WO2015075799A1 - 車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法 - Google Patents

車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法 Download PDF

Info

Publication number
WO2015075799A1
WO2015075799A1 PCT/JP2013/081390 JP2013081390W WO2015075799A1 WO 2015075799 A1 WO2015075799 A1 WO 2015075799A1 JP 2013081390 W JP2013081390 W JP 2013081390W WO 2015075799 A1 WO2015075799 A1 WO 2015075799A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
communication
unit
information
vehicles
Prior art date
Application number
PCT/JP2013/081390
Other languages
English (en)
French (fr)
Inventor
隆敏 土佐
悠司 濱田
慎二 赤津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/023,751 priority Critical patent/US9749811B2/en
Priority to DE112013007628.4T priority patent/DE112013007628T5/de
Priority to CN201380081092.4A priority patent/CN105765640B/zh
Priority to JP2015548922A priority patent/JP6062064B2/ja
Priority to PCT/JP2013/081390 priority patent/WO2015075799A1/ja
Publication of WO2015075799A1 publication Critical patent/WO2015075799A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the present invention relates to a vehicle-mounted device that performs vehicle-to-vehicle communication, a cloud server that manages vehicle-to-vehicle communication, a vehicle-to-vehicle communication system, and a vehicle-to-vehicle communication method using these.
  • Patent Document 1 discloses a mobile wireless communication device and a vehicle-to-vehicle communication method for realizing safe traveling by vehicle-to-vehicle communication and reducing the overall communication amount flowing through a wireless communication network to effectively use wireless resources.
  • Patent Document 2 discloses a method of reducing congestion while simultaneously reducing the use load of a communication band by grouping vehicles that perform vehicle-to-vehicle communication and optimizing the amount of data transferred across the group.
  • Patent Document 3 discloses a collision prevention system that collects vehicle information exchanged between vehicles by a relay device, collects vehicle information from each vehicle into one data, and transmits the data to each vehicle at once. By doing in this way, the danger of the collision of vehicles is determined based on the mutual vehicle information acquired between vehicles, reducing the use load of a communication band.
  • the conventional vehicle-mounted device distributes communication establishment information necessary for establishing vehicle-to-vehicle communication at a specified cycle, so that overhead, which is unnecessary information unrelated to actual communication, is generated.
  • establishment and maintenance of the system became unstable. For example, when the vehicle is performing auto-cruise while communicating with the vehicles immediately before and after it, the communication establishment information is received from the vehicle-mounted device of the vehicle in which the vehicle-mounted device is traveling ahead of the nearest vehicle. When received, the communication establishment process based on the newly received communication establishment information is started. In this case, the new communication establishment information becomes an overhead unrelated to the actual communication for transmitting and receiving information necessary for the auto cruise of the own vehicle.
  • the processing load of the vehicle-mounted device inevitably increases. That is, a high computing function that can handle this processing is required for the vehicle-mounted device. Further, for example, the information for specifying the vehicle traveling on the lower road described above is unnecessary information for the own vehicle, and there is a possibility that the communication band is compressed by exchanging such information. .
  • Patent Document 1 since the apparatus disclosed in Patent Document 1 transmits only information related to a vehicle traveling on a non-priority road by inter-vehicle communication, the communication amount of unnecessary information is reduced. However, Patent Document 1 does not consider the overhead when establishing inter-vehicle communication, and cannot solve the above-described problem. Moreover, patent document 1 is specialized in the vehicle-to-vehicle communication utilized for driving assistance, and the application which can be utilized by vehicle-to-vehicle communication is limited.
  • Patent Document 2 the overhead at the time of establishment of inter-vehicle communication is not considered, and the above-described problem cannot be solved.
  • Patent Document 2 does not consider the road alignment on which the vehicle travels, the communication band of inter-vehicle communication is under pressure by communicating information from a vehicle that is not positionally related to the host vehicle. There is a possibility that.
  • Patent Literature 3 it is necessary to collect vehicle information with a relay device and collect the information. For this reason, the delay time until the actual communication is started is further increased, and there is a possibility that it is not possible to cope with vehicle control or driving support that requires urgency. Further, Patent Document 3 does not mention the problems of inter-vehicle communication itself such as overhead, and cannot solve this problem.
  • the present invention has been made to solve the above-described problems, and is a vehicle-mounted device capable of reducing overhead when establishing inter-vehicle communication and improving communication efficiency, a cloud server for managing inter-vehicle communication, An object is to obtain a vehicle-to-vehicle communication system and a vehicle-to-vehicle communication method using these.
  • the vehicle-mounted device determines the vehicle to be communicated between vehicles by estimating the position and traveling direction of the vehicle based on the vehicle state and map information, and establishes vehicle-to-vehicle communication with the vehicle to be communicated between vehicles.
  • a vehicle-mounted device that communicates with a cloud server that creates and transmits communication establishment information necessary for the vehicle, a vehicle information acquisition unit that acquires vehicle information related to the vehicle state of the host vehicle, and vehicle information acquired by the vehicle information acquisition unit To the cloud server, and receives the communication establishment information transmitted from the cloud server, the vehicle-to-vehicle communication unit that performs vehicle-to-vehicle communication, and the vehicle-to-vehicle communication based on the communication establishment information received by the cloud communication unit. And a control unit that instructs the communication unit to perform vehicle-to-vehicle communication and establishes communication.
  • FIG. 1 is a block diagram showing a configuration of a vehicle-to-vehicle communication system according to the present invention. It is a block diagram which shows the structure of the onboard equipment which concerns on Embodiment 1.
  • FIG. 2 is a block diagram showing a configuration of a cloud server according to Embodiment 1.
  • FIG. 3 is a flowchart showing an operation of the vehicle-to-vehicle communication system according to the first embodiment. It is a figure which shows the case where the communication area between vehicles between vehicles is approaching. It is a flowchart which shows operation
  • FIG. 1 is a block diagram showing a configuration of a vehicle-to-vehicle communication system according to the present invention.
  • the inter-vehicle communication system according to the present invention includes an on-vehicle device 1 ⁇ / b> A of a vehicle A, an on-vehicle device 1 ⁇ / b> B of a vehicle B, and a cloud server 2.
  • the vehicle-mounted devices 1A and 1B communicate with the cloud server 2 and upload vehicle information related to the vehicle.
  • the vehicle information is information regarding the vehicle state of the vehicle, for example, vehicle position information and speed information.
  • the cloud server 2 estimates the positions and traveling directions of the vehicles A and B in which the onboard devices 1A and 1B are mounted based on the vehicle information and the map information received from the onboard devices 1A and 1B.
  • a vehicle-to-vehicle communication network with the vehicle-mounted device 1B is constructed.
  • the cloud server 2 when performing auto-cruise by transmitting and receiving information through inter-vehicle communication, the cloud server 2 is such that the vehicle A and the vehicle B are traveling on the same lane on the same road, and the vehicle A and the vehicle B are in the immediate vicinity.
  • the vehicle A and the vehicle B are determined as vehicles to be communicated between vehicles.
  • the cloud server 2 also creates communication establishment information necessary for establishing vehicle-to-vehicle communication between the vehicle-mounted device 1A and the vehicle-mounted device 1B, and transmits the communication establishment information to the vehicle-mounted devices 1A and 1B.
  • the communication establishment information includes a communication channel used for vehicle-to-vehicle communication, radio wave intensity, and the like.
  • vehicle-to-vehicle communication is established simply by setting the communication establishment information received from the cloud server 2. Thereby, onboard equipment 1A and 1B share vehicle information of each other via inter-vehicle communication, and perform vehicle control and driving support.
  • FIG. 2 is a block diagram showing the configuration of the vehicle-mounted device according to Embodiment 1, and shows the configuration of the vehicle-mounted devices 1A and 1B shown in FIG.
  • the vehicle-mounted devices 1A and 1B include a vehicle information acquisition unit 10, a cloud communication unit 11, a control unit 12, and an inter-vehicle communication unit 13.
  • the vehicle information acquisition unit 10 acquires vehicle information of the vehicles A and B.
  • vehicle information is acquired by connecting to an ECU (electronic control unit) or a sensor group mounted on the vehicles A and B.
  • the vehicle information acquisition unit 10 acquires the vehicle information of the vehicles A and B constantly or every set period and outputs the vehicle information to the cloud communication unit 11.
  • the cloud communication unit 11 is a communication unit that communicates with the cloud server 2 and is connected to the cloud server 2 via a public line such as a high-speed communication standard (4G), for example.
  • the cloud communication unit 11 transmits the vehicle information acquired by the vehicle information acquisition unit 10 to the cloud server 2 and receives the communication establishment information transmitted from the cloud server 2.
  • the cloud communication part 11 will transmit to the cloud server 2 immediately, if vehicle information is input from the vehicle information acquisition part 10. FIG. Therefore, the vehicle information newly acquired by the vehicle information acquisition unit 10 is sequentially sent to the cloud server 2.
  • FIG. 2 although the case where the cloud communication part 11 exists in the housing
  • the control unit 12 performs processing using information obtained by the cloud communication unit 11 and the inter-vehicle communication unit 13. For example, the vehicle-to-vehicle communication unit 13 establishes vehicle-to-vehicle communication based on the communication establishment information received by the cloud communication unit 11. Moreover, the control part 12 performs vehicle control or driving assistance using the data transmitted / received by the vehicle-to-vehicle communication. Note that when information to be notified to the driver (such as driving support information) is generated, the control unit 12 may notify the driver using the external device 3.
  • the external device 3 is a device that is connected to the control unit 12 to exchange information. For example, a mobile terminal such as a mobile phone or a smartphone is used.
  • the inter-vehicle communication unit 13 is a communication unit that performs inter-vehicle communication, and establishes the inter-vehicle communication based on the communication establishment information received by the cloud communication unit 11 from the cloud server 2. After the vehicle-to-vehicle communication is established, the vehicle-to-vehicle communication unit 13 transmits / receives data to / from the communication counterpart on-vehicle device in accordance with instructions from the control unit 12.
  • vehicle information acquisition unit 10 the cloud communication unit 11, the control unit 12, and the inter-vehicle communication unit 13 are configured such that, for example, the microcomputer executes a program describing processing unique to the present invention, Is realized as a concrete means of cooperation.
  • FIG. 3 is a block diagram illustrating a configuration of the cloud server according to the first embodiment.
  • the cloud server 2 includes a communication unit 20, a vehicle state estimation unit 21, a vehicle network construction unit 22, and a map information management unit 23.
  • the communication unit 20 is a communication unit that performs communication with the cloud communication unit 11 of the vehicle-mounted devices 1A and 1B.
  • the communication unit 20 receives the vehicle information transmitted from the vehicle-mounted devices 1A and 1B, and the vehicle-mounted devices 1A and B of the vehicles A and B that should communicate with each other using the communication establishment information created by the vehicle network construction unit 22. Send to 1B.
  • the vehicle state estimation unit 21 has a function of estimating the vehicle state of the vehicles A and B in which the on-vehicle devices 1A and 1B are mounted, and the vehicle state is based on the vehicle information and map information uploaded from the on-vehicle devices 1A and 1B.
  • the positions and traveling directions of A and B are estimated. For example, when vehicle information is received from the vehicle-mounted devices 1 ⁇ / b> A and 1 ⁇ / b> B by the communication unit 20, the vehicle state estimation unit 21 sequentially stores it in the memory as history information. Then, the real-time positions and traveling directions (including speed) of the vehicles A and B are estimated based on the temporal changes in the positions of the vehicles A and B included in the vehicle information of the history information and the map information.
  • the vehicle network construction unit 22 determines a vehicle to be communicated between vehicles based on the position and traveling direction of the vehicle estimated by the vehicle state estimation unit 21, and is necessary for establishing vehicle-to-vehicle communication with the vehicle to be communicated between vehicles. Create communication establishment information. For example, when the vehicles A and B satisfy a specific condition for vehicle-to-vehicle communication and exist in an area where the vehicle-mounted devices 1A and 1B can communicate with each other, it is determined that a vehicle network by vehicle-to-vehicle communication can be constructed. To do. As a specific condition, in addition to the case where the above-mentioned vehicles are traveling on the same road, the vehicle is traveling in a group where the vehicles are subject to driving assistance (such as an intersection with frequent accidents). The case where it is.
  • the vehicle network constructing unit 22 when one vehicle-mounted device that has been determined to be a vehicle to be communicated between vehicles has already built a vehicle network based on vehicle-to-vehicle communication with another vehicle-mounted device, the vehicle network constructing unit 22 The other vehicle-mounted devices that are determined to be vehicles should also be able to communicate with each other over the existing vehicle network. For example, the vehicle network construction unit 22 creates the same communication establishment information that was transmitted when the existing vehicle network was constructed, and the communication unit 20 transmits the communication establishment information to the vehicle-mounted device (the other vehicle-mounted device). Accordingly, the on-vehicle device can be added to the existing vehicle network.
  • the map information management unit 23 is a management unit that manages map information, and acquires map information requested from the vehicle state estimation unit 21.
  • requires the map information around the position of the vehicle contained in vehicle information, and utilizes it for estimation of the position and the advancing direction of the said vehicle.
  • the map information may be stored in a storage device included in the cloud server 2 or may be downloaded from an external map information server.
  • the communication unit 20, the vehicle state estimation unit 21, the vehicle network construction unit 22, and the map information management unit 23, for example, execute hardware and software by executing a program describing processing unique to the present invention. Is realized as a concrete means of cooperation.
  • FIG. 4 is a flowchart showing the operation of the vehicle-to-vehicle communication system according to the first embodiment, in which vehicle-to-vehicle communication is established between the vehicle-mounted device 1A and the vehicle-mounted device 1B, and the vehicle-mounted devices 1A and 1B communicate with each other. The process until driving assistance using is shown.
  • Cloud communication part 11 of onboard equipment 1A and 1B uploads the vehicle information of vehicles A and B to cloud server 2 (Step ST1).
  • the position information included in the vehicle information may be position information detected by the external device 3.
  • the external device 3 is a portable terminal such as a car navigation device or a smartphone, it is possible to detect position information using GPS information or the like.
  • the vehicle state estimation unit 21 determines the positions and traveling directions of the vehicles A and B based on the vehicle information of the vehicles A and B received by the communication unit 20 and the map information acquired from the map information management unit 23. Is estimated as a vehicle state (step ST2).
  • the vehicle network construction unit 22 constructs a vehicle network for vehicle-to-vehicle communication between the vehicle-mounted device 1A and the vehicle-mounted device 1B based on the positions and traveling directions of the vehicles A and B estimated by the vehicle state estimation unit 21. It is determined whether or not it is possible (step ST3).
  • the construction of the vehicle network is to determine whether or not the vehicles A and B can be a vehicle group that should communicate between vehicles.
  • the vehicle network construction condition is the specific condition described above. For example, there is a case where the vehicles A and B are traveling on the same road and exist in an area where the vehicles can communicate with each other. As specific conditions, in addition to the case where the vehicles A and B are traveling on the same road, the vehicles A and B are traveling in a group, and the traveling locations where the vehicles A and B can be the target of driving assistance (frequent accidents occur) This is the case when the vehicle is traveling at an intersection. In addition, the vehicle network construction unit 22 predicts that even if the vehicle-mounted devices 1A and 1B do not exist in the area where the vehicle-to-vehicle communication is possible, the areas where the vehicle-to-vehicle communication is possible can communicate with each other within a specified time. In such a case, a vehicle network may be constructed with the vehicles A and B.
  • step ST3; NO If the vehicle network cannot be constructed (step ST3; NO), the process is terminated. Moreover, when it determines with the vehicle network construction part 22 being able to construct
  • the communication unit 20 transmits the communication establishment information created by the vehicle network construction unit 22 to the vehicle-mounted devices 1A and 1B (step ST4).
  • the vehicle network construction part 22 since the vehicle network construction part 22 also manages the existing vehicle network of the vehicle-to-vehicle communication constructed previously, when one of the vehicle-mounted devices 1A and 1B communicates between the vehicles using the existing vehicle network. Then, it is confirmed whether or not the other of the vehicle-mounted devices 1A and 1B can be added to the existing vehicle network. If it can be added, the communication establishment information used in the existing vehicle network is transmitted to the other of the vehicle-mounted devices 1A and 1B.
  • the vehicle-mounted device 1A can communicate between the vehicle A and the vehicle-mounted device 1B.
  • the vehicle network construction unit 22 creates communication establishment information necessary for establishing vehicle-to-vehicle communication between the vehicle-mounted device 1A and the vehicle-mounted device 1B, and the communication unit 20 May be transmitted to the vehicle-mounted devices 1A and 1B.
  • the vehicles A and B are separated by a distance D, and the areas A1 and B1 in which the vehicle-mounted devices 1A and 1B can communicate with each other are not overlapped.
  • the vehicle speed Vb of the vehicle B is faster than the vehicle speed Va of the vehicle A, and the predicted time until the areas A1 and B1 capable of inter-vehicle communication contact each other is within a specified time.
  • the vehicle network construction unit 22 determines that the areas A1 and B1 in which the vehicle-mounted devices 1A and 1B can communicate with each other are in the vicinity and can communicate within the specified time, and the vehicle of the vehicle-mounted devices 1A and 1B. Create communication establishment information related to inter-vehicle communication in advance. This communication establishment information is transmitted to the vehicle-mounted devices 1A and 1B by the communication unit 20.
  • prediction information indicating that the areas A1 and B1 capable of inter-vehicle communication are approaching may be transmitted to the vehicle-mounted devices 1A and 1B.
  • the prediction information includes, for example, a prediction time until the areas A1 and B1 in which the vehicle-to-vehicle communication is possible, a time change of the relative positions of the vehicles A and B, and the like.
  • the predicted time can be calculated based on the radio wave intensity of the vehicle-to-vehicle communication of the vehicle-mounted devices 1A and 1B, that is, the change in the vehicle speed of the areas A1 and B1, the vehicles A and B, or the relative positions of the vehicles A and B. it can.
  • the vehicle speed may be acquired from the vehicle information acquisition unit 10 by the vehicle-mounted device, but may be calculated from a change in position based on the position information received by the cloud server 2 from the vehicle-mounted device.
  • the cloud communication unit 11 of the vehicle-mounted devices 1A and 1B receives the communication establishment information transmitted from the cloud server 2 and outputs it to the control unit 12.
  • the control unit 12 instructs the vehicle-to-vehicle communication unit 13 based on the communication establishment information input from the cloud communication unit 11.
  • the vehicle-to-vehicle communication unit 13 establishes vehicle-to-vehicle communication between the vehicle-mounted devices 1A and 1B based on an instruction from the control unit 12 (step ST5).
  • control part 12 of onboard equipment 1A, 1B when the control part 12 of onboard equipment 1A, 1B has received the prediction information which shows that the area A1, B1 which can communicate between vehicles of onboard equipment 1A, 1B is approaching, it is based on prediction information.
  • the timing for establishing inter-vehicle communication and the data distribution timing for inter-vehicle communication can be controlled. For example, when the cloud communication unit 11 has received a predicted time until the areas A1 and B1 contact as predicted information, the control unit 12 can perform inter-vehicle communication of the vehicle-mounted devices 1A and 1B after the predicted time has elapsed.
  • control unit 12 exchanges and shares vehicle information of vehicles A and B through vehicle-to-vehicle communication (step ST6).
  • the control unit 12 determines whether or not driving assistance is necessary based on the vehicle information of the own vehicle and the vehicle information of the other vehicle of the communication partner (step ST7). For example, the control unit 12 predicts whether or not the own vehicle and the other vehicle collide based on the vehicle information of the own vehicle and the vehicle information of the other vehicle, and avoids this when it is predicted that the vehicle will collide. Judge that driving assistance is necessary. If it is determined that driving assistance is not necessary (step ST7; NO), the process is terminated.
  • step ST8 When it is determined that the vehicle and driving support are necessary (step ST7; YES), the control unit 12 performs driving support (step ST8). For example, when a collision between the host vehicle and another vehicle is predicted, the driver is notified using the external device 3. Thereby, the driver
  • the control unit 12 determines that driving assistance for avoiding the collision is necessary, A notification process using the external device 3 is performed. Even in this way, the driver of the vehicles A and B can perform driving to avoid collision.
  • step ST1 when communication between the cloud communication unit 11 and the cloud server 2 is interrupted, the control unit 12 transmits communication establishment information to the inter-vehicle communication unit 13 at a specified cycle, as in the conventional case. (Delivery).
  • the inter-vehicle communication unit 13 establishes communication with the vehicle-mounted device of the other vehicle based on the communication establishment information transmitted / received by the inter-vehicle communication.
  • the control unit 12 stops the distribution of the communication establishment information by the inter-vehicle communication unit 13 and the cloud communication unit 11 becomes the cloud server.
  • Vehicle-to-vehicle communication is established based on the communication establishment information received from 2.
  • the vehicle information acquisition unit 10 that acquires vehicle information related to the vehicle state of the host vehicle and the vehicle information acquired by the vehicle information acquisition unit 10 are transmitted to the cloud server 2.
  • the cloud communication unit 11 that receives the communication establishment information transmitted from the cloud server 2, the vehicle-to-vehicle communication unit 13 that performs vehicle-to-vehicle communication, and the vehicle-to-vehicle communication unit 13 based on the communication establishment information received by the cloud communication unit 11.
  • a control unit 12 for instructing inter-vehicle communication and establishing communication.
  • the cloud communication part 11 is that the area where the vehicle-to-vehicle communication part 13 can communicate between vehicles, and the area where the vehicle equipment of another vehicle can communicate between vehicles are approaching.
  • the prediction information shown is received from the cloud server 2.
  • the cloud server 2 Before the cloud communication part 11 contact
  • the cloud communication unit 11 uses the cloud to calculate the predicted time until the area where the vehicle-to-vehicle communication unit 13 can communicate between the vehicles and the area where the vehicle-mounted device of the other vehicle can communicate between vehicles. Receive from server 2.
  • the predicted time only a vehicle having a high possibility of inter-vehicle communication is selected, and communication can be established at the same time as inter-vehicle communication becomes possible. That is, it becomes possible to make only an appropriate vehicle an object vehicle for inter-vehicle communication.
  • the control part 12 is based on the vehicle information which the vehicle information acquisition part 10 acquired, and the vehicle information which the inter-vehicle communication part 13 received from the onboard equipment of the other vehicle.
  • a notification process using the external device 3 is performed.
  • a collision can be predicted as soon as vehicle-to-vehicle communication becomes possible based on an estimated time until an area where vehicle-to-vehicle communication is possible, and if a collision is predicted, the driver using the external device 3 Can be notified.
  • the cloud communication unit 11 when the cloud communication unit 11 receives that the control unit 12 has predicted that the vehicle and the other vehicle will collide by the cloud server 2, the notification using the external device 3 is performed. Process. In this way, the same effect as described above can be obtained.
  • the control unit 12 when communication between the cloud communication unit 11 and the cloud server 2 is interrupted, the control unit 12 is based on the communication establishment information transmitted and received by the vehicle-to-vehicle communication unit 13.
  • the cloud communication unit 11 When communication is established and communication between the cloud communication unit 11 and the cloud server 2 is resumed, the cloud communication unit 11 establishes inter-vehicle communication based on the communication establishment information received from the cloud server 2. By doing in this way, even if it is a case where communication with the cloud communication part 11 and the cloud server 2 is interrupted
  • FIG. 1 The inter-vehicle communication system according to the second embodiment has basically the same configuration as that of the first embodiment, but is different in that the use application is not vehicle control or driving support but content distribution. Therefore, refer to FIG. 1, FIG. 2, and FIG. 3 for the configurations of the inter-vehicle communication system, the vehicle-mounted device, and the cloud server.
  • FIG. 6 is a flowchart showing the operation of the inter-vehicle communication system according to Embodiment 2 of the present invention.
  • the inter-vehicle communication is established between the on-vehicle device 1A and the on-vehicle device 1B, and the on-vehicle devices 1A and 1B
  • the process until content delivery using inter-vehicle communication is performed is shown.
  • the processing from step ST1 to step ST5 is the same as that in FIG.
  • the content is videophone reception data (audio, video), and the external device 3 is a videophone.
  • step ST6a when communication of the vehicle-to-vehicle communication unit 13 is established, the control unit 12 of the vehicle-mounted devices 1A and 1B divides the content information acquired from the external device 3 into a specified size, and the vehicle-to-vehicle communication unit 13 performs the specified period. Deliver to. The received content information is output to the external device 3 to reproduce sound and video.
  • the vehicle network construction unit 22 of the cloud server 2 is about to separate the area A1 in which the vehicle-mounted device 1A can communicate between vehicles and the area B1 in which the vehicle-mounted device 1B can communicate between vehicles. May be transmitted to the vehicle-mounted devices 1A and 1B by the communication unit 20.
  • the areas A1 and B1 in which the vehicle-mounted devices 1A and 1B can communicate with each other overlap, but the vehicle speed Va of the vehicle A is faster than the vehicle speed Vb of the vehicle B and the areas A1 and A1 that can communicate between vehicles.
  • the estimated time until B1 is separated is within a specified time.
  • the control unit 12 of the on-vehicle devices 1A and 1B receives the inter-vehicle communication unit. 13 increases the amount of communication transmitted to the communication partner.
  • the prediction information includes, for example, a prediction time until the areas A1 and B1 in which the vehicle-to-vehicle communication can be performed are separated, a temporal change in the relative positions of the vehicles A and B, and the like.
  • the predicted time can be calculated based on the radio wave intensity of the vehicle-to-vehicle communication of the vehicle-mounted devices 1A and 1B, that is, the change in the vehicle speed of the areas A1 and B1, the vehicles A and B, or the relative positions of the vehicles A and B. it can.
  • the control unit 12 can display the content before the vehicle-to-vehicle communication is disconnected when the predicted time is less than the specified time. Determine that information should be sent. Therefore, the control unit 12 uses the communication bandwidth of the vehicle-to-vehicle communication unit 13 and the vehicle-mounted device 1A on the condition that the communication band of the vehicle-to-vehicle communication unit 13 has room and the processing load of the vehicle-mounted devices 1A and 1B has room. , 1B is maximized to increase the amount of inter-vehicle communication, thereby transmitting the content information in advance.
  • the cloud communication unit 11 tries to separate the area where the vehicle-to-vehicle communication unit 13 can communicate between vehicles and the area where the vehicle-mounted device of another vehicle can communicate between vehicles. Prediction information indicating that the cloud server 2 is present. In this way, it is possible to grasp the timing at which the vehicle-to-vehicle communication is disconnected based on the prediction information, and it is possible to control the data distribution of the vehicle-to-vehicle communication according to this.
  • the cloud communication part 11 is the prediction time until the area where the vehicle-to-vehicle communication part 13 can communicate between vehicles, and the area where the vehicle equipment of other vehicles can communicate between vehicles are separated. Is received from the cloud server 2, and the control unit 12 instructs the inter-vehicle communication unit 13 to increase the inter-vehicle communication amount with the vehicle-mounted device of the other vehicle when the predicted time is equal to or shorter than the specified time. By doing in this way, even if the vehicle is moving near the boundary of the area where vehicle-to-vehicle communication is possible, vehicle-to-vehicle communication data can be acquired without delay.
  • any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
  • the vehicle-mounted device can improve the communication efficiency by reducing the overhead when establishing inter-vehicle communication, and is therefore suitable for a driving support device that performs driving support according to the positional relationship with other vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 自車の車両状態に関する車両情報を取得する車両情報取得部10と、車両情報取得部10が取得した車両情報をクラウドサーバ2へ送信するとともに、クラウドサーバ2から送信された通信確立情報を受信するクラウド通信部11と、車車間通信を行う車車間通信部13と、クラウド通信部11が受信した通信確立情報に基づいて車車間通信部13に車車間通信を指示し通信を確立させる制御部12を備える。

Description

車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法
 この発明は、車車間通信を行う車載器、車車間通信を管理するクラウドサーバ、これらを用いた車車間通信システムおよび車車間通信方法に関する。
 従来から、車車間通信によって車両間で車両情報を共有してオートクルーズなどの車両制御や運転支援を行うシステムが知られている。
 例えば、特許文献1には、車車間通信によって安全な走行の実現と無線通信網を流れる全体通信量を削減して無線リソースの有効利用を図った移動無線通信装置およびその車車間通信方法が開示されている。
 また、特許文献2は、車車間通信を行う車両をグループ化し、グループを跨ぐデータ転送量を最適化することで、通信帯域の使用負荷を下げると同時に輻輳を少なくする方法を開示している。
 さらに、特許文献3には、中継装置が車両間でやり取りする車両情報を収集し、各車両からの車両情報を一つのデータにまとめて各車両に一括送信する衝突防止システムが開示されている。このようにすることにより、通信帯域の使用負荷を下げつつ、車両間で取得された互いの車両情報に基づいて車両同士の衝突の危険性を判定している。
国際公開第2011/024237号 特開2012-124936号公報 特開2013-33505号公報
 従来では、車載器間で通信確立情報を直接やり取りして車車間通信を確立する必要があった。例えば、通信確立情報として車車間通信で使用する通信チャンネル(周波数)や電波強度が車両間でやり取りされ、これらの情報が互いの装置に設定されてから通信リンクが確立して実通信が開始される。このように車車間通信が確立されるまでに時間がかかるため、車両制御や運転支援に必要な情報を送受信する実通信時間が短くなるという課題があった。
 また、従来の車載器は、車車間通信を確立するために必要な通信確立情報を規定周期で配信しているので、実通信とは無関係の不要な情報であるオーバヘッドが発生して車車間通信の確立やその維持が不安定になるという課題があった。
 例えば、自車が直近前後の車両と車車間通信しながらオートクルーズを行っている場合に、自車の車載器が直近の車両よりも前を走行している車両の車載器から通信確立情報を受信すると、新たに受信した通信確立情報に基づいた通信確立処理を開始してしまう。
 この場合、新たな通信確立情報は自車のオートクルーズに必要な情報を送受信するための実通信とは無関係のオーバヘッドとなる。
 さらに、従来の車載器は、自車と他車の位置関係によらず、通信確立情報を送信しているため、地図情報を用いたマップマッチングを行わないと、同一道路上に存在しない車両との区別ができない。例えば、立体交差の上側の道路と下側の道路との区別ができない。
 従って、立体交差の上側の道路を自車が走行しており、同じ上側の道路を走行する他車と車車間通信しながら運転支援を行っている場合に、自車の車載器が、この運転支援とは無関係の下側の道路を走行する車両からの通信確立情報を受信しても新たに受信した通信確立情報に基づく通信確立処理を開始してしまう。この問題を回避するためには、マップマッチングを行う必要があるが、車載器でマップマッチングを行う場合、車載器の処理負荷は不可避的に増大する。すなわち、この処理に対応可能な高い演算機能が車載器に要求されることになる。また、例えば、上述した下側の道路を走行する車両を特定するための情報は、自車にとって不要な情報であり、このような情報をやり取りすることで通信帯域が圧迫される可能性もある。
 一方、特許文献1に開示される装置は、非優先道路を走行する車両に関する情報のみを車車間通信で送信するため、不要な情報の通信量は削減される。
 しかしながら、特許文献1では、車車間通信確立時のオーバヘッドについて考慮されておらず、上述した問題を解決することはできない。
 また、特許文献1は、運転支援に利用する車車間通信に特化されており、車車間通信で利用可能なアプリケーションが限定されている。
 特許文献2においても、車車間通信確立時のオーバヘッドについて考慮されておらず、上述した問題を解決することはできない。
 また、特許文献2は、車両が走行する道路線形を考慮していないため、自車とは位置的に関連性が低い車両からの情報が通信されることによって、車車間通信の通信帯域が圧迫される可能性がある。
 特許文献3では、中継装置で車両情報を収集し、これらの情報をまとめる時間が必要である。このため、実通信が開始されるまでの遅延時間がさらに長くなり、緊急性を要する車両制御や運転支援には対応できない可能性がある。
 また、特許文献3は、オーバヘッドなどの車車間通信自体の問題点に言及しておらず、これを解決することはできない。
 この発明は、上記のような課題を解決するためになされたもので、車車間通信確立時のオーバヘッドを削減して通信効率を向上させることができる車載器、車車間通信を管理するクラウドサーバ、これらを用いた車車間通信システムおよび車車間通信方法を得ることを目的とする。
 この発明に係る車載器は、車両状態および地図情報を基に車両の位置および進行方向を推定して車車間通信すべき車両を決定し、車車間通信すべき車両で車車間通信を確立するために必要な通信確立情報を作成して送信するクラウドサーバと通信を行う車載器であって、自車の車両状態に関する車両情報を取得する車両情報取得部と、車両情報取得部が取得した車両情報をクラウドサーバへ送信するとともに、クラウドサーバから送信された通信確立情報を受信するクラウド通信部と、車車間通信を行う車車間通信部と、クラウド通信部が受信した通信確立情報に基づいて車車間通信部に車車間通信を指示し通信を確立させる制御部とを備える。
 この発明によれば、車車間通信確立時のオーバヘッドを削減して通信効率を向上させることができるという効果がある。
この発明に係る車車間通信システムの構成を示すブロック図である。 実施の形態1に係る車載器の構成を示すブロック図である。 実施の形態1に係るクラウドサーバの構成を示すブロック図である。 実施の形態1に係る車車間通信システムの動作を示すフローチャートである。 車両間の車車間通信エリアが接近している場合を示す図である。 この発明の実施の形態2に係る車車間通信システムの動作を示すフローチャートである。 車両間の車車間通信エリアが離間している場合を示す図である。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明に係る車車間通信システムの構成を示すブロック図であり、例えば、車両Aの車載器1Aと車両Bの車載器1Bとの間で車車間通信を行う場合について示している。図1に示すように、この発明に係る車車間通信システムは、車両Aの車載器1A、車両Bの車載器1Bおよびクラウドサーバ2を備える。
 車載器1A,1Bは、クラウドサーバ2と通信して、自車に関する車両情報をアップロードする。車両情報は車両の車両状態に関する情報であり、例えば車両の位置情報および速度情報である。また、クラウドサーバ2は、車載器1A,1Bから受信した車両情報と地図情報とに基づいて、車載器1A,1Bを搭載する車両A,Bの位置および進行方向を推定する。
 次に、クラウドサーバ2は、推定された車両A,Bの位置および進行方向に基づいて、車両A,Bが車車間通信すべき特定の位置関係にあると判断した場合に、車載器1Aと車載器1Bとの車車間通信ネットワークを構築する。
 例えば、車車間通信で情報を送受信してオートクルーズを行う際に、クラウドサーバ2は、車両Aと車両Bが同一道路の同一車線を走行しており、かつ車両Aと車両Bが直近で先行または後続して走行する位置関係にあると推定した場合に、車両Aと車両Bは車車間通信すべき車両と決定される。
 また、クラウドサーバ2は、車載器1Aと車載器1Bの間で車車間通信を確立するために必要な通信確立情報を作成して車載器1A,1Bへ送信する。なお、通信確立情報には車車間通信で使用する通信チャネルや電波強度などがある。
 車載器1A,1Bでは、クラウドサーバ2から受信した通信確立情報を設定するだけで車車間通信が確立される。これにより、車載器1A,1Bは、車車間通信を介して互いの車両情報を共有して車両制御や運転支援を行う。
 図2は、実施の形態1に係る車載器の構成を示すブロック図であり、図1で示した車載器1A,1Bの構成を示している。車載器1A,1Bは、図2に示すように、車両情報取得部10、クラウド通信部11、制御部12および車車間通信部13を備える。
 車両情報取得部10は、車両A,Bの車両情報を取得する。例えば、車両A,Bに搭載されたECU(電子制御ユニット)あるいはセンサ群と接続して車両情報を取得する。
 なお、車両情報取得部10は、車両A,Bの車両情報を常にまたは設定周期ごとに取得してクラウド通信部11に出力する。
 クラウド通信部11は、クラウドサーバ2と通信を行う通信部であり、例えば、高速通信規格(4G)などの公衆回線を介してクラウドサーバ2と通信接続する。また、クラウド通信部11は、車両情報取得部10が取得した車両情報をクラウドサーバ2へ送信するとともに、クラウドサーバ2から送信された通信確立情報を受信する。
 ここで、クラウド通信部11は、車両情報取得部10から車両情報を入力すると、直ちにクラウドサーバ2へ送信する。従って、クラウドサーバ2には、車両情報取得部10によって新たに取得された車両情報が逐次送られることになる。
 なお、図2では、クラウド通信部11が車載器1A,1Bと同一の筐体内にある場合を示したが、車載器1A,1Bと別体で設けてもかまわない。
 制御部12は、クラウド通信部11および車車間通信部13で得られた情報を用いて、処理を行う。例えば、クラウド通信部11が受信した通信確立情報に基づいて車車間通信部13に車車間通信を確立させる。
 また、制御部12は、車車間通信で送受信されたデータを利用して車両制御または運転支援を行う。なお、運転者に報知すべき情報(運転支援情報など)が発生した場合には、制御部12が、外部機器3を用いて運転者へ報知してもよい。
 外部機器3は、制御部12と接続して情報をやり取りする機器であり、例えば携帯電話やスマートフォンなどの携帯端末が利用される。
 車車間通信部13は、車車間通信を行う通信部であり、クラウド通信部11がクラウドサーバ2から受信した通信確立情報に基づいて上記車車間通信を確立する。車車間通信を確立した後、車車間通信部13は、制御部12の指示に従って通信相手の車載器との間でデータを送受信する。
 なお、車両情報取得部10、クラウド通信部11、制御部12および車車間通信部13は、例えば、この発明に特有な処理を記述したプログラムをマイクロコンピュータが実行することで、ハードウェアとソフトウェアとが協働した具体的な手段として実現される。
 図3は、実施の形態1に係るクラウドサーバの構成を示すブロック図である。クラウドサーバ2は、図3に示すように、通信部20、車両状態推定部21、車両ネットワーク構築部22および地図情報管理部23を備える。
 通信部20は、車載器1A,1Bのクラウド通信部11との間で通信を行う通信部である。また、通信部20は、車載器1A,1Bからそれぞれ送信された車両情報を受信するとともに、車両ネットワーク構築部22が作成した通信確立情報を車車間通信すべき車両A,Bの車載器1A,1Bへ送信する。
 車両状態推定部21は、車載器1A,1Bを搭載する車両A,Bの車両状態を推定する機能を有しており、車載器1A,1Bからアップロードされた車両情報および地図情報に基づいて車両A,Bの位置および進行方向を推定する。
 例えば、車両状態推定部21は、通信部20によって車載器1A,1Bから車両情報が受信されると、履歴情報としてメモリに逐次記憶する。そして、履歴情報の車両情報に含まれる車両A,Bの位置の時間変化と地図情報に基づいて、車両A,Bのリアルタイムな位置および進行方向(速度を含む)を推定する。
 車両ネットワーク構築部22は、車両状態推定部21が推定した車両の位置および進行方向に基づいて車車間通信すべき車両を決定し、車車間通信すべき車両で車車間通信を確立するために必要な通信確立情報を作成する。
 例えば、車両A,Bが車車間通信すべき特定の条件を満たし、かつ車載器1A,1Bの車車間通信可能なエリアに存在する場合に、車車間通信による車両ネットワークが構築可能であると判断する。特定の条件としては、上述した車両同士が同一道路を走行している場合の他に、車両同士がグループ走行している、運転支援の対象となり得る走行場所(事故多発の交差点など)を走行している場合などが挙げられる。
 また、車車間通信すべき車両と判断された車両同士の一方の車載器が、既に別の車載器と車車間通信による車両ネットワークを構築している場合、車両ネットワーク構築部22は、車車間通信すべき車両と判断された車両同士の他方の車載器についても、既存の車両ネットワークで車車間通信可能とする。
 例えば、車両ネットワーク構築部22が、既存の車両ネットワークを構築したときに送信したものと同じ通信確立情報を作成し、通信部20によって当該車載器(上記他方の車載器)に送信する。これによって、当該車載器についても既存の車両ネットワークに追加することができる。
 地図情報管理部23は、地図情報を管理する管理部であって、車両状態推定部21から要求された地図情報を取得する。
 例えば、車両状態推定部21は、車両情報に含まれる車両の位置周辺の地図情報を要求し、当該車両の位置および進行方向の推定に利用する。
 なお、地図情報は、クラウドサーバ2が備える記憶装置に格納されていてもよく、外部の地図情報サーバからダウンロードしてもよい。
 なお、通信部20、車両状態推定部21、車両ネットワーク構築部22および地図情報管理部23は、例えば、この発明に特有な処理を記述したプログラムをマイクロコンピュータが実行することにより、ハードウェアとソフトウェアとが協働した具体的な手段として実現される。
 次に動作について説明する。
 図4は、実施の形態1に係る車車間通信システムの動作を示すフローチャートであり、車載器1Aと車載器1Bとの間で車車間通信を確立して、車載器1A,1Bが車車間通信を用いた運転支援を行うまでの処理を示している。
 車載器1A,1Bのクラウド通信部11が、車両A,Bの車両情報をクラウドサーバ2にアップロードする(ステップST1)。なお、車両情報に含まれる位置情報としては、外部機器3が検出した位置情報であってもよい。例えば、外部機器3がカーナビゲーション装置やスマートフォンなどの携帯端末である場合、GPS情報などを利用して位置情報を検出することが可能である。
 クラウドサーバ2において、車両状態推定部21は、通信部20が受信した車両A,Bの車両情報と地図情報管理部23から取得した地図情報とに基づいて、車両A,Bの位置および進行方向を車両状態として推定する(ステップST2)。
 次に、車両ネットワーク構築部22が、車両状態推定部21に推定された車両A,Bの位置および進行方向に基づいて、車載器1Aと車載器1Bの間で車車間通信の車両ネットワークを構築できるか否かを判定する(ステップST3)。ここで、車両ネットワークの構築とは、車両A,Bが車車間通信すべき車両グループにできるかどうかを決定することである。
 車両ネットワークの構築条件は、上述した特定の条件であり、例えば、車両A,Bが同一の道路を走行中で、かつ互いの車車間通信可能なエリアに存在する場合が挙げられる。
 特定の条件としては、車両A,Bが同一道路を走行している場合の他に、車両A,Bがグループ走行している、車両A,Bが運転支援の対象となり得る走行場所(事故多発の交差点など)を走行している場合などが挙げられる。
 また、車両ネットワーク構築部22は、車載器1A,1Bが車車間通信可能なエリアに存在しない場合であっても、規定時間以内に互いの車車間通信可能なエリアが接して通信可能になると予測される場合は、車両A,Bで車両ネットワークを構築してもよい。
 車両ネットワークを構築できない場合(ステップST3;NO)、処理を終了する。
 また、車両ネットワーク構築部22は、車載器1Aと車載器1Bで車両ネットワークを構築できると判定した場合(ステップST3;YES)、車載器1Aと車載器1Bの間で車車間通信を確立するために必要な通信確立情報を作成する。
 次いで、通信部20は、車両ネットワーク構築部22が作成した通信確立情報を車載器1A,1Bに送信する(ステップST4)。
 なお、車両ネットワーク構築部22は、以前に構築した車車間通信の既存の車両ネットワークについても管理しているので、車載器1A,1Bの一方が既存の車両ネットワークで車車間通信している場合は、車載器1A,1Bの他方を既存の車両ネットワークに追加可能か否かを確認する。追加可能であれば、既存の車両ネットワークで使用した通信確立情報を車載器1A,1Bの他方に送信することになる。
 また、図5に示すように、車載器1A,1Bが車車間通信可能なエリアに存在していなくても、車載器1Aが車車間通信可能なエリアA1と車載器1Bが車車間通信可能なエリアB1とが接近していると予測される場合、車両ネットワーク構築部22が、車載器1Aと車載器1Bとの車車間通信を確立するために必要な通信確立情報を作成し、通信部20によって車載器1A,1Bに送信してもよい。
 図5の例は、車両A,Bは距離Dだけ離れており、車載器1A,1Bの車車間通信可能なエリアA1,B1は重なっていない。しかしながら、車両Aの車速Vaよりも車両Bの車速Vbが速く、車車間通信可能なエリアA1,B1が接するまでの予測時間が規定時間以内の場合である。この場合、車両ネットワーク構築部22は、車載器1A,1Bの車車間通信可能なエリアA1,B1が近傍にあり、かつ規定時間以内に通信可能になると判断して、車載器1A,1Bの車車間通信に関する通信確立情報をあらかじめ作成する。この通信確立情報は、通信部20によって車載器1A,1Bに送信される。
 また、通信確立情報に加え、車車間通信可能なエリアA1,B1が接近していることを示す予測情報を車載器1A,1Bに送信してもよい。
 予測情報には、例えば、車車間通信可能なエリアA1,B1が接するまでの予測時間や車両A,Bの相対的な位置の時間変化などが挙げられる。なお、予測時間は、車載器1A,1Bの車車間通信の電波強度すなわちエリアA1,B1、車両A,Bの車速または車両A,Bの相対的な位置の変化などに基づいて算出することができる。
 なお、車速は、車載器が車両情報取得部10から取得してもよいが、クラウドサーバ2が車載器から受信した位置情報に基づいて位置の変化から算出してもよい。
 車載器1A,1Bのクラウド通信部11は、クラウドサーバ2から送信された通信確立情報を受信して制御部12へ出力する。制御部12は、クラウド通信部11から入力した通信確立情報に基づいて車車間通信部13に車車間通信を指示する。車車間通信部13は、制御部12からの指示に基づいて車載器1A,1Bの車車間通信を確立する(ステップST5)。
 また、車載器1A,1Bの制御部12は、車載器1A,1Bの車車間通信可能なエリアA1,B1が接近していることを示す予測情報を受信していた場合、予測情報に基づいて車車間通信を確立するタイミングと車車間通信のデータ配信タイミングを制御することができる。例えば、予測情報としてエリアA1,B1が接するまでの予測時間をクラウド通信部11が受信していた場合、制御部12は、この予測時間が経過して車載器1A,1Bの車車間通信が可能になったと同時に、通信確立情報に基づいて車車間通信部13に通信を確立させ、車車間通信でデータ送受信を開始する。これにより、車車間通信の実通信時間を延ばすことが可能である。
 また、予測時間を用いることで車車間通信する可能性が高い車両のみが選択され、車車間通信が可能になったと同時に通信を確立することができる。すなわち、車車間通信可能なエリア外でかつこのエリアに進入する可能性が低い車両については、車車間通信を確立するための処理が行われる頻度が減少し、適切な車両のみを車車間通信の対象車両とすることが可能となる。
 制御部12は、車車間通信部13が通信を確立すると、車両A,Bの車両情報を車車間通信でやり取りして共有する(ステップST6)。
 次に、制御部12は、自車の車両情報と通信相手の他車の車両情報に基づいて運転支援の要否を判断する(ステップST7)。
 例えば、制御部12は、自車の車両情報および他車の車両情報に基づいて、自車と他車とが衝突するか否かを予測し、衝突すると予測された場合に、これを回避する運転支援が必要であると判断する。また、運転支援が必要ないと判断された場合(ステップST7;NO)、処理を終了する。
 制御部12は、自車と運転支援が必要であると判断した場合(ステップST7;YES)、運転支援を行う(ステップST8)。例えば、自車と他車との衝突が予測された場合には、外部機器3を用いて運転者に報知する。これにより、車両A,Bの運転者は、衝突を回避する運転を行うことができる。
 また、クラウドサーバ2によって自車と他車とが衝突すると予測されたことをクラウド通信部11が受信した場合においても、制御部12が、衝突を回避する運転支援が必要であると判断し、外部機器3を用いた報知処理を行う。このようにしても、車両A,Bの運転者は衝突を回避する運転を行うことができる。
 なお、ステップST1において、クラウド通信部11とクラウドサーバ2との間の通信が遮断されていた場合、制御部12は、従来と同様に、車車間通信部13に規定周期で通信確立情報を送信(配信)させる。車車間通信部13は、車車間通信で送受信した通信確立情報に基づいて他車の車載器と通信を確立する。
 一方、クラウド通信部11とクラウドサーバ2との間の通信が再開した場合には、制御部12が、車車間通信部13による通信確立情報の配信を停止して、クラウド通信部11がクラウドサーバ2から受信した通信確立情報に基づいて車車間通信を確立させる。
 このようにすることで、クラウド通信部11とクラウドサーバ2の通信が遮断されても車車間通信の確立が可能となり、通信の安定性を向上させることができる。
 以上のように、この実施の形態1によれば、自車の車両状態に関する車両情報を取得する車両情報取得部10と、車両情報取得部10が取得した車両情報をクラウドサーバ2へ送信するとともに、クラウドサーバ2から送信された通信確立情報を受信するクラウド通信部11と、車車間通信を行う車車間通信部13と、クラウド通信部11が受信した通信確立情報に基づいて車車間通信部13に車車間通信を指示し通信を確立させる制御部12とを備える。このように構成することで、車載器自体が規定周期ごとに通信確立情報を送信する必要がなくなり、実通信に無関係な車両の車載器から通信確立情報が送信されなくなる。このため、車車間通信確立時のオーバヘッドが削減されて通信効率を向上させることができる。
 また、この実施の形態1によれば、クラウド通信部11が、車車間通信部13が車車間通信可能なエリアと他車の車載器が車車間通信可能なエリアとが接近していることを示す予測情報をクラウドサーバ2から受信する。このようにすることで、予測情報に基づいて車車間通信を確立するタイミングと車車間通信のデータ配信タイミングを制御することができる。
 さらに、この実施の形態1によれば、クラウド通信部11が、車車間通信部13が車車間通信可能なエリアと他車の車載器が車車間通信可能なエリアが接する前に、クラウドサーバ2から車車間通信部13と他車の車載器との車車間通信を確立するために必要な通信確立情報を受信する。これにより、自車と他車とが車車間通信可能なエリアに進入したと同時に車車間通信を確立することができる。
 さらに、この実施の形態1によれば、クラウド通信部11が、車車間通信部13が車車間通信可能なエリアと他車の車載器が車車間通信可能なエリアが接するまでの予測時間をクラウドサーバ2から受信する。予測時間を用いることで、車車間通信する可能性が高い車両のみが選択され、車車間通信が可能になったと同時に通信を確立することができる。すなわち、適切な車両のみを車車間通信の対象車両にすることが可能となる。
 さらに、この実施の形態1によれば、制御部12が、車両情報取得部10が取得した車両情報および車車間通信部13が他車の車載器から受信した車両情報に基づいて、自車と他車とが衝突すると予測された場合に、外部機器3を用いた報知処理を行う。
 特に、車車間通信可能なエリアが接するまでの予測時間に基づいて車車間通信が可能になると直ちに衝突を予測することができ、衝突すると予測された場合には、外部機器3を用いて運転者に報知することが可能である。
 さらに、この実施の形態1によれば、制御部12が、クラウドサーバ2によって自車と他車が衝突すると予測されたことをクラウド通信部11が受信した場合に、外部機器3を用いた報知処理を行う。このようにすることでも上記と同様の効果を得ることができる。
 さらに、この実施の形態1によれば、制御部12が、クラウド通信部11とクラウドサーバ2との通信が遮断されている場合、車車間通信部13が送受信した通信確立情報に基づいて車車間通信を確立させ、クラウド通信部11とクラウドサーバ2との通信が再開された場合には、クラウド通信部11がクラウドサーバ2から受信した通信確立情報に基づいて車車間通信を確立させる。このようにすることで、クラウド通信部11とクラウドサーバ2との通信が遮断された場合であっても車車間通信の確立が可能となり、通信の安定性を向上させることができる。
実施の形態2.
 実施の形態2に係る車車間通信システムは、実施の形態1と基本的に同様な構成であるが、利用アプリケーションが車両制御や運転支援ではなく、コンテンツ配信となっている点で異なる。そこで、車車間通信システム、車載器およびクラウドサーバの構成については、図1、図2および図3を参照する。
 次に動作について説明する。
 図6は、この発明の実施の形態2に係る車車間通信システムの動作を示すフローチャートであり、車載器1Aと車載器1Bとの間で車車間通信を確立して、車載器1A,1Bが車車間通信を用いたコンテンツ配信を行うまでの処理を示している。
 なお、図6において、ステップST1からステップST5までの処理は、図4と同様であるので説明を省略する。
 また、以降の説明では、コンテンツがテレビ電話の受信データ(音声、映像)であるものとし、外部機器3がテレビ電話機であるものとする。
 ステップST6aにおいて、車載器1A,1Bの制御部12は、車車間通信部13の通信が確立すると、外部機器3から取得したコンテンツ情報を規定サイズに分割し、車車間通信部13によって規定周期ごとに配信する。受信したコンテンツ情報は、外部機器3に出力され、音声と映像が再生される。
 また、クラウドサーバ2の車両ネットワーク構築部22が、図7に示すように、車載器1Aが車車間通信可能なエリアA1と車載器1Bが車車間通信可能なエリアB1とが離間しようとしていることが予測される場合、この予測情報を通信部20によって車載器1A,1Bに送信してもよい。図7の例は、車載器1A,1Bの車車間通信可能なエリアA1,B1は重なっているが、車両Aの車速Vaが車両Bの車速Vbよりも速く、車車間通信可能なエリアA1,B1が離間するまでの予測時間が規定時間以内となっている。
 車載器1A,1Bの制御部12は、クラウド通信部11がクラウドサーバ2から車車間通信可能なエリアA1,B1が離間しようとしていることを示す予測情報を受信している場合、車車間通信部13が通信相手に送信する通信量を多くする。
 予測情報には、例えば、車車間通信可能なエリアA1,B1が離間するまでの予測時間や車両A,Bの相対的な位置の時間変化などが挙げられる。なお、予測時間は、車載器1A,1Bの車車間通信の電波強度すなわちエリアA1,B1、車両A,Bの車速または車両A,Bの相対的な位置の変化などに基づいて算出することができる。
 予測情報としてエリアA1,B1が離間するまでの予測時間をクラウド通信部11が受信している場合、制御部12は、この予測時間が規定時間以下になると車車間通信が切断されるまでにコンテンツ情報を送信すべきと判断する。
 そこで、制御部12は、車車間通信部13の通信帯域に余裕があり、車載器1A,1Bの処理負荷に余裕があることを条件として、車車間通信部13の使用通信帯域および車載器1A,1Bの処理負荷を最大にして車車間通信量を増加させることで、コンテンツ情報を先行して送信する。
 なお、車車間通信量の増加方法としては、例えば、送信周期を短くすることやチャネル分割して並列に送信することなどが考えられるが、その他の方法を利用してもよい。
 このようにすることで、車車間通信可能なエリアA1,B1の境界付近を車両A,Bが移動している場合であっても、コンテンツ情報を遅延なく取得することが可能となる。
 以上のように、この実施の形態2によれば、クラウド通信部11が、車車間通信部13が車車間通信可能なエリアと他車の車載器が車車間通信可能なエリアとが離間しようとしていることを示す予測情報をクラウドサーバ2から受信する。
 このようにすることで、予測情報に基づいて車車間通信が切断されるタイミングを把握することができ、これに応じて車車間通信のデータ配信を制御することが可能である。
 また、この実施の形態2によれば、クラウド通信部11が、車車間通信部13が車車間通信可能なエリアと他車の車載器が車車間通信可能なエリアとが離間するまでの予測時間をクラウドサーバ2から受信し、制御部12が、予測時間が規定時間以下である場合に、車車間通信部13に指示して他車の車載器との車車間通信量を増加させる。
 このようにすることで、車車間通信可能なエリアの境界付近を車両が移動している場合であっても、車車間通信データを遅延なく取得することが可能となる。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る車載器は、車車間通信確立時のオーバヘッドを削減して通信効率を向上させることができるので、他車との位置関係に応じた運転支援を行う運転支援装置に好適である。
 1A,1B 車載器、2 クラウドサーバ、3 外部機器、10 車両情報取得部、11 クラウド通信部、12 制御部、13 車車間通信部、20 通信部、21 車両状態推定部、22 車両ネットワーク構築部、23 地図情報管理部。

Claims (13)

  1.  車両状態および地図情報を基に車両の位置および進行方向を推定して車車間通信すべき車両を決定し、前記車車間通信すべき車両で車車間通信を確立するために必要な通信確立情報を作成して送信するクラウドサーバと通信を行う車載器であって、
     自車の車両状態に関する車両情報を取得する車両情報取得部と、
     前記車両情報取得部が取得した前記車両情報を前記クラウドサーバへ送信するとともに、前記クラウドサーバから送信された前記通信確立情報を受信するクラウド通信部と、
     車車間通信を行う車車間通信部と、
     前記クラウド通信部が受信した前記通信確立情報に基づいて前記車車間通信部に車車間通信を指示し通信を確立させる制御部とを備える車載器。
  2.  前記クラウド通信部は、前記車車間通信部が車車間通信可能なエリアと他車の車載器が車車間通信可能なエリアとが接近していることを示す予測情報を前記クラウドサーバから受信することを特徴とする請求項1記載の車載器。
  3.  前記クラウド通信部は、前記車車間通信部が車車間通信可能なエリアと前記他車の車載器が車車間通信可能なエリアが接する前に、前記クラウドサーバから前記車車間通信部と前記他車の車載器との車車間通信を確立するために必要な通信確立情報を受信することを特徴とする請求項2記載の車載器。
  4.  前記クラウド通信部は、前記車車間通信部が車車間通信可能なエリアと前記他車の車載器が車車間通信可能なエリアが接するまでの予測時間を前記クラウドサーバから受信することを特徴とする請求項3記載の車載器。
  5.  前記制御部は、前記車両情報取得部が取得した前記車両情報および前記車車間通信部が前記他車の車載器から受信した前記車両情報に基づいて前記自車と前記他車とが衝突すると予測された場合に、外部機器を用いた報知処理を行うことを特徴とする請求項4記載の車載器。
  6.  前記制御部は、前記クラウドサーバによって前記自車と前記他車が衝突すると予測されたことを前記クラウド通信部が受信した場合に、外部機器を用いた報知処理を行うことを特徴とする請求項4記載の車載器。
  7.  前記クラウド通信部は、前記車車間通信部が車車間通信可能なエリアと前記他車の車載器が車車間通信可能なエリアとが離間しようとしていることを示す予測情報を前記クラウドサーバから受信することを特徴とする請求項1記載の車載器。
  8.  前記クラウド通信部は、前記車車間通信部が車車間通信可能なエリアと他車の車載器が車車間通信可能なエリアとが離間するまでの予測時間を前記クラウドサーバから受信し、
     前記制御部は、前記予測時間が規定時間以下である場合に、前記車車間通信部に指示して前記他車の車載器との車車間通信量を増加させることを特徴とする請求項7記載の車載器。
  9.  前記制御部は、前記クラウド通信部と前記クラウドサーバとの通信が遮断されている場合、前記車車間通信部が送受信した前記通信確立情報に基づいて車車間通信を確立させ、前記クラウド通信部と前記クラウドサーバとの通信が再開された場合には、前記クラウド通信部が前記クラウドサーバから受信した前記通信確立情報に基づいて車車間通信を確立させることを特徴とする請求項1記載の車載器。
  10.  車両状態に関する車両情報を送信する車載器と通信を行うクラウドサーバであって、
     地図情報を管理する地図情報管理部と、
     前記車両情報および前記地図情報管理部が管理する地図情報に基づいて前記車両の位置および進行方向を推定する車両状態推定部と、
     前記車両状態推定部が推定した車両の位置および進行方向に基づいて車車間通信すべき車両を決定し、前記車車間通信すべき車両で車車間通信を確立するために必要な通信確立情報を作成する車両ネットワーク構築部と、
     前記車両の車載器から送信された前記車両情報を受信するとともに、前記車両ネットワーク構築部が作成した前記通信確立情報を前記車車間通信すべき車両の車載器に送信する通信部とを備えるクラウドサーバ。
  11.  クラウドサーバおよび車載器を備える車車間通信システムであって、
     前記クラウドサーバは、
     地図情報を管理する地図情報管理部と、
     車両の車両状態に関する車両情報および前記地図情報管理部が管理する地図情報に基づいて前記車両の位置および進行方向を推定する車両状態推定部と、
     前記車両状態推定部が推定した前記車両の位置および進行方向に基づいて車車間通信すべき車両を決定し、前記車車間通信すべき車両で車車間通信を確立するために必要な通信確立情報を作成する車両ネットワーク構築部と、
     前記車両の車載器から送信された前記車両情報を受信するとともに、前記車両ネットワーク構築部が作成した前記通信確立情報を前記車車間通信すべき車両の車載器に送信する通信部とを備え、
     前記車載器は、
     自車の車両状態に関する車両情報を取得する車両情報取得部と、
     前記車両情報取得部が取得した前記車両情報を前記クラウドサーバへ送信するとともに、前記クラウドサーバから送信された前記通信確立情報を受信するクラウド通信部と、
     車車間通信を行う車車間通信部と、
     前記クラウド通信部が受信した前記通信確立情報に基づいて前記車車間通信部に車車間通信を指示し通信を確立させる制御部とを備える車車間通信システム。
  12.  車両状態および地図情報を基に車両の位置および進行方向を推定して車車間通信すべき車両を決定し、前記車車間通信すべき車両で車車間通信を確立するために必要な通信確立情報を作成して送信するクラウドサーバと通信を行う車載器の車車間通信方法であって、
     車両情報取得部が、自車の車両状態に関する車両情報を取得するステップと、
     クラウド通信部が、前記車両情報取得部が取得した前記車両情報を前記クラウドサーバに送信するとともに、前記クラウドサーバから送信された前記通信確立情報を受信するステップと、
     制御部が、前記クラウド通信部が受信した前記通信確立情報に基づいて車車間通信部に車車間通信を指示するステップと、
     車車間通信部が、前記制御部からの指示に基づいて車車間通信を確立し通信を行うステップとを備える車車間通信方法。
  13.  クラウドサーバおよび車載器を備えるシステムにおける車車間通信方法であって、
     車両情報取得部が、前記自車の車両状態に関する車両情報を取得するステップと、
     前記車載器のクラウド通信部が、前記車両情報取得部が取得した前記車両情報を前記クラウドサーバに送信するステップと、
     車両状態推定部が、前記車両情報および地図情報に基づいて前記車両の位置および進行方向を推定するステップと、
     車両ネットワーク構築部が、前記車両状態推定部が推定した車両の位置および進行方向に基づいて車車間通信すべき車両を決定し、前記車車間通信すべき車両で車車間通信を確立するために必要な通信確立情報を作成するステップと、
     通信部が、前記車両ネットワーク構築部が作成した前記通信確立情報を前記車車間通信すべき車両に送信するステップと、
     前記車車間通信すべき車両の車載器のクラウド通信部が、前記クラウドサーバから送信された前記通信確立情報を受信するステップと、
     制御部が、前記クラウド通信部が受信した前記通信確立情報に基づいて車車間通信部に車車間通信を指示するステップと、
     前記車車間通信部が、前記制御部からの指示に基づいて車車間通信を確立し通信を行うステップとを備える車車間通信方法。
PCT/JP2013/081390 2013-11-21 2013-11-21 車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法 WO2015075799A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/023,751 US9749811B2 (en) 2013-11-21 2013-11-21 Onboard apparatus, cloud server, intervehicle communication system and intervehicle communication method
DE112013007628.4T DE112013007628T5 (de) 2013-11-21 2013-11-21 Bordfahrzeugvorrichtung, Cloud-Server, Zwischenfahrzeugnavigationssystem undZwischenfahrzeugkommunikationsverfahren
CN201380081092.4A CN105765640B (zh) 2013-11-21 2013-11-21 车载器、云服务器、车车间通信系统及车车间通信方法
JP2015548922A JP6062064B2 (ja) 2013-11-21 2013-11-21 車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法
PCT/JP2013/081390 WO2015075799A1 (ja) 2013-11-21 2013-11-21 車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081390 WO2015075799A1 (ja) 2013-11-21 2013-11-21 車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法

Publications (1)

Publication Number Publication Date
WO2015075799A1 true WO2015075799A1 (ja) 2015-05-28

Family

ID=53179106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081390 WO2015075799A1 (ja) 2013-11-21 2013-11-21 車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法

Country Status (5)

Country Link
US (1) US9749811B2 (ja)
JP (1) JP6062064B2 (ja)
CN (1) CN105765640B (ja)
DE (1) DE112013007628T5 (ja)
WO (1) WO2015075799A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3253084A1 (en) * 2016-06-01 2017-12-06 Baidu USA LLC System and method for providing inter-vehicle communications amongst autonomous vehicles
US10165231B2 (en) 2016-06-29 2018-12-25 International Business Machines Corporation Visualization of navigation information for connected autonomous vehicles
CN110928658A (zh) * 2019-11-20 2020-03-27 湖南大学 一种车边云协同架构的协同任务迁移系统及算法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213015A1 (de) * 2016-07-15 2018-01-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erstellen einer Gefahrenkarte zum Identifizieren zumindest einer Gefahrenstelle für ein Fahrzeug
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
US10854022B2 (en) 2016-09-19 2020-12-01 Qualcomm Incorporated Location based sensor sharing
CN106515726B (zh) * 2016-10-25 2019-07-19 北汽福田汽车股份有限公司 用于辅助驾驶的方法和装置
CN106657324A (zh) * 2016-12-17 2017-05-10 深圳市索菱实业股份有限公司 一种车辆网云通信系统
JP6508188B2 (ja) * 2016-12-26 2019-05-08 トヨタ自動車株式会社 暗号通信システム
CN108023937A (zh) * 2017-11-10 2018-05-11 北京汽车股份有限公司 用于车辆的交换机、车辆远程控制系统、方法及车辆
US10785640B2 (en) * 2018-01-23 2020-09-22 Veniam, Inc. Systems and methods to control and manage fully-reconfigurable hardware in a network of moving things
CN108769948A (zh) * 2018-05-11 2018-11-06 雷恩友力数据科技南京有限公司 一种异构车载网络的资源分配方法
US10909866B2 (en) * 2018-07-20 2021-02-02 Cybernet Systems Corp. Autonomous transportation system and methods
US10703386B2 (en) * 2018-10-22 2020-07-07 Ebay Inc. Intervehicle communication and notification
CN112956218A (zh) * 2018-11-13 2021-06-11 三菱电机株式会社 V2x车载器和v2x中继器
US11032370B2 (en) * 2018-11-14 2021-06-08 Toyota Jidosha Kabushiki Kaisha Wireless communications in a vehicular macro cloud
CN111081023A (zh) * 2019-12-31 2020-04-28 贵州云尚物联科技股份有限公司 车辆弯道安全行驶预警系统及方法
US11489792B2 (en) * 2020-01-10 2022-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicular micro clouds for on-demand vehicle queue analysis
JP7410765B2 (ja) * 2020-03-18 2024-01-10 本田技研工業株式会社 通信装置、通信方法、通信用プログラム、及び、車両
JP7371609B2 (ja) * 2020-11-17 2023-10-31 トヨタ自動車株式会社 情報処理装置、情報処理方法、情報処理プログラム、及び情報処理システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007102690A (ja) * 2005-10-07 2007-04-19 Denso Corp 走行支援システム
JP2008017318A (ja) * 2006-07-07 2008-01-24 Fujitsu Ltd 移動局装置、無線基地局装置及び無線通信システム
WO2009004699A1 (ja) * 2007-06-29 2009-01-08 Fujitsu Limited 無線通信システムにおける端末間通信制御方法並びに無線基地局及び無線端末
JP2011087174A (ja) * 2009-10-16 2011-04-28 Toyota Infotechnology Center Co Ltd 車車間通信システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0813479B1 (en) * 1995-03-03 2006-08-30 QUALCOMM Incorporated Method and apparatus for monitoring parameters of vehicle electronic control units
JP3374042B2 (ja) * 1997-05-16 2003-02-04 本田技研工業株式会社 車車間通信方法
US20100030423A1 (en) * 1999-06-17 2010-02-04 Paxgrid Telemetric Systems, Inc. Automotive telemetry protocol
US6445308B1 (en) * 1999-01-12 2002-09-03 Toyota Jidosha Kabushiki Kaisha Positional data utilizing inter-vehicle communication method and traveling control apparatus
US6801837B2 (en) * 2002-01-03 2004-10-05 Meritor Light Vehicle Technology, Llc Intervehicle network communication system
WO2006076349A2 (en) 2005-01-11 2006-07-20 Telcordia Technologies, Inc. Method to establish and organize an ad-hoc wireless peer to peer network
JP4585355B2 (ja) * 2005-03-31 2010-11-24 本田技研工業株式会社 車両間通信システム
JP4546909B2 (ja) * 2005-09-13 2010-09-22 株式会社日立製作所 車載端末、交通情報システムおよびリンクデータ更新方法
US20080122607A1 (en) * 2006-04-17 2008-05-29 James Roy Bradley System and Method for Vehicular Communications
US8270347B2 (en) * 2006-05-24 2012-09-18 France Telecom Process for routing data packets in a mobile node network and associated terminal
US20080140304A1 (en) * 2006-10-25 2008-06-12 Cingular Wireless Ii, Llc Systems and methods for monitoring and/or controlling traffic
KR100975828B1 (ko) * 2008-08-11 2010-08-13 서강대학교산학협력단 네비게이션 서비스 방법 및 그에 따른 시스템, 단말기
US8170471B2 (en) * 2008-12-04 2012-05-01 Electronics And Telecommunications Research Institute Cooperative communication method for vehicular communication
JPWO2011024237A1 (ja) 2009-08-28 2013-01-24 富士通株式会社 移動無線通信装置および車車間通信方法
US9267813B2 (en) * 2010-03-09 2016-02-23 Honda Motor Co., Ltd. On-board system working a mobile device
CN102097003B (zh) * 2010-12-31 2014-03-19 北京星河易达科技有限公司 智能交通安全系统及其终端
JP5598526B2 (ja) 2012-10-31 2014-10-01 三菱電機株式会社 車載装置
CN103116995B (zh) * 2013-01-09 2015-01-14 同济大学 基于电子眼的车联网数据传输路径选择优化方法
US20140214933A1 (en) * 2013-01-28 2014-07-31 Ford Global Technologies, Llc Method and Apparatus for Vehicular Social Networking
US20140302774A1 (en) * 2013-04-04 2014-10-09 General Motors Llc Methods systems and apparatus for sharing information among a group of vehicles
CN103400506B (zh) * 2013-07-30 2016-02-10 吴云肖 Led光地址发射器及车联网系统及电子地图绘制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007102690A (ja) * 2005-10-07 2007-04-19 Denso Corp 走行支援システム
JP2008017318A (ja) * 2006-07-07 2008-01-24 Fujitsu Ltd 移動局装置、無線基地局装置及び無線通信システム
WO2009004699A1 (ja) * 2007-06-29 2009-01-08 Fujitsu Limited 無線通信システムにおける端末間通信制御方法並びに無線基地局及び無線端末
JP2011087174A (ja) * 2009-10-16 2011-04-28 Toyota Infotechnology Center Co Ltd 車車間通信システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3253084A1 (en) * 2016-06-01 2017-12-06 Baidu USA LLC System and method for providing inter-vehicle communications amongst autonomous vehicles
CN107454128A (zh) * 2016-06-01 2017-12-08 百度(美国)有限责任公司 用于在无人驾驶车辆之间提供车辆间通信的系统和方法
US9947145B2 (en) 2016-06-01 2018-04-17 Baidu Usa Llc System and method for providing inter-vehicle communications amongst autonomous vehicles
US10672200B2 (en) 2016-06-01 2020-06-02 Baidu Usa Llc System and method for providing inter-vehicle communications amongst autonomous vehicles
CN107454128B (zh) * 2016-06-01 2021-05-28 百度(美国)有限责任公司 用于在无人驾驶车辆之间提供车辆间通信的系统和方法
US10165231B2 (en) 2016-06-29 2018-12-25 International Business Machines Corporation Visualization of navigation information for connected autonomous vehicles
CN110928658A (zh) * 2019-11-20 2020-03-27 湖南大学 一种车边云协同架构的协同任务迁移系统及算法
CN110928658B (zh) * 2019-11-20 2024-03-01 湖南大学 一种车边云协同架构的协同任务迁移系统及算法

Also Published As

Publication number Publication date
JP6062064B2 (ja) 2017-01-18
US9749811B2 (en) 2017-08-29
CN105765640B (zh) 2018-01-05
DE112013007628T5 (de) 2016-08-11
CN105765640A (zh) 2016-07-13
JPWO2015075799A1 (ja) 2017-03-16
US20160234654A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP6062064B2 (ja) 車載器、クラウドサーバ、車車間通信システムおよび車車間通信方法
US11589198B2 (en) Control apparatus, control method, and vehicle
CN108834434B (zh) 用于开始或者执行协同驾驶机动动作的方法和装置
JP6682629B2 (ja) 車両の車線変更のために2車両間の交通空隙を特定する方法および制御システム
US20210132604A1 (en) Autonomous passenger vehicle system
US10019898B2 (en) Systems and methods to detect vehicle queue lengths of vehicles stopped at a traffic light signal
JP5135255B2 (ja) 安全運転支援システム
EP3347886B1 (en) Methods and devices for requesting and providing information
JP2018521392A (ja) 交差点運転補助方法及びシステム
US11895566B2 (en) Methods of operating a wireless data bus in vehicle platoons
CA3004051A1 (en) Vehicle identification and location using sensor fusion and inter-vehicle communication
US11146918B2 (en) Systems and methods for network node communication using dynamically configurable interaction modes
JP6353859B2 (ja) 車両間通信装置
JP2013025423A (ja) 車両用無線通信装置および通信システム
KR101763604B1 (ko) 무선 통신 시스템에서 위치 기반으로 주변 차량의 멀티미디어 데이터를 수신하는 방법 및 그 장치
US11143515B2 (en) Method for the generation of a merged free-space map, electronic control device and storage medium
JP7051851B2 (ja) 予測ベースクライアント制御
JP6540594B2 (ja) 車両制御システムおよび車両制御装置
CN113661532B (zh) 用于执行行驶调度的方法、车辆控制设备以及机动车辆
CN114035583B (zh) 车辆控制方法、装置、电子设备及计算机可读存储介质
CN113734184B (zh) 自动驾驶车辆在途组队方法、装置及电子设备
US20220108608A1 (en) Methods, computer programs, communication circuits for communicating in a tele-operated driving session, vehicle and remote control center for controlling a vehicle from remote
CN102469627A (zh) 一种提高行车安全的车载无线通信装置
US11386783B2 (en) Guiding device for at least one vehicle
CN115412876A (zh) 促进与车辆列队进行利用设备间资源的按需无线连接和数据汇集的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015548922

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15023751

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013007628

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897826

Country of ref document: EP

Kind code of ref document: A1