WO2015075634A2 - Proceso de superposición de corriente alterna sobre la corriente continua para procesos de electroobtención o electrorefinación de cobre u otros productos, en que la fuente de corriente alterna se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas utilizando un inductor para inyectar corriente alterna y un condensador para cerrar el circuito eléctrico - Google Patents

Proceso de superposición de corriente alterna sobre la corriente continua para procesos de electroobtención o electrorefinación de cobre u otros productos, en que la fuente de corriente alterna se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas utilizando un inductor para inyectar corriente alterna y un condensador para cerrar el circuito eléctrico Download PDF

Info

Publication number
WO2015075634A2
WO2015075634A2 PCT/IB2014/066136 IB2014066136W WO2015075634A2 WO 2015075634 A2 WO2015075634 A2 WO 2015075634A2 IB 2014066136 W IB2014066136 W IB 2014066136W WO 2015075634 A2 WO2015075634 A2 WO 2015075634A2
Authority
WO
WIPO (PCT)
Prior art keywords
alternating current
direct current
cells
incorporation
copper
Prior art date
Application number
PCT/IB2014/066136
Other languages
English (en)
French (fr)
Other versions
WO2015075634A4 (es
WO2015075634A3 (es
Inventor
Juan Pablo Bustos Robledo
Cristian Alejandro VILLAVICENCIO ARAYA
Original Assignee
Hecker Electrónica Potencia Y Procesos S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hecker Electrónica Potencia Y Procesos S.A. filed Critical Hecker Electrónica Potencia Y Procesos S.A.
Priority to RU2016119060A priority Critical patent/RU2643158C2/ru
Priority to EP14863489.2A priority patent/EP3072993B1/en
Priority to MX2016005286A priority patent/MX361776B/es
Priority to CN201480062916.8A priority patent/CN105745359B/zh
Priority to AP2016009258A priority patent/AP2016009258A0/en
Priority to US15/034,091 priority patent/US10047447B2/en
Priority to CA2929515A priority patent/CA2929515C/en
Priority to JP2016533093A priority patent/JP6259917B2/ja
Priority to AU2014351382A priority patent/AU2014351382B2/en
Publication of WO2015075634A2 publication Critical patent/WO2015075634A2/es
Publication of WO2015075634A3 publication Critical patent/WO2015075634A3/es
Publication of WO2015075634A4 publication Critical patent/WO2015075634A4/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the metallurgical process control variables are copper concentration, flow and electrolyte temperature.
  • the increase in temperature improves the local mobility of the ions, and the flow and concentration increase the availability of ions to react.
  • EW copper industrial plants that produce copper at current densities greater than 300 [A / m2] while maintaining good chemical physical quality of the deposit, operate at temperatures above 45 [° C], high surface flows of the order of 2.2 [lt / min / m2] and copper concentrations of the order of 45 [gr / lt], with the high operational cost that this means; which is reasonable if the international copper valuation is high, however in medium and low valuation scenarios, a high operational cost is critical for the operational continuity of the plant.
  • the current density is even more restricted by the phenomenon of passivation of the anodes, so they are typically restricted to work at current densities below 320 [A / m2] and even thus they must operate at temperatures above 60 [° C] to preserve the quality of the tank.
  • the flow is not a variable available in the ER plants, as an increase in the flow produces agitation of the anodic mud that contaminates the lower proportion of the cathodes produced.
  • electrochemical double layer Although it is not our objective the detailed study of the electrodeposition phenomenon, nor of the phenomena that occur in the electrodelectrolyte interface called "electrochemical double layer", it is necessary to mention that in the modeling of the electrochemical double layer they are discovered as their name indicates it, two perfectly differentiated electrolyte layers that have a different behavior: the inner or Helmholtz layer and the outer or diffuse layer (figure N ° 3).
  • the Helmholtz layer can be simply modeled as a condenser consisting of a metal plate (the electrode) and another non-metallic plate consisting of high concentration of ions in the electrolyte, connected in parallel with a resistive characteristic impedance representing energy consumption necessary to transform ions into metallic solution into atoms in the metallic crystalline network of the cathode (copper reduction) (figure N ° 4).
  • the diffuse layer meanwhile, is characterized by an ion concentration that varies from the vicinity of the Helmholtz layer to the typical concentration within the solution. Discounting the Helmholtz layer, from the diffuse layer into the solution, ion transport phenomena occur that are migration due to the applied electric field and diffusion due to concentration variations. To improve these transport phenomena, there are currently a number of technologies, such as "air sparging" which consists in the injection of air into the electrolytic which generates hydrodynamic improvements in the vicinity of the electrodes and the EMEW technology that it implements, in the practice, an operation with extra high flow; This technology is, however, inapplicable to mass production of copper, due to the high cost of its implementation, being restricted to the treatment of marginal solutions. The effect of this type of technologies is restricted by the viscosity of the electrolyte that prevents the mechanical agitation exerted from the electrolyte to the electrodes near the reaction zone which is the double electrochemical layer
  • the Helmholtz condenser will withstand large load variations without large voltage variations as its capacitance is extremely high. In this way, the phenomenon of ion transformation in solution to ions integrated to the metallic crystal network occurs in the same way as in the classical process, but with a great improvement in the quality of the transport phenomena in the vicinity of the electrode towards the solution.
  • the frequency suitable for the agitation of the interface by superposition of alternating current to the current of the classical process is determinable by impedance spectroscopy test methods, resulting frequencies in the range of 5 to 10 [KHz]. At lower frequencies there is a risk of interfering with the operation of the direct current source (the rectifier transformer) and at higher frequencies, the efficiency of alternating current generation systems decreases dramatically.
  • the proposed solution consists in changing the connection point of the alternating current source by a point between any two consecutive cells that are electrically connected in series, in particular the optimal connection point that you propose is between the intermediate cells of Any typical Celtic circuit for ER or EW.
  • the incorporation of the alternate source must be accompanied by the incorporation of two passive components: an inductor and a capacitor. (Figure N ° 1)
  • the inductor which is connected in series with the cells, acts as an alternating current filter and as a direct current conduction medium (closing the circuit so that the direct current circulates); it is possible to interpret that the included inductor operates as "magnetization inductance" as the magnetization inductance operates in electrical transformers; supporting alternating electrical voltage with a minimum of alternating current circulation, but in this case also, acting as a short circuit for direct current.
  • the inductance value of the built-in inductor is determined so that the current in the inductor is negligible at the operating frequency of the alternating current source.
  • the capacitor which is connected in parallel to the entire group of cells and in parallel to the direct current source; Its functions are to act as a means of conducting alternating current, closing the electrical circuit and also filtering any alternating current component that could eventually be transferred to the direct current source.
  • the capacity value of the built-in capacitor is determined so that the voltage variation in the capacitor, as a result of alternating current circulation, is negligible at the operating frequency of the alternating current source. It should be considered that the capacitor will be exposed to the voltage imposed by the direct current source on the group of electrolytic cells, in this sense the capacitor must be connected with fuses to clear any electrical failures.
  • the alternating current source can be implemented with any of the available technologies.
  • the operating frequency of this source must be in the defined range between 5 and 10 [KHz] as mentioned in the presentation of the technical problem).
  • the intensity of the current generated by this source will be linked to the value of the intensity of the direct current imposed by the DC source.
  • this invention is a paradigmatic application of the principle of superposition of currents, in which both sources operate independently. It is also observed, the application of the principle of duality between inductors that accumulate energy in the form of a magnetic field and capacitors that accumulate energy in the form of an electric field; in fact, the inductor is a short circuit for direct current and an open circuit for high frequency alternating current and, on the contrary, the capacitor is a short circuit for alternating current and an open circuit for direct current. It is evident also, that the system including the classic elements and the elements proposed in this invention, has a characteristic frequency response.
  • a particular case of implementation of the process of superposition of alternating current occurs in the case of electrolytic refinery (ER) in which a direct current source feeds a large number of cells connected in series that are divided into groups to carry out the process of harvest and partial sowing.
  • each group of particular cells operates at a reduced voltage since each electroredination cell operates with voltages of the order 250 [mV], thus, for example, a group of 40 cells, has a total voltage of just 10 [V].
  • ER electrolytic refinery
  • the technology proposed in this invention can be implemented with minimal impact on the operation of the plant that originally operated with the classic EW or ER process, as the installation of Components can be performed virtually without interrupting normal operation.
  • the direct current source the rectifier transformer
  • the direct current source remains unchanged and its operation does not suffer interference once the power source begins to operate alternating current.
  • the structure of the electrolytic cells does not suffer any modification either in the installation or in the operation of the new source of alternating current.
  • the operation of the rectifier transformer is not impacted in any way either by the installation or by the operation of the alternating current source, because in each circuit of electrolytic cells in which the superposition of alternating current is implemented ; a capacitor must be installed that closes the alternating current circuit and in turn eliminates any curl component in the direct voltage imposed by the rectifier transformer.
  • the incorporation of the capacitor means the implementation of an LC filter seen from the rectifier transformer towards the group of electrolytic cells, in which "L" will be the inductance of the busbar of the rectifier transformer connection bars.
  • this technology is designed to protect the rectifier transformer, as it is very clear that it remains the main equipment of the EW and ER plants of copper and other products.
  • Figure N ° 1 Scheme of the proposed invention: To the original installation, an inductor is added between any two consecutive cells; a capacitor in parallel with the direct current source and an alternating current source connected to the terminals of the newly installed coil between two consecutive cells.
  • Figure N ° 2 Situation in which the electroobtention or electrorefining process of copper and other products is currently taking place: the rectifier current is continuous and enters the electrolytic space.
  • the direct current source is a rectifier transformer.
  • Figure N ° 3 Scheme of the electrochemical double layer composed of the inner or Helmholtz layer and the outer layer or diffuse layer. Individualized sectors they are: (a) the inside of the metal electrode; (b) the inner or Heimholtz layer; (c) the diffuse layer and (d) the sine of the solution.
  • Figure N ° 4 Electric model of the Heimholtz layer as a parallel capacitor with a resistive element that models the energy consumption necessary to transform ions in solution to atoms in a metallic crystalline network.
  • the individualized sectors are: (a) the interior of the metal electrode; (b) the inner or Heimholtz layer modeled as a capacitor bank and a resistive element that represents energy consumption to transform dissolved ions in the solution into atoms in the metallic crystalline lattice; (c) the diffuse layer and (d) the sine of the solution.
  • Figure N ° 5 The hydraulic pump that is generated by superimposing alternating current on the direct current of the classic model: A variation in the charge of the electrode metal plate necessarily causes the movement of ions in the solution in the direction perpendicular to the electrode surface
  • the individualized sectors are: (a) the interior of the metal electrode, on whose surface charges accumulate in a space of minimum width as it is a metallic conductor; (b) the inner or Heimholtz layer modeled as a capacitor bank and a resistive element that represents energy consumption to transform dissolved ions in the solution into atoms in the metallic crystalline lattice; (c) the diffuse layer in which agitation of the ions in solution occurs in the direction of the electric field imposed by the superimposed current and (d) the sine of the solution.
  • Figure N ° 6 Alternative implementation scheme for superimposition of alternating current to direct current: (a) represents the original situation of typical EW plants; (b) represents an implementation in which the original direct current source is changed to a completely new one with the ability to deliver overlapping current; (c) represents an implementation in which a new source is inserted that modifies the original current by superimposing high frequency current, so the original bus bar must be modified by another one receptive to the high frequency of the alternating current; (d) represents the implementation of a process of power generation by successive subtraction, accumulation and return stages; (e) and (f), represent implementations similar to that shown in d, but replacing the use of energy accumulation capacitors by subgroups of electrolytic cells; (g) represents the proposed invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Filters And Equalizers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Proceso de superposición de corriente alterna sobre la corriente continua que alimenta a un grupo de celdas electrolíticas para EW o ER de cobre y otros productos, caracterizado por (a) la incorporación de un inductor, que se conecta entre los bornes de las celdas intermedias del grupo de celdas electrolíticas, cuyas funciones son actuar como filtro de corriente alterna y como medio conducción de corriente continua; (b) la incorporación de un capacitor, que se conecta en paralelo a la fuente de corriente continua original, cuyas funciones son actuar como medio de conducción de corriente alterna y como filtro de corriente continua; y (c) la incorporación de una fuente de corriente alterna que se conecta en los bornes de un inductor instalado en el punto medio del grupo de celdas electrolíticas..

Description

PROCESO DE SUPERPOSICIÓN DE CORRIENTE ALTERNA SOBRE LA CORRIENTE CONTINUA PARA PROCESOS DE ELECTROOBTENCIÓN O ELECTROREFINACIÓN DE COBRE U OTROS PRODUCTOS, EN QUE LA FUENTE DE CORRIENTE ALTERNA SE CONECTA ENTRE DOS CELDAS CONSECUTIVAS DEL GRUPO DE CELDAS ELECTROLÍTICAS UTILIZANDO UN INDUCTOR PARA INYECTAR CORRIENTE ALTERNA Y UN CONDENSADOR PARA CERRAR EL CIRCUITO ELÉCTRICO.
MEMORIA DESCRIPTIVA PROBLEMA TÉCNICO
En la industria del cobre se utilizan rectificadores de corriente eléctrica para producir cobre que se encuentra disuelto en electrolito circulante (figura N°2). La corriente eléctrica generada por los rectificadores provoca el depósito del cobre disuelto en el electrolito sobre la superficie del cátodo que, según la ley de Faraday, es proporcional a la corriente, obteniéndose como resultado, cobre metálico de alta pureza. Sin embargo, el proceso de depositación, presenta restricciones en cuanto a la capacidad de depositar cobre en el cátodo, pues es un hecho demostrado que el aumento arbitrario de la densidad de corriente en los electrodos, genera deterioro de calidad química y física del cobre depositado. Actualmente, en instalaciones industriales se trabaja con densidades de corriente del orden de 300 a 400 [A/m2]. Si se aumenta el nivel de corriente, se obtiene un incremento en la producción, pero a costa de severos problemas de calidad. En los procesos de electroobtención (EW) y electrorefinación (ER) clásicos, las variables de control del proceso metalúrgico son la concentración de cobre, el flujo y la temperatura del electrolito. El aumento de la temperatura mejora la movilidad local de los iones, y el flujo y la concentración aumentan la disponibilidad de iones para reaccionar. Las plantas industriales de EW cobre que producen cobre a con densidades de corriente superiores a 300 [A/m2] conservando buena calidad físico química del depósito, operan a temperaturas superiores a 45[°C], flujos superficiales elevados del orden de 2.2[lt / min / m2] y concentraciones de cobre del orden de 45 [gr/lt], con el elevado costo operacional que esto significa; lo cual es razonable si la valoración internacional del cobre es alta, sin embargo en escenanos de valoración medios y bajos, un elevado costo operacional resulta crítico para la continuidad operacional de la planta.
En el caso de las plantas de ER de cobre, la densidad de corriente está aún más restringida por el fenómeno de pasivación de los ánodos, por lo que típicamente se restringen a trabajar a densidades de corriente inferiores a 320 [A/m2] y aun así deben operar a temperaturas sobre 60 [°C] para conservar la calidad del depósito. El flujo tampoco es una variable disponible en las plantas de ER, pues un aumento en el flujo produce agitación del barro anódico que contamina la proporción inferior de los cátodos producidos.
Aunque no es nuestro objetivo el estudio detallado del fenómeno de la electrodepositación, ni de los fenómenos que ocurren en la interfaz electrodo- electrolito denominada "doble capa electroquímica", resulta necesario mencionar que en el modelamiento de la doble capa electroquímica se descubren tal como su nombre lo indica, dos capas de electrolito perfectamente diferenciadas y que tiene comportamiento distinto: la capa interior o de Helmholtz y la capa exterior o capa difusa (figura N°3).
Al interior de la capa de Helmholtz ocurre el fenómeno complejo de la transformación de cobre en solución a cobre metálico. Debido a la gran acumulación de iones, a una distancia tan pequeña, "esperando" ser depositados, la capa de Helmholtz puede ser modelada de manera sencilla como un condensador compuesto por una placa metálica (el electrodo) y otra placa no metálica consistente en la elevada concentración de iones en el electrolito, conectado en paralelo con una impedancia de característica resistiva que representa el consumo de energía necesario para trasformar iones en solución metálicos en átomos en la red cristalina metálica del cátodo (reducción del cobre) (figura N°4).
La capa difusa por su parte, se caracteriza por una concentración de iones que varía desde la vecindad de la capa de Helmholtz hasta la concentración típica del seno de la solución. Descontando la capa de Helmholtz, desde la capa difusa al seno de la solución, ocurren fenómenos de transporte de iones que son migración a causa del campo eléctrico aplicado y difusión a causa de las variaciones de concentración. Para mejorar estos fenómenos de trasporte, existen actualmente, una serie de tecnologías, como son "air sparging" que consiste en la inyección de aire al electrolítico lo que genera mejoras hidrodinámica en la vecindad de los electrodos y la tecnología EMEW que implementa, en la práctica, una operación con extra alto flujo; esta tecnología es, sin embargo inaplicable a producción masiva de cobre, debido al alto costo de su implementación, estando restringida al tratamiento de soluciones marginales. El efecto de este tipo de tecnologías está restringido por la viscosidad del electrolito que impide que la agitación mecánica ejercida desde el electrolito hacia los electrodos se acerque a la zona de reacción que es la doble capa electroquímica
Existe, sin embargo, la posibilidad de "agitar" eléctricamente el electrolito mediante la variación de la corriente que ingresa a las celdas electrolíticas, mediante la superposición de una corriente alterna sobre la corriente continua del proceso de electrodepositación clásico; utilizando como medio de transporte de corriente eléctrica alterna, el condensador de la capa de Helmholtz. La placa metálica de este condensador (el electrodo), soporta grandes variaciones de carga superficial pues es un conductor metálico, por el contrario las variaciones de carga eléctrica en la placa no metálica de este condensador, generará necesariamente variaciones en la distribución de iones al interior de la solución, pues los iones ocupan un espacio físico dentro de la solución, es decir, la superposición de corriente alterna, genera movimiento de iones en la vecindad de la interfaz electrodo- electrolito, y más precisamente en la capa difusa (figura N°5). Se implementa de esta manera, una verdadera "bomba hidráulica" que moviliza iones en la vecindad del electrodo, lugar al que los métodos de agitación mecánica no alcanzan, debido a la viscosidad de la solución.
Un aspecto a destacar, es que si esta agitación se efectúa a una frecuencia suficientemente alta, el condensador de Helmholtz, soportará grandes variaciones de carga sin grandes variaciones de tensión pues su capacitancia es extremadamente elevada. De esta manera, el fenómeno de transformación de iones en solución a iones integrados a la red cristalina metálica ocurre de la misma manera que en el proceso clásico, pero con una gran mejora en la calidad de los fenómenos de transporte en la vecindad del electrodo hacia la solución. La frecuencia adecuada para la agitación de la interfaz por superposición de corriente alterna a la corriente del proceso clásico, es determinable por métodos de ensayo de espectroscopia de impedancia, resultando frecuencias en el intervalo de 5 a 10 [KHz]. A frecuencias más bajas se corre el riesgo de interferir con la operación de la fuente de corriente continua (el transformador rectificador) y a frecuencias más altas, la eficiencia de los sistemas de generación de corriente alterna disminuye drásticamente.
En definitiva, el problema técnico a resolver consiste en cómo implementar el proceso de superposición de corriente alterna sobre la corriente continua para procesos EWy ER en celdas electrolíticas industriales. ESTADO DEL ARTE
En la actualidad, todas las estrategias que se han propuesto para implementar la superposición de corriente alterna sobre la corriente continua se han restringido a conectar la fuente de corriente alterna en paralelo en el mismo punto de conexión que utiliza la fuente de corriente continua o entre puntos de subgrupos de celdas quedando de esta manera, la fuente de corriente alterna, expuesta a tensiones continuas. Aparte de esto, las distintas propuestas son variaciones de la fuente, variaciones del bus de conexión, variaciones de la estructura de las celdas y/o mezclas de las variaciones ya mencionadas, tal como se presenta en la figura N°6. En el caso del invento de Groóle, (US 2,026,466) de 1935, podemos comentar que es un regulador de carga, para que el consumo potencia desde la fuente primaria de alimentación sea aproximadamente constante. El proceso o dispositivo altera la característica de corriente que alimenta a la carga, pero que no regula potencia. Este invento cae en la categoría presentada en la figura N°6.c aun cuando en esa fecha ni siquiera existían transformadores rectificadores.
En el caso del invento de Lewis, (US 2004/021 1677 A1 ) de 2004, El invento Lewis propone una nueva fuente como en la figura N°6.b. Por esta fuente circula todo el flujo de proceso. La corriente continua y también la corriente alterna. En el caso del Invento de Mathews (US 2007/0272546 A1 ) La aplicación del invento de Mathews implica cambiar y desechar las fuentes de corriente continuas actualmente operativas; cambiar y desechar todo el bus de barras conexión entre la fuente de corriente continua y las caldas electrolíticas; cambiar y desechar toda la estructura de celdas electrolíticas actuales. Todo lo cual debe ser reemplazado por equipamiento nuevo y no estandarizado para la producción industrial.
En el caso de nuestro invento (INAPI 0817/2007), se propone incluir un dispositivo que sustrae, acumula y devuelve energía del grupo de celdas electrolíticas en forma consecutiva, como en figura N°6.d; de esta manera se genera la corriente alterna para superponer a la corriente continua, sin la necesidad de alterar la instalación original. Esta solicitud, fue aprobada en Australia, Sudáfrica y Estados Unidos. En estados Unidos fue dividida en dos patentes, una de las cuales reivindica al proceso de generación de corriente alterna mediante sustracción, acumulación y devolución consecutiva y la otra reivindica el dispositivo que efectúa las etapas del proceso; ambas patente están concedidas. En Chile aún se encuentran en trámite, pero con informe pericial positivo.
En el caso del invento de Lagos (INAPI 0969/2009) se propone dos posibilidades de implementar dos vanantes de dispositivos similares y con filosofía similar a la propuesta por Bustos en 0817/2007, aunque sin incluir condensadores de acumulación, pues se postula en este invento, que la función de estos condensadores puede ser reemplazada por grupos o subgrupos de celdas electrolíticas. En nuestra opinión esta estrategia es inaplicable industrialmente pues dadas las dimensiones de las plantas electrolíticas industriales, los conductores de conexión tendrían inductancias que son incompatibles con la operación de dispositivos como transistores IGBT, como los que se muestran en la figura N°6.e y N°6.f, que son representativos de esta solicitud.
Del análisis anterior, se desprende que el invento propuesto en esta ocasión que se representa esquemáticamente en la figura N°6.g, en que la fuente de corriente alterna que es conectada en un inductor que se incluye como parte del invento, es diferente a los inventos y solicitudes de patentes mostrados anteriormente pues el punto de conexión representa un punto de cero tensión eléctrica, respecto de la fuente de corriente continua. A continuación se detalla el invento.
SOLUCIÓN PROPUESTA
La solución propuesta consiste en cambiar el punto de conexión de la fuente de corriente alterna por un punto entre dos celdas consecutivas cualquiera de las que se encuentran conectadas eléctricamente en serie, en particular el punto de conexión óptimo que se propones es entre las celdas intermedias de cualquier circuito típico de celtas para ER o EW. La incorporación de la fuente alterna debe estar acompañada por la incorporación dos componentes pasivas: un inductor y un condensador. (Figura N°1 ) El Inductor
El inductor, que se conecta en serie con las celdas, actúa como filtro de corriente alterna y como medio conducción de corriente continua (cerrando el circuito para que circula la corriente continua); es posible interpretar que el inductor incluido opera como "inductancia de magnetización" tal como opera la inductancia de magnetización en los tranform adores eléctricos; soportando tensión eléctrica alterna con un mínimo de circulación de corriente alterna, pero en este caso además, actuando como un cortocircuito para la corriente continua. El valor de la inductancia del inductor incorporado se determina de manera que la corriente en el inductor, sea despreciable a la frecuencia de operación de la fuente de corriente alterna. El Condensador
El condensador, que se conecta en paralelo a todo el grupo de celdas y en paralelo a la fuente de corriente continua; tiene como funciones actuar como medio de conducción de corriente alterna, cerrando el circuito eléctrico y además filtrar cualquier componente de corriente alterna que eventualmente pudiere traspasarse hacia la fuente de corriente continua. El valor de la capacidad del capacitor incorporado se determina de manera que la variación de tensión en el capacitor, a consecuencia de la circulación de corriente alterna, sea despreciable a la frecuencia de operación de la fuente de corriente alterna. Debe considerarse que el condensador estará expuesto a la tensión impuesta por la fuente de corriente continua sobre el grupo de celdas electrolíticas, en este sentido el condensador debe estar conectado con fusibles para despejar eventuales fallas eléctricas.
La Fuente de Corriente alterna
La fuente de corriente alterna puede ser implementada con cualquiera de las tecnologías disponibles. La frecuencia de operación de esta fuente debe estar en el rango definido entre 5 y 10 [KHz] como ya fue mencionado en la presentación del problema técnico). La intensidad de la corriente generada por esta fuente estará ligado al valor de la intensidad de la corriente continua impuesto por la fuente de corriente continua. APLICACIÓN INDUSTRIAL
Sustento Teórico
Desde el punto de vista teórico, este invento es una aplicación paradigmática del principio de superposición de corrientes, en que ambas fuentes operan de forma independiente. Se observa también, la aplicación del principio de dualidad entre inductores que acumulan energía en forma de campo magnético y condensadores que acumulan energía en forma de campo eléctrico; de hecho, el inductor es un cortocircuito para la corriente continua y un circuito abierto para la corriente alterna de alta frecuencia y por el contrario, el condensador es un coortocircuito para la corriente alterna y un circuito abierto para la corriente continua. Resulta evidente también, que el sistema incluyendo los elementos clásicos y los elementos propuestos en este invento, tiene una respuesta de frecuencia característica.
Disponibilidad de Componentes Industriales
En la actualidad existen componentes físicas para implementar este tipo de fuentes de alta corriente y alta frecuencia manera segura, sin embargo el hecho de que la conexión pueda ser efectuada en un punto de "cero tensión", como es el punto entre dos celdas, facilita notablemente el diseño de las protecciones de la fuente, pues esta no estará expuesta a la tensión impuesta por la fuente de corriente continua al grupo de celdas electrolíticas sino por el contrario, será ella la que impondrá una tensión alterna al inductor que es en la práctica un cortocircuito para la corriente impuesta por la fuente de corriente continua, todo esto gracias a la innovación propuesta.
Tecnología de Fuentes de Calentamiento por Inducción
Dada la intensidad y la frecuencia de la corriente que debe suministrar la fuente de corriente alterna, resulta conveniente utilizar diseños similares a los usados en las fuentes de calentamiento por inducción magnética utilizadas para forja, extrusión, tratamientos superficiales y/o para fundir metales. En general estas fuentes son diseñadas usando principios de resonancia para amplificar corriente eléctrica. Normalmente estas fuentes operan a frecuencias en el el rango de 250[Hz] a 10[KHz] y con niveles de corriente entre 1 a 10[KA], por lo que toda la tecnología desarrollada para diseñar y fabncar fuentes de alta corriente y alta frecuencia para calentamiento por inducción magnética, resultará aplicable para diseñar y fabncar fuentes para superponer corriente alterna sobre la corriente impuesta por las fuentes de corriente continua para EW y ER de cobre y otros productos, todo esto gracias a la innovación propuesta. Uso de Transformadores y Autotransformadores
Un caso particular de implementación del proceso de superposición de corriente alterna se da en el caso de refinería electrolíticas (ER) en que una fuente de corriente continua alimenta a un elevado número de celdas conectadas en serie que se dividen en grupos para efectuar el proceso de cosecha y siembra parcial. En este caso cada grupo de celdas particular opera a una tensión reducida pues cada celda de electroredinación opera con tensiones del orden 250[mV], así, por ejemplo, un grupo de 40 celdas, presenta una tensión total de apenas 10[V]. Así se hace adecuado implementar una sola fuente de corriente alterna que alimente en paralelo a varios grupos de celdas, que están conectadas en serie con la fuente de corriente continua; mediante el uso de transformadores con aislamiento galvánico (figura N° 7). La bobina secundaria del transformador actuará de manera equivalente a una bobina, conduciendo la corriente continua y también inyectando corriente alterna.
En algunos casos, especialmente en plantas de pequeña escala, es factible hacer la conexión de la fuente de corriente alterna mediante un autotransformador de manera de que el diseño de la fuente de corriente alterna sea más barato y la corriente sea amplificada por un transformador o autotransformador de tensión secundaria más baja que la tensión primaria (figura N°8).
Implementación de Impacto Mínimo Desde el punto de vista de la implementación industrial, la tecnología propuesta en este invento, puede ser implementada con un mínimo impacto en la operación de la planta que originalmente operaba con el proceso EW o ER clásico, pues la instalación de las componentes puede ser efectuada prácticamente sin interrumpir la operación normal. Desde el punto de vista de las componentes del sistema, no es necesano modificar o reemplazar ninguna componente del sistema original: la fuente de corriente continua (el transformador rectificador) permanece inalterada y su operación no sufre interferencia una vez que empieza a operar la fuente de corriente alterna. La estructura de las celdas electrolíticas tampoco sufren modificación alguna ni en la instalación, ni en la operación de la nueva fuente de corriente alterna.
Operación del Transformador Rectificador
Como ya fue mencionado, la operación del transformador rectificador no es impactada de manera alguna ni por la instalación ni por la operación de la fuente de corriente alterna, debido a que en cada circuito de celdas electrolíticas en el que se implemente la superposición de corriente alterna; se debe instalar necesariamente un condensador que cierra el circuito de corriente alterna y que a su vez elimina cualquier componente de rizo en la tensión continua que impone el transformador rectificador. En la práctica, la incorporación del condensador, significa la implementación de un filtro LC visto desde el transformador rectificador hacia el grupo de celdas electrolíticos, en que "L" será la inductancia del bus de barras de conexión del transformador rectificador.
En este aspecto esta tecnología está diseñada para proteger al transformador rectificador, pues resulta muy claro que sigue siendo el equipo principal de las plantas de EW y ER de cobre y otros productos.
EXPLICACIÓN DE FIGURAS
Figura N°1: Esquema del invento propuesto: A la instalación original, se le agrega un inductor entre dos celdas consecutivas cualquiera; un condensador en paralelo con la fuente de corriente continua y una fuente de corriente alterna conectada en los bornes de la bobina recién instalada entre dos celdas consecutivas.
Figura N°2: Situación en que se desarrolla actualmente el proceso de electroobtención o electrorefinación de cobre y otros productos: la corriente del rectificador es continua e ingresa a la nave electrolítica. La fuente de corriente continua es un transformador rectificador.
Figura N°3: Esquema de la doble capa electroquímica compuesta por la capa interior o de Helmholtz y la capa exterior o capa difusa. Los sectores individualizados son: (a) el interior del electrodo metálico; (b) la capa interior o de Heimholtz; (c) la capa difusa y (d) el seno de la solución.
Figura N°4: Modelo eléctrico de la capa de Heimholtz como un condensador en paralelo con un elemento resistivo que modela el consumo de energía necesario para transformar iones en solución a átomos en una red cristalina metálica. Los sectores individualizados son: (a) el interior del electrodo metálico; (b) la capa interior o de Heimholtz modelada como un banco de condensadores y un elemento resistivo que representa el consumo de energía para transformar iones disueltos en la solución en átomos en la red cristalina metálica ; (c) la capa difusa y (d) el seno de la solución.
Figura N°5: La bomba hidráulica que se genera al superponer corriente alterna sobre la corriente continua del modelo clásico: Una variación en la carga de la placa metálica del electrodo, provoca necesariamente le movimiento de iones en la solución en la dirección perpendicular a la superficie del electrodo. Los sectores individualizados son: (a) el interior del electrodo metálico, en cuya superficie se acumulan cargas en un espacio de ancho mínimo pues es un conductor metálico; (b) la capa interior o de Heimholtz modelada como un banco de condensadores y un elemento resistivo que representa el consumo de energía para transformar iones disueltos en la solución en átomos en la red cristalina metálica ; (c) la capa difusa en que se produce agitación de los iones en solución en el sentido del campo eléctrico impuesto por la corriente superpuesta y (d) el seno de la solución.
Figura N°6: Esquema alternativos de implementación de superposición de corriente alterna a corriente continua: (a) representa la situación original de las plantas EW típicas; (b) representa una implementación en que se cambia la fuente de corriente continua original por una completamente nueva con capacidad de entregar corriente superpuesta; (c) representa una implementación en la que se inserta una nueva fuente que modifica la corriente original superponiendo corriente de alta frecuencia, por lo que se debe modificar el bus de barras original por otro receptivo a la alta frecuencia de la corriente alterna; (d) representa la implementación de un proceso de generación de corriente por etapas de sustracción, acumulación y devolución sucesivas; (e) y (f), representan implementaciones similares a la mostrada en d, pero reemplazando el uso de condensadores de acumulación de energía por subgrupos de celdas electrolíticas; (g) representa el invento propuesto. Figura N°7: Esquema del invento propuesto especialmente adecuado para refinerías electrolíticas (ER): A la instalación original, se le agregan transformadores en el punto de conexión media y condensadores en paralelo en los puntos de conexión de la fuente de corriente continua. Se utiliza una fuente de corriente alterna para varios grupos de celdas electrolíticas. Figura N°8: Esquema del invento propuesto especialmente adecuado para plantas pequeñas (EW): A la instalación original, se le agrega un autotransformador en el punto de conexión media y un condensador en paralelo en el puntos de conexión de la fuente de corriente continua. Se utiliza una fuente de corriente alterna de baja corriente ya tensión alta conectada en el circuito primario del autotransformador.

Claims

REIVINDICACIONES
1 . Un proceso de superposición de corriente alterna sobre la corriente continua que alimenta a un grupo de celdas electrolíticas para electroobtención o electrorefinación de cobre y otros productos, caracterizado por (a) la incorporación de un inductor, que se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas, cuyas funciones son actuar como filtro de corriente alterna y como medio conducción de corriente continua; (b) la incorporación de un capacitor, que se conecta en paralelo a la fuente de corriente continua original, cuyas funciones son actuar como medio de conducción de corriente alterna y como filtro de corriente continua; y (c) la incorporación de una fuente de corriente alterna que se conecta en los bornes de un inductor instalado en el punto medio del grupo de celdas electrolíticas.
2. Un proceso de superposición de corriente alterna sobre la corriente continua que alimenta a un grupo de celdas electrolíticas para electroobtención o electrorefinación de cobre y otros productos, caracterizado por (a) la incorporación de un transformador, cuyo circuito secundario se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas, cuyas funciones son actuar como aislación galvánica y como medio conducción de corriente continua; (b) la incorporación de un capacitor, que se conecta en paralelo a la fuente de corriente continua original, cuyas funciones son actuar como medio de conducción de corriente alterna y como filtro de corriente continua; y (c) la incorporación de una fuente de corriente alterna que se conecta en los bornes de circuito primario del transformador instalado en el punto medio del grupo de celdas electrolíticas.
3. Un proceso de superposición de corriente alterna sobre la corriente continua que alimenta a un grupo de celdas electrolíticas para electroobtención o electrorefinación de cobre y otros productos, caracterizado por (a) la incorporación de un autotransformador cuyo circuito secundario se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas, cuyas funciones son actuar como punto de conexión y como medio conducción de corriente continua; (b) la incorporación de un capacitor, que se conecta en paralelo a la fuente de corriente continua original, cuyas funciones son actuar como medio de conducción de corriente alterna y como filtro de corriente continua; y (c) la incorporación de una fuente de corriente alterna que se conecta en los bornes de circuito primario del autotransformador instalado en el punto medio del grupo de celdas electrolíticas.
4. Un proceso de superposición de corriente alterna sobre la corriente continua que alimenta a un grupo de celdas electrolíticas para electroreficación de cobre y otros productos, caracterizado por (a) la incorporación de un transformador por cada subgrupo de celdas de refinación, cuyo circuito secundario se conecta entre dos celdas consecutivas del subgrupo de celdas indicado, cuyas funciones son actuar como aislación galvánica y como medio conducción de corriente continua; (b) la incorporación de capacitores, que se conectan en paralelo a la fuente de corriente continua original en la acometida de cada subgrupo de celdas, cuyas funciones son actuar como medio de conducción de corriente alterna y como filtro de corriente continua; y (c) la incorporación de una fuente de corriente alterna que se conecta en paralelo con cada circuito primario de cada uno de los transformadores instalados en el punto medio de los grupos de celdas electrolíticas.
PCT/IB2014/066136 2013-11-19 2014-11-18 Proceso de superposición de corriente alterna sobre la corriente continua para procesos de electroobtención o electrorefinación de cobre u otros productos, en que la fuente de corriente alterna se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas utilizando un inductor para inyectar corriente alterna y un condensador para cerrar el circuito eléctrico WO2015075634A2 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2016119060A RU2643158C2 (ru) 2013-11-19 2014-11-18 Система наложения переменного тока на постоянный при электролизе
EP14863489.2A EP3072993B1 (en) 2013-11-19 2014-11-18 System for superimposing alternating current on direct current feeding a group of electrolytic cells for electrowinning or electrorefining of copper
MX2016005286A MX361776B (es) 2013-11-19 2014-11-18 Proceso de superposicion de corriente alterna sobre la corriente continua en procesos electroliticos.
CN201480062916.8A CN105745359B (zh) 2013-11-19 2014-11-18 在电解法中在直流电流上叠加交流电流的方法
AP2016009258A AP2016009258A0 (en) 2013-11-19 2014-11-18 Method of superimposing alternating current on direct current in electrolytic methods
US15/034,091 US10047447B2 (en) 2013-11-19 2014-11-18 Method of superimposing alternating current on direct current in electrolytic methods
CA2929515A CA2929515C (en) 2013-11-19 2014-11-18 Process for superimposing ac over dc used in copper, or other products, electrowinning or electrorefining processes, wherein the ac source is connected between two consecutive cells from the group of electrolytic cells using an inductor to inject ac and a capacitor to close the electrical circuit
JP2016533093A JP6259917B2 (ja) 2013-11-19 2014-11-18 銅及び他の製品を電解採取または電解精錬するための電解セル群に供給するdcにacを重畳するためのシステム
AU2014351382A AU2014351382B2 (en) 2013-11-19 2014-11-18 Method of superimposing alternating current on direct current in electrolytic methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3315-2013 2013-11-19
CL2013003315 2013-11-19

Publications (3)

Publication Number Publication Date
WO2015075634A2 true WO2015075634A2 (es) 2015-05-28
WO2015075634A3 WO2015075634A3 (es) 2015-08-13
WO2015075634A4 WO2015075634A4 (es) 2015-10-01

Family

ID=53180330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/066136 WO2015075634A2 (es) 2013-11-19 2014-11-18 Proceso de superposición de corriente alterna sobre la corriente continua para procesos de electroobtención o electrorefinación de cobre u otros productos, en que la fuente de corriente alterna se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas utilizando un inductor para inyectar corriente alterna y un condensador para cerrar el circuito eléctrico

Country Status (11)

Country Link
US (1) US10047447B2 (es)
EP (1) EP3072993B1 (es)
JP (1) JP6259917B2 (es)
CN (1) CN105745359B (es)
AP (1) AP2016009258A0 (es)
AU (1) AU2014351382B2 (es)
CA (1) CA2929515C (es)
MX (1) MX361776B (es)
PE (2) PE20171124A1 (es)
RU (1) RU2643158C2 (es)
WO (1) WO2015075634A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852151A (zh) * 2015-07-29 2018-03-27 胜艺科研发私人有限公司 用于向目标物体或目标区域施加叠加的时变频率电磁波的方法和系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941322B (zh) * 2016-01-04 2020-03-06 严运进 一种氢氧发生器双电源供电电路
CL2018000114A1 (es) * 2018-01-15 2018-05-11 Robledo Juan Pablo Bustos Sistema para inyectar corriente alterna en los electrodos extremos de celdas electrolíticas, de manera que la corriente alterna circula en serie desde el primer hasta el ultimo electrodo y desde un el electrodo mientras la corriente continua circula en paralelo desde los ánodos a los cátodos
CL2018002901A1 (es) * 2018-10-11 2019-02-01 Ionica Spa Un sistema para inyectar corriente alterna en celdas electrolíticas que contienen múltiples ánodos y catados intercalados, para procesos de electro obtención o electro refinación de cobre y otros metales; el cual provee la corriente alterna, en grupos consecutivos de electrodos.
CL2018002956A1 (es) * 2018-10-17 2019-02-01 Un sistema para inyectar corriente alterna en celdas electrolíticas que contienen múltiples ánodos y cátodos intercalados, para procesos de electro obtención o electro refinación de cobre y otros metales, el cual provee una fuente de corriente conectada en los electrodos extremos de la celda y láminas que separan los electrodos de la celda en grupos consecutivos de electrodos consecutivos, las cuales coetan el camino de fuga de la corriente alterna.
CN115398040A (zh) * 2020-02-10 2022-11-25 罗切斯特大学 用于高能效电解池的系统和方法
RU2770160C1 (ru) * 2021-10-11 2022-04-14 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Способ электрохимической переработки медного штейна

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2026466A (en) 1931-08-12 1935-12-31 Alais & Froges & Camarque Cie Electrolytic system for the production of aluminum
FR1178179A (fr) * 1957-07-04 1959-05-05 Fusion électrolytique
JPS4923978B1 (es) * 1965-02-22 1974-06-19
US4170739A (en) * 1977-12-23 1979-10-09 Frusztajer Boruch B Apparatus and method for supplying direct current with superimposed alternating current
IT1153064B (it) * 1982-11-18 1987-01-14 Pirelli Cavi Spa Metodo e relativo sistema per favorire la rigidita' dielettrica di un isolamento per cavi in corrente continua
EA001816B1 (ru) * 1995-10-24 2001-08-27 Аквагэс Нью Зиленд Лимитед Источник электропитания переменный ток - постоянный ток
DE19541715A1 (de) * 1995-11-09 1997-05-15 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen, bei dem die gebildeten Salze ausgefällt werden
DE19547948C1 (de) * 1995-12-21 1996-11-21 Atotech Deutschland Gmbh Verfahren und Schaltungsanordnung zur Erzeugung von Strompulsen zur elektrolytischen Metallabscheidung
DE19707905C1 (de) * 1997-02-27 1998-02-05 Atotech Deutschland Gmbh Verfahren zur Pulsstromversorgung von Galvanisieranlagen
US7198706B2 (en) 1997-04-25 2007-04-03 Canadian Auto Preservation Inc. Method for inhibiting corrosion of metal
RU2133541C1 (ru) * 1998-03-05 1999-07-20 Николаев Анатолий Григорьевич Способ формирования асимметричного тока для питания нагрузки и устройство для его реализации
TWI284332B (en) * 2005-07-06 2007-07-21 Monolithic Power Systems Inc Equalizing discharge lamp currents in circuits
JP2007171936A (ja) * 2005-11-25 2007-07-05 Kyocera Mita Corp 高圧電源装置及び画像形成装置
US7879206B2 (en) 2006-05-23 2011-02-01 Mehlin Dean Matthews System for interphase control at an electrode/electrolyte boundary
CL2009000969A1 (es) * 2009-04-23 2009-07-17 Ingenieria Y Desarrollo Tecnologico S A Un sistema para superponer una corriente alterna a la corriente continua que alimenta las celdas electroliticas de un proceso de electrolisis de metales que comprende dos grupos de celdas con un punto comun de conexion electrica, dos fuentes de corriente continua, una para cada celda y un conversor de corriente bidireccional.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852151A (zh) * 2015-07-29 2018-03-27 胜艺科研发私人有限公司 用于向目标物体或目标区域施加叠加的时变频率电磁波的方法和系统

Also Published As

Publication number Publication date
CN105745359A (zh) 2016-07-06
RU2643158C2 (ru) 2018-01-31
MX2016005286A (es) 2016-11-25
EP3072993B1 (en) 2019-07-03
JP6259917B2 (ja) 2018-01-10
RU2016119060A (ru) 2016-10-10
WO2015075634A4 (es) 2015-10-01
PE20171124A1 (es) 2017-08-08
CA2929515A1 (en) 2015-05-28
PE20160765A1 (es) 2016-08-19
JP2017500440A (ja) 2017-01-05
CN105745359B (zh) 2018-12-28
AU2014351382A1 (en) 2016-05-26
AP2016009258A0 (en) 2016-06-30
EP3072993A4 (en) 2017-08-30
CA2929515C (en) 2019-12-31
US20160355938A1 (en) 2016-12-08
MX361776B (es) 2018-12-17
EP3072993A2 (en) 2016-09-28
WO2015075634A3 (es) 2015-08-13
AU2014351382B2 (en) 2017-11-30
US10047447B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2015075634A2 (es) Proceso de superposición de corriente alterna sobre la corriente continua para procesos de electroobtención o electrorefinación de cobre u otros productos, en que la fuente de corriente alterna se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas utilizando un inductor para inyectar corriente alterna y un condensador para cerrar el circuito eléctrico
EP2768043A2 (de) Verbesserte technische Vorrichtung zum großtechnischen Sspeichern von elektrischer Energie
CN204752287U (zh) 一种显著提高电解效率的无膜电解水新装置
CN104769160A (zh) 电解设备
Zapryanova et al. Nucleation and growth of copper on glassy carbon: Studies in extended overpotential interval
WO2019136570A1 (es) Sistema para superponer ac sobre dc en procesos electrolíticos
Ren et al. CO2‐Assisted Solution‐Phase Selective Assembly of 2D WS2‐WO3⋅ H2O and 1T‐2H MoS2 to Desirable Complex Heterostructures
DE2407056A1 (de) Vorrichtung zum gefriertrocknen
DE689105C (de) Trockengleichrichteranordnung mit rohrfoermigen Gleichrichterelementen
Sun et al. Identification of the partitioning characteristics of refractory elements in σ and γ phases of Ni-based single crystal superalloys based on first principles
CN103397364A (zh) 一种铝硅合金表面陶瓷化处理方法及设备
DE102010043302A1 (de) Verfahren zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Ölsand-Lagerstätten als Reservoir
CN203429271U (zh) 一种铝硅合金表面陶瓷化处理设备
WO2020077479A1 (es) Sistema para inyectar corriente alterna en celdas electrolíticas, que comprende láminas que separan los electrodos de la celda en grupos
DE102017112515B4 (de) Verfahren zum Betreiben eines Speichers für elektrische Energie und Vorrichtung zur Durchführung des Verfahrens
Natsui et al. Molten Oxide Electrolysis Using Copper-Containing Carbon-Saturated Molten Iron Anode
Petrichenko et al. Electrospark Purification of Galvanic Effluents from Heavy Metal Ions in the Flow Reactor
KR102128089B1 (ko) 전해질이 필요없는 전기화학반응용 무전해질 전극
WO2020073143A1 (es) Sistema para inyectar corriente alterna en celdas electrolíticas, en grupos consecutivos de electrodos
WO2015025218A1 (de) Verfahren und vorrichtung zur kühlung von strahlungsquellen auf basis eines plasmas
DE202014001838U1 (de) Vorrichtung zur Induktionsheizung für Wohngebäude
DE102013014270A1 (de) Vorrichtung und Verfahren zur Energiewandlung von thermischer Energie in elektrische Energie
DE661008C (de) Anordnung zur Heizung von Gluehkathoden in Gasentladungsgefaessen mit Wechselstrom
DE202015106181U1 (de) Thermoelektrische Generatorvorrichtung
RO125542B1 (ro) PROCEDEU Șl INSTALAȚIE DE ELECTROLIZA PENTRU RAFINAREA ELECTROLITICĂ A METALELOR, DEPUNERI GALVANICE Șl ACOPERIRI ELECTROLITICE

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/005286

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 000582-2016

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2929515

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15034091

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016/0407.1

Country of ref document: KZ

REEP Request for entry into the european phase

Ref document number: 2014863489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014863489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201603102

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016533093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014351382

Country of ref document: AU

Date of ref document: 20141118

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863489

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2016119060

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 000908-2017

Country of ref document: PE