WO2017193225A1 - Dispositivo optimizador de la energía en procesos electrolíticos - Google Patents

Dispositivo optimizador de la energía en procesos electrolíticos Download PDF

Info

Publication number
WO2017193225A1
WO2017193225A1 PCT/CL2017/050021 CL2017050021W WO2017193225A1 WO 2017193225 A1 WO2017193225 A1 WO 2017193225A1 CL 2017050021 W CL2017050021 W CL 2017050021W WO 2017193225 A1 WO2017193225 A1 WO 2017193225A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathodes
optimizing device
anodes
energy
Prior art date
Application number
PCT/CL2017/050021
Other languages
English (en)
French (fr)
Inventor
Hugo Carlos Samuel PINTO CORREA
Original Assignee
Pl Copper Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pl Copper Spa filed Critical Pl Copper Spa
Priority to PE2018002336A priority Critical patent/PE20190300A1/es
Publication of WO2017193225A1 publication Critical patent/WO2017193225A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/04Diaphragms; Spacing elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Definitions

  • the present invention relates to an energy optimizing device which is hereinafter referred to as "Flowdriver”.
  • Said device is mainly usable in the electrolytic processes destined to produce cathodic copper, and comprises a structure of solid material that is installed in the anodes, mainly to prevent the formation of residual energy fields, thus allowing to controlly direct the current that migrates towards the cathodes, optimizing the use of this. Its installation isolates certain areas in the anodes and with this is achieved that the current migrates only through the frontal areas of the anodes, allocating a greater intensity of current to the production of cathodic copper.
  • Its main feature is to isolate areas of the anodes that are in contact with the electrolyte and from there add other features that are intended to deliver other different operational solutions that the electrolytic process requires.
  • the Flowdriver energy optimizing device is designed primarily so that the direct current only migrates through the front parts of the anode and is directly connected to the front parts of the cathodes, and, in addition, to its shape, design and location achieve also; control the copper deposit area in the cathodes, maintain perfect electrolytic distances between anodes and cathodes, control the homogenization of the electrolyte concentrations inside the cell, produce a uniform wear in the anodes, eliminate energy losses through contact with Acid mist and avoid deviations from the current in the electrolytic process.
  • the main objective of the installation of the Flowdriver devices is to increase the efficiency of the current used in the process and consecutively to reduce the costs for inputs, operational processes and the tasks associated with each instance of the process.
  • Each application is used to control a specific operational problem and thereby overcome the operational problems that arise in the processes of electro-procurement. With this, currently, it is possible to invade the electrolytic cells with different applications and systems where each of them delivers a different solution.
  • lead anodes are normally used as positive electrodes, which are inserted in a liquid solution, highly concentrated in sulfuric acid and soluble copper, called electrolyte.
  • the purpose of the anode is to receive and migrate the continuous current applied to the cathodes, then allow the oxide-reduction process to take place and thereby finally transform the copper soluble in metallic copper, which adheres to the cathodes.
  • the residual energy fields are formed mainly in the lateral, inferior and superior areas of the anodes. These areas are not in direct frontal communication with the cathodes which allows the electro-chemical activity to weaken and become unproductive in these areas.
  • the energy optimizing device of the present invention addresses the following problems.
  • the lead anode used as a positive electrode and inserted into the electrolyte, receives a specific current intensity and, due to its stable composition, allows it to migrate through all the faces exposed to the contact with the electrolyte.
  • the present invention proposes to incorporate in the anodes the energy optimizing device called Flowdriver, of solid material, which controls the migration of the current by isolating the lateral, lower and upper front edges of the anodes from contact with the electrolyte, leaving it in contact direct with the electrolyte only the frontal areas, which is where the current will migrate to the cathodes.
  • this problem produces uneven wear or loss of irregular thickness in the bodies of the anodes, where the lateral and lower areas acquire greater wear than in the central area exposed to contact with the electrolyte. Irregular wear generates greater resistance to the flow of the current, which accelerates the replacement of the electrodes.
  • the energy optimizing device made of solid material, prevents these residual energy fields from forming in the areas described and that are useless for the process. Therefore, said device achieves even and regular wear which increases the useful life of the anodes.
  • the state of the art in this aspect does not have antecedents that indicate that there is an application destined to avoid corrosion, and less, mainly, that the soluble copper that escapes through the acid mist generates a loss of current by the contact of this one with the upper part of the anodes not submerged in the electrolyte.
  • the energy optimizer device made of solid material, covers the indicated area and thereby avoids physical damage to the anodes and consecutively prevents part of the current from being used in the production process by dissipating it.
  • the state of the art in this aspect does not have antecedents that indicate that there is an application that conducts controlled the migration of the current from the anodes.
  • the energy optimizer device called Flowdriver is fixed in the anodes, managing to drive all the current entering the anodes through the front faces of the anodes and with it all the intensity of current used migrates only through the front faces of the anodes. anodes, increasing the current density.
  • the residual energy fields that are formed use a stable amperage in the areas where they are produced, which, when kept stable, do not exert a directed and usable parameter in the oxide-reduction process for the production of cathodic copper.
  • the device called Flowdriver of the present invention made of solid material, prevents direct contact with the electrolyte in the indicated areas and thereby allow the usable productive amperage to increase the production of copper.
  • the state of the art in this aspect does not have antecedents that indicate that an application exists that controls the determined area of deposit in the cathodes from a device installed in the anodes.
  • the device called Flowdriver of the present invention manages to control the direction of the current that migrates from the anodes to the cathodes and thereby selectively achieves the deposit area that is required to obtain in the cathodes.
  • the productive processes use different types of plastic, ceramic or polymeric covers to avoid deposits of metal in undesired areas.
  • the state of the art in this aspect has a number of alternatives by means of which, from pieces installed laterally in the cathodes, the deposition of copper in the indicated parts is avoided. Also, the state of the art registers that there are applications that inhibit the deposit of copper in said areas, for which they use energy sources of radio frequency controlled by an external source and with this it is possible to avoid the deposit of copper.
  • the energy-optimizing device made of solid material, by its design, shape and location achieves selectively controlling the metal deposit in the lateral areas of the cathodes, thus making it possible to dispense with the use of covers plastic, ceramic or polymeric edges installed in the cathodes.
  • Said control of the copper deposit is achieved without using any external energy and only requires a direct approach between the device and the lateral parts of the cathodes.
  • the state of the art in this aspect has a great number of alternatives by means of which, from devices installed in the cathodes or industrial wax applications, the deposition of copper in the lower parts of the cathodes is avoided. For the latter there are also devices that manage to inhibit the deposit of copper in the lower part which also use radiofrequency energy sources to avoid the deposit of copper.
  • the device called Flowdriver made of solid material, by its design, shape and location also manages to selectively control the metal deposit in the lower areas of the cathodes, thus allowing to dispense with the use of industrial wax or other element.
  • the entire device does not need any additional energy and only requires a direct approach between the device and the bottom of the cathodes.
  • the production processes use different types of anodic plastic separators that maintain the required distances between them and avoid, some better than others, the formation of short circuits.
  • the state of the art in this aspect has a number of alternatives by means of which, from devices installed in the anodes, the electrolytic distances between anodes and cathodes are maintained and the formation of short circuits is avoided.
  • the available devices only allow the distance between electrodes to be maintained from a small area.
  • the device called Flowdriver of solid material, by its structure and shape, prevents the anodes and cathodes from losing the electrolytic distance between them and by this consequence short circuits are formed, dispensing with the use of all types of plastic anodic separators.
  • the differentiating aspect is given by using the entire perimeter area of the anodes to allow the cathodes, in all their area, not to lose the distance between electrodes.
  • the state of the art in this aspect registers aeration systems that are installed in the lower part of the cells and from there, by exercising the air injection, it is possible to homogenize the copper concentrations avoiding the formation of short circuits.
  • the device called Flowdriver made of solid material, due to its design, shape and location, also contributes to achieve the necessary homogenization of the high concentrations of electrolyte that are concentrated in the inner lower part of the cells, thus eliminating the use of systems of aeration that use additional pneumatic energy of high operating and maintenance cost.
  • the productive processes in some cases, use aeration systems that homogenize the concentration and allow to obtain metal deposits without areas with nodulation.
  • the state of the art in this aspect has a couple of alternatives that indicate that from devices installed inside the cells and with the external contribution of air injection under pressure, through them it is possible to homogenize the electrolyte concentrations for avoid the deposit of irregular copper or with nodulation.
  • the device called Flowdriver made of solid material, due to its location, shape and strategic design, allows to distribute and homogenize the concentrations of the electrolyte inside the cell and thus avoid the formation of nodular deposits, thus dispensing with the use of aeration systems and all the external equipment they need.
  • the electrolytic processes do not have devices that control the copper deposit in the upper areas of the cathodes.
  • the state of the art in this aspect has an alternative that indicates that from the application of adhesive tapes installed in the upper area of the cathodes, the deposit of copper in the upper parts is avoided.
  • the results of this application have no tangible background that can be considered.
  • the device called Flowdriver made of solid material, due to its strategic shape and design, allows the oxide-reduction process to be produced from a level lower than the electrolyte level in the cell and thereby control the copper deposit in the area of the cathodes, thereby avoiding damage to the cathode steel. 13) To avoid the irregular deposition of copper that occurs in the upper area of the cathodes, which occurs due to the permanent variations of the electrolyte level in the cells, the electrolytic processes do not have devices and systems that avoid this type of deposit .
  • the state of the art in this aspect has an alternative that indicates that from devices installed in the cathodes or anodes the deposit of copper in the upper parts of the cathodes is avoided.
  • the device called Flowdriver made of solid material, due to its strategic design and shape, allows the copper deposit to be selectively controlled in the upper part of the cells, preventing variations in the electrolyte inside the cell to regulate such deposit quality.
  • the present invention proposes, from a single piece, called Flowdriver device, to benefit the current efficiency from avoiding contact with the electrolyte by insulating the lateral, lower and front upper edges of the anodes, thereby also allowing From this same base structure, deliver other important solutions specific to the operation.
  • the isolated areas are configured to avoid the formation of residual energy fields.
  • Flowdriver energy optimizing devices in the anodes allows control of all the operational problems that are carried out. present to obtain high quality copper and with energy efficiency. This also allows to dispense with all types of devices that are installed inside the cells, in the anodes separately and those installed in the cathodes.
  • the structure that makes up the Flowdriver device is made of non-conductive materials of the electric current, being able to use polymers, resins, fibers or other similar, of different densities and of various physical and chemical characteristics, obtaining a solid coating that shapes the parts of the device in question.
  • the Flowdriver device to fulfill the main objective of blocking the contact with the electrolyte in the indicated areas, is constructed of a length ranging between 10 and 1050 mm, depending on the size of the piece or pieces that will be used to isolate said area of the anodes. Also, to cover the thickness of the lead anode, the device has a width of between 1 and 50 mm.
  • fixation of this part of the Flowdriver device which is in direct contact with the body of the anode, can be carried out with various anchoring systems, using adhesive materials, bolts, screws, roscalatas or with snap-fit between the parts that make up the own device.
  • the lateral parts have a length ranging between 50 and 1500 mm, and a width that can vary between 2 and 200 mm.
  • the Flowdriver device intended to homogenize the electrolyte concentrations, it has a perforated area design with perforations that can be of different geometric shapes and its size can range between 1 and 50 mm.
  • a curvature is designed in the upper part that forms an angle that oscillates between 5 o and 45 °.
  • the Flowdriver energy optimizing device can be manufactured from one or several pieces, each one being the product of a mechanized manufacturing or based on an injection system, being able to use other processes that meet the necessary standards for the operation.
  • the density of the material used for the manufacture of the Flowdriver device must be so flexible as to allow the movement of the cathodes in its controlling face of the copper deposit, and, so compact, as to resist the friction of said displacement.
  • the optimizing device of the Flowdriver energy in its part destined to control the copper deposit in the cathodes, whether in the lateral, inferior or superior parts, must form a body that receives one face of the cathodes, where the opposite side of this one it is received by the device installed in the adjacent frontal anode.
  • the devices be installed in the two adjacent anodes that perform the electrolysis in the cathode area installed equidistantly between the two anodes.
  • the location of the Flowdriver energy optimizing device in the anodes mainly requires covering and isolating the areas where the residual energy fields are produced, and, for this, it must completely cover the lateral, lower and upper front edges, and, for a better anchorage in the anodes, should cover the front of these, in a measurement that oscillates between 0.1 and 300 mm, depending on the deposit area that is required to control in the cathodes, either in the side or bottom .
  • the manufacturing material of Flowdriver devices can be essentially smooth, and other less smooth, rough, rough, spongy or fluted materials can be used.
  • the space obtained by positioning the optimizing devices of the Flowdriver energy, to access the cathodes and position themselves in front of them, must oscillate between 1 and 10 mm, depending on the electrolytic distances that the process possesses.
  • FIGURE N ° 1 Represents a front view of an anode of lead or other metal that is used in the processes of cathodic copper production. Its back is identical to the front face.
  • FIGURE N ° 2 Represents an isometric view of an anode with the incorporation of the main part of the Flowdriver device. Its position indicates the specific zones that are required to isolate to exercise the controlled conduction of the current that migrates through the anode.
  • FIGURE N ° 3 Represents an isometric view of the anode with the Flowdriver device fully installed.
  • FIGURE N ° 4 Represents a side view of the lead anode with the Flowdriver device installed.
  • the energy-optimizing device called Flowdriver is mainly made of solid material, based on polymeric materials, with characteristics of resistance to sulfuric acid and high temperatures.
  • Said device comprises one or more pieces joined together, which, because of their strategic location, installed in the anodes, allow, mainly, to avoid contact with the electrolyte of selected areas of the anode and thereby allow to selectively control the migration of the current from the anodic body.
  • the installation of the Flowdriver device in the anodes mainly designed to block the contact of the electrolyte with the lateral edges, lower and upper front parts of the anode to concentrate the migration of the current, also allows; perform a selective control of the area that is required to deposit in the cathodes, maintain perfect distances between anodes and cathodes, homogenize the concentrations of the electrolyte, avoid the formation of short circuits, avoid metal deposits with unwanted formation of nodules, avoid corrosion of the welding that connects the contact bar with the body of the anode, avoid the occlusion of copper in damaged areas of the cathodes and avoid the deviation of the current by the contact of the anodes with the acid mist.
  • Fig. N ° 1 in the front view the contact bar (1) which is adhered with special welding to the body of the lead anode (2) is seen. As indicated, the back face is exactly the same as the front face. Furthermore, with reference to Fig. N ° 1, the contact bar (1) can be seen, which at one of its ends receives the electrical energy and makes it flow through the body of the lead anode (2).
  • the body of the lead anode (2) is seen with the base incorporation of the device called Flowdriver, which with its lateral parts (4) covers the edges of that anode area, and, with its lower part (5) covers the lower edge thereof.
  • the length of the lateral parts (4) and / or of the lower part (5) ranges between 10 and 1050 mm, depending on the size of the piece or pieces that will be used to insulate the lateral edges of the anodes.
  • the lateral parts (4) and / or the lower part (5) have a width of between 1 and 50 mm, according to one embodiment. Furthermore, referring to FIG.
  • the incorporation of the Flowdriver device in its front upper part (3) is observed according to an alternative embodiment of the invention, where said front upper part (3) covers said area in the front and back of the anode, allowing the contact rod (1), soldered to the body of the lead anode (2) is protected from the corrosion that produces the acid mist.
  • Fig. N ° 2 the incorporation of the Flowdriver device is observed in its upper frontal part (3), which according to another embodiment of the invention covers said area in both the anterior and the posterior part of the body. anode, allowing with its location, mainly with respect to the lower area of said front upper part (3), to control the copper deposit that is produced in the upper part of the cathode. Said selective control will allow, in addition, to avoid the over deposit that is generated by variations in the level of the electrolyte in the cells.
  • the incorporation of the Flowdriver device in its upper frontal part (3), covering said area in the anterior and posterior part of the anode according to that indicated in Fig. N ° 2, makes it possible to isolate said anode areas. so that the acid mist, which is generated in the process, does not produce deviations in the use of the current and therefore decrease the efficiency of it.
  • FIG. 3 the complete incorporation of the device called Flowdriver in the anode body (2) is observed, according to another embodiment of the invention.
  • Fig. N ° 3 shows the accessory side parts (6) and the accessory bottom part (7) of the Flowdriver device, which perform the function of selectively controlling the copper deposit in the cathodes located frontally to the anodes.
  • the accessory side parts (6) and the accessory bottom part (7) of the Flowdriver device also fulfill the function of permanently maintaining the distance between anodes and cathodes.
  • the distance between electrodes is achieved because a constant perimetral contact exerted by both accessory side parts (6) and accessory bottom part (7) is exerted.
  • the accessory side parts (6) and the accessory bottom part (7) due to their location, make it possible to dispense with the use of the current plastic edge covers, bevelling of plates and industrial wax, respectively.
  • the body of the Flowdriver device in its accessory side part (6) and accessory bottom part (7) allows to maintain the electrolytic distances between anodes and cathodes, avoiding the formation of short circuits in the process and nodular formations in copper deposits.
  • Fig. N ° 4 the lateral shape taken by the Flowdriver device in the body of the anode (2) is observed and the internal perimeter zone (8) is highlighted, which is where the electrolyte is homogeneously distributed in the electrolytic cell.
  • Said zone has a perforated area design with perforations that can be of different geometrical shapes and its size can range between 1 and 50 mm, depending on the modality of the invention.
  • the accessory side parts (6) and / or the accessory bottom part (7) have a length ranging between 50 and 1500 mm, and a width that can vary between 2 and 200 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

En los procesos electrolíticos, los ánodos utilizados como electrodos positivos reciben y conducen la corriente continua que se aplica al proceso. Los ánodos, insertos en una solución electrolítica generan la óxido-reducción que permite que el metal soluble se adhiera a los cátodos. En este proceso existen áreas del ánodo que forman campos de energía residual la cual no se utiliza directa e inmediatamente en la producción catódica. El dispositivo optimizador de la energía denominado Flowdriver, que se instala en los ánodos, permite aislar los cantos laterales, inferior y frontal superior del ánodo, evitando que se formen campos de energía residual y permitiendo que toda la energía que ingresa al ánodo migre y se conduzca selectiva y totalmente hacia las áreas de depósito en los cátodos, consiguiendo aumentar la eficiencia de corriente. Al evitar la formación de campos de energía residual, el dispositivo Flowdriver también controla el área de depósito que se requiere obtener en los cátodos, permitiendo con ello prescindir de la utilización de cubre bordes plásticos y cera industrial en los cátodos. El diseño, forma y ubicación del dispositivo Flowdriver en los ánodos, adicionalmente permite que, ánodos y cátodos se mantengan equidistantes entre sí, manteniendo las distancias electrolíticas que el proceso requiere para evitar la generación de cortocircuitos y depósitos irregulares de metal catódico. Por su parte, la estructura perimetral interna del dispositivo Flowdriver permite que las soluciones electrolíticas altamente concentradas se homogenicen y con ello se obtengan depósitos de espesores parejos y uniformes. En su conjunto, el dispositivo Flowdriver es una pieza única que se instala en los ánodos y está diseñado para entregar variadas soluciones que en la actualidad requieren de alternativas que entregan respuestas operativas por separado y de alto costo, siendo su función principal e innovadora la de evitar la formación de campos de energía residual y permitir con ello que dichas energías sean utilizadas inmediatamente en el proceso productivo.

Description

DISPOSITIVO OPTIMIZADOR DE LA ENERGÍA EN PROCESOS ELECTROLITICOS.
MEMORIA DESCRIPTIVA
La presente invención se refiere a un dispositivo optimizador de energía que en adelante se denomina como "Flowdriver". Dicho dispositivo es utilizable principalmente en los procesos electrolíticos destinados a producir cobre catódico, y comprende una estructura de material sólido que se instala en los ánodos, principalmente para impedir la formación de campos de energía residual, permitiendo con ello direccionar controladamente la corriente que migra hacia los cátodos, optimizando la utilización de ésta. Su instalación aisla determinadas áreas en los ánodos y con ello se logra que la corriente migre sólo por las áreas frontales de los ánodos, destinando una mayor intensidad de corriente a la producción de cobre catódico.
Su característica principal es la de aislar zonas de los ánodos que están en contacto con el electrolito y a partir de allí sumar otras características que están destinadas a entregar otras distintas soluciones operativas que el proceso electrolítico requiere.
Como se indica, el dispositivo optimizador de energía Flowdriver, está diseñado principalmente para que la corriente continua migre solamente por las partes frontales del ánodo y que están directamente comunicadas con las partes frontales de los cátodos, y, junto con ello, además, por su forma, diseño y ubicación lograr también; controlar el área de depósito de cobre en los cátodos, mantener perfectas distancias electrolíticas entre ánodos y cátodos, controlar la homogenización de las concentraciones del electrolito al interior de la celda, producir un desgaste parejo en los ánodos, eliminar las pérdidas de energía por contacto con la neblina ácida y evitar las desviaciones de la corriente en el proceso electrolítico. La instalación de los dispositivos Flowdriver tiene como objetivo principal el aumentar la eficiencia de la corriente utilizada en el proceso y consecutivamente disminuir los costos por insumos, procesos operativos y las tareas asociadas a cada instancia del proceso.
Estado de la técnica y problema técnico que se presenta
Los procesos electrolíticos utilizados para producir cobre catódico requieren de utilizar distintas aplicaciones que le permitan obtener cobre de alta calidad y con la mejor eficiencia energética.
Cada aplicación se utiliza para controlar un problema operacional específico y con ello superar los inconvenientes operacionales que se presentan en los procesos de electro obtención. Con ello, actualmente, se logra invadir las celdas electrolíticas con distintas aplicaciones y sistemas donde cada una de ellas entrega una solución distinta.
Específicamente, en los procesos de electro obtención, en especial el utilizado para producir cobre catódico, se utilizan, normalmente, como electrodos positivos, ánodos de plomo, los cuales están insertos en una solución líquida, altamente concentrada en ácido sulfúrico y cobre soluble, llamada electrolito.
El ánodo señalado tiene como objetivo recibir y hacer migrar la corriente continua aplicada hacia los cátodos, luego permitir que se produzca el proceso de óxido-reducción y con ello finalmente se transforme el cobre soluble en cobre metálico, el que se adhiere a los cátodos.
El problema técnico se presenta en los ánodos, los cuales al estar sumergidos estandarizadamente en la solución de electrolito, permite que se formen campos de energías residuales, las cuales, constantemente, no permiten que la corriente, allí residente, sea utilizada eficientemente en el proceso productivo.
Los campos de energía residuales se forman principalmente en las áreas laterales, inferiores y superiores de los ánodos. Dichas áreas no están en directa comunicación frontal con los cátodos lo que permite que la actividad electro-química se debilite y se convierta en improductiva en dichas zonas.
En vista de lo anterior, el dispositivo optimizador de energía de la presente invención atiende los siguientes problemas.
1) El ánodo de plomo, usu amiente utilizado como electrodo positivo e inserto en el electrolito, recibe una intensidad de corriente determinada y por su composición estable permite que ésta migre por todas las caras expuestas al contacto con el electrolito.
El estado de la técnica en este aspecto no tiene antecedentes que señalen que exista una aplicación que controle esta migración, ni tampoco se encuentran disponibles antecedentes metalúrgicos que señalen que a partir de dicha aislación se esté realizando una mejora en el proceso.
La presente invención propone incorporar en los ánodos el dispositivo optimizador de la energía denominado Flowdriver, de material sólido, que controla la migración de la corriente al aislar del contacto con el electrolito los cantos laterales, inferiores y frontales superiores de los ánodos, dejando en contacto directo con el electrolito sólo las áreas frontales, que es por donde migrará controladamente la corriente hacia los cátodos.
2) El volumen estructural del ánodo sumergido en la celda electrolítica y en contacto con el electrolito circulante forma campos de energía residuales en los cantos laterales, inferiores y frontales superiores.
Además, este problema produce un desgate disparejo o pérdida de espesor irregular en los cuerpos de los ánodos, donde las zonas laterales e inferiores adquieren un desgaste mayor que en la zona central expuesta al contacto con el electrolito. El desgaste irregular genera mayor resistencia al flujo de la corriente, lo que acelera el reemplazo de los electrodos.
El estado de la técnica en este aspecto no tiene antecedentes que señalen que exista una aplicación que aisle determinadas áreas del ánodo, ni tampoco se encuentran disponibles antecedentes metalúrgicos que señalen que a partir de dicha aislación se esté actualmente realizando una mejora en el proceso, evitando la formación de estos campos residuales, en donde dichos campos residuales además desgastan irregularmente los ánodos.
Al respecto, el dispositivo optimizador de la energía denominado Flowdriver, de material sólido, impide que se formen dichos campos de energía residual en las áreas descritas y que son inútiles para en proceso. Por lo tanto, dicho dispositivo consigue con ello un desgaste parejo y regular lo que aumenta la vida útil de los ánodos.
3) El volumen estructural del ánodo de plomo que no está sumergido en el electrolito, incluyendo la barra de contacto, queda expuesto al contacto con la neblina ácida que se genera por el proceso de óxido-reducción, la cual produce corrosión y deterioro en la soldadura de éste y, además, principalmente, permite que parte de la corriente que fluye por el ánodo se disipe por dicho contacto.
El estado de la técnica en este aspecto no tiene antecedentes que señalen que exista una aplicación destinada a evitar la corrosión, y menos, principalmente, que el cobre soluble que se escapa a través de la neblina ácida genere una pérdida de corriente por el contacto de ésta con la parte superior de los ánodos no sumergidos en el electrolito.
El dispositivo optimizador de la energía denominado Flowdriver, de material sólido, cubra el área señalada y con ello evita el daño físico en los ánodos y consecutivamente evita que parte de la corriente no se utilice en el proceso de producción por disipación de ésta.
4) La corriente utilizada en el proceso electrolítico y que migra a través de los ánodos forma campos de energía residuales que no se utilizan en el proceso productivo para producir metal catódico.
El estado de la técnica en este aspecto no tiene antecedentes que señalen que exista una aplicación que conduzca controladamente la migración de la corriente desde los ánodos. El dispositivo optimizador de la energía denominado Flowdriver se fija en los ánodos, logrando conducir controladamente toda la corriente que ingresa a los ánodos a través de las caras frontales de éstos y con ello toda la intensidad de corriente utilizada migra sólo por las caras frontales de los ánodos, aumentando la densidad de corriente.
5) Los campos de energía residual que se forman utilizan un amperaje estable en las zonas donde se producen, los cuales al mantenerse estables no ejercen un parámetro dirigido y utilizable en el proceso de la óxido-reducción, para la producción de cobre catódico.
El estado de la técnica en este aspecto no tiene antecedentes que señalen que exista una aplicación que evite la formación estable de campos residuales de corriente y con ello se controle eficientemente la densidad de corriente.
El dispositivo denominado Flowdriver de la presente invención, de material sólido, impide el contacto directo con el electrolito en las áreas indicadas y con ello permitir que aumente el amperaje utilizable productivo para aumentar la producción de cobre.
6) La formación de campos de energía residual en los cantos laterales e inferiores de los ánodos impide que se pueda ejercer un control en el depósito de cobre en los cátodos.
El estado de la técnica en este aspecto no tiene antecedentes que señalen que exista una aplicación que controle el área determinada de depósito en los cátodos a partir de un dispositivo instalado en los ánodos.
El dispositivo denominado Flowdriver de la presente invención, de material sólido, por su diseño, forma y ubicación logra controlar la dirección de la corriente que migra desde los ánodos hacia los cátodos y con ello consigue selectivamente el área de depósito que se requiere obtener en los cátodos.
7) Para controlar selectivamente el depósito metálico en las partes laterales de los cátodos, los procesos productivos utilizan distintos tipos de cubre bordes plásticos, cerámicos o poliméricos para evitar depósitos de metal en zonas no deseadas. El estado de la técnica en este aspecto tiene un sin número de alternativas mediante las que, a partir de piezas instaladas lateralmente en los cátodos, se evita el depósito de cobre en las partes señaladas. También, el estado de la técnica registra que existen aplicaciones que inhiben el depósito de cobre en dichas áreas, para lo cual se valen de fuentes de energía de radio frecuencia controlada por una fuente externa y con ello se logra evitar el depósito de cobre.
De acuerdo con la presente invención, el dispositivo optimizador de la energía denominado Flowdriver, de material sólido, por su diseño, forma y ubicación logra controlar selectivamente el depósito de metal en las zonas laterales de los cátodos, permitiendo con ello prescindir de la utilización de cubre bordes plásticos, cerámicos o poliméricos instalados en los cátodos. Dicho control del depósito de cobre se logra sin utilizar ningún tipo de energía externa y sólo requiere de la aproximación directa entre el dispositivo y las partes laterales de los cátodos.
8) Para controlar selectivamente el depósito metálico en las partes inferiores de los cátodos, los procesos productivos, en algunos casos, utilizan distintos tipos de cera industrial o dispositivos plásticos para evitar depósitos de cobre no deseados en zonas inferiores.
El estado de la técnica en este aspecto tiene un gran número de alternativas mediante las que, a partir de dispositivos instalados en los cátodos o aplicaciones de cera industrial, se evita el depósito de cobre en las partes inferiores de los cátodos. Para esto último también existen dispositivos que logran inhibir el depósito de cobre en la parte inferior los cuales también se valen de fuentes de energías de radiofrecuencia para evitar el depósito de cobre.
El dispositivo denominado Flowdriver, de material sólido, por su diseño, forma y ubicación también logra controlar selectivamente el depósito de metal en las zonas inferiores de los cátodos, permitiendo con ello prescindir de la utilización de cera industrial u otro elemento. Para lograr que en dicha área se deposite cobre, el dispositivo en su integridad no necesita de ningún tipo de energía adicional y solo requiere la aproximación directa entre el dispositivo y la parte inferior de los cátodos. 9) Para evitar que en el proceso de óxido-reducción se generen cortocircuitos no deseados entre ánodos y cátodos, los procesos productivos utilizan distintos tipos de separadores anódicos de plásticos que mantienen las distancias requeridas entre ellos y evitan, unos mejor que otros, la formación de cortocircuitos.
El estado de la técnica en este aspecto tiene un sin número de alternativas mediante las que, a partir de dispositivos instalados en los ánodos, se mantienen las distancias electrolíticas entre ánodos y cátodos y se evita la formación de cortocircuitos. En este aspecto, los dispositivos disponibles sólo permiten que desde una pequeña área se mantenga la distancia entre electrodos.
El dispositivo denominado Flowdriver, de material sólido, por su estructura y forma, impide que los ánodos y cátodos pierdan la distancia electrolítica entre ellos y por dicha consecuencia se formen cortocircuitos, prescindiendo del uso de todo tipo de separadores anódicos plásticos. El aspecto diferenciador está dado por utilizar todo el área perimetral de los ánodos para permitir que los cátodos, en toda su área, no pierdan la distancia entre electrodos.
10) La literatura actualmente ha determinado que la formación de cortocircuitos no solamente se evita con mantener las distancias entre ánodos y cátodos y agrega, que también, además, se necesita de homogenizar las concentraciones de cobre soluble presentes en el electrolito y que se concentran en la parte baja de las celdas.
El estado de la técnica en este aspecto registra sistemas de aireación que se instalan en la parte inferior de las celdas y desde allí, por ejercicio de la inyección de aire, se logre homogenizar las concentraciones de cobre evitando la formación de cortocircuitos.
El dispositivo denominado Flowdriver, de material sólido, por su diseño, forma y ubicación, también aporta a conseguir la necesaria homogenización de las altas concentraciones de electrolito que se concentran en la parte baja interior de las celdas, prescindiendo con ello de la utilización de sistemas de aireación que utilizan energía neumáticas adicionales de alto costo operativo y de mantenimiento. 11) Para evitar la formación de depósitos metálicos con nodulos, principalmente en la zona media inferior de los cátodos, la cual se manifiesta por las diferencias de concentración que se genera a medida que el electrolito expuesto a la corriente asciende en la celda electrolítica, los procesos productivos, en algunos casos, utilizan sistemas de aireación que homogenizan la concentración y permiten obtener depósitos de metal sin áreas con nodulación.
El estado de la técnica en este aspecto tiene un par de alternativas que señalen que a partir de dispositivos instalados al interior de las celdas y con el aporte externo de inyección de aire a presión, a través de ellos se logra homogenizar las concentraciones de electrolito para evitar el depósito de cobre irregular o con nodulación.
El dispositivo denominado Flowdriver, de material sólido, por su ubicación, forma y diseño estratégico, permite distribuir y homogenizar las concentraciones del electrolito al interior de la celda y con ello evitar la formación de depósitos nodulares, prescindiendo con esto la utilización de sistemas de aireación y todo el equipamiento externo que necesitan.
12) Para evitar el daño que producen las altas concentraciones de cloruro en los cátodos de acero, los procesos electrolíticos no cuentan con dispositivos que controlen el depósito de cobre en las zonas superiores de los cátodos.
El estado de la técnica en este aspecto tiene una alternativa que señala que a partir de la aplicación de cintas adhesivas instaladas en la zona superior de los cátodos, se evita el depósito de cobre en las partes superiores. Los resultados de esta aplicación no tienen antecedentes tangibles que puedan ser considerados.
El dispositivo denominado Flowdriver, de material sólido, por su forma y diseño estratégico, permite que el proceso de óxido-reducción se produzca desde un nivel más bajo que el nivel de electrolito en la celda y con ello controlar el depósito de cobre en la zona superior de los cátodos, evitando con ello el daño en el acero de los cátodos. 13) Para evitar el depósito irregular de cobre que se produce en la zona superior de los cátodos, lo que ocurre por las variaciones permanentes del nivel de electrolito en las celdas, los procesos electrolíticos no cuentan con dispositivos y sistemas que eviten este tipo de depósito.
El estado de la técnica en este aspecto tiene una alternativa que señala que a partir de dispositivos instalados en los cátodos o ánodos se evita el depósito de cobre en las partes superiores de los cátodos.
El dispositivo denominado Flowdriver, de material sólido, por su forma y diseño estratégico, permite que en la parte superior de las celdas se controle selectivamente el depósito de cobre, impidiendo que las variaciones del electrolito al interior de la celda regulen tal calidad de depósito.
Descripción detallada de la invención.
En la actualidad existen variadas alternativas de solución destinadas a enfrentar los problemas operativos que demandan los procesos electrolíticos, principalmente los destinados a la producción de cobre catódico.
En este contexto la indeterminada variedad de soluciones que se encuentran en el mercado apuntan a solucionar un problema específico y determinado en el proceso, es decir, cada inconveniente operacional se soluciona con un dispositivo o aplicación específica y distinta.
La presente invención propone, a partir de una pieza única, denominada dispositivo Flowdriver, beneficiar la eficiencia de corriente a partir de evitar el contacto con el electrolito aislando los cantos laterales, inferior y frontal superior de los ánodos, permitiendo con ello, además, a partir de esta misma estructura base, entregar otras importantes soluciones específicas a la operación. Las áreas aisladas están configuradas para evitar la formación de campos de energía residual.
La instalación de los dispositivos optimizadores de la energía Flowdriver en los ánodos, permite que desde estos se realice un control a todos los problemas operacionales que se presentan para obtener cobre de alta calidad y con eficiencia energética. Esto permite además, prescindir de todo tipo de dispositivos que se instalan al interior de las celdas, en los ánodos por separado y los que se instalan en los cátodos.
La estructura que conforma el dispositivo Flowdriver se fabrica de materiales no conductores de la corriente eléctrica, pudiendo utilizarse polímeros, resinas, fibras u otros similares, de distintas densidades y de variadas características físico químicas, obteniéndose un revestimiento sólido que da forma a las partes del dispositivo en cuestión.
El dispositivo Flowdriver, para cumplir el objetivo principal de bloquear el contacto con el electrolito en las áreas señaladas, se construye de un largo que oscila entre los 10 y los 1050 mm, dependiendo del tamaño de la o las piezas que se utilizarán para aislar dicha área de los ánodos. Asimismo, para cubrir el espesor del ánodo de plomo, el dispositivo tiene un ancho de entre 1 y 50 mm.
La fijación de esta parte del dispositivo Flowdriver, que está en directo contacto con el cuerpo del ánodo, se puede realizar con variados sistemas de anclaje, pudiendo utilizarse materiales adhesivos, pernos, tornillos, roscalatas o con fijación a presión entre las partes que conforman el propio dispositivo.
Haciendo referencia a la parte del dispositivo Flowdriver que controla el depósito de cobre en los cátodos, las partes laterales tienen un largo que oscila entre los 50 y 1500 mm, y un ancho que puede variar entre los 2 y 200 mm. Con esta característica se explica que con el dispositivo Flowdriver, instalado, y de acuerdo a su tamaño y forma, se pueden obtener las formas que se requieren de depósito en los cátodos.
Respecto de la zona del dispositivo Flowdriver destinada a homogenizar las concentraciones del electrolito, tiene un diseño de área calada con perforaciones que pueden ser de distintas formas geométricas y su tamaño puede oscilar entre 1 y 50 mm. Para conformar la zona que el dispositivo Flowdriver posee para recibir y guiar los cátodos durante el proceso, que se complementa con la parte que tiene como fin controlar el depósito de cobre en los cátodos, se diseña una curvatura en la parte superior que forma un ángulo que oscila entre los 5o y 45°.
El dispositivo optimizador de la energía Flowdriver puede fabricarse a partir de una o varias piezas, pudiendo cada una ser producto de una fabricación mecanizada o en base a un sistema de inyección, pudiendo utilizarse otros procesos que cumplan los estándares necesarios para la operación.
La densidad del material utilizado para la fabricación del dispositivo Flowdriver debe ser tan flexible como para permitir el desplazamiento de los cátodos en su cara controladora del depósito de cobre, y, tan compacto, como para resistir el roce de dicho desplazamiento.
El dispositivo optimizador de la energía Flowdriver en su parte destinada a controlar el depósito de cobre en los cátodos, ya sea en las partes laterales, inferiores o superiores, debe conformar un cuerpo que reciba una cara de los cátodos, donde la cara contraria de éste la recibe el dispositivo instalado en el ánodo adyacente frontal. En este sentido, se entiende que para realizar un control de depósito en ambas caras del cátodo, se requiere que los dispositivos estén instalados en los dos ánodos adyacentes que realizan la electrólisis en el área del cátodo instalado equidistantemente entre los dos ánodos.
La ubicación del dispositivo optimizador de la energía Flowdriver en los ánodos, requiere principalmente cubrir y aislar las zonas en donde se producen los campos de energía residual, y, para ello, debe cubrir completamente los cantos laterales, inferiores y frontal superiores, y, para un mejor anclaje en los ánodos, debe cubrir la parte frontal de éstos, en una medida que oscila entre los 0,1 y 300 mm, dependiendo del área de depósito que se requiere controlar en los cátodos, ya sea en la parte lateral o inferior. El material de fabricación de los dispositivos Flowdriver puede ser esencialmente liso, pudiendo utilizarse otros materiales menos lisos, rugosos, ásperos, esponjosos o estriados.
El espacio que se obtiene al posicionarse los dispositivos optimizadores de la energía Flowdriver, para que accedan los cátodos y se posicionen frente a ellos, debe oscilar entre 1 y 10 mm, dependiendo de las distancias electrolíticas que el proceso posea.
Descripción de las figuras
Como parte de la presente solicitud se presentan las siguientes figuras representativas de la invención, las que enseñan modalidades preferentes de la misma y, por lo tanto, no deben considerarse como limitantes a la definición de la materia reivindicada por la presente solicitud.
FIGURA N° 1 : Representa una vista frontal de un ánodo de plomo u otro metal que se utiliza en los procesos de producción de cobre catódico. Su parte posterior es idéntica a la cara frontal.
FIGURA N°2: Representa una vista isométrica de un ánodo con la incorporación de la parte principal base del dispositivo Flowdriver. Su posición indica las zonas específicas que se requiere aislar para ejercer la conducción controlada de la corriente que migra a través del ánodo.
FIGURA N°3: Representa una vista isométrica del ánodo con el dispositivo Flowdriver completamente instalado.
FIGURA N°4: Representa una vista lateral del ánodo de plomo con el dispositivo Flowdriver instalado.
Descripción de la modalidad preferente
De acuerdo con una modalidad preferente de la invención, el dispositivo optimizador de la energía denominado Flowdriver está principalmente fabricado de material sólido, en base a materiales poliméricos, con características de resistencia al ácido sulfúrico y altas temperaturas. Dicho dispositivo comprende una o varias piezas unidas entre sí, que, por su ubicación estratégica, instaladas en los ánodos, permiten, principalmente, evitar el contacto con el electrolito de áreas seleccionadas del ánodo y con ello permitir controlar selectivamente la migración de la corriente desde el cuerpo anódico.
La instalación del dispositivo Flowdriver en los ánodos, principalmente diseñado para bloquear el contacto del electrolito con los cantos laterales, inferior y partes frontales superiores del ánodo para concentrar la migración de la corriente, permite también; realizar un control selectivo del área que se requiere depositar en los cátodos, mantener distancias perfectas entre ánodos y cátodos, homogenizar las concentraciones del electrolito, evitar la formación de cortocircuitos, evitar depósitos de metal con formación no deseada de nodulos, evitar la corrosión de la soldadura que une barra de contacto con el cuerpo del ánodo, evitar la oclusión de cobre en zonas dañadas de los cátodos y evitar la desviación de la corriente por el contacto de los ánodos con la neblina ácida.
Haciendo referencia a la Fig. N° 1, en la vista frontal se aprecia la barra de contacto (1) la que está adherida con soldadura especial al cuerpo del ánodo de plomo (2). Como se indica, la cara posterior es exactamente igual a la cara anterior. Además, con referencia a la Fig. N° 1 , se aprecia la barra de contacto (1) la que por uno de sus extremos recibe la energía eléctrica y la hace fluir por el cuerpo del ánodo de plomo (2).
Haciendo referencia a la Fig. N° 2, se aprecia el cuerpo del ánodo de plomo (2) con la incorporación base del dispositivo denominado Flowdriver, el cual con sus partes laterales (4) cubre los cantos de esa área del ánodo, y, con su parte inferior (5) cubre el canto inferior del mismo. De acuerdo con una modalidad, el largo de las partes laterales (4) y/o de la parte inferior (5) oscila entre los 10 y los 1050 mm, dependiendo del tamaño de la o las piezas que se utilizarán para aislar los cantos laterales de los ánodos. Asimismo, para cubrir el espesor del ánodo de plomo, las partes laterales (4) y/o la parte inferior (5) tienen un ancho de entre 1 y 50 mm, de acuerdo con una modalidad. Además, haciendo referencia a la Fig. N° 2, se observa la incorporación del dispositivo Flowdriver en su parte superior frontal (3) de acuerdo con una modalidad alternativa de la invención, donde dicha parte superior frontal (3) cubre dicha área en la parte anterior y posterior del ánodo, permitiendo que la barra de contacto (1), soldada al cuerpo del ánodo de plomo (2) quede protegida de la corrosión que produce la neblina ácida.
Considerando lo anterior, en la Fig. N° 2 se observa la incorporación del dispositivo Flowdriver en su parte superior frontal (3), la cual de acuerdo con otra modalidad de la invención cubre dicha área tanto en la parte anterior como en la posterior del ánodo, permitiendo con su ubicación, principalmente respecto de la zona inferior de dicha parte superior frontal (3), controlar el depósito de cobre que se produce en la parte superior del cátodo. Dicho control selectivo permitirá, además, evitar el sobre depósito que se genera por variaciones de nivel del electrolito en las celdas.
Como se ha indicado anteriormente, la incorporación del dispositivo Flowdriver en su parte superior frontal (3), cubriendo dicha área en la parte anterior y posterior del ánodo de acuerdo a lo señalado en la Fig. N° 2, permite aislar dichas áreas del ánodo para que la neblina ácida, que se genera en el proceso, no produzca desviaciones en la utilización de la corriente y por ende disminución de la eficiencia de la misma.
Haciendo referencia a la Fig. N° 3, se observa la incorporación completa del dispositivo denominado Flowdriver en el cuerpo del ánodo (2), de acuerdo con otra modalidad de la invención. En efecto, la Fig. N°3 permite apreciar las partes laterales accesorias (6) y la parte inferior accesoria (7) del dispositivo Flowdriver, las cuales cumplen la función de controlar selectivamente el depósito de cobre en los cátodos que se ubiquen frontalmente a los ánodos.
Además, en la Fig. N° 3 se observa que las partes laterales accesorias (6) y la parte inferior accesoria (7) del dispositivo Flowdriver también cumplen la función de mantener permanentemente la distancia entre ánodos y cátodos. La distancia entre electrodos se logra porque se ejerce un contacto perimetral constante ejercido por ambas partes laterales accesorias (6) y parte inferior accesoria (7). Además, se observa que las partes laterales accesorias (6) y la parte inferior accesoria (7), por su ubicación, permiten prescindir del uso de los actuales cubre bordes plásticos, biselado de placas y cera industrial, respectivamente.
En este mismo sentido, se observa que el cuerpo del dispositivo Flowdriver en su parte lateral accesoria (6) y parte inferior accesoria (7), por su ubicación, permite mantener las distancias electrolíticas entre ánodos y cátodos, evitando la formación de cortocircuitos en el proceso y formaciones nodulares en los depósitos de cobre.
Por otra parte, haciendo referencia a la Fig. N° 3, se observa la zona perimetral interna (8) del dispositivo Flowdriver, el cual, por su ubicación, permite, desde su parte inferior, la homogenización del electrolito que asciende produciendo el depósito de cobre y permitiendo que se obtengan láminas de cobre de espesores similares en toda su estructura y libre de nodulación.
Finalmente, haciendo referencia a la Fig. N°4, se observa la forma lateral que toma el dispositivo Flowdriver en el cuerpo del ánodo (2) y se destaca la zona perimetral interna (8) que es por donde se distribuye homogenizadamente el electrolito en la celda electrolítica. Dicha zona tiene un diseño de área calada con perforaciones que pueden ser de distintas formas geométricas y su tamaño puede oscilar entre 1 y 50 mm, dependiendo de la modalidad de la invención. Además, las partes laterales accesorias (6) y/o la parte inferior accesoria (7) tienen un largo que oscila entre los 50 y 1500 mm, y un ancho que puede variar entre los 2 y 200 mm. En este sentido, es posible apreciar de acuerdo con una modalidad las partes laterales accesorias y la parte inferior accesoria sobresalen de las partes laterales e inferiores, permitiendo distribuir y homogenizar el electrolito que asciende al interior de la celda y con ello obtener láminas de cobre con espesores uniformes en toda su estructura.

Claims

REIVINDICACIONES
1. - Dispositivo optimizador de energía que se instala en los ánodos metálicos que se utilizan en los procesos de electro obtención, impidiendo la formación de campos de energía residual, CARACTERIZADO porque comprende, en su parte principal, un revestimiento sólido que cubre distintas áreas del ánodo, principalmente, los cantos laterales, el canto inferior y las partes frontales superiores de los ánodos, dicho revestimiento sólido formado por partes laterales para cubrir los cantos laterales, una parte inferior para cubrir el canto inferior y una parte superior frontal para cubrir las partes frontales superiores de los ánodos, en donde dichas partes laterales, parte inferior y parte superior frontal impiden la conductividad en dichas áreas, denominadas áreas aisladas.
2. - Dispositivo optimizador de energía de acuerdo a la reivindicación N° 1 , CARACTERIZADO porque las áreas aisladas están configuradas para evitar la formación de campos de energía residual.
3. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque la estructura que cubre las áreas señaladas del ánodo quedan aisladas, impidiendo la conducción de la corriente en esas áreas.
4. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las áreas aisladas están configuradas para que la corriente que ingresa al ánodo migre solamente por las partes frontales de éste, exponiendo al electrolito solo las áreas frontales de los ánodo.
5. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las partes que cubren las áreas aisladas son fabricadas con materiales no conductores de la corriente eléctrica, principalmente poliméricos, pudiendo utilizarse otros productos de características similares.
6. - Dispositivo optimizador de energía de acuerdo a reivindicación N° 5, CARACTERIZADO porque las partes que componen el dispositivo son fabricadas según medidas establecidas, pudiendo variar según el tamaño de los ánodos y los requerimientos operacionales.
7. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las áreas aisladas están configuradas para que la corriente migre en una sola dirección frontal del ánodo hacia los cátodos, de modo que todo el flujo de la corriente se utilice en la producción de cobre catódico.
8. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las áreas aisladas están configuradas para controlar selectivamente el área de depósito metálico en los cátodos.
9.- Dispositivo optimizador de energía de acuerdo a reivindicación N° 8, CARACTERIZADO porque las áreas aisladas, sumado a la estructura del dispositivo, están configuradas para que los depósitos de cobre en los cátodos prescindan de la utilización de cubre bordes plásticos o cera industrial o biselado inferior de los cátodos.
10. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque además comprende partes laterales accesorias y una parte inferior accesoria configuradas para que los cátodos que se instalan adyacentemente mantengan perfectas distancia entre ellos permitiendo que no se produzcan cortocircuitos en el proceso.
11. - Dispositivo optimizador de energía de acuerdo a reivindicación N°10, CARACTERIZADO porque las partes laterales accesorias y la parte inferior accesoria en los ánodos están configuradas para que los cátodos que se instalan adyacentemente mantengan perfectas distancia entre ellos permitiendo que no se produzcan depósitos de cobre con nodulación.
12. - Dispositivo optimizador de energía de acuerdo a reivindicación N°l l, CARACTERIZADO porque las partes laterales accesorias y la parte inferior accesoria en los ánodos están configuradas para que los cátodos que se instalan adyacentemente lo hagan sin que se requiera la utilización de dispositivos adicionales o cera industrial.
13. - Dispositivo optimizador de energía de acuerdo a las partes laterales accesorias y la parte inferior accesoria, CARACTERIZADO porque las áreas laterales aisladas en el ánodo están configuradas para controlar selectivamente el depósito de cobre en las áreas laterales del cátodo.
14. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque el área inferior aislada en el ánodo está configurada para controlar selectivamente el depósito de cobre en la parte inferior del cátodo.
15. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque el área frontal superior aislada del ánodo está configurada para controlar selectivamente el depósito de cobre en la parte superior de los cátodos.
16. - Dispositivo optimizador de energía de acuerdo a reivindicación N° 15, CARACTERIZADO porque el área frontal superior aislada del ánodo está configurada además para controlar selectivamente el depósito de cobre en la parte superior de los cátodos y con ello evitar depósitos de cobre con sobre crecimiento en las láminas de cobre obtenidas.
17. - Dispositivo optimizador de energía de acuerdo a reivindicación N° 15, CARACTERIZADO porque las partes laterales accesorias y la parte inferior accesoria sobresalen de las partes laterales e inferiores, estando configuradas para distribuir y homogenizar el electrolito que asciende al interior de la celda y con ello obtener láminas de cobre con espesores uniformes en toda su estructura.
18. - Dispositivo optimizador de energía de acuerdo a reivindicación N° 17, CARACTERIZADO porque las partes laterales accesorias y la parte inferior accesoria sobresalen de las partes laterales e inferiores, estando configuradas para distribuir y homogenizar el electrolito que asciende al interior de la celda y con ello obtener láminas sin depósitos irregulares o con nodulos.
19. - Dispositivo optimizador de energía de acuerdo a reivindicación N° 16, CARACTERIZADO porque el área frontal superior aislada del ánodo está configurada para que la neblina ácida que se genera por el proceso de óxido reducción no produzca desviaciones no deseadas de la corriente que ingresa a los ánodos.
20. - Dispositivo optimizador de energía de acuerdo a reivindicación N° 16, CARACTERIZADO porque el área frontal superior aislada del ánodo está configurada para que la neblina ácida que se genera por el proceso de óxido reducción no produzca daños en la zona que une la barra de contacto y el cuerpo del ánodo.
21. - Dispositivo optimizador de energía de acuerdo a reivindicación N° 16, CARACTERIZADO porque la disposición del dispositivo evita el desgaste disparejo de los ánodos permitiendo un desgaste parejo y con ello aumentar la vida útil de estos electrodos.
22. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las partes laterales del dispositivo cubren los cantos laterales del ánodo y la parte inferior del dispositivo cubre el canto inferior del ánodo, en donde el largo de las partes laterales y/o de la parte inferior oscila entre los 10 y los 1050 mm, y en donde el ancho de las partes laterales y/o de la parte inferior oscila entre 1 y 50 mm.
23. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque la parte superior frontal del dispositivo cubre la parte superior del ánodo, tanto en su cara anterior como en su cara posterior.
24. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las partes laterales, inferior y/o superior frontal cubren el ánodo en una medida que oscila entre los 0,1 y 300 mm.
25.- Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque comprende una zona para recibir y guiar los cátodos, en donde dicha zona tienen una curvatura en la parte superior que forma un ángulo que oscila entre los 5o y 45°.
26.- Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque el espacio que se obtiene para que accedan los cátodos oscila entre 1 y 10 mm.
26. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las partes lateral accesorias y la parte inferior accesoria forman una zona perimetral interna que posee un diseño de área calada con perforaciones que pueden ser de distintas formas geométricas y su tamaño puede oscilar entre 1 y 50 mm
27. - Dispositivo optimizador de energía de acuerdo a una cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las partes laterales accesorias y/o la parte inferior accesoria tienen un largo que oscila entre los 50 y 1500 mm, y un ancho que puede variar entre los 2 y 200 mm.
PCT/CL2017/050021 2016-05-09 2017-05-09 Dispositivo optimizador de la energía en procesos electrolíticos WO2017193225A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PE2018002336A PE20190300A1 (es) 2016-05-09 2017-05-09 Dispositivo optimizador de la energia en procesos electroliticos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2016001108A CL2016001108A1 (es) 2016-05-09 2016-05-09 Revestimiento solido para ánodos de electro obtención el cual posee partes laterales, inferiores y superior frontal para cubrir e impedir la conductividad de los bordes del ánodo y además comprende partes laterales e inferiores accesorias que mantienen un espaciamiento entre los ánodos y cátodos.
CL01108-2016 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017193225A1 true WO2017193225A1 (es) 2017-11-16

Family

ID=60266377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2017/050021 WO2017193225A1 (es) 2016-05-09 2017-05-09 Dispositivo optimizador de la energía en procesos electrolíticos

Country Status (3)

Country Link
CL (1) CL2016001108A1 (es)
PE (1) PE20190300A1 (es)
WO (1) WO2017193225A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609232A (zh) * 2020-11-13 2021-04-06 吴勇军 一种电镀设备
US11105011B2 (en) * 2015-02-02 2021-08-31 Hci Cleaning Products, Llc Chemical solution production
ES2908117R1 (es) * 2019-10-10 2022-06-13 Castaneda Percy Danilo Yanez Dispositivo optimizador de electrodeposicion de metales y sistema

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616305A (en) * 1967-01-18 1971-10-26 Eugene Arbez Ets Process for depositing lead
US6395155B1 (en) * 1999-11-25 2002-05-28 Bayer Aktiengesellschaft Electrolysis plate
US20030079992A1 (en) * 2001-04-25 2003-05-01 Wilkins Frederick C. Electrodeionization apparatus with expanded conductive mesh electrode and method
WO2015010220A2 (es) * 2013-07-22 2015-01-29 Yañez Castañeda Percy Danilo Dispositivo rigidizador de electrodos y sistema rigidizador que utiliza dicho dispositivo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616305A (en) * 1967-01-18 1971-10-26 Eugene Arbez Ets Process for depositing lead
US6395155B1 (en) * 1999-11-25 2002-05-28 Bayer Aktiengesellschaft Electrolysis plate
US20030079992A1 (en) * 2001-04-25 2003-05-01 Wilkins Frederick C. Electrodeionization apparatus with expanded conductive mesh electrode and method
WO2015010220A2 (es) * 2013-07-22 2015-01-29 Yañez Castañeda Percy Danilo Dispositivo rigidizador de electrodos y sistema rigidizador que utiliza dicho dispositivo

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105011B2 (en) * 2015-02-02 2021-08-31 Hci Cleaning Products, Llc Chemical solution production
ES2908117R1 (es) * 2019-10-10 2022-06-13 Castaneda Percy Danilo Yanez Dispositivo optimizador de electrodeposicion de metales y sistema
CN114746582A (zh) * 2019-10-10 2022-07-12 P·D·亚内斯·卡斯塔内达 用于金属电沉积的优化装置以及系统
CN112609232A (zh) * 2020-11-13 2021-04-06 吴勇军 一种电镀设备

Also Published As

Publication number Publication date
PE20190300A1 (es) 2019-02-28
CL2016001108A1 (es) 2017-03-10

Similar Documents

Publication Publication Date Title
WO2017193225A1 (es) Dispositivo optimizador de la energía en procesos electrolíticos
JP2014118634A5 (es)
CN103069632A (zh) 液流电池组系统
CN105088323B (zh) 板式电镀挂具
EP2985367A1 (en) Electroplating apparatus for preventing excessive plating of edge
RU2015143603A (ru) Системы и способы защиты боковых стенок электролизера
JPWO2018117192A1 (ja) フロー電池
CN102337578A (zh) 一种双面电镀槽、板件及电镀方法
CN112064066A (zh) 金属箔制造装置
KR910008178A (ko) 양극 구조물과 양극 제조 방법
US3278410A (en) Electrolytic anode
JP2022536258A (ja) 電気化学的プロセス用の電極アセンブリ
CN208087773U (zh) 一种带有阳极泥收集的电解槽
CN217007103U (zh) 一种对称四电极体系边界限制型电解池装置
US3455811A (en) Electrode system for use in the electrolytic production of manganese dioxide
KR102226831B1 (ko) 전극 이격부재를 구비하는 전해연마용 전극 프레임 및 이를 포함하는 전해연마 장치
CN204661855U (zh) 带有屏蔽装置的电镀槽
TWI703241B (zh) 電解研磨用電極框架及包括其的電解研磨裝置
CN212357418U (zh) 电解槽的槽体结构与电解槽
EP3551782B1 (en) Electrodic support structure for coaxial electrolytic cells
CN202808980U (zh) 电镀辅助板及应用其的电镀设备
TWI534302B (zh) 隔膜裝置
CN218989455U (zh) 电蚀刻装置及电蚀刻系统
CN217922391U (zh) 电镀设备及镀膜机
US20130126340A1 (en) Barrel apparatus for barrel plating

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795230

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795230

Country of ref document: EP

Kind code of ref document: A1