WO2019136570A1 - Sistema para superponer ac sobre dc en procesos electrolíticos - Google Patents

Sistema para superponer ac sobre dc en procesos electrolíticos Download PDF

Info

Publication number
WO2019136570A1
WO2019136570A1 PCT/CL2019/050006 CL2019050006W WO2019136570A1 WO 2019136570 A1 WO2019136570 A1 WO 2019136570A1 CL 2019050006 W CL2019050006 W CL 2019050006W WO 2019136570 A1 WO2019136570 A1 WO 2019136570A1
Authority
WO
WIPO (PCT)
Prior art keywords
alternating current
series
cell
cells
electrode
Prior art date
Application number
PCT/CL2019/050006
Other languages
English (en)
French (fr)
Inventor
Juan Pablo Bustos Robledo
Original Assignee
Juan Pablo Bustos Robledo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juan Pablo Bustos Robledo filed Critical Juan Pablo Bustos Robledo
Priority to CA3089016A priority Critical patent/CA3089016A1/en
Priority to PE2020000951A priority patent/PE20210063A1/es
Priority to BR112020014452-5A priority patent/BR112020014452A2/pt
Priority to CN201980013752.2A priority patent/CN112424397A/zh
Priority to US16/962,168 priority patent/US11319637B2/en
Publication of WO2019136570A1 publication Critical patent/WO2019136570A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • electric current rectifiers are used to produce electrolytic copper from copper that is dissolved in the circulating electrolyte inside electrolytic cells, both in electro-obtaining (EW) processes, as in electro processes.
  • copper refining (ER) (figure N Q 2).
  • the electric current generated by the rectifiers which are sources of direct current, causes the deposit of the copper dissolved in the electrolyte on the cathode surface which, according to Faraday's law, is proportional to the current, resulting in metallic copper High purity adhered to cathodes that are usually permanent stainless steel sheets, that is, they are sown without copper, and then, after a period of deposit, they are harvested with a copper foil adhered on both sides.
  • the circulating electrolyte is mainly composed of water and sulfuric acid in an approximate proportion of 180 [gr / l].
  • the copper dissolved in the electrolyte is normally found in proportions of the order of 30 to 50 [gr / l].
  • dissolved copper enters the electrolytic cells through a pipe system that interconnect the EW process with the previous production stages of solvent extraction and leaching of minerals or other species containing copper.
  • copper is obtained by dissolving anodes of impure copper, which come from the previous stages of concentration and smelting.
  • the electrolytic cells are containers with a rectangular base and depth such that the electrodes involved in the electrolytic process are inserted inside them, so that they are mostly immersed in the circulating electrolyte (Figure N ° 3).
  • the electrodes anodes and cathodes
  • the electrodes are inserted interspersed so that there is always a cathode between two anodes; In this way, in EW processes, always the first and the last electrode are anodes.
  • the electrodes since the objective is to dissolve the anodes that come from the smelting process, the electrodes (anode and cathodes), are inserted interspersed so that there is always an anode between two cathodes.
  • the first and the last electrode are cathodes.
  • the copper deposition process both in EW and ER, has restrictions in terms of the ability to deposit copper in the cathode, since it is a known fact that the arbitrary increase in the density of current in the electrodes deteriorates the quality Chemistry and physics of deposited copper.
  • current densities of the order of 200 to 450 [A / m 2 ]. If the current level is increased, an increase in production is obtained, but at the cost of a severe deterioration in the quality of the copper produced.
  • EW electroobtention
  • ER electrorefining
  • the control variables of the metallurgical process are: copper concentration, flow and electrolyte temperature.
  • EW industrial plants which produce copper with current densities greater than 300 [A / m2] while maintaining a good chemical physical quality of the deposit, operate at temperatures above 45 [° C], high surface flows of the order of 2.2 [lt / min / m2] and copper concentrations greater than 45 [gr / l]. This implies a high operational cost, which is reasonable if the international copper valuation is high, however, in medium and low valuation scenarios, a high operational cost is critical for the operational continuity of the plant.
  • the current density is even more restricted by the phenomenon of passivation of the anodes, so they are typically restricted to work at current densities below 320 [A / m2] and, even so, they must operate at temperatures above 60 [° C] to preserve the quality of the tank.
  • the flow is not a variable available in the ER plants, as an increase in the flow produces agitation of the anodic mud that contaminates the lower proportion of the cathodes produced.
  • electrochemical double layer Although it is not our objective to study in detail the phenomenon of electrodeposition, or the phenomena that occur in the electrodelectrolyte interface, called "electrochemical double layer", it is necessary to mention that in the modeling of the electrochemical double layer, two perfectly differentiated electrolyte layers are discovered, as the name implies, which have different behavior: the inner or Helmholtz layer and the outer or diffuse layer. Inside the Helmholtz layer, the complex phenomenon of the transformation of copper into solution into metallic copper occurs.
  • the Helmholtz layer can be modeled simply as a capacitor, consisting of a plate metallic (the electrode) and another non-metallic plate, consisting of the high concentration of ions in the electrolyte, connected in parallel with an impedance of resistive characteristic that represents the energy consumption necessary to transform dissolved copper ions, into atoms in the network Metallic crystalline cathode (copper reduction) ( Figure N ° 4).
  • the metal plate of this capacitor supports large variations of surface charge, since it is a metallic conductor; on the contrary, the variations of electric charge in the non-metallic plate of this capacitor will necessarily generate variations in the distribution of ions in the diffuse layer, since the ions occupy a physical space within the solution; that is to say, the superposition of alternating current, generates movement of ions in the vicinity of the electrodelectrolyte interface.
  • a true “hydraulic pump” is implemented that mobilizes ions in the vicinity of the electrode, where mechanical agitation methods do not reach, because the viscosity of the solution prevents it ( Figure N ° 5).
  • the double layer capacitor will withstand large load variations without large voltage variations, since its capacitance is extremely high.
  • the phenomenon of transformation of copper ions in solution to copper atoms, integrated into the metallic crystalline network It occurs in the same way as in the classical process, but with a great improvement in the quality of the transport phenomena in the vicinity of the electrode towards the solution.
  • Mathews US 2007/0272546 A1 involves: changing and discarding the current operating sources of current; change and discard the entire bus bar connection between the direct current source and the electrolytic cells; and, change and discard the entire structure of current electrolytic cells. All of which must be replaced by new and non-standardized equipment for industrial production.
  • PROPOSED SOLUTION The solution proposed in this application consists in circulating the high frequency alternating current, between the end electrodes of each electrolytic cell, from the first and the last electrode, and from each electrode to the next, through the electrolyte contained between the electrodes; while simultaneously, the direct current circulates in parallel, from the anodes to the cathodes, through the electrolyte contained between the electrodes, either for electro-obtaining or electro-refining processes of copper and other metals (Figure N ° 8)
  • the connection point chosen for the sources that is, the outer or extreme electrodes of each cell, has, in practice, zero voltage, so that the alternating current source can be of standard design, in particular, the sources of AC generation for induction heating.
  • the solution proposed in this invention is to install alternating current sources, whose current capacity is equivalent to the current capacity of one side of an electrode, and connect it to the outer electrodes or ends of the circuit cells to the that you want to apply superposition of alternating current on the direct current.
  • AC sources thus connected in cells of 60 cathodes, must have a capacity of 300 [A], instead of 36 [KA]
  • 300 [A] is a very small electrical equipment.
  • the solution claimed in this invention does not use the original direct current busbar circuit of the system, so it is not necessary to consider losses in conductors or in contacts, so there will be no extra heating due to the circulation of alternating current on the direct current bus system.
  • the only current connection will be in the two outer electrodes of the cell, joints that can be bolted and therefore, with much safer and low resistance contacts.
  • the alternating current source can be implemented with any of the available technologies.
  • the operating frequency of this source must be greater than 5 [KHz]
  • the intensity of the current, generated by this source of alternating current will be linked to the value of the intensity of the direct current, since it makes no sense to inject alternating current when the direct current is very low or zero. Otherwise, the EW and ER processes only make sense when there is direct current flowing. From the point of view of industrial implementation, the technology proposed in this invention can be implemented with a minimum impact on the operation of the plant that originally operated with the conventional EW or ER process, since the installation of the components can be carried out practically without interrupting the normal operation of the plant.
  • Figure N s 4 ⁇ Electric model of the Helmholtz layer, as a capacitor in parallel with a resistive element, which models the energy consumption necessary to transform ions in solution to atoms in a metallic crystalline network.
  • the individualized sectors are: (a) the interior of the metal electrode; (b) the inner or Heimholtz layer modeled as a capacitor bank and a resistive element, which represents the energy consumption to transform dissolved ions in the solution, into atoms in the metallic crystalline lattice; (c) the diffuse layer and (d) the sine of the solution.
  • the individualized sectors are: (a) the interior of the metal electrode, on whose surface charges accumulate in a space of minimum width, as it is a metallic conductor; (b) the inner or Heimholtz layer, modeled as a capacitor bank and a resistive element, which represents the energy consumption to transform dissolved ions in the solution, into atoms in the metallic crystalline lattice; (c) the diffuse layer in which agitation of the ions in solution occurs, in the sense of the electric field imposed by the superimposed current and (d) within the solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Fuel Cell (AREA)

Abstract

La presente invención está dirigida a un sistema para superponer corriente alterna, sobre la corriente continua que circula en una o más celdas electrolíticas, para procesos de electro obtención o electro refinación, en que los bornes de una fuente de corriente alterna, se conectan a! primer y al último electrodo de una celda o de un grupo de celdas.

Description

SISTEMA PARA SUPERPONER AC SOBRE DC EN PROCESOS
PROBLEMA TÉCNICO
En la industria del cobre se utilizan rectificadores de corriente eléctrica para producir cobre electrolítico a partir del cobre que se encuentra disuelto en el electrolito circulante al interior de celdas electrolíticas, tanto en los procesos de electro obtención (EW), como en los procesos de electro refinación de cobre (ER) (figura NQ2). La corriente eléctrica generada por los rectificadores, los cuales son fuentes de corriente continua, provoca el depósito del cobre disuelto en el electrolito sobre la superficie del cátodo que, según la ley de Faraday, es proporcional a la corriente, obteniéndose como resultado, cobre metálico de alta pureza adherido a cátodos que usualmente son láminas de acero inoxidable permanentes, es decir, se siembran sin cobre, y posteriormente, luego de un periodo de depósito, se cosechan con una lámina de cobre adherida por ambas caras.
El electrolito circulante está compuesto principalmente por agua y ácido sulfúrico en proporción aproximada de 180 [gr/lt]. El cobre disuelto en el electrolito se encuentra normalmente en proporciones del orden de 30 a 50 [gr/lt]. En el proceso de EW, el cobre disuelto ingresa a las celdas electrolíticas a través de un sistema de tuberías que interconectan el proceso de EW con las etapas de producción previas de extracción por solventes y lixiviación de minerales u otras especies que contengan cobre. Por su parte, en el proceso ER, el cobre se obtiene mediante el proceso de disolver ánodos de cobre impuro, que provienen de las etapas previas de concentración y fundición.
Las celdas electrolíticas son contenedores de base rectangular y profundidad tal que en su interior se insertan los electrodos que intervienen en el proceso electrolítico, de manera que éstos quedan sumergidos en su mayor parte en el electrolito circulante (figura N°3). En el proceso EW, los electrodos (ánodos y cátodos), se insertan intercalados de manera tal que siempre haya un cátodo entre dos ánodos; de esta manera, en los procesos EW, siempre el primer y el último electrodo son ánodos. Por el contrario, en los procesos ER, dado que el objetivo es disolver los ánodos que vienen del proceso de fundición, los electrodos (ánodo y cátodos), se insertan intercalados de manera tal que siempre haya un ánodo entre dos cátodos. Así las cosas, en los procesos ER, siempre el primer y el ultimo electrodo son cátodos.
El proceso de depositación de cobre, tanto en EW como en ER, presenta restricciones en cuanto a la capacidad de depositar cobre en el cátodo, pues, es un hecho conocido, que el aumento arbitrario de la densidad de corriente en los electrodos deteriora la calidad química y física del cobre depositado. Actualmente, en instalaciones industriales se trabaja con densidades de corriente del orden de 200 a 450 [A/m2]. Si se aumenta el nivel de corriente, se obtiene un incremento en la producción, pero a costa de un severo deterioro de la calidad del cobre producido. En los procesos de electroobtención (EW) y electrorefinación (ER) convencionales, las variables de control del proceso metalúrgico son: la concentración de cobre, el flujo y la temperatura del electrolito. El aumento de la temperatura, mejora la movilidad local de los iones; y, por su parte, el flujo y la concentración, aumentan la disponibilidad de iones para reaccionar en la interfaz electrodo-electrolito. Las plantas industriales de EW, que producen cobre con densidades de corriente superiores a 300 [A/m2] conservando una buena calidad físico química del depósito, operan a temperaturas superiores a 45[°C], flujos superficiales elevados del orden de 2.2[lt / min / m2] y concentraciones de cobre mayores que 45 [gr/lt]. Lo anterior, conlleva un elevado costo operacional, lo cual es razonable si la valoración internacional del cobre es alta, sin embargo, en escenarios de valoración medios y bajos, un elevado costo operacional resulta crítico para la continuidad operacional de la planta.
En el caso de las plantas de ER de cobre, la densidad de corriente está aún más restringida por el fenómeno de pasivación de los ánodos, por lo que típicamente se restringen a trabajar a densidades de corriente inferiores a 320 [A/m2] y, aun así, deben operar a temperaturas sobre 60 [°C] para conservar la calidad del depósito. El flujo tampoco es una variable disponible en las plantas de ER, pues un aumento en el flujo produce agitación del barro anódico que contamina la proporción inferior de los cátodos producidos. Aun cuando no es nuestro objetivo el estudio detallado del fenómeno de la electrodepositación, ni de los fenómenos que ocurren en la interfaz electrodo- electrolito, denominada“doble capa electroquímica”, resulta necesario mencionar que en el modelamiento de la doble capa electroquímica, se descubren, tal como su nombre lo indica, dos capas de electrolito perfectamente diferenciadas, las cuales tienen comportamiento distinto: la capa interior o de Helmholtz y la capa exterior o capa difusa. Al interior de la capa de Helmholtz, ocurre el fenómeno complejo de la transformación de cobre en solución a cobre metálico. Debido a la gran acumulación de iones, a una distancia tan pequeña,“esperando” ser depositados, y de protones que no tienen la energía necesaria para reducirse, la capa de Helmholtz puede ser modelada de manera sencilla como un capacitor, compuesto por una placa metálica (el electrodo) y otra placa no metálica, consistente en la elevada concentración de iones en el electrolito, conectado en paralelo con una impedancia de característica resistiva que representa el consumo de energía necesario para trasformar iones de cobre disueltos, en átomos en la red cristalina metálica del cátodo (reducción del cobre) (figura N°4).
La capa difusa, por su parte, se caracteriza por una alta concentración de iones de cobre y protones que varía, desde la vecindad de la capa de Helmholtz, hasta la concentración típica del seno de la solución. Descontando la capa de Helmholtz, desde la capa difusa al seno de la solución, ocurren fenómenos de transporte de iones que son: migración, a causa del campo eléctrico aplicado y difusión, a causa de las variaciones de concentración. Para mejorar estos fenómenos de trasporte, existen actualmente, una serie de tecnologías, como son:“air sparging”, consistente en la inyección de aire al electrolito, lo que genera mejoras hidrodinámicas en la vecindad de los electrodos, afectando positivamente la calidad del cobre. El efecto de este tipo de tecnologías está limitado por la viscosidad del electrolito, el cual es un fenómeno electrostático, que impide que la agitación mecánica ejercida desde el electrolito hacia los electrodos se acerque a la zona de reacción que es la doble capa electroquímica.
Existe, sin embargo, la posibilidad de agitar eléctricamente el electrolito de la zona difusa, mediante la variación de la corriente que ingresa desde los electrodos al electrolito, es decir, mediante la superposición de una corriente alterna sobre la corriente continua del proceso de electrodepositación convencional, utilizando como medio de inyección de corriente eléctrica alterna, el condensador de la doble capa, mediante el fenómeno de polarización eléctrica. La placa metálica de este condensador (el electrodo), soporta grandes variaciones de carga superficial, dado que es un conductor metálico; por el contrario, las variaciones de carga eléctrica en la placa no metálica de este condensador, generará necesariamente variaciones en la distribución de iones en la capa difusa, pues los iones ocupan un espacio físico dentro de la solución; es decir, la superposición de corriente alterna, genera movimiento de iones en la vecindad de la interfaz electrodo- electrolito. Se implementa, de esta manera, una verdadera“bomba hidráulica” que moviliza iones en la vecindad del electrodo, lugar al que los métodos de agitación mecánica no alcanzan, debido a que la viscosidad de la solución lo impide (figura N°5).
Un aspecto a destacar es que, si esta agitación se efectúa a una frecuencia suficientemente alta, el condensador de la doble capa, soportará grandes variaciones de carga sin grandes variaciones de tensión, pues su capacitancia es extremadamente elevada. De esta manera, el fenómeno de transformación de iones de cobre en solución a átomos de cobre, integrados a la red cristalina metálica, ocurre de la misma manera que en el proceso clásico, pero con una gran mejora en la calidad de los fenómenos de transporte en la vecindad del electrodo hacia la solución.
La frecuencia adecuada para la agitación de la interfaz por superposición de corriente alterna a la corriente del proceso clásico, es determinable por métodos de ensayo de espectroscopia de impedancia, resultando frecuencias mayores a 5[Khz] (figura N°6). A frecuencias más bajas, se corre el riesgo de interferir con la operación de la fuente de corriente continua (el transformador rectificador) y con el proceso de electroquímico de depositación. En definitiva, el problema técnico a resolver, consiste en cómo implementar el proceso de superposición de corriente alterna de frecuencia alta, sobre la corriente continua para procesos EW y ER en celdas electrolíticas industriales.
ESTADO DEL ARTE
En la actualidad, prácticamente todas las estrategias que se han propuesto para implementar la superposición de corriente alterna sobre la corriente continua, se han restringido a conectar la fuente de corriente alterna en paralelo a la fuente de corriente continua, utilizando el mismo punto de conexión, quedando, de esta manera, la fuente de corriente alterna, expuesta a tensiones continuas que genera la fuente de corriente continua; y, por su parte, la fuente de corriente continua queda expuesta a componentes de alta frecuencia generadas por la fuente de corriente alterna. Aparte de esto, las distintas propuestas son o variaciones de la fuente o variaciones del bus de conexión o variaciones de la estructura de las celdas y/o mezclas de las variaciones ya mencionadas, tal como se presenta en la figura N°7.
En el invento de Groole, US 2,026,466 de 1935, podemos comentar que es un regulador de carga, para que el consumo de potencia desde la fuente primaria de alimentación sea aproximadamente constante. El proceso o dispositivo, altera la característica de corriente que alimenta a la carga, pero no regula potencia. Este invento cae en la categoría presentada en la figura N°7.c, aun cuando, en esa fecha ni siquiera existían transformadores rectificadores de estado sólido.
En el invento de Lewis, US 2004/021 1677 A1 de 2004, se propone una nueva fuente como en la figura N°7.b. Por esta fuente circula todo el flujo de proceso: corriente continua y también corriente alterna.
El invento de Mathews US 2007/0272546 A1 , implica: cambiar y desechar las fuentes de corriente continuas actualmente operativas; cambiar y desechar todo el bus de barras conexión entre la fuente de corriente continua y las celdas electrolíticas; y, cambiar y desechar toda la estructura de celdas electrolíticas actuales. Todo lo cual debe ser reemplazado por equipamiento nuevo y no estandarizado para la producción industrial.
En nuestro invento, descrito en la solicitud INAPI 0817-2007, se propone incluir un dispositivo que sustrae, acumula y devuelve energía del grupo de celdas electrolíticas en forma consecutiva, como en figura N°7.d; de esta manera, se genera la corriente alterna que se superpone a la corriente continua, sin la necesidad de alterar la instalación original. Esta solicitud, fue aprobada en Chile, Australia, Sudáfrica y Estados Unidos. En Estados Unidos, fue dividida en dos patentes, una de las cuales reivindica el proceso de generación de corriente alterna mediante sustracción, acumulación y devolución consecutiva, y la otra reivindica el dispositivo que efectúa las etapas del proceso; ambas patentes fueron concedidas. En este caso, también la fuente de corriente alterna está en paralelo con la fuente de corriente continua o rectificador.
En el invento de Lagos, solicitud INAPI 0969-2009, se proponen dos posibilidades para implementar dos variantes de dispositivos similares y con filosofía similar a la propuesta en la solicitud 0817-2007, aunque sin incluir condensadores de acumulación, pues se postula en este invento, que la función de estos condensadores puede ser reemplazada por grupos o subgrupos de celdas electrolíticas. En nuestra opinión, esta estrategia es inaplicable industrialmente, pues dadas las dimensiones de las plantas electrolíticas industriales, los conductores de conexión tendrían inductancias que son incompatibles con la operación de dispositivos como transistores IGBT, como los que se muestran en la figura N°7.e y N°7.f, que son representativos de esta solicitud.
En nuestro invento, solicitud INAPI 3315-2013, se propone, por primera vez, cambiar el punto de conexión de la fuente de corriente alterna, por un punto distinto del que se conecta la fuente de corriente continua. Se propone que el punto de conexión de la fuente de corriente alterna sea un punto de tensión eléctrica nula entre dos celdas consecutivas cualesquiera, de las que se encuentran conectadas eléctricamente en serie; en particular, el punto de conexión óptimo que se propone, es entre las celdas intermedias de cualquier circuito típico de celdas para ER o EW. La incorporación de la fuente alterna debe estar acompañada por la incorporación de dos componentes pasivas, las cuales son: un inductor y un condensador, que permiten la circulación de corriente continua y corriente alterna (figura N°7.g).
Del análisis del estado del arte, se observa que todas las propuestas consisten en implementar una sola gran fuente de corriente alterna para el grupo de celdas conectadas en serie, al igual como ocurre con la fuente de corriente continua; de esta manera, las soluciones planteadas tienden a utilizar también, el mismo punto de conexión que utiliza la fuente de corriente continua para conectar la fuente de corriente alterna. El único invento que se diferencia en este aspecto, es nuestra solicitud anterior INAPI 3315-2013, que también propone una gran fuente de corriente alterna para todo el grupo de celdas, pero con la diferencia de que el punto de conexión es entre dos celdas consecutivas cualquiera, el cual no es el punto de conexión de la fuente de corriente continua.
SOLUCIÓN PROPUESTA La solución propuesta en esta solicitud, consiste en hacer circular la corriente alterna de frecuencia alta, entre los electrodos extremos de cada celda electrolítica, desde el primer y hasta el último electrodo, y desde cada electrodo al siguiente, a través del electrolito contenido entre los electrodos; mientras en forma simultánea, la corriente continua circula en paralelo, desde los ánodos hacia los cátodos, por el electrolito contenido entre los electrodos, ya sea para procesos de electro obtención o electrorefinación de cobre y otros metales (figura N°8) En esta solicitud, a diferencia de todas las soluciones o inventos anteriores, se propone implementar varias fuentes de corriente alterna pequeñas, en lugar de una sola gran fuente de corriente alterna. El punto de conexión elegido para las fuentes, es decir, los electrodos exteriores o extremos de cada celda, tiene, en la práctica, tensión nula, de manera que la fuente de corriente alterna puede ser de diseño estándar, en particular, las fuentes de generación de corriente alterna para calentamiento pon inducción.
En caso de instalar una fuente de corriente alterna para dos celdas, basta con instalar y conectar un capacitor entre las celdas; así, el condensador permitirá la circulación de corriente alterna, manteniendo una tensión equivalente a la diferencia de tensión entre el último electrodo de la primera celda conectada y el primer electrodo de la segunda celda conectada (figura N°1 ). En un caso más general, de instalar una fuente de corriente alterna para alimentar varias celdas, bastará con instalar un capacitor entre cada par de celdas. Dado que las celdas electrolíticas están también acopladas a un circuito de alta corriente continua, y que además tienen una alta energía acumulada, resulta conveniente y necesario, que en estos casos, tanto la fuente de corriente alterna, como el o los capacitores, estén equipados con protección de sobre corriente y/o cortocircuito, ya sea protección fusible o termomagnética (figura N°9). La primera idea que surge al explorar la idea de instalar una fuente de corriente alterna para celdas individuales, es conectarla, directamente, en las barras intercelda a las que se conectan los bornes de los electrodos y por los que circula la corriente continua; sin embargo, esto implicaría diseñar una fuente de corriente alterna, cuya capacidad de corriente sería la equivalente a las dos caras de todos los electrodos de la celda. A modo ejemplo, y sin pérdida de generalidad, en una celda de planta EW típica, se explotan 60 cátodos con dos caras, cada una de ellas, de un metro cuadrado de superficie, es decir, cada celda tiene 120 [m2] de superficie; si se explota a 300 [A/m2], entonces, la corriente total sería de 36 [KA] Esto hace impracticable la idea de conectar una fuente por celda, a los bornes de corriente continua, tanto desde el punto de vista económico, como porque simplemente no hay espacio en las plantas de producción para instalar tantas fuentes grandes.
La solución que se propone en este invento, consiste en instalar fuentes de corriente alterna, cuya capacidad de corriente sea equivale a la capacidad de corriente de una cara de un electrodo, y conectarla en los electrodos exteriores o extremos de las celdas del circuito a las que se quiera aplicar superposición de corriente alterna sobre la corriente continua. De esta manera, en referencia al ejemplo citado en el párrafo anterior, las fuentes de corriente alterna, así conectadas en celdas de 60 cátodos, deben tener capacidad de 300[A], en lugar de 36[KA] Esto hace que, tanto desde el punto de vista económico, como desde el punto de vista geométrico, sea factible instalar fuentes de corriente alterna pequeñas, incluso una fuente de corriente alterna por celda. En la práctica, una fuente de corriente alterna de 300[A] es un equipo eléctrico muy pequeño. VENTAJAS DE LA APLICACIÓN INDUSTRIAL DEL INVENTO
Desde el punto de vista práctico, la solución propuesta en este invento, resulta compatible con la aplicación de marcos cortocircuitadores que usualmente se utilizan en el desborre, mantenimiento y reparación de celdas electrolíticas. En el caso de la aplicación de este invento, basta detener la fuente de corriente alterna en las celdas intervenidas por el marco cortocircuitador. En otros inventos y soluciones anteriores, resulta necesario rediseñar los marcos cortocircuitadores para que sean aptos para la conducción de corriente alterna de la frecuencia alta, o en caso contrario, interrumpir la superposición de corriente alterna en todo el grupo de celdas.
Durante el proceso de siembra y cosecha de cátodos, es posible detener la fuente de corriente alterna para que la primera capa de cobre que se deposite sea más porosa y apta para el despegue de las láminas de cobre desde los cátodos de acero inoxidable. La aplicación de esta detención de la fuente de corriente alterna, será objeto de evaluaciones en operación en planta para optimizar la metodología y el tiempo de detención.
El costo de implementación de la tecnología de superposición de corriente alterna, mediante el presente invento, resulta proporcional al número de celdas a las que se aplique el invento. En general, el costo de la implementación, será proporcional a la producción, de manera que para plantas con menor número de celdas, el costo de la implementación de la solución será menor. Debe tenerse en cuenta, que la capacidad de corriente de la fuente de corriente alterna de una celda, será la capacidad de corriente de una cara de un electrodo, por lo cual resulta un equipo barato, pequeño y fácil de instalar. La dificultad técnica de la implementación de este invento es muy baja, pues existen en el mercado, paquetes de electrónica de potencia baratos y prácticamente listos para instalar. Desde el punto de vista práctico, y por lo mencionado en el párrafo anterior, la solución reivindicada en este invento, no utiliza el circuito de barras de conducción de corriente continua original del sistema, de manera que no resulta necesario considerar perdidas en conductores ni en contactos, por lo que no se producirá calentamiento extra por la circulación de la corriente alterna sobre el sistema de barras de corriente continua. La única conexión de corriente será en los dos electrodos exteriores de la celda, uniones que pueden ser apernadas y por lo tanto, con contactos mucho más seguros y de baja resistencia.
Al no utilizarse el sistema de barras de corriente continua para la conducción de corriente alterna, es posible implementar la solución, de manera que entregue una intensidad de corriente alterna mucho mayor que si se ocupara el sistema de barras de corriente continua, pudiéndose obtener los beneficios de la disminución de tensión de celdas. En este caso, parece especialmente adecuada la implementación de las fuentes de corriente alterna como fuentes de resonancia paralela. De esta manera, en lugar de aplicar corriente alterna de 300 [A/m2], resulta posible aplicar corrientes alternas mucho mayores, agitando eléctricamente el electrolito en la capa difusa de la vecindad de los electrodos, provocando así la dispersión de las altas densidades de iones (protones principalmente), disminuyendo el campo eléctrico y reduciendo la tendencia a la ruptura dieléctrica de la capa de Helmholtz, lo que permite reducir la tendencia al crecimiento preferencial de los depósitos de cobre, mejorando la calidad y disminuyendo la tensión de celdas y el consumo de energía del proceso. El margen del negocio se hace más grande entonces, pues se accede al beneficio de mejora de calidad y reducción de consumo de energía del proceso, sin rediseñar o cambiar el estándar de electrodos, celdas, rectificador ni de ningún otro elemento del sistema.
La fuente de corriente alterna puede ser implementada con cualquiera de las tecnologías disponibles. La frecuencia de operación de esta fuente debe ser superior a 5[KHz] La intensidad de la corriente, generada por esta fuente de corriente alterna, estará ligada al valor de la intensidad de la corriente continua, dado que, no tiene sentido inyectar corriente alterna cuando la corriente continua es muy baja o nula. Por lo demás, los procesos de EW y ER, sólo tienen sentido cuando hay corriente continua circulando. Desde el punto de vista de la implementación industrial, la tecnología propuesta en este invento, puede ser implementada con un mínimo impacto en la operación de la planta que originalmente operaba con el proceso EW o ER convencional, pues la instalación de las componentes, puede ser efectuada prácticamente sin interrumpir la operación normal de la planta. Desde el punto de vista de las componentes del sistema, no es necesario modificar o reemplazar ninguna componente del sistema original: la fuente de corriente continua (el transformador rectificador) permanece inalterada y su operación no sufre interferencia una vez que empiezan a operar las fuentes de corriente alterna. La estructura de las celdas electrolíticas, tampoco sufre modificación alguna, ni en la instalación, ni en la operación de la nueva fuente de corriente alterna. EXPLICACIÓN DE FIGURAS
Figura NQ1\ Esquema del invento propuesto: Se instala y conecta una fuente de corriente alterna con protección fusible, a un par de celdas, a las que se quiere superponer corriente alterna sobre la corriente continua, ya aplicada por la fuente de corriente continua. Se instala y conecta un capacitor con protección fusible, que soporta la diferencia de tensión entre las celdas y, que a su vez, sirve de camino para la corriente alterna.
Figura Ns2\ Situación en que se desarrolla actualmente el proceso de electroobtención o electrorefinación de cobre y otros metales: la corriente es continua e ingresa a la nave electrolítica. La fuente de corriente continua es un transformador rectificador.
Figura Ns3\ (1 ) Un cátodo y (2) un ánodo de diseños típico y (3) esquema de una celda electrolítica industrial típica.
Figura Ns4\ Modelo eléctrico de la capa de Helmholtz, como un condensador en paralelo con un elemento resistivo, que modela el consumo de energía necesario para transformar iones en solución a átomos en una red cristalina metálica. Los sectores individualizados son: (a) el interior del electrodo metálico; (b) la capa interior o de Heimholtz modelada como un banco de condensadores y un elemento resistivo, que representa el consumo de energía para transformar iones disueltos en la solución, en átomos en la red cristalina metálica ; (c) la capa difusa y (d) el seno de la solución. Figura L/-5: La bomba hidráulica que se genera al superponer corriente alterna sobre la corriente continua del modelo clásico: una variación en la carga de la placa metálica del electrodo, provoca, necesariamente, el movimiento de iones en la solución, en la dirección perpendicular a la superficie del electrodo. Los sectores individualizados son: (a) el interior del electrodo metálico, en cuya superficie se acumulan cargas en un espacio de ancho mínimo, pues es un conductor metálico; (b) la capa interior o de Heimholtz, modelada como un banco de condensadores y un elemento resistivo, que representa el consumo de energía para transformar iones disueltos en la solución, en átomos en la red cristalina metálica; (c) la capa difusa en que se produce agitación de los iones en solución, en el sentido del campo eléctrico impuesto por la corriente superpuesta y (d) el seno de la solución.
Figura NQ6\ Diagramas de Nyquist y diagrama de Bode, resultado de prueba de espectroscopia de impedancia para determinar el comportamiento de la impedancia de la interfaz catódica. Se observa que sobre [5KHz], el proceso se comporta como polarización eléctrica, es decir, que para el paso de la corriente eléctrica alterna, la impedancia es puramente capacitiva.
Figura L/-7: Esquemas alternativos de implementación de superposición de corriente alterna a corriente continua: (a) representa la situación original de las plantas EW típicas; (b) representa una implementación en que se cambia la fuente de corriente continua original por una completamente nueva, con capacidad de entregar corriente superpuesta; (c) representa una implementación en la que se inserta una nueva fuente que modifica la corriente original, superponiendo corriente de alta frecuencia, por lo que se debe modificar el bus de barras original por otro receptivo a la alta frecuencia de la corriente alterna; (d) representa la implementación de un proceso de generación de corriente por etapas de sustracción, acumulación y devolución sucesivas; (e) y (f), representan implementaciones similares a la mostrada en d, pero reemplazando el uso de condensadores de acumulación de energía por subgrupos de celdas electrolíticas; (g) representa un invento en que se cambia el punto de conexión de la fuente de corriente alterna.
Figura NQ8: Esquema del invento propuesto para una celda: se instala y conecta una fuente de corriente alterna a una celda a la que se quiere superponer corriente alterna sobre la corriente continua ya aplicada por la fuente de corriente continua. Figura NQ9\ Esquema del invento propuesto para varias celdas: Se instala y conecta una fuente de corriente alterna, con protección fusible para varias celdas a los que se quiere superponer corriente alterna sobre la corriente continua ya aplicada. Se instalan y conectan capacitores con protección fusible, que soportan la diferencia de tensión entre las celdas y que, a su vez, sirven de camino para la corriente alterna.

Claims

REIVINDICACIONES
1. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en una celda electrolítica, para procesos de electro obtención o electro refinación de cobre y otros metales, CARACTERIZADO por incorporar una fuente de corriente alterna, cuyos bornes, se conectan en el primer y en el último electrodo de la celda, por lo que, la corriente alterna circula, en serie, desde el primer hasta el último electrodo y, desde cada electrodo al siguiente, a través del electrolito contenido entre los electrodos; mientras, en forma simultánea, la corriente continua circula en paralelo, desde los ánodos hacia los cátodos, por el electrolito contenido entre los electrodos.
2. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en una celda electrolítica, para procesos de electro obtención de cobre y otros metales, CARACTERIZADO por incorporar una fuente de corriente alterna, cuyos bornes, se conectan en el primer y en el último ánodo de la celda, por lo que, la corriente alterna circula, en serie, desde el primer hasta el último ánodo y, desde cada electrodo al siguiente, a través del electrolito contenido entre los electrodos; mientras, en forma simultánea, la corriente continua circula en paralelo, desde los ánodos hacia los cátodos por el electrolito contenido entre los electrodos.
3. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en una celda electrolítica, para procesos de electro refinación de cobre y otros metales, CARACTERIZADO por, incorporar una fuente de corriente alterna, cuyos bornes, se conectan en el primer y en el último cátodo de la celda, por lo que, la corriente alterna circula, en serie, desde el primer hasta el último cátodo y, desde cada electrodo al siguiente, a través del electrolito contenido entre los electrodos; mientras, en forma simultánea, la corriente continua circula en paralelo, desde los ánodos hacia los cátodos, por el electrolito contenido entre los electrodos.
4. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en una celda electrolítica, para procesos de electro obtención o electro refinación de cobre y otros metales, CARACTERIZADO por incorporar una fuente de corriente alterna y conectar sus bornes en dos electrodos de la celda, por lo que, la corriente alterna circula, en serie, desde un electrodo, en que se conecta el primer borne de la fuente de corriente alterna, hasta otro electrodo, en que se conecta el segundo borne de la fuente de corriente alterna y, desde un electrodo al siguiente de los electrodos instalados entre los electrodos en los que se conecta la fuente de corriente alterna, y, a través del electrolito contenido en el espacio entre los electrodos; mientras, en forma simultánea, la corriente continua circula en paralelo, desde los ánodos hacia los cátodos, por el electrolito contenido en el espacio entre los electrodos.
5. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en dos celdas electrolíticas consecutivas, conectadas, en serie, para procesos de electro obtención o electro refinación de cobre y otros metales,
CARACTERIZADO por (i) incorporar una fuente de corriente alterna con protección fusible en serie; por (ii) incorporar un capacitor con protección fusible en serie; por (iii) conectar los bornes de la fuente de corriente alterna con protección fusible en serie, en el primer electrodo de la primera celda y en el último electrodo de la segunda celda; y por (iv) conectar los bornes del capacitor con protección fusible en serie, en el último electrodo de la primera celda celda y en el primer electrodo de la segunda celda; de manera que, al interior de cada una de las dos celdas consecutivas, la corriente alterna circula, en serie, desde el primer hasta el último electrodo y desde un electrodo al siguiente, a través del electrolito contenido en el espacio entre los electrodos, en cada una de las dos celdas; mientras, en forma simultánea, la corriente continua circula en paralelo, desde los ánodos hacia los cátodos, por el electrolito contenido en el espacio entre los electrodos en cada una de las dos celdas; y, a su vez, la corriente alterna circula por el capacitor, cuya tensión eléctrica es igual a la diferencia de tensión entre el último electrodo de la primera celda y el primer electrodo de la segunda celda.
6. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en dos celdas electrolíticas consecutivas, conectadas en serie para procesos de electro obtención de cobre y otros metales, CARACTERIZADO por (i) incorporar una fuente de corriente alterna con protección fusible en serie; por (ii) incorporar un capacitor con protección fusible en serie; por (iii) conectar los bornes de la fuente de corriente alterna con protección fusible en serie, en el primer ánodo de la primera celda y en el último ánodo de la segunda celda; y por (iv) conectar los bornes del capacitor con protección fusible en serie, en el último ánodo de la primera celda y en el primer ánodo de la segunda celda; de manera que, al interior de cada una de las dos celdas consecutivas, la corriente alterna circula, en serie, desde el primer hasta el último ánodo y, desde un electrodo al siguiente a través del electrolito contenido en el espacio entre los electrodos en cada una de las dos celdas; mientras, en forma simultánea, la corriente continua circula, en paralelo, desde los ánodos hacia los cátodos por el electrolito contenido en el espacio entre los electrodos en cada una de las dos celdas; y a su vez, la corriente alterna circula por el capacitor, cuya tensión eléctrica es igual a la tensión media de la primera celda.
7. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en dos celdas electrolíticas consecutivas, conectadas en serie para procesos de electro refinación de cobre y otros metales, CARACTERIZADO por (i) incorporar una fuente de corriente alterna con protección fusible en serie; por (ii) incorporar un capacitor con protección fusible en serie; por (iii) conectar los bornes de la fuente de corriente alterna con protección fusible en serie, en el primer cátodo de la primera celda y en el último cátodo de la segunda celda; y por (iv) conectar los bornes del capacitor con protección fusible en serie, en el último cátodo de la primera celda y en el primer cátodo de la segunda celda; de manera que, al interior de cada una de las dos celdas consecutivas, la corriente alterna circula, en serie, desde el primer hasta el último cátodo y desde un electrodo al siguiente, a través del electrolito contenido en el espacio entre los electrodos en cada una de las dos celdas consecutivas; mientras, en forma simultánea, la corriente continua circula, en paralelo, desde los ánodos hacia los cátodos, por el electrolito contenido en el espacio entre los electrodos en cada una de las dos celdas; y a su vez, la corriente alterna circula por el capacitor, cuya tensión eléctrica es igual a la tensión media de la segunda celda.
8. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en varias celdas electrolíticas, para procesos de electro obtención o electro refinación de cobre y otros metales, CARACTERIZADO por (i) incorporar una fuente de corriente alterna con protección fusible en serie; por (ii) incorporar capacitores con protección fusible en serie; por (iii) conectar los bornes de la fuente de corriente alterna con protección fusible en serie, en el primer electrodo de la primera celda y en el último electrodo de la última celda; y por (iv) conectar los bornes de los capacitores con protección fusible en serie, en el último electrodo de una de las celdas y en el primer electrodo de la celda consecutiva; de manera que, al interior de cada una de las celdas, la corriente alterna circula, en serie, desde el primer hasta el último electrodo y desde un electrodo al siguiente, a través del electrolito contenido en el espacio entre los electrodos en cada una de las celdas, mientras, en forma simultánea, la corriente continua circula, en paralelo, desde los ánodos hacia los cátodos por el electrolito contenido en el espacio entre los electrodos de cada celda; y, a su vez, la corriente alterna circula por los capacitores con protección fusible en serie, cuya tensión eléctrica es igual a la diferencia de tensión entre los electrodos de las celdas consecutivas en que están conectados.
9. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en varias celdas electrolíticas, para procesos de electro obtención de cobre y otros metales, CARACTERIZADO por (i) incorporar una fuente de corriente alterna con protección fusible en serie; por (ii) incorporar capacitores con protección fusible en serie; por (iii) conectar los bornes de la fuente de corriente alterna con protección fusible en serie, en el primer ánodo de la primera celda y en el último ánodo de la última celda; y por (iv) conectar los bornes de los capacitores con protección fusible en serie, en el último ánodo de una de las celdas y en el primer ánodo de la celda consecutiva; de manera que, al interior de cada una de las celdas, la corriente alterna circula, en serie, desde el primer hasta el último electrodo y desde un electrodo al siguiente, a través del electrolito contenido en el espacio entre los electrodos en cada una de las celdas, mientras, en forma simultánea, la corriente continua circula, en paralelo, desde los ánodos hacia los cátodos por el electrolito contenido en el espacio entre los electrodos de cada celda; y, a su vez, la corriente alterna circula por los capacitores con protección fusible en serie, cuya tensión eléctrica es igual a la diferencia de tensión entre los ánodos de las celdas consecutivas en que están conectados.
10. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en varias celdas electrolíticas, para procesos de electro refinación de cobre y otros metales, CARACTERIZADO por (i) incorporar una fuente de corriente alterna con protección fusible en serie; por (ii) incorporar capacitores con protección fusible en serie; por (iii) conectar los bornes de la fuente de corriente alterna con protección fusible en serie, en el primer cátodo de la primera celda y en el último cátodo de la última celda; y por (iv) conectar los bornes de los capacitores con protección fusible en serie, en el último cátodo de una de las celdas y en el primer cátodo de la celda consecutiva; de manera que, al interior de cada una de las celdas, la corriente alterna circula, en serie, desde el primer hasta el último electrodo y desde un electrodo al siguiente, a través del electrolito contenido en el espacio entre los electrodos en cada una de las celdas, mientras, en forma simultánea, la corriente continua circula, en paralelo, desde los ánodos hacia los cátodos por el electrolito contenido en el espacio entre los electrodos de cada celda; y, a su vez, la corriente alterna circula por los capacitores con protección fusible en serie, cuya tensión eléctrica es igual a la diferencia de tensión entre los cátodos de las celdas consecutivas en que están conectados.
1 1. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en dos o más celdas electrolíticas, para procesos de electro obtención o electro refinación de cobre y otros metales, como en las reivindicaciones 5,
6, 7, 8, 9 y 10, CARACTERIZADO porque la protección de cortocircuito y sobrecorriente de la fuente de corriente alterna, es del tipo termomagnética.
12. Un sistema para superponer corriente alterna, sobre la corriente continua que circula en dos o más celdas electrolíticas, para procesos de electro obtención o electro refinación de cobre y otros metales, como en las reivindicaciones 5,
6, 7, 8, 9 y 10, CARACTERIZADO por, que la protección de cortocircuito y sobrecorriente de los capacitores es del tipo termomagnética.
PCT/CL2019/050006 2018-01-15 2019-01-15 Sistema para superponer ac sobre dc en procesos electrolíticos WO2019136570A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3089016A CA3089016A1 (en) 2018-01-15 2019-01-15 System for superimposing ac on dc in electrolytic processes
PE2020000951A PE20210063A1 (es) 2018-01-15 2019-01-15 Sistema para inyectar corriente alterna en los electrodos extremos de celdas electroliticas, de manera que la corriente alterna circula en serie desde el primer hasta el ultimo electrodo y desde un electrodo al siguiente mientras la corriente continua circula en paralelo desde los anodos a los catodos
BR112020014452-5A BR112020014452A2 (pt) 2018-01-15 2019-01-15 sistema para sobrepor corrente alternada, à corrente contínua que circula em uma célula eletrolítica ou em células eletrolíticas consecutivas
CN201980013752.2A CN112424397A (zh) 2018-01-15 2019-01-15 电解过程中交流与直流叠加的系统
US16/962,168 US11319637B2 (en) 2018-01-15 2019-01-15 System for superimposing AC on DC in electrolytic processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL114-2018 2018-01-15
CL2018000114A CL2018000114A1 (es) 2018-01-15 2018-01-15 Sistema para inyectar corriente alterna en los electrodos extremos de celdas electrolíticas, de manera que la corriente alterna circula en serie desde el primer hasta el ultimo electrodo y desde un el electrodo mientras la corriente continua circula en paralelo desde los ánodos a los cátodos

Publications (1)

Publication Number Publication Date
WO2019136570A1 true WO2019136570A1 (es) 2019-07-18

Family

ID=63046464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050006 WO2019136570A1 (es) 2018-01-15 2019-01-15 Sistema para superponer ac sobre dc en procesos electrolíticos

Country Status (7)

Country Link
US (1) US11319637B2 (es)
CN (1) CN112424397A (es)
BR (1) BR112020014452A2 (es)
CA (1) CA3089016A1 (es)
CL (1) CL2018000114A1 (es)
PE (1) PE20210063A1 (es)
WO (1) WO2019136570A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2018002901A1 (es) * 2018-10-11 2019-02-01 Ionica Spa Un sistema para inyectar corriente alterna en celdas electrolíticas que contienen múltiples ánodos y catados intercalados, para procesos de electro obtención o electro refinación de cobre y otros metales; el cual provee la corriente alterna, en grupos consecutivos de electrodos.
CL2018002956A1 (es) * 2018-10-17 2019-02-01 Un sistema para inyectar corriente alterna en celdas electrolíticas que contienen múltiples ánodos y cátodos intercalados, para procesos de electro obtención o electro refinación de cobre y otros metales, el cual provee una fuente de corriente conectada en los electrodos extremos de la celda y láminas que separan los electrodos de la celda en grupos consecutivos de electrodos consecutivos, las cuales coetan el camino de fuga de la corriente alterna.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580089B2 (en) * 2009-04-23 2013-11-12 Ingenieria Y Desarrollo Technologico S.A. System for the superposition of alternating current in electrolysis processes
EP3072993A2 (en) * 2013-11-19 2016-09-28 Hecker Electrónica Potencia Y Procesos S.A. Method of superimposing alternating current on direct current for methods for the electrowinning or electrorefining of copper or other products, in which the alternating current source is connected between two consecutive cells of the electrolytic cell group using an inductor for injecting alternating current and a capacitor for closing the electric circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535218A (en) * 1967-09-26 1970-10-20 Donald A Brown Process for recovering copper from leach liquor
US3717568A (en) * 1970-04-21 1973-02-20 Bro Lee Inc Apparatus for removing minerals from ore
US4159231A (en) * 1978-08-04 1979-06-26 The United States Of America As Represented By The Secretary Of The Interior Method of producing a lead dioxide coated cathode
US7112121B2 (en) * 2000-08-30 2006-09-26 Micron Technology, Inc. Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
US7041203B2 (en) * 2003-04-11 2006-05-09 John Timothy Sullivan Apparatus and method for generating and using multi-direction DC and AC electrical currents
AU2006236001A1 (en) * 2005-11-14 2007-05-31 Hecker Electronica De Potencia Y Procesos S.A. Process for optimizing the process of copper electro-winning and electro-refining by superimposing a sinussoidal current over a continuous current
WO2011123896A1 (en) * 2010-04-07 2011-10-13 Mipac Pty Ltd Monitoring device
CL2014002834A1 (es) * 2014-10-21 2015-01-16 Hecker Electronica De Potencia Y Procesos S A Proceso de electroobtencion de cobre de alta calidad para soluciones de baja concentración de cobre y baja temperatura controlado por tensión y con aplicación de corriente alterna.
SG11202005062SA (en) * 2016-07-13 2020-06-29 Alligant Scientific Llc Electrochemical methods, devices and compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580089B2 (en) * 2009-04-23 2013-11-12 Ingenieria Y Desarrollo Technologico S.A. System for the superposition of alternating current in electrolysis processes
EP3072993A2 (en) * 2013-11-19 2016-09-28 Hecker Electrónica Potencia Y Procesos S.A. Method of superimposing alternating current on direct current for methods for the electrowinning or electrorefining of copper or other products, in which the alternating current source is connected between two consecutive cells of the electrolytic cell group using an inductor for injecting alternating current and a capacitor for closing the electric circuit

Also Published As

Publication number Publication date
CA3089016A1 (en) 2019-07-18
PE20210063A1 (es) 2021-01-11
US11319637B2 (en) 2022-05-03
US20200340131A1 (en) 2020-10-29
BR112020014452A2 (pt) 2020-12-01
CL2018000114A1 (es) 2018-05-11
CN112424397A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2015075634A2 (es) Proceso de superposición de corriente alterna sobre la corriente continua para procesos de electroobtención o electrorefinación de cobre u otros productos, en que la fuente de corriente alterna se conecta entre dos celdas consecutivas del grupo de celdas electrolíticas utilizando un inductor para inyectar corriente alterna y un condensador para cerrar el circuito eléctrico
WO2019136570A1 (es) Sistema para superponer ac sobre dc en procesos electrolíticos
JPS6037681A (ja) 電解液循環サブシステム
TWI647875B (zh) 氧化還原液流電池用電解液及氧化還原液流電池系統
US20170271706A1 (en) Electrochemical device for storing electrical energy and producing hydrogen, and method for producing hydrogen
EP2768043A2 (de) Verbesserte technische Vorrichtung zum großtechnischen Sspeichern von elektrischer Energie
FI123559B (en) Power control system in cells for electrolytic metal recovery
JP4154121B2 (ja) 電解液中の物質濃度を調整するための方法と装置
KR101481327B1 (ko) 복극식 전기분해 반응기
WO2020077479A1 (es) Sistema para inyectar corriente alterna en celdas electrolíticas, que comprende láminas que separan los electrodos de la celda en grupos
CN104562083B (zh) 不同锰离子条件下降低电解液酸锌比的锌湿法冶炼工艺
CN106048652A (zh) 提高电解电流效率的方法、金属电积方法以及金属电积装置
WO2012127438A2 (es) Celda electrolitica para la obtención de metales, mediante electrodialisis reactiva y proceso electrolitico para obtención de metales que utiliza dicha celda
WO2016063207A1 (es) Proceso de electroobtención de cobre de alta calidad para soluciones de baja concentración de cobre y baja temperatura controlado por tensión y con aplicación de corriente alterna
WO2020073143A1 (es) Sistema para inyectar corriente alterna en celdas electrolíticas, en grupos consecutivos de electrodos
CN101802270A (zh) 多极轻金属还原槽中的旁路电流控制
BR112018068224B1 (pt) Estrutura de eletrodo provida de resistores
CN206868447U (zh) 铜锌离子吸附装置
JP2017529231A (ja) 酸性水電解槽
CN115838934A (zh) 一种提高导电性和沉积率的光电化学半导体元素提取方法
WO2020234823A1 (es) Sistema electroquímico para electrodepositar metales a partir de un campo magnético inducido
ES2407666T3 (es) Mejora de colada de aluminio mediante la aplicación de un campo electromagnético dirigido
PL42843B1 (es)
BR102013015279B1 (pt) Sistema de produção e recuperação de metais por eletrodeposição e método de produção e eletrorrecuperação de metais utilizando dito sistema
CN105200460A (zh) 一种可调式组合电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3089016

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020014452

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020014452

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200715

122 Ep: pct application non-entry in european phase

Ref document number: 19739055

Country of ref document: EP

Kind code of ref document: A1