WO2020234823A1 - Sistema electroquímico para electrodepositar metales a partir de un campo magnético inducido - Google Patents

Sistema electroquímico para electrodepositar metales a partir de un campo magnético inducido Download PDF

Info

Publication number
WO2020234823A1
WO2020234823A1 PCT/IB2020/054831 IB2020054831W WO2020234823A1 WO 2020234823 A1 WO2020234823 A1 WO 2020234823A1 IB 2020054831 W IB2020054831 W IB 2020054831W WO 2020234823 A1 WO2020234823 A1 WO 2020234823A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
winding
plate
anode
induced magnetic
Prior art date
Application number
PCT/IB2020/054831
Other languages
English (en)
French (fr)
Inventor
Jhon David Cueltan Solarte
Juan Jose Lozada Castro
Original Assignee
Universidad De Nariño
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Nariño filed Critical Universidad De Nariño
Publication of WO2020234823A1 publication Critical patent/WO2020234823A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/86Regeneration of coating baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces

Definitions

  • the present invention is located in the materials sector, mainly in the area of homogeneous coatings of metal plates on both sides with metals for their subsequent application in catalysis processes in oxidation reactions of organic matter, for example, for the sewage treatment. It can also be applied to improve physical properties of other materials that are not necessarily metallic, for example carbon, graphene, etc.
  • the invention is directed to a system or device and a new electrodeposition process that applies the magnetic agitation produced by a magnetic field induced by a coil, where the magnetic field generated by a coil is perpendicular to the movement of the cations in within the solution, it is coupled with the electric field that is generated between the anode and the cathode with the subsequent transport of cations towards the cathode surfaces in a regular and homogeneous way, producing films resistant to corrosion and with homogeneous distributions, where Furthermore, the system or device of the invention does not require the application of potentiostats.
  • patent JPS5534607 reports a method of collection and removal of metals from a chromate solution by means of diaphragm electrolysis where the chromate solution is at a temperature of 35 ° C o less and a fairly acidic pH (2 or less) in a tank of an electrolytic cell comprising a chromate solution tank, a first anode chamber and a second anode chamber joined through a pipeline to oxidize Cr * 3 not oxidized up to Cr +6 , then they are passed to a cathode chamber and metallic impurities such as Fe and Zn among others are deposited on the cathode and are subsequently separated.
  • the expired invention patent GB539006 is also known, where the separation of metals from metallic waste materials such as copper, lead, tin, zinc, iron, nickel, antimony, silver and the electrolytic recovery of peroxides is reported. copper and lead.
  • This document discloses electrolytic cells where the anodes and cathodes are conventional flat plates connected to electrical current.
  • patent JPH02109308 is known related to a mold formed from magnetic powder and a synthetic resin, where the mold is immersed in a water-soluble coating and direct current is supplied between the mold and its counter.
  • -electrode where the mold can act as anode or cathode, after electrodeposition, the mold is subjected to heating in order to achieve a layer of resin on the surface of the mold with resistance and homogeneity.
  • the system proposed in the present invention comprises a coil, regulates and homogenizes the agitation of cations guaranteeing electrodepositions with uniform and homogeneous distributions, applying an induced magnetic field perpendicular to the electric field that is applied between the electrodes, this configuration allows the charges move in a circular way in the same direction in which the electrons flow in the coil and in turn, a movement of cations is created from the coil towards the cathode, thus achieving homogeneous concentration gradients, which improves the processes from cargo transport within the solution.
  • the present invention makes an important contribution to the state of the art related to electrodeposition through the application of magnetic stirring produced by a cation-induced magnetic field, where the vertical magnetic field generated by a coil helps stirring, thanks to because the magnetic field is coupled with the electric field that is generated between the anode and the cathode, allowing the transport of cations to the cathode surfaces in a regular and homogeneous way, producing films resistant to corrosion and with homogeneous distributions without applying or include potentiostats.
  • Figure 1 shows a front view of a possible configuration of the system according to the present invention where the magnetic field coupled to the electric field can be schematically visualized.
  • Figure 2 illustrates a top or bottom view of a possible configuration of the system according to the present invention where the arrangement of the elements and the load gradients in the system can be schematically visualized.
  • Figure 3 shows a longitudinal section view of the configuration of figure 2 where the load gradient in the system is also shown.
  • Figure 4 shows how the coil can be around the system containing in turn the anode and the cathode of the system.
  • Figure 5 schematically shows how the movement of cations produced by electric and magnetic fields is carried out in the system according to the present invention.
  • the present invention is directed to a system (A) which comprises a cylindrical container (1) which has a winding (2) on the external face of its walls, where the winding (2) is carried out at a height and with a sufficient number of turns to generate a vertically uniform magnetic field, wherein said magnetic field (3) generated by the coil (1) is similar to that generated by a solenoid and presents the path shown in figure 1 according to the Ampere's Law.
  • the magnetic field (3) of the winding (2) is concentrated at its center in a relatively uniform field; considering that the The magnetic field (3) inside is intense and outside it is negligible. Ampere's Law can be used to estimate the magnetic field (3) generated by the winding (2).
  • the electric field (4) is formed between the plate (6) where the electrodeposition is carried out, which fulfills the functions of cathode, and a plate (7) shaped like a steel cylinder also perforated with 1mm to 10mm pore size fulfills the anode functions.
  • the distance from the ends of the plate (6) (cathode) to the plate (7) (anode) is from 0.5 cm to 100 cm, preferably from 0.5 cm to 10 cm, more preferably from 0.5 cm to 5 cm.
  • the distance between the plate (7) (anode) and the wall of the cylinder (1) that supports the winding (2) in its external part is from 0.5 cm to 3 cm, preferably from 1 cm to 2 cm.
  • this element operates from 9 to 12 Volts with currents from 0.5 to 1 amp, more preferably from 0.667 to 0.880 amps, with which generates magnetic fields (3) with values from 6.64 mT to 8.86 mT.
  • the metal cations due to the effects of the magnetic field (3), rotate around the plate (6) (cathode) and their speed depends on the intensity of the magnetic field (3); in turn, there is an ion concentration gradient from plate (7) (anode) to winding (2).
  • the cylindrical container (1) can have any dimension and material, depending on the dimensions of the material to be coated by electrodeposition, for example, but not limited to, from glass beakers to scale of laboratory to cylindrical and conical tanks in PVC and other polymeric materials of large volumes, for example from 100 liters to 10,000 liters.
  • the plate (6) on which the electrodeposition is made and which acts as a cathode can be any electrically conductive material, such as, for example, but not limited to steel, iron, titanium, aluminum, copper, zinc , etc.
  • the plate (7) which is cylindrical that acts as a cathode and which partially or totally surrounds the length of the plate (6), preferably has holes (7a) (Fig. 4) in any form of arrangement, for example, and with diameter sizes from 0.1 cm to 100 cm depending on the size and dimensions of the complete system.
  • this corresponds to a jacket comprising a metallic wire material to which a spiral shape is provided with a diameter greater than the diameter of the cylindrical container (1).
  • the number of turns of the winding (2) depends on the dimensions of the plate (6) (cathode) and the plate (7) (anode). However, the number of turns could vary, but is not limited from 1 to infinity, for example from 1 to 10,000 turns or whatever number of turns is appropriate for the system according to the present invention.
  • the figure shows: the walls of the container (1) containing the system according to the present invention, which can be, but is not limited to glass, plastic, wood, or any other material that can be insulating and can contain and support the system of the invention.
  • the winding (2) is shown, which can be a conventional winding approximately formed and winding of an 18 gauge wire with an approximate weight of 500 g. the gauge of the wire, the weight of the wire and the number of turns depends on the size and capacity of the container (1).
  • Figure 1 also shows the direction and direction of the magnetic field (3), which is perpendicular to the movement of the charges that flow through the winding (2) and that is formed inside the container (1).
  • the direction and direction of the electric field (4) formed between the anode (7) and the cathode (6) is perpendicular to the magnetic field (3) and is generated by the application of the electric potential between said cathode plate (6) where the electrodeposition process occurs and the anodic plate (7) which is characterized by being a perforated plate and which encloses the circuit of the electrodeposition system that is carried out with the system according to the invention.
  • FIG 2 it is a representation of the top view of the system according to the invention, where the circular arrows between the anode (7) and the walls of the container (1) schematizing the regular agitation of the cations that move according to the movement of the electrons within the winding (2); this movement is transmitted by laminar flows (charge transport phenomena) throughout the solution contained in the container (1).
  • connection (8) between the cathode plate (6) and the anode plate (7) can be , where said connection (8) goes to a power source to form the electric field, where the electrical conditions depend on the cation to be electrodeposited on the cathode sheet (6), taking into account that the stirring speed and the speed Charge transport of an ion within the solution depends on the mass-charge ratio.
  • the negative pole of the source that feeds the winding (2) is connected at the lower end and the positive pole at the upper end; thus having a negligible effect since the winding (2) has several layers, some are wound from top to bottom in the container (1) and others from bottom to top and therefore, the former have the tendency to carry the cations towards down the container (1) but the second ones towards the upper part of the container (1), some carry out this phenomenon, but others carry out the opposite phenomenon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

La presente invención se encuentra dirigida a un dispositivo o sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido, en donde dicho sistema comprende un recipiente cilíndrico (1) el cual tiene en la cara externa de sus paredes un embobinado (2), que genera un campo magnético (3) verticalmente uniforme, en donde dicho campo magnético (3) es solenoide y se concentra en su centro en un campo uniforme; un campo eléctrico (4) formado entre una placa cátodo (6) en donde se realiza la electrodeposición y una placa ánodo (7) y en donde la bobina formada por el embobinado (2) tiene dos extremos: donde se inicia el enrollado y donde termina y se inicia de abajo hacia arriba, conectándose el polo negativo de una fuente que alimenta el embobinado (2) en el extremo inferior y el polo positivo en el extremo superior de dicho embobinado (2) y en donde dicha placa cátodo (6) está rodeada por la placa ánodo (7).

Description

SISTEMA ELECTROQUÍMICO PARA ELECTRODEPOSITAR METALES A
PARTIR DE UN CAMPO MAGNÉTICO INDUCIDO
CAMPO DE LA INVENCIÓN
[001] La presente invención se ubica en el sector de materiales, principalmente en el área de recubrimientos homogéneos de placas metálicas por ambas caras con metales para su posterior aplicación en procesos de catálisis en reacciones de oxidación de materia orgánica, por ejemplo, para el tratamiento de aguas residuales. También puede ser aplicado para mejorar propiedades físicas de otros materiales que no necesariamente son metálicos por ejemplo el carbón, grafeno, etc.
RESUMEN DE LA INVENCIÓN
[002] La invención está dirigida a un sistema o dispositivo y un nuevo proceso de electrodeposición que aplica la agitación magnética producida por un campo magnético inducido por una bobina, en donde el campo magnético generado por una bobina es perpendicular al movimiento de los cationes en el seno de la solución, este se acopla con el campo eléctrico que se genera entre el ánodo y el cátodo con el subsiguiente transporte de cationes hacia las superficies catódicas de manera regular y homogénea produciendo películas resistentes a la corrosión y con distribuciones homogéneas, en donde, además, el sistema o dispositivo de la invención no requiere de la aplicación de potenciostatos.
ESTADO DE LA TÉCNICA
[003] Convencionalmente en los procesos de electrodeposición, la homogeneidad y la consistencia de la película que se forma dependen del transporte de carga en el seno de la disolución, pues de ello depende la efectividad de la reducción de los cationes en las superficies de interés, se conocen tres formas de transporte: La difusión, la migración y la convección, de los cuales el transporte por convención y migración son de interés en este proceso, a su vez, sincronizar estos procesos con el proceso redox en la superficie de los electrodos son temas de investigación, para agitar la disolución con los cationes (convección) normalmente se aplican sistema mecánicos como por ejemplo el sistema de agitación con plancha de calefacción. Estos sistemas de agitación mecánica no proporcionan una agitación regular y homogénea con lo cual se genera entonces distribuciones de electrodepósitos poco uniformes ya que los factores eléctricos del sistema pueden variar. En ocasiones para solucionar este problema, se utiliza un potenciostato que regula el potencial y permite fluir la corriente por el sistema para realizar el proceso electroquímico.
[004] En este sentido, se conoce la patente JPS5534607 que reporta un método de colección y retirar metales a partir de una solución de cromato por medio de electrólisis de diafragma en donde la solución de cromato se encuentra a una temperatura de 35°C o menos y un pH bastante ácido (2 o menos) en un tanque de una celda electrolítica que comprende un tanque de solución de cromato, una primera cámara de ánodo y una segunda cámara de ánodo unidas a través de una tubería para oxidar el Cr*3 no oxidado hasta Cr+6, luego se pasan a una cámara de cátodo y las impurezas metálicas tales como Fe y Zn entre otros se depositan sobre el cátodo y posteriormente son separados.
[005] También se conoce la patente de invención caduca GB539006 en donde se reporta la separación de metales a partir de materiales metálicos de desecho tal como cobre, plomo, estaño, zinc, hierro, níquel, antimonio, plata y la recuperación electrolítica de peróxidos de cobre y plomo. Este documento revela celdas electrolíticas en donde los ánodos y los cátodos son placas planas convencionales conectadas a corriente eléctrica.
[006] De otra parte, se conoce la patente JPH02109308 relacionada con un molde formado a partir de polvo magnético y una resina sintética, en donde el molde se sumerge en un recubrimiento soluble en agua y se suministra corriente continua entre el molde y su contra-electrodo, en donde el molde puede actuar como ánodo o como cátodo, luego de la electrodeposición, se somete el molde a calentamiento a fin de lograr una capa de resina sobre la superficie del molde con resistencia y homogeneidad.
[007] Como se puede notar, estos sistemas convencionales utilizan procesos que involucran por lo general agitación mecánica con accesorios adicionales como planchas de calefacción, pero no proporcionan una agitación regular y homogénea con lo cual se obtienen electrodepósitos poco uniformes toda vez que los factores eléctricos del sistema pueden variar, razón por la cual se incluye potenciostatos que regulan el potencial eléctrico.
[008] El sistema propuesto en la presente invención comprende una bobina, regula y homogeniza la agitación de cationes garantizando electrodeposiciones con distribuciones uniformes y homogéneas, aplicando un campo magnético inducido perpendicularmente al campo eléctrico que se aplica entre los electrodos, esta configuración permite que las cargas se muevan de manera circular en el mismo sentido en que fluyen los electrones en la bobina y a su vez, se crea un movimiento de cationes desde la bobina hacia el cátodo lográndose de esta manera, unos gradientes de concentración homogéneos, lo cual mejora los proceso de transporte de carga en el seno de la solución. Por tanto, la presente invención hace un aporte importante al estado del arte relacionado con la electrodeposición mediante la aplicación de la agitación magnética producida por un campo magnético inducido de cationes, en donde el campo magnético vertical generado por una bobina ayuda a la agitación, gracias a que el campo magnético se acopla con el campo eléctrico que se genera entre el ánodo y el cátodo, permitiendo el trasporte de cationes hasta las superficies catódicas de una manera regular y homogénea, produciendo películas resistentes a la corrosión y con distribuciones homogéneas sin aplicar o incluir potenciostatos.
DESCRIPCIÓN DETALLADA DE LOS DIBUJOS
[009] La figura 1 muestra una vista frontal de una configuración posible del sistema de acuerdo con la presente invención en donde se puede visualizar de manera esquemática el campo magnético acoplado al campo eléctrico.
[010] La figura 2 ilustra una vista superior o inferior de una posible configuración del sistema de acuerdo con la presente invención en donde se puede visualizar de manera esquemática la disposición de los elementos y los gradientes de cargas en el sistema.
[011] La figura 3 muestra una vista en corte longitudinal de la configuración de la figura 2 en donde también se muestra el gradiente de cargas en el sistema.
[012] La figura 4 enseña la forma en que la bobina puede estar alrededor del sistema conteniendo a su vez el ánodo y el cátodo del sistema.
[013] La figura 5 enseña de manera esquemática la forma en que se realiza el movimiento de cationes producidos por los campos eléctrico y magnéticos en el sistema de acuerdo con la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
[014] La presente invención se encuentra dirigía a un sistema (A) el cual comprende un recipiente cilindrico (1) el cual tiene en la cara externa de sus paredes un embobinado (2), en donde el embobinado (2) se realiza a una altura y con una cantidad de vueltas suficientes para generar un campo magnético verticalmente uniforme, en donde dicho campo magnético (3) generado por la bobina (1) es similar al que genera un solenoide y presenta la trayectoria mostrada en la figura 1 según la Ley de Ampere. El campo magnético (3) del embobinado (2) se concentra en su centro en un campo relativamente uniforme; teniendo en cuenta que el campo magnético (3) en el interior es intenso y en su exterior despreciable, se puede utilizar la Ley de Ampere para estimar el campo magnético (3) generado por el embobinado (2). Como se muestra en la figura 1 , el campo eléctrico (4) se forma entre la placa (6) en donde se realiza la electrodeposición la cual cumple las funciones de cátodo y una placa (7) con forma de cilindro de acero también perforada con tamaño de poro de desde 1 mm hasta 10 mm cumple con las funciones de ánodo. De acuerdo con la presente invención, la distancia desde los extremos de la placa (6) (cátodo) a la placa (7) (ánodo) es desde 0.5 cm hasta 100 cm, de preferencia desde 0.5 cm hasta 10 cm, más de preferencia desde 0.5 cm hasta 5 cm. La distancia entre la placa (7) (ánodo) y la pared del cilindro (1) que soporta en su parte externa el embobinado (2) es desde 0.5 cm hasta 3 cm, de preferencia desde 1 cm hasta 2 cm.
[015] En cuanto al embobinado (2), este elemento de acuerdo con la presente invención, funciona de desde 9 a 12 Voltios con corrientes de desde 0.5 hasta 1 amperio, más de preferencia de desde 0.667 a 0.880 amperios, con lo cual se genera campos magnéticos (3) con valores de 6.64 mT hasta 8.86 mT.
[016] De acuerdo con el principio fisicoquímico que rige el sistema (A) de la presente invención, los cationes de metales por efectos del campo magnético (3), giran alrededor de la placa (6) (cátodo) y su velocidad depende de la intensidad del campo magnético (3); a su vez existe un gradiente de concentración de iones desde la placa (7) (ánodo) hacia el embobinado (2). Entre la placa (6) (cátodo) y la placa (7) (ánodo) se forma el campo eléctrico (4) que atrae los cationes hacia el centro en donde está ubicada la placa (6) (cátodo), este fenómeno disminuye el proceso de polarización de los cationes alrededor de la placa (6) (cátodo) y mejora la homogeneidad del seno de la solución puesto que se forman dos regiones con alta densidad de cargas positivas: el centro del recipiente cilindrico (1) y en las caras internas de las paredes de dicho recipiente que están cerca del embobinado (2) como se ilustra de manera esquemática en las figuras 2 y 3.
[017] En una modalidad de la invención, el recipiente cilindrico (1) puede tener cualquier dimensión y material, dependiendo de las dimensiones del material a recubrir mediante electrodeposición, por ejemplo, pero sin limitarse, desde vasos de precipitado en vidrio para escala de laboratorio hasta tanques cilindricos y cónicos en PVC y otros materiales poliméricos de grandes volúmenes por ejemplo desde etnre100 litros hasta 10.000 litros.
[018] La placa (6) sobre la cual se hace la electrodeposición y que actúa como cátodo, puede ser cualquier material conductor de la electricidad, como, por ejemplo, pero sin limitarse a acero, hierro, titanio, aluminio, cobre, zinc, etc.
[019] La placa (7) que es cilindrica que actúa como cátodo y que circunda parcial o totalmente la longitud de la placa (6), tiene preferencialmente orificios (7a) (Fig. 4) en cualquier forma de disposición, por ejemplo, y con tamaños de diámetro desde 0.1 cm hasta 100 cm dependiendo del tamaño y las dimensiones del sistema completo.
[020] En relación con el embobinado (2) este corresponde a un enchaquetado que comprende un material metálico en alambre al cual se proporciona una forma en espiral con un diámetro mayor que el diámetro del recipiente cilindrico (1). El número de vueltas del embobinado (2) depende de las dimensiones de la placa (6) (cátodo) y la placa (7) (ánodo). Sin embargo, el número de vueltas podía variar, pero sin limitarse desde 1 hasta infinito, por ejemplo, desde 1 hasta 10.000 vueltas o cualquier número de vueltas que sea apropiado para el sistema de acuerdo con la presente invención
[021] De acuerdo con la modalidad mostrada en las figuras, en la figura se observa: las paredes del recipiente (1) que contiene el sistema de acuerdo con la presente invención, el cual puede ser, pero sin limitarse a vidrio, plástico, madera, o cualquier otro material que pueda ser aislante y pueda contener y soportar el sistema de la invención. Adicionalmente, en la figura 1 se muestra el embobinado (2), el cual puede ser un embobinado convencional aproximadamente formado y enrollando de un alambre calibre 18 con un peso aproximado de 500 g. el calibre del cable, el peso del mismo y el número de vueltas depende del tamaño y capacidad del recipiente (1). La figura 1 también muestra como es el sentido y la dirección del campo magnético (3), el cual es perpendicular al movimiento de las cargas que fluyen por el embobinado (2) y que se forma al interior del recipiente (1). Como se ilustra en la figura 1 , la dirección y sentido del campo eléctrico (4) formado entre el ánodo (7) y el cátodo (6) es perpendicular al campo magnético (3) y es generado por la aplicación del potencial eléctrico entre dicha placa catódica (6) donde ocurre el proceso de electrodeposición y la placa anódica (7) que se caracteriza por ser una placa perforada y que encierra el circuito del sistema de electrodeposición que se lleva a cabo con el sistema de acuerdo con la invención.
[022] Con referencia a la figura 2, como se mencionó anteriormente, la misma es una representación de la vista superior del sistema de acuerdo con la invención, en donde se pueden observar las flechas circulares entre el ánodo (7) y las paredes del recipiente (1) esquematizando la agitación regular de los cationes que se mueven de acuerdo al movimiento de los electrones dentro del embobinado (2); este movimiento se transmite por flujos laminares (fenómenos de transporte de carga) en todo el seno de la solución contenida en el recipiente (1). En la figura 2 también se puede observar flechas que van desde el embobinado (2) hacia el cátodo (6) las cuales indican el movimiento perpendicular al campo magnético (3) de los cationes por influencia del campo eléctrico (4) formado entre el ánodo (7) y el cátodo (6), en donde, los cationes ubicados en la parte más externa del ánodo (7) y cerca al embobinado (2) pasan por los orificios (7a) de la placa anódica (7) la cual por interacciones fisicoquímicas repele éstas cargas que luego son aceleradas hacia el cátodo (6). En este orden de ideas, el sistema de la presente invención se caracteriza porque en él se combinan dos movimientos perpendiculares entre sí.
[023] De acuerdo con la modalidad de la invención representada en la figura 3, que corresponde a la vista longitudinal del sistema, se muestra cómo puede ser la conexión (8) entre la Placa catódica (6) y la placa anódica (7), en donde dicha conexión (8) va hacia una fuente de poder para formar el campo eléctrico, en donde las condiciones eléctricas dependen del catión a electrodepositar sobre la lámina del cátodo (6), teniendo en cuenta que la velocidad de agitación y la velocidad de transporte de carga de un ion en el seno de la solución depende de la relación masa- carga.
[024] De acuerdo con las figuras 4 y 5, se muestra la configuración del embobinado (2) y la configuración de los electrodos (6) y (7); además se representa el movimiento poco relevante de los cationes y depende de la forma como se enrolla el cable del embobinado (2). Como cualquier bobina formada por un tipo de embobinado como el embobinado (2), tiene dos extremos: donde se inicia el enrollado y donde termina. Normalmente, se inicia de abajo hacia arriba, en este caso se conecta el polo negativo de la fuente que alimenta el embobinado (2) en el extremo inferior y el polo positivo en el extremo superior; teniendo así un efecto despreciable dado que el embobinado (2) tiene varias capas, unas son enrolladas de arriba hacia abajo en el recipiente (1) y otras de abajo hacia arriba y por lo tanto, las primeras tienen la tendencia de llevar los cationes hacia abajo del recipiente (1) pero las segundas hacia la parte superior del recipiente (1), unas realizan este fenómeno, pero otras realizan el fenómeno contrario.

Claims

REIVINDICACIONES
1. Un sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido, en donde dicho sistema comprende un recipiente cilindrico (1) el cual tiene en la cara externa de sus paredes un embobinado (2), que genera un campo magnético (3) verticalmente uniforme, en donde dicho campo magnético (3) es solenoide y se concentra en su centro en un campo uniforme; un campo eléctrico (4) formado entre una placa cátodo (6) en donde se realiza la electrodeposición y una placa ánodo (7) y en donde la bobina formada por el embobinado (2) tiene dos extremos: donde se inicia el enrollado y donde termina y se inicia de abajo hacia arriba, conectándose el polo negativo de una fuente que alimenta el embobinado (2) en el extremo inferior y el polo positivo en el extremo superior de dicho embobinado (2) y en donde dicha placa cátodo (6) está rodeada por la placa ánodo (7).
2. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 1 , en donde, la distancia desde los extremos de la placa (6) (cátodo) a la placa (7) (ánodo) es desde 0.5 cm hasta 100 cm.
3. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 1 , en donde la placa ánodo (7) tiene forma de cilindro en acero perforada con tamaño de poro de desde 1 mm hasta 10 mm en toda su superficie.
4. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 2, en donde, la distancia desde los extremos de la placa (6) (cátodo) a la placa (7) (ánodo) es desde 0.5 cm hasta 10 cm.
5. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 2, en donde, la distancia desde los extremos de la placa (6) (cátodo) a la placa (7) (ánodo) es desde 0.5 cm hasta 5 cm.
6. Un sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 1 , en donde la distancia entre la placa (7) (ánodo) y la pared del cilindro (1) que soporta en su parte externa el embobinado (2) es desde 0.5 cm hasta 3 cm
7. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 3, en donde la distancia entre la placa (7) (ánodo) y la pared del cilindro (1) que soporta en su parte externa el embobinado (2) es desde 1 cm hasta 2 cm.
8. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 1 , en donde al embobinado (2) se aplica desde 9 a 12 Voltios con corrientes desde 0.5 hasta 1 amperio,
9. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 8, en donde la corriente aplicada es desde 0.667 a 0.880 amperios.
10. El sistema (A) electroquímico para electrodepositar metales a partir de un campo magnético inducido de acuerdo con la reivindicación 1 , en donde dicho campo magnético (3) tiene un valor de desde 6.64 mT hasta 8.86 mT.
PCT/IB2020/054831 2019-05-21 2020-05-21 Sistema electroquímico para electrodepositar metales a partir de un campo magnético inducido WO2020234823A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2019/0005186 2019-05-21
CO2019005186A CO2019005186A1 (es) 2019-05-21 2019-05-21 Sistema electroquímico para electrodepositar metales a partir de un campo magnético inducido

Publications (1)

Publication Number Publication Date
WO2020234823A1 true WO2020234823A1 (es) 2020-11-26

Family

ID=68580965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/054831 WO2020234823A1 (es) 2019-05-21 2020-05-21 Sistema electroquímico para electrodepositar metales a partir de un campo magnético inducido

Country Status (2)

Country Link
CO (1) CO2019005186A1 (es)
WO (1) WO2020234823A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272727A (en) * 1962-08-23 1966-09-13 Ibm Process for electroplating magnetic alloy onto a platinized chromium substrate
JPH06128795A (ja) * 1991-02-15 1994-05-10 Mitsubishi Heavy Ind Ltd 電気めっき方法
JPH0741996A (ja) * 1993-07-31 1995-02-10 Sony Corp 電着めっき装置
CN201053039Y (zh) * 2007-03-29 2008-04-30 上海大学 制备球状纳晶镍铁镀层的电沉积装置
CN102677137A (zh) * 2011-12-24 2012-09-19 河南科技大学 一种金属电沉积装置
CN205741269U (zh) * 2016-05-19 2016-11-30 贵州理工学院 一种强磁场下下置式搅拌电镀装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272727A (en) * 1962-08-23 1966-09-13 Ibm Process for electroplating magnetic alloy onto a platinized chromium substrate
JPH06128795A (ja) * 1991-02-15 1994-05-10 Mitsubishi Heavy Ind Ltd 電気めっき方法
JPH0741996A (ja) * 1993-07-31 1995-02-10 Sony Corp 電着めっき装置
CN201053039Y (zh) * 2007-03-29 2008-04-30 上海大学 制备球状纳晶镍铁镀层的电沉积装置
CN102677137A (zh) * 2011-12-24 2012-09-19 河南科技大学 一种金属电沉积装置
CN205741269U (zh) * 2016-05-19 2016-11-30 贵州理工学院 一种强磁场下下置式搅拌电镀装置

Also Published As

Publication number Publication date
CO2019005186A1 (es) 2019-11-21

Similar Documents

Publication Publication Date Title
Han et al. Over-limiting current and control of dendritic growth by surface conduction in nanopores
FI60039C (fi) Elektrokemisk anordning
AU2000267249A1 (en) Vanadium electrolyte preparation using asymmetric vanadium reduction cells and use of an asymmetric vanadium reduction cell for rebalancing the state of charge of the electrolytes of an operating vanadium redox battery
CN101636859B (zh) 用于电化电池的中孔电极
CN1263900C (zh) 调整电解液中金属离子浓度的方法与装置及其应用
CN102174709A (zh) 三维金属镍纳米渐变体阵列结构及其制备方法
GB1588931A (en) Electrode structures
CN103097592A (zh) 开孔箔电解析出装置
CN102337578B (zh) 一种双面电镀槽、板件及电镀方法
JP6639638B2 (ja) 電解用電極、電極ユニット、及び電解水生成装置
Wu et al. Preparation of Ni nanodot and nanowire arrays using porous alumina on silicon as a template without a conductive interlayer
WO2020234823A1 (es) Sistema electroquímico para electrodepositar metales a partir de un campo magnético inducido
CN111492094B (zh) 硫酸溶液的制造方法及在该制造方法中使用的电解槽
CN208087773U (zh) 一种带有阳极泥收集的电解槽
WO2017193225A1 (es) Dispositivo optimizador de la energía en procesos electrolíticos
CN217007103U (zh) 一种对称四电极体系边界限制型电解池装置
CN103233259A (zh) Ctp版材的氧化处理工艺
AU691968B2 (en) Process for the electrochemical recovery of the metals copper, zinc, lead, nickel or cobalt
US20200273631A1 (en) Porous conductor having conductive nanostructure and electricity storage device using same
CN117396638A (zh) 用铬层涂覆部件或半成品的装置和方法
RU2251763C2 (ru) Приготовление ванадиевого электролита с помощью асимметричных электролизеров восстановления ванадия и использование асимметричного электролизера восстановления ванадия для восстановления баланса состояния заряда электролитов работающей ванадиевой восстановительно-окислительной батареи
Shan et al. Aqueous zinc sulfate flow through a copper mesh anode improves zinc metal electrodeposition morphology and impedance
JPH08276184A (ja) 水の電気分解用電極
CA2967050C (en) Multipurpose electrolytic device for forced or spontaneous metal electrowinning processes, with independent electrolytes
FI100807B (fi) Laite ja menetelmä elektrolyytin tasoitustehon määrittämiseksi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809002

Country of ref document: EP

Kind code of ref document: A1