP6098870B2 (ja) * 2012-12-27 2017-03-22 株式会社オートネットワーク技術研究所 リアクトル、コンバータ、及び電力変換装置
CN104851563B (zh) * 2014-02-14 2018-01-30 台达电子企业管理(上海)有限公司 应用于电抗器的磁芯以及电抗器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315085A (ja) * 1992-04-30 1993-11-26 Hitachi Medical Corp インバータ式x線装置
JPH09266093A (ja) * 1996-03-29 1997-10-07 Shimadzu Corp インバータ式x線高電圧装置
JP2007281186A (ja) * 2006-04-06 2007-10-25 Hitachi Metals Ltd 複合磁心およびリアクトル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092820A (ja) * 2016-12-05 2018-06-14 キヤノンメディカルシステムズ株式会社 X線高電圧装置及び医用画像診断装置
US10729401B2 (en) 2016-12-05 2020-08-04 Canon Medical Systems Corporation High-voltage device and medical-image diagnostic apparatus

Also Published As

Publication number Publication date
US20160286636A1 (en) 2016-09-29
CN105723810A (zh) 2016-06-29
JPWO2015079922A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
US9036784B2 (en) Power converter, X-ray CT apparatus, and X-ray imaging apparatus
US7932799B2 (en) Transformer
JP5193530B2 (ja) X線ct装置
US7620151B2 (en) High voltage tank assembly for radiation generator
Leibl Three-phase PFC rectifier and high-voltage generator for X-ray systems
US9788805B2 (en) Dental raidography device
WO2015079922A1 (ja) 高電圧発生装置及びそれを備えたx線撮影装置
US10729401B2 (en) High-voltage device and medical-image diagnostic apparatus
JP5490994B2 (ja) X線発生装置
JP2010040809A (ja) 高電圧変圧器及びこれを用いたインバータ式x線高電圧装置
CN107086117B (zh) 用于计算机断层扫描台架的线频率旋转变压器
CN110391073B (zh) 电路装置、x射线装置和计算机断层扫描仪
RU2399980C2 (ru) Чередующиеся первичная и вторичная обмотки плоского трансформатора
WO2014097951A1 (ja) X線高電圧装置とそれを用いたx線ct装置
CN116113128A (zh) X射线组合机头以及包含其的x射线成像系统
US8929513B2 (en) Compact radiation generator
JP2011192410A (ja) X線高電圧装置及びこれを用いたx線ct装置
CN1853563A (zh) 用于计算机断层扫描系统的多通道无接触功率传递系统
JP6196082B2 (ja) 高電圧発生装置
JP2016062747A (ja) X線装置
JP2017157468A (ja) X線管用高耐圧トランスおよびそれを用いたx線装置
JP2015125905A (ja) X線発生装置およびそれを用いたx線撮影システム
JP2004127834A (ja) X線発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550641

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865005

Country of ref document: EP

Kind code of ref document: A1