WO2015072518A1 - 延伸フィルムの製造方法、長尺の偏光フィルム、及び、液晶表示装置 - Google Patents
延伸フィルムの製造方法、長尺の偏光フィルム、及び、液晶表示装置 Download PDFInfo
- Publication number
- WO2015072518A1 WO2015072518A1 PCT/JP2014/080084 JP2014080084W WO2015072518A1 WO 2015072518 A1 WO2015072518 A1 WO 2015072518A1 JP 2014080084 W JP2014080084 W JP 2014080084W WO 2015072518 A1 WO2015072518 A1 WO 2015072518A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- stretched film
- stretching
- stretched
- long
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00634—Production of filters
- B29D11/00644—Production of filters polarizing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
- B29C55/065—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/16—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
- B29D11/00788—Producing optical films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
Definitions
- the present invention relates to a method for producing a stretched film, a long polarizing film including a stretched film produced by the production method, and a liquid crystal display device.
- an optical member such as a retardation film is used to improve performance.
- the retardation film is used for antireflection of, for example, mobile devices and organic EL televisions, and for optical compensation of liquid crystal display devices
- the slow axis thereof is neither parallel nor perpendicular to the transmission axis of the polarizer. It is required to be at an angle.
- the transmission axis of the polarizer is usually parallel to the long side direction or the short side direction of the rectangular display surface of the apparatus. Therefore, there is a demand for a rectangular retardation film having a slow axis in an oblique direction with respect to its side.
- a retardation film has been produced by longitudinally stretching or transversely stretching a long film before stretching.
- the longitudinal stretching represents stretching in the longitudinal direction of the long film
- the lateral stretching represents stretching in the width direction of the long film.
- it is required to cut out the film so that the side is directed in an oblique direction with respect to the width direction of the long film. .
- the amount of film to be discarded increases, and it becomes difficult to produce roll-to-roll, so that production efficiency is lowered.
- JP 2007-030466 A International Publication No. 2007/061105 International Publication No. 2007/111313 JP 2008-110573 A JP 2012-101466 A
- An object of the present invention is to provide a long polarizing film comprising a stretched film produced by the production method; and a liquid crystal display device comprising a polarizing plate cut out from the polarizing film.
- the present inventor has performed the stretching in the oblique direction and the free uniaxial stretching in the flow direction in this order, and the stretching ratio B1 in the oblique direction is the stretching ratio in the flow direction. It was found that a stretched film having a slow axis in an oblique direction and having a high NZ coefficient can be easily produced by combining with larger than B2, and the present invention has been completed. That is, the present invention is as follows.
- the draw ratio B1 of the first step is 1.5 to 4.0 times
- the method for producing a stretched film according to [1] or [2], wherein the stretch ratio B2 in the second step is 1.1 to 2.0 times.
- the intermediate film has a slow axis in an average range of 10 ° to 35 ° with respect to the width direction
- a stretched film manufacturing method capable of easily manufacturing a stretched film having a slow axis in a direction oblique to the width direction and having a large NZ coefficient; manufactured by the manufacturing method A long polarizing film provided with a stretched film; and a liquid crystal display device provided with a polarizing plate cut out from the polarizing film can be provided.
- FIG. 1 is a plan view schematically showing a tenter device according to an embodiment of the present invention.
- FIG. 2 is a plan view schematically showing a roll stretching machine according to an embodiment of the present invention.
- FIG. 3 is a plan view schematically showing a test piece in order to explain a method for measuring a dimensional change rate of a stretched film.
- long means one having a length of at least 5 times the width, preferably 10 times or more, specifically a roll shape. It has a length enough to be wound up and stored or transported.
- the in-plane retardation of the film is a value represented by (nx ⁇ ny) ⁇ d unless otherwise specified.
- the NZ coefficient is a value represented by (nx ⁇ nz) / (nx ⁇ ny) unless otherwise specified.
- nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and giving the maximum refractive index.
- ny represents the refractive index in the in-plane direction of the film and perpendicular to the nx direction.
- nz represents the refractive index in the thickness direction of the film.
- d represents the thickness of the film.
- the measurement wavelength is 590 nm unless otherwise specified.
- (meth) acrylate includes “acrylate” and “methacrylate”.
- (Meth) acryl includes “acryl” and “methacryl”.
- (meth) acrylonitrile” includes “acrylonitrile” and “methacrylonitrile”.
- the oblique direction of the long film indicates an in-plane direction of the film, and a direction that is neither parallel nor perpendicular to the width direction of the film unless otherwise specified.
- the longitudinal direction of a long film is the longitudinal direction of the film unless otherwise specified, and is usually parallel to the film flow direction in the production line.
- polarizing plate includes not only a rigid member but also a flexible member such as a resin film.
- a method for producing a stretched film according to an embodiment of the present invention includes: (a) a first step in which a long pre-stretch film is stretched in an oblique direction at a stretch ratio B1 to obtain a long intermediate film; After the step, (b) a second step of obtaining a long stretched film by freely uniaxially stretching in the flow direction at a stretch ratio B2 while continuously transporting the intermediate film.
- thermoplastic resin is usually used as the resin for forming the resin film.
- thermoplastic resins include polyolefin resins such as polyethylene resins and polypropylene resins; polymer resins having an alicyclic structure such as norbornene resins; cellulose resins such as triacetyl cellulose resins; polyimide resins and polyamides Imide resin, polyamide resin, polyether imide resin, polyether ether ketone resin, polyether ketone resin, polyketone sulfide resin, polyether sulfone resin, polysulfone resin, polyphenylene sulfide resin, polyphenylene oxide resin, polyethylene terephthalate resin, polybutylene terephthalate resin , Polyethylene naphthalate resin, polyacetal resin, polycarbonate resin, polyarylate resin, (meth) acrylic resin, polyvinyl alcohol resin Polypropylene resin,
- the polymer resin having an alicyclic structure is a resin containing a polymer having an alicyclic structure.
- the polymer having an alicyclic structure is a polymer in which the structural unit of the polymer has an alicyclic structure.
- the polymer having the alicyclic structure may have an alicyclic structure in the main chain, and may have an alicyclic structure in the side chain.
- One type of the polymer having this alicyclic structure may be used alone, or two or more types may be used in combination at any ratio.
- a polymer having an alicyclic structure in the main chain is preferable from the viewpoint of mechanical strength, heat resistance, and the like.
- alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
- cycloalkane saturated alicyclic hydrocarbon
- cycloalkene unsaturated alicyclic hydrocarbon
- cycloalkyne unsaturated alicyclic hydrocarbon
- a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
- the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably per alicyclic structure. Is a range of 15 or less.
- the number of carbon atoms constituting the alicyclic structure is the above number, the mechanical strength, heat resistance, and moldability of the resin containing the polymer having the alicyclic structure are highly balanced, which is preferable. .
- the proportion of the structural unit having an alicyclic structure may be appropriately selected according to the purpose of use, preferably 55% by weight or more, more preferably 70% by weight or more, particularly Preferably it is 90 weight% or more, and is 100 weight% or less normally.
- the ratio of the structural unit having an alicyclic structure in the polymer having an alicyclic structure is within this range, the transparency and heat resistance of the resin containing the polymer having the alicyclic structure are improved.
- the cycloolefin polymer is a polymer having a structure obtained by polymerizing a cycloolefin monomer.
- the cycloolefin monomer is a compound having a ring structure formed of carbon atoms and having a polymerizable carbon-carbon double bond in the ring structure.
- Examples of the polymerizable carbon-carbon double bond include polymerizable carbon-carbon double bonds such as ring-opening polymerization.
- Examples of the ring structure of the cycloolefin monomer include monocyclic, polycyclic, condensed polycyclic, bridged ring, and polycyclic combinations thereof.
- a polycyclic cycloolefin monomer is preferable from the viewpoint of highly balancing the dielectric properties and heat resistance of the resulting polymer.
- norbornene polymers preferred are norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, hydrides thereof, and the like.
- norbornene-based polymers are particularly suitable because of good moldability.
- Examples of the norbornene-based polymer include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and an arbitrary monomer, or a hydride thereof; An addition polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and an arbitrary monomer, or a hydride thereof.
- a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like.
- (co) polymer refers to a polymer and a copolymer.
- Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7. -Diene (common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring).
- examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different, and a plurality thereof may be bonded to the ring. Moreover, the monomer which has a norbornene structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
- Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
- Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfonic acid group.
- optional monomers capable of ring-opening copolymerization with a monomer having a norbornene structure include, for example, monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; and cyclic conjugates such as cyclohexadiene and cycloheptadiene. Dienes and derivatives thereof; and the like.
- the optional monomer capable of ring-opening copolymerization with a monomer having a norbornene structure one type may be used alone, or two or more types may be used in combination at any ratio.
- a ring-opening polymer of a monomer having a norbornene structure, and a ring-opening copolymer of any monomer copolymerizable with a monomer having a norbornene structure are, for example, a known ring-opening monomer. It can be produced by polymerization or copolymerization in the presence of a polymerization catalyst.
- ⁇ -olefin is preferable, and ethylene is more preferable.
- the arbitrary monomer which can carry out addition copolymerization with the monomer which has a norbornene structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- An addition copolymer of a monomer having a norbornene structure and an addition copolymer of any monomer that can be copolymerized with a monomer having a norbornene structure include, for example, a monomer of a known addition polymerization catalyst. It can be produced by polymerization or copolymerization in the presence.
- X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane- Having a 7,9-diyl-ethylene structure, the amount of these structural units being 90% by weight or more based on the whole structural units of the norbornene polymer, and the X content and the Y content And the ratio by weight of X: Y is preferably 100: 0 to 40:60.
- the resin layer containing the norbornene-based polymer can be made long-term without dimensional change and excellent in optical properties.
- Examples of the monocyclic olefin polymer include addition polymers of cyclic olefin monomers having a single ring such as cyclohexene, cycloheptene, and cyclooctene.
- cyclic conjugated diene polymer examples include polymers obtained by cyclization of addition polymers of conjugated diene monomers such as 1,3-butadiene, isoprene and chloroprene; cyclic conjugated diene monomers such as cyclopentadiene and cyclohexadiene 1,2-addition polymer or 1,4-addition polymer; and hydrides thereof.
- the weight average molecular weight (Mw) of the polymer having an alicyclic structure is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100,000 or less. Preferably it is 80,000 or less, Most preferably, it is 50,000 or less.
- the weight average molecular weight is in such a range, the mechanical strength and molding processability of the stretched film are highly balanced, which is preferable.
- the weight average molecular weight is a polyisoprene or polystyrene converted weight average molecular weight measured by gel permeation chromatography using cyclohexane as a solvent. However, in the gel permeation chromatography described above, toluene may be used as a solvent when the sample does not dissolve in cyclohexane.
- the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the polymer having an alicyclic structure is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more. And is preferably 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less.
- the resin that forms the pre-stretched film and the stretched film may contain an optional component other than the polymer.
- optional components include colorants such as pigments and dyes; plasticizers; optical brighteners; dispersants; thermal stabilizers; light stabilizers; ultraviolet absorbers; antistatic agents; An additive such as a surfactant may be mentioned.
- colorants such as pigments and dyes
- plasticizers such as plasticizers
- optical brighteners such as pigments and dyes
- dispersants such as pigments and dyes
- thermal stabilizers such as light stabilizers; ultraviolet absorbers; antistatic agents
- An additive such as a surfactant may be mentioned.
- these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the polymer contained in the resin is preferably 50% by weight to 100% by weight, or 70% by weight to 100% by weight.
- the glass transition temperature Tg of the pre-stretched film and the resin forming the stretched film is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 190 ° C. or lower, more preferably 180 ° C. Hereinafter, it is particularly preferably 170 ° C. or lower.
- the resin that forms the film before stretching and the stretched film preferably has an absolute value of photoelastic coefficient of preferably 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and particularly preferably 4 ⁇ . 10 ⁇ 12 Pa ⁇ 1 or less, usually 0 or more.
- an unstretched film that has not been stretched is used as the pre-stretch film.
- Such an unstretched film can be obtained by, for example, a cast molding method, an extrusion molding method, an inflation molding method, or the like.
- the extrusion molding method is preferable because it has a small amount of residual volatile components and is excellent in dimensional stability.
- FIG. 1 is a plan view schematically showing a tenter device 100 according to an embodiment of the present invention.
- a tenter apparatus 100 according to an embodiment of the present invention is an apparatus for stretching a pre-stretching film 20 fed from a feeding roll 10 in an oblique direction in a heating environment by an oven (not shown). It is.
- the tenter device 100 includes a plurality of grippers 110R and 110L and a pair of guide rails 120R and 120L.
- the grippers 110R and 110L are provided so as to be able to grip both ends 21 and 22 of the unstretched film 20, respectively.
- the guide rails 120R and 120L are provided on both sides of the film transport path to guide the grippers 110R and 110L.
- the grippers 110R and 110L are provided so as to be able to travel along the guide rails 120R and 120L. In addition, the grippers 110R and 110L are provided so as to be able to travel at a constant speed with a certain distance from the front and rear grippers 110R and 110L. Further, the grippers 110R and 110L grip the both end portions 21 and 22 in the width direction of the unstretched film 20 sequentially supplied to the tenter device 100 at the inlet 130 of the tenter device 100, and the outlet 140 of the tenter device 100. It has a structure that can be opened.
- the guide rails 120R and 120L have asymmetric shapes according to conditions such as the direction of the slow axis of the intermediate film 30 to be manufactured and the draw ratio.
- the tenter device 100 according to the present embodiment is provided with an extension zone 150 in which the distance between the guide rails 120R and 120L increases toward the downstream.
- the shape of the guide rails 120R and 120L is set so that the moving distance of one gripper 110R is longer than the moving distance of the other gripper 110L. Therefore, the shape of the guide rails 120R and 120L in the tenter device 100 is such that the grippers 110R and 110L guided by the guide rails 120R and 120L bend the traveling direction of the pre-stretch film 20 in the left direction.
- the traveling direction of the long film refers to the moving direction of the middle point in the width direction of the film unless otherwise specified.
- “right” and “left” indicate directions in the case of observing from the upstream to the downstream in the transport direction unless otherwise specified.
- the guide rails 120R and 120L have endless continuous tracks so that the grippers 110R and 110L can go around a predetermined track. For this reason, the tenter device 100 has a configuration in which the grippers 110R and 110L, which have opened the unstretched film 20 at the outlet 140 of the tenter device 100, can be sequentially returned to the inlet 130.
- Stretching of the pre-stretching film 20 using the tenter device 100 is performed as follows.
- the unstretched film 20 is unwound from the feed roll 10 and the unstretched film 20 is continuously supplied to the tenter apparatus 100.
- the tenter device 100 sequentially grips both end portions 21 and 22 of the unstretched film 20 with grippers 110R and 110L at the entrance 130 thereof.
- the unstretched film 20 gripped at both ends 21 and 22 is transported as the grippers 110R and 110L travel.
- the shapes of the guide rails 120R and 120L are set so that the traveling direction of the unstretched film 20 is bent leftward.
- the distance of the track on which one gripper 110R travels while gripping the unstretched film 20 is longer than the distance of the track on which the other gripper 110L travels while gripping the unstretched film 20. Accordingly, the pair of grippers 110R and 110L that are opposed to the direction perpendicular to the traveling direction of the unstretched film 20 at the inlet portion 130 of the tenter device 100 are the left grippers at the outlet portion 140 of the tenter device 100. Since 110L precedes the right gripper 110R, the pre-stretching film 20 is stretched in an oblique direction, and the long intermediate film 30 is obtained. The obtained intermediate film 30 is released from the grippers 110 ⁇ / b> R and 110 ⁇ / b> L at the outlet 140 of the tenter device 100, wound up, and collected as a roll 40.
- the draw ratio B1 in the first step is preferably 1.1 times or more, more preferably 1.5 times or more, preferably 4.0 times or less, more preferably 3.0 times or less.
- the stretching temperature T1 in the first step is preferably Tg ° C. or higher, more preferably Tg + 2 ° C. or higher, particularly preferably Tg + 5 ° C. or higher, preferably Tg + 40 ° C. or lower, more preferably Tg + 35 ° C. or lower, particularly preferably Tg + 30 ° C. or lower.
- Tg refers to the glass transition temperature of the resin that forms the pre-stretched film.
- the stretching temperature T1 in the first step refers to the temperature in the stretching zone 150 of the tenter apparatus 100.
- the intermediate film 30 Since the molecules contained in the intermediate film 30 are oriented by stretching in the first step, the intermediate film 30 has a slow axis. In the first step, stretching is performed in an oblique direction, so that the slow axis of the intermediate film 30 appears in the oblique direction of the intermediate film 30. Specifically, the intermediate film 30 has a slow axis in an average range of 5 ° to 85 ° on the average in the width direction.
- the film has a slow axis in a range that is average with respect to the width direction, that the orientation angle ⁇ formed by the width direction of the film and the slow axis at a plurality of points in the width direction of the film. Means that the average value of the orientation angles ⁇ measured at those points falls within the certain range.
- the direction of the slow axis of the intermediate film 30 is set according to the direction of the slow axis of the stretched film to be manufactured.
- the angle formed by the slow axis of the stretched film obtained in the second step with respect to the width direction is larger than the angle formed by the intermediate film with respect to the width direction. Therefore, it is preferable that the angle formed by the slow axis of the intermediate film 30 with respect to the width direction is smaller than the angle formed by the slow axis of the stretched film with respect to the width direction.
- the intermediate film 30 has an average slow axis in the range of 10 ° or more, more preferably 20 ° or more, and preferably 40 ° or less, more preferably 35 ° or less, on the average in the width direction.
- a stretched film having an orientation angle ⁇ of around 45 ° that can be used for various applications as a film having a slow axis obliquely to the width direction of the film can be easily obtained.
- the specific direction of the slow axis of the intermediate film 30 is determined by the stretching conditions in the first step described above. Can be adjusted by.
- the direction of the slow axis of the intermediate film 30 can be adjusted by adjusting the feeding angle ⁇ formed by the feeding direction D20 of the unstretched film 20 from the feeding roll 10 and the winding direction D30 of the intermediate film 30.
- the feeding direction D ⁇ b> 20 of the pre-stretching film 20 indicates the traveling direction of the pre-stretching film 20 that is fed from the feeding roll 10.
- the winding direction D30 of the intermediate film 30 indicates the traveling direction of the intermediate film 30 that is wound as the roll 40.
- the intermediate film 30 usually exhibits in-plane retardation by stretching in an oblique direction.
- the in-plane retardation of a film is not constant in the plane, the in-plane retardation of the film is usually evaluated by an average in-plane retardation.
- the specific average in-plane retardation Re1 of the intermediate film 30 is preferably 300 nm or more, more preferably 320 nm or more, particularly preferably 350 nm or more, preferably 500 nm or less, more preferably 450 nm or less, particularly preferably 420 nm or less. It is.
- the average in-plane retardation Re1 of the intermediate film 30 By setting the average in-plane retardation Re1 of the intermediate film 30 in the above range, a stretched film having an average in-plane retardation Re2 near 140 nm suitable as an optical compensation film for a display device can be easily obtained.
- the average in-plane retardation of the film can be obtained by measuring the in-plane retardation at a plurality of points at intervals of 50 mm in the width direction of the film and calculating the average value of the in-plane retardation at these points.
- a second step is performed in which the intermediate film is freely uniaxially stretched in the flow direction to obtain a long stretched film.
- free uniaxial stretching refers to stretching in a certain direction and applying no restraining force in directions other than the stretching direction. Therefore, the free uniaxial stretching in the flow direction of the film performed in the present embodiment refers to stretching in the flow direction performed without restricting the end portion in the width direction of the film.
- Such stretching in the second step is usually performed using a roll stretching machine while continuously transporting the intermediate film in the longitudinal direction.
- FIG. 2 is a plan view schematically showing a roll stretching machine 200 according to an embodiment of the present invention.
- the roll stretching machine 200 according to one embodiment of the present invention is an apparatus for stretching the intermediate film 30 fed from the roll 40 in the flow direction in a heating environment by an oven (not shown). is there.
- the roll stretching machine 200 includes an upstream roll 210 and a downstream roll 220 as nip rolls that can transport the intermediate film 30 in the flow direction in order from the upstream in the transport direction.
- the rotational speed of the downstream roll 220 is set to be faster than the rotational speed of the upstream roll 210.
- Stretching of the intermediate film 30 using the roll stretching machine 200 is performed as follows.
- the intermediate film 30 is fed out from the roll 40, and the intermediate film 30 is continuously supplied to the roll stretching machine 200.
- the roll stretching machine 200 transports the supplied intermediate film 30 in the order of the upstream roll 210 and the downstream roll 220.
- the intermediate film 30 is stretched in the flow direction, and the stretched film 50 is obtained.
- both end portions 31 and 32 in the width direction of the intermediate film 30 are not restrained.
- the width of the intermediate film 30 is reduced as the film is stretched in the flow direction, so that a stretched film 50 having a smaller width than the intermediate film 30 is obtained.
- the stretched film 50 is a biaxially stretched film stretched in two directions, that is, the flow direction and the oblique direction. The stretched film 50 is wound up and collected as a roll 60 after both ends thereof are trimmed as necessary.
- the draw ratio B2 in the second step is made smaller than the draw ratio B1 in the first step.
- the stretching in the flow direction is usually performed first, and the stretching in the oblique direction is performed later. Stretching in this order makes it easy to increase the width of the stretched film to be produced, and to easily control the direction of the slow axis.
- the inventor tried to produce a stretched film having a high NZ coefficient by a conventional method it was found that wrinkles are likely to occur. In particular, it has been found that wrinkles due to shrinkage in the width direction of the stretched film are particularly likely to occur.
- the NZ coefficient is reduced. Even when the high stretched film 50 is manufactured, the generation of wrinkles can be suppressed. By suppressing the generation of wrinkles, the transportability of the stretched film 50 can be improved, and the stretched film 50 can be used as an optical member.
- the present invention is not limited by the following inference.
- the end in the width direction of the film is free. Therefore, the shrinkage stress contained in the film is released during the stretching performed in the second step. Therefore, even if the stretch ratio B1 is increased in the first step in order to increase the NZ coefficient, the shrinkage stress remaining in the manufactured stretched film 50 can be reduced. Therefore, it is assumed that the stretched film 50 does not wrinkle.
- the specific draw ratio B2 in the second step is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 2.0 times or less, more preferably Is 1.8 times or less, particularly preferably 1.6 times or less.
- the total draw ratio (B1 ⁇ B2) of the draw ratio B1 in the first process and the draw ratio B2 in the second process is preferably 1.1 times or more, more preferably 1.5 times or more, and particularly preferably Is 1.9 times or more, preferably 4.5 times or less, more preferably 4.2 times or less, and particularly preferably 4.0 times or less.
- the NZ coefficient of the stretched film 50 can be increased by setting the total stretch ratio to be equal to or higher than the lower limit of the above range.
- the orientation angle of the stretched film 50 can be easily controlled by setting it to the upper limit value or less.
- the stretching temperature T2 in the second step is preferably higher than T1-5 ° C, more preferably T1-4 ° C or higher, particularly preferably T1-3 ° C or higher, preferably based on the stretching temperature T1 in the first step. Is lower than T1 + 5 ° C., more preferably T1 + 4 ° C. or less, and particularly preferably T1 + 3 ° C. or less.
- the average in-plane retardation Re2 of the stretched film 50 can be adjusted by adjusting the stretch temperature T2 in the second step to the above range.
- the stretched film manufactured by the above-described manufacturing method is a long film formed of the same material as the film before stretching, and has a slow axis in a direction oblique to the width direction.
- the stretched film has an average of usually 5 ° or more, preferably 10 ° or more, more preferably 20 ° or more, and usually 85 ° or less, preferably 80 ° or less with respect to the width direction.
- the variation in the angle formed by the width direction of the stretched film and the slow axis is preferably 0.3 ° or less, more preferably 0.2 ° or less, and particularly preferably 0.1 ° or less. Is 0 °.
- the variation in the angle formed by the width direction of the stretched film and the slow axis is the difference between the maximum value and the minimum value among the angles formed by the width direction and the slow axis at any point of the stretched film.
- the contrast of the liquid crystal display device can be improved when the film cut out from the stretched film is used as an optical compensation film of the liquid crystal display device.
- the stretched film manufactured by the above-described manufacturing method can have a high NZ coefficient.
- the NZ coefficient of a film is not constant in the plane, the NZ coefficient of the film is usually evaluated by an average NZ coefficient.
- a specific range of the average NZ coefficient can be set according to the use of the stretched film.
- the specific value of the average NZ coefficient of the stretched film is preferably 2.0 or more, more preferably 2.1 or more, particularly preferably 2.2 or more, preferably 3.0 or less, more preferably 2. It is 8 or less, particularly preferably 2.6 or less.
- the average NZ coefficient of the film can be obtained by measuring the NZ coefficient at a plurality of points at intervals of 50 mm in the width direction of the film and calculating the average value of the NZ coefficients at these points.
- the variation in the NZ coefficient of the stretched film is preferably 0.3 or less, more preferably 0.2 or less, particularly preferably 0.1 or less, and ideally zero.
- the variation in the NZ coefficient refers to the difference between the maximum value and the minimum value among the NZ coefficients at arbitrary points of the stretched film.
- the stretched film manufactured by the above-described manufacturing method hardly causes wrinkles while having a high NZ coefficient.
- This wrinkle can be evaluated by the dimensional change rate of the stretched film.
- the dimensional change rate in the width direction of the stretched film when allowed to stand at 100 ° C. for 1 hour is preferably ⁇ 0.1% to 0.1%, more preferably ⁇ 0.05% to It is 0.1%, particularly preferably 0% to 0.1%.
- FIG. 3 is a plan view schematically showing a test piece in order to explain a method for measuring a dimensional change rate of a stretched film.
- a square test piece 300 having a side parallel to the width direction X or the longitudinal direction Y of the stretched film is cut out from the long stretched film.
- the test piece 300 is cut out with a length of one side of 120 mm.
- a total of three test pieces 300 are cut out, one each from the center and both ends in the width direction of the stretched film.
- four reference points P A distance from two sides adjacent in the vertex is 10 mm, P B, providing P C and P D.
- Distance between P A and P B, the distance between P A and P C, the distance between the P B and P D, and the distance between P C and P D are both a 100 mm.
- the test piece 300 is held in an environment of 100 ° C. for 1 hour. Thereafter, the distance D AB between the gauge points P A and P B arranged in the width direction X is measured, and the displacement ⁇ D AB from the distance (100 mm) before storage is obtained.
- ⁇ Ltd ⁇ ( ⁇ D AB / 100) + ( ⁇ D CD / 100) ⁇ / 2 ⁇ 100 (%)
- DELTA dimensional change rate Ltd of the test piece of a center part and both ends
- the average in-plane retardation Re2 of the stretched film is usually smaller than the average in-plane retardation Re1 of the intermediate film.
- the specific average in-plane retardation Re2 of the stretched film is preferably 100 nm or more, more preferably 120 nm or more, particularly preferably 130 nm or more, preferably 300 nm or less, more preferably 200 nm or less, particularly preferably 160 nm or less. is there.
- the average in-plane retardation Re2 in such a range a film cut out from the stretched film can be suitably used as an optical compensation film of a display device.
- the average in-plane retardation Re2 of the stretched film can be arbitrarily set to an appropriate value depending on the configuration of the display device to be applied.
- the variation in the in-plane retardation of the stretched film is preferably 10 nm or less, more preferably 5 nm or less, particularly preferably 2 nm or less, and ideally 0 nm.
- the variation in the in-plane retardation means the difference between the maximum value and the minimum value of the in-plane retardation at any point of the stretched film.
- the total light transmittance of the stretched film is preferably 80% or more.
- the light transmittance can be measured using a spectrophotometer (manufactured by JASCO Corporation, ultraviolet-visible near-infrared spectrophotometer “V-570”) in accordance with JIS K0115.
- the haze of the stretched film is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
- the haze can be measured at five locations using “turbidity meter NDH-300A” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997, and the average value obtained therefrom can be adopted.
- the amount of volatile components remaining in the stretched film is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, still more preferably 0.02% by weight or less, and ideally zero. .
- the volatile component is a substance having a molecular weight of 200 or less contained in the film, and examples thereof include a residual monomer and a solvent.
- the amount of volatile components can be quantified by dissolving the film in chloroform and analyzing it by gas chromatography as the sum of the substances having a molecular weight of 200 or less contained in the film.
- the saturated water absorption of the stretched film is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less, and ideally zero.
- the saturated water absorption rate of the stretched film is within the above range, changes with time in optical properties such as in-plane retardation can be reduced.
- the saturated water absorption is a value expressed as a percentage of the increased mass of the film specimen immersed in water at 23 ° C. for 24 hours with respect to the mass of the film specimen before immersion.
- the average thickness of the stretched film is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 30 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 60 ⁇ m or less.
- the average thickness of the stretched film is obtained by measuring the thickness at a plurality of points at intervals of 5 cm in the width direction of the film and calculating the average value of the measured values.
- the width of the stretched film is preferably 1300 mm or more, more preferably 1400 mm or more, and particularly preferably 1500 mm or more. Although there is no restriction
- the stretched film can be used as a retardation film and a viewing angle compensation film, for example, alone or in combination with other members.
- the present invention is not limited to the above embodiment, and may be further modified.
- the manufacturing method mentioned above may have arbitrary processes other than the 1st process and the 2nd process.
- a step of providing a protective layer on the surface of the stretched film may be performed.
- a film obtained by stretching an unstretched film in an arbitrary direction may be used as the pre-stretch film.
- the roll stretching method, the longitudinal stretch method of a float system, the lateral stretch method using a tenter apparatus, etc. can be used, for example.
- the intermediate film 30 was wound up and made into the roll 40 and the intermediate roll 30 was drawn
- the intermediate film 30 obtained at the 1st process is not wound up. You may supply to a 2nd process.
- the long polarizing film of the present invention includes the above-described long stretched film and a long polarizer.
- a polarizer for example, a film of an appropriate vinyl alcohol polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, a dyeing treatment with a dichroic substance such as iodine and a dichroic dye, a stretching treatment, a crosslinking treatment, etc. are applied in an appropriate order and manner.
- a polarizer is capable of transmitting linearly polarized light when natural light is incident thereon, and in particular, a polarizer excellent in light transmittance and degree of polarization is preferable.
- the thickness of the polarizer is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
- the stretched film may be provided on both sides of the polarizer or on one side.
- a protective film has been provided on the surface of the polarizer, but by combining the stretched film with the polarizer, the stretched film can serve as a protective film for the polarizer. Therefore, a polarizing film provided with a combination of a polarizing film and a polarizer can omit the conventionally used protective film and can contribute to thinning.
- the polarizing film can be produced, for example, by laminating a long polarizer and a long stretched film in a roll-to-roll manner with their longitudinal directions parallel to each other. In bonding, an adhesive may be used as necessary. Thus, by manufacturing using a long film, it is possible to manufacture a long polarizing film efficiently.
- the polarizing film may include an arbitrary member other than the polarizing film and the polarizer, as necessary.
- the protective film for protecting a polarizer is mentioned, for example. Any transparent film can be used as the protective film.
- a resin film excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
- resins include acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, polymer resins having an alicyclic structure, (meth) An acrylic resin etc. are mentioned.
- acetate resin, polymer resin having an alicyclic structure, and (meth) acrylic resin are preferable in terms of low birefringence, and alicyclic from the viewpoint of transparency, low hygroscopicity, dimensional stability, light weight, etc.
- a polymer resin having a structure is particularly preferred.
- the long stretched film manufactured by the above-described manufacturing method can be cut into a desired size according to the usage pattern and used as an optical film such as a retardation film. Moreover, the said long polarizing film can be cut out to a desired magnitude
- These optical films and polarizing plates can be applied to a display device such as a liquid crystal display device.
- Such a liquid crystal display device includes the optical film or the polarizing plate.
- Specific examples of the liquid crystal display device include a liquid crystal panel that can change the alignment of liquid crystal by adjusting a voltage, and a polarizing plate that is disposed so as to sandwich the liquid crystal panel.
- the optical film cut out from the stretched film can be provided in a liquid crystal display device for optical compensation, polarization conversion, and the like, for example.
- the liquid crystal display device usually includes a member for sending light to the liquid crystal panel on the side opposite to the display surface with respect to the liquid crystal panel.
- a member for sending light to the liquid crystal panel on the side opposite to the display surface with respect to the liquid crystal panel examples include a reflector in a reflective liquid crystal display device, and a backlight device in a transmissive liquid crystal display device.
- the backlight device examples include a cold cathode tube, a mercury flat lamp, a light emitting diode, and an EL.
- a reflective liquid crystal display device including a reflective display type liquid crystal panel is preferable.
- the liquid crystal panel is not particularly limited by its display mode.
- the display modes of the liquid crystal panel include, for example, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, a continuous spin wheel alignment (CPA) mode, and a hybrid alignment nematic (HAN).
- IPS in-plane switching
- VA vertical alignment
- MVA multi-domain vertical alignment
- CPA continuous spin wheel alignment
- HAN hybrid alignment nematic
- Mode twisted nematic (TN) mode
- STN super twisted nematic
- OBC optically compensated bend
- the above polarizing plate is usually bonded to a liquid crystal panel.
- the polarizing plate obtained by cutting the long polarizing film into a desired shape may be bonded to the liquid crystal panel, and the polarizing film is attached to the liquid crystal panel after the long polarizing film is bonded to the liquid crystal panel. You may cut out together. Since the polarizing film manufactured using the above-mentioned long stretched film can be cut out in parallel or perpendicular to the width direction when cut out for bonding to a liquid crystal panel, the production efficiency is good. .
- the liquid crystal display device may include an arbitrary member other than the liquid crystal panel, the polarizing plate, and the optical film.
- the optional member include a prism array sheet, a lens array sheet, a light diffusion plate, and a brightness enhancement film.
- a square test piece 300 having sides parallel to the width direction X or the vertical direction Y of the film was cut out from the long film. At this time, the length of one side of the test piece 300 was 120 mm. Further, a total of three test pieces 300 were cut out, one each from the center and both ends in the width direction of the stretched film. In the vicinity of the vertices 310, 320, 330, and 340 of the cut specimen 300, four gauge points P A , P B , P C, and P D that provide a distance of 10 mm from two adjacent sides at the vertex are provided. .
- This test piece 300 was held in an environment of 100 ° C. for 1 hour. Thereafter, a distance D AB between the gauge points P A and P B arranged in the width direction X was measured, and a displacement ⁇ D AB from a distance (100 mm) before storage was obtained. Also, measure the distance D CD between the reference points P C and P D aligned in the width direction X, was calculated displacement [Delta] D CD from a distance before storage (100 mm).
- the dimensional change rate ⁇ Ltd of each test piece was calculated by the following equation.
- the units of displacement ⁇ D AB and displacement ⁇ D CD are millimeters.
- ⁇ Ltd ⁇ ( ⁇ D AB / 100) + ( ⁇ D CD / 100) ⁇ / 2 ⁇ 100 (%)
- DELTA dimensional change rate Ltd of the test piece of a center part and both ends was calculated, and the average value was made into the dimensional change rate of a stretched film.
- the gauge P A, P B, the measurement of the distance between P C and P D used a profile projector (Nikon Corporation "V-12B").
- the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were measured at 40 ° C. as standard polyisoprene conversion values by gel permeation chromatography (GPC) using cyclohexane as an eluent.
- GPC gel permeation chromatography
- HLC8120GPC manufactured by Tosoh Corporation was used.
- the sample was prepared by heating and dissolving the measurement sample in cyclohexane at 40 ° C. so that the sample concentration was 4 mg / ml.
- the measurement was performed under the conditions of using TSKgel G5000HXL, TSKgel G4000HXL, and TSKgel G2000HXL manufactured by Tosoh Corporation in series, connected in series, with a flow rate of 1.0 ml / min, a sample injection amount of 100 ⁇ ml, and a column temperature of 40 ° C. It was.
- Tg glass transition temperature
- the amount of the mixture of DCP, TCD and MTF is 1% by weight based on the total amount of monomers used for the polymerization. Further, 0.55 part of tri-i-butylaluminum, 0.21 part of isobutyl alcohol, 0.84 part of diisopropyl ether as a reaction regulator, and 3.24 parts of 1-hexene as a molecular weight regulator are added to the reactor. did. To this, 24.1 parts of a 0.65% tungsten hexachloride solution dissolved in cyclohexane was added and stirred at 55 ° C. for 10 minutes.
- This reaction solution was filtered under pressure with Radiolite # 500 as a filter bed at a pressure of 0.25 MPa (Ishikawajima-Harima Heavy Industries Co., Ltd., product name “Funda filter”) to remove the hydrogenation catalyst, and a colorless transparent solution was obtained. Obtained.
- antioxidant penentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] per 100 parts of the hydrogenated product, manufactured by Ciba Specialty Chemicals, The product name “Irganox 1010”
- the mixture is filtered sequentially with a Zeta Plus filter 30H (Cuneau filter, pore size 0.5 ⁇ m to 1 ⁇ m), and further filtered with another metal fiber filter (Nichidai Corp., pore size 0.4 ⁇ m). Solids were removed.
- the hydrogenation rate of the hydrogenated product of the ring-opening polymer was 99.9%.
- the solution obtained by the above filtration is treated at a temperature of 270 ° C. and a pressure of 1 kPa or less using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd.). Volatile components were removed. And from the die
- the hydrogenated ring-opening polymer constituting the pellet had a weight average molecular weight (Mw) of 38,000, a molecular weight distribution (Mw / Mn) of 2.5, and a glass transition temperature Tg of 129 ° C.
- Example 1 Manufacture of long resin films
- a polymer resin having an alicyclic structure hydrogenated pellets of the ring-opening polymer obtained in Production Example 1 were prepared and dried at 100 ° C. for 5 hours. The pellets were supplied to an extruder, melted in the extruder, and extruded from a T die onto a casting drum through a polymer pipe and a polymer filter. The extruded resin was cooled and cured on the casting drum, and a long unstretched film having a thickness of 100 ⁇ m was obtained. The pre-stretch film was wound up to obtain a feeding roll.
- a long unstretched film 20 is fed from a feeding roll 10 and supplied to a tenter stretching machine 100 having the structure described in the above-described embodiment, and stretched in an oblique direction under the conditions shown in Table 1.
- an intermediate film 30 was obtained.
- the obtained intermediate film 30 was wound up and collected as a roll 40.
- the feeding angle ⁇ formed by the feeding direction D20 of the pre-stretching film 20 from the feeding roll 10 and the winding direction D30 of the intermediate film 30 was set to 25 °.
- the average in-plane retardation Re1 and the average orientation angle were measured.
- the intermediate film obtained in the first step was freely uniaxially stretched in the flow direction under the conditions shown in Table 1 to obtain a stretched film.
- a stretched film By trimming both ends 150 mm in the width direction of the stretched film, a long stretched film having a width of 1330 mm was obtained.
- the average in-plane retardation Re2 the average orientation angle, the average NZ coefficient, the dimensional change rate, and the transportability were evaluated.
- Examples 2 to 5 and Comparative Examples 1 to 4 Production of long intermediate film and stretched film in the same manner as in Example 1 except that the order of stretching in the oblique direction and stretching in the flow direction, stretching ratio, and stretching temperature were changed as shown in Table 1. And evaluation.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Manufacturing & Machinery (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
すなわち、本発明は以下の通りである。
前記第一工程の後で、(b)前記中間フィルムを連続的に搬送しながら延伸倍率B2で流れ方向に自由一軸延伸して、長尺の延伸フィルムを得る第二工程とを有し、
延伸倍率がB1>B2を満たす、延伸フィルムの製造方法。
〔2〕 前記延伸フィルムの平均NZ係数が、2.0~3.0である、〔1〕記載の延伸フィルムの製造方法。
〔3〕 前記第一工程の延伸倍率B1が、1.5倍~4.0倍であり、
前記第二工程の延伸倍率B2が、1.1倍~2.0倍である、〔1〕又は〔2〕記載の延伸フィルムの製造方法。
〔4〕 前記中間フィルムが、その幅方向に対して平均で10°~35°の範囲に遅相軸を有し、且つ、
前記延伸フィルムが、その幅方向に対して平均で10°~80°の範囲に遅相軸を有する、〔1〕~〔3〕のいずれか一項に記載の延伸フィルムの製造方法。
〔5〕 前記第一工程の延伸温度T1と前記第二工程の延伸温度T2が、T1-5℃<T2<T1+5℃を満たす、〔1〕~〔4〕のいずれか一項に記載の延伸フィルムの製造方法。
〔6〕 前記中間フィルムの平均面内レターデーションRe1が、300nm以上であり、
前記延伸フィルムの平均面内レターデーションRe2が、100nm~200nmである、〔1〕~〔5〕のいずれか一項に記載の延伸フィルムの製造方法。
〔7〕 〔1〕~〔6〕のいずれか一項に記載の製造方法で得られる延伸フィルムと、長尺の偏光子とを備える、長尺の偏光フィルム。
〔8〕 〔7〕に記載の長尺の偏光フィルムから切り出された偏光板を備える、液晶表示装置。
また、以下の説明において、長尺のフィルムの縦方向とは、別に断らない限り、そのフィルムの長手方向であって、通常は製造ラインにおけるフィルムの流れ方向と平行である。
本発明の一実施形態に係る延伸フィルムの製造方法は、(a)長尺の延伸前フィルムを延伸倍率B1で斜め方向に延伸して、長尺の中間フィルムを得る第一工程と;第一工程の後で、(b)中間フィルムを連続的に搬送しながら延伸倍率B2で流れ方向に自由一軸延伸して、長尺の延伸フィルムを得る第二工程と、を有する。
通常、延伸前フィルムとしては、樹脂フィルムを用いる。また、樹脂フィルムを形成する樹脂としては、通常、熱可塑性樹脂を用いる。このような熱可塑性樹脂の例としては、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ノルボルネン系樹脂等の脂環式構造を有する重合体樹脂;トリアセチルセルロース樹脂等のセルロース系樹脂;ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリケトンサルファイド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンオキサイド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、(メタ)アクリル樹脂、ポリビニルアルコール樹脂、ポリプロピレン樹脂、セルロース系樹脂、エポキシ樹脂、フェノール樹脂、(メタ)アクリル酸エステル-ビニル芳香族化合物共重合体樹脂、イソブテン/N-メチルマレイミド共重合体樹脂、スチレン/アクリルニトリル共重合体樹脂などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせてもよい。
本発明の一実施形態に係る延伸フィルムの製造方法では、長尺の延伸前フィルムを用意した後で、その長尺の延伸前フィルムを斜め方向に延伸して中間フィルムを得る第一工程を行なう。第一工程では、通常、延伸前フィルムを長手方向に連続的に搬送しながら、テンター装置を用いて延伸を行なう。
図1に示すように、本発明の一実施形態に係るテンター装置100は、繰出しロール10から繰り出される延伸前フィルム20を、図示しないオーブンによる加熱環境下で、その斜め方向に延伸するための装置である。
繰出しロール10から延伸前フィルム20を繰り出し、その延伸前フィルム20をテンター装置100に連続的に供給する。
テンター装置100は、その入口部130において延伸前フィルム20の両端部21及び22を把持子110R及び110Lによって順次把持する。両端部21及び22を把持された延伸前フィルム20は、把持子110R及び110Lの走行に伴って搬送される。前記のように、本実施形態では、延伸前フィルム20の進行方向を左方向へ曲げるようにガイドレール120R及び120Lの形状を設定している。そのため、一方の把持子110Rが延伸前フィルム20を把持しながら走行する軌道の距離は、他方の把持子110Lが延伸前フィルム20を把持しながら走行する軌道の距離よりも長くなる。よって、テンター装置100の入口部130において延伸前フィルム20の進行方向に対して垂直な方向に相対していた一組の把持子110R及び110Lは、テンター装置100の出口部140において左側の把持子110Lが右側の把持子110Rよりも先行するので、延伸前フィルム20の斜め方向への延伸が行なわれて、長尺の中間フィルム30が得られる。得られた中間フィルム30は、テンター装置100の出口部140において把持子110R及び110Lから開放され、巻き取られてロール40として回収される。
フィルムの平均面内レターデーションは、フィルムの幅方向に50mm間隔の複数の地点で面内レターデーションを測定し、これらの地点での面内レターデーションの平均値を計算することにより求めうる。
本発明の一実施形態に係る延伸フィルムの製造方法では、第一工程の後で、(b)中間フィルムを流れ方向に自由一軸延伸して、長尺の延伸フィルムを得る第二工程を行なう。ここで自由一軸延伸とは、ある一方向への延伸であって、延伸される方向以外の方向に拘束力を加えないことをいう。よって、本実施形態において行なわれるフィルムの流れ方向への自由一軸延伸は、フィルムの幅方向の端部を拘束しないで行なう流れ方向への延伸のことをいう。第二工程でのこのような延伸は、通常、中間フィルムを長手方向に連続的に搬送しながら、ロール延伸機を用いて行なわれる。
図2に示すように、本発明の一実施形態に係るロール延伸機200は、ロール40から繰り出される中間フィルム30を、図示しないオーブンによる加熱環境下で、その流れ方向に延伸するための装置である。
ロール40から中間フィルム30を繰り出し、その中間フィルム30をロール延伸機200に連続的に供給する。
ロール延伸機200は、供給された中間フィルム30を上流ロール210及び下流ロール220の順に搬送する。この際、下流ロール220の回転速度が上流ロール210の回転速度よりも速いので、中間フィルム30の流れ方向への延伸が行なわれて、延伸フィルム50が得られる。前記のロール延伸機200による延伸では、中間フィルム30の幅方向の両端部31及び32は拘束されていない。そのため、通常は、流れ方向への延伸に伴って中間フィルム30の幅は縮むので、中間フィルム30よりも幅が小さい延伸フィルム50が得られる。本実施形態では、延伸前フィルム20として未延伸フィルムを用いているので、延伸フィルム50は、流れ方向及び斜め方向という2方向に延伸された二軸延伸フィルムとなっている。
この延伸フィルム50は、必要に応じてその両端部がトリミングされた後で、巻き取られてロール60として回収される。
これに対し、上述した実施形態のように、斜め方向への延伸及び流れ方向への自由一軸延伸をこの順に行なうことと、延伸倍率をB1>B2とすることとを組み合わせることにより、NZ係数の高い延伸フィルム50を製造した場合でも、シワの発生を抑制できる。シワの発生を抑制できることで、その延伸フィルム50の搬送性を改善でき、また、その延伸フィルム50を光学部材として用いることが可能となる。
流れ方向への自由一軸延伸では、フィルムの幅方向の端部が自由である。そのため、第二工程で行なわれる延伸の際に、フィルムに含まれている収縮応力が開放される。したがって、NZ係数を大きくするべく第一工程で延伸倍率B1を高くしても、製造された延伸フィルム50に残留する収縮応力を小さくできるので、その延伸フィルム50はシワを生じないものと推察される。
以下、上述した製造方法により製造される長尺の延伸フィルムについて説明する。
上述した製造方法で製造した延伸フィルムは、延伸前フィルムと同様の材料で形成された長尺のフィルムであって、その幅方向に対して斜めの方向に遅相軸を有する。具体的には、延伸フィルムは、その幅方向に対して、平均で、通常5°以上、好ましくは10°以上、より好ましくは20°以上、且つ、通常85°以下、好ましくは80°以下の範囲に遅相軸を有する。このように斜め方向に遅相軸を有する長尺の延伸フィルムは、長尺の偏光子と貼り合せて偏光フィルムを製造する際に、縦方向又は幅方向に切り出すことができる。そのため、廃棄するフィルム量を少なくしたり、ロールトゥロールによる貼り合わせを可能にしたりできる。
フィルムの平均NZ係数は、フィルムの幅方向に50mm間隔の複数の地点でNZ係数を測定し、これらの地点でのNZ係数の平均値を計算することにより求めうる。
図3は、延伸フィルムの寸法変化率の測定方法を説明するため、試験片を模式的に示す平面図である。
長尺の延伸フィルムから、図3に示すように、その延伸フィルムの幅方向X又は縦方向Yに平行な辺を有する正方形の試験片300を切り出す。このとき、試験片300は、一辺の長さ120mmの大きさで切り出す。また、試験片300は、延伸フィルムの幅方向の中央部及び両端部からそれぞれ1枚ずつ、合計3枚切り出す。切り出した試験片300の頂点310、320、330及び340の近傍において、その頂点で隣り合う2辺からの距離が10mmとなる4つの標点PA、PB、PC及びPDを設ける。PAとPBとの距離、PAとPCとの距離、PBとPDとの距離、及び、PCとPDとの距離は、いずれも100mmとなる。
この試験片300を、100℃の環境下で1時間保持する。
その後、幅方向Xに並んだ標点PAとPBとの間の距離DABを測定し、保存前の距離(100mm)からの変位ΔDABを求める。また、幅方向Xに並んだ標点PCとPDとの間の距離DCDを測定し、保存前の距離(100mm)からの変位ΔDCDを求める。ここで、ΔDAB=100mm-DABであり、また、ΔDCD=100mm-DCDである。
これらの変位ΔDAB及び変位ΔDCDから、下記式により、各試験片の寸法変化率ΔLtdを計算する。
ΔLtd={(ΔDAB/100)+(ΔDCD/100)}/2×100(%)
そして、中央部及び両端部の試験片の寸法変化率ΔLtdの平均値を計算し、その平均値を延伸フィルムの寸法変化率とする。
ここで、揮発性成分とは、フィルム中に含まれる分子量200以下の物質であり、例えば、残留単量体及び溶媒などが挙げられる。揮発性成分の量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをクロロホルムに溶解させてガスクロマトグラフィーにより分析することにより定量することができる。
ここで、飽和吸水率は、フィルムの試験片を23℃の水中に24時間浸漬し、増加した質量の、浸漬前フィルム試験片の質量に対する百分率で表される値である。
ここで、延伸フィルムの平均厚みは、フィルムの幅方向において5cm間隔の複数の地点で厚みを測定し、それらの測定値の平均値を計算することにより求められる。
本発明は前記の実施形態に限定されず、更に変更して実施してもよい。
例えば、上述した製造方法は、第一工程及び第二工程以外に、更に任意の工程を有していてもよい。そのような工程としては、例えば、延伸フィルムの表面に保護層を設ける工程を行なってもよい。
本発明の長尺の偏光フィルムは、上述した長尺の延伸フィルムと、長尺の偏光子とを備える。
上述した製造方法で製造された長尺の延伸フィルムは、その使用形態に応じて所望の大きさに切り出して、位相差フィルム等の光学フィルムとして用いうる。また、前記の長尺の偏光フィルムは、その使用形態に応じて所望の大きさに切り出して、偏光板として用いうる。切り出す際には、長尺のフィルムの幅方向に対して、垂直又は平行な方向に沿って切り出すことが好ましい。これらの光学フィルム及び偏光板は、例えば液晶表示装置等の表示装置に適用しうる。
以下の説明において、量を表す「部」及び「%」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
(1.フィルムの平均面内レターデーションの測定方法)
位相差計(王子計測社製「KOBRA-21ADH」)を用いて、フィルムの幅方向に50mm間隔の複数の地点で面内レターデーションを測定した。これらの地点での面内レターデーションの平均値を計算し、この平均値を当該フィルムの平均面内レターデーションとした。この際、測定波長は590nmとした。
位相差計(王子計測社製「KOBRA-21ADH」)を用いて、フィルムの幅方向に50mm間隔の複数の地点でNZ係数を測定した。これらの地点でのNZ係数の平均値を計算し、この平均値を当該フィルムの平均NZ係数とした。この際、測定波長は590nmとした。
偏光顕微鏡(オリンパス社製「BX51」)を用いて、フィルムの幅方向に50mm間隔の複数の地点で面内の遅相軸を観察し、遅相軸とフィルムの幅方向との成す配向角を測定した。これらの地点での配向角の平均値を計算し、この平均値を当該フィルムの平均配向角とした。
長尺のフィルムから、図3に示すように、そのフィルムの幅方向X又は縦方向Yに平行な辺を有する正方形の試験片300を切り出した。このとき、試験片300の一辺の長さは、120mmにした。また、試験片300は、延伸フィルムの幅方向の中央部及び両端部からそれぞれ1枚ずつ、合計3枚切り出した。切り出した試験片300の頂点310、320、330及び340の近傍において、その頂点で隣り合う2辺からの距離が10mmとなる4つの標点PA、PB、PC及びPDを設けた。このとき、PAとPBとの距離、PAとPCとの距離、PBとPDとの距離、及び、PCとPDとの距離は、いずれも100mmとなっていた。
この試験片300を、100℃の環境下で1時間保持した。
その後、幅方向Xに並んだ標点PAとPBとの間の距離DABを測定し、保存前の距離(100mm)からの変位ΔDABを求めた。また、幅方向Xに並んだ標点PCとPDとの間の距離DCDを測定し、保存前の距離(100mm)からの変位ΔDCDを求めた。ここで、ΔDAB=100mm-DABであり、また、ΔDCD=100mm-DCDである。
これらの変位ΔDAB及び変位ΔDCDから、下記式により、各試験片の寸法変化率ΔLtdを計算した。ここで、変位ΔDAB及び変位ΔDCDの単位は、ミリメートルである。
ΔLtd={(ΔDAB/100)+(ΔDCD/100)}/2×100(%)
そして、中央部及び両端部の試験片の寸法変化率ΔLtdの平均値を計算し、その平均値を延伸フィルムの寸法変化率とした。
この際、標点PA、PB、PC及びPDの間の距離の測定には、万能投影機(Nikon社製「V-12B」)を使用した。
フィルムの搬送性の評価は、フィルムを目視で観察し、シワの有無を判定することにより行なった。シワが観察されなかったものは「良」、シワが観察されたものは「不良」とした。
重合体の重量平均分子量(Mw)と数平均分子量(Mn)は、シクロヘキサンを溶離液とするゲルパーミエーションクロマトグラフィ(GPC)による標準ポリイソプレン換算値として40℃において測定した。
測定装置としては、東ソー社製のHLC8120GPCを用いた。
標準ポリイソプレンとしては、東ソー社製の標準ポリイソプレンのうち、重量平均分子量Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、及び280000の計10点を用いた。
サンプルは、サンプル濃度4mg/mlになるように、40℃にて測定試料をシクロヘキサンに加熱溶解させて調製した。
測定は、カラムとして東ソー社製のTSKgel G5000HXL、TSKgel G4000HXL、及び、TSKgel G2000HXLの計3本を直列に繋いで用い、流速1.0ml/分、サンプル注入量100μml、カラム温度40℃の条件で行った。
重合体のガラス転移温度Tgは、示差走査熱量分析計を用いて、JIS K 6911に基づいて測定した。
重合体の水素添加率は、溶媒として重クロロホルム/四塩化炭素の混合溶液(重クロロホルム/四塩化炭素=1/1重量比)を用いて、1H-NMRスペクトルにより測定した。
(開環重合)
以下の説明において、別に断らない限り、「DCP」とはトリシクロ[4.3.0.12,5]デカ-3-エンを示し、「TCD」とはテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンを示し、「MTF」とはテトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエンを示す。
窒素で置換した反応器に、DCPとTCDとMTFの混合物(DCP/TCD/MTF=55/40/5重量比)7部、並びに、シクロヘキサン1600部を加えた。前記のDCP、TCD及びMTFの混合物の量は、重合に使用するモノマー全量に対して重量1%である。さらに、反応器に、トリ-i-ブチルアルミニウム0.55部、イソブチルアルコール0.21部、反応調整剤としてジイソプロピルエーテル0.84部、及び、分子量調節剤として1-ヘキセン3.24部を添加した。ここに、シクロヘキサンに溶解させた0.65%の六塩化タングステン溶液24.1部を添加して、55℃で10分間攪拌した。次いで、反応系を55℃に保持しながら、DCPとTCDとMTFの混合物(DCP/TCD/MTF=55/40/5重量比)を693部と、シクロヘキサンに溶解させた0.65%の六塩化タングステン溶液48.9部とを、それぞれ系内に150分かけて連続的に滴下した。その後、30分間反応を継続し、重合を終了した。これにより、シクロヘキサン中に開環重合体を含む開環重合反応液を得た。
重合終了後、ガスクロマトグラフィーにより測定したモノマーの重合転化率は重合終了時で100%であった。
得られた開環重合反応液を耐圧性の水素化反応器に移送し、ケイソウ土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率57%)1.4部及びシクロヘキサン167部を加え、180℃、水素圧4.6MPaで6時間反応させた。この水素添加反応により、開環重合体の水素添加物を含む反応溶液を得た。この反応溶液を、ラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製、製品名「フンダフィルター」)して水素化触媒を除去し、無色透明な溶液を得た。
(長尺の樹脂フィルムの製造)
脂環式構造を有する重合体樹脂として、製造例1で得られた開環重合体の水素添加物のペレットを用意し、100℃で5時間乾燥した。このペレットを押出機に供給し、押出機内で溶融させ、ポリマーパイプ及びポリマーフィルターを経てTダイからキャスティングドラム上にシート状に押し出した。押し出された樹脂はキャスティングドラム上で冷却されて硬化し、厚み100μmの長尺の延伸前フィルムが得られた。この延伸前フィルムを巻き取り、繰出しロールを得た。
図1に示すように、繰出しロール10から長尺の延伸前フィルム20を繰り出し、上述した実施形態で説明した構造を有するテンター延伸機100に供給し、表1に示す条件で斜め方向に延伸して、中間フィルム30を得た。得られた中間フィルム30は巻き取ってロール40として回収した。この際、繰出しロール10からの延伸前フィルム20の繰出し方向D20と、中間フィルム30の巻取り方向D30とがなす繰出し角度φは、25°に設定した。得られた中間フィルム30の一部を用いて、その平均面内レターデーションRe1及び平均配向角を測定した。
第一工程で得られた中間フィルムを、表1に示す条件で、流れ方向に自由一軸延伸して、延伸フィルムを得た。この延伸フィルムの幅方向の両端150mmをトリミングすることにより、幅1330mmの長尺の延伸フィルムを得た。この延伸フィルムを用いて、その平均面内レターデーションRe2、平均配向角、平均NZ係数、寸法変化率及び搬送性を評価した。
斜め方向への延伸と流れ方向への延伸の順番、延伸倍率、及び延伸温度を表1に示すように変更したこと以外は実施例1と同様にして、長尺の中間フィルム及び延伸フィルムの製造及び評価を行なった。
実施例及び比較例の結果を、表1に示す。表1において、Reは平均面内レターデーションを表す。また、表1の延伸方向の項において、「斜め」とは延伸方向が斜め方向であることを示し、「縦」とは延伸方向が流れ方向であることを示す。また、表1において、第一工程の欄に記載の平均面内レターデーションRe及び平均配向角は、第一工程で得られた長尺の中間フィルムについて測定した結果を示す。また、第二工程の欄に記載の平均面内レターデーションRe、平均配向角、平均NZ係数、寸法変化率及び搬送性は、第二工程で得られた長尺の延伸フィルムについて測定した結果を示す。
表1から、斜め方向への延伸及び流れ方向への自由一軸延伸をこの順に行なうことと、斜め方向への延伸倍率B1を流れ方向への延伸倍率B2より大きくすることとを組み合わせることにより、斜め方向に遅相軸を有し、且つ、NZ係数が高い延伸フィルムを製造できることが確認された。
20 延伸前フィルム
21及び22 延伸前フィルムの幅方向の端部
30 中間フィルム
31及び32 中間フィルムの幅方向の端部
40 ロール
50 延伸フィルム
60 ロール
100 テンター装置
110R及び110L 把持子
120R及び120L ガイドレール
130 テンター装置の入口部
140 テンター装置の出口部
150 テンター装置の延伸ゾーン
200 ロール延伸機
210 上流ロール
220 下流ロール
300 試験片
310、320、330及び340 試験片の頂点
Claims (8)
- (a)長尺の延伸前フィルムを延伸倍率B1で斜め方向に延伸して、長尺の中間フィルムを得る第一工程と、
前記第一工程の後で、(b)前記中間フィルムを連続的に搬送しながら延伸倍率B2で流れ方向に自由一軸延伸して、長尺の延伸フィルムを得る第二工程とを有し、
延伸倍率がB1>B2を満たす、延伸フィルムの製造方法。 - 前記延伸フィルムの平均NZ係数が、2.0~3.0である、請求項1記載の延伸フィルムの製造方法。
- 前記第一工程の延伸倍率B1が、1.5倍~4.0倍であり、
前記第二工程の延伸倍率B2が、1.1倍~2.0倍である、請求項1又は2記載の延伸フィルムの製造方法。 - 前記中間フィルムが、その幅方向に対して平均で10°~35°の範囲に遅相軸を有し、且つ、
前記延伸フィルムが、その幅方向に対して平均で10°~80°の範囲に遅相軸を有する、請求項1~3のいずれか一項に記載の延伸フィルムの製造方法。 - 前記第一工程の延伸温度T1と前記第二工程の延伸温度T2が、T1-5℃<T2<T1+5℃を満たす、請求項1~4のいずれか一項に記載の延伸フィルムの製造方法。
- 前記中間フィルムの平均面内レターデーションRe1が、300nm以上であり、
前記延伸フィルムの平均面内レターデーションRe2が、100nm~200nmである、請求項1~5のいずれか一項に記載の延伸フィルムの製造方法。 - 請求項1~6のいずれか一項に記載の製造方法で得られる延伸フィルムと、長尺の偏光子とを備える、長尺の偏光フィルム。
- 請求項7に記載の長尺の偏光フィルムから切り出された偏光板を備える、液晶表示装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167012380A KR102189708B1 (ko) | 2013-11-15 | 2014-11-13 | 연신 필름의 제조 방법, 장척의 편광 필름, 및 액정 표시 장치 |
US15/035,792 US10160157B2 (en) | 2013-11-15 | 2014-11-13 | Elongated film manufacturing method, long polarizing film, and liquid-crystal display device |
CN201480061678.9A CN105723258A (zh) | 2013-11-15 | 2014-11-13 | 拉伸膜的制造方法、长条的偏振膜、以及液晶显示装置 |
JP2015547789A JP6451645B2 (ja) | 2013-11-15 | 2014-11-13 | 延伸フィルムの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013237140 | 2013-11-15 | ||
JP2013-237140 | 2013-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015072518A1 true WO2015072518A1 (ja) | 2015-05-21 |
Family
ID=53057452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/080084 WO2015072518A1 (ja) | 2013-11-15 | 2014-11-13 | 延伸フィルムの製造方法、長尺の偏光フィルム、及び、液晶表示装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10160157B2 (ja) |
JP (1) | JP6451645B2 (ja) |
KR (1) | KR102189708B1 (ja) |
CN (1) | CN105723258A (ja) |
TW (1) | TWI672215B (ja) |
WO (1) | WO2015072518A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200133332A (ko) | 2018-03-27 | 2020-11-27 | 니폰 제온 가부시키가이샤 | 장척의 연신 필름 및 장척의 편광 필름의 제조 방법 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105658410B (zh) * | 2013-10-30 | 2017-11-24 | 日本瑞翁株式会社 | 长条拉伸膜及其制造方法 |
US10978530B2 (en) | 2016-11-25 | 2021-04-13 | Vuereal Inc. | Integration of microdevices into system substrate |
JP2019174636A (ja) * | 2018-03-28 | 2019-10-10 | コニカミノルタ株式会社 | 斜め延伸フィルム、偏光板、異形表示装置および斜め延伸フィルムの製造方法 |
CN111239862A (zh) * | 2020-02-17 | 2020-06-05 | 中国科学技术大学 | 一种兼具1/4波片功能的保护膜、其制备方法及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007061105A1 (ja) * | 2005-11-28 | 2007-05-31 | Zeon Corporation | 長尺の斜め延伸フィルムの製造方法 |
JP2008110573A (ja) * | 2006-10-31 | 2008-05-15 | Nippon Zeon Co Ltd | 長尺の延伸フィルム、長尺の積層フィルム、偏光板、液晶表示装置及び長尺の延伸フィルムの製造方法 |
JP2010201659A (ja) * | 2009-02-27 | 2010-09-16 | Nippon Zeon Co Ltd | 斜め延伸フィルムの製造方法、斜め延伸フィルム、偏光板、および液晶表示装置 |
JP2012025167A (ja) * | 2011-10-07 | 2012-02-09 | Nippon Zeon Co Ltd | 長尺の延伸フィルム、長尺の積層フィルム、偏光板及び液晶表示装置 |
WO2012070451A1 (ja) * | 2010-11-26 | 2012-05-31 | 株式会社カネカ | 延伸フィルム及び延伸フィルムの製造方法 |
WO2013161581A1 (ja) * | 2012-04-25 | 2013-10-31 | コニカミノルタ株式会社 | 斜め延伸フィルムの製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003207627A (ja) * | 2002-01-10 | 2003-07-25 | Fuji Photo Film Co Ltd | 偏光板、偏光板の製造方法、および表示装置 |
JP4841191B2 (ja) | 2005-07-29 | 2011-12-21 | ヒラノ技研工業株式会社 | 位相差フィルムの製造方法 |
CN101410239B (zh) * | 2006-03-24 | 2011-01-26 | 日本瑞翁株式会社 | 长形状的延伸膜及其制造方法和用途 |
EP2000286B1 (en) | 2006-03-24 | 2017-03-01 | Zeon Corporation | Continuous stretched film, process for producing the stretched film and use of the stretched film |
WO2009041273A1 (ja) * | 2007-09-26 | 2009-04-02 | Zeon Corporation | 延伸フィルムの製造方法、延伸フィルム、偏光板、及び液晶表示装置 |
JP2012101466A (ja) | 2010-11-11 | 2012-05-31 | Konica Minolta Opto Inc | 長尺状延伸フィルムとその製造方法、長尺状偏光板、及び液晶表示装置 |
-
2014
- 2014-11-13 JP JP2015547789A patent/JP6451645B2/ja active Active
- 2014-11-13 KR KR1020167012380A patent/KR102189708B1/ko active IP Right Grant
- 2014-11-13 US US15/035,792 patent/US10160157B2/en active Active
- 2014-11-13 WO PCT/JP2014/080084 patent/WO2015072518A1/ja active Application Filing
- 2014-11-13 CN CN201480061678.9A patent/CN105723258A/zh active Pending
- 2014-11-14 TW TW103139495A patent/TWI672215B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007061105A1 (ja) * | 2005-11-28 | 2007-05-31 | Zeon Corporation | 長尺の斜め延伸フィルムの製造方法 |
JP2008110573A (ja) * | 2006-10-31 | 2008-05-15 | Nippon Zeon Co Ltd | 長尺の延伸フィルム、長尺の積層フィルム、偏光板、液晶表示装置及び長尺の延伸フィルムの製造方法 |
JP2010201659A (ja) * | 2009-02-27 | 2010-09-16 | Nippon Zeon Co Ltd | 斜め延伸フィルムの製造方法、斜め延伸フィルム、偏光板、および液晶表示装置 |
WO2012070451A1 (ja) * | 2010-11-26 | 2012-05-31 | 株式会社カネカ | 延伸フィルム及び延伸フィルムの製造方法 |
JP2012025167A (ja) * | 2011-10-07 | 2012-02-09 | Nippon Zeon Co Ltd | 長尺の延伸フィルム、長尺の積層フィルム、偏光板及び液晶表示装置 |
WO2013161581A1 (ja) * | 2012-04-25 | 2013-10-31 | コニカミノルタ株式会社 | 斜め延伸フィルムの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200133332A (ko) | 2018-03-27 | 2020-11-27 | 니폰 제온 가부시키가이샤 | 장척의 연신 필름 및 장척의 편광 필름의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
TW201518066A (zh) | 2015-05-16 |
JP6451645B2 (ja) | 2019-01-16 |
JPWO2015072518A1 (ja) | 2017-03-16 |
KR102189708B1 (ko) | 2020-12-11 |
CN105723258A (zh) | 2016-06-29 |
TWI672215B (zh) | 2019-09-21 |
US20160318233A1 (en) | 2016-11-03 |
US10160157B2 (en) | 2018-12-25 |
KR20160087385A (ko) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016047465A1 (ja) | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 | |
JP6451645B2 (ja) | 延伸フィルムの製造方法 | |
JP5151356B2 (ja) | 延伸フィルムの製造方法、延伸フィルム、偏光板、及び液晶表示装置 | |
KR102526886B1 (ko) | 액정표시장치 | |
WO2017170346A1 (ja) | 円偏光板及び画像表示装置 | |
JP6582989B2 (ja) | 延伸フィルムの製造方法 | |
JP2008238514A (ja) | 延伸フィルムの製造方法、延伸フィルム、偏光板及び液晶表示装置 | |
JP7463965B2 (ja) | 光学フィルム及びその製造方法、光学積層体並びに液晶表示装置 | |
WO2017150375A1 (ja) | 画像表示装置 | |
WO2017150495A1 (ja) | 延伸フィルム及びその製造方法、円偏光板、並びに表示装置 | |
JP2019055603A (ja) | 斜め延伸フィルム及びその製造方法 | |
JP7322889B2 (ja) | 成形体及びその製造方法 | |
JP6543987B2 (ja) | 斜め延伸フィルム | |
JP2022000674A (ja) | 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置 | |
JP2009126080A (ja) | 延伸フィルムの製造方法 | |
JP2009214343A (ja) | 延伸フィルムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14862618 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015547789 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167012380 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15035792 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14862618 Country of ref document: EP Kind code of ref document: A1 |