WO2015076697A1 - Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка - Google Patents

Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка Download PDF

Info

Publication number
WO2015076697A1
WO2015076697A1 PCT/RU2014/000407 RU2014000407W WO2015076697A1 WO 2015076697 A1 WO2015076697 A1 WO 2015076697A1 RU 2014000407 W RU2014000407 W RU 2014000407W WO 2015076697 A1 WO2015076697 A1 WO 2015076697A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
trapezoid
shell
rib
liquid metal
Prior art date
Application number
PCT/RU2014/000407
Other languages
English (en)
French (fr)
Inventor
Вячеслав Васильевич ДЕРУНОВ
Виктор Михайлович МАЙОРОВ
Павел Андреевич ПОМЕЩИКОВ
Александр Евгеньевич РУСАНОВ
Александр Алексеевич СМИРНОВ
Сергей Викторович ШУЛЕПИН
Саид Мирфаисович ШАРИКПУЛОВ
Original Assignee
Открытое Акционерное Общество "Акмэ-Инжиниринг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112016005659-0A priority Critical patent/BR112016005659B1/pt
Priority to EP14864912.2A priority patent/EP3076397B1/en
Priority to CN201480050893.9A priority patent/CN105723465B/zh
Priority to CA2927573A priority patent/CA2927573C/en
Priority to MYPI2016700886A priority patent/MY188797A/en
Priority to UAA201602297A priority patent/UA117595C2/ru
Application filed by Открытое Акционерное Общество "Акмэ-Инжиниринг" filed Critical Открытое Акционерное Общество "Акмэ-Инжиниринг"
Priority to JP2016554165A priority patent/JP2016537656A/ja
Priority to US15/021,698 priority patent/US10720244B2/en
Priority to KR1020167007299A priority patent/KR101814561B1/ko
Priority to EA201600211A priority patent/EA026547B1/ru
Publication of WO2015076697A1 publication Critical patent/WO2015076697A1/ru
Priority to ZA2016/01808A priority patent/ZA201601808B/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/08Casings; Jackets provided with external means to promote heat-transfer, e.g. fins, baffles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/12Means forming part of the element for locating it within the reactor core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of nuclear energy and can be used in the manufacture of fuel elements (fuel elements) and fuel assemblies (FAs) for reactors with a heavy liquid metal coolant (TJMT), as well as in the manufacture of fuel element simulators for use in irradiation devices designed to study the health of real fuel rods.
  • fuel elements fuel elements
  • FAs fuel assemblies
  • TJMT heavy liquid metal coolant
  • fuel rods are widely represented, the cladding of which is a metal tubular element made of TJMT-resistant metal or alloy, on which at least one rib protruding beyond the surface of the tubular element is spirally (see abstract for publication JPH02163694).
  • the fuel rod itself in accordance with this patent includes a shell in which granules of uranium oxide or plutonium are loaded, at the ends of which plugs are installed.
  • the spiral ribs at the shell are made in one piece with the tubular element with a given height and number of turns along the entire length of the pipe on its outer surface. The ribs contribute to maintaining the distance between the fuel rods during operation, and also help to improve the heat sink.
  • RU2267175 discloses a finned aluminum fuel element cladding for use in an IRT type research reactor. Each such shell is equipped with four spacing screw ribs and each rib in section is a rectangle.
  • the patent also discloses a fuel rod itself, which includes the said aluminum shell with spacing screw ribs on the outer surface, sealed at the ends with plugs, inside which the fuel core is placed.
  • the patent also discloses a fuel assembly including a casing within which these fuel elements and spacer grids are located to accommodate them.
  • the disadvantages of the known technical solutions include the low resistance of fuel rods and assemblies in melts of heavy liquid metal coolants, which is associated, firstly, with a low melting point of aluminum - 660 ° C.
  • the shell in accordance with this patent is a tubular element made of stainless steel, on the outside of which at least one spirally located rib is located.
  • This rib is a spiral wire (or two wires) twisted into a spiral, wound in a spiral around a tubular element.
  • the patent also discloses the fuel element itself, including such a shell and nuclear fuel in the form of uranium carbide, as well as an assembly containing such elements in an assembly.
  • the formation of ribs in the form of a wire rolled into a spring allows you to attach the ribs in the form of a wire twisted into a spiral only at certain points of attachment, and not in the form of a solid line. This will help to avoid stagnation of the coolant at the interface between the ribs and the tubular element, which will allow the coolant to move along the fuel rods more efficiently.
  • the design of the ribs will have acceptable rigidity so that the ribs can perform their distance functions.
  • stainless steels have limited weldability. In contact spot welding, shrink shells and hot cracks can form in the weld metal, which can propagate in the shell material. The fastening of the wire to the sheath by resistance welding will lead to the formation of defects in the sheath.
  • the objective of the invention is to improve the operational characteristics of the fuel rods and assemblies by providing long-term durability of the cladding in the medium TJMT, such as lead or eutectic alloy of lead and bismuth.
  • TZHMT such as lead or eutectic alloy of lead and bismuth. Additional technical results are also ensuring the manufacturability of the cladding of a fuel rod, reducing the hydraulic resistance of the active zone and the intensification of heat transfer processes by providing an easier flow of fuel oil along the ribs. In addition, the technical results are a decrease in the concentration of stresses and a decrease in the risk of defects at the base of the rib due to both the production method and subsequent operation of the fuel rod, and, consequently, the elimination of the corrosion destruction of the fuel elements.
  • the shell of the fuel element for reactors with a heavy liquid metal coolant is a solid-rolled tubular element with helically twisted ribs located on the outer surface of the said element, made of chrome-silicon steel of ferritic-martensitic class with a grain size of ferrite of at least number 7 according to GOST 5639, and the cross-sectional shape the ribs are in section a trapezoid with an opening angle of 22 to 40 °, and the cross-sectional shape of the ribs is in section a trapezoid with rounded bubbled apex angles trapezoid with rounded corners (fillet) at the base of the trapezoid.
  • the shell is made of steel with a chromium content of from 10 to 12 wt.% And silicon from 1.0 to 1.3 wt.%.
  • the sheath may have four spirally twisted ribs spaced equidistant from each other.
  • each rib has a height of not less than 0.75 mm, a wall thickness of not more than 0.6 mm, and an opening angle of the rib of 30 to 40 °.
  • the cross-sectional shape of the ribs is in section a trapezoid with rounded corners at the apex of the trapezoid, the radius of rounding of which is 0.2-0.35 mm
  • the cross-sectional shape of the ribs can be a trapezoid in cross section with smoothed corners at the base of the trapezoid with a mating radius of 0.55-0.9 mm.
  • a fuel element for reactors with heavy liquid metal coolant which includes this shell, sealed at the ends of the caps and placed inside the shell of nuclear fuel.
  • a fuel assembly for reactors with a heavy liquid metal coolant that includes a power frame and at least one holding grid and fuel elements installed on it, made using the above essential features and fixed in the holding grid.
  • the assembly may contain two retaining lattices located in the upper and lower parts of the power frame.
  • the power frame can be made in the form of a pipe.
  • Fig.1 shows the appearance of the shell
  • Fig.2 is a cross section of the shell
  • Fig. 3 is a cross section of one rib.
  • the shell 1 (see Figure 1 - Figure 2) is a one-piece tubular element with spacing screw ribs 2 located on the outer surface of the shell 1.
  • Shell 1 is made of chromium-silicon steel of a ferritic-martensitic class with a ferrite grain size of at least number 7 according to GOST 5639 and has an outer diameter along the ribs of 9.8 to 13.5 mm, a shell thickness of 0.38 to 0.55 mm, and an inner the diameter of the shell is from 7.2 to 1.2 mm and the roughness of the outer and inner surfaces is not more than 1.2 microns according to the parameter Ra according to GOST 2789.
  • chromium-silicon steel of a ferritic-martensitic class in the examples of the best embodiment of the invention, steel 16Kh12MVSFBR-Sh (EP823-Sh) was used.
  • This steel has the following composition, wt.%: Carbon - 0.14-0.18, silicon - 1.0-1.3, manganese - 0.5-0.8, chromium - 10.0-12.0, nickel - 0.5-0.8, vanadium - 0.2-0.4, molybdenum - 0.6-0.9, tungsten - 0.5-0.8, niobium - 0.2-0.4, boron ⁇ 0.006 (calculated), cerium - ⁇ 0.1, and iron - the rest.
  • EP823- ⁇ steel is the most suitable material for the cladding of fuel rods of reactors with heavy liquid metal coolant.
  • the number of ribs may vary.
  • the shell includes 4 ribs.
  • Each rib 2 protrudes above the shell and in section is a trapezoid with rounded vertices and rounded corners at the base (fillet).
  • the opening angle of the rib is from 22 to 40 °, in the most desirable embodiments, from 30 to 40 °.
  • This configuration of the ribs provides the manufacturability of the cladding of the fuel rod, which reduces the hydraulic
  • the ribs with smoothed vertices and fillets at the interface with the cladding allows to reduce the stress concentration and the risk of defects at the base of the ribs due to both the production method and the subsequent operation of the fuel rod, and, therefore, to avoid the corrosion of the fuel rods.
  • the wall thickness of the shell is not more than 0.6 mm, preferably 0.4 mm; - the height of the ribs from 0.55 mm to 0.85 mm, preferably 0.75 mm,
  • the radius of the fillet 4 at the base from 0.55 mm to 0.9 mm, preferably 0.7 mm
  • Each rib 2 is spaced from the other at an equal distance from each other and twisted in a spiral with a pitch of 450 mm to 1000 mm, preferably 750 mm.
  • the shell 1 is made with left-wound ribs.
  • the diameter of the shell along the ribs is 13.5 mm, the wall thickness of the shell is 0.4 mm, the inner diameter of the shell is 1.2 mm.
  • the ribs have a height of 0.75 mm, a width at half the height of the ribs 0.75 mm, the ratio of the height of the ribs to the wall thickness of 1.85 mm.
  • the cross section of the rib was a trapezoid with smooth angles at the top of the trapezoid with a radius of rounding equal to 0.2 mm and a radius of the fillet portion of 0.7 mm.
  • the opening angle of the ribs was 30 °.
  • the ribs were twisted in a spiral with a pitch of 750 mm (left winding). Nuclear fuel based on uranium dioxide was placed in the resulting shell, and the resulting fuel elements were sealed with the upper and lower shanks (plugs).
  • the assembled fuel rods were installed in the power frame with spacing between them according to the "edge to edge” principle and were fixed in the upper, intermediate and lower gratings, which are mounted on the power frame.
  • the resulting assembly was installed in the reactor.
  • EFFECT invention makes it possible to manufacture a shell with ribs as a whole, and also to reduce the likelihood of defects in places of stress concentration, which provides stable characteristics of heat resistance and corrosion resistance in contact with HLMT at operating temperatures.
  • the invention allows the spacing of a fuel element with adjacent fuel rods (rib along the edge) between the upper and lower supporting (for fuel rods) spacer grids of the fuel assemblies, spacing with the designs of the reflector and supporting elements of the fuel assemblies (which simplifies the design of the fuel assemblies) and ensures long-term durability in the medium of fuel assemblies ( lead, a eutectic alloy of lead and bismuth) subject to the appropriate technology of TJMT (about 75,000 hours), temperature and dose restrictions on the cladding of a fuel rod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fuel Cell (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов (твэлов) и тепловыделяющих сборок (ТВС) для реакторов с тяжелым жидкометаллическим теплоносителем (ТЖМТ), а также при изготовлении имитаторов твэлов для использования в облучательных устройствах, предназначенных для исследования работоспособности реальных твэлов. Оболочка тепловыделяющего элемента для реакторов с тяжелым жидкометаллическим теплоносителем представляет собой цельнокатаный трубчатый элемент со спирально закрученными ребрами, расположенными на наружной поверхности упомянутого элемента, выполненный из хромокремнистой стали ферритно-мартенситного класса с величиной зерна феррита не менее номера 7 по ГОСТ 5639, причем каждое ребро имеет угол раскрытия от 22 до 40º (преимущественно, от 30 до 40º), а форма поперечного сечения ребра представляет в сечении трапецию со скругленными углами при вершине трапеции и со сглаженными углами в основании трапеции. Также раскрывается твэл, включающий данную оболочку и тепловыделяющая сборка. Техническим результатом изобретения является улучшение эксплуатационных характеристик тепловыделяющих элементов и сборок за счет обеспечения длительной стойкости оболочки в среде ТЖМТ, такого, как свинец или эвтектический сплав свинца и висмута.

Description

Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка
Описание изобретения
Область техники.
Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов (твэлов) и тепловыделяющих сборок (ТВС) для реакторов с тяжелым жидкометаллическим теплоносителем (ТЖМТ), а также при изготовления имитаторов твэлов для использования в облучательных устройствах, предназначенных для исследования работоспособности реальных твэлов.
Уровень техники.
В предшествующем уровне техники широко представлены твэлы, оболочка которых представляет собой металлический трубчатый элемент, выполненный из стойкого к ТЖМТ металла или сплава, на котором спирально расположены выступающие за поверхность трубчатого элемента, по меньшей мере, одно ребро(см. реферат к публикации JPH02163694). Сам твэл в соответствии с данным патентом включает оболочку, в которую загружены гранулы оксида урана или плутония, на концах которой установлены заглушки. Спиральные ребра у оболочки выполнены за одно целое с трубчатым элементом с заданной высотой и числом витков по всей длине трубы на внешней ее поверхности. Ребра способствуют поддержанию дистанции между твэлами в процессе эксплуатации, а также позволяют добиться улучшения теплоотвода.
К сожалению, в реферате не раскрывается состав материала из которого выполнена оболочка твэла и конфигурация ребер, что не позволяет судить об эксплуатационных характеристиках самого твэла, в частности, об его стойкости к ТЖМТ. В патенте RU2267175 раскрывается оребренная оболочка твэла, выполненная из алюминия и предназначенная для использования в исследовательских реакторах типа ИРТ. Каждая такая оболочка снабжена четырьмя дистанционирующими винтовыми ребрами и каждое ребро в сечении представляет собой прямоугольник.
В патенте также раскрывается сам твэл, который включает упомянутую оболочку из алюминия с дистанционирующими винтовыми ребрами на наружной поверхности, герметизированную по торцам заглушками, внутри которой размещен топливный сердечник.
В патенте также раскрывается тепловыделяющая сборка, включающая кожух, внутри которого расположены данные тепловыделяющие элементы и дистанционирующие решетки для их размещения.
К недостаткам известного технического решения относится низкая стойкость твэлов и сборки в расплавах тяжелых жидкометаллических теплоносителей, что связано, во-первых, с низкой температурой плавления алюминия- 660°С.
Кроме того, прямоугольный профиль ребра в соответствии с известным патентом будет вызывать высокие концентрации напряжений в местах сопряжения ребер с оболочкой, что также будет приводить к потере стойкости в среде ТЖМТ.
Наиболее близкое техническое решение к предложенному раскрыто в патенте GB 1459562.
Оболочка в соответствии с данным патентом представляет собой трубчатый элемент, выполненный из нержавеющей стали, на внешней стороне которого расположено, по меньшей мере, одно спирально расположенное ребро. Это ребро представляет собой скрученную в спираль проволоку (или две проволоки), намотанную по спирали вокруг трубчатого элемента. Соответственно, в патенте раскрывается также сам тепловыделяющий элемент, включающий такую оболочку и ядерное топливо в виде карбида урана, а также сборка, содержащая в сборе такие элементы.
Как следует из описания способа, формирование ребер в виде свернутой в пружину проволоки позволяет прикреплять ребра в виде скрученной в спираль проволоки только в некоторых точках крепления, а не в виде сплошной линии. Это позволит избежать застоя теплоносителя в местах сопряжения ребер и трубчатого элемента, что позволят теплоносителю более эффективно перемещаться вдоль твэлов. В то же время, как указывают авторы изобретения, конструкция ребер будет обладать приемлемой жесткостью, чтобы ребра смогли выполнять свои дистанционирующие функции.
В известном патенте, к сожалению, не указывается как осуществляют крепление таких ребер, но возможно крепление выполнено при помощи точечной сварки.
Однако, нержавеющие стали имеют ограниченную свариваемость. При контактной точечной сварке в металле сварной точки могут образовываться усадочные раковины и горячие трещины, способные распространяться в материале оболочки. Крепление проволоки к оболочке с помощью контактной сварки приведет к образованию в оболочке дефектов.
Кроме того, свернутая в пружину проволока, закрепленная в отдельных точках, будет смещаться в потоке теплоносителя по высоте твэла и отрываться от оболочки в местах сварки.
Раскрытие изобретения.
Задачей изобретения является улучшение эксплуатационных характеристик твэлов и сборок за счёт обеспечения длительной стойкости оболочки в среде ТЖМТ, такого, как свинец или эвтектический сплав свинца и висмута.
Техническим результатом изобретения является улучшение эксплуатационных характеристик тепловыделяющих элементов и сборок за
з счёт обеспечения длительной стойкости оболочки в среде ТЖМТ, такого, как свинец или эвтектический сплав свинца и висмута. Дополнительными техническими результатами являются также обеспечение технологичности изготовления оболочки твэла, уменьшение гидравлического сопротивления активной зоны и интенсификация процессов теплообмена за счет обеспечения более легкого протекания ТЖМТ вдоль ребер. Кроме того, техническими результатами являются уменьшение концентрации напряжений и снижение опасности появления дефектов у основания ребра, обусловленных как способом производства, так и последующей эксплуатацией твэла, а, следовательно, устранение коррозионного разрушения твэлов.
На достижение указанных технических результатов оказывают влияние следующие существенные признаки.
Оболочка тепловыделяющего элемента для реакторов с тяжелым жидкометаллическим теплоносителем представляет собой цельнокатаный трубчатый элемент со спирально закрученными ребрами, расположенными на наружной поверхности упомянутого элемента, выполненный из хромокремнистой стали ферритно-мартенситного класса с величиной зерна феррита не менее номера 7 по ГОСТ 5639, а форма поперечного сечения ребра представляет в сечении трапецию с углом раскрытия от 22 до 40°, а форма поперечного сечения ребра представляет в сечении трапецию со скругленными углами при вершине трапеции и со сглаженными углами (галтелью) в основании трапеции.
В частных воплощениях изобретения оболочка выполнена из стали с содержанием хрома от 10 до 12 масс.% и кремния от 1,0 до 1,3 масс.%.
В предпочтительных воплощениях изобретения оболочка может четыре спирально закрученных ребра, расположенных на равном расстоянии друг от друга.
В этом случае каждое ребро имеет высоту не менее 0,75 мм, толщину стенки не более 0,6 мм и угол раскрытия ребра от 30 до 40°. В других воплощениях изобретения форма поперечного сечения ребра, представляет в сечении трапецию со скругленными углами при вершине трапеции, радиус скругления которых составляет 0,2-0,35 мм.
Форма поперечного сечения ребра может представлять в сечении трапецию со сглаженными углами в основании трапеции с радиусом сопряжения 0,55-0,9 мм.
Поставленная задача также решается тепловыделяющим элементом для реакторов с тяжелым жидкометаллическим теплоносителем, который включает данную оболочку, герметизированную по торцам заглушками и размещенное внутри оболочки ядерное топливо.
Поставленная задача также решается тепловыделяющей сборкой для реакторов с тяжелым жидкометаллическим теплоносителем которая включает силовой каркас и установленные на нем, по меньшей мере, одну удерживающую решетку и тепловыделяющие элементы, выполненные с использованием вышеприведенных существенных признаков и фиксируемые в удерживающей решетке.
При этом дистанционированние тепловыделяющих элементов между собой осуществляется по принципу «ребро к ребру».
При этом сборка может содержать две удерживающие решетки, расположенные в верхней и нижней частях силового каркаса.
При этом силовой каркас может быть выполнен в виде трубы.
Перечень фигур.
Сущность заявляемого изобретения поясняется чертежами, где на Фиг.1 представлен внешний вид оболочки, на Фиг.2 - поперечное сечение оболочки, на Фиг. 3 - поперечное сечение одного ребра.
Осуществление изобретения.
Позиции означают следующее:
1. Оболочка твэла.
2. Дистанционирующие винтовые ребра.
3. Скругленный угол у вершины ребра. 4. Сглаженный угол в основании ребра.
Оболочка 1 (см. Фиг.1 - Фиг.2) представляет собой цельнокатаный трубчатый элемент с расположенными на наружной поверхности оболочки 1 дистанционирующими винтовыми ребрами 2.
Оболочка 1 выполнена из хромокремнистой стали ферритно- мартенситного класса с величиной зерна феррита не менее номера 7 по ГОСТ 5639 и имеет наружный диаметр по ребрам от 9,8 до 13,5 мм, толщину оболочки от 0,38 до 0,55 мм, внутренний диаметр оболочки от 7,2 до 1 1,2 мм и шероховатость наружной и внутренней поверхностей не более 1 ,2 мкм по параметру Ra по ГОСТ 2789.
В качестве хромокремнистой стали ферритно-мартенситного класса в примерах наилучшего воплощения изобретения использована сталь 16Х12МВСФБР-Ш (ЭП823-Ш). Эта сталь имеет следующий состав, масс.%: углерод - 0,14-0,18, кремний - 1,0-1,3, марганец - 0,5-0,8, хром - 10,0-12,0, никель - 0,5-0,8, ванадий - 0,2-0,4, молибден - 0,6-0,9, вольфрам - 0,5-0,8, ниобий - 0,2-0,4, бор < 0,006 (по расчету), церий - <0,1 и железо - остальное.
По комплексу служебных свойств (высокое сопротивление вакансионному распуханию, низкая скорость радиационной ползучести, высокая коррозионная стойкость в свинце-висмуте) сталь ЭП823-Ш является наиболее подходящим материалом для оболочек твэлов реакторов с тяжелым жидкометаллическим теплоносителем.
Количество ребер может варьироваться.
В наиболее желательном воплощении изобретения оболочка включает 4 ребра.
Каждое ребро 2 (см. Фиг.З) выступает над оболочкой и в сечении представляет собой трапецию со скругленными вершинами и скругленными углами у основания (галтелью). Угол раскрытия ребра составляет от 22 до 40°, в наиболее желательных воплощениях - от 30 до 40°.
Такая конфигурация ребра, обеспечивает технологичность изготовления оболочки твэла, позволяет уменьшить гидравлическое
б сопротивление активной зоны и интенсифицирует процессы теплообмена за счет обеспечения более легкого протекания ТЖМТ вдоль ребер. Кроме того, выполнение ребер со сглаженными вершинами и галтелями в местах сопряжения с оболочкой позволяет уменьшить концентрацию напряжений и опасность появления дефектов у основания ребра, обусловленных как способом производства, так и последующей эксплуатацией твэла, а, следовательно, избежать коррозионного разрушения твэлов.
Наиболее желательные параметры для оболочек следующие:
- толщина стенки оболочки - не более 0,6 мм, предпочтительно 0, 4 мм; - высота ребра от 0,55 мм до 0,85 мм, предпочтительно 0,75 мм,
- угол раскрытия от 22 до 40°, предпочтительно 30°,
- радиус скругления угла 3 у вершины от 0,2 мм до 0,35 мм, предпочтительно 0,2 мм, и
- радиус галтели 4 у основания от 0,55 мм до 0,9 мм, предпочтительно, 0,7 мм.
Каждое ребро 2 отстоит от другого на равном расстоянии друг от друга и закручено по спирали с шагом от 450 мм до 1000 мм, предпочтительно 750 мм. Предпочтительно оболочка 1 выполнена с левой навивкой ребер.
Пример конкретного выполнения.
Методом холодной прокатки из трубной заготовки стали ЭП823-Ш получали трубу с 4 спиральными ребрами для изготовления оболочек твэлов.
Диаметр оболочки по ребрам составляет 13,5 мм, толщина стенки оболочки составляет 0,4 мм, внутренний диаметр оболочки 1 1,2 мм. Ребра имеют высоту 0,75 мм, ширину на половине высоты ребра 0,75 мм, отношение высоты ребра к толщине стенки 1,85 мм. Сечение ребра представляло собой трапецию со сглаженными углами при вершине трапеции с радиусом скругления, равным 0,2 мм, радиусом галтельной части - 0,7 мм. Угол раскрытия ребра составил 30°. Ребра закручивались по спирали с шагом 750 мм (левая навивка). В полученную оболочку закладывалось ядерное топливо на основе диоксида урана и полученные твэлы герметизировались верхним и нижним хвостовиками (заглушками).
Для получения тепловыделяющей сборки собранные твэлы устанавливались в силовой каркас с дистанционированнием между собой по принципу «ребро к ребру» и фиксировались в верхней, промежуточной и нижней решетке, которые установлены на силовом каркасе. Полученная сборка устанавливалась в реактор.
Изобретение позволяет изготовить оболочку с ребрами как единое целое, а также снизить вероятность появления дефектов в местах концентраций напряжений, что обеспечивает стабильные характеристики жаропрочности и коррозионной стойкости в контакте с ТЖМТ при температурах эксплуатации.
Изобретение позволяет реализовать дистанционирование тепловыделяющего элемента с соседними твэлами (ребро по ребру) между верхней и нижней опорными (для твэлов) дистанционирующими решетками ТВС, дистанционирование с конструкциями отражателя и опорных элементов ТВС (что позволяет упростить конструкцию ТВС) и обеспечить длительную стойкость в среде ТЖМТ (свинец, эвтектический сплав свинца и висмута) при соблюдении соответствующей технологии ТЖМТ (около 75000 часов), температурных и дозовых ограничений по оболочке твэла.

Claims

Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка Формула изобретения
1. Оболочка тепловыделяющего элемента для реакторов с тяжелым жидкометаллическим теплоносителем, характеризующаяся тем, что представляет собой цельнокатаный трубчатый элемент со спирально закрученными ребрами, расположенными на наружной поверхности упомянутого элемента, выполненный из хромокремнистой стали ферритно- мартенситного класса с величиной зерна феррита не менее номера 7 по ГОСТ5639, причем каждое ребро имеет угол раскрытия от 22 до 40°, а форма поперечного сечения ребра представляет в сечении трапецию со скругленными углами при вершине трапеции и со сглаженными углами в основании трапеции.
2. Оболочка по п. 1, отличающаяся тем, что выполнена из стали с содержанием хрома от 10 до 12 масс.% и кремния от 1,0 до 1,3 масс.%.
3. Оболочка по п.1, характеризующаяся тем, что содержит четыре спирально закрученных ребра, расположенных на равном расстоянии друг от друга.
4. Оболочка по п. 3, характеризующаяся тем, что каждое ребро имеет высоту не менее 0,75 мм, толщину стенки не более 0,6 мм и угол раскрытия от 30 до 40°.
5. Оболочка по п. 1, характеризующаяся тем, что форма поперечного сечения ребра представляет в сечении трапецию со скругленными углами при вершине трапеции, радиус скругления которых составляет 0,2-0,35 мм.
6. Оболочка по п. 1 характеризующаяся тем, что форма поперечного сечения ребра представляет в сечении трапецию со сглаженными углами в основании трапеции, радиус сопряжения которых составляет 0,55-0,9 мм.
7. Тепловыделяющий элемент для реакторов с тяжелым жидкометаллическим теплоносителем, характеризующийся тем, что включает оболочку, выполненную в соответствии с любым из п. п. 1-6 формулы, герметизированную по торцам заглушками и размещенное внутри упомянутой оболочки ядерное топливо.
8. Тепловыделяющая сборка для реакторов с тяжелым жидкометаллическим теплоносителем, характеризующаяся тем, что включает силовой каркас и установленные на нем, по меньшей мере, одну удерживающую решетку и тепловыделяющие элементы, выполненные в соответствии с п. 7 формулы изобретения и фиксируемые в удерживающей решетке.
9. Сборка по п. 8, характеризующаяся тем, что дистанционированние тепловыделяющих элементов между собой осуществляется по принципу «ребро к ребру».
10. Сборка по п. 8, характеризующаяся тем, что содержит две удерживающие решетки, расположенные в верхней и нижней частях силового каркаса.
1 1. Сборка по п. 8, характеризующаяся тем, что силовой каркас выполнен в виде трубы.
PCT/RU2014/000407 2013-11-19 2014-06-03 Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка WO2015076697A1 (ru)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP14864912.2A EP3076397B1 (en) 2013-11-19 2014-06-03 Fuel rod cladding, fuel rod and fuel assembly
CN201480050893.9A CN105723465B (zh) 2013-11-19 2014-06-03 一种燃料元件包壳、燃料元件及燃料组件
CA2927573A CA2927573C (en) 2013-11-19 2014-06-03 Fuel rod cladding, fuel rod and fuel assembly
MYPI2016700886A MY188797A (en) 2013-11-19 2014-06-03 Fuel rod cladding, fuel rod and fuel assembly
UAA201602297A UA117595C2 (ru) 2013-11-19 2014-06-03 Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка
BR112016005659-0A BR112016005659B1 (pt) 2013-11-19 2014-06-03 Revestimento da haste de combustível, haste de combustível e conjunto de combustível
JP2016554165A JP2016537656A (ja) 2013-11-19 2014-06-03 燃料棒被覆管、燃料棒及び燃料集合体
US15/021,698 US10720244B2 (en) 2013-11-19 2014-06-03 Fuel rod cladding, fuel rod and fuel assembly
KR1020167007299A KR101814561B1 (ko) 2013-11-19 2014-06-03 연료봉 피복, 연료봉 및 연료 집합체
EA201600211A EA026547B1 (ru) 2013-11-19 2014-06-03 Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка
ZA2016/01808A ZA201601808B (en) 2013-11-19 2016-03-15 Fuel rod cladding, fuel rod and fuel assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013151156 2013-11-19
RU2013151156/07A RU2551432C1 (ru) 2013-11-19 2013-11-19 Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка

Publications (1)

Publication Number Publication Date
WO2015076697A1 true WO2015076697A1 (ru) 2015-05-28

Family

ID=53179862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000407 WO2015076697A1 (ru) 2013-11-19 2014-06-03 Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка

Country Status (13)

Country Link
US (1) US10720244B2 (ru)
EP (1) EP3076397B1 (ru)
JP (1) JP2016537656A (ru)
KR (1) KR101814561B1 (ru)
CN (1) CN105723465B (ru)
BR (1) BR112016005659B1 (ru)
CA (1) CA2927573C (ru)
EA (1) EA026547B1 (ru)
MY (1) MY188797A (ru)
RU (1) RU2551432C1 (ru)
UA (1) UA117595C2 (ru)
WO (1) WO2015076697A1 (ru)
ZA (1) ZA201601808B (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615961C1 (ru) * 2015-11-26 2017-04-11 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Узел сварного соединения оболочки тепловыделяющего элемента с заглушкой, выполненных из высокохромистой стали (варианты)
ITUA20163713A1 (it) * 2016-05-04 2017-11-04 Luciano Cinotti Reattore nucleare con nocciolo autoportante
CN106297917B (zh) * 2016-09-14 2018-01-30 中国核动力研究设计院 一种燃料组件动态特性模拟装置及其模拟方法
CN110383392B (zh) * 2016-12-26 2021-10-08 俄罗斯联邦诺萨顿国家原子能公司 核反应堆燃料组件及其生产方法
CN106782684B (zh) * 2017-02-09 2018-06-19 中科瑞华原子能源技术有限公司 用于高功率密度堆芯的绕丝固定式燃料组件和铅基反应堆
RU2647127C1 (ru) * 2017-02-10 2018-03-14 Публичное акционерное общество "Машиностроительный завод" Тепловыделяющая сборка ядерного реактора и способ ее изготовления
CN109036591B (zh) * 2017-06-08 2021-10-15 中广核工程有限公司 核反应堆堆芯
CN108665984A (zh) * 2018-05-08 2018-10-16 西安交通大学 一种研究铅基反应堆严重事故下燃料颗粒迁徙特性的实验装置
RU2686662C1 (ru) * 2018-08-23 2019-04-30 Акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" Тепловыделяющая сборка ядерного реактора
RU2699229C1 (ru) * 2019-01-31 2019-09-04 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Модульный ядерный реактор на быстрых нейтронах малой мощности с жидкометаллическим теплоносителем и активная зона реактора (варианты)
CN110415843B (zh) * 2019-08-08 2021-01-26 中国核动力研究设计院 阻力调节机构及其构成的反应堆闭式燃料组件水力学模拟装置
RU2755683C1 (ru) * 2021-03-15 2021-09-20 Акционерное общество «АКМЭ-инжиниринг» Тепловыделяющая сборка активной зоны ядерного реактора
CN113470840B (zh) * 2021-06-21 2023-01-17 清华大学 螺旋多叶型核燃料元件的制造方法
CN113458166B (zh) * 2021-06-30 2023-04-21 北京科技大学 一种带螺旋肋包壳管的冷拔成形装置及成形方法
RU2761857C1 (ru) * 2021-07-29 2021-12-13 Акционерное общество «АКМЭ-инжиниринг» Активная зона ядерного реактора
CN115050488A (zh) * 2022-06-24 2022-09-13 中国核动力研究设计院 一种提高热工性能的燃料管、燃料套管结构及燃料组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1046147A (en) * 1964-02-27 1966-10-19 Commissariat Energie Atomique Improvements in and relating to heat exchangers
US3282335A (en) * 1963-09-06 1966-11-01 Sulzer Ag Heat transfer tube
GB1459562A (en) 1974-03-07 1976-12-22 Atomic Energy Authority Uk Nuclear reactor fuel elements
JPS63434A (ja) * 1986-06-20 1988-01-05 Power Reactor & Nuclear Fuel Dev Corp 原子炉用高強度フエライト鋼
JPH02163694A (ja) 1988-12-19 1990-06-22 Japan Nuclear Fuel Co Ltd<Jnf> 高速増殖炉用燃料棒
RU38421U1 (ru) * 2003-12-16 2004-06-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара" Твэл для исследовательских реакторов и тепловыделяющая сборка (варианты) на его основе
RU2267175C2 (ru) 2003-10-14 2005-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара" Тепловыделяющий элемент для исследовательских реакторов и тепловыделяющая сборка на его основе (варианты)
RU2298848C1 (ru) * 2005-09-22 2007-05-10 ФГУП Опытное конструкторское бюро "ГИДРОПРЕСС" Тепловыделяющая сборка

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011133A (en) * 1975-07-16 1977-03-08 The United States Of America As Represented By The United States Energy Research And Development Administration Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling
JPS5880597U (ja) * 1981-11-27 1983-05-31 株式会社東芝 燃料集合体
JPS60155652A (ja) * 1984-01-25 1985-08-15 Hitachi Ltd 耐熱鋼
JPS6289840A (ja) * 1985-10-15 1987-04-24 Kawasaki Steel Corp 耐中性子照射脆化特性に優れた鉄系金属材料
JPH0216394A (ja) 1988-06-30 1990-01-19 Shimadzu Corp ターボ分子ポンプ
EP0593469A1 (de) * 1991-07-10 1994-04-27 Siemens Aktiengesellschaft Werkstoff und werkstück für die kerntechnik sowie entsprechende herstellung
CN2240704Y (zh) * 1995-08-28 1996-11-20 华南理工大学 具有小螺旋角的内外螺旋翅片管
JPH10265867A (ja) * 1997-03-25 1998-10-06 Hitachi Ltd 高機能合金とその製造法及び用途
EP1916667B1 (en) * 2001-04-05 2013-05-01 Mitsubishi Heavy Industries, Ltd. Fuel assembly and thimble screw of the same
RU2262753C2 (ru) * 2003-10-06 2005-10-20 Российская Федерация, от имени которой выступает Министерство Российской Федерации по атомной энергии Твэл реактора на быстрых нейтронах (варианты) и оболочка для его изготовления
RU2295785C2 (ru) * 2005-03-24 2007-03-20 Эдуард Алексеевич Болтенко Тепловыделяющая сборка
US8181891B2 (en) * 2009-09-08 2012-05-22 General Electric Company Monolithic fuel injector and related manufacturing method
WO2011143172A1 (en) * 2010-05-11 2011-11-17 Thorium Power, Inc. Fuel assembly with metal fuel alloy kernel and method of manufacturing thereof
CN103106929B (zh) * 2013-02-04 2016-03-02 中国核动力研究设计院 超临界水堆的改进型环形燃料元件及其构成的燃料组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282335A (en) * 1963-09-06 1966-11-01 Sulzer Ag Heat transfer tube
GB1046147A (en) * 1964-02-27 1966-10-19 Commissariat Energie Atomique Improvements in and relating to heat exchangers
GB1459562A (en) 1974-03-07 1976-12-22 Atomic Energy Authority Uk Nuclear reactor fuel elements
JPS63434A (ja) * 1986-06-20 1988-01-05 Power Reactor & Nuclear Fuel Dev Corp 原子炉用高強度フエライト鋼
JPH02163694A (ja) 1988-12-19 1990-06-22 Japan Nuclear Fuel Co Ltd<Jnf> 高速増殖炉用燃料棒
RU2267175C2 (ru) 2003-10-14 2005-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара" Тепловыделяющий элемент для исследовательских реакторов и тепловыделяющая сборка на его основе (варианты)
RU38421U1 (ru) * 2003-12-16 2004-06-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара" Твэл для исследовательских реакторов и тепловыделяющая сборка (варианты) на его основе
RU2298848C1 (ru) * 2005-09-22 2007-05-10 ФГУП Опытное конструкторское бюро "ГИДРОПРЕСС" Тепловыделяющая сборка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3076397A4

Also Published As

Publication number Publication date
KR101814561B1 (ko) 2018-01-04
KR20160086815A (ko) 2016-07-20
BR112016005659B1 (pt) 2022-08-23
US10720244B2 (en) 2020-07-21
RU2551432C1 (ru) 2015-05-27
BR112016005659A2 (ru) 2017-08-01
EP3076397B1 (en) 2018-08-22
CN105723465A (zh) 2016-06-29
CA2927573A1 (en) 2015-05-28
EA026547B1 (ru) 2017-04-28
EP3076397A1 (en) 2016-10-05
UA117595C2 (ru) 2018-08-27
CN105723465B (zh) 2018-03-06
ZA201601808B (en) 2017-06-28
US20160225468A1 (en) 2016-08-04
EP3076397A4 (en) 2017-04-12
EA201600211A1 (ru) 2016-06-30
RU2013151156A (ru) 2015-05-27
CA2927573C (en) 2019-04-30
JP2016537656A (ja) 2016-12-01
MY188797A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
RU2551432C1 (ru) Оболочка для тепловыделяющего элемента, тепловыделяющий элемент и тепловыделяющая сборка
US2902422A (en) Nuclear reactor fuel rod assembly
US3944468A (en) Fuel pin cluster for a high-power reactor
RU2691628C1 (ru) Твэл ядерного реактора
JP2015515635A (ja) 液体金属冷却原子炉用の燃料バンドル
RU2524681C2 (ru) Твэл ядерного реактора
RU2646597C1 (ru) Твэл реактора на быстрых нейтронах
RU2598542C1 (ru) Твэл реактора на быстрых нейтронах, элемент дистанционирования твэла и способ (варианты) изготовления элемента
JP5308744B2 (ja) 制御棒
RU2267175C2 (ru) Тепловыделяющий элемент для исследовательских реакторов и тепловыделяющая сборка на его основе (варианты)
RU2755683C1 (ru) Тепловыделяющая сборка активной зоны ядерного реактора
RU38421U1 (ru) Твэл для исследовательских реакторов и тепловыделяющая сборка (варианты) на его основе
RU2647707C1 (ru) Тепловыделяющая сборка ядерного реактора и способ ее изготовления
EA042938B1 (ru) Тепловыделяющая сборка активной зоны ядерного реактора
KR20190111017A (ko) 원자로 연료 집합체 및 그의 제조방법
JP5042768B2 (ja) ジルコニウム基合金
RU2360305C2 (ru) Тепловыделяющий элемент реактора
RU2558152C2 (ru) Ядерный реактор
JP5551869B2 (ja) ジルコニウム基合金並びにこれを用いた水冷却型原子炉用燃料集合体およびチャンネルボックス
Duret et al. Fuel pin cluster for a high-power reactor
JPH04500722A (ja) 燃料集合体
JP2010133986A (ja) 核燃料集合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201601635

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016554165

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167007299

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201600211

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016005659

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2927573

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: A201602297

Country of ref document: UA

REEP Request for entry into the european phase

Ref document number: 2014864912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864912

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016005659

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160315