WO2015079473A1 - 防火性樹脂サッシ - Google Patents

防火性樹脂サッシ Download PDF

Info

Publication number
WO2015079473A1
WO2015079473A1 PCT/JP2013/006951 JP2013006951W WO2015079473A1 WO 2015079473 A1 WO2015079473 A1 WO 2015079473A1 JP 2013006951 W JP2013006951 W JP 2013006951W WO 2015079473 A1 WO2015079473 A1 WO 2015079473A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fireproof
plate
thermally expandable
refractory material
Prior art date
Application number
PCT/JP2013/006951
Other languages
English (en)
French (fr)
Inventor
慎吾 宮田
大塚 健二
戸野 正樹
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to PCT/JP2013/006951 priority Critical patent/WO2015079473A1/ja
Publication of WO2015079473A1 publication Critical patent/WO2015079473A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • E06B5/165Fireproof windows
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B1/00Border constructions of openings in walls, floors, or ceilings; Frames to be rigidly mounted in such openings
    • E06B1/04Frames for doors, windows, or the like to be fixed in openings
    • E06B1/26Frames of plastics
    • E06B1/28Hollow frames
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B1/00Border constructions of openings in walls, floors, or ceilings; Frames to be rigidly mounted in such openings
    • E06B1/04Frames for doors, windows, or the like to be fixed in openings
    • E06B1/32Frames composed of parts made of different materials
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/26345Frames with special provision for insulation for wooden or plastic section members
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/28Wing frames not characterised by the manner of movement with additional removable glass panes or the like, framed or unframed
    • E06B3/285Wing frames not characterised by the manner of movement with additional removable glass panes or the like, framed or unframed flexible transparent foils without a proper frame fixed and sealed at a distance from the existing glass pane
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/54Fixing of glass panes or like plates
    • E06B3/5454Fixing of glass panes or like plates inside U-shaped section members
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/54Fixing of glass panes or like plates
    • E06B3/58Fixing of glass panes or like plates by means of borders, cleats, or the like
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/70Door leaves
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • E06B5/161Profile members therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B2003/26394Strengthening arrangements in case of fire
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/267Frames with special provision for insulation with insulating elements formed in situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Definitions

  • the present invention relates to a fireproof resin sash installed in an opening of a structure such as a house.
  • a sash or the like has been used as a building member installed in an opening of a structure such as a house.
  • a fire occurs inside or outside a structure such as a house, it is necessary to prevent the fire from spreading. It is an important issue to improve the fire resistance of building members such as sashes so that fire flames and the like do not spread through the building members such as sashes.
  • a technique for improving the fire resistance of a sash has been proposed. Specifically, a sash including a frame material obtained by molding a synthetic resin, a metal member, and a fire-resistant plate material is provided with a plurality of cavities in the longitudinal direction of the frame material used for the sash.
  • the fire-resistant sheet adhering member in which the cross-sectional shape is a substantially U-shaped or square pipe-shaped metal member that is bonded and integrated with a sticky plate-like thermally expandable refractory material is A fireproof resin sash that is inserted along the longitudinal direction of the cavity of the frame material (Patent Document 1).
  • This fireproof resin sash has a substantially U-shaped or square pipe-shaped metal member inserted in the longitudinal direction of the frame material, so that the frame material obtained by molding synthetic resin melts and burns out. Even in this case, the substantially U-shaped or square pipe-shaped metal member supports the fire-resistant plate material, so that the fire-resistant plate material falls off from the opening of a structure such as a house and fire spreads. Can be prevented.
  • the fireproof resin sash is fired. Even when exposed to a flame such as, it can maintain a certain shape. For this reason, even when a fire or the like occurs on one side of the fireproof resin sash of a structure such as a house, flame or smoke due to the fire is prevented from spreading to the other side of the fireproof resin sash. Is possible.
  • An object of the present invention is to provide a fireproof resin sash that is excellent in fireproofing property, is relatively light in weight and easy to handle.
  • an outer peripheral frame is installed on the outer peripheral end face of the fire-resistant plate material, an open frame having a cavity is installed outside the outer peripheral frame, An auxiliary stabilizer is installed inside the cavity of the opening frame, the auxiliary stabilizer and the outer peripheral frame are fixed by a support member, and a thermally expandable refractory material injected into the cavity of the opening frame is,
  • the inventors have found that a fireproof resin sash that loses fluidity in the hollow portion is suitable for the purpose of the present invention, and has completed the present invention.
  • the present invention [1] An opening frame including a synthetic resin frame member having a plurality of cavities along the longitudinal direction; A fire-resistant plate material installed at the opening of the opening frame, An outer peripheral frame installed on the outer periphery of the plate, A support member that penetrates a surface of the outer peripheral frame body and the opening frame body facing the outer peripheral frame body and reaches a cavity of the opening frame body; An auxiliary stabilizer installed inside the cavity of the opening frame that the support member has reached; A fireproof resin sash having The outer peripheral frame body has a bottom wall portion that supports an outer peripheral end surface of the plate member, and a side wall portion that supports peripheral portions on both sides of the plate member, The support member fixes the bottom wall portion of the outer peripheral frame body and the auxiliary stabilizing plate, The auxiliary stabilizing plate is substantially parallel to an outer peripheral end surface of the plate member; Among a plurality of cavities including a cavity of the opening frame body in which the auxiliary stabilizer is installed, a thermally expandable refractory material is injected into one or
  • the present invention provides a fire-resistant resin sash, wherein the thermally expandable refractory material loses fluidity inside the cavity at 25 ° C. after being injected into the cavity.
  • One of the present invention is [2]
  • the fireproof resin sash according to [1] is provided, wherein the support member is inserted through the auxiliary stabilizer or an end portion of the support member is inside the auxiliary stabilizer. Is.
  • One of the present invention is [3] The fireproof resin sash according to [1] or [2], wherein a plurality of the support members are provided at intervals along the longitudinal direction of the synthetic resin frame member. It is.
  • One of the present invention is [4]
  • the ratio of the width of the auxiliary stabilizer plate to the width of the bottom wall portion of the outer peripheral frame body is in the range of 60 to 120% with reference to a vertical cross section with respect to the longitudinal direction of the synthetic resin frame member.
  • a fireproof resin sash according to any one of [1] to [3] is provided.
  • One of the present invention is [5] The fireproof resin sash according to any one of the above [1] to [4], wherein the auxiliary stabilizing plate is at least one selected from the group consisting of a metal plate, an inorganic plate, and a wood plate. It is.
  • One of the present invention is [6] The fire-resistant resin sash according to any one of [1] to [5], wherein the thermally expandable refractory material includes at least a reaction curable resin component, a thermally expandable component, and an inorganic filler. It is.
  • the reaction curable resin component contained in the thermally expandable refractory material is urethane resin foam, isocyanurate resin foam, epoxy resin foam, phenol resin foam, urea resin foam, unsaturated polyester resin foam, alkyd resin foam,
  • One of the present invention is [8] Any of the above [1] to [7], wherein the thermal expansion component contained in the thermally expandable refractory material includes at least one of thermally expanded graphite and a molded product pulverized product of the thermally expandable resin composition
  • the fireproof resin sash as described in 1. is provided.
  • One of the present invention is [9] The fire-resistant resin sash according to any one of the above [1] to [8], wherein the thermally expandable refractory material contains a phosphorus compound.
  • One of the present invention is [10] The fireproof resin sash according to any one of the above [1] to [9], wherein the inorganic filler contained in the thermally expandable refractory material contains calcium carbonate.
  • the fireproof resin sash according to the present invention uses the auxiliary stabilizer plate whose cross-sectional shape is lighter than a metal member having a substantially U-shaped or square pipe shape, the fireproof resin sash is compared with the conventional fireproof resin sash. The weight can be reduced. For this reason, the fireproof resin sash according to the present invention has a relatively small weight and is easy to handle.
  • the fireproof resin sash according to the present invention has a synthetic resin frame member having a plurality of cavities along the longitudinal direction, and a thermally expandable refractory material is injected into the cavities.
  • the conventional fire-resistant resin sash is made of a metal member whose cross-sectional shape is substantially U-shaped or square pipe-shaped, and is bonded to a plate-like thermally expandable refractory material having an adhesive property. It was necessary to insert inside the cavity. For this reason, when the shape inside the cavity of the synthetic resin frame member is complicated, there is a problem that it is difficult to insert a flat plate-like thermally expandable refractory material into the cavity of the synthetic resin frame member. It was.
  • the fire-resistant resin sash according to the present invention is formed by injecting a heat-expandable fire-resistant material into the cavity of the synthetic resin frame member, the fire-resistant resin sash according to the present invention is easily manufactured. Can do.
  • the fireproof resin sash according to the present invention When the fireproof resin sash according to the present invention is exposed to heat such as a fire, the synthetic resin frame member may melt and burn, but the thermal expansion injected into the cavity of the synthetic resin frame member Refractory material forms an expansion residue. This expansion residue supports the auxiliary stabilizing plate and supports the outer peripheral frame body fixed to the auxiliary stabilizing plate. Further, even when the synthetic resin frame member is melted and burned out, the plate material fixed to the outer peripheral frame body is held, and the periphery of the plate material is blocked by an expansion residue due to the thermally expandable refractory material. Even when one surface of the fireproof resin sash according to the present invention is exposed to heat such as a fire, the flame, smoke, etc. of the fire is delayed from being transmitted to the other surface of the fireproof resin sash according to the present invention. Therefore, the fireproof resin sash according to the present invention is excellent in fireproofing.
  • the thermally expandable refractory injected into the inside of the cavity of the synthetic resin frame member. Bubbles can be included in the material. Thereby, the fireproof resin sash excellent in heat insulation can be obtained.
  • FIG. 1 is a schematic front view for illustrating a first fireproof resin sash according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1 before injecting the thermally expandable refractory material.
  • FIG. 3 is a schematic cross-sectional view of an essential part for explaining the relationship between the opening frame and the support frame.
  • FIG. 4 is a cross-sectional view of a principal part taken along line AA of FIG. 1 after injecting a thermally expandable refractory material.
  • FIG. 5 is a schematic front view for illustrating a second fire-resistant fire-resistant resin sash 2 according to the present invention.
  • FIG. 6 is a cross-sectional view of a main part taken along line AA in FIG. FIG.
  • FIG. 7 is a schematic cross-sectional view for explaining the structure of the fireproof resin sash 100 according to the first embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of an essential part for explaining the structure of the fireproof resin sash 100 according to the first embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view for explaining a method for measuring the strength of the fireproof resin sash according to Example 1 using the test member.
  • FIG. 10 is a schematic cross-sectional view of an essential part for explaining the structure of the fireproof resin sash 200 according to the second embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 300 according to Example 3 of the present invention.
  • FIG. 12 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 400 according to Example 4 of the present invention.
  • FIG. 13 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 500 according to Example 3 of the present invention.
  • FIG. 14 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 600 according to Comparative Example 1 of the present invention.
  • FIG. 15 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 700 according to Comparative Example 2 of the present invention.
  • FIG. 16 is a graph showing the results of a strength test for the fireproof resin sash of each example.
  • the present invention relates to a fireproof resin sash.
  • Fireproof resin sashes according to the present invention are, for example, structures such as single-family houses, apartment houses, high-rise houses, high-rise buildings, commercial facilities, public facilities, etc., ships, transport ships, ferry ships and other ships ( Hereinafter, it is referred to as “a structure such as a house”). If an example is shown, it will be used for applications such as building members such as sashes such as open / close windows and fixed windows, but is not limited thereto.
  • the fireproof resin sash according to the present invention is obtained by injecting a thermally expandable refractory material into the cavity of the synthetic resin frame member.
  • FIG. 1 is a schematic front view for illustrating a first fireproof resin sash according to the present invention.
  • FIG. 2 is a cross-sectional view of a principal part taken along the line AA of FIG. 1 before injecting the heat-expandable refractory material.
  • FIG. 3 is a diagram for explaining the relationship between the opening frame and the support frame. It is a schematic cross section.
  • FIG. 4 is a cross-sectional view of an essential part taken along the line AA of FIG.
  • a fixed sash is illustrated in FIGS. 1 to 4 as an example of the fireproof reinforcing building member.
  • a first fireproof resin sash 1 is fixed to a rectangular opening formed in a structure such as a house, and includes an opening frame body 10 installed in the opening,
  • plate material 20 is provided in the inside.
  • An outer peripheral frame 30 is installed on the outer periphery of the plate member 20.
  • the outer peripheral frame 30 includes a bottom wall portion 31 that supports the outer peripheral end surface 21 of the plate member 20 and side wall portions 32 and 32 that support the peripheral edge portions 22 and 22 on both sides of the plate member 20.
  • the plate member 20 is inserted into the outer peripheral frame 30, and the outer peripheral frame 30 fixes the plate member 20.
  • the opening frame 10 is installed on the outer periphery of the outer peripheral frame 30, and the plate member 20 including the outer peripheral frame 30 and the opening frame 10 is a rectangular opening formed in a structure such as a house. It is installed without gaps.
  • the opening frame 10 is formed of left and right vertical synthetic resin frame members 11, 11 which are synthetic resin frame members and upper and lower horizontal synthetic resin frame members 12, 12.
  • the vertical synthetic resin frame members 11 and 11 and the horizontal synthetic resin frame members 12 and 12 respectively have a plurality of cavities 11a, 11a, 12a, and 12a in the longitudinal direction.
  • FIG. 3 is a schematic cross-sectional view of an essential part showing a cross section of the first fireproof resin sash 1 shown in FIG. 1 cut along a one-dot broken line AA.
  • An auxiliary stabilizer 40 is installed inside the cavity of each synthetic resin frame member 11-12.
  • a support member 50 is installed through the surface 13 of the opening frame 10 facing the outer peripheral frame 30 and the bottom wall portion 31 of the outer peripheral frame 30. The support member 50 is inserted through the auxiliary stabilizing plate 40 and fixes the outer peripheral frame body 30 and the auxiliary stabilizing plate 40.
  • the support member 50 has a screw shape, and the screw hole installed in the bottom wall portion 31 of the outer peripheral frame 30 and the auxiliary stabilizing plate 40.
  • the support members 50 can be screwed to the screw holes installed through the screw holes.
  • the fireproof resin sash 1 according to the first embodiment is obtained. can get.
  • plate material 20 used for this invention the window glass etc. which consist of iron netted glass are mentioned, for example.
  • plate material 20 has fire resistance, and comprises the partition surface which partitions off the outdoor of the 1st fireproof resin sash 1, and the room
  • plate material 20 used for this invention is not limited to the window glass which has translucency, What has light-shielding properties, such as a metal plate material and a calcium silicate board, may be sufficient.
  • Examples of the material used for the opening frame 10, the plate member 20, the outer peripheral frame 30, the support member 50, and the like include synthetic resin materials, metal materials, inorganic materials, and wood.
  • Examples of the synthetic resin include chlorine-containing resins such as polyvinyl chloride, polyolefin resins such as polyethylene and polypropylene, and polyester resins such as polyethylene terephthalate and polybutylene terephthalate.
  • Examples of the metal material include an aluminum material, a stainless material, a steel material, and an alloy material.
  • Examples of the inorganic material include glass, gypsum, ceramic, cement, calcium silicate, pearlite, and the like.
  • Examples of the wood include natural wood, molded wood obtained by curing a wood piece, a wood sheet, and the like with a resin.
  • the material can be used alone or in combination of two or more.
  • the opening frame 10 includes a synthetic resin material from the viewpoint of reducing the weight, and the synthetic resin material is preferable if it includes a chlorine-containing resin such as polyvinyl chloride. Moreover, it is preferable that the said board
  • Examples of the material used for the auxiliary stabilizing plate 40 include metal materials, inorganic materials, and wood. Specific examples of the metal material and the like are the same as those described for the opening frame 10 and the like.
  • the material used for the auxiliary stabilizing plate 40 is preferably a metal material, wood or the like.
  • each of the synthetic resin frame members 11 to 12 used in the present invention is formed of hard vinyl chloride and extends in the longitudinal direction. And have a plurality of cavities penetrating therethrough.
  • the opening frame 10 is made of a synthetic resin such as hard vinyl chloride from the viewpoint of improving fire resistance, and can be formed by extrusion molding, injection molding, or the like using the synthetic resin.
  • the opening frame 10 may be in any known form as long as the shape of the cross section perpendicular to the longitudinal direction has one or a plurality of cavities.
  • the longitudinal synthetic resin frame members 11, 11 are formed by cutting a long material obtained by extrusion molding of hard vinyl chloride, and have a cavity penetrating along the longitudinal direction.
  • the vertical synthetic resin frame members 11 and 11 have two large rectangular cavities 11a and 11a having a cross-sectional shape, and a plurality of small cavities 11c extending from the ends of the inner and outer wall surfaces forming the cavity to the opening side.
  • the horizontal synthetic resin frame members 12 and 12 constituting the opening frame 10 are also formed with a plurality of cavities penetrating in the longitudinal direction, though not shown.
  • the support member 50 reaches the inside of the cavities 11a and 11a.
  • the support members 50 and 50 have a length capable of fixing the auxiliary stabilizing plates 40 and 40 inside the cavities 11a and 11a.
  • the supporting members 50 and 50 are inserted through the auxiliary stabilizing plates 40 and 40, but the end portions of the supporting members 50 and 50 are located inside the auxiliary stabilizing plates 40 and 40, respectively. May be.
  • the width ratio is preferably in the range of 60 to 120%.
  • the ratio of the width of the auxiliary stabilizing plates 40, 40 is 60% or more, the auxiliary stabilizing plates 40, 40 can be installed in the cavities 11a, 11a of the opening frame 10 relatively easily.
  • the ratio of the widths of the auxiliary stabilizing plates 40 and 40 is 120% or less, the plate material 20 is placed in the opening frame when the fireproof resin sash 1 of the first embodiment is exposed to a flame such as a fire. It is possible to prevent detachment from the body 10.
  • the auxiliary stabilizing plates 40, 40 may be long ones that can be inserted long along the longitudinal direction of the longitudinal synthetic resin frame members 11, 11, and the positions of the support members 50, 50 to be installed. It may be a short one that can be installed at each location corresponding to.
  • the length of the auxiliary stabilizing plate 40, 40 based on the longitudinal direction of the longitudinal synthetic resin frame member 11, 11 is preferably in the range of 30 to 3000 mm, more preferably in the range of 200 to 2500 mm.
  • auxiliary stabilizing plates 40, 40 are installed substantially parallel to the outer peripheral end faces 21, 21 of the plate member 20.
  • the two surfaces to be compared are substantially parallel means that the other surface is within an angle range of 80 to 100 degrees with respect to the normal of one surface.
  • Examples of the method of installing the auxiliary stabilizing plates 40 and 40 inside the cavities 11a and 11a of the longitudinal synthetic resin frame members 11 and 11 include the following methods. Specifically, both ends of one surface of the auxiliary stabilizer plate 40 are attached to two long bars using an adhesive tape or the like, and the auxiliary stabilizer plate 40 attached to the two long bars is attached.
  • the longitudinal synthetic resin frame member 11 is first inserted into the cavity 11a. By this operation, the auxiliary stabilizer 40 can be moved to a desired position inside the cavity 11a.
  • the position of the auxiliary stabilizer 40 in the cavity 11a is determined by measuring the length of the portion of the elongated body that is outside the cavity 11a and comparing it with the length of the entire elongated body. This can be confirmed.
  • the auxiliary stabilizers 40, 40 can be installed inside the cavities 11a, 11a of the longitudinal synthetic resin frame members 11, 11, respectively. According to the above method, the auxiliary stabilizers 40 and 40 can be placed in contact with the inner surfaces of the cavities 11a and 11a, respectively.
  • auxiliary stabilizer plates 40, 40 When the auxiliary stabilizer plates 40, 40 are installed without contacting the inner surfaces of the cavities 11a, 11a, for example, four long bars are used. Specifically, both ends of one side of the auxiliary stabilizing plate 40 and both ends of the other side are attached to four long bars using adhesive tape or the like, and are attached to the four long bars.
  • the auxiliary stabilizer 40 is first inserted into the cavity 11a of the longitudinal synthetic resin frame member 11. Next, after the vertical synthetic resin frame member 11 is fixed by the support member 50, the four long bars are pulled out.
  • the auxiliary stabilizers 40, 40 can be installed inside the cavities 11a, 11a of the longitudinal synthetic resin frame members 11, 11, respectively.
  • the distance between the auxiliary stabilizer plate 40 and the cavity 11a is changed by changing the thickness of the two elongated rods between the auxiliary stabilizer plate 40 and the cavity 11a among the four elongated bars. Can be adjusted.
  • a plurality of the support members 50 can be installed at intervals along the outer periphery of the opening frame body 10.
  • the cross-sectional shape used in the conventional fireproof resin sash is lighter than the substantially U-shaped or square pipe-shaped metal member. Since the auxiliary stabilizers 40 and 40 can be used, the weight can be reduced as compared with the conventional fireproof resin sash.
  • a thermally expandable fireproof material 60 is injected into the cavities of the synthetic resin frame members 11 to 12 constituting the opening frame 10. Specifically, after the thermally expandable refractory material 60 is injected into the large cavities 11a and 11a of the longitudinal synthetic resin frame members 11 and 11, the thermally expandable refractory material 60 is formed inside the cavities 11a and 11a. Loss of liquidity.
  • the horizontal synthetic resin frame member 12, 12 is also injected with the thermally expandable refractory material 60 in a cavity penetrating in the longitudinal direction in the horizontal synthetic resin frame member 12, 12.
  • the heat-expandable refractory material 60 loses fluidity inside the 12, 12 cavities.
  • the thermally expandable refractory material 60 is injected into the cavity of the opening frame 10 in the direction along the surface of the plate member 20, and loses fluidity in contact with the inner wall surface of the cavity.
  • These thermally expandable refractory materials 60 are arranged in a parallel state along the surface of the window glass constituting the plate 20 having fire resistance, and form a refractory surface together with the window glass.
  • the refractory surface formed in this way is inside the opening frame 10 in a direction perpendicular to the glass surface and fills almost the entire surface along the window glass.
  • the thermally expandable fireproof material is in contact with the inside of the cavity that is the outermost in the direction perpendicular to the plate material 20 It is preferable to inject the material from the viewpoint of improving the fire resistance of the fireproof resin sash 1 according to the first embodiment.
  • the fireproof resin sash 1 according to the first embodiment is viewed from the outdoor side or the front side of the indoor side, that is, the direction perpendicular to the direction along the window glass surface, the outer periphery of the plate member 20 that is the central window glass is seen.
  • a heat-expandable refractory material 60 is located in front of the cavity of the vertical synthetic resin frame members 11 and 11 and the horizontal synthetic resin frame members 12 and 12, and all the heat-expandable refractory materials 60 are window glass. It is inject
  • the thermally expandable refractory material 60 When injecting the thermally expandable refractory material 60 into the cavity of the opening frame body 10, for example, the thermally expandable refractory material 60 is placed inside the opening frame body 10 while the inside of the opening frame body 10 is decompressed. Can be injected. Further, the thermally expandable refractory material 60 can be injected into the inside of the opening frame 10 while applying pressure by a pressure injection means having a piston and a cylinder.
  • the composition of the thermally expandable refractory material 60 will be described later.
  • the heat-expandable refractory material 60 used in the first embodiment is a material that expands in volume when exposed to a high temperature such as a fire to form an expansion residue, and forms the opening frame body 10 in the event of a fire.
  • the portions where the synthetic resin frame members 11 to 12 are heated to be melted and burned are filled with the expansion residue of the heat-expandable refractory material 60 to prevent the penetration of the flame.
  • the thermally expandable refractory material 60 is injected into the inside of the synthetic resin frame members 11 to 12 where the auxiliary stabilizer 40 is located, and the auxiliary stabilizer 40 is formed by the thermally expandable refractory material 60. It is fixed.
  • the synthetic resin frame members 11 to 12 forming the opening frame body 10 are heated to be melted and burned out. To do.
  • the auxiliary stabilizing plate 40 is fixed to a support member 50, and the support member 50 fixes the outer peripheral frame body 30.
  • the outer peripheral frame 30 fixes the plate material 20.
  • the plate member 20 is indirectly connected to the auxiliary stabilizing plate 40.
  • the auxiliary stabilizer 40 is fixed by the expansion residue of the thermally expandable refractory material 60, and indirectly after the synthetic resin frame members 11 to 12 forming the opening frame 10 are melted and burned out.
  • the plate member 20 can be supported. Since the auxiliary stabilizing plate 40 supports the plate member 20, even when the fireproof resin sash 1 exemplified in the first embodiment is exposed to a flame such as a fire, a rectangular shape formed in a structure such as a house. It can prevent that the said board
  • FIG. 5 is a schematic front view for illustrating the second fireproof resin sash 2 according to the present invention.
  • FIG. 6 is a cross-sectional view of an essential part taken along line AA in FIG.
  • the second fireproof resin sash 2 is a modification of the first fireproof resin sash 1 exemplified in the first embodiment.
  • the second fireproof resin sash 2 has a sliding structure that is movable in the horizontal direction by combining two fireproof resin sashes 1 ′ having the same structure as the first fireproof resin sash 1. And fixed to a rectangular opening formed in a structure such as a house.
  • the opening frame body 10 is installed in the opening.
  • the fixed opening frame body 70 is disposed in the opening. It is fixed.
  • the two fireproof resin sashes 1 ′ can move in the horizontal direction inside the fixed opening frame 70.
  • a plurality of opening frame bodies can be installed, and an opening frame body can be additionally installed outside the opening frame body.
  • an additionally installed opening frame is shown in FIGS. 5 and 6 as the fixed opening frame 70.
  • the fixed opening frame 70 is made of metal made of aluminum.
  • the configuration of the fireproof resin sash 1 ′ is the same as that of the fireproof resin sash 1 exemplified in the first embodiment, but the shape of the opening frame body 10 ′ moves in the horizontal direction of the fixed opening frame body 70. It is different in that it is modified as compared with the opening frame 10 used in the first embodiment so as to be able to. Other than that, it is the same as the case of the first embodiment.
  • the meanings of reference numerals in FIGS. 5 and 6 are the same as those in FIGS.
  • the opening frame body 10 ' is formed of left and right vertical synthetic resin frame members 11, 11 which are synthetic resin frame members and upper and lower horizontal synthetic resin frame members 12, 12.
  • the inside surrounded by the synthetic resin frame members 11 to 12 is an opening.
  • plate materials 20 and 20 are installed in the said opening part, and are structurally substantially the same structure.
  • the vertical synthetic resin frame members 11, 11 on the center side overlap each other in the front-rear direction so that the front-rear gap between the two plate members 20, 20 can be closed.
  • the fixed opening frame 70 is configured by combining aluminum metals including frames 71 to 74 as vertical and horizontal frame members. Cavities 75 to 78 penetrating the inside of the frame bodies 71 to 74 in the longitudinal direction are formed inside the frame bodies 71 to 74 of the fixed opening frame body 70, and the cavities 75 to 78 also include the cavities 75 to 78.
  • the heat-expandable refractory material 60 is injected and loses fluidity.
  • each of the opening frame bodies is the same as in the case of the fireproof resin sash 1 illustrated in the first embodiment.
  • the auxiliary stabilizing plates 40 and 40 used in the fireproof resin sash 2 exemplified in the second embodiment are respectively Supports two plates 20,20. For this reason, it can prevent that the two said board
  • the fireproof resin sash 2 exemplified in the second embodiment is also excellent in fireproofing property as in the case of the fireproof resin sash 1 exemplified in the first embodiment.
  • the fireproof resin sash 2 exemplified in the second embodiment is also lighter than the metallic member having a substantially U-shaped or square pipe-shaped cross-section used in the conventional fireproof resin sash. Since the plates 40 and 40 are used, the weight can be reduced as compared with the conventional fireproof resin sash.
  • thermally expandable refractory material used in the present invention will be described.
  • thermally expandable refractory material examples include those made of a resin composition containing a reactive curable resin component, a thermally expandable component, an inorganic filler, and the like.
  • the reaction curable resin component will be described first.
  • the viscosity increases as the reaction of the constituent components contained in the reactive curable resin component progresses over time, and the fluidity is initially fluid but the fluidity over time.
  • the reaction curable resin component include urethane resin, isocyanurate resin, epoxy resin, phenol resin, urea resin, unsaturated polyester resin, alkyd resin, melamine resin, diallyl phthalate resin, A silicone resin etc. are mentioned.
  • urethane resin what contains the polyisocyanate compound as a main ingredient, the polyol compound as a hardening
  • the polyisocyanate compound that is the main component of the urethane resin include aromatic polyisocyanates, alicyclic polyisocyanates, and aliphatic polyisocyanates.
  • aromatic polyisocyanate examples include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, polymethylene polyphenyl polyisocyanate, and the like.
  • alicyclic polyisocyanate examples include cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, dimethyldisicyclohexylmethane diisocyanate, and the like.
  • Examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, and hexamethylene diisocyanate.
  • the said polyisocyanate compound can use 1 type, or 2 or more types.
  • the main component of the urethane resin is preferably diphenylmethane diisocyanate for reasons such as ease of use and availability.
  • polyol compound that is a curing agent for the urethane resin examples include aromatic polyols, alicyclic polyols, aliphatic polyols, polyester polyols, and polymer polyols.
  • Examples of the aromatic polyol include bisphenol A, bisphenol F, phenol novolak, and cresol novolak.
  • Examples of the alicyclic polyol include cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, dimethyldisicyclohexylmethanediol, and the like.
  • Examples of the aliphatic polyol include ethylene glycol, propylene glycol, butanediol, pentanediol, and hexanediol.
  • polyester-based polyol examples include a polymer obtained by dehydration condensation of a polybasic acid and a polyhydric alcohol, and a polymer obtained by ring-opening polymerization of a lactone such as ⁇ -caprolactone and ⁇ -methyl- ⁇ -caprolactone.
  • lactone such as ⁇ -caprolactone and ⁇ -methyl- ⁇ -caprolactone.
  • condensates, and condensates of hydroxycarboxylic acids with the above polyhydric alcohols examples include condensates, and condensates of hydroxycarboxylic acids with the above polyhydric alcohols.
  • polybasic acid examples include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and succinic acid.
  • polyhydric alcohol examples include bisphenol A, ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexane glycol, neopentyl glycol, and the like. It is done.
  • hydroxycarboxylic acid examples include castor oil, a reaction product of castor oil and ethylene glycol, and the like.
  • polymer polyol examples include a polymer obtained by graft polymerization of an ethylenically unsaturated compound such as acrylonitrile, styrene, methyl acrylate, and methacrylate on the aromatic polyol, alicyclic polyol, aliphatic polyol, polyester polyol, and the like. Coalesced, polybutadiene polyol, or hydrogenated products thereof.
  • the ratio of the active hydrogen group (OH) in the polyol compound and the active isocyanate group (NCO) in the polyisocyanate compound (NCO / OH) is determined by combining the polyisocyanate compound as the main component of the urethane resin and the polyol compound as the curing agent. Mixing is preferably performed so that the equivalent ratio is 1.2 to 15. A range of 1.2 to 12 is more preferable. If the equivalent ratio is 1.2 or more, the viscosity of the urethane resin can be prevented from becoming too high, and if it is 15 or less, good adhesive strength can be maintained.
  • urethane resin catalyst examples include triethylamine, N-methylmorpholine bis (2-dimethylaminoethyl) ether, N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N′—.
  • Amino such as trimethylaminoethyl-ethanolamine, bis (2-dimethylaminoethyl) ether, N-methyl, N′-dimethylaminoethylpiperazine, imidazole compounds in which the secondary amine functional group in the imidazole ring is substituted with a cyanoethyl group And system catalysts.
  • the isocyanurate resin for example, using the polyurethane resin described above, the isocyanate group contained in the polyisocyanate compound which is the main component of the polyurethane resin was reacted to trimerize, thereby promoting the generation of the isocyanurate ring.
  • the thing etc. can be mentioned.
  • an isocyanurate ring for example, as a catalyst, tris (dimethylaminomethyl) phenol, 2,4-bis (dimethylaminomethyl) phenol, 2,4,6-tris (dialkylaminoalkyl) hexahydro
  • An aromatic compound such as —S-triazine, an alkali metal salt of carboxylic acid such as potassium acetate, potassium 2-ethylhexanoate and potassium octylate, a quaternary ammonium salt of carboxylic acid, etc. may be used.
  • the main component and curing agent of the isocyanurate resin are the same as those of the previous polyurethane resin.
  • examples of the epoxy resin include a resin obtained by reacting a monomer having an epoxy group as a main component with a curing agent.
  • Examples of the monomer having an epoxy group include, as a bifunctional glycidyl ether type, a polyethylene glycol type, a polypropylene glycol type, a neopentyl glycol type, a 1,6-hexanediol type, a trimethylolpropane type, and a propylene oxide-bisphenol A. And monomers such as hydrogenated bisphenol A type, bisphenol A type, and bisphenol F type.
  • Examples of the glycidyl ester type include monomers such as a hexahydrophthalic anhydride type, a tetrahydrophthalic anhydride type, a dimer acid type, and a p-oxybenzoic acid type.
  • examples of the multifunctional glycidyl ether type include monomers such as phenol novolac type, orthocresol type, DPP novolac type, dicyclopentadiene, and phenol type.
  • Examples of the curing agent include a polyaddition type curing agent and a catalyst type curing agent.
  • the polyaddition type curing agent include polyamines, acid anhydrides, polyphenols, polymercaptans, and the like.
  • the catalyst-type curing agent include tertiary amines, imidazoles, and Lewis acid complexes. The method for curing these epoxy resins is not particularly limited, and can be performed by a known method.
  • a mixture of two or more resin components can be used.
  • the resol type phenol resin composition includes, for example, a resol type phenol resin as a main agent, a curing agent, and the like.
  • phenols, cresol, xylenol, paraalkylphenol, paraphenylphenol, resorcin and other phenols and modified products thereof, and aldehydes such as formaldehyde, paraformaldehyde, furfural, and acetaldehyde are used as catalysts.
  • alkalis such as quantity of sodium hydroxide, potassium hydroxide, calcium hydroxide, is mention
  • lifted it is not limited to this.
  • the mixing ratio of phenols and aldehydes is not particularly limited, but is usually in the range of 1.0: 1.5 to 1.0: 3.0 in terms of molar ratio. The mixing ratio is preferably in the range of 1.0: 1.8 to 1.0: 2.5.
  • phenol resin curing agent examples include inorganic acids such as sulfuric acid and phosphoric acid, and organic acids such as benzenesulfonic acid, ethylbenzenesulfonic acid, paratoluenesulfonic acid, xylenesulfonic acid, naphtholsulfonic acid, and phenolsulfonic acid. It is done.
  • examples of the urea resin include urea as a main agent, formaldehyde as a curing agent, a basic compound as a catalyst, and a composition containing an acidic compound.
  • the urea and formaldehyde form a urea resin by a polymerization reaction.
  • unsaturated polyester resin the composition etc. which contain the unsaturated polybasic acid as a main ingredient, the polyol compound as a hardening
  • the main component of the unsaturated polyester resin include maleic anhydride and fumaric acid.
  • the curing agent for the unsaturated polyester resin examples include a polyol compound used for the urethane resin described above.
  • the unsaturated polyester resin may be used in combination with a saturated polybasic acid such as phthalic anhydride or isophthalic acid, if necessary.
  • a crosslinking vinyl monomer such as styrene, vinyl toluene, methyl methacrylate or the like which is polymerized with the main component of the unsaturated polyester resin
  • the unsaturated polyester resin catalyst include t-butyl peroxybenzoate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxy octoate, and t-butyl peroxy.
  • organic peroxides such as isopropyl carbonate and 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexanone.
  • an alkyd resin the composition containing the polybasic acid as a main ingredient, the polyol compound as a hardening
  • Specific examples of the main component of the alkyd resin include maleic anhydride, phthalic anhydride, and adipic acid.
  • curing agent for the alkyd resin examples include a polyol compound used for the urethane resin described above.
  • examples of the fats and oils include soybean oil, coconut oil, and linseed oil.
  • curing agent, etc. are mentioned, for example.
  • a benzoguanamine etc. can also be added to the said composition as needed.
  • examples of the diallyl phthalate resin include a composition containing a polybasic acid such as phthalic anhydride as a main agent, allyl alcohol as a curing agent, and a crosslinking agent.
  • examples of the crosslinking agent include styrene and vinyl acetate.
  • silicone resin for example, a composition containing a platinum compound such as chloroplatinic acid or the like as a curing agent, or the like as a main component, such as dialkylsilyl dichloride or dialkylsilyl diol, a reaction inhibitor as a trialkylsilyl chloride or trialkylsilyl diol or the like.
  • a platinum compound such as chloroplatinic acid or the like as a curing agent, or the like
  • a reaction inhibitor as a trialkylsilyl chloride or trialkylsilyl diol or the like.
  • dialkylsilyl dichloride examples include dimethylsilyl dichloride, diethylsilyl dichloride, dipropylsilyl dichloride, and the like.
  • dialkylsilyldiol examples include dimethylsilyldiol, diethylsilyldiol, and dipropylsilyldiol.
  • trialkylsilyl chloride examples include trimethylsilyl chloride, triethylsilyl chloride, tripropylsilyl chloride, and the like.
  • trialkylsilyldiol examples include trimethylsilylol, triethylsilylol, tripropylsilylol, and the like.
  • the reaction inhibitor is bonded to the terminal of the polysiloxane main chain and plays a role in controlling the reaction and controlling the degree of polymerization of the polysiloxane main chain.
  • the reaction curable resin component used in the present invention is preferably a thermosetting resin in order to prevent melting easily even when exposed to heat such as a fire.
  • the reaction curable resin component used in the present invention is more preferably an epoxy resin, a urethane resin, a phenol resin or the like from the viewpoint of handleability.
  • the reactive curable resin component used in the present invention can be used by preliminarily reacting a main agent and a curing agent in advance.
  • the main component, curing agent, catalyst, etc. of the reactive curable resin component contained in the thermally expandable refractory material used in the present invention can be used alone or in combination of two or more.
  • the thermal expansion refractory material can be cured in a foamed state by using a foaming agent and a foam stabilizer in combination with the reaction curable resin component contained in the thermal expansion refractory material used in the present invention.
  • blowing agent examples include low-boiling hydrocarbons such as propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, and isobutyl.
  • low-boiling hydrocarbons such as propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, and isobutyl.
  • Organic physical foaming such as chlorinated aliphatic hydrocarbon compounds such as chloride, pentyl chloride, isopentyl chloride, fluorine compounds such as trichloromonofluoromethane and trichlorotrifluoroethane, ethers such as diisopropyl ether, or mixtures of these compounds Agents, inorganic physical foaming agents such as nitrogen gas, oxygen gas, argon gas and carbon dioxide gas, water and the like.
  • the usage-amount of the foaming agent with respect to the said reaction curable resin component is suitably set with the said reaction curable resin component to be used, if an example is shown, for example with respect to 100 weight part of the said reaction curable resin components
  • the range is usually from 0.1 to 20 parts by weight, preferably from 0.1 to 10 parts by weight.
  • foam stabilizer examples include organosilicon surfactants.
  • the amount of the foam stabilizer used with respect to the reactive curable resin component is appropriately set depending on the reactive curable resin component to be used. For example, with respect to 100 parts by weight of the resin component, 0 is used. A range of 0.01 to 5 parts by weight is preferable.
  • the foaming agent and the foam stabilizer can be used alone or in combination of two or more.
  • the reaction curable resin component used in the present invention preferably has a foaming function in order to cure the thermally expanded refractory material in a foamed state.
  • a urethane resin foam an isocyanurate resin foam
  • thermally expanded refractory material By curing the thermally expanded refractory material in a foamed state, it is possible to impart a heat insulating effect of bubbles to the cured thermally expanded refractory material, and it is possible to improve the thermal insulation of the fireproof resin sash.
  • thermal expansion components expands upon heating.
  • specific examples of the thermal expansion component include inorganic expansion components such as vermiculite, kaolin, mica, and thermally expandable graphite, and a thermally expandable resin composition.
  • the molded product pulverized product can be listed.
  • the heat-expandable graphite is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with an inorganic acid such as concentrated sulfuric acid, nitric acid, and selenic acid, and concentrated nitric acid, perchloric acid, peroxygen, and the like.
  • a graphite intercalation compound was produced by treatment with a strong oxidant such as chlorate, permanganate, dichromate, dichromate, hydrogen peroxide, etc., and the layered structure of carbon was maintained. It is a kind of crystalline compound as it is.
  • heat-expandable graphite obtained by acid treatment as described above further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.
  • Examples of the aliphatic lower amine include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, and butylamine.
  • alkali metal compound and the alkaline earth metal compound examples include hydroxides such as potassium, sodium, calcium, barium, and magnesium, oxides, carbonates, sulfates, and organic acid salts.
  • the particle size of the thermally expandable graphite is preferably in the range of 20 to 200 mesh.
  • the particle size is 20 mesh or more, the dispersibility is improved, so that kneading with a resin component or the like becomes easy.
  • the particle size is 200 mesh or less, since the degree of expansion of graphite is large, it becomes easy to obtain a sufficient fireproof heat insulating layer.
  • Examples of commercially available neutralized thermally expandable graphite include “GRAFGUARD # 160”, “GRAFGUARD # 220” manufactured by UCAR CARBON, and “GREP-EG” manufactured by Tosoh Corporation.
  • Examples of the pulverized molded product of the heat-expandable resin composition include a product obtained by pulverizing a commercially available heat-expandable fireproof sheet.
  • Specific examples of the heat-expandable fireproof sheet used in the pulverized molded article include, for example, Fibro (registered trademark) manufactured by Sekisui Chemical Co., Ltd., resin components such as epoxy resin and rubber resin, and heat-expandable graphite.
  • thermally expandable resin composition containing thermal expansion component, phosphorus compound, inorganic filler, etc.
  • Sumitomo 3M Fire Barrier sheet material consisting of resin composition containing chloroprene rubber and verculite, expansion coefficient
  • thermal conductivity 0.20 kcal / m ⁇ h ⁇ ° C.
  • Mitsui Metal Paint Chemical Co., Ltd. medhi-cut sheet material consisting of a resin composition containing polyurethane resin and thermally expandable graphite, expansion rate: 4 times
  • Thermal conductivity 0.21 kcal / m ⁇ h ⁇ ° C.
  • thermoly expandable resin composition by a method such as finely cutting a commercially available heat-expandable fireproof sheet with a cutter, etc., or a method of grinding a commercially available heat-expandable fireproof sheet etc. through a grinding roll
  • a pulverized product can be obtained.
  • the pulverized product of the heat-expandable resin composition is preferably in the range of 5 to 20 mesh.
  • the particle size of the pulverized product of the thermally expandable resin composition is 5 mesh or more, dispersibility is improved, so that kneading with a resin component or the like is facilitated.
  • the particle size is 20 mesh or less, the expansion of graphite is large, so that a sufficient fire-resistant heat insulating layer can be easily obtained.
  • the inorganic filler is not particularly limited.
  • the inorganic filler plays an aggregate role and contributes to an improvement in the strength of the expanded heat insulating layer generated after heating and an increase in heat capacity.
  • a calcium carbonate, a metal carbonate represented by zinc carbonate, an aluminum hydroxide that gives an endothermic effect during heating in addition to an aggregate role, and a water-containing inorganic material represented by magnesium hydroxide are preferred.
  • An earth metal and a metal carbonate of the periodic table IIb or a mixture of these with the water-containing inorganic substance are preferable.
  • a phosphorus compound can also be added as a flame retardant to the thermally expandable refractory material used in the present invention.
  • the phosphorus compound is used to improve flame retardancy or to exhibit a thermal expansion function in combination with nitrogen compounds, alcohols, and the like.
  • the phosphorus compound is not particularly limited, and examples thereof include red phosphorus, Various phosphate esters such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, Metal phosphates such as sodium phosphate, potassium phosphate, magnesium phosphate; ammonium polyphosphates, The compound etc. which are represented by following Chemical formula 1 are mentioned.
  • These phosphorus compounds can be used alone or in combination of two or more.
  • red phosphorus a compound represented by the following chemical formula, and ammonium polyphosphates are preferable, and ammonium phosphates are more preferable in terms of performance, safety, cost, and the like.
  • R 1 and R 3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
  • Examples of the compound represented by the chemical formula include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t-butylphosphonic acid, 2, 3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphinic acid, diethylphenylphosphinic acid , Diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like.
  • t-butylphosphonic acid is expensive but preferable in terms of high flame retardancy.
  • ammonium polyphosphates are not particularly limited, and examples include ammonium polyphosphate and melamine-modified ammonium polyphosphate.
  • Ammonium polyphosphate is preferred from the viewpoint of flame retardancy, safety, cost, and handleability. Used.
  • Examples of commercially available products include “trade name: EXOLIT AP422” manufactured by Clariant. And “trade name: EXOLIT AP462”.
  • the phosphorus compound reacts with metal carbonates such as calcium carbonate and zinc carbonate to promote the expansion of the metal carbonate.
  • metal carbonates such as calcium carbonate and zinc carbonate.
  • ammonium polyphosphate is used as the phosphorus compound, a high expansion effect is obtained. can get.
  • the nitrogen compound is not particularly limited, but is preferably a compound containing melamine or the like.
  • the alcohols are not particularly limited, but polyhydric alcohols such as pentaerythritol are preferable.
  • the particle size is preferably in the range of 0.5 to 200 ⁇ m, more preferably in the range of 1 to 50 ⁇ m.
  • the dispersibility greatly affects the performance, so a small particle size is preferable.
  • the particle size is 0.5 ⁇ m or more, secondary aggregation can be prevented and the dispersibility is good. It becomes.
  • the viscosity of the resin composition increases and moldability decreases as high filling proceeds, but the viscosity of the resin composition is decreased by increasing the particle size. From the point of being able to do, the thing with a large particle size is preferable among the said range.
  • a particle size is 200 micrometers or less, it can suppress that the surface property of a molded object and the mechanical physical property of a resin composition fall.
  • metal carbonates such as calcium carbonate and zinc carbonate that play an aggregate role in particular
  • water-containing inorganic substances such as aluminum hydroxide and magnesium hydroxide that give an endothermic effect when heated in addition to the role as an aggregate Is preferred.
  • inorganic fillers in particular, water-containing inorganic substances such as aluminum hydroxide and magnesium hydroxide are endothermic due to the water generated by the dehydration reaction during heating, and the temperature rise is reduced and high heat resistance is obtained.
  • the oxide remains as a combustion residue and this acts as an aggregate to improve the strength of the combustion residue.
  • Magnesium hydroxide and aluminum hydroxide have different temperature ranges that exhibit dehydration effects, so when used together, the temperature range that exhibits dehydration effects becomes wider, and more effective temperature rise suppression effects can be obtained. It is preferable to do.
  • the particle size of the hydrated inorganic material When the particle size of the hydrated inorganic material is small, it becomes bulky and it is difficult to achieve high filling. Therefore, in order to increase the dehydration effect, a particle having a large particle size is preferable.
  • the filling limit amount is improved by about 1.5 times compared to the particle size of 1.5 ⁇ m.
  • Examples of commercially available water-containing inorganic substances include aluminum hydroxide having a particle diameter of 1 ⁇ m “trade name: Hygielite H-42M” (manufactured by Showa Denko KK), and a grain diameter of 18 ⁇ m “trade name: Hygilite H-31. (Made by Showa Denko KK) and the like.
  • Examples of commercially available calcium carbonate include “trade name: Whiten SB red” (manufactured by Shiraishi Calcium Co., Ltd.) having a particle size of 1.8 ⁇ m, and “trade name: BF300” (manufactured by Bihoku Flourishing Co., Ltd.) having a particle size of 8 ⁇ m Etc.
  • the resin composition containing the above-described reaction-curable resin resin component, heat-expandable component, inorganic filler, etc., and the above-mentioned phosphorus compound examples of these compounds are described below.
  • the heat-expandable refractory material preferably contains 10 to 150 parts by weight of the thermal expansion component and 50 to 300 parts by weight of the inorganic filler with respect to 100 parts by weight of the reaction curable resin component.
  • the total of the thermal expansion component and the inorganic filler is preferably in the range of 200 to 600 parts by weight.
  • Such a heat-expandable refractory material expands by heat from a fire or the like and forms a heat expansion residue.
  • the heat-expandable material is expanded by heat such as a fire, and a necessary volume expansion coefficient can be obtained, and after expansion, a thermal expansion residue having a predetermined heat insulation performance and a predetermined strength. Can be formed, and stable fire resistance can be achieved.
  • the amount of the thermal expansion component is 10 parts by weight or more, the necessary expansion ratio can be obtained, so that sufficient fire resistance and fire prevention performance can be obtained.
  • the amount of the thermal expansion component is 150 parts by weight or less, the fluidity of the thermally expandable refractory material at 25 ° C. can be ensured.
  • the amount of the inorganic filler is 50 parts by weight or more, there is little volume reduction of the thermal expansion residue after combustion, and a thermal expansion residue for fireproof insulation is obtained. Furthermore, since the ratio of combustible material increases, flame retardancy may decrease.
  • the amount of the inorganic filler is 300 parts by weight or less, the fluidity of the thermally expandable refractory material at 25 ° C. can be ensured.
  • the total amount of the thermal expansion component and the inorganic filler in the thermally expandable refractory material is 60 parts by weight or more, the amount of the thermal expansion residue after combustion is not insufficient, and sufficient fire resistance can be easily obtained. Deterioration of physical properties is small and suitable for actual use.
  • the thermally expandable refractory material used in the present invention is a plasticizer such as phthalic acid ester, adipic acid ester, phosphoric acid ester, phenolic, amine, etc., as long as the object of the present invention is not impaired.
  • a plasticizer such as phthalic acid ester, adipic acid ester, phosphoric acid ester, phenolic, amine, etc.
  • sulfur-based antioxidants heat stabilizers, metal damage inhibitors, antistatic agents, stabilizers, cross-linking agents, lubricants, softeners, pigments, tackifier resins, additives, polybutene, petroleum resins Or the like.
  • the viscosity at 25 ° C. of the thermally expandable refractory material used in the present invention is in the range of 1000 to 100,000 mPa ⁇ s, based on the value before being injected into the cavity of the opening frame.
  • the viscosity is 1000 mPa ⁇ s or more, the thermally expandable refractory material can be easily filled even in a narrow gap in the cavity of the opening frame.
  • the pressure for injecting the heat-expandable refractory material into the cavity of the opening frame, the pressure of the injection device, and the like are not increased more than necessary, and the injection can be performed easily.
  • the viscosity is 100000 mPa ⁇ s or less, it is easy to inject a desired filling amount when air does not easily enter when the thermally expandable refractory material is injected into the cavity of the opening frame.
  • the composition of the thermally expandable refractory material is kept uniform in the cavity of the opening frame. And the desired fire resistance can be exhibited.
  • the viscosity is preferably in the range of 2000 to 60000 mPa ⁇ s, more preferably in the range of 10,000 to 40000 mPa ⁇ s.
  • the thermally expandable refractory material to be used is divided into two or more, and the value obtained by adding the viscosities according to the respective weight ratios is defined as the viscosity of the thermally expandable refractory material.
  • the viscosity of one of the thermally expandable refractory materials divided into two is 10000 mPa ⁇ s
  • the other divided viscosity is 40,000 mPa ⁇ s
  • each component of the thermally expandable refractory material divided into two can be stably stored at 25 ° C. so as not to hinder the viscosity measurement. What is necessary is just to divide each component so that hardening reaction may start after mixing each component. The same applies when the thermally expandable refractory material used is divided into three or more.
  • the adjustment of the viscosity of the thermally expandable refractory material can be adjusted by selecting the type of reaction curable resin component of the thermally expandable refractory material used in the present invention. By selecting a liquid reaction curable resin component having a low viscosity at 25 ° C., the viscosity of the thermally expandable refractory material at 25 ° C. can be reduced. Conversely, by selecting a liquid reactive curable resin component having a high viscosity at 25 ° C., the viscosity of the thermally expandable refractory material at 25 ° C. can be increased.
  • the viscosity of the thermally expandable refractory material can also be adjusted by changing the weight ratio of the thermal expansion component and the inorganic filler contained in the thermally expandable refractory material.
  • the viscosity of the thermally expandable refractory material at 25 ° C. can be reduced by reducing the weight ratio of the thermally expandable component, inorganic filler, etc. contained in the thermally expandable refractory material.
  • the viscosity can be reduced by appropriately selecting a liquid inorganic filler at a temperature of 25 ° C.
  • increasing the weight ratio of the thermal expansion component, inorganic filler, and the like contained in the thermally expandable refractory material can increase the viscosity of the thermally expandable refractory material at 25 ° C.
  • the method for producing the thermally expandable refractory material is not particularly limited.
  • a method of suspending the thermally expandable refractory material in an organic solvent, or heating and melting it to form a paint, a solvent In the case where a component that is a solid at 25 ° C. is included in the reaction curable resin component contained in the thermally expandable refractory material, such as a method of preparing a slurry by dispersing, the thermally expandable refractory material is used.
  • the resin composition can be obtained by a method such as melting under heating.
  • each component of the thermally expandable refractory material is a known apparatus such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader mixer, a kneading roll, a raikai machine, and a planetary stirrer. And kneading.
  • the main agent having a reactive functional group such as isocyanate group and epoxy group and the curing agent may be kneaded separately together with a filler, and kneaded with a static mixer, a dynamic mixer or the like immediately before injection.
  • the components of the heat-expandable refractory material excluding the catalyst and the catalyst can be kneaded in the same manner immediately before injection.
  • the thermally expandable refractory material used in the present invention can be obtained.
  • the reaction curable thermally expandable resin composition obtained as described above has fluidity at a temperature of 25 ° C., it can be injected into the inside of the opening frame.
  • having fluidity means that the thermally expandable refractory material does not have a certain shape when left standing, and has no fluidity, means that the thermally expandable refractory material is left standing. A case having a certain shape.
  • the heat-expandable refractory resin member is not particularly limited as long as it is thermally insulated by the expansion layer when exposed to a high temperature such as a fire, and has the strength of the expansion layer, but heating of 50 kW / m 2 It is preferable that the volume expansion coefficient after heating for 30 minutes under the conditions is 1.1 to 6 times. If the volume expansion coefficient is less than 1.1 times, the expansion volume may not be able to fully fill the burned-out portion of the resin component, and fireproof performance may be reduced. On the other hand, if it exceeds 6 times, the strength of the expanded layer is lowered, and the effect of preventing the penetration of the flame may be lowered. More preferably, the volume expansion coefficient is in the range of 1.2 to 5 times, and more preferably in the range of 1.3 to 4 times.
  • the expansion layer In order for the expansion layer to be self-supporting, the expansion layer needs to have a high strength. As the strength, the sample of the expansion layer is set to 0 using a 0.25 cm 2 indenter in a compression tester. It is preferable that the stress at break when measured at a compression speed of 0.1 m / s is 0.05 kgf / cm 2 or more. If the stress at break is less than 0.05 kgf / cm 2 , the adiabatic expansion layer may not be self-supporting and the fireproof performance may be reduced. More preferably, it is 0.1 kgf / cm 2 or more.
  • Example 1 a fireproof resin sash 100 was produced and a fire resistance test was performed. This test and its results will be described.
  • FIGS. 7 and 8 are a schematic cross-sectional view and a schematic cross-sectional view of a main part for explaining the structure of the fireproof resin sash 100 according to the first embodiment of the present invention, respectively.
  • the structure of the fireproof resin sash 100 according to the first embodiment is the same as that of the first fireproof resin sash 1 described above.
  • the fireproof resin sash 100 according to Example 1 is fixed to a rectangular opening formed in a calcium silicate plate 101 having a thickness of 50 mm, and the opening installed in the opening is provided.
  • a frame 110 and a plate member 120 having fire resistance made of a calcium silicate plate having a thickness of 25 mm are provided inside the frame 110.
  • a steel square stud 102 supports the fireproof resin sash 100 and the calcium silicate plate 101.
  • An inorganic fiber sheet 103 made of a ceramic blanket having a thickness of 6 mm is installed on the heating surface side of the calcium silicate plate 101 and the plate material 120.
  • An outer peripheral frame body 130 is installed on the outer periphery of the plate member 120.
  • the outer peripheral frame 130 includes a bottom wall portion 131 that supports the outer peripheral end surface 121 of the plate member 120 and side wall portions 132 and 132 that support the peripheral edge portions 122 and 122 on both sides of the plate member 120.
  • the plate member 120 is inserted into the outer peripheral frame body 130, and the outer peripheral frame member 130 fixes the plate member 120.
  • An opening frame 110 is installed on the outer periphery of the outer peripheral frame 130, and the plate member 120 including the outer peripheral frame 130 and the opening frame 110 is formed into a rectangular opening formed in the calcium silicate plate 101. It is installed without gaps in the part.
  • the opening frame 110 is similar to the case of the fireproof resin sash 1 described above, and the left and right vertical synthetic resin frame members 111 and 111 and the upper and lower horizontal synthetic resins are synthetic resin frame members.
  • the frame forming members 112 and 112 are formed.
  • the vertical synthetic resin frame members 111 and 111 and the horizontal synthetic resin frame members 112 and 112 have a plurality of cavities 111a, 111a, 112a, 112a and the like in the longitudinal direction, respectively.
  • An auxiliary stabilizing plate 140 is installed inside the cavity of each synthetic resin frame member 111-112.
  • a supporting member 150 is installed through the surface 113 of the opening frame 110 facing the outer peripheral frame 130 and the bottom wall 131 of the outer peripheral frame 130, and the outer peripheral frame 130 and the auxiliary stabilizing plate 140. Is fixed to the support member 150.
  • the auxiliary stabilizing plate 140 is installed in parallel with the outer peripheral end surface 121 of the plate member 120.
  • the auxiliary stabilizing plate 140 used in the first embodiment has a length of 100 mm based on the longitudinal direction of each synthetic resin frame member 111 to 112, and a vertical cross section in the longitudinal direction of each synthetic resin frame member 111 to 112. Is a steel plate having a width of 35 mm and a thickness of 1.2 mm based on the vertical section.
  • the support member 150 used in Example 1 is a drill tapping screw, and its length is 25 mm.
  • the heat-expandable refractory material 60 was divided into component A and component B, and each component was stirred using a planetary stirrer. Specifically, a polyurethane resin was used as the thermally expandable refractory material 60. A polyether polyol was used as a curing agent for the polyurethane resin as the resin component of the A component, and a polyisocyanate compound was used as the main component of the polyurethane resin as the resin component of the B component.
  • the ratio of the active hydrogen group (OH) in the polyol compound to the active isocyanate group (NCO) in the polyisocyanate compound (NCO / OH) is obtained by combining the polyisocyanate compound as the main component of the urethane resin and the polyether polyol as the curing agent. Was adjusted to an equivalent ratio of 1.64: 1.
  • the viscosities of component A and component B were measured.
  • the viscosity was measured at 25 ° C. using a B-type rotary viscometer (manufactured by Viscotec).
  • the rotational speed of the B-type rotary viscometer at the time of measurement was 10 rpm, and an R5 spindle was used.
  • the respective viscosities of the obtained A component and B component were added at the ratio of the weight ratio of the A component and B component to obtain the overall viscosity. This value is shown in Table 1.
  • the A component and the B component are placed inside the cavities of the synthetic resin frame members 111 to 112 made of hard vinyl chloride having a cavity formed along the longitudinal direction.
  • the injected heat-expandable refractory material 60 was cured while foaming inside the cavity and lost fluidity to form a urethane resin foam.
  • a fire resistance test was performed on the fireproof resin sash 100 according to the conditions of ISO834.
  • FIG. 9 is a schematic cross-sectional view for explaining a method for measuring the strength of the fireproof resin sash 100 according to Example 1 using the test member 104.
  • the test member 104 is filled with the thermally expandable refractory material 60 inside the cavity of the opening frame 110, and the outer peripheral frame 130 and the auxiliary stabilizer plate 140 are fixed to the support member 150.
  • test member 104 Under the same conditions as in the previous fire resistance test, the A side of the test member 104 was heated for 20 minutes.
  • the obtained test member 104 after heating was placed on a measurement table 105 and fixed by a pedestal 106, and the measurement table 105 and the pedestal 106 were fixed by a fixture 107.
  • the pressure tool 107 compresses 10 mm from the end of the outer peripheral frame 130 under conditions of a speed of 10 mm / min, a weighted scale of 2000 N, and a measurement temperature of 20 ° C. Then, the strength test was performed. By this strength test, the strength in the vertical direction of the fireproof resin sash 100 according to the first embodiment with respect to the plate member 120 can be examined. The obtained results are shown in FIG. In the case of Example 1, it was able to withstand a load near 400N.
  • FIG. 10 is a schematic cross-sectional view of an essential part for explaining the structure of the fireproof resin sash 200 according to the second embodiment of the present invention.
  • the auxiliary stabilizing plate 140 was placed in contact with the surface on the plate member 120 side inside the cavities 111a, 111a, 112a, 112a.
  • the auxiliary stabilizing plate 140 is installed in contact with the surface on the calcium silicate plate 101 side inside the cavities 111a, 111a, 112a, 112a, and the support member.
  • the difference is that 151 penetrates the inside of the cavities 111a, 111a, 112a, 112a.
  • the support member 151 is a drill tapping screw having a length of 50 mm.
  • Example 2 a fire resistance test and a strength test were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG. From the above results, it was found that even when the fireproof resin sash 200 according to Example 2 was exposed to a flame such as a fire, the plate material 120 did not easily fall off from the fireproof resin sash 200. By this fire resistance test, it was proved that the fireproof resin sash 200 according to Example 2 is excellent in fireproofing property.
  • FIG. 11 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 300 according to Example 3 of the present invention.
  • a drill tapping screw having a length of 25 mm was used as the support member 150.
  • a rivet is used as the support member 152 instead of the drill tapping screw. The rest is the same as in the first embodiment.
  • Example 3 the fire resistance test and the strength test were carried out in the same manner as in Example 1. The results are shown in Table 1 and FIG. From the above results, it was found that even when the fireproof resin sash 300 according to Example 3 was exposed to a flame such as a fire, the plate material 120 was not easily dropped from the fireproof resin sash 300. By this fire resistance test, it was proved that the fireproof resin sash 200 according to Example 3 is excellent in fireproofing property.
  • FIG. 12 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 400 according to Example 4 of the present invention.
  • a steel plate was used as the auxiliary stabilizing plate 140.
  • the auxiliary stabilizer 143 has a length of 100 mm based on the longitudinal direction of each synthetic resin frame member 111 to 112, and is perpendicular to the longitudinal direction of each synthetic resin frame member 111 to 112.
  • a structural plywood having a width based on the cross section of 35 mm and a thickness based on the vertical cross section of 9 mm is used.
  • Example 1 In the case of Example 1, a drill tapping screw was used as the support member 150. In contrast, the fourth embodiment is different in that a wood screw is used as the support member 153. The rest is the same as in the first embodiment.
  • Example 4 a fire resistance test and a strength test were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG. From the above results, it was found that even when the fireproof resin sash 400 according to Example 4 was exposed to a flame such as a fire, the plate member 130 was not easily dropped from the fireproof resin sash 400. By this fire resistance test, it was proved that the fireproof resin sash 400 according to Example 4 was excellent in fireproofing property.
  • FIG. 13 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 500 according to Example 3 of the present invention.
  • a steel plate was used as the auxiliary stabilizing plate 140.
  • the length of each of the synthetic resin frame members 111 to 112 as a reference is 100 mm as the auxiliary stabilizer 144, and the vertical direction of each of the synthetic resin frame members 111 to 112 is vertical.
  • a structural plywood having a width based on the cross section of 35 mm and a thickness based on the vertical cross section of 9 mm is used.
  • Example 1 In the case of Example 1, a drill tapping screw was used as the support member 150. On the other hand, in the case of Example 5, a rivet is used as the support member 154 instead of the drill tapping screw. The rest is the same as in the first embodiment.
  • Example 5 a fire resistance test and a strength test were performed in the same manner as in Example 1. The results are shown in Table 1 and FIG. From the above results, it was found that even when the fireproof resin sash 500 according to Example 5 was exposed to a flame such as a fire, the plate member 130 was not easily dropped from the fireproof resin sash 500. From this fire resistance test, it was proved that the fireproof resin sash 500 according to Example 4 was excellent in fireproofing property.
  • FIG. 14 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 600 according to Comparative Example 1 of the present invention.
  • a steel plate was used as the auxiliary stabilizing plate 140.
  • the comparative example is different in that the auxiliary stabilizing plate 140 is not used.
  • FIG. 15 is a schematic cross-sectional view of an essential part for explaining the structure of a fireproof resin sash 700 according to Comparative Example 2 of the present invention.
  • a steel plate was used as the auxiliary stabilizing plate 140.
  • the comparative example is different in that the auxiliary stabilizing plate 140 is not used. The rest is the same as in the case of the first embodiment.
  • the fireproof resin sash according to the present invention is excellent in fireproofing and easy to handle, it can be widely applied to fireproofing of buildings and structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Special Wing (AREA)

Abstract

【課題】防火性に優れ、重量が比較的軽く取り扱い易い防火性樹脂サッシを提供すること。 【解決手段】耐火性を有する板材の外周端面に外周枠体が設置され、前記外周枠体の外側に空洞を有する開口枠体が設置され、前記開口枠体の空洞内部に補助安定板が設置されていて、前記補助安定板と前記外周枠体が支持部材により固定され、前記開口枠体の空洞内部に注入された記熱膨張性耐火材料が、前記空洞の内部で流動性を失う防火性樹脂サッシ。

Description

防火性樹脂サッシ
 本発明は住宅等の構造物の開口部に設置される防火性樹脂サッシに関する。
 従来、住宅等の構造物の開口部等に設置される建築部材として、サッシ等が使用されている。
 住宅等の構造物の内部または外部で火災が発生した場合にはこの火災による延焼を防ぐ必要がある。火災の炎等がサッシ等の建築部材を貫通して延焼することがないように、サッシ等の建築部材の耐火性を高めることが重要な課題となる。
 この課題に関連して、サッシの耐火性を高める技術が提案されている。
 具体的には、合成樹脂を成形して得られた枠材と金属製部材と耐火性のある板材とを備えたサッシについて、そのサッシに使用される枠材の長手方向に複数の空洞が設けられていて、断面形状が略コ字状または角パイプ状をしている金属製部材に、粘着性を有する平板状の熱膨張性耐火材を貼り合わせて一体化した耐火シート貼着部材が前記枠材の空洞の長手方向に沿って挿入されている防火性樹脂サッシが提案されている(特許文献1)。
 この防火性樹脂サッシは枠材の長手方向に断面形状が前記略コ字状または角パイプ状の金属製部材が挿入されているため、合成樹脂を成形して得られた枠材が溶融、焼失した場合でも前記略コ字状または角パイプ状の金属製部材が前記耐火性のある板材を支えため、前記耐火性のある板材が、住宅等の構造物の開口部等から脱落し延焼が生じることを防ぐことができる。
特許第4691324号公報
 上記に説明した通り、サッシに使用される枠材の空洞内部に断面形状が略コ字状または角パイプ状の金属製部材が事前に挿入されている場合には、前記防火性樹脂サッシは火災等の炎にさらされた場合でも一定形状を保つことができる。このため住宅等の構造物の前記防火性樹脂サッシの一方の側で火災等が発生した場合でも、火災等による炎、煙等が前記防火性樹脂サッシの他方の側へ広がることを防止することが可能である。
 しかし、サッシに使用される枠材の空洞内部に断面形状が略コ字状または角パイプ状の金属製部材を挿入した場合には、得られる防火性樹脂サッシは防火性能は優れるものの、防火性樹脂サッシ自体の重量が大きくなるため取り扱いにくい問題があった。
 本発明の目的は、防火性に優れ、重量が比較的軽く取り扱い易い防火性樹脂サッシを提供することにある。
 上記課題を解決するため本発明者らが鋭意検討した結果、耐火性を有する板材の外周端面に外周枠体が設置され、前記外周枠体の外側に空洞を有する開口枠体が設置され、前記開口枠体の空洞内部に補助安定板が設置されていて、前記補助安定板と前記外周枠体が支持部材により固定され、前記開口枠体の空洞内部に注入された熱膨張性耐火材料が、前記空洞部で流動性を失う防火性樹脂サッシが本発明の目的に適うことを見出し、本発明を完成するに至った。
 すなわち本発明は、
[1]長手方向に沿う複数の空洞を有する合成樹脂製枠部材を含む開口枠体と、
 前記開口枠体の開口部に設置された耐火性を有する板材と、
 前記板材の外周に設置された外周枠体と、
 前記外周枠体および前記開口枠体の前記外周枠体に対向する面を貫通し、前記開口枠体の空洞に達する支持部材と、
 前記支持部材が達した前記開口枠体の空洞内部に設置された補助安定板と、
 を有する防火性樹脂サッシであって、
 前記外周枠体が、前記板材の外周端面を支持する底壁部と、前記板材の両側の周縁部を支持する側壁部とを有し、
 前記支持部材が、前記外周枠体の底壁部と前記補助安定板とを固定し、
 前記補助安定板が、前記板材の外周端面と略平行であり、
 前記補助安定板が設置された前記開口枠体の空洞を含む複数の空洞のうち、一または二以上の空洞内部に熱膨張性耐火材料が注入され、
 前記空洞の内部に注入される前の前記熱膨張性耐火材料の25℃における粘度が、1000~100000mPa・sの範囲であり、
 前記熱膨張性耐火材料が、前記空洞の内部に注入された後に、25℃において前記空洞の内部で流動性を失うことを特徴とする、防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[2]前記支持部材が、前記補助安定板を挿通しているか、または前記支持部材の端部が、前記補助安定板の内部にある、上記[1]に記載の防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[3]前記支持部材が、前記合成樹脂製枠部材の長手方向に沿って、間隔をおいて複数設置されている、上記[1]または[2]に記載の防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[4]前記合成樹脂製枠部材の長手方向に対する垂直断面を基準として、前記外周枠体の底壁部の幅に対する前記補助安定板の幅の割合が、60~120%の範囲である、上記[1]~[3]のいずれかに記載の防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[5]前記補助安定板が、金属板、無機板および木板からなる群より選ばれる少なくとも一つである、上記[1]~[4]のいずれかに記載の防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[6]前記熱膨張性耐火材料が、反応硬化性樹脂成分、熱膨張成分および無機充填材を少なくとも含む、上記[1]~[5]のいずれかに記載の防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[7]前記熱膨張性耐火材料に含まれる反応硬化性樹脂成分が、ウレタン樹脂フォーム、イソシアヌレート樹脂フォーム、エポキシ樹脂フォーム、フェノール樹脂フォーム、尿素樹脂フォーム、不飽和ポリエステル樹脂フォーム、アルキド樹脂フォーム、メラミン樹脂フォーム、ジアリルフタレート樹脂フォームおよびシリコーン樹脂フォームからなる群から選ばれる少なくとも一つである、上記[1]~[6]のいずれかに記載の防火性樹脂サッシ
を提供するものである。
 また本発明の一つは、
[8]前記熱膨張性耐火材料に含まれる熱膨張成分が、熱膨張性黒鉛および熱膨張性樹脂組成物の成形体粉砕品の少なくとも一方を含む、上記[1]~[7]のいずれかに記載の防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[9]前記熱膨張性耐火材料が、リン化合物を含む、上記[1]~[8]のいずれかに記載の防火性樹脂サッシを提供するものである。
 また本発明の一つは、
[10]前記熱膨張性耐火材料に含まれる無機充填材が、炭酸カルシウムを含む、上記[1]~[9]のいずれかに記載の防火性樹脂サッシを提供するものである。
 本発明に係る防火性樹脂サッシは前記断面形状が略コ字状または角パイプ状の金属製部材よりも軽量の前記補助安定板を使用していることから、従来の防火性樹脂サッシと比較して重量を軽減することができる。このため本発明に係る防火性樹脂サッシは重量が比較的小さく、取り扱い易い。
 本発明に係る防火性樹脂サッシは、長手方向に沿う複数の空洞を有する合成樹脂製枠部材を有し、前記空洞には熱膨張性耐火材料が注入されている。
 従来の防火性樹脂サッシは、断面形状が略コ字状または角パイプ状の金属製部材に、粘着性を有する平板状の熱膨張性耐火材を貼り合わせたものを前記合成樹脂製枠部材の空洞内部に挿入する必要があった。
 このため前記合成樹脂製枠部材の空洞内部の形状が複雑である場合には、平板状の熱膨張性耐火材を前記合成樹脂製枠部材の空洞内部に挿入することが困難となる問題があった。
 これに対し本発明に係る防火性樹脂サッシは前記合成樹脂製枠部材の空洞内部に熱膨張性耐火材料が注入されて形成されるため、簡単に本発明に係る防火性樹脂サッシを製造することができる。
 本発明に係る防火性樹脂サッシが火災等の熱にさらされた場合には前記合成樹脂製枠部材は溶融、焼失する場合があるが、前記合成樹脂製枠部材の空洞に注入された熱膨張性耐火材料が膨張残渣を形成する。
 この膨張残渣が前記補助安定板を支え、前記補助安定板に固定された前記外周枠体を支える。また前記合成樹脂製枠部材が溶融、焼失した場合であっても前記外周枠体に固定された前記板材は保持され、前記板材の周囲は前記熱膨張性耐火材料による膨張残渣により閉塞される。
 本発明に係る防火性樹脂サッシの一方の面が火災等の熱にさらされた場合でも火災等の炎、煙等が、本発明に係る防火性樹脂サッシの他方の面へ伝わることを遅延させることができるから、本発明に係る防火性樹脂サッシは防火性に優れる。
 また本発明に使用する熱膨張性耐火材料の反応硬化性樹脂成分として、ウレタン樹脂フォーム等の発泡材料を使用した場合には、前記合成樹脂製枠部材の空洞内部に注入された熱膨張性耐火材料の内部に気泡を含ませることができる。これにより断熱性に優れた防火性樹脂サッシを得ることができる。
図1は、本発明に係る第一の防火性樹脂サッシを例示するための模式正面図である。 図2は、熱膨張性耐火材料を注入する前の図1のA-A線に沿う断面図である。 図3は、開口枠体と支持枠体との関係を説明するための模式要部断面図である。 図4は、熱膨張性耐火材料を注入した後の図1のA-A線に沿う要部断面図である。 図5は、本発明に係る第二の耐火防火性樹脂サッシ2を例示するための模式正面図である。 図6は、図5のA-A線に沿う要部断面図である。 図7は、本発明の実施例1に係る防火性樹脂サッシ100の構造を説明するための模式断面図である。 図8は、本発明の実施例1に係る防火性樹脂サッシ100の構造を説明するための模式要部断面図である。 図9は、前記試験部材を使用した実施例1に係る防火性樹脂サッシの強度の測定方法を説明するための模式断面図である。 図10は、本発明の実施例2に係る防火性樹脂サッシ200の構造を説明するための模式要部断面図である。 図11は、本発明の実施例3に係る防火性樹脂サッシ300の構造を説明するための模式要部断面図である。 図12は、本発明の実施例4に係る防火性樹脂サッシ400の構造を説明するための模式要部断面図である。 図13は、本発明の実施例3に係る防火性樹脂サッシ500の構造を説明するための模式要部断面図である。 図14は、本発明の比較例1に係る防火性樹脂サッシ600の構造を説明するための模式要部断面図である。 図15は、本発明の比較例2に係る防火性樹脂サッシ700の構造を説明するための模式要部断面図である。 図16は、各実施例の防火樹脂サッシについての強度試験の結果を示すグラフである。
 本発明は防火性樹脂サッシに関するものである。
 本発明に係る防火性樹脂サッシは、例えば、一戸建住宅、集合住宅、高層住宅、高層ビル、商業施設、公共施設等の建築物、客船、輸送船、連絡船等の船舶等の構造物(以下、「住宅等の構造物」という。)の開口部に設置されるものが挙げられる。
 一例を示すとすれば、例えば、開閉窓、固定窓等のサッシ等の建築部材等の用途に使用されるが、これらに限定されるものではない。
 本発明に係る防火性樹脂サッシは、前記合成樹脂製枠部材の空洞に熱膨張性耐火材料が注入されてなるものであるが、本発明に係る第一の実施形態について、図面を参照しつつ説明する。
 図1は、本発明に係る第一の防火性樹脂サッシを例示するための模式正面図である。また図2は、熱膨張性耐火材料を注入する前の図1のA-A線に沿う要部断面図であり、図3は、開口枠体と支持枠体との関係を説明するための模式断面図である。図4は熱膨張性耐火材料を注入した後の図1のA-A線に沿う要部断面図である。
 前記耐火補強建築部材の一例として、図1~図4には固定サッシが例示されている。
 図1~4において、第一の防火性樹脂サッシ1は住宅等の構造物に形成された矩形の開口部に固定されるものであって、前記開口部に設置された開口枠体10と、その内部に板材20を備えている。前記板材20の外周に外周枠体30が設置されている。前記外周枠体30は、それぞれ前記板材20の外周端面21を支持する底壁部31と、前記板材20の両側の周縁部22,22を支持する側壁部32,32とを有する。
 前記外周枠体30の内部に前記板材20が挿入されて、前記外周枠体30が前記板材20を固定している。
 前記外周枠体30の外周に開口枠体10が設置されていて、前記外周枠体30および前記開口枠体10を備えた前記板材20が、住宅等の構造物に形成された矩形の開口部に隙間なく装着されている。
 前記開口枠体10は、合成樹脂製枠部材である左右の縦合成樹脂製枠部材11,11と上下の横合成樹脂製枠部材12,12とから形成されている。
 前記縦合成樹脂製枠部材11,11と前記横合成樹脂製枠部材12,12とはそれぞれ長手方向に複数の空洞11a,11a,12a,12a等を有する。
 図3は、図1に示される第一の防火性樹脂サッシ1を一点破線A-Aにより切断した断面を示した模式要部断面図である。
 各合成樹脂製枠部材11~12の空洞内部には補助安定板40が設置されている。前記開口枠体10の前記外周枠体30に対向する面13および前記外周枠体30の底壁部31を貫いて支持部材50が設置されている。前記支持部材50は前記補助安定板40を挿通していて、前記外周枠体30および前記補助安定板40を固定している。
 本発明に係る第一の防火性樹脂サッシ1では、前記支持部材50は螺子の形状を有していて、前記外周枠体30の底壁部31に設置された螺子孔および前記補助安定板40を貫いて設置された螺子孔に対して前記支持部材50をそれぞれ螺子止めすることができる。
 次に図4に示す通り、前記開口枠体10の複数の空洞11a,11a,12a,12a等に熱膨張性耐火材料を注入することにより、第一の実施形態に係る防火性樹脂サッシ1が得られる。
 本発明に使用する板材20としては、例えば、鉄製網入りガラスからなる窓ガラス等が挙げられる。前記板材20は耐火性のあるものであり、第一の防火性樹脂サッシ1の室外と室内とを仕切る仕切り面を構成している。
 なお本発明に使用する板材20は、透光性を有する窓ガラスに限定されず、金属板材やケイ酸カルシウム板のような遮光性を有するもの等であってもよい。
 前記開口枠体10、前記板材20、前記外周枠体30、前記支持部材50等に使用される素材としては、例えば、合成樹脂材、金属材、無機材、木材等が挙げられる。
 前記合成樹脂としては、例えば、ポリ塩化ビニル等の塩素含有樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂等が挙げられる。
 前記金属材としては、例えば、アルミニウム材、ステンレス材、鋼材、合金材等を挙げることができる。
 前記無機材としては、例えば、ガラス、石膏、セラミック、セメント、ケイ酸カルシウム、パーライト等が挙げられる。
 前記木材としては、天然の木材の他、木材片、木材シート等を樹脂により硬化させた成形木材等が挙げられる。
 前記素材は一種もしくは二種以上を使用することができる。
 前記開口枠体10は重量を軽減する観点から合成樹脂材を含むものであり、前記合成樹脂材はポリ塩化ビニル等の塩素含有樹脂を含むものであれば好ましい。
 また前記板材20、前記外周枠体30および前記支持部材50は防火性の観点から、金属材および無機材の少なくとも一つを含むものが好ましい。
 また前記補助安定板40に使用される素材としては、例えば、金属材、無機材、木材等が挙げられる。
 前記金属材等の具体例は、前記開口枠体10等で説明したものと同様である。
 前記補助安定板40に使用される素材は、金属材、木材等が好ましい。
 第一の実施形態の防火性樹脂サッシ1の構成は特に限定されるものではなく、本発明に使用する前記合成樹脂製枠部材11~12のそれぞれは硬質塩化ビニルで形成され、長手方向に沿って貫通する複数の空洞を有する。
 前記開口枠体10は防火性を向上させる観点から硬質塩化ビニル等の合成樹脂が用いられていて、前記合成樹脂を使用して押出成形や射出成形等により成形することができる。
 前記開口枠体10は長手方向と直交する横断面の形状が一つあるいは複数の空洞を有するものであれば、周知のいずれの形態であってもよい。
 まず開口枠体10を構成する前記縦合成樹脂製枠部材11,11から詳細に説明する。
 前記縦合成樹脂製枠部材11,11は硬質塩化ビニルを押出成形して得られた長尺材を切断して形成したものであり、長手方向に沿って貫通する空洞を有している。
 前記縦合成樹脂製枠部材11,11は、断面形状が2つの大きい矩形の空洞11a,11aと、この空洞を形成する内外の壁面の端部から開口側に延出する複数の小幅の空洞11cとを備えている。
 また、開口枠体10を構成する横合成樹脂製枠部材12,12も、図示していないが同様に複数個の長手方向に貫通する空洞が形成されている。
 前記空洞11a,11aの内部に前記支持部材50が達している。前記支持部材50,50は、前記空洞11a,11aの内部にある前記補助安定板40,40を固定することのできる長さを有する。図1~4では前記支持部材50、50は、前記補助安定板40,40を挿通しているが、前記支持部材50,50の端部が、それぞれ前記補助安定板40,40の内部にあってもよい。
 また前記補助安定板40,40の大きさについては、前記縦合成樹脂製枠部材11,11の長手方向に対する垂直断面を基準として、前記外周枠体の底壁部の幅に対する前記補助安定板の幅の割合が、60~120%の範囲であることが好ましい。
 前記補助安定板40,40の幅の割合が60%以上の場合は、比較的容易に前記開口枠体10の前記空洞11a,11aに前記補助安定板40,40を設置することができる。
 また前記補助安定板40,40の幅の割合が120%以下の場合は、第一の実施形態の防火性樹脂サッシ1が火災等の炎にさらされた場合に、前記板材20が前記開口枠体10から外れることを防止することができる。
 前記補助安定板40,40は、前記縦合成樹脂製枠部材11,11の長手方向に沿って長く挿入することのできる長いものであってもよいし、設置される前記支持部材50、50の位置に対応するそれぞれの場所に設置することのできる短いものであってもよい。
 前記縦合成樹脂製枠部材11,11の長手方向を基準とした前記補助安定板40,40の長さは、30~3000mmの範囲が好ましく、200~2500mmの範囲であればより好ましい。
 また前記補助安定板40,40は、前記板材20の外周端面21,21と略平行に設置されている。
 なお本発明において対比する二つの面が略平行とは、一方の面の垂線に対し、他方の面が80~100度以内の角度の範囲にあることをいう。
 前記補助安定板40,40を前記縦合成樹脂製枠部材11,11の前記空洞11a,11aの内部にそれぞれ設置する方法としては、例えば、次の方法が挙げられる。
 具体的には粘着テープ等を用いて二本の長尺棒に前記補助安定板40の一方の面の両端を貼着し、前記二本の長尺棒に貼着された補助安定板40を前記縦合成樹脂製枠部材11の前記空洞11a内部にまず挿入する。この操作により、希望する前記空洞11a内部の位置に補助安定板40を移動させることができる。
 前記空洞11a内部のどの位置に補助安定板40が存在するかは、前記長尺体の前記空洞11aの外部に出ている部分の長さを計測し、前記長尺体全体の長さと比較することにより確認することができる。
 次に前記縦合成樹脂製枠部材11を前記支持部材50により固定してから、前記二本の長尺棒を引き抜く。
 この方法により前記補助安定板40,40を前記縦合成樹脂製枠部材11,11の前記空洞11a,11aの内部にそれぞれ設置することができる。
 上記の方法により前記空洞11a,11aの内部面にそれぞれ前記補助安定板40,40を接触させて設置させることができる。
 前記空洞11a,11aの内部面に接触させずに前記補助安定板40,40を設置する際は、例えば四本の長尺棒を使用する。
 具体的には粘着テープ等を用いて四本の長尺棒に前記補助安定板40の一方の面の両端および他方の面の両端を貼着し、前記四本の長尺棒に貼着された補助安定板40を前記縦合成樹脂製枠部材11の前記空洞11a内部にまず挿入する。
 次に前記縦合成樹脂製枠部材11を前記支持部材50により固定してから、前記四本の長尺棒を引き抜く。
 この方法により前記補助安定板40,40を前記縦合成樹脂製枠部材11,11の前記空洞11a,11aの内部にそれぞれ設置することができる。
 前記四本の長尺棒のうち、前記補助安定板40と前記空洞11aとの間にある二本の長尺棒の厚みを変化させることにより、前記補助安定板40と前記空洞11aとの距離を調整することができる。
 前記開口枠体10を構成する前記縦合成樹脂製枠部材11,11の場合について説明したが、開口枠体10を構成する前記横合成樹脂製枠部材12,12の場合も同様である。
 前記支持部材50は、前記開口枠体10の外周に沿って間隔をおいて複数設置することができる。
 また第一の実施形態に例示される防火性樹脂サッシ1の場合は、従来の防火性樹脂サッシに使用されていた断面形状が略コ字状または角パイプ状の金属製部材よりも軽量の前記補助安定板40,40を使用することができるから、従来の防火性樹脂サッシと比較して重量を軽減することができる。
 第一の実施形態に例示される防火性樹脂サッシ1は、開口枠体10を構成する前記合成樹脂製枠部材11~12の空洞に熱膨張性耐火材料60が注入されている。
 具体的には、前記縦合成樹脂製枠部材11,11の大きい空洞11a,11aには、熱膨張性耐火材料60が注入された後に、前記空洞11a,11a内部で熱膨張性耐火材料60が流動性を失っている。
 なお、図示していないが、前記横合成樹脂製枠部材12,12にも長手方向に貫通する空洞内に、同様に熱膨張性耐火材料60が注入された後に、前記横合成樹脂製枠部材12,12の空洞の内部で熱膨張性耐火材料60が流動性を失っている。
 このように、開口枠体10の空洞には、熱膨張性耐火材料60が板材20の面に沿う方向に注入され、空洞の内壁面に接して流動性を失っている。
 これらの熱膨張性耐火材料60は耐火性を有する板材20を構成する窓ガラスの面に沿って平行な状態に配置され、窓ガラスと共に耐火面を形成している。このように形成された耐火面は、ガラス面と垂直な方向の開口枠体10の内部にあって窓ガラスに沿うほぼ全面を埋め尽くしている。
 本発明に使用する枠材の内部に空洞が複数ある場合には、前記補助安定板40が存在する空洞に加え、前記板材20と垂直方向に最も外側にある空洞内部に接して熱膨張性耐火材料を注入することが、第一の実施形態に係る防火性樹脂サッシ1の耐火性を高める観点から好ましい。
 室外側、あるいは室内側の正面、すなわち、窓ガラス面に沿う方向と直角な方向から第一の実施形態に係る防火性樹脂サッシ1を見ると、中央の窓ガラスである前記板材20の外周を前記縦合成樹脂製枠部材11,11および前記横合成樹脂製枠部材12,12の空洞の正面には熱膨張性耐火材料60が位置していて、全ての熱膨張性耐火材料60が窓ガラスである板材20の面に沿って注入されて耐火面が形成されている。
 前記熱膨張性耐火材料60を前記開口枠体10の空洞に注入する際には、例えば、前記開口枠体10の内部を減圧しながら前記開口枠体10の内部に熱膨張性耐火材料60を注入することができる。
 また前記開口枠体10の内部へピストンとシリンダー等を備えた加圧注入手段により前記熱膨張性耐火材料60を圧力を加えながら注入することもできる。
 なお熱膨張性耐火材料60の組成については後述する。
 第一の実施形態に使用される熱膨張性耐火材料60は、火災等の高温にさらされると体積膨張して膨張残渣を形成する材料であり、火災の際に前記開口枠体10を形成する前記合成樹脂製枠部材11~12が加熱されて溶融、焼失した部分を、前記熱膨張性耐火材料60の膨張残渣が埋めて火炎の貫通を防止する。
 また前記補助安定板40がある前記合成樹脂製枠部材11~12の空洞内部には、前記熱膨張性耐火材料60が注入されていて、前記補助安定板40は前記熱膨張性耐火材料60により固定されている。
 第一の実施形態に例示される防火補強建築部材1が火災等の炎にさらされた場合には前記開口枠体10を形成する前記合成樹脂製枠部材11~12が加熱されて溶融、焼失する。
 しかし前記補助安定板40は支持部材50に固定され、前記支持部材50は前記外周枠体30を固定している。そして前記外周枠体30は、前記板材20を固定している。このため前記板材20は前記補助安定板40と間接的に連結されている。
 一方、前記補助安定板40は前記熱膨張性耐火材料60の膨張残渣により固定されていて、前記開口枠体10を形成する前記合成樹脂製枠部材11~12が溶融、焼失した後でも間接的に前記板材20を支えることができる。
 前記補助安定板40が前記板材20を支えるため、第一の実施形態に例示される防火性樹脂サッシ1が火災等の炎にさらされた場合でも、住宅等の構造物に形成された矩形の開
口部から前記板材20が傾いて脱落することを防止することができる。
 次に本発明の第二の実施形態について説明する。
 図5は、本発明に係る第二の防火性樹脂サッシ2を例示するための模式正面図である。また図6は、図5のA-A線に沿う要部断面図である。
 前記第二の防火性樹脂サッシ2は、第一の実施形態に例示される第一の防火性樹脂サッシ1の変形例である。
 前記第二の防火性樹脂サッシ2は、前記第一の防火性樹脂サッシ1と同様の構造を持つ防火性樹脂サッシ1’を二枚組み合わせた水平方向に移動可能の引き違いの構造となっていて、住宅等の構造物に形成された矩形の開口部に固定される。
 第一の防火性樹脂サッシ1の場合は、前記開口枠体10が前記開口部に設置されていたが、第二の防火性樹脂サッシ2の場合は、固定開口枠体70が前記開口部に固定されている。そして前記固定開口枠体70の内部を二枚の防火樹脂サッシ1’が水平方向に移動できる。
 本発明においては複数の開口枠体を設置することができ、前記開口枠体の外部に開口枠体を追加して設置することができる。第二の実施形態の場合は、追加して設置される開口枠体が前記固定開口枠体70として図5および図6に示されている。
 前記固定開口枠体70はアルミニウムからなる金属製である。前記防火樹脂サッシ1’の構成は先の第一の実施形態に例示される防火性樹脂サッシ1と同様であるが、開口枠体10’の形状が前記固定開口枠体70の水平方向に移動できるように第一の実施形態に使用された前記開口枠体10と比較して改変されている点が異なる。それ以外は、第一の実施形態の場合と同様である。
 なお、図5および図6における参照符号の意味は、図1~4の場合と同様である。
 前記開口枠体10’は合成樹脂製枠部材である左右の縦合成樹脂製枠部材11,11と上下の横合成樹脂製枠部材12,12とから形成されている。各合成樹脂製枠部材11~12に囲まれた内部が開口部となっている。そして、2枚の板材20,20は前記の開口部に設置されるものであり構造的には略同一構成である。中央側の縦合成樹脂製枠部材11,11が前後に重なって、二枚の板材20,20の前後の隙間を閉塞できる構造となっている。
 前記固定開口枠体70は、縦横の枠材としての枠体71~74から構成されるアルミニウム金属を組み合わせて構成されている。
 前記固定開口枠体70の枠体71~74の内部には、前記枠体71~74の内部を長手方向に貫く空洞75~78が形成されていて、前記空洞75~78の内部にも前記熱膨張性耐火材料60が注入されて流動性を失っている。
 第二の実施形態に例示される防火性樹脂サッシ2が火災等の炎にさらされた場合、第一の実施形態に例示される防火性樹脂サッシ1の場合と同様、それぞれの前記開口枠体10’を形成する前記合成樹脂製枠部材11~12が溶融、焼失した後でも、第二の実施形態に例示される防火性樹脂サッシ2に使用される前記補助安定板40,40が、それぞれ二枚の板材20,20を支える。
 このため、二枚の前記板材20,20が、前記住宅等の構造物に形成された矩形の開口部から脱落することを防止することができる。このため、第二の実施形態に例示される防火性樹脂サッシ2も、第一の実施形態に例示される防火性樹脂サッシ1の場合と同様、防火性に優れる。
 また第二の実施形態に例示される防火性樹脂サッシ2も、従来の防火性樹脂サッシに使用されていた断面形状が略コ字状または角パイプ状の金属製部材よりも軽量の前記補助安定板40,40を使用していることから、従来の防火性樹脂サッシと比較して重量を軽減することができる。
 次に本発明に使用する熱膨張性耐火材料について説明する。
 前記熱膨張性耐火材料としては、例えば、具体的には反応硬化性樹脂成分、熱膨張成分、無機充填材等を含む樹脂組成物からなるもの等を挙げることができる。
 前記熱膨張性耐火材料の各成分のうち、まず前記反応硬化性樹脂成分について説明する。
 前記反応硬化性樹脂成分としては、例えば、時間の経過と共に前記反応硬化性樹脂成分に含まれる構成成分の反応が進むことにより粘度が増大し、当初は流動性があるが時間の経過と共に流動性を失うものであれば特に限定はない。
 前記反応硬化性樹脂成分としては、具体例を挙げるとするなら、例えば、ウレタン樹脂、イソシアヌレート樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂等が挙げられる。
 前記ウレタン樹脂としては、例えば、主剤としてのポリイソシアネート化合物、硬化剤としてのポリオール化合物、触媒等を含むものが挙げられる。
 前記ウレタン樹脂の主剤であるポリイソシアネート化合物としては、例えば、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が挙げられる。
 前記芳香族ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ナフタレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等が挙げられる。
 前記脂環族ポリイソシアネートとしては、例えば、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ジメチルジシシクロヘキシルメタンジイソシアネート等が挙げられる。
 前記脂肪族ポリイソシアネートとしては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
 前記ポリイソシアネート化合物は一種もしくは二種以上を使用することができる。
 前記ウレタン樹脂の主剤は、使い易いこと、入手し易いこと等の理由から、ジフェニルメタンジイソシアネート等であれば好ましい。
 前記ウレタン樹脂の硬化剤であるポリオール化合物としては、例えば、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステル系ポリオール、ポリマーポリオール等が挙げられる。
 前記芳香族ポリオールとしては、例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック、クレゾールノボラック等が挙げられる。
 前記脂環族ポリオールとしては、例えば、シクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロヘキシルメタンジオール、ジメチルジシシクロヘキシルメタンジオール等が挙げられる。
 前記脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール等が挙げられる。
 前記ポリエステル系ポリオールとしては、例えば、多塩基酸と多価アルコールとを脱水縮合して得られる重合体、ε-カプロラクトン、α-メチル-ε-カプロラクトン等のラクトンを開環重合して得られる重合体、ヒドロキシカルボン酸と上記多価アルコール等との縮合物が挙げられる。
 ここで前記多塩基酸としては、具体的には、例えば、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、コハク酸等が挙げられる。
 また前記多価アルコールとしては、具体的には、例えば、ビスフェノールA、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキサングリコール、ネオペンチルグリコール等が挙げられる。
 また前記ヒドロキシカルボン酸としては、具体的には、例えば、ひまし油、ひまし油とエチレングリコールの反応生成物等が挙げられる。
 前記ポリマーポリオールとしては、例えば、前記芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステル系ポリオール等に対し、アクリロニトリル、スチレン、メチルアクリレート、メタクリレート等のエチレン性不飽和化合物をグラフト重合させた重合体、ポリブタジエンポリオール、または、これらの水素添加物等が挙げられる
 前記ウレタン樹脂の主剤であるポリイソシアネート化合物と硬化剤であるポリオール化合物とを、ポリオール化合物中の活性水素基(OH)とポリイソシアネート化合物中の活性イソシアネート基(NCO)の割合(NCO/OH)が当量比で、1.2~15となる様に混合することが好ましい。より好ましくは1.2~12の範囲である。
 前記当量比が1.2以上ではウレタン樹脂の粘度が高くなりすぎることを防ぐことができ、15以下では良好な接着強度を保つことができる。
 前記ウレタン樹脂の触媒としては、例えば、トリエチルアミン、N-メチルモルホリンビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’-トリメチルアミノエチル-エタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N-メチル,N´-ジメチルアミノエチルピペラジン、イミダゾール環中の第2級アミン官能基をシアノエチル基で置換したイミダゾール化合物等のアミノ系触媒等が挙げられる。
 次にイソシアヌレート樹脂としては、例えば、先に説明したポリウレタン樹脂を用いて、ポリウレタン樹脂の主剤であるポリイソシアネート化合物に含まれるイソシアネート基を反応させて三量化させ、イソシアヌレート環の生成を促進したもの等を挙げることができる。
 イソシアヌレート環の生成を促進するためには、例えば、触媒として、トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアルキルアミノアルキル)ヘキサヒドロ-S-トリアジン等の芳香族化合物、酢酸カリウム、2-エチルヘキサン酸カリウム、オクチル酸カリウム等のカルボン酸アルカリ金属塩、カルボン酸の4級アンモニウム塩等を使用すればよい。
 イソシアヌレート樹脂の主剤と硬化剤については先のポリウレタン樹脂の場合と同様である。
 次に前記エポキシ樹脂としては例えば、主剤としてのエポキシ基を持つモノマーと硬化剤とを反応させて得られる樹脂等を挙げることができる。
 前記エポキシ基を持つモノマーとしては、例えば、2官能のグリシジルエーテル型として、ポリエチレングリコール型、ポリプロピレングリコール型、ネオペンチルグリコール型、1,6-ヘキサンジオール型、トリメチロールプロパン型、プロピレンオキサイド-ビスフェノールA、水添ビスフェノールA型、ビスフェノールA型、ビスフェノールF型等のモノマーが挙げられる。
 また、グリシジルエステル型として、ヘキサヒドロ無水フタル酸型、テトラヒドロ無水フタル酸型、ダイマー酸型、p-オキシ安息香酸型等のモノマーが挙げられる。
 更に多官能のグリシジルエーテル型として、フェノールノボラック型、オルトクレゾール型、DPPノボラック型、ジシクロペンタジエン、フェノール型等のモノマーが挙げられる。
 これらは、一種もしくは二種以上を使用することができる。
 また、前記硬化剤としては、例えば、重付加型硬化剤、触媒型硬化剤等が挙げられる。
 前記重付加型硬化剤としては、例えば、ポリアミン、酸無水物、ポリフェノール、ポリメルカプタン等が挙げられる。
 前記触媒型硬化剤としては、例えば三級アミン類、イミダゾール類、ルイス酸錯体等が挙げられる。
 これらエポキシ樹脂の硬化方法は特に限定されず、公知の方法により行うことができる。
 なお、前記樹脂成分の溶融粘度、柔軟性、粘着性等の調整のため、二種以上の樹脂成分を混合したものを使用することができる。
 次に前記フェノール樹脂としては、例えば、レゾール型フェノール樹脂組成物等が挙げられる。
 前記レゾール型フェノール樹脂組成物は、例えば、主剤としてのレゾール型フェノール樹脂、硬化剤等を含むものである。
 前記フェノール樹脂の主剤としては、例えば、フェノール、クレゾール、キシレノール、パラアルキルフェノール、パラフェニルフェノール、レゾルシン等のフェノール類およびその変性物と、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、アセトアルデヒド等のアルデヒド類とを、触媒量の水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリの存在下に反応させて得られるものがあげられるが、これに限定されるものではない。
 フェノール類等とアルデヒド類の混合割合は特に限定はないが、モル比で通常1.0:1.5~1.0:3.0の範囲である。前記混合割合は、1.0:1.8~1.0:2.5の範囲であれば好ましい。
 前記フェノール樹脂の硬化剤としては、例えば、硫酸、リン酸等の無機酸、ベンゼンスルホン酸、エチルベンゼンスルホン酸、パラトルエンスルホン酸、キシレンスルホン酸、ナフトールスルホン酸、フェノールスルホン酸等の有機酸が挙げられる。
 次に尿素樹脂としては、例えば、主剤としての尿素、硬化剤としてのホルムアルデヒド、触媒としての塩基性化合物、酸性化合物を含む組成物等が挙げられる。
 前記尿素とホルムアルデヒド等は重合反応により尿素樹脂を形成する。
 次に不飽和ポリエステル樹脂としては、主剤としての不飽和多塩基酸、硬化剤としてのポリオール化合物、触媒等を含む組成物等が挙げられる。
 前記不飽和ポリエステル樹脂の主剤としては、具体的には、例えば、無水マレイン酸、フマル酸等が挙げられる。
 前記不飽和ポリエステル樹脂の硬化剤としては、具体的には、例えば、先に説明したウレタン樹脂に使用するポリオール化合物等が挙げられる。
 前記不飽和ポリエステル樹脂は、必要に応じて無水フタル酸、イソフタル酸等の飽和多塩基酸を併用することもできる。
 さらに前記不飽和ポリエステル樹脂の主剤と重合するスチレン、ビニルトルエン、メチルメタクリレート等の架橋用ビニルモノマーを添加することができる。
 前記不飽和ポリエステル樹脂の触媒としては、具体的には、例えば、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシオクトエート、t-ブチルパーオキシイソプロピルカーボネート、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサノン等の有機過酸化物等が挙げられる。
 次にアルキド樹脂としては、例えば、主剤としての多塩基酸、硬化剤としてのポリオール化合物、油脂等を含む組成物等が挙げられる。
 前記アルキド樹脂の主剤としては、具体的には、例えば、無水マレイン酸、無水フタル酸、アジピン酸等が挙げられる。
 前記アルキド樹脂の硬化剤としては、具体的には、例えば、先に説明したウレタン樹脂に使用するポリオール化合物等が挙げられる。
 前記油脂としては、例えば、大豆油、ヤシ油、アマニ油等を挙げることができる。
 次にメラミン樹脂としては、例えば、主剤としてのメラミン、硬化剤としてのホルムアルデヒド等を含む組成物等が挙げられる。
 必要に応じて、前記組成物にベンゾグアナミン等を添加することもできる。
 次にジアリルフタレート樹脂としては、例えば、主剤としての無水フタル酸等の多塩基酸、硬化剤としてのアリルアルコール等、架橋剤等を含む組成物等が挙げられる。
 前記架橋剤としては、例えば、スチレン、酢酸ビニル等が挙げられる。
 次にシリコーン樹脂としては、例えば、主剤としてジアルキルシリルジクロリド、ジアルキルシリルジオール等、反応抑制剤としてトリアルキルシリルクロリド、トリアルキルシリルジオール等、硬化剤として塩化白金酸等の白金化合物を含む組成物等を挙げることができる。
 前記ジアルキルシリルジクロリドとしては、具体的には、例えば、ジメチルシリルジクロリド、ジエチルシリルジクロリド、ジプロピルシリルジクロリド等が挙げられる。
 前記ジアルキルシリルジオールとしては、具体的には、例えば、ジメチルシリルジオール、ジエチルシリルジオール、ジプロピルシリルジオール等が挙げられる。
 前記トリアルキルシリルクロリドとしては、具体的には、例えば、トリメチルシリルクロリド、トリエチルシリルクロリド、トリプロピルシリルクロリド等が挙げられる。
 前記トリアルキルシリルジオールとしては、具体的には、例えば、トリメチルシリルオール、トリエチルシリルオール、トリプロピルシリルオール等が挙げられる。
 前記反応抑制剤は、ポリシロキサン主鎖の末端に結合し、反応を制御してポリシロキサン主鎖の重合度を制御する役割を果たす。
 本発明に使用する反応硬化性樹脂成分は、火災等の熱にさらされた場合でも容易に溶融することを防止するために、熱硬化性樹脂を使用することが好ましい。
 本発明に使用する反応硬化性樹脂成分は、取り扱い性の面からエポキシ樹脂、ウレタン樹脂、フェノール樹脂等であることがより好ましい。
 本発明に使用する反応硬化性樹脂成分は、主剤と硬化剤等とを予め予備的に反応させて使用することもできる。
 本発明に使用する前記熱膨張性耐火材料含まれる前記反応硬化性樹脂成分の主剤、硬化剤、触媒等はそれぞれ一種もしくは二種以上を使用することができる。
 本発明に使用する前記熱膨張性耐火材料含まれる前記反応硬化性樹脂成分に対し、発泡剤、整泡剤を併用することにより、前記熱膨張耐火材料を発泡した状態で硬化させることができる。
 前記発泡剤としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン等の低沸点の炭化水素、ジクロロエタン、プロピルクロリド、イソプロピルクロリド、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリド等の塩素化脂肪族炭化水素化合物、トリクロルモノフルオロメタン、トリクロルトリフルオロエタン等のフッ素化合物、ジイソプロピルエーテル等のエーテル、あるいはこれらの化合物の混合物などの有機系物理発泡剤、窒素ガス、酸素ガス、アルゴンガス、二酸化炭素ガスなどの無機系物理発泡剤、水等が挙げられる。
 前記反応硬化性樹脂成分に対する発泡剤の使用量は、使用する前記反応硬化性樹脂成分により適宜設定されるが、一例を示すとすれば、例えば、前記反応硬化性樹脂成分100重量部に対して、通常0.1~20重量部の範囲であり、0.1~10重量部の範囲であれば好ましい。
 前記整泡剤としては、例えば、有機ケイ素系界面活性剤等が挙げられる。
 前記反応硬化性樹脂成分に対する整泡剤の使用量は、使用する前記反応硬化性樹脂成分により適宜設定されるが、一例を示すとすれば、例えば、前記樹脂成分100重量部に対して、0.01~5重量部の範囲であれば好ましい。
 前記発泡剤、整泡剤はそれぞれ一種もしくは二種以上を使用することができる。
 本発明に使用する前記反応硬化性樹脂成分は、前記熱膨張耐火材料を発泡した状態で硬化させるため、発泡する機能を有することが好ましく、具体的には、ウレタン樹脂フォーム、イソシアヌレート樹脂フォーム、エポキシ樹脂フォーム、フェノール樹脂フォーム、尿素樹脂フォーム、不飽和ポリエステル樹脂フォーム、アルキド樹脂フォーム、メラミン樹脂フォーム、ジアリルフタレート樹脂フォーム、シリコーン樹脂フォーム等の一種もしくは二種以上を使用することが好ましい。
 前記熱膨張耐火材料を発泡した状態で硬化させることにより、硬化した前記熱膨張耐火材料に気泡の断熱効果を付与することができ、防火性樹脂サッシの断熱性を高めることができる。
 次に前記熱膨張耐火材料の各成分のうち、熱膨張成分について説明する。
 前記熱膨張成分は加熱時に膨張するものであるが、かかる熱膨張成分として具体例を挙げるとすれは、例えば、バーミキュライト、カオリン、マイカ、熱膨張性黒鉛等の無機膨張成分、熱膨張性樹脂組成物の成形体粉砕品等を挙げることができる。
 前記熱膨張性黒鉛は、従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理してグラファイト層間化合物を生成させたものであり、炭素の層状構造を維持したままの結晶化合物の一種である。
 上記のように酸処理して得られた熱膨張性黒鉛は、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和したものを使用するのが好ましい。
 前記脂肪族低級アミンとしては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、プロピルアミン、ブチルアミン等が挙げられる。
 前記アルカリ金属化合物および前記アルカリ土類金属化合物としては、例えば、カリウム、ナトリウム、カルシウム、バリウム、マグネシウム等の水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等が挙げられる。
 前記熱膨張性黒鉛の粒度は、20~200メッシュの範囲のものが好ましい。
 粒度が20メッシュ以上であると、分散性が向上するため樹脂成分等との混練が容易になる。また、粒度が200メッシュ以下であると、黒鉛の膨張度が大きいため十分な耐火断熱層が得られ易くなる。
 上記中和された熱膨張性黒鉛の市販品としては、例えば、UCAR CARBON社製の「GRAFGUARD#160」、「GRAFGUARD#220」、東ソー社製の「GREP-EG」等が挙げられる。
 前記熱膨張性樹脂組成物の成形体粉砕品としては、例えば、市販の熱膨張性耐火シート等を粉砕したもの等を挙げることができる。
 かかる成形体粉砕品に使用する熱膨張性耐火シート等の具体例としては、例えば、積水化学工業社製のフィブロック(登録商標。エポキシ樹脂、ゴム樹脂等の樹脂成分、熱膨張性黒鉛等の熱膨張成分、リン化合物、無機充填材等を含む熱膨張性樹脂組成物の成形体)、住友スリーエム社のファイアバリア(クロロプレンゴムとバーキュライトを含有する樹脂組成物からなるシート材料、膨張率:3倍、熱伝導率:0.20kcal/m・h・℃)、三井金属塗料化学社のメジヒカット(ポリウレタン樹脂と熱膨張性黒鉛を含有する樹脂組成物からなるシート材料、膨張率:4倍、熱伝導率:0.21kcal/m・h・℃)等が挙げられる。
 市販の熱膨張性耐火シート等を裁断機等により細かく切断する等の方法、市販の熱膨張性耐火シート等を粉砕ロールに通して粉砕する等の方法により、熱膨張性樹脂組成物の成形体粉砕品を得ることができる。
 前記熱膨張性樹脂組成物の成形体粉砕品は、5~20メッシュの範囲のものが好ましい。
 前記熱膨張性樹脂組成物の成形体粉砕品の粒度が5メッシュ以上であると、分散性が向上するため樹脂成分等との混練が容易になる。また、粒度が20メッシュ以下であると、黒鉛の膨張度が大きいため十分な耐火断熱層が得られ易くなる。
 次に先の熱膨張性耐火材料の各成分のうち、前記無機充填材について説明する。
 前記無機充填材としては、特に限定されないが、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム等のカリウム塩、バーミキュライト、カオリン、マイカ、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セビオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、無機系リン化合物、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、ジルコニア繊維等が挙げられる。
 これらは、一種もしくは二種以上を使用することができる。
 前記無機充填材は骨材的役割を果たして、加熱後に生成する膨張断熱層強度の向上や熱容量の増大に寄与する。
 このため、炭酸カルシウム、炭酸亜鉛で代表される金属炭酸塩、骨材的役割の他に加熱時に吸熱効果も付与する水酸化アルミニウム、水酸化マグネシウムで代表される含水無機物が好ましく、アルカリ金属、アルカリ土類金属、及び周期律表IIbの金属炭酸塩又はこれらと前記含水無機物との混合物が好ましい。
 また、本発明に使用する熱膨張性耐火材料に対し、難燃剤としてリン化合物を添加することもできる。
 前記リン化合物は、難燃性を向上させるため、または窒素化合物、アルコール類等と組み合わせて熱膨張性機能を発現するために用いられる。
 前記リン化合物としては、特に限定されず、例えば、赤リン、
 トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステル、
 リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩;ポリリン酸アンモニウム類、
 下記化学式1で表される化合物等が挙げられる。
 これらのリン化合物は、一種もしくは二種以上を使用することができる。
 これらのうち、耐火性の観点から、赤リン、下記の化学式で表される化合物、及び、ポリリン酸アンモニウム類が好ましく、性能、安全性、費用等の点においてポリリン酸アンモニウム類がより好ましい。
Figure JPOXMLDOC01-appb-C000001
上記化学式中、R及びRは、水素、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は、炭素数6~16のアリール基を表す。
 Rは、水酸基、炭素数1~16の直鎖状若しくは分岐状のアルキル基、炭素数1~16の直鎖状若しくは分岐状のアルコキシル基、炭素数6~16のアリール基、又は、炭素数6~16のアリールオキシ基を表す。
 前記化学式で表される化合物としては、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。
 中でも、t-ブチルホスホン酸は、高価ではあるが、高難燃性の点において好ましい。
 ポリリン酸アンモニウム類としては、特に限定されず、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等が挙げられるが、難燃性、安全性、コスト、取扱性等の点からポリリン酸アンモニウムが好適に用いられる。
 市販品としては、例えば、クラリアント社製の「商品名:EXOLIT AP422」
及び「商品名:EXOLIT AP462」等が挙げられる。
 前記リン化合物は、炭酸カルシウム、炭酸亜鉛等の金属炭酸塩と反応して、金属炭酸塩の膨張を促すと考えられ、特に、リン化合物として、ポリリン酸アンモニウムを使用した場合に、高い膨張効果が得られる。
 また、有効な骨材として働き、燃焼後に形状保持性の高い残渣を形成する。
 前記窒素化合物としては、特に限定はないが、メラミンを含む化合物等であれば好ましい。また前記アルコール類としては、特に限定はないが、ペンタエリスリトール等の多価アルコール等であれば好ましい。
 本発明に使用する無機充填材が粒状の場合には、その粒径としては、0.5~200μmの範囲のものが好ましく、より好ましくは、1~50μmの範囲のものである。
 無機充填材の添加量が少ないときは、分散性が性能を大きく左右するため、粒径の小さいものが好ましいが、粒径0.5μm以上では二次凝集を防ぐことができ、分散性が良好となる。
 また、無機充填材の添加量が多いときは、高充填が進むにつれて、樹脂組成物の粘度が高くなり成形性が低下するが、粒径を大きくすることによって樹脂組成物の粘度を低下させることができる点から、上記範囲の中でも粒径の大きいものが好ましい。
 なお、粒径が200μm以下の場合には、成形体の表面性、樹脂組成物の力学的物性が低下することを抑制することができる。
 前記無機充填材の中でも、特に骨材的役割を果たす炭酸カルシウム、炭酸亜鉛等の金属炭酸塩;骨材的役割の他に加熱時に吸熱効果を付与する水酸化アルミニウム、水酸化マグネシウム等の含水無機物が好ましい。
 前記含水無機物及び金属炭酸塩を併用することは、燃焼残渣の強度向上や熱容量増大に大きく寄与すると考えられる。
 前記無機充填材の中で、特に水酸化アルミニウム、水酸化マグネシウム等の含水無機物は、加熱時の脱水反応によって生成した水のために吸熱が起こり、温度上昇が低減されて高い耐熱性が得られる点、及び、燃焼残渣として酸化物が残存し、これが骨材となって働くことで燃焼残渣の強度が向上する点で好ましい。
 また、水酸化マグネシウムと水酸化アルミニウムは、脱水効果を発揮する温度領域が異なるため、併用すると脱水効果を発揮する温度領域が広くなり、より効果的な温度上昇抑制効果が得られることから、併用することが好ましい。
 前記含水無機物の粒径は、小さくなると嵩が大きくなって高充填化が困難となるので、脱水効果を高めるために高充填するには粒径の大きなものが好ましい。
 具体的には、粒径が18μmでは、1.5μmの粒径に比べて充填限界量が約1.5倍程度向上することが知られている。
 さらに、粒径の大きいものと小さいものとを組み合わせることによって、より高充填化が可能となる。
 前記含水無機物の市販品としては、例えば、水酸化アルミニウムとして、粒径1μmの「商品名:ハイジライトH-42M」(昭和電工社製)、粒径18μmの「商品名:ハイジライトH-31」(昭和電工社製)等が挙げられる。
 前記炭酸カルシウムの市販品としては、例えば、粒径1.8μmの「商品名:ホワイトンSB赤」(白石カルシウム社製)、粒径8μmの「商品名:BF300」(備北粉化社製)等が挙げられる。
 冒頭に説明したとおり、本発明に使用する熱膨張性耐火材料としては、上記に説明した反応硬化性樹脂樹脂成分、熱膨張成分、無機充填材等を含む樹脂組成物、さらに上述のリン化合物を含むもの等を挙げることができるが、次にこれらの配合について説明する。
 前記熱膨張性耐火材料は、反応硬化性樹脂成分100重量部に対し、前記熱膨張成分を10~150重量部および前記無機充填材を50~300重量部の範囲で含むものが好ましい。
 また、前記熱膨張成分および前記無機充填材の合計は、200~600重量部の範囲が好ましい。
 かかる熱膨張性耐火材料は火災等の熱によって膨張し熱膨張残渣を形成する。この配合によれば、前記熱膨張性耐材料は火災等の熱によって膨張し、必要な体積膨張率を得ることができ、膨張後は所定の断熱性能を有すると共に所定の強度を有する熱膨張残渣を形成することもでき、安定した耐火性能を達成することができる。
 前記熱膨張成分の量が10重量部以上であると、必要な膨張倍率が得られることから、十分な耐火、防火性能が得らる。
 一方、前記熱膨張成分の量が150重量部以下であると、前記熱膨張性耐火材料の25℃における流動性を確保することができる。
 また前記無機充填材の量が50重量部以上であると、燃焼後の熱膨張残渣の体積減少が少なく、耐火断熱のための熱膨張残渣が得られる。
 さらに可燃物の比率が増加するため、難燃性が低下することがある。
 一方、無機充填材の量が300重量部以下であると、前記熱膨張性耐火材料の25℃における流動性を確保することができる。
 前記熱膨張性耐火材料における熱膨張成分および無機充填材の合計量は、60重量部以上では燃焼後の熱膨張残渣量が不足せず十分な耐火性能が得られやすく、450重量部以下では機械的物性の低下が小さく、実際の使用に適する。
 さらに本発明に使用する前記熱膨張性耐火材料は、それぞれ本発明の目的を損なわない範囲で、必要に応じて、フタル酸エステル、アジピン酸エステル、リン酸エステル等の可塑剤、フェノール系、アミン系、イオウ系等の酸化防止剤の他、熱安定剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂等の添加剤、ポリブテン、石油樹脂等の粘着付与剤を含むことができる。
 本発明に使用する熱膨張性耐火材料の25℃における粘度は、前記開口枠体の空洞に注入される前の値を基準として、1000~100000mPa・sの範囲である。
 前記粘度が1000mPa・s以上であれば、前記開口枠体の空洞の狭い隙間でも前記熱膨張性耐火材料を容易に充填することができる。また前記開口枠体の空洞に前記熱膨張性耐火材料を注入するための圧力、注入機器の押圧等が必要以上に高くなることがなく、容易に注入を行うことができる。
 また前記粘度が100000mPa・s以下であれば、前記開口枠体の空洞に前記熱膨張性耐火材料を注入する際に空気を巻き込みにくく所望の充填量を注入することが容易となる。また注入の際に熱膨張性耐火材料の各成分が分離しにくく、不均一となることを防止することができるため、前記開口枠体の空洞で前記熱膨張性耐火材料の組成を均一に保つことができ、所望の耐火性能を発揮することができる。
 前記粘度は2000から60000 mPa・sの範囲であれば好ましく、10000~40000 mPa・sの範囲であればより好ましい。
 本発明に使用する熱膨張性耐火材料は反応して硬化するため、その粘度は時間の経過と共に変化する。
 そこで本発明においては使用する熱膨張性耐火材料を二以上に分割し、それぞれの重量比に応じた粘度を加算した値を熱膨張性耐火材料の粘度とした。
 例えば、前記熱膨張性耐火材料を二つに分割した一方の粘度が10000mPa・sであり、分割された他方の粘度が40000mPa・sであり、それぞれの配合重量比が60:40の場合は、(10000×0.6+40000×0.4)=22000mPa・sとなる。
 この場合、二つに分割された熱膨張性耐火材料のそれぞれの成分は粘度測定に支障がないように25℃で安定に保存することができ、二つに分割された熱膨張性耐火材料のそれぞれの成分を混合した後に硬化反応が始まるようにそれぞれの成分を分割すればよい。
 使用する熱膨張性耐火材料を三以上に分割した場合も同様である。
 前記熱膨張性耐火材料の粘度の調整は、本発明に使用する熱膨張性耐火材料の反応硬化性樹脂成分の種類等を選択することにより調整することができる。液状の反応硬化性樹脂成分のうち、25℃における粘度が低いものを選択することにより25℃における熱膨張性耐火材料の粘度を小さくすることができる。また逆に液状の反応硬化性樹脂成分のうち、25℃における粘度が高いものを選択することにより25℃における熱膨張性耐火材料の粘度を大きくすることができる。
 また前記熱膨張性耐火材料の粘度の調整は、前記熱膨張性耐火材料に含まれる熱膨張成分、無機充填材の重量割合を変動させることによっても行うことができる。
 例えば、前記熱膨張性耐火材料に含まれる熱膨張成分、無機充填材等の重量割合を減少させると、25℃における熱膨張性耐火材料の粘度を小さくすることができる。加えて、25℃の温度で液状の無機充填材を適宜選択することにより、粘度を小さくすることもできる。
 また逆に前記熱膨張性耐火材料に含まれる熱膨張成分、無機充填材等の重量割合を増加させると、25℃における熱膨張性耐火材料の粘度を大きくすることができる。
 次に前記熱膨張性耐火材料の製造方法について説明する。
 前記熱膨張性耐火材料の製造方法に特に限定はないが、例えば、前記熱膨張性耐火材料を有機溶剤に懸濁させたり、加温して溶融させたりして塗料状とする方法、溶剤に分散してスラリーを調製する等の方法、また前記熱膨張性耐火材料に含まれる反応硬化性樹脂成分に25℃の温度において固体である成分が含まれる場合には、前記熱膨張性耐火材料を加熱下に溶融させる等の方法により前記樹脂組成物を得ることができる。
 前記熱膨張性耐火材料は、前記熱膨張性耐火材料の各成分を単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、混練ロール、ライカイ機、遊星式撹拌機等公知の装置を用いて混練することにより得ることができる。
 また、イソシアネート基、エポキシ基等の反応性官能基をもつ主剤と硬化剤とをそれぞれ別々に充填材等と共に混練しておき、注入直前にスタティックミキサー、ダイナミックミキサー等で混練して得ることもできる。
 さらに触媒を除く前記熱膨張性耐火材料の成分と、触媒とを注入直前に同様に混練して得ることもできる。
 以上説明した方法により、本発明に使用する前記熱膨張性耐火材料を得ることができる。
 以上の様に得られた前記反応硬化型熱膨張性樹脂組成物は25℃の温度において流動性を有するため、開口枠体の内部に注入することができる。
 ここで流動性を有する、とは前記熱膨張性耐火材料を静置したときに一定形状を有しない場合をいい、流動性を有しない、とは前記熱膨張性耐火材料を静置したときに一定形状を有する場合をいう。
 前記熱膨張性耐火樹脂部材は、火災時などの高温にさらされた際にその膨張層により断熱し、かつその膨張層の強度があるものであれば特に限定されないが、50kW/mの加熱条件下で30分間加熱した後の体積膨張率が1.1~6倍のものであれば好ましい。
 前記体積膨張率が1.1倍を下回ると、膨張体積が前記樹脂成分の焼失部分を十分に埋めきれず防火性能が低下することがある。また6倍を超えると、膨張層の強度が下がり、火炎の貫通を防止する効果が低下することがある。より好ましくは、体積膨張率が1.2~5倍の範囲であり、さらに好ましくは1.3~4倍の範囲である。
 前記膨張層が自立するためには、前記膨張層は強度の大きいことが必要であり、その強度としては、圧縮試験器にて0.25cmの圧子を用いて、前記膨張層のサンプルを0.1m/sの圧縮速度で測定した場合の破断点応力が0.05kgf/cm以上であれば好ましい。破断点応力が0.05kgf/cmを下回ると、断熱膨張層が自立できなくなり防火性能が低下することがある。より好ましくは、0.1kgf/cm以上である。
 次に本発明について図面に基づき実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 実施例1では防火性樹脂サッシ100を作製して耐火試験を実施した。この試験およびその結果について説明する。
 図7および図8は、それぞれ本発明の実施例1に係る防火性樹脂サッシ100の構造を説明するための模式断面図および模式要部断面図である。実施例1に係る防火性樹脂サッシ100の構造は、先に説明した第一の防火性樹脂サッシ1の場合と同様である。
 図7に示される通り、実施例1に係る防火性樹脂サッシ100は厚さが50mmのケイ酸カルシウム板101に形成された矩形の開口部に固定されていて、前記開口部に設置された開口枠体110と、その内部に厚さが25mmのケイ酸カルシウム板からなる耐火性を有する板材120を備えている。
 また鋼製の四角筒形状のスタッド102が前記防火性樹脂サッシ100およびケイ酸カルシウム板101を支えている。
 前記ケイ酸カルシウム板101および前記板材120の加熱面側には、厚さが6mmのセラミックブランケットからなる無機繊維シート103が設置されている。
 また前記板材120の外周には外周枠体130が設置されている。前記外周枠体130は、それぞれ前記板材120の外周端面121を支持する底壁部131と、前記板材120の両側の周縁部122,122を支持する側壁部132,132とを有する。
 前記外周枠体130の内部に前記板材120が挿入されて、前記外周枠体130が前記板材120を固定している。
 前記外周枠体130の外周に開口枠体110が設置されていて、前記外周枠体130および前記開口枠体110を備えた前記板材120が、前記ケイ酸カルシウム板101に形成された矩形の開口部に隙間なく装着されている。
 なお図示していないが、前記開口枠体110は先の防火性樹脂サッシ1の場合と同様に、合成樹脂製枠部材である左右の縦合成樹脂製枠部材111,111と上下の横合成樹脂製枠部材112,112とから形成されている。
 前記縦合成樹脂製枠部材111,111と前記横合成樹脂製枠部材112,112とはそれぞれ長手方向に複数の空洞111a,111a,112a,112a等を有する。
 各合成樹脂製枠部材111~112の空洞内部には補助安定板140が設置されている。前記開口枠体110の前記外周枠体130に対向する面113および前記外周枠体130の底壁部131を貫いて支持部材150が設置されていて、前記外周枠体130および前記補助安定板140が前記支持部材150に固定されている。
 また前記補助安定板140は、前記板材120の外周端面121に平行に設置されている。
 実施例1に使用される前記補助安定板140は、各合成樹脂製枠部材111~112の長手方向を基準とした長さが100mm、各合成樹脂製枠部材111~112の長手方向の垂直断面を基準とした幅が、35mm、同垂直断面を基準とした厚みが、1.2mmの鋼板である。
 実施例1に使用される前記支持部材150はドリルタッピングビスであり、その長さは25mmである。
 次に表1に示した配合に従い、熱膨張性耐火材料60をA成分とB成分とに分けて、それぞれの成分を遊星式攪拌機を用いて攪拌した。
 具体的には前記熱膨張性耐火材料60としてポリウレタン樹脂を使用した。A成分の樹脂成分としてポリウレタン樹脂の硬化剤としてポリエーテルポリオールを用い、B成分の樹脂成分としてポリウレタン樹脂の主剤としてポリイソシアネート化合物を用いた。
 前記ウレタン樹脂の主剤であるポリイソシアネート化合物と硬化剤であるポリエーテルポリオールとを、ポリオール化合物中の活性水素基(OH)とポリイソシアネート化合物中の活性イソシアネート基(NCO)の割合(NCO/OH)が当量比で、1.64:1となる様に調整した。
 次にA成分とB成分との粘度を測定した。粘度測定にはB型回転式粘度計(ビスコテック社製)を用いて25℃における粘度を測定した。測定の際のB型回転式粘度計の回転数は10rpmとし、R5のスピンドルを使用した。
 得られたA成分とB成分とのそれぞれの粘度を、A成分とB成分との重量比の割合で加算して全体粘度を得た。この値を表1に示す。
 次に図7および図8に示される様に、長手方向に沿って内部に空洞が形成されている硬質塩化ビニルからなる各合成樹脂製枠部材111~112の空洞内部に前記A成分とB成分とを上記の混合比を維持して注入した。
 注入された熱膨張性耐火材料60は、空洞の内部で発泡しながら硬化して流動性を失い、ウレタン樹脂フォームを形成した。
 次に前記防火性樹脂サッシ100に対してISO834の条件に従い、耐火試験を実施した。
 この耐火試験の結果、加熱面と反対側の面から20分間以上炎の漏出が認められなかった場合を○、20分間未満で炎の漏出が認められた場合を×とした。この結果を表1に合わせて記載する。
 次に実施例1に係る防火性樹脂サッシ100が火災等の炎にさらされた場合の、前記板材120に対する垂直方向の強度試験を実施した。
 実施例1に使用した前記開口枠体110を切断して長さ100mmの試験部材104を作成した。
 図9は、前記試験部材104を使用した実施例1に係る防火性樹脂サッシ100の強度の測定方法を説明するための模式断面図である。
 前記試験部材104は、前記開口枠体110の空洞内部に前記熱膨張性耐火材料60が充填され、前記外周枠体130および前記補助安定板140が前記支持部材150に固定されている。
 先の耐火試験と全く同様の条件にて、前記試験部材104のA側を20分間加熱した。
 得られた加熱後の試験部材104を測定用テーブル105に載せ、台座106により固定し、前記測定用テーブル105および前記台座106を、固定具107により固定した。
 次にテンシロン万能試験機(オリエンテック社製)を用いて、速度10mm/分、加重スケール2000N、測定温度20℃の条件下、前記外周枠体130の端部から10mmを加圧具107により圧縮して強度検査を行った。
 この強度検査により、実施例1に係る防火性樹脂サッシ100の前記板材120に対する垂直方向の強度を調べることができる。
 得られた結果を図16に示す。実施例1の場合は400N近くの加重に耐えることができた。
 上記の結果から、実施例1に係る防火性樹脂サッシ100が火災等の炎などにさらされた場合でも、前記防火性樹脂サッシ100から容易には前記板材120が脱落しないことが分かった。
 この耐火試験により、実施例1に係る防火性樹脂サッシ100は防火性に優れることが実証された。
 実施例2では防火性樹脂サッシ200を作製して耐火試験を実施した。この試験およびその結果について説明する。
 図10は本発明の実施例2に係る防火性樹脂サッシ200の構造を説明するための模式要部断面図である。
 実施例1の場合は、前記補助安定板140は、前記空洞111a,111a,112a,112aの内部の前記板材120側の面に接して設置されていた。
 これに対し、実施例2の場合は前記補助安定板140が、前記空洞111a,111a,112a,112aの内部の前記ケイ酸カルシウム板101側の面に接して設置されていること、前記支持部材151が前記空洞111a,111a,112a,112aの内部を貫通している点が異なる。
 また前記支持部材151は長さ50mmのドリルタッピングビスである。
 実施例2の場合について実施例1の場合と全く同様に耐火試験と強度試験を実施した。
 結果を表1と図16に示す。
 上記の結果から、実施例2に係る防火性樹脂サッシ200が火災等の炎などにさらされた場合でも、前記防火性樹脂サッシ200から容易には前記板材120が脱落しないことが分かった。
 この耐火試験により、実施例2に係る防火性樹脂サッシ200は防火性に優れることが実証された。
 実施例3では防火性樹脂サッシ300を作製して耐火試験を実施した。この試験およびその結果について説明する。
 図11は本発明の実施例3に係る防火性樹脂サッシ300の構造を説明するための模式要部断面図である。
 実施例1の場合は、長さ25mmのドリルタッピングビスが前記支持部材150として使用されていた。
 これに対し、実施例3の場合は、前記ドリルタッピングビスに代えて、リベットが支持部材152として使用されている。
 それ以外は実施例1の場合と同様である。
 実施例3の場合について実施例1の場合と全く同様に耐火試験と強度試験を実施した。
 結果を表1と図16に示す。
 上記の結果から、実施例3に係る防火性樹脂サッシ300が火災等の炎などにさらされた場合でも、前記防火性樹脂サッシ300から容易には前記板材120が脱落しないことが分かった。
 この耐火試験により、実施例3に係る防火性樹脂サッシ200は防火性に優れることが実証された。
 実施例4では防火性樹脂サッシ400を作製して耐火試験を実施した。この試験およびその結果について説明する。
 図12は本発明の実施例4に係る防火性樹脂サッシ400の構造を説明するための模式要部断面図である。
 実施例1の場合は、前記補助安定板140として鋼板が使用されていた。これに対し実施例4の場合は前記補助安定板143として各合成樹脂製枠部材111~112の長手方向を基準とした長さが100mm、各合成樹脂製枠部材111~112の長手方向の垂直断面を基準とした幅が、35mm、同垂直断面を基準とした厚みが、9mmの構造用合板が使用されている。
 また実施例1の場合は、前記支持部材150としてドリルタッピングビスが使用されていた。これに対し実施例4の場合は前記支持部材153として木材用螺子が使用されている点が異なる。
 それ以外は実施例1の場合と同様である。
 実施例4の場合について実施例1の場合と全く同様に耐火試験と強度試験を実施した。
 結果を表1と図16に示す。
 上記の結果から、実施例4に係る防火性樹脂サッシ400が火災等の炎などにさらされた場合でも、前記防火性樹脂サッシ400から容易には前記板材130が脱落しないことが分かった。
 この耐火試験により、実施例4に係る防火性樹脂サッシ400は防火性に優れることが実証された。
 実施例5では防火性樹脂サッシ500を作製して耐火試験を実施した。この試験およびその結果について説明する。
 図13は本発明の実施例3に係る防火性樹脂サッシ500の構造を説明するための模式要部断面図である。
 実施例1の場合は、前記補助安定板140として鋼板が使用されていた。これに対し実施例5の場合は前記補助安定板144として各合成樹脂製枠部材111~112の長手方向を基準とした長さが100mm、各合成樹脂製枠部材111~112の長手方向の垂直断面を基準とした幅が、35mm、同垂直断面を基準とした厚みが、9mmの構造用合板が使用されている。
 また実施例1の場合は、前記支持部材150としてドリルタッピングビスが使用されていた。これに対し実施例5の場合は、前記ドリルタッピングビスに代えて、リベットが支持部材154として使用されている。
 それ以外は実施例1の場合と同様である。
 実施例5の場合について実施例1の場合と全く同様に耐火試験と強度試験を実施した。
 結果を表1と図16に示す。
 上記の結果から、実施例5に係る防火性樹脂サッシ500が火災等の炎などにさらされた場合でも、前記防火性樹脂サッシ500から容易には前記板材130が脱落しないことが分かった。
 この耐火試験により、実施例4に係る防火性樹脂サッシ500は防火性に優れることが実証された。
[比較例1]
  比較例1では防火性樹脂サッシ600を作製して耐火試験を実施した。この試験およびその結果について説明する。
 図14は本発明の比較例1に係る防火性樹脂サッシ600の構造を説明するための模式要部断面図である。
 実施例1の場合は、前記補助安定板140として鋼板が使用されていた。これに対し比較例の場合では、前記補助安定板140を使用しなかった点が異なる。
 またケイ酸カルシウム板からなる耐火性を有する板材120に代えて窓用ガラスからなる板材220を使用し、前記セラミックブランケットからなる無機繊維シート103を使用しなかった他は、実施例1の場合と同様に耐火試験を実施した。
 耐火試験の結果、加熱側に前記板材121が大きく湾曲し、前記板材121の外周端部から炎の漏出が認められた。
[比較例2]
  比較例1では防火性樹脂サッシ700を作製して耐火試験を実施した。この試験およびその結果について説明する。
 図15は本発明の比較例2に係る防火性樹脂サッシ700の構造を説明するための模式要部断面図である。
 実施例1の場合は、前記補助安定板140として鋼板が使用されていた。これに対し比較例の場合では、前記補助安定板140を使用しなかった点が異なる。それ以外は、実施例1の場合と同様である。
 比較例2の場合について実施例1の場合と全く同様に強度試験を実施した。
 結果を図16に示す。
 上記の結果から、比較例2に係る防火性樹脂サッシ700が火災等の炎などにさらされた場合、比較例2に係る防火性樹脂サッシ700の前記板材120に対する垂直方向の強度は低いことが判明した。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る防火性樹脂サッシは、防火性に優れ取扱いやすいことから、建築、構造物の防火用途に広く応用することができる。
 1,1’    第一の防火性樹脂サッシ
 2       第二の防火性樹脂サッシ
 10,110  開口枠体
 11,111   縦合成樹脂製枠部材
 11a,12a,111a,112a  空洞
 12,112  横合成樹脂製枠部材
 13,113  開口枠体の面
 20,120  板材
 21,121  板材の外周端面
 23、24   横框体
 22      板材の周縁部
 30,130  外周枠体
 31,131  外周枠体の底壁部
 32,132  外周枠体の側壁部
 40,140,143,144  補助安定板
 50,150,151,152,153,154 支持部材
 60      熱膨張性耐火材料
 70      固定開口枠体
 71,72,73,74  枠体
 100,200,300,400,500,600,700  防火性樹脂サッシ
 101     ケイ酸カルシウム板
 102     スタッド
 103     無機繊維シート
 104     試験部材
 105     測定用テーブル
 106     台座
 107     加圧具
 220     窓用ガラスからなる板材

Claims (10)

  1.  長手方向に沿う複数の空洞を有する合成樹脂製枠部材を含む開口枠体と、
     前記開口枠体の開口部に設置された耐火性を有する板材と、
     前記板材の外周に設置された外周枠体と、
     前記外周枠体および前記開口枠体の前記外周枠体に対向する面を貫通し、前記開口枠体の空洞に達する支持部材と、
     前記支持部材が達した前記開口枠体の空洞内部に設置された補助安定板と、
     を有する防火性樹脂サッシであって、
     前記外周枠体が、前記板材の外周端面を支持する底壁部と、前記板材の両側の周縁部を支持する側壁部とを有し、
     前記支持部材が、前記外周枠体の底壁部と前記補助安定板とを固定し、
     前記補助安定板が、前記板材の外周端面と略平行であり、
     前記補助安定板が設置された前記開口枠体の空洞を含む複数の空洞のうち、一または二以上の空洞内部に熱膨張性耐火材料が注入され、
     前記空洞の内部に注入される前の前記熱膨張性耐火材料の25℃における粘度が、1000~100000mPa・sの範囲であり、
     前記熱膨張性耐火材料が、前記空洞の内部に注入された後に、25℃において前記空洞の内部で流動性を失うことを特徴とする、防火性樹脂サッシ。
  2.  前記支持部材が、前記補助安定板を挿通しているか、または前記支持部材の端部が、前記補助安定板の内部にある、請求項1記載の防火性樹脂サッシ。
  3.  前記支持部材が、前記合成樹脂製枠部材の長手方向に沿って、間隔をおいて複数設置されている、請求項2に記載の防火性樹脂サッシ。
  4.  前記合成樹脂製枠部材の長手方向に対する垂直断面を基準として、前記外周枠体の底壁部の幅に対する前記補助安定板の幅の割合が、60~120%の範囲である、請求項3に記載の防火性樹脂サッシ。
  5.  前記補助安定板が、金属板、無機板および木板からなる群より選ばれる少なくとも一つである、請求項4に記載の防火性樹脂サッシ。
  6.  前記熱膨張性耐火材料が、反応硬化性樹脂成分、熱膨張成分および無機充填材を少なくとも含む、請求項5に記載の防火性樹脂サッシ。
  7.  前記熱膨張性耐火材料に含まれる反応硬化性樹脂成分が、ウレタン樹脂フォーム、イソシアヌレート樹脂フォーム、エポキシ樹脂フォーム、フェノール樹脂フォーム、尿素樹脂フォーム、不飽和ポリエステル樹脂フォーム、アルキド樹脂フォーム、メラミン樹脂フォーム、ジアリルフタレート樹脂フォームおよびシリコーン樹脂フォームからなる群から選ばれる少なくとも一つである、請求項6に記載の防火性樹脂サッシ。
  8.  前記熱膨張性耐火材料に含まれる熱膨張成分が、熱膨張性黒鉛および熱膨張性樹脂組成物の成形体粉砕品の少なくとも一方を含む、請求項7に記載の防火性樹脂サッシ。
  9.  前記熱膨張性耐火材料が、リン化合物を含む、請求項8に記載の防火性樹脂サッシ。
  10.  前記熱膨張性耐火材料に含まれる無機充填材が、炭酸カルシウムを含む、請求項9
    に記載の防火性樹脂サッシ。
PCT/JP2013/006951 2013-11-27 2013-11-27 防火性樹脂サッシ WO2015079473A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/006951 WO2015079473A1 (ja) 2013-11-27 2013-11-27 防火性樹脂サッシ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/006951 WO2015079473A1 (ja) 2013-11-27 2013-11-27 防火性樹脂サッシ

Publications (1)

Publication Number Publication Date
WO2015079473A1 true WO2015079473A1 (ja) 2015-06-04

Family

ID=53198466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006951 WO2015079473A1 (ja) 2013-11-27 2013-11-27 防火性樹脂サッシ

Country Status (1)

Country Link
WO (1) WO2015079473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564116A (en) * 2017-07-03 2019-01-09 Pilkington Group Ltd Fire resistant glazing assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248836A (ja) * 2009-04-17 2010-11-04 Ykk Ap株式会社 樹脂製建具
JP2014012962A (ja) * 2012-07-04 2014-01-23 Sekisui Chem Co Ltd 防火性樹脂サッシ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248836A (ja) * 2009-04-17 2010-11-04 Ykk Ap株式会社 樹脂製建具
JP2014012962A (ja) * 2012-07-04 2014-01-23 Sekisui Chem Co Ltd 防火性樹脂サッシ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564116A (en) * 2017-07-03 2019-01-09 Pilkington Group Ltd Fire resistant glazing assembly

Similar Documents

Publication Publication Date Title
JP6660180B2 (ja) 熱膨張性耐火材料およびそれを用いた樹脂サッシの防火構造
JP6049459B2 (ja) 耐火補強構造、耐火補強建築部材および建築部材の耐火補強方法
JP2015098773A (ja) 樹脂サッシの防火構造
WO2015129850A1 (ja) 難燃性ポリウレタン発泡体を現場で形成するための現場発泡システム
JP5453336B2 (ja) 建築部材の耐火補強方法
JP6510749B2 (ja) 防火防音パネル
JP6480775B2 (ja) ウレタン樹脂組成物、建材の耐火補強方法、および建材の耐火補強構造
JP6457725B2 (ja) 樹脂サッシの防火構造
JP5829827B2 (ja) 反応硬化型熱膨張性樹脂組成物
JP2012214646A (ja) 熱膨張性樹脂組成物
JP2007332715A (ja) 耐火被覆構造体
JP6200643B2 (ja) 中空壁の防火区画貫通部構造
JP6530588B2 (ja) 樹脂サッシの防火構造
JP2019189779A (ja) 耐火材及びその製造方法、建具
JP6457726B2 (ja) 樹脂サッシの防火構造
JP5438173B2 (ja) 防火性樹脂サッシ
WO2015079473A1 (ja) 防火性樹脂サッシ
JP2014196659A (ja) 界壁の防火措置構造
JP6049458B2 (ja) 耐火補強構造および耐火補強構造の施工方法
JP4860672B2 (ja) 防火用目地材
JP6791655B2 (ja) 区画体の防火構造及びその形成方法
JP7479852B2 (ja) ウレタン充填構造
JP2013014948A (ja) 構造部材内の耐火部材の位置特定方法
JP2009197477A (ja) 耐火目地構造およびその施工方法
JP2016069819A (ja) 建物の耐火構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP